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Methane (CH4) is an extremely important greenhouse gas that has increased significantly in pre and post-
industrial times. Due to CH4's strong absorptions in the shortwave infrared (SWIR), the potential exists to use
imaging spectrometers, such as the Airborne Visible Infrared Imaging Spectrometer (AVIRIS), to map CH4

emissions. Here, we present research evaluating the ability of AVIRIS to map CH4 emitted by one of the
largest marine geologic CH4 sources in the world, the Coal Oil Point seep field in the Santa Barbara Channel,
California. To develop algorithms for detecting CH4 and to establish detection limits, initial analysis focused
on simulated radiance spectra, calculated using Modtran 5.2 radiative transfer code that was parameterized
to match scene conditions for a 6 August 2007 AVIRIS flight over the area. Model simulations included a
range of surface albedos, variable column water vapor, and CH4 concentrations ranging from 1.7 ppm
(background) up to the equivalent of 2500 ppm in the lower 20 m of the boundary layer. A multistep CH4

detection algorithm was developed using Modtran simulations. First, surface albedo was estimated from the
radiance at 2139 nm. Next, albedo-specific radiance for background CH4 was used to calculate spectral
residuals for CH4 above background. A CH4 index, C, calculated as the average residual between 2248 and
2298 nm, showed high sensitivity to CH4, with minimal sensitivity to water vapor or surface albedo.
Detection limits in simulations depended on CH4 concentrations and albedo, ranging from 990 ppm for a
0.5% albedo surface, to as low as 18 ppm for albedos higher than 22%. Application of this approach to the
AVIRIS data demonstrated considerable potential for mapping CH4. Due to specular reflectance off of the
ocean surface, albedo in the scene varied significantly, from less than 0.5% to over 30%. Strong CH4 anomalies
were observed in the data acquired over the seep field, which produced large C values with spectral residuals
consistent with CH4 and estimated radiance spectra that matched measurements. All strong anomalies were
located in close vicinity to and downwind from known CH4 sources. However, contrary to simulated data,
C was overly sensitive to albedo, restricting high confidence anomalies only to the brightest surfaces,
and showing high frequency spatial variation throughout the AVIRIS image. CH4 concentration was
overestimated by C, potentially due to a spectral trend in sea surface reflectance and/or the impact of diffuse
light on dark surfaces (b1%) leading to the over-expression of CH4 absorptions.
l rights reserved.
© 2009 Elsevier Inc. All rights reserved.
1. Introduction

Methane (CH4), a strong greenhouse gas, is at least 20 times more
potent on a molecular basis than carbon dioxide (CO2) (Khalil &
Rasmussen, 1995), and atmospheric concentration of CH4 has more
than doubled over the past century (Rowland, 1985). Recent studies of
CH4's radiative impact over its entire atmospheric chemical lifetime
suggest that it contributes 30–38% of greenhouse warming (Shindell
et al., 2005). Anthropogenic sources of CH4 are estimated to be
between 360 and 430 Tg yr−1, while natural (biologic and geologic)
sources are estimated to be between 160 to 240 Tg yr−1 (IPCC, 2007;
Kvenvolden & Rogers, 2005). Although the total sink strength is
relatively well established, variability in estimates of the source
strength of anthropogenic and natural emission is large because of
uncertainty in source partitioning (Reeburgh, 2003). CH4's decadal
atmospheric residence time is also far shorter than CO2 (centuries),
suggesting that human efforts to decrease anthropogenic CH4 emis-
sions can more easily and more quickly influence the atmospheric
greenhouse gas inventory than limits on CO2 emissions (Hansen et al.,
2000). Thus, quantifying CH4 natural and anthropogenic sources on a
global scale and understanding the controlling parameters is essential.
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Geologic sources of CH4, including marine and terrestrial hydro-
carbon seepage and volcanoes, represent an important, yet poorly
quantified source (IPCC, 2007). Estimated natural global geological
emissions are 30–45 Tg yr−1 (Etiope & Klusman, 2002) although the
first comprehensive regional assessment for Europe suggests that 43%
of the natural CH4 emissions are from seepage (Etiope et al., 2009),
suggesting that the global contribution may be larger. Of these
emissions, the marine component has been estimated conservatively
at a non-negligible 10–30 Tg yr−1 (Kvenvolden et al., 2001). Marine
seepage has been considered small because of loss to the water
column through bubble dissolution from all but the shallowest depths
(Leifer & Patro, 2002); however, recent studies have demonstrated
that significant CH4 is transported across the water column where
emissions occur as bubble plumes (De Beukelaer et al., 2003; Leifer
e al., 2006b; Solomon et al., 2009). The geologic contribution to the
ancient CH4 emission budget, which includes fossil-fuel related
activities is estimated to contribute from ∼18% (i.e., 104 Tg yr−1)
(Denman et al., 2007; Houghton, 2001; IPCC, 2007) to ∼30% (i.e.,
174 Tg yr−1) (Lassey et al., 2007).

The potential of using remote sensing to map CH4 is well recognized
(Beer et al., 2001; Frankenberg et al., 2005; Leifer et al., 2006a). CH4 has
fundamental vibrational absorptions in the mid-infrared (MIR) and
thermal-infrared (TIR: Rothman et al., 2009), offering the potential for
retrievals using thermal-infrared sensors including the Tropospheric
Emission Spectrometer (TES: Beer et al., 2001), the Atmospheric
Infrared Sounder (AIRS: Pagano et al., 2003), the Infrared Atmospheric
Sounding Interferometer, (IASI: Aires et al., 2002) and the Greenhouse
Gas Observing Satellite (GOSAT), which was successfully launched in
January, 2009. Overtones and combinations produce significant absorp-
tion features in the shortwave infrared (SWIR), the spectral region
between 1400 and 2500 nm wavelength (Fig. 1a). These absorption
features extend remote sensing detection capability to sensors such
Fig. 1. Methane (CH4, blue), carbon dioxide (CO2, red), and water vapor (H2O, black)
Spectral Intensity (a) and atmospheric transmittance spectra (b) in the SWIR. Spectral
Intensity (cm−1/(molecule/cm2) were derived from HITRAN 2008 (Rothman et al.,
2009) at a 1-nm spectral interval, assuming a Lorentz shape function, at standard
temperature and pressure. Transmittance spectra were generated using Modtran 4v3.1
(Berk et al., 1999) for the Coal Oil Point seep field to match the conditions of the AVIRIS
flight, convolved to a 1 nm sampling interval.
as the Scanning Imaging Absorption Spectrometer for Atmospheric
Chartography (SCIAMACHY) and the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS; Leifer et al., 2006a). Although the absorption
coefficient for CH4 is substantially larger than for CO2 in the SWIR, lower
atmospheric background concentrationsof CH4 (∼1.77 versus385 ppm:
Forster et al., 2007) result inmore pronounced CO2 absorptions in SWIR
transmittance spectra (Fig. 1b). Water vapor, the greenhouse gas with
the largest radiative forcing (Kiehl & Trenberth, 1997), is the strongest
absorber in the SWIR (Fig. 1a). Water vapor absorption has significant
spectral overlap with CH4 absorption in this region, especially beyond
2300 nm. When integrated over the entire atmospheric path, water
vapor absorption tends to obscure much of the CH4 absorption signal
(Fig. 1b).

Although CH4's fundamental vibrational bands are located in the
TIR, several researchers have successfully used remotely measured
SWIR spectra to detect CH4. The SWIR has several advantages over
the TIR, most notably a lower amount of saturation over the full
atmospheric path, due to the lower SWIR CH4 absorption coefficients,
thereby providing greater sensitivity to CH4 in the lower atmosphere
(Frankenberg et al., 2006). Furthermore, unlike the TIR, SWIR
detection is not dependent on a strong thermal contrast between the
surface and lower atmosphere. Prior to the launch of SCIAMACHY,
Buchwitz et al. (2000) developed an approach, weighted differential
optical absorption spectroscopy (DOAS), and evaluated its ability to
retrieve column amounts of several trace gases including CH4 from
the Channel 8 spectrometer (2265–2380 nm). Weighted DOAS was
subsequently used to estimate column amounts of CO, CH4 and CO2 for
2003 SCIAMACHY data (Buchwitz et al., 2005). Frankenberg et al.
(2005, 2006) also used DOAS to estimate CH4 by taking advantage of a
linear relationship between the vertical column-density of CO2 and
CH4. CO2 was mapped using the SCIAMACHY Channel 6 spectrometer
(1000–1750 nm). SCIAMACHY Channel 8was not used due to ice build
up on the detectors. Using this approach, they mapped the global CH4

distribution and found previously unrecognized large tropical emis-
sion sources (Frankenberg et al., 2005, 2006). The global distribution of
CH4 also has been mapped by Straume et al. (2005) using the channel
8 spectrometer on SCIAMACHY, using radiative transfer modeling and
forward inversion.

Larsen and Stamnes (2006) used aModtran radiative transfer code
to evaluate the sensitivity of a top of atmosphere reflectance ratio
within and outside of a CH4 band to variation in the amount of CH4.
Simulations were run assuming surface albedos of 15 and 55%, and
specular reflection off of a water surface. A ratio of 2325 nm (CH4

absorbing) to 2125 nm (non-CH4 absorbing) showed high CH4

sensitivity, but was also adversely impacted by aerosols. Leifer et al.
(2006a) evaluated the feasibility of retrieving CH4 using AVIRIS. In that
study, Modtran 4v3.1 was used in a simulation environment and
demonstrated sensitivity to CH4 over 100% reflectant surfaces for three
CH4 amounts, 5, 9, and 18% above background CH4,with 0.5, 2, and 2.9-
cm column water vapor. The analysis focused on the use of spectral
residuals, where the impact of CH4 was evaluated by calculating
radiance for backgroundwater vapor and CH4 and then subtracting off
radiance for elevated levels of either or both H2O and CH4 to generate
residual radiance. One shortcoming of some of these studies (Larsen &
Stamnes, 2006; Leifer et al., 2006a) is that SWIR albedos for water can
be significantly lower than for terrestrial surfaces.

In this paper, we use Modtran 5.2 simulations and AVIRIS data to
evaluate the potential of AVIRIS for detecting CH4 over a strongmarine
seep field located offshore Coal Oil Point (COP) near Santa Barbara,
California. Modtran 5.2 was used to evaluate CH4 sensitivity over a
range of surface albedos from 0% to 50%, while varying column water
vapor between 2.6 and 3 cm to bracket the scene estimate of 2.8 cm.
Modtran5.2 simulationswere parameterized tomatch anAVIRISflight
over the seep field on 6 August 2007, modeling at-sensor-radiance
reflected from the sea surface. CH4 was only perturbed in the lower
1 km of the atmosphere, simulating the case where CH4 is trapped in
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themarine boundary layer in close proximity to a source. Realistic CH4

concentrations were assigned based on field measurements (Leifer
et al., 2006a), while above 1 km a standard atmospheric model was
used. Background CH4 was modeled as 1.7 ppm in the lower 1 km. An
important simulation goal was to determine CH4 detection limits for
AVIRIS and to develop an approach for mapping CH4 in AVIRIS data.
A residual-based methodology was developed, mapping CH4 using
an index determined from spectral residuals between Modtran 5.2
generated atmospheric background radiance and AVIRIS spectral data.

2. Methods

2.1. Study site

The study was conducted in the northern portion of the Santa
Barbara Channel, California, over theCOPmarinehydrocarbon seepfield
(Fig. 2). This seepfield is one of the largest known areas of activemarine
seepage and arguably the best studied. Hydrocarbons (gas and oil)
migrate primarily from theMiocene-ageMonterey Formation, amarine
shale reservoir underlying the Santa Barbara Channel. Migration is
through the overlying/capping Sisquoc Formation, a Pliocene-age
siltstone (Kamerling et al., 2003; Olsen, 1982) along pathways related
to faults, fractures, and outcroppings (Leifer et al., submitted for
publication). As a result, geologic structures provide the dominant
spatial control, modulating the spatial and temporal variability due to
other processes (Leifer et al., submitted for publication). Themagnitude
of the COP geologic CH4 source is very large, estimated at 0.025 Tg yr−1

(100,000 m3/day). Numerous field-based methods have mapped the
spatial distribution of seep emissions, including Flame Ion Detectors
(FID: Leifer et al., 2006a), single beam chirp sonar (3–15 kHz: Leifer et
al., submitted for publication) and most recently, airborne in-situ
sampling as part of the ARCTAS program (Glenn Diskin, NASA Langley,
Personal comm. 2009).

Seep emissions varywidely across the seepfield, includingdispersed
seep bubbles, bubble plumes and mega seep plumes. Dispersed seeps
are found throughout the seep field, producing mostly 1–2 mm radius
bubbles (Leifer&Boles, 2005) that escape the seabed as small streamsor
isolated bubbles, with fluxes on the order of 1l/min. Bubble plumes
produce bubbles in a broad size distribution ranging from small
(rb200 µm) to giant (rN104 µm) (Leifer & Boles, 2005), with emissions
Fig. 2. Water column, bottom-bounce normalized sonar return, σ, amplitude map of the ga
South Ellwood seep trend was surveyed Sept. 2005. The COP seeps were surveyed July 2006.
are logarithmically spaced. Length scales on figure. Sonar spatial resolution is 100×100 m fo
et al., submitted for publication).
an order of magnitude or greater than that of dispersed seeps. Mega
seeps, with emissions on the order of 106 l day−1 (Libe Washburn,
Pers. Comm., 2008: Fig. 2) are areas of intense seepage where bubble
plumes and dispersed bubble streams combine into a single large-
scale plume with significantly higher upwelling flows and elevated
CH4 concentrations compared with a normal seep bubble plume.
Mega seeps have peripheral seep areas that surround the main seep
zone, and include both plume seeps and areas of dispersed seepage.
The Seep Tent seep is a mega seep (Fig. 2). Because of their intensity
and magnitude, atmospheric plumes from mega seeps have a much
higher CH4 concentration than the more dispersed sources in the field.
In fact, interpretation of data from the Seep Tent seep (Leifer et al.,
2006b) suggests a plume of buoyantly rising CH4 originates over the
Seep Tent seep.

During their ascent through the water column, bubbles outgas CH4

and other seep gases, leading to upwelling flows and saturation of the
plume water (Leifer & Patro, 2002; Leifer et al., 2000). This plume
water also is transported upwards by the upwellingflow,which results
from the cumulative buoyancy of the plume (Leifer et al., 2009).
Exchange between the bubble plume fluid and surrounding ambient
water leads to a dissolved CH4 plume being advected downcurrent
from the bubble plume. Where the plume passes through the
thermocline or pycnocline, there can be enhanced mixing with
the surrounding ocean, or even massive detrainment (McDougall,
1978) due to the upwelling flow being unable to sustain the density
difference, creating intrusions (Leifer et al., 2009). At the sea surface,
the upwelled and denser water creates a horizontal intrusion, which
also is advected down current. The cooler water then sinks at the edge
of the outwelling zone, likely creating significant turbulence. We
propose that atmospheric CH4 plumes from gas evasion should have
distinct characteristics compared to those arising from bubble-
mediated transport in bubble plumes. Specifically, they should be far
less heterogeneous than for those arising from bubble plumes. A
dissolved CH4 plume has been identified at distancesmore than 20 km
downstream of the seep field (Mau et al., 2007).

2.2. AVIRIS image data

AVIRIS is an airborne imaging spectrometer thatmeasures radiance
between 350 and 2500 nm in 224 contiguous spectral bands with a
s plumes in the Coal Oil Point (COP) seep field, Santa Barbara Channel, California. The
Inset shows southwest US. Seep names are informal. Contours and color map (on figure)
r the S. Ellwood Seep Trend, and 50×50 m for the COP Seeps, respectively. From (Leifer



Table 1
Parameters used for Modtran 5.2 simulations.

Sensor Surface/atmospheric

Time: 21:40 UTC Background LUT:
Solar zenith: 29.3° Albedo: 0–50% at 0.1% steps
Solar azimuth: −38.3°(SW) CO2: 380 ppm, H2O: 2.8 cm
Visibility: 30 km Mid-latitude summer
Sensor height: 3.8 km

Test LUT:
Albedo: 0–30% at 1% steps
CO2: 380 ppm, H2O: 2.6, 2.8, 3 cm
Mid-latitude summer

CH4 runs (ppm)

Avg 1 km Avg 100 m Avg 20 m

1.7 1.7 1.7
2.03 5 18
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nominal full-width half-maximum (FWHM) of 10 nm and spectral
sampling interval of 10 nm (Green et al., 1998). AVIRIS has a 1 mrad
instantaneous field of view (IFOV) and 34° field of view (FOV),
resulting in a ground IFOVof∼4 manda swathwidth of∼1.2 kmwhen
deployed on the Twin Otter airplane. AVIRIS flew over the COP seep
field and acquiredmultiple flight lines on 6 and 12 August 2007. Flight
lines were designed to maximize sea surface reflectance by capturing
specular glint with acquisitions planned for as close to solar noon as
feasible. To account for changes in solar illumination betweenmultiple
flights, flight lines were rotated clockwise to capture the glint (Fig. 3).
In this paper, we focus on a single flight line, run “R04”, acquired on
6 August 2007 at 21:40 UTC, with a solar zenith of 29.3° and a solar
azimuth of −38.3°. AVIRIS data were radiometrically calibrated
and georectified by the Jet Propulsion Laboratory (JPL). Radiance
was converted to Wm−2 nm−1 sr−1 to be compatible with Modtran
radiance.
2.53 10 43
3.53 20 93
6.53 50 243
9.03 75 368

11.53 100 493
14.03 125 618
16.53 150 743
21.53 200 993
26.53 250 1243
31.53 300 1493
41.53 400 1993
51.53 500 2493

Original:
CH4(20)=(CH4(100)−2ppm*0.8)/0.2
CH4(100)=5 ppm
CH4(20)=(5ppm−1.6ppm)/0.2=17 ppm
Correct:
CH4(20)=(CH4(100)−1.7ppm*0.8)/0.2=18.2 ppm
1 ppm underestimate for all 20 m cases.
2.3. Radiative transfer simulations

An albedo look-up table (LUT) of radiance spectra over a range of
surface albedos from 0 to 50% was generated with Modtran 5.2
radiative transfer code (Berk et al., 1999). Modtran 5.2 simulations
were designed to simulate specular glint in an AVIRIS scene, similar to
Larsen and Stamnes (2006) and Leifer et al. (2006a) and were
parameterized to match run R04. Column water vapor values were
derived from the AVIRIS data using a forward inversion approach,
in which radiance modeled by Modtran, parameterized for a specific
date, time, geographic location and modeled atmosphere is fit to
AVIRISmeasured radiance (Roberts et al., 1997). Retrieved parameters
for each pixel include surface albedo, column water vapor, liquid
water thickness and apparent surface reflectance. Using this approach,
column water vapor was estimated from beach targets located on run
R06 along a flight line just north of run R04 and from high reflectance
ocean pixels in R04 and estimated at 2.8 cm. Atmospheric visibility
was estimated from reflectance retrieved over water and terrestrial
targets, inwhich visibility is set at a value that reproduces the expected
surface reflectance. Thus, if the visibility is set too low, too much path
radiance is removed causing surface reflectance to be too low (and
often negative over dark targets). If the visibility is set too high, path
radiance is too low, resulting in atmospheric artifacts expressed as an
Fig. 3. Showing AVIRIS flight lines acquired on 6 August 2007. The 2340-nm band is shown
surface waves broadened the glint angle, enabling sun glint to be captured over a wider ra
reflected solar radiance passes through a plume twice and may experience different plume
increase in reflectance towards shorter wavelengths. For this analysis,
visibility was estimated at 30 km. This visibility is consistent with
high aerosol loads due to the Zaca Fire, a wildland fire burning north of
the Santa Ynez Mountains that started on 4 July 2007 and remained
uncontrolled in early August.

Modtran 5.2 simulations tested the sensitivity of an AVIRIS-type
instrument to CH4 over a range of surface albedos and investigated
. AVIRIS flights were designed to capture specular glint for the sun in the south. Ocean
nge of view angles (frame on left). A theoretical CH4 plume is shown illustrating that
thicknesses in each direction. Squares mark the locations of known large seeps.
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potential sources of uncertainty, notably water vapor (Table 1). All
Modtran 5.2 runs were convolved to AVIRIS wavelengths using the
band centers and FWHM for the 2007 August imagery, supplied by JPL.
To evaluate sensitivity to water vapor, three Modtran 5.2 runs were
calculated: a baseline atmosphere with 2.8-cmwater vapor (the value
retrieved from the AVIRIS scene), a “dry” atmosphere with 2.6-cm
water vapor, and a “wet” atmosphere with 3-cm water vapor. Spatial
variation in water vapor was expected to be far below the 4 mm range
between the dry and wet Modtran runs, based on the lack of an
elevation gradient and previous investigations of spatial variability in
water vapor in terrestrial environments. For example, Roberts et al.
(1997) reported a 6-mm range in precipitable water vapor over a 600-
m range in elevation, equal to a lapse rate of 1 mm every 100 m.
Ogunjemiyo et al. (2002) reported significantly lower ranges, report-
ing 0.3 to 0.4 mm increase in evapotranspiredwater vapor over highly
transpiring clonal Populus accumulated over a distance of 1.5-km
downwind over tree stands.

In addition to albedo and water vapor, simulations were run for
different CH4 concentrations above background levels. For the COP
seep field, background CH4 was set at 1.7 ppmwithin the lowest 1 km
of the atmosphere. Because the lowest layer of the atmosphere in
Modtran 5.2 has a thickness of 1 km, CH4 anomalies were modeled by
calculating the equivalent CH4 amount within a 20-m thick boundary
layer mixed with background CH4 amounts to produce an average
concentration for the entire 1-km layer. For example, a weak anomaly
of 18 ppm in the lower 20 m of a 1 km layer at 1.7 ppm, is the
equivalent concentration of 2.03 ppm averaged over the lowest 1 km
of the atmosphere. Above 1 km, standard Modtran 5.2 values for CH4

for a mid-latitude temperate atmosphere were used. To evaluate
model sensitivity, a total of 14 CH4 case simulations were run for three
water vapor amounts over a range of albedos from 0 to 30% (Table 1).
This data set will be referred to as the test look-up table (LUTt). One
additional LUT was generated only for background CH4 and water
vapor, but included a larger range of albedos (0 to 50%) at albedo steps
of 0.1% required for analyzing AVIRIS image data. This LUT also
represented background radiance for model simulations and will be
referred to as the background look-up table (LUTb).
Fig. 4. Example Modtran calculated albedo for two dark surfaces, one with 1% albedo,
the other 5%. Although path radiance generally is low, it can add a significant amount of
radiance for very dark surfaces.
2.4. Residual analysis

Spectral residuals represent a potentially powerful tool for
mapping atmospheric trace gases. Using this approach, the presence
of an absorber is determined by mathematically differencing radiance
for background concentrations of a trace gas, and radiance measured
with trace gas levels greater than the background. The magnitude and
spectral shape of the residual can be used to infer the presence of a
specific trace gas and estimate amounts above background. Residuals
between models and measurements are often an important step in a
full inversion (e.g., Green, 2001).

In a previous work, Leifer et al. (2006a) demonstrated that CH4

produced significant radiance residuals between 2200 and 2350 nm,
with only modest interference due to the presence of water vapor.
However, that study only considered the case of 100% albedo for three
CH4 amounts: 5, 10, and 18% above background. In order to calculate a
spectral residual for AVIRIS radiance from modeled radiance for
background conditions, two steps are required for each pixel. First, the
surface albedo needs to be determined. This step is required to locate
the radiance spectrum, Lb, in LUTb with the closest albedo, and
secondly, the spectral residual must be calculated.

To account for minor discrepancies between the albedo in LUTb
and the estimated albedo, we apply an albedo adjustment, χ, to test
radiance, Lav. This either brightens or darkens Lav to match albedos in
LUTb, thereby accounting for the discrete nature of albedo in LUTb
(0.1% steps) compared to the continuous nature of the estimated
albedo.
Surface albedo, A, was estimated by calculating the ratio of Lav to
background radiance for a 10% albedo surface (L10) at a wavelength
with minimum atmospheric interference (Eq. (1))

A = ðLav−LpathÞ= ðL10−LpathÞ⁎0:10 ð1Þ

Because analysis of Modtran 5.2 transmittance spectra showed
minimum trace gas atmospheric absorption at 2139 nm, we used that
wavelength to estimate A. Both L10 and Lav were corrected for additive
path radiance, Lpath, estimated for a 0% albedo surface. While Lpath
typically is assumed to be negligible in the SWIR (e.g., Frankenberg
et al., 2006), we found it necessary to correct for Lpath. In the absence
of a path-radiance correction, errors propagate into A, modifying
calculations of χ, and thereby ultimately impacting the residual.
Example albedo calculations, using LUTb to estimate albedo for two
spectra in LUTt, are shown in Fig. 4. Over the entire set of Modtran 5.2
radiance spectra in LUTt (Table 1), the largest error in estimated
albedo was 0.073% for a 30% albedo surface with 3-cm water vapor
(estimated 29.93%, actual 30.0%).

Spectral residuals, Lres(A,λ), were calculated as the difference
between radiance from LUTb (Lb) and Lav, for a specific A, adjusted
by χ (Eq. (2))

LresðA;λÞ = LbðA;λÞ−LavðA;λÞ⁎χ ð2Þ

where χ is calculated as χ=A(LUTb)/A(estimated). Lav is subtracted
from Lb to ensure positive residuals, because background radiance
must be higher than radiance with elevated CH4. Example calculated
residual spectra are shown in Fig. 5.

In addition to residuals, a desirable goal is to develop an index
sensitive to CH4 column abundance, which scales predictably with
increasing CH4, yet is insensitive to albedo and water vapor. Indices
are often used in remote sensing to compress information contained
within 2 or more bands into a single index sensitive to a parameter of



Fig. 5. Example calculations of a residual for two dark surfaces (1% and 5%) for a very
strong CH4 anomaly (31.53 ppm) compared to background (1.7 ppm).

Fig. 6. Plot of residual radiance for 2.8-cm water vapor (blue) and 3-cm water vapor
(purple) with 3.53 ppm CH4. Background radiance was set at 2.8-cm water vapor and
1.7 ppm CH4. The percentage absorption due to CH4 (Eq. (4)) is plotted in red with units
shown on the right.
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interest. A CH4 index, C, was calculated as the average residual
radiance for a wavelength range selected to minimize the impact of
water vapor (Eq. (3))

C = ∑λ = b
λ = aLResðA;λÞ= ðN⁎AÞ⁎100000 ð3Þ

where the average residual is calculated over N bands with the
starting and ending wavelengths, a and b, respectively. This average is
divided by A to account for the fact that residuals tend to scale with A
(see Fig. 5). Finally, C is multiplied by 100,000 to create an index that
can be stored as an integer. One advantage of using an average is that
the Noise Equivalent Delta Radiance (NEDL) improves as NEDL
divided by N0.5 (Taylor, 1982). Thus, the ideal index is calculated
from the largest possible range of wavelengths that contain CH4

absorption and exclude strong absorption by other trace gases, such as
water vapor. An AVIRIS NEDL of 1.0×10−5 Wm−2 nm−1 sr−1 was
used based on values for the 2003 and 2004 flight seasons (Robert
Green, JPL, pers. comm. 2009).

To identify wavelengths most sensitive to CH4 and least sensitive
to water vapor we calculated the impact of elevated levels of these
traces gases on residual radiance:

PðλÞ = LresðW2:8;A;λÞ= LresðW3:0;A;λÞ⁎100 ð4Þ

where P(λ) reports the ratio of residual radiance due to CH4 at 2.8-cm
water vapor, Lres(W2.8,A,λ), divided by residual radiance at 3-cm
water vapor, Lres(W3.0,A,λ), for the same CH4 amount and background
specifications. This approach is preferred over analysis of transmit-
tance spectra, because it follows the same basic methodology used to
calculate C while specifically evaluating the impact of water vapor on
this index. To evaluate potential impacts over dark surfaces with small
CH4 anomalies, CH4 was set at a relatively low amount (3.53 ppm in
the lower 1-km layer) over a 2% albedo surface (A=0.02).

Comparison of residuals for 2.8-cm and 3-cm water vapor
simulations with elevated CH4 identified six bands, between 2248
and 2298 nm, where from 75% to 82% of the residual at each
wavelength was due to CH4 absorption, not water vapor (Fig. 6).
Outside of this wavelength region, this fraction decreases rapidly
equaling 42% at 2340 nm and 22% at 2208 nm. Thus, C was calculated
using a=2248 nm, b=2298 nm, while N was 6.

A final index, called the sensitivity index, Ψ, was calculated as the
ratio of C to NEDL:

ψ = ½C=ðNEDL=
ffiffiffiffi

N
p

Þ�⁎A⁎100000 ð5Þ

where NEDL is adjusted by band averaging (e.g., NEDLadj=NEDL/√(6)
for the 6 selected bands). Because C is normalized by A and scaled by a
factor of 100,000, the adjusted NEDL also is scaled in the equation.
However, because the latter two factors are included in the calculation
of C, they cancel when calculating Ψ (Eq. (3)). A value of Ψ greater
than one implies that CH4 is detectable for a given surface albedo and
CH4 amount.

The stability of C was assessed through simulations using spectra
in LUTb applied to the full suite of CH4, water vapor, and albedo
test spectra in LUTt (Table 1). Ideally, this index should increase
predictably, showing an exponentially declining increase in C with
increasing column CH4 (following Beer–Lambert's law) while being
insensitive to variations in albedo and water vapor.

2.5. AVIRIS analysis

FollowingModtran 5.2 simulation studies, albedos were calculated
for the 6 August 2007, R04 AVIRIS scene, followed by calculation of C
and Ψ images. Performance of both C and Ψ indices was evaluated by
analyzing anomalies in close proximity and down wind from known
seeps and by assessing residual spectra.

3. Results

3.1. Modtran simulations

Modtran 5.2 radiance simulations demonstrate that radiance
scales approximately linearly with surface albedo (Fig. 7a and c).
For example, reflected radiance for a 30% albedo surface (Fig. 7c) is 15
times greater than for the 2% albedo surface (Fig. 7a). Pronounced CH4

absorption features are evident throughout much of the SWIR, from
2200 to 2400 nm. Residuals calculated for background water vapor
(2.8 cm) over a range of CH4 concentrations illustrate a clear CH4 signal



Fig. 7.Modtran 5.2modeled radiances for (a) 2% and (c) 30% albedo surfaces for CH4 ranging from 3.53 to 31.53 ppm (data key on figure). Lower frames showModtran 5.2 calculated
residual radiance spectra for the same CH4 concentrations and albedos, shown for (b) 2% albedo and (d) 30% albedo. The dashed lines on b and d show the NEDL for AVIRIS.
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between 2200 and 2400 nm, characterized by a broad absorption
region between 2240 and 2390 nm with a maximum at 2298 nm and
two smaller peaks at 2318 and 2348 nm (Fig. 7b and d). At shorter
wavelengths, residuals due to CH4 also occur at 2200 and 2168 nm.
These residuals also illustrate the important role of surface albedo,
in which at least 11.53-ppm CH4 averaged over 1 km is required for
the residual to exceed an NEDL of 0.00001 Wm−2 nm−1 sr−1 for a 2%
albedo surface, while the detection limit for a 30% albedo surface
(dashed line) is significantly lower than 3.53 ppm.

Analysis of the residuals clearly indicates the important impact of
water vapor (Fig. 8). In the upper frames, residuals are shown for four
elevated CH4 amounts with a fifth residual illustrating the case of
background CH4 (1.7 ppm) but elevated water vapor (3 cm). In this
example, the residual due to water vapor exceeds the 3.53-ppm CH4

residual beyond 2320 nm and exceeds all CH4 residual amounts at
wavelengths longer than 2400 nm. In the lower frames, residuals are
shown for the same elevated CH4 amounts, but this time using 2.8-cm
background water vapor to calculate a residual from Modtran 5.2
radiance modeled with 3-cm of water vapor (Fig. 8b and d). This is
the equivalent of modeling a moister atmosphere with radiance
calculated for an atmosphere that is too dry. This error results in
elevated residuals at all wavelengths beyond 2300 nm and below
2200 nm with almost all of the residual below 2150 nm due to water
vapor. Elevated residuals have two important implications.
First, excessive water vapor imposes a trend in the residuals, which
is most evident at low CH4 amounts with the residuals progressively
increasing with wavelength beyond 2300 nm. Second, excessive
water vapor will tend to produce a false positive methane index, C.
False positives are particularly severe on higher albedo surfaces,
where residuals exceed the NEDL at all wavelengths (Fig. 8d).

To evaluate the stability of C over the full range of conditions in
LUTt (Table 1), Cwas calculated using the wavelengths between 2248
and 2298 nm (Fig. 6). Background radiance was derived from LUTb.
Over this range of conditions, where the range was chosen for
anticipated ranges in the AVIRIS scene, C proved to be highly robust
(Table 2). For example, when applied to a 30% range in albedo with
2.6, 2.8, and 3-cm of water vapor, C ranged between 131.5 and 136.1
for 31.53 ppm CH4 and 114.3 to 118.3 for 26.53 ppm (Table 2). Only at
very low CH4 concentrations did the index perform poorly, failing to
discriminate between different amounts of CH4 over the full range
of water vapor amounts and albedos. For example, background C
(1.7 ppm) ranged from −0.88 to 2.04, representing either CH4 below
background or a false positive for 2.03 ppm CH4. Negative C values
were all restricted to surfaces with albedos less than 10%.

Results from LUTt were used to generate a plot, comparing C to
known CH4 (Fig. 9). The general form of this equation is non-linear,
best defined as a second order polynomial with the equation:

CH4 = 0:000556⁎C2 + 0:1519⁎C + 1:4475 ð6Þ

The non-linear form of this equation is primarily a product of an
exponentially decaying decrease in transmittance with increasing
CH4, which would be predicted from a Beer–Lambert relationship. A
second order effect would be CH4 saturation where increasing
amounts of CH4 result in smaller and smaller changes in radiance
because some of the CH4 spectral lines are fully saturated. Best-fit
parameters also illustrate limitations in the precision of this equation.
For example, given C=0 (the case for 1.7 ppm CH4), CH4 is under-
predicted at 1.4475 ppm (a 15% error). Similarly, at 2.03 ppm, C
has a value of 2.92, equal to 1.896 ppm or a 6.6% underestimate.
At the upper extreme of 51.53 ppm, this error decreases to a 0.4%
overestimate of CH4.

Modtran 5.2 simulations were also used to address the question of
detection limits by comparing index values to NEDL. In theory, CH4 is
detectable if CNNEDL. To account for albedo normalization and the
use of a scaling factor, we compared C with the adjusted NEDL, which



Fig. 8. Showing residual radiance for 2% (a) and 30% (c) albedo surfaces for 3.53 to 31.53 ppm CH4 (data key on figure). Residuals are also shown calculated for the case of 3-cmwater
vapor modeled using a 2.8 cm water vapor atmosphere with 1.7 ppm CH4 (black). Lower frames show residuals calculated for the same elevated CH4 amounts using a 2.8-cm water
vapor atmosphere to model a wet 3.0-cm water vapor atmosphere on a 2% (b) and 30% (d) surface.
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is normalized, scaled, and has a lower value due to band averaging. As
an example, for A=0.5% and six wavelength bands, the adjusted
NEDL is 0.00001⁎100,000/0.005/√(6)=81.65. Thus, for A=0.5%,
CH4 would be detected at 21.53 ppm, but not at 16.53 ppm (Table 2).
A weak anomaly of 2.03 ppmwould require a surface albedo of at least
22% for detection.
3.2. AVIRIS analysis

Albedo estimated from AVIRIS data showed considerable variation
across the image swath, ranging from less than 0.5% on the north edge,
Table 2
Showing minimum, maximum, and average values of the CH4 index, C, calculated for
each CH4 amount (in ppm) over a 0 to 30% range in albedo with moist to dry
atmospheres (Table 1). Numbers on the right of the table report the minimum albedo
required to detect an anomaly above background. NEDL is the noise equivalent radiance
adjusted for surface albedo, the scalar, and band averaging.

Anomaly Min Max Avg NEDLadj Comment

1.7 −0.88 2.04 0.26 na False positive on very bright surface
2.03 1.86 4.69 2.92 1.86 Detection above 22%
2.53 5.68 8.45 6.7 5.67 Detection above 7.2%
3.53 12.6 15.3 13.58 12.37 Detection above 3.3%
6.53 30.36 32.89 31.27 29.16 Detection above 1.4%
9.03 43.22 45.68 44.12 40.82 Detection above 1.0%
11.53 55.01 57.47 55.93 51.03 Detection above 0.8%
14.03 66.07 68.44 66.99 58.32 Detection above 0.7%
16.53 76.52 79.06 77.46 68.04 Detection above 0.6%
21.53 96.11 99.38 97.1 81.65 Detection above 0.5%
26.53 114.33 118.28 115.36 102.06 Detection above 0.4%
31.53 131.47 136.09 132.51 102.06 Detection above 0.4%
41.53 163.28 169.13 164.38 136.08 Detection above 0.3%
51.53 192.52 199.54 193.71 136.08 Detection above 0.3%
to over 30% on the glint side of the swath (Fig. 10). This image
also illustrates strong sensitivity to floating oil slicks, which appear
primarily as roughly linear low albedo features that largely follow
wind direction rather than currents. Strong CH4 seep sources are
marked by white squares with three specific strong sources labeled,
(the informally named) Seep Tent, La Goleta and Patch seeps.
Additionally, there are circular patches of high and low albedo
Fig. 9. Showing a plot of the methane index, C, compared to CH4. Minimum (blue),
maximum (red) and average (green) report the range of C values over all tests for a
specific CH4 amount averaged over the lower 1 km. The best-fit second order
polynomial is shown on the figure.



Fig. 10. Estimated albedo for 6 August 2007 Run R04. The location of the coast is marked in very faint green. Wind direction, from a coastal weather station (www.geog.ucsb.edu/
ideas) and codar-derived currents, measured by the Interdisciplinary Oceanography Group (http://www.icess.ucsb.edu/iog/archive/25) aremarked. Inset shows north–south albedo
transect (red line) that includes the Seep Tent area. Some named seeps are marked by white squares.
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concentrated around the La Goleta seep caused by spatially limited
clouds and cloud shadows.

Images of C andΨwere generated for the AVIRIS image. Pixels that
illustrate a range of C values from low to high, over a range of surface
albedos were selected for more detailed analysis (Table 3). This table
Table 3
Estimated albedo, albedo adjustment factor (χ), CH4 index (C), and sensitivity index, (Ψ) f
100,000 scaling factor. CH4 is predicted for 1 km, 20 m, and 100 m using the equation CH4=

Location Albedo χ C NEDL

x579y1174 0.0081 0.987 537.6 50.4
x76y1061 0.0537 1.006 54.2 7.6
x78y1052 0.1776 1.002 222.2 2.3
x187y1136 0.1651 1 227.7 2.47
x425y1177 0.0335 1.015 56.5 12.19
x187y1137 0.0613 0.994 12.5 6.66
x432y1160 0.1142 0.998 123.9 3.57
x566y3424 0.1362 0.999 636 3
x218y2609 0.0088 1.023 120.7 46.39
x577y1232 0.005 1.006 522.9 81.65
x134y1073 0.0137 1.024 285 29.8
x201y3430 0.0439 1.001 −3.2 9.3
x68y679 0.1038 1.002 85.2 3.93

Original:
CH4(100)=(CH4(1000)−1.7ppm*0.98)/0.1
CH4(1000)=243.8 ppm
CH4(100)=(243.8ppm−1.7ppm*0.98)/0.1=2421.34 ppm
Correct:
CH4(100)=(CH4(1000)−1.7ppm*0.90)/0.1=2422.7 ppm
1.36 ppm underestimate for all 100 m cases.
shows the target location, estimated albedo (with 100%=1.0), χ, C,
NEDLadj and Ψ. Eq. (6) was used to estimate CH4 abundance within a
1-km thick layer. Equivalent concentrations for 20-m and 100-m thick
CH4 layers also are included in the table, calculated with a background
of 1.7 ppm CH4.
or 13 test AVIRIS spectra. NEDL is adjusted by surface albedo, band averaging, and the
0.000556⁎C2+0.1519⁎C+1.4475 (Fig. 9).

adj Ψ CH4 100 m 20 m

10.67 243.8 2422.7 12106.7
7.13 11.31 97.8 482.2

96.61 62.65 611.2 3049.2
92.19 64.86 633.3 3159.7
4.63 11.8 102.7 506.7
1.88 3.43 19 88.2

34.71 28.8 272.7 1356.7
212 322.96 3214.3 16064.7

2.6 27.88 263.5 1310.7
6.4 232.9 2314.3 11561.7
9.56 89.9 883.7 4411.7

−0.34 0.97 −5.6 −34.8
21.68 18.43 169 838.2

http://www.geog.ucsb.edu/ideas
http://www.geog.ucsb.edu/ideas
http://www.icess.ucsb.edu/iog/archive/25


Fig. 11. Comparison between measured (black) andmodeled (grey) radiance for two anomalies, x579_y1174 (a) and x566_y3424 (c). Residuals between measured and background
radiance (solid) andmodeled and background radiance (grey) are shown in the lower frames for x579_y1174 (b) and x566_y3424 (d). Spectral residuals, calculated as the difference
between modeled and measured radiance are shown as dashed lines in the lower frames, offset slightly lower for clarity with zero radiance highlighted by a grey horizontal line.
Arrows mark large spectral anomalies discussed in text.

Fig. 12. Comparison between measured (black) and modeled (grey) radiance for two anomalies, x78_y1052 (a) and x432_y1160 (c). Residuals between measured and background
radiance (solid) and modeled and background radiance (grey) are shown in the lower frames for x78_y1052 (b) and x432_y1160 (d). Spectral residuals, calculated as the difference
between modeled and measured radiance are shown as dashed lines in the lower frames, offset slightly lower for clarity with zero radiance highlighted by a grey horizontal line.
Arrows mark large spectral anomalies discussed in text.
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Fig. 13. Comparison between measured (black) and modeled (grey) radiance for two anomalies, x76_y1061 (a) and x425_y1177 (c). Residuals between measured and background
radiance (solid) and modeled and background radiance (grey) are shown in the lower frames for x76_y1061 (b) and x425_y1177 (d). Spectral residuals, calculated as the difference
between modeled and measured radiance are shown as dashed lines in the lower frames, offset slightly lower for clarity with zero radiance highlighted by a grey horizontal line.
Arrows mark large spectral anomalies discussed in text.
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To evaluate the validity of specific estimates from AVIRIS, Modtran
5.2 was used to calculate a new set of radiance spectra, with each
spectrum modeled using estimated albedo and CH4 to predict AVIRIS
radiance for each specific pixel (Figs. 11–13). Furthermore, modeled
and measured radiance were used to calculate three different
residuals, one as the difference between modeled and measured
AVIRIS radiance (dashed lines in Figs. 11–13 in the lower frame), one
as the difference between background and elevated CH4 radiance
modeled by Modtran 5.2, and the last as the difference between
background modeled radiance and radiance measured by AVIRIS. The
latter two residual spectra are included as analogous to the residuals
plotted in Figs. 7 and 8.

In Fig. 11,we showexamples for two very strong anomalieswithC in
excess of 500 and predicted CH4 amounts over 240 ppm(Fig. 11).While
these values do not exceed the highest levels measured at the sea
surface in the field (2%: Leifer et al., 2006b), they are still very high. The
left frame shows a pixel modeled as having 0.81% albedo and C=537.6.
Comparison to measured AVIRIS, illustrates a good radiance match
(Fig. 11a)with relatively small residuals betweenmodeled radiance and
measured radiance (Fig. 11b). The general form of the residual
calculated between background CH4 and modeled, or measured
radiance is similar, suggesting that the estimates for A and CH4 are
consistent with the measurements. However, large residuals are
observed at wavelengths greater than 2400 nm, suggesting that the
model failed to completely account for water vapor. Large residuals are
also observed in the center of strong CO2 bands at 2058 nm, which is a
common feature ofmany of the residuals. Given that seep gas is 12% CO2

at the seabed (Leifer et al., 2000), there may be enhanced CO2 levels
from diffuse sea–air gas evasion. In this example, we hypothesize that
high predictions of CH4 and pronouncedwater vapor residual are either
an artifact of the approach or a product of enhanced expression of
absorption features in reflected diffuse light (see Discussion).
The frame on the right of Fig. 11 illustrates a different type of
problem (Fig. 11c and d). In this case, albedo was estimated at 13%with
C=636. The general form of the residuals is consistent with CH4

(Fig. 11d), but shows considerable spectral structure, which is also
evident in a comparison of modeled and measured radiance (Fig. 11c).
We propose that themajor source of residuals, in this case, is significant
departures from a spectrally flat surface, in which significantly lower
reflected radiance is measured by AVIRIS at all wavelengths below
2139 nm, between 2200 and 2250 nm and beyond 2300 nm. Detailed
analysis of the image showed this area to consist of a small, bright object
situated over 1 km from any CH4 source. The shape of the object is
consistent with a small boat. From the analysis of residuals for dark
surfaces and x566_y3424, we conclude that many if not all of the very
high C value pixels are suspect.

In Fig. 12, we show examples for two strong anomalies, with
estimated surface albedos above 10% and CH4 estimates between 62.6
and 28.8 ppm (Fig. 12, Table 3). In both cases, measured AVIRIS
radiance and modeled radiance are very similar (Fig. 12a and c).
Spectral residuals between modeled and measured radiance are small
(dashed line on Fig. 12b and d), and the general form of the residual
calculated above background is similar. The largest difference between
measured and modeled radiance occurs at 2058 nm, in the center of
a strong CO2 band. Based on the quality of the residuals, high albedo,
and reasonable CH4 levels, we conclude that these are viable estimates.

The final example shows the results for two weaker anomalies
(Fig. 13). For these examples, albedos were 3.3 and 5.4% with CH4

calculated at 11.8 and 11.3 ppm, respectively (Table 3). Comparison of
measured and modeled radiance illustrates a very good fit between
models and measurements, except within the 2058 nm CO2 band
(Fig. 13a and c). Residuals have a spectral structure consistent with
modest amounts of CH4, although the spectral residual between
models andmeasurements for pixel x76_y1061 shows some structure



Fig. 14. Showing CH4 sensitivity index Ψ image for R04 AVIRIS data. The Ψ image was density sliced to show strong (red), moderate (orange) and weak (blue) anomalies. Inset
shows example residual spectra including strong and weak anomalies in close proximity to the Seep Tent and Patch seeps. The grey rectangle in the central plot shows the limits of a
0.00001 Wm−2 nm−1 sr−1 NEDL.
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within the 2200 to 2400 nm region that is not present in residuals
calculated entirely from models.

While the C index can be used to estimate CH4 concentrations, we
conclude from analysis of residuals that high values of C over dark
surfaces will make mapping problematic. One potential solution is to
utilize the CH4 sensitivity (Ψ) image, which incorporates the way in
which decreased albedo elevates C into the calculation of Ψ. Fig. 14
Fig. 15. Amore detailed image of near the Seep Tent seep showing an albedo image. Red
dots show areas where the Ψ value exceeded 60. Careful examination of this image
shows anomalies that are located off of the slick but still close to the seep.
shows a density slice of Ψ, including several examples of residual
spectra. The Ψ image is color coded to show strong (red: ΨN70),
intermediate (orange: 70NΨN40), and weak (blue: 40NΨN10)
anomalies with background Ψ displayed as purple. This image shows
a majority of high values clustered in close proximity and downwind
from strong CH4 sources, especially near the Seep Tent seep. However,
this image also illustrates problems including lingering sensitivity
to surface albedo and a tendency for strong anomalies to be located
adjacent to weak anomalies.

Amore detailed image of the Seep Tent area (Fig. 15) illustrates the
strong correspondence between slicks and high Ψ (N60), but also
demonstrates that the two measures are not identical. For example,
CH4 anomalies are concentrated over the lower albedo slicks, but
extend beyond the slicks.

4. Discussion

Toour knowledge, this analysis demonstrates thefirst publishedCH4

detection using an AVIRIS-like instrument from an airborne platform.
Prior work has been performed at very coarse spatial scales, such as the
multi-km spatial resolution of SCIAMACHY (Straume et al., 2005;
Frankenberg et al., 2006). Previous studies by Larsen and Stamnes
(2006) and Leifer et al. (2006a) were model simulations or in-situ
spectrometry (Leifer et al., 2006a). In this study, we expanded the test
conditions used in Modtran simulations. For example, in Leifer et al.
(2006a), surface albedowas restricted to 100%with only three levels of
CH4 tested. Larsen and Stamnes (2006) varied total column CH4

between 1.2 and 1.7 atm-cm for albedos of 15 and 55%. Leifer et al.
(2006a), however, did evaluate a greater range in water vapor than the
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present study does, including column amounts of 0.64, 2 and 2.9 cm.
Larsen and Stamnes (2006) did not vary water vapor. Larsen and
Stamnes (2006) evaluated the impact of aerosols, testing the impact of
clear sky, and 5 and 10 km visibilities using Modtran. Contrary to this
study and Leifer et al. (2006a), Larsen and Stamnes (2006) evaluated the
potential for mapping CH4 using band ratios by dividing reflected
radiance within a CH4 band by radiance outside of a CH4 band. Three
numerators were tested, 2225, 2275, and 2325 nm while the denom-
inator was 2125 nm. Based on our analysis, at least two of these
wavelengths may be problematic, with 2225 and 2325 nm showing
sensitivity to water vapor (Fig. 6). Furthermore, the visibilities of 5 and
10 km, tested by Larsen and Stamnes (2006) are very low and thusmay
over emphasize the importance of path radiance for most acquisitions.
Path radiance, however, did prove to be important in our study;without
incorporating a path-radiance correction when calculating albedo,
albedo estimates were significantly worse, translating into larger χ
values and producing a bias in the residuals (not shown).

However, while the C and Ψ indices appear highly robust in a
simulation environment, high spatial variability in both measures on
the AVIRIS image, and apparent sensitivity of both indices to surface
albedo, suggests that the results from the Modtran simulations may
be overly simplistic (Table 3, Figs. 11–13). For example, while our
simulations suggest that strong CH4 anomalies can be detected over
surfaces with albedos as low as 0.5%, estimates of CH4 from AVIRIS
under these conditions are extremely high (Table 3).

Several error sources may contribute to errors in CH4 mapped with
AVIRIS. One major assumption in our model is that the sea surface is
spectrally flat. While the trend is gradual, there is evidence that sea
water reflectance decreases with increasing wavelength in the SWIR
(Salisbury et al., 1993). In general, if SWIR reflectance has a trendwith a
decrease in reflectance with increasing wavelength, this should lead to
elevated residuals and an overestimate of C. To evaluate the impact of a
spectrally non-flat surface, we used sea water spectral reflectance from
the John Hopkins University (JHU: Baldridge et al., 2009). We applied a
linear trend to the sea surface reflectance, declining from 0.019983 at
2139 nm to 0.016934 by 2500 nm. This trend was used to predict
radiance reflected from a 1% and 28% albedo surface at 2139 nm given a
31.53 ppm CH4 anomaly. We then used these spectra to calculate a
residual for each surface, in this case applying modeled radiance for
background methane (1.7 ppm) for the same albedos, but using a
spectrally flat surface for the background. The result of this analysis
demonstrated a highly significant error. For example, given a spectrally
flat surface, C for 31.53 ppm should be 133 for both a 28% and 1% albedo
surface. However, given a trend in the actual surface as reported by JHU,
C was elevated to 240 for a 28% surface, and 242 for a 1% surface. This
suggests that the impact of decreasing reflectance of the sea surfacewill
be to increase the residual and produce an overestimate of CH4, in this
case by a factor of two. An increase in surface reflectancewouldhave the
opposite effect. It should be noted that most of the residuals we
observed did not show evidence of a linear trend.

Another potential error source concerns scattered light. In this
analysis, we have used a single visibility of 30 km to predict path
radiance for a 0% albedo target, and applied the same path-radiance
spectrum to all spectra. This approach neglects the fact that path
radiance varies with surface albedo due to multiple scattering. To
evaluate the potential impact of using the same path radiance for all
spectra, we conducted a sensitivity analysis usingModtran 5.2. In a first
test, we applied the samepath-radiance correction to radiancemodeled
for a 1% and 28% albedo surface, then predicted radiance for the 28%
albedo surface using the path corrected 1% radiance spectrum. In this
test, if multiple scattering significantly increases path radiance, then
residual radiance should exist between radiance predicted for a 28%
albedo surface (from the 1% case multiplied by 28) and the original
model for a 28% albedo surface. This analysis did, in fact demonstrate a
small but significant increase in path radiance in the strong CH4 bands
due to albedo dependent path radiance. However, the magnitude was
less than 0.33% at any wavelength. As a second test, we evaluated how
multiple scattering and an error in path radiance would impact the C.
For a 28% albedo surface, this test resulted in an elevated value of C, but
only by 2% (i.e., C=136 when it should equal 133). Given other error
sources, the use of a single path-radiance spectrum is a relatively minor
error and greatly simplifies the analysis.

Another potential shortcoming in our modeling approach is the
estimation of CH4 from direct-beam reflected radiance, while a
portion of radiance measured over dark surfaces in the imagery may
be diffusely scattered light. While single scattered radiation is
attenuated along the direct beam, and thus pathlengths will be
shortened over dark surfaces (Aben et al., 2007), these same photons
may be forward scattered to adjacent pixels, contributing side-
scattered radiation with a longer pathlength. Whether this results in
enhanced or reduced expression of an absorber will depend on the
balance between attenuated direct beam and side-scattered diffuse
light. Given that Fresnel reflection increases at higher zenith angles,
we suspect that the net effect may be an increase in path length,
especially given the 3.8 mGIFOV of the AVIRIS data and that this effect
will be most severe for dark surfaces adjacent to brighter ones. Under
these circumstances, we would expect the expression of atmospheric
absorptions to be enhanced leading to an overestimate of CH4.
However, while this result implies an over-estimation of CH4 over
dark surfaces in a scattering atmosphere, it also suggests that CH4may
be more detectable over these same surfaces than the modeling
results imply. Finally, some caution needs to be expressed regarding
specific CH4 estimates. The numbers we derived do not provide
a measure of how the CH4 is distributed in the vertical column.
For example, a CH4 estimate of 75 ppm over a thickness of 1 km
represents a very high amount over 20 m (∼3600 ppm), but far less if
distributed over a 100 m layer (∼750 ppm).

High spatial frequency variation in CH4 detections did not show a
well defined Gaussian plume structure, contrary to the observations of
Leifer et al. (2006a). However, there are reasons to suspect that a well
defined Gaussian plume may not have been present under the
conditions of the flight. For example, the flight occurred in the early
afternoon, after the boundary layer had broken up with relatively high
winds, N5 m/s. Further, a highly buoyant gas such as CH4 might be
expected to rise quickly, leading to vertical and horizontal heterogene-
ity, restricting CH4 to localized strong point sources. Furthermore, long-
term measurements of total hydrocarbons, measured at the Santa
Barbara County Air Pollution Control District West Campus station
(34°24′53.82″N, 19°52′46.18″W) suggest 6 August, 2007 CH4 emissions
may have been lower than typical (Bradley et al., in preparation).

Another source of spatial variation in CH4 detectionsmay be due to
wave facets, which produce high spatial frequency variation in albedo
and change CH4 detection limits over very small spatial scales. Finally,
while the fit betweenmodeled andmeasured radiance was very good,
several examples exhibited spectral structure consistent with a non-
spectrally flat surface (Fig. 11b and d). Petroleumhydrocarbons on the
sea surface may also selectively absorb in the SWIR, altering surface
reflectance at 2139 nm and within CH4 absorbing bands, thereby
generating a residual (Cloutis, 1989).

Spatial variation in water vapor and path radiance represent
additional potential error sources. While we tested 2 mm variation in
water vapor around themean and identified six wavelengths showing
low sensitivity, it is possible that greater variability was present in
the image. This is particularly true of the area around La Goleta Seep
(Fig. 14), which was contaminated by low altitude clouds. We
assumed uniform path radiance, however, an error in this estimate
will translate to errors in the path-radiance term, producing an error
in the estimate of surface albedo. This error, in turn, propagates
through χ, resulting in a bias in the residual. This type of error would
become increasingly problematic over very dark surfaces, but have
little impact on bright surfaces. Finally, we only tested one type of
aerosol, using the default value for a 30 km visibility in Modtran 5.2.
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Several error sources are amenable to further modeling efforts. For
example, we identified variability in surface reflectance as a significant
potential error source, in which any wavelength dependent trend
in surface reflectance will impact the residuals, and thus impact C.
Sensitivity analysis using Modtran 5.2 suggests that this may be the
dominant error source, although it is also unlikely that every pixel on
the sea surface has the same spectral shape in the SWIR. Another
potential error source is diffusely scattered light, which we hypoth-
esize may lead to an over-expression of trace gas absorption features
over dark surfaces. Other error sources include the use of a single path-
radiance spectrum and including albedo in the denominator for C,
although neither error proved to be large when tested. Finally, this
analysis only included a single type of aerosol with a uniform visibility
across the scene. All of these error sources can be potentially modeled
using a more sophisticated surface reflectance model that includes
wave facets, spectrally variable water reflectance and a better
representation of diffusely scattered light, such as the Digital Imaging
and Remote Sensing Image Generation Model (DIRSIG: Schott et al.,
1999).

Despite several potential sources of error, we found that numerous
spectral residuals in close proximity to known seeps have CH4

signatures that are consistent with model results and the known
spectral signature of CH4. The importance of imaging spectrometry for
mapping CH4 becomes particularly apparent here—even in cases
where questions arise in the value of a specific index, spectral
residuals provide confidence when they show a spectrum specific to
CH4 while the image provides spatial context. Comparison of
measured radiance to modeled radiance for estimated surface albedo
and CH4 is particularly encouraging, especially for high albedo
surfaces (Fig. 12). Furthermore, it is likely that some of the high
frequency variability in Ψ for the AVIRIS image is real. CH4 is a highly
buoyant gas, and the spatial scale of strong sources tends to be very
small, on the order of only a few AVIRIS pixels (Leifer et al., 2006a).
Moreover, grab bag samples collected above the seeps have shown as
high as 2% CH4 (Leifer et al., 2006b), with bubbles at mega plumes
typically arriving at the sea surface in vast boils and pulses. Finally,
as stated, the meteorological conditions at the time of the overpass
were suboptimal for producing a well defined plume. Thus, it is
feasible that very strong anomalies are located adjacent to weak
anomalies given the highly localized and highly buoyant plumes
rising quickly and diffusing rapidly into the environment.

Alternative analysis approaches can be used to study CH4 from an
AVIRIS-like sensor. For example, it would be valuable to attempt a full
inversion, inverting for water vapor, CO2, CH4, and surface albedo.
Many of the steps included in the analysis presented here could form
the beginnings of a full inversion approach. For example, surface
albedo could be constrained using the 2139-nm band, as we used.
Water vapor could be constrained using other parts of the spectrum,
such as the 940 and 1130 nm regions (e.g., Gao & Goetz, 1990).
For example, significant errors in estimated water vapor likely are
expressed as a trend in the residual, indicating the need to increase
(positive trend with wavelength) or decrease (negative trend with
wavelength) column water vapor.

Another possibility is to employ a variant of DOAS, in which at
sensor radiance is analyzed in log space, thus linearizing the impact of
changing column abundances while converting multiplicative factors
to additive ones (i.e., Buchwitz et al., 2000).

5. Conclusions

In this paper, we evaluated the potential of AVIRIS for mapping
CH4 over strong marine seeps. Analysis focused on an AVIRIS image,
acquired on 6 August 2007, over the Coal Oil Point marine hydro-
carbon seep field. We evaluated AVIRIS potential using a combination
of Modtran 5.2 radiative transfer simulations, and by applying a
residual-based analysis approach to the imagery.
Modtran simulations suggest that AVIRIS is capable of mapping
CH4 at low concentrations over a wide range of surface albedos. A CH4

index, C, was proposed, based on average residual radiance calculated
between 2248 and 2298 nm. A secondary CH4 sensitivity index, ψ,
was proposed that provides a measure of detection confidence
relative to NEDL. Albedo was estimated using the 2139-nm band
after correcting for path radiance. Minimum CH4 detection limits
variedwith surface albedo, ranging from less than 18 ppm in a bottom
layer 20 m thick (2.03 ppm averaged over 1 km) for albedos greater
than 22%, tomore than 990 ppmCH4 (21.53 ppm averaged over 1 km)
for albedos as low as 0.5%. The proposed index, C, proved to respond
predictably to increased CH4 and was relatively insensitive to changes
in surface albedo and water vapor, although it did require an accurate
estimate of visibility.

Application to AVIRIS spectra demonstrated more mixed results,
suggesting that detection limits from ourModtran simulationsmay be
overly simplistic. Specifically, the residual-based CH4 appeared overly
sensitive to changes in surface albedo, overestimated CH4 over dark
surfaces and showed unexpectedly large high frequency spatial
variability. Although image results were not as robust as simulations,
strong anomalies were detected in close proximity and down wind of
known CH4 sourceswith spectral residuals thatmatched the signature
of CH4. Furthermore, likely CH4 anomalies were detected over very
dark surfaces with albedos less than 1%, although estimated column
CH4 amounts were high. Based on these results, we conclude that the
potential of SWIR imaging spectrometry for CH4 is high. Near term
goals are to extend this analysis to additional data sets acquired over
the Coal Oil Point seep field and to evaluate alternate methods for
mapping CH4.
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