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Spectral mixture modeling has previously been used to retrieve fire temperature and fractional area from
multiband radiance data containing emitted radiance from fires. While this type of temperature modeling has
potential for improving understanding of fire behavior and emissions, modeled temperature and fractional
area may depend on the wavelength region used for modeling. Using airborne hyperspectral (Airborne Visible
Infrared Imaging Spectrometer; AVIRIS) and multispectral (MODIS/ASTER Airborne Simulator; MASTER)
data acquired simultaneously over the 2008 Indians Fire in California, we examined changes in modeled fire
temperature and fractional area that occurred when input wavelength regions were varied. Temperature and
fractional area modeled frommultiple MASTER runs were directly compared. Incompatible spatial resolutions
prevented direct comparison of the AVIRIS andMASTERmodel runs, so total areamodeled at each temperature
was used to indirectly compare temperature and fractional area retrieved from these two sensors. AVIRIS
and MASTER model runs using shortwave infrared (SWIR) bands produced consistent fire temperatures and
fractional areas when modeled temperatures exceeded 800 K. Temperatures and fire fractional areas were
poorly correlated for temperatures below 800 K and when the SWIR bands were excluded as model inputs.
The single temperature blackbody assumption commonly used in mixing model retrieval of fire temperature
is potentially useful for modeling higher temperature fires, but is likely not valid for lower temperature
smoldering combustion due to mixed radiance from multiple fuel elements combusting at different
temperatures. SWIR data contain limited emitted radiance from combustion at lower temperatures, and are
thus essential for consistent modeling of fire temperature and fractional area at higher fire temperatures.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Measuring fire properties using remotely sensed data is funda-
mentally a spectral mixing problem. The radiance measured by a
sensor will be a combination of emitted radiance and reflected solar
radiance contributed by the fire, background, and atmosphere. The
relative contributions of emitted radiance and reflected solar radiance
will vary depending on wavelength, the emissive properties of the
fire and background, and the size of the fire relative to the area of
measurement. Spectral mixture modeling can be used to separate
contributions of radiance emitted by a fire from background emitted
and reflected radiance, allowing retrieval of the fire's effective tem-
perature and fractional area within a pixel (Dennison et al., 2006;
Dozier, 1981). The general form of a spectral mixing model used for
mixed spectral radiance (Lλ) is:

Lλ = ∑
N

i=1
fiLiλ + ελ ð1Þ

where Liλ is the radiance of endmember i at wavelength λ, fi is the
fraction of endmember i, N is the number of endmembers, and ελ is
the residual error. The modeled fractions of the endmembers are
constrained by:

∑
N

i=1
fi = 1 ð2Þ

These equations are the basis for a variety of fire temperature
retrieval algorithms that have been used on airborne and spaceborne
remotely sensed data (Dennison et al., 2006; Dozier, 1981; Eckmann
et al., 2008, 2009, 2010; Matson & Holben, 1987; Oertel et al., 2004;
Riggan et al., 2004; Wooster et al., 2003; Zhukov et al., 2005).

Fire temperature is an important control on carbon dioxide, carbon
monoxide, and aerosol emissions from fires (Andreae &Merlet, 2001).
Fire temperature indicates the dominance of flaming or smoldering
combustion, which determines combustion efficiency and emissions
of trace gasses (Palacios-Orueta et al., 2005). Fire temperature and
duration can also impact soil chemistry, seed survival, and vegetation
regrowth after fire (Brooks, 2002; DeBano, 2000; Drewa et al., 2002;
Odion & Davis, 2000). Spatial remote measurement of fire tempera-
ture could greatly benefit understanding of fire processes, but the
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complexity of collecting in situ data in fires and scaling from
combusting fuel elements to spatial resolutions used for remote
sensing makes it difficult to assess whether mixing model approaches
can provide valid measurements of fire temperature. While the
validity of fire temperature modeling cannot be confirmed using
currently available data, the consistency of modeling can be assessed
by comparing temperature and fire fractional area retrieved from
different datasets acquired at the same time over the same fire.
Using airborne hyperspectral and multispectral remotely sensed data
covering the shortwave infrared (SWIR), mid-infrared (MIR) and
thermal infrared (TIR) regions of the spectrum, this paper evaluates
whether multiple endmember spectral mixture analysis (MESMA;
Roberts et al., 1998) produces consistent temperatures and fractional
areas across multiple spectral regions and two spatial resolutions.
The results of this analysis provide a valuable demonstration of the
abilities and limitations of spectral mixture modeling for retrieving
fire properties, and offer insight into areas where further research on
fire temperature modeling is needed.

2. Background

Total spectral radiance measured by a sensor over a daytime fire
will be a combination of radiances frommultiple sources.Wavelength-
specific, at-sensor radiance (Lλsensor) can be expressed as:

Lλsensor = tλ Lλρ+ LλEf + LλEb
� �

+ LλP ð3Þ

where tλ is atmospheric transmittance, Lλρ is reflected solar radiance
at the surface, LλEf is fire emitted radiance at the surface, and LλEb
is background emitted radiance at the surface. LλP is path radiance,
which is a function of atmospheric scattering of reflected and emitted
radiances and atmospheric emission. The contribution of each of
these terms is dependent on wavelength. Reflected solar radiance will
strongly contribute to at-sensor radiance in the visible (0.4–0.7 μm),
near infrared (NIR; 0.7–1.4 μm), and SWIR (1.4–2.5 μm) regions of the
spectrum, but will be a minor contributor to at-sensor radiance in the
TIR (8–14 μm) region of the spectrum. Radiance emitted by surfaces at
background surface temperatures (~270–340 K) will not be signifi-
cant in the visible, NIR, or SWIR, but can be an important source of
radiance in the TIR. In the MIR (3–5 μm), all of these sources can
have significant contributions to total radiancemeasured in a daytime
image containing a fire.

Radiance emitted by fires and by surfaces at background tem-
peratures is controlled by temperature (T), wavelength, and spectral
emissivity (ελ). Emitted spectral radiance (LλE) can be calculated using
Planck's equation:

LλE = β λ; Tð Þ = ελ
2hc2

λ5 e
hc
kλT−1

� � ð4Þ

where β represents the Planck equation as a function of wavelength
and temperature, c is the speed of light, h is Planck's constant, and k
is Boltzmann's constant. As temperature increases, emitted radiance
increases and peak emission shifts to shorter wavelengths (Fig. 1).
Blackbody emitters with relatively low kinetic temperatures domi-
nantly emit in the TIR region of the spectrum, while strong emission
in the SWIR occurs at temperatures commonly found in wildfires
(Dennison et al., 2006).

Eq. (4) is the basis for the spectral mixing equation proposed by
Dozier (1981) for modeling fire temperature and fire fractional area
fromMIR and TIR remotely sensed data. For theDozier (1981) equation,

at-sensor radiance is modeled as a sum of fire and background emitted
blackbody radiances:

Lλsensor = LλEf + LλEb = ffβ λ; Tf
� �

+ fbβ λ; Tbð Þ ð5Þ

where ff is the fire fractional area, fb is the background fractional area,
Tf is the fire temperature, and Tb is the background temperature. The
fire fractional area and background fractional area are percentages
of a whole pixel, and sum to 1. With two or more spectral bands, the
set of equations for each band based on Eq. (5) can be solved simul-
taneously to estimate fire temperature and fire fractional area. At-
mospheric absorption and path radiance are assumed to be minimal.
Giglio and Kendall (2001) assessed the sensitivity of the Dozier
(1981) temperature retrieval algorithm to atmospheric transmittance,
instrument noise, path radiance, emissivity, and multiple emitting
temperatures, and found significant variation in modeled temperature
and fractional area at low fire fractional area values. Giglio and Justice
(2003) examined how temperature and fractional area modeled by
the Dozier (1981) algorithm vary with input wavelengths. Assuming
emitted radiance contributions from both smoldering (600 K) and
flaming (1000 K) combustion, they found large differences in retrieved
temperature occurred when short wavelength (1.6–3.8 μm) and long
wavelength (2.4–11.0 μm) bands were varied in a two band model.
Modifications of the Dozier (1981) algorithmhave been used to retrieve
fire temperature from Advanced Very High Resolution Radiometer
(AVHRR) data (Matson & Holben, 1987), airborne radiometer data
(Riggan et al., 2004), and Bi-spectral InfraRed Detection (BIRD) data
(Oertel et al., 2004; Wooster et al., 2003; Zhukov et al., 2005).

Dennison et al. (2006) introduced a multiple endmember spectral
mixing approach to modeling fire temperature and fractional area.
Multiple endmember spectral mixture analysis (MESMA; Roberts
et al., 1998) allows the identity of endmembers to vary to find the
set of endmembers that fits each modeled spectrum with the lowest
root mean square error (RMSE). By using a combination of modeled
emitted radiance and shade endmembers, and image reflected (and/
or emitted) radiance endmembers, the multiple endmember ap-
proach described by Dennison et al. (2006) accounts for atmospheric
scattering and does not assume that the background is a blackbody
emitter. However, this approach still assumes that fire emission can
be described using single temperature blackbody emitted radiance.
One significant advantage of allowing multiple background endmem-
bers is that this technique simultaneously produces a map of back-
ground land cover in addition to fire temperature and fractional area.

Dennison et al. (2006) modeled fire temperature and fractional
area in Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data

Fig. 1. Blackbody emission curves for a range of temperatures. The light gray bars
represent (from left to right) the SWIR, MIR, and TIR spectral regions.
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collected over a wildfire. A spectral library of emitted radiance
endmembers was created for temperatures from 500 K to 1500 K
using the MODTRAN radiative transfer model (Berk et al., 1989). A
second spectral library of reflected solar radiance endmembers was
collected from the AVIRIS image. Each AVIRIS pixel spectrum was
modeled using the combination of an emitted radiance endmember, a
reflected solar radiance endmember, and a shade endmember used to
account for variations in reflectance and fractional cover of the other
endmembers.

Eckmann et al. (2008) used amultiple endmember spectral mixing
model to estimate fire temperature and fractional area in Moderate
Resolution Imaging Spectroradiometer (MODIS) data. Using a similar
approach to Dennison et al. (2006), they modeled emitted radiance
endmembers using MODTRAN and selected background radiance
endmembers from a MODIS image. Since MODIS data cover the
MIR and TIR spectral regions, Eckmann et al. (2008) used a shade
endmember that incorporated scattered atmospheric radiance in the
absence of an emitting background surface. The shade endmember
was modeled in MODTRAN using an assumed background tempera-
ture of 10 K. Eckmann et al. (2010) applied this methodology to
modeling seasonal changes in fire temperature and fraction area in
MODIS data. Eckmann et al. (2009) applied a multiple endmember
model to estimating fire temperature and fractional area in Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
data, and compared the results to the results from a simpler approach
based on the Dozier (1981) equation. Temperature and fractional area
estimated by the two models were similar, although the multiple
endmember approach did produce higher temperature estimates in
a few areas of the fire they analyzed.

While past use of linear spectral mixture modeling to retrieve
fire temperature has commonly assumed that fire emitted radiance is
single temperature blackbody emission, in reality, a fire burning
within a sensor's instantaneous field of view will have many
temperatures from multiple combusting fuel elements. The mixture
of emitted radiance from multiple combusting fuel elements may or
may not produce a spectral shape similar to that of a single tem-
perature blackbody, depending on the area and proportion of
temperatures within a pixel and the spectral region examined. Also,
the emissivity of fire is dependent on pathlength through a flame,
and the assumption of blackbody emissivity may only be valid for
long pathlengths in excess of 6 m (Giglio & Kendall, 2001; Langaas,
1995). Comparison of temperature and fractional area modeled from
different spectral regions can reveal whether the single temperature
blackbody assumption produces consistent results across all wave-
length regions.

3. Image data

The Indians Fire burned an approximately 300 km2 area of the
Santa Lucia Mountains in coastal central California, USA, in June, 2008.
The fire was ignited by an escaped campfire on June 8, 2008, and
rapidly spread under high wind conditions. At approximately 20:50
UTC on June 11, 2008, a NASA ER-2 high altitude aerial platform flew
over the area during a period of high fire activity. Two instruments,
AVIRIS and MASTER (MODIS/ASTER Airborne Simulator), simulta-
neously acquired data over the fire (Fig. 2).

AVIRIS collects 224 contiguous bands with 10 nm bandwidths
covering an approximate spectral range of 360–2500 nm. An AVIRIS
image containing the fire was delivered as a radiometrically calibrated
product, with geometric correction and geographic referencing
provided by an onboard global positioning system and inertial data
(Boardman, 1999). The instantaneous field of view of AVIRIS is
1 mrad, which produced an image spatial resolution of 16.1 m.

MASTER spans a much wider spectral range than AVIRIS, having
50 bands with central wavelengths ranging from 0.46 to 12.9 μm.
MASTER's average full width-half maximum bandwidth is approxi-

mately 0.05 μm in 25 bands covering the visible, NIR and SWIR
spectral regions. Bandwidth averages are 0.15 μm in 15MIR bands and
0.46 μm in 10 TIR bands. MASTER band characteristics are described
in more detail in Hook et al. (2001). MASTER has an instantaneous
field of view of 2.5 mrad, producing a spatial resolution two and a
half times that of AVIRIS when the two sensors are flown at the
same altitude. The MASTER image was delivered as a radiometrically
calibrated product. MASTER MIR and TIR radiometric calibrations
are based on two onboard blackbody references typically operated
at 20 °C and 40 °C (Jeffrey Myers, personal communication). The
MASTER image was not geometrically corrected and geographically
referenced, so 362 tie points were used to register the MASTER image
to the AVIRIS image. The MASTER image was then warped using
triangulation, and resampled to a 40.25 m spatial resolution.

AVIRIS and MASTER bands and spectra were visually inspected to
determine whether water vapor absorption or scattering by smoke
degraded emitted or reflected surface radiance. Bands with wave-
lengths shorter than 1.2 μm were discarded due to scattering by
smoke. For both sensors, bands in major water vapor absorption
features were also discarded. A total of 95 AVIRIS bands were selected
for use in modeling. Three different models were run using MASTER
data to determine how the wavelength regions covered by input
radiance data affect fire temperature and fractional area retrieval.
One model run used all SWIR, MIR, and TIR bands (24 bands total).
A second MASTER model run used only the SWIR and MIR bands
(18 bands total), while a third MASTER model run used only the MIR
and TIR bands (13 bands total). The spectral coverage of AVIRIS and
MASTER bands used for fire temperature and fractional area modeling
is graphically depicted in Fig. 3.

4. Modeling

AVIRIS andMASTER pixel spectra weremodeledwith two- or three-
endmember linear spectral mixing models. A fire detection index
(Dennison & Roberts, 2009, see Section 4.3) was used to flag pixels that
potentially contained emitted radiance from fire. Flagged pixels were

Fig. 2. AVIRIS (left) andMASTER (right) false color composites covering the Indians Fire.
The AVIRIS composite uses bands centered at 1.672 μm (red), 0.957 μm (green), and
0.655 μm (blue). The MASTER composite uses bands centered at 1.668 μm (red),
0.952 μm (green), and 0.658 μm (blue). The yellow star on the inset map indicates the
approximate geographic location of the images within the state of California.
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modeled with a three-endmember model, with one endmember from
a fire emitted radiance library, one endmember from a background
library, and one “shade” endmember:

Lλsensor = fEf LλEf + fbLλb + fsLλs + ελ ð6Þ

where LλEf is the radiance of the fire emitted radiance endmember,
Lλb is radiance of the background emitted and reflected radiance
endmember, and Lλs is the radiance of a shade endmember that allows
the fractions of the other two endmembers to vary and accounts
for scattering by and emission from the atmosphere. fEf, fb, and fs
are the fractional areas associated with each endmember. Unflagged
pixels were modeled with a two-endmember model consisting of an
endmember from a background library and the shade endmember:

Lλsensor = fbLλb + fsLλs + ελ ð7Þ

The following sections describe fire emitted radiance endmember
modeling, background radiance endmember selection, the fire detec-
tion index, and multiple endmember spectral mixture modeling.

4.1. Fire emitted radiance endmember modeling

MODTRAN 5.2 (Berk et al., 1989) was used to model fire emitted
radiance and fire emitted path radiance for a range of temperatures
from 300 K to 1500 K, at an interval of 10 K. To match the modeling
assumptions used by previous efforts applying linear spectral mixture
modeling to retrieving fire temperature, the emitting surface was
assumed to be a blackbody. A mid-latitude summer atmospheric
model with a visibility of 23 km was used. This visibility accurately
approximated dark object reflected solar radiance outside of the
smoke plume, but is likely much higher than actual visibility inside
the smoke plume. However, reducing the modeled visibility down
to 5 km resulted in no change in the emitted radiance endmembers
at wavelengths longer than 1.2 μm. The atmospheric water vapor
concentration was retrieved by running the AVIRIS image through
ACORN (ImSpec LLC) reflectance retrieval software, which also
produces a per-pixel atmospheric water vapor fit. An average water
vapor concentration of 493 atm-cm in the area of the image contain-
ing the fire was used for emitted radiancemodeling in MODTRAN. The
modeled radiance spectra were convolved to AVIRIS and MASTER
sensor response functions. The entire range (300–1500 K) of fire
emitted radiance spectra was used to create the MASTER fire emitted
radiance endmember library. Emitted radiance endmembers modeled
for the 300–500 K temperature range can account for elevated
temperatures following combustion and high background tempera-
tures associated with sun-facing slopes and low solar albedo. It should
be noted that pixels modeled by fire emitted radiance endmembers

with temperatures less than 500 K may not actually contain fire.
The AVIRIS fire emitted radiance endmember library was limited to
temperatures between 500 and 1500 K, since temperatures cooler
than 500 K do not reliably produce measureable radiance in the SWIR
region (Dennison & Roberts, 2009).

4.2. Background endmember selection

The background radiance endmember accounted for reflected
solar radiance, background emitted radiance, and reflected solar and
background emitted contributions to path radiance. The multiple
endmember spectral mixingmodel used a single background radiance
endmember that was chosen from one of three background end-
member libraries: a “non-smoke” background endmember library,
a “smoke” background endmember library, and a “fire” background
endmember library. Scattering by smoke can result in misclassifica-
tion of background land cover (Dennison et al., 2006), so modeling in
smoke-covered areas used a separate set of potential endmembers.

A simple smoke mask was generated for each image from a
maximum likelihood classification. Regions of interest were created in
the AVIRIS and MASTER images for 6 land cover classes in both smoke
and non-smoke covered areas: oak/riparian woodland, chaparral/
shrubland, grass, soil/rock, and two classes of ash. Two ash classes
were necessary because of the spectral diversity in recently burned
areas; some of these areaswere spectrally flat in the SWIR, while other
areas expressed absorption features that resembled ligno-cellulose
absorption.

Smoke and non-smoke spectral libraries were extracted from the
AVIRIS and MASTER regions of interest. An iterative endmember
selection algorithm was used to model each library using MESMA.
The endmember selection algorithm adds and subtracts endmembers
with the goal of increasing accuracy, as measured through the kappa
coefficient (Cohen, 1960), for all land cover classeswithin each library.
Endmember selection was cut off at the point where increasing the
number of endmembers resulted inminimal gains in kappa coefficient.
A total of 10 non-smoke and 13 smoke endmembers were selected for
modeling. A third background endmember library to be usedwhenfire
was detected within a pixel contained all of the non-green vegetation
endmembers from the smoke endmember library. This fire back-
ground endmember library contained 8 endmembers.

4.3. Fire detection index

Dennison and Roberts (2009) demonstrated a Hyperspectral Fire
Detection Index (HFDI) based on SWIR radiance at 2.06 and 2.43 μm.
HFDI is calculated as:

HFDI =
L2:43μm−L2:06μm

� �

L2:43μm + L2:06μm
� � ð8Þ

As emitted radiance increases, radiance at 2.43 μm increases faster
than radiance at 2.06 μm due to the shape of the Planck curve (Fig. 1).
The addition of a small fractional area of fire to a pixel results in a large
increase in HFDI. The main function of using a fire detection index
in this case is to run the more efficient two endmember model that
lacks a fire emitted radiance endmember for pixels that do not contain
fire. Since fire may only occur in a small percentage of pixels, this can
result in significant time savings in modeling an image (Dennison &
Roberts, 2009). MASTER bands centered at 2.08 and 2.39 μm were
used to calculate a similar fire detection index for the MASTER image.
Index thresholds of 0.00 for the AVIRIS image and −0.196 for the
MASTER image were empirically determined to separate burning
pixels from non-burning pixels. Thresholds were set by adjusting the
value of the threshold upward until no pixels outside of the apparent
fire area were detected as burning.

Fig. 3. Wavelength ranges (determined by band full width-half maximum values)
covered by AVIRIS and MASTER bands used in temperature modeling.
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Fig. 4. A flowchart describing how the multiple endmember mixing model determines the number of endmembers (em) and the endmember libraries to use.

Fig. 5. Modeled temperature in Kelvin for AVIRIS (a), MASTER SWIR/MIR/TIR (b), MASTER SWIR/MIR (c), and MASTER MIR/TIR (d). Temperatures modeled below 500 K in the
MASTER model runs are not shown for clarity.
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4.4. Multiple endmember spectral mixture modeling

The smoke mask and fire detection index were used to determine
which endmember libraries should be used to model each pixel
(Fig. 4). Pixel spectra with fire detection index values above the
detection threshold were modeled with a three endmember model
using endmembers from the fire emitted radiance library and the fire
background library, along with a shade endmember. Pixel spectra
with fire detection index values below the threshold were modeled
using two endmember models. For pixels flagged as having smoke
present, the pixel spectrum was modeled with endmembers from the
smoke background library and the shade endmember. If smoke was
not present within a pixel, then the pixel spectrumwas modeled with
endmembers from the non-smoke background library.

Once the appropriate spectral libraries were determined for each
pixel spectrum, the spectrum was fit by all possible combinations of
endmembers from those libraries using singular value decomposition.
A saturation spectrum for each sensorwas used to screen out saturated
bands, and pixel spectra were required to have two or more non-
saturated bands for modeling. Endmember fractions were constrained

to between 0 and 1; fractions exceeding either constraint were reset
to the minimum or maximum fraction and residuals were calculated
using that value (Dennison & Roberts, 2003). The endmember model
producing the lowest RMSE was used to assign endmember identity,
fractional area, and residuals to each pixel in the AVIRIS and MASTER
images.

Temperatures and fire fractional areas were compared between
four model runs: AVIRIS, MASTER SWIR/MIR/TIR, MASTER SWIR/MIR,
and MASTER MIR/TIR (Fig. 3). Temperature and fractional area from
the three MASTER model runs were directly compared pixel-to-pixel
using linear regression and root mean square difference. Since the
AVIRIS andMASTER data had different spatial resolutions, histograms of
total area modeled at each fire temperature were used to compare all
four model runs. For each pixel modeled at a specific fire temperature,
the fire fractional areawasmultiplied by the pixel area. The total area at
each temperaturewas then calculatedby summingareaacross all pixels.
Mean residuals at 500, 700, and 900 K were also determined for each
model run. The Lee-Sallee shape index (Lee & Sallee, 1970) was used to
compare the fire area, defined as the area with temperatures above
500 K, of each model run. Lee-Sallee is calculated as the ratio of the

Fig. 6. Modeled fire fractional area for AVIRIS (a), MASTER SWIR/MIR/TIR (b), MASTER SWIR/MIR (c), and MASTER MIR/TIR (d).
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intersect of two areas to the union of two areas, and ranges between 0
(poor agreement) and 1 (total agreement). Since this metric is based on
area, data having different spatial resolutions can be compared.

5. Results

All four model runs mapped high temperatures along the most
active fire fronts within the Indians Fire (Fig. 5). The largest fire area
wasmapped by the AVIRISmodel run, withmuch of the additional fire
area (i.e. the area not mapped in the MASTER model runs) possessing
temperatures at or slightly above 500 K. Both MASTER runs using
SWIR bands mapped similar areas and temperatures (Fig. 5b and c).
The MASTER MIR/TIR model run produced generally lower tempera-
tures and the smallest fire area (Fig. 5d), although multiple pixels
were modeled with a 1500 K temperature along the fire front in the
lower right portion of Fig. 5d. These same areas were modeled at
lower temperatures by the AVIRIS model run and by the MASTER
model runs using SWIR data. In all four model runs, low temperatures
were modeled ahead of the fire front in areas with higher emitted
radiance produced by scattering rather than direct emission from the
fire.

Due to the higher spatial resolution of AVIRIS, AVIRIS data were
expected to produce higher fire fractional area values than MASTER
data (Fig. 6). Fire fractional area exceeded 50% in much of the AVIRIS
model run (Fig. 6a). In contrast, the model runs using MASTER data
resulted in fire fractional areas below 10% over most of the fire, with
small portions of the fire front exceeding 20% fractional area.

The four model runs demonstrated large differences in total area
at each temperature for temperatures cooler than 800 K (Fig. 7). The
AVIRIS model run produced a peak area at 500 K, the coolest emitted
radiance endmember used in that model run. Additional peaks
occurred at 780 K and 860 K. The two cooler peaks modeled from
AVIRIS were not evident in any of the MASTER runs, but the third
(and lowest) peak at 860 K corresponds with a similar peak at 850 K
modeled from the MASTER SWIR/MIR/TIR and SWIR/MIR runs. The
three model runs using SWIR data (AVIRIS, MASTER SWIR/MIR/TIR,
and MASTER SWIR/MIR) show roughly similar distributions of total
area at temperatures in excess of 820 K, although total area fluctuates
widely at the hottest modeled temperatures. The MASTER MIR/TIR
model run resulted in area peaks at 570 K and 690 K. Area also reached
a lower peak in the 1250–1300 K range in the MIR/TIR model run,
producing areas an order of magnitude higher in this temperature
range than in any of the othermodel runs. Areamodeled at 1500 Kwas

much larger for the MIR/TIR model run than for the other model runs,
with more than 5000 m2 modeled at this temperature.

Temperature and fire fractional area were directly compared for
pixels modeled by the three MASTER model runs (Figs. 8 and 9). The
closest agreement in modeled temperature occurred for the SWIR/
MIR/TIR and SWIR/MIR model runs (Fig. 8a). The SWIR/MIR model
run produced slightly higher temperatures than the SWIR/MIR/TIR
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Fig. 8. Comparison of modeled temperatures for the MASTER model runs, including
linear regression parameters and root mean square difference (RMS).
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model run for temperatures below 800 K, but demonstrated close
agreement for temperatures above 800 K. A linear regression between
temperatures retrieved by the twomodel runs produced an R2 of 0.91,
and the root mean square difference between modeled temperatures
was 79.3 K. Temperatures retrieved by the MIR/TIR model run were
less strongly correlated with the other twomodel runs (Fig. 8b and c).
Root mean square differences between modeled temperatures
increased to near 200 K. Pixels modeled between 700 K and 1100 K
in the two model runs using SWIR bands were modeled at both lower
and higher temperatures in the MIR/TIR model run. The large number
of 1500 K temperature retrievals in the MIR/TIR model run is also
apparent in Fig. 8b and c.

When all modeled temperatures were included, there was poor
agreement in fire fractional area between different model runs
(Fig. 9). R2 values for these fire fractional area comparisons did not
exceed 0.20, even in the case of the SWIR/MIR/TIR and SWIR/MIR
comparison which had strongly correlated temperatures. Root
mean square differences in fractional area ranged from 0.11 to 0.16.
However, when fractional area was compared solely for modeled
temperatures in excess of 800 K, fractional area was very strongly
correlated for the SWIR/MIR/TIR and SWIR/MIRmodel runs (Fig. 10b).
Excluding temperatures below 800 K also strengthened the correla-
tion between temperatures modeled from these two runs, reducing
the root mean square difference to 12.4 K (Fig. 10a). Excluding
temperatures below 800 K did not improve correlations including
the MIR/TIR fractional areas, however.

The mean residual plots reveal wavelengths at which the model
residuals were consistently positive or negative (Fig. 11). Large
positive residuals (measured radiance larger than modeled radiance)
occurred near the edges of water vapor absorption features. For
comparison, water vapor transmittance spectra convolved to AVIRIS
andMASTER bands are also shown in Fig. 11. Mean residuals increased
as modeled temperature increased, a result of the higher radiance
occurring at elevated temperatures.Mean residualswere largest in the
MASTERmodel runs that used SWIRbands and smallest in theMASTER
MIR/TIR model run.

The closest agreement in fire area, defined as the total area of
all pixels modeled with temperatures in excess of 500 K, occurred
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Fig. 9. Comparison of modeled fire fractional area for theMASTERmodel runs, including
linear regression parameters and root mean square difference (RMS).
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Fig. 10. Temperature (a) and fire fractional area (b) for the SWIR/MIR/TIR and SWIR/
MIR model runs, excluding temperatures modeled below 800 K.
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between the MASTER SWIR/MIR/TIR and SWIR/MIR model runs
(Table 1). Comparison of fire area mapped by AVIRIS model run
with fire area mapped by the three MASTER model runs produced the
lowest agreement, with Lee-Sallee values ranging from 0.416 to 0.451.
The four model runs produced very different maps of background
endmembers, as shown in Fig. 12. All four model runs mapped ash
and soil within the fire scar, but the MASTER MIR/TIR model run
mapped soil over a large area surrounding the fire. The MASTER
model runs using SWIR bands erroneously mapped grass over a large
area surrounding the fire. Qualitatively, the AVIRIS background
endmember map most closely approximates land cover classes as
they appear to be distributed in Fig. 2.

6. Discussion

Modeled fire temperatures and fractional areas were most
consistent for model runs using AVIRIS and MASTER SWIR bands,
and for modeled temperatures in excess of 800 K. Temperature and
fractional area were less strongly correlated between model runs
for lower temperatures and when the SWIR bands were excluded.
Differences inmodeled fire temperature and fractional area associated
with wavelength and temperature are likely due to the dependence
of emitted radiance on the latter two factors (Fig. 1). Differences in
the spectral shape of emitted radiance are smaller at longer wave-
lengths, and can result in low temperature, high fractional area
emission being spectrally similar to high temperature, low fractional
area emission. The SWIR provides the greatest separability between
low temperature and high temperature emission, resulting in more
consistent modeled temperatures when SWIR bands are used. Within
a single pixel, smoldering and flaming combustion across a wide
range of temperatures will contribute to emitted radiance in the
MIR and TIR. The resulting highly mixed emitted radiance may not
be adequately modeled by a single temperature emitted radiance
endmember. At shorter wavelengths, emitted radiance will be
dominated by higher temperature flaming combustion. Emitted
radiance in the SWIR should be less dependent on contributions
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Fig. 11. Mean residual radiance (measured radiance–modeled radiance) for pixels at 500, 700, and 900 K from AVIRIS (a), MASTER SWIR/MIR/TIR (b), MASTER SWIR/MIR (c), and
MASTER MIR/TIR (d). The modeled water vapor transmittance spectrum convolved to AVIRIS and MASTER bands is also shown with transmittance units on the right y-axis. The
legend is in the lower right corner of plot (d).

Table 1
Lee-Sallee values for areas mapped with temperatures higher than 500 K.

MASTER
SWIR/MIR/TIR

MASTER
SWIR/MIR

MASTER
MIR/TIR

AVIRIS 0.416 0.418 0.451
MASTER SWIR/MIR/TIR 0.671 0.621
MASTER SWIR/MIR 0.591
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from smoldering combustion, and emitted radiance from the highest
combustion temperatures should dominate the emitted radiance
signal.

Scattered emitted radiance produced overmapping of fire area in
all four model runs. Radiance scattered ahead of the fire front resulted
in low temperatures and fire fractional areas being mapped where

the fire was likely not yet present. Screening out scattered emitted
radiance may be difficult, however, because the scattered emitted
radiance signal is very similar to the direct emitted radiance signal.
Thresholding of lower temperatures and fire fractional areas can re-
duce the overmapping of fire where scattered emitted radiance is
present, but this will also result in decreased mapping of smoldering

Fig. 12. Background endmembers mapped from AVIRIS (a), MASTER SWIR/MIR/TIR (b), MASTER SWIR/MIR (c), andMASTERMIR/TIR (d) data. “Ash 1” is ash lacking SWIR absorption
features in the AVIRIS data, and “Ash 2” is ash exhibiting apparent lignocellulose absorption in the AVIRIS data.
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combustion behind the fire front. Spectral shape, especially in the
SWIR, could be used to map the background land cover, and pixels
modeled as containing both fire and unburned vegetation could be
flagged for potentially having scattered emitted radiance. Fire that has
partially burned a canopy or is burning underneath a canopy could
result in the same conditions, however.

Large, positive residuals adjacent towater vapor absorption features
clearly indicate a shortcoming in modeling emitted radiance from fire
and may have affected modeled fire temperature and fractional area.
The combustion process produces large amounts of water vapor, and
heated water vapor will have increased emitted radiance towards
the edges of the atmospheric water vapor absorption features due to
temperature broadening. Boulet et al. (2009) noted increased emitted
radiance by heated water vapor in lab spectroscopy experiments, and
also found a spike in emitted radiance near 4.5 μm caused by heated
carbon monoxide and carbon dioxide that may explain the positive
residual found near that wavelength in Fig. 11b and c. Accounting
for variability in water vapor absorption and emission may be possible
by varying the water vapor concentration modeled in emitted radiance
endmembers. Additional emitted radiance endmembers will result in
a greater number of potential endmember combinations in the spec-
tral mixing model, which could greatly increase computational time.
Per-pixel fitting of water vapor concentration before spectral unmixing
would allow the selection of the best set of emitted radiance
endmembers, andwould partiallymitigate the increased computational
time.

7. Conclusions

Comparison of model runs using varying input wavelength regions
demonstrated thatfire temperature and fractional areawere consistently
modeled for fire temperatures in excess of 800 Kwhen SWIR bandswere
included. The assumption that a single temperature blackbody emitted
radiance endmember can be used to model fire temperature is
potentially valid under these conditions, although the actual validity of
this assumption cannot be determined using this dataset. Modeled fire
temperature and fractional areawere not in agreement for temperatures
below 800 K and when SWIR bands were excluded. This limitation calls
into question the abilities of spectral mixture modeling to accurately
model the temperature of smoldering combustion. However, separation
of flaming combustion from smoldering combustion, which cannot be
done directly from radiance alone, may still be feasible.

Until further work can strongly link fire temperature and fractional
area retrieved from remotely sensed data to fire temperature and
fractional area measured in situ, caution is warranted when equating
modeled temperatures to the actual temperature of a fire, especially
at modeled temperatures below 800 K. The limitations of single tem-
perature blackbody emitted radiance endmembers used in spectral
mixture modeling of fires demonstrate that fire temperature
modeling could greatly benefit from improved understanding of
the radiative properties of fire at multi-meter scale spatial resolutions.
A combination of field and lab measurement, modeling, and remote
sensing would be very useful for assessing the spectral characteristics
of fire emitted radiance and how these characteristics change with
image spatial resolution.

Hyperspectral SWIR data provide important advantages for model-
ing fire temperature. Discrimination of water vapor absorption features
provides the ability to estimate atmospheric water vapor concentration,
which can then be used to improve fire emitted radiance modeling.
Hyperspectral SWIR data may allow more accurate mapping of back-
ground land cover with simultaneous fire temperature and fractional
area retrieval. Hyperspectral SWIR data also provide a more detailed
measurement of the spectral shape of emitted radiance, which could

allow fitting of multiple fire emitted radiance endmembers or creation
of integrated measures of emitted radiance. Larger collections of
hyperspectral SWIR data, including both daytime and nighttime fires,
are needed to further test and improve fire temperature modeling.
The VSWIR spectrometer to be carried by the proposed NASA HyspIRI
mission could provide a global hyperspectral SWIR dataset containing
observations of thousands of fires.
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