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Inductively mapping expert-derived soil-landscape units within dambo wetland
catenae using multispectral and topographic data
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Constructing a cost-effective and detailed digital soil map of Africa will require the extensive utilization of both
legacy soil data and legacy soil-landscape knowledge — which in Africa is primarily available from
reconnaissance-scale catena or association maps and related studies. We evaluated a hybrid approach for
disaggregating reconnaissance scale soil maps: rapid and inexpensive delineation of representative soil-
landscape units in the field using expert knowledge, followed by the use of inductive, empirical, and correlative
modeling techniques tomap these landscape units. Our 2214 km2 study area, located in central Uganda, consisted
predominantly of catenae that terminate in seasonal valley floor wetlands called dambos — a type of landscape
that can be found throughout the African continent. For model training and validation, we identified four
landscape classes in the field using published expert knowledge:well-drained uplands (red soils); sloping dambo
wetland margins (gradientN2%), frequently inundated dambo bottoms (hummocky microtopography), and flat
dambo floors (default). Using binary decision trees (BDT) with multispectral and topographic remote sensing
covariates, we created a 20 m resolution map of these four classes. Multispectral inputs included reflectance
values, vegetation indices, and spectral mixture modeling fractions from Système Pour l'Observacion de la Terre
(SPOT)4 satellite imagesacquired inDecember, 2006andFebruary, 2007. Topographic inputs consistedof adigital
elevation model (DEM) from Shuttle Radar Topography Mission (SRTM) data, slope, and 20 relative elevation
layers calculated using moving windows of various sizes. Decision rules were based upon the following input
variables: the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Infrared Index (NDII),
the shortwave infrared (SWIR) reflectance, northing, slope, and two relative elevation layers. The overall
classification accuracy of 75.5% and Kappa coefficient of 0.67 suggest that a combination of multispectral,
topographic, and spatial datamay be used to reliably classify landscape classes for dambo-terminated catenae. At
59% of the 2214 km2 study area, the upland classwas by far themost abundant, withmargins at 21%, floors at 12%
and bottoms at 8%. A statistical analysis of soil property data froma small catchment locatedwithin the studyarea
showed significant class differences in soil texture, color, organic carbon (SOC), base saturation, pH, effective
cation exchange capacity (ECEC), and clay mineralogy. Though detailed soil maps are rare in Africa,
reconnaissance soil maps can be inexpensively disaggregated to provide a valuable starting point for digital
soil mapping.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

There is growing interest in constructing a detailed (D3, 20–200 m
pixel) digital soil map of the world (McBratney et al., 2003; Minasny
et al., 2008) to support improved assessments of fertility, ecosystem
services and potential soil degradation (Carre et al., 2007; Palm et al.,
2007); scientifically based landmanagement in both remote areas and
densely populated regions (Behrens and Scholten, 2006; MacMillan
et al., 2007); and process-based environmental modeling (Lin et al.,
2006). The digital soil mapping paradigm (McBratney et al., 2003)

relies heavily upon modeling relationships between soil properties
and easily measured, spatially exhaustive environmental covariates
(e.g. surface reflectance and digital elevation values acquired from
satellites). Though a well studied family of covariates and relation-
ships has proven useful globally, digital soil mapping usually requires
additional soil data for calibration in each new region to be mapped
(McBratney et al., 2003).

The African continent is simultaneously the most soil data-
challenged land surface in the world and the area most in need of
improved soil information (Eswaran et al., 1997; Palm et al., 2007;
Rossiter, 2008). However, purely empirical, inductive, environmental
correlation-based, predictive soil mapping at a D3 to D4 level (20 m to
2 km pixel size) appears to require well-distributed profile character-
ization at a density of at least 75 km2/profile (Dobos et al., 2000;
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McBratney et al., 2003), with most published regional studies
reporting significantly higher sampling densities (McKenzie and
Ryan, 1999; Hengl et al., 2004; Henderson et al., 2005). Even if
sampling were focused only on the 13.6 million km2 of potentially
arable land in Africa as opposed to the total 30.3 million km2 of
continental land area (Eswaran et al., 1997), a minimum of 182,000
characterized profiles would be required to inductively map the soils
of Africa assuming a 75 km2/profile sampling density. Though
proximal soil sensing techniques can potentially reduce characteriza-
tion costs (Shepherd and Walsh, 2002), the acquisition and character-
ization of soil samples from N105 representative soil profiles
distributed throughout the African continent would likely prove cost
prohibitive.

Legacy “expert” soil-landscape knowledge will by necessity play a
central role in the construction of a high-resolution, D3 digital soil
map of Africa. Where higher order surveys are available, “data
renewal” techniques can be used to improve the spatial resolution
and accuracy of older maps (Rossiter, 2008), and knowledge
extraction approaches can be employed to quantify and extend
implicit soil-landscape correlations to surrounding areas with similar
soils and environmental conditions (Bui et al., 1999; Bui and Moran,
2001; Bui and Moran, 2003). However, for most of Africa only
reconnaissance maps are available with soils mapped as catenae1 or
associations (Eswaran et al., 1997; Rossiter, 2008). Utilizing legacy soil
profile characterization data for these areas will require disaggrega-
tion of landscapes into previously identified landscape units (Bui and
Moran, 2001). Research publications containing soil catena landscape
relationships, profile descriptions and characterization data are also
available for many parts of Africa (Morison, 1948; Morison et al., 1948;
Nye, 1954; Nye, 1955a,b; Ollier, 1959; Radwanski and Ollier, 1959;
Watson, 1964a,b,c; Webster, 1965). Though these publications gen-
erally focusmore on soil profile characterization and genesis than soil-
landscape relationships, a careful reading of these papers could yield
the rules required for expert-knowledge soil mapping techniques
(McBratney et al., 2003).

While purely inductive, empirical, environmental correlation
methods require a large number of characterized soil profiles to
develop calibrations, expert-knowledge systems depend on the
quality of the expert or expertise employed. Our objective in this
study was to assess the viability of a hybrid approach: (1) rapidly and
inexpensively delineate representative soil-landscape units in the
field using expert knowledge; then (2) employ inductive, empirical,
and correlative modeling techniques to map these soil-landscape
units. We selected a dambo-terminated catena region in Uganda for
this study as dambo catenae are well described in the literature,
occupy a significant fraction of the African land surface, and contain
seasonal wetlands important for both global biogeochemistry (Bar-
tlett and Harriss, 1993) and rural livelihoods (Scoones, 1991). Both
binary decision trees and random forest machine learning were
employed to calibrate and validate an empirical landscape classifica-
tionmodel. Finally, wemodeled soil properties as a function of expert-

derived landscape class for a small 2nd-order watershed within the
study area to provide an initial evaluation of soil-class correlations.

2. Background

2.1. Dambo-terminated catenae

Dambos–also termed mbugas, vleis, and fadamas–are seasonally
saturated, grassy, channelless, gently sloping valley floors (Acres et al.,
1985) that commonly occupy the lowest topographic positions in
African catenae or “land systems” (Trapnell and Clothier, 1937;
Trapnell, 1943; Morison et al., 1948; Radwanski and Ollier, 1959;
Watson, 1964c; Webster, 1965; Ollier et al., 1969). Dambos are
commonly subdivided into three basic soil–vegetation–hydrology–
topography units, following the terminology of Acres et al. (1985):
margins, floors and bottoms (Fig. 1). These can be considered roughly
analogous to footslope, toeslope and channel terms commonly
employed in geomorphology (Ruhe, 1961; Conacher and Dalrymple,
1977). Margins are generally narrow, sloping, sandy, transitional
elements with sparse vegetation cover. Valley floors have barely
perceptible elevation gradients, clayey grey subsoils, and an increase
in vegetation density relative to margins. Black-clay dambo bottoms
occupy the lowest cross-sectional position, are often inundated, and
host dense grasses and sedges growing on well-defined hummocks
(Mäckel, 1974; Acres et al., 1985; Mäckel, 1985).

Assuming areal densities of 5% and 2% (Bullock,1992), respectively,
for the map of “main” and “sporadic” areas of dambo occurrence in
Africa published by Acres et al. (1985), a first order estimate of dambo
extent would be approximately 300,000 km2. Since dambos occupy at
most 20% of these catenary landscapes, this would imply a total area of
1.5 million km2 of dambo-terminated catenae, or approximately 5% of
the African land surface and 11% of the arable land in Africa. This
estimate may be conservative as published estimates of valley floor
wetland extent are as high as 1.35 million km2 (Frenken and
Mharapara, 2002), implying that associated catenae could cover as
much as 20% of the African land surface.

2.2. Wetland delineation techniques

Three prevalent techniques currently used for wetland identifica-
tion on a landscape scale are field investigation, aerial photo
interpretation, and multispectral image analysis (Baker et al., 2006).
Automated classification using high-resolution satellite imagery offers
the best wetland mapping alternative in many situations. In fact, in
comparison to human interpretation of aerial photos, multispectral
image classification of wetlands has demonstrated similar accuracy
and greater repeatability (Harvey and Hill, 2001; Baker et al., 2006).
However, relying solely on the vegetation cues provided from satellite
imagery to identify seasonally saturated wetlands is difficult and
potentially inaccurate (Tiner,1993). This is because the transition from
wetland to non-wetland plant species is gradual, making it challen-
ging to distinguish wetland extents, much less distinct elements
within wetlands.

Recent land cover classification studies have shown the benefits of
combiningmultiple types of input data (Pohl and Van Genderen,1998;

1 The term “catena” is used in Africa much as “association” is used elsewhere with
the notable difference that the catena term implies a specific set of landscape
processes governing soil genesis and soil-topography relationships (Brown, 2005).

Fig. 1. A relatively narrow, incised, dambo cross-section from the middle of the study area, showing trees, ferricrete and stonelines largely confined to upland areas, constructed using
elevation data from Brown et al. (2004a,b).
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McBratney et al., 2003; Varma et al., 2003; Zhu and Tateishi, 2006). For
example, Amarsaikhan and Douglas (2004) saw significant improve-
ments in distinguishing land cover types in Mongolia by combining
SPOT-XS satellite and ERS-SAR (Synthetic Aperture Radar) imagery.
Similarly, Wright and Gallant (2007) increased palustrine wetland
classification accuracy in Yellowstone National Park by combining
multispectral Landsat Thematic Mapper (TM) data with terrain and
other ancillary inputs. Scull et al. (2005a) combined soil samples with
vegetation and terrainmetrics derived from Landsat TM imagery and a
digital elevation model (DEM) to produce predictive soil maps.

Among the data mining tools that have been used effectively for
land system classification from multiple inputs is the binary decision
tree (BDT). A BDT consists of a system of nodes and connections
analogous to the hierarchical branch pattern of a tree (Pal and Mather,
2003). At the “root” of a BDT are the input data, which are passed
through a series of decision rules and categorized into specific classes
at the terminal nodes. BDT classifiers generate decision rules by
passing a set of training data through a series of recursive yes/no tests.
The binary splits that result in more homogeneous subsets of the
training data become the nodes of the BDT (Pal and Mather, 2003).
These nodes also identify which of the input variables were selected to
distinguish each of the classes (Simard et al., 2000). BDTs are
considered superior to many conventional statistical classification
techniques because they are nonparametric and make fewer assump-
tions about the data (Baker et al., 2006). BDTs are also advantageous
because they are simpler to train and interpret than most neural
network classifiers (Pal and Mather, 2003).

Numerous remote sensing studies have demonstrated the effective
use of BDTs for land cover classification. For example, Simard et al.
(2002) used a BDT to combine data from multiple SAR bands. These
combined data improved the overall classification accuracy of tropical

vegetation by 18% in comparison to a single band classification. Work
by Scull et al. (2005b) showed that BDT analysis can be applied to
predictive soil mapping. Xu et al. (2005) explored the potential for
decision tree regression as a classification technique focusing on
mixed pixels. More recently, Lowry et al. (2007) employed a decision
tree classifier in a five-state biodiversity assessment because of its past
successes in previous moderate-scale classifications. Although much
of the prior BDT classification research focused on continental or even
global extents, Brown de Colstoun et al. (2003) demonstrated with
their 270 km2 study area that BDTs can also effectively classify high-
resolution imagery of smaller areas. The land cover classifications of
study areas in Yellowstone National Park and Mongolia mentioned
previously alsomade use of BDTclassifiers (Amarsaikhan and Douglas,
2004; Wright and Gallant, 2007).

3. Methods

3.1. Study area

The study area, comprising of 2214 km2, was selected from a
relatively undisturbed region of the central Ugandan plateau under-
lain by Pre-Cambrian granitic gneiss which drains into the perennially
swampy Mayanja, Towa, and Lugogo Rivers (Fig. 2). This area is
representative of the geomorphology, climate, and vegetation regimes
associated with African dambos (Mäckel, 1974; Acres et al., 1985;
Mäckel, 1985; von der Heyden, 2004). The contemporary climate in
this area is wet tropical with a mean annual precipitation of ∼120 cm
(distinctly bimodal distribution), and a mean annual temperature of
23 °C at an elevation over 1 km above sea level (Survey Department,
1967). Annual precipitation declines significantly from south to north,
though precise measurements are not available. Additionally, the

Fig. 2. The location of the study area in Uganda.
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study area offers a range of topographic relief withmaximum slopes of
7% in the south declining to 2% in the far north.

Upland areas are covered with a tall grass–bush–bare soil mosaic
classified as “dry combretum savanna” (Langdale-Brown et al., 1964,
p.59–63). Upland woody vegetation becomes denser at the upland–
margin interface, presumably due to greater water availability. In
contrast, dambos are open and grassy with woody vegetation
concentrated in dense thickets on large and widely spaced termite
mound “islands.” Major dambo bottom species include the sedges
Cyperus alba and Cyperus denudatus, wetland grasses Commelina
subulata and Setaria sphacelata, and forbs Dyschoriste magchena
(snake herb) and Emilia javanica (Tassel flower). Similar species are
found in dambo floors, though perhaps due to grazing they form a low
turf as opposed to the tall and thick tussocks found in the bottoms.
Moving up into the margins, the forb Murdannia simplex and grasses
Paspalum scrobiculatum and Hyparrhenia filipendula become more
prevalent. Major dambo species (almost all perennials) are found in all
three landscape classes, though in different proportions. Moving into
the upland areas, the C. subulata and drought-tolerant Brachiaria
brizantha grasses become more prevalent, though even here wetland
species were sometimes observed. The primary land use is non-
intensive grazing for which dambo grasses are burnt annually.

3.2. Expert-derived soil-landscape units

Previous survey work from this region (Radwanski, 1959) and
published research on a small 2nd-order catchment within the study
area (Brown, 2007; Brown et al., 2004a) shows relatively little
variability in well-drained upland soil mineralogy, chemistry, texture
and soil organic matter. When this area was previously surveyed,
upland associates of the dominant Buruli and Buyaga catenae were
distinguished primarily on the basis of stone line and ferricrete depth
(Radwanski, 1959). However, subsequent research suggests that these
features are artifacts from a past episode of landscape genesis and
might therefore be difficult tomap using information derived from the
contemporary land surface (Brown et al., 2003; Brown et al., 2004b).
We therefore mapped uplands as a single soil-landscape class, defined
by high-chroma, reddish hue subsoils (see Table 1 for details) with the
quantitative limits derived from previous soil reflectance measure-
ments in this study area (Brown et al., 2004a; Brown, 2007).
Radwanski (1959) described all upland soils as having a subsoil hue
of 5YR or redder, but given that only exemplars are reported for that
survey, our rules were consistent with previous survey results. In the
field, uplands were distinguished by reddish subsurface soils as
observed (without digging) by comparing termite mounds to
Munsell® color charts, with hue and chroma satisfying either of two
sets of criteria provided in Table 1. While upland vegetation generally
consisted of a bush–savannah mosaic with abundant bare soil, the
woody vegetation often extended down into margins making this a
poor indicator for upland delineation.

Radwanski (1959) mapped dambos as a single associate in the
catena, and gave these wetland areas relatively little consideration.
Since that survey was completed, a consensus has emerged in the
literature regarding the distinction of the margin, floor and bottom
landscape units within dambos (Mäckel, 1974; Acres et al., 1985;
Mäckel, 1985; von der Heyden, 2004). Based upon the published

literature both throughout Africa (cited above) and from Uganda
specifically (Brown et al., 2006), we formally defined the margin class
as having a slope N2% without meeting the subsoil color requirements
of the upland class— asmeasured using handheld inclinometers in the
field. We also considered using the density of grass cover (thinner for
margins) as a distinguishing characteristic but this was harder to
measure quickly and reliably in the field. The bottom class was defined
by a characteristic hummocky microtopography that could be easily
observed in the field. Again, vegetation density could have been
employed as dambo bottoms generally contain thick, 1-m high grasses
and sedges vs. the lawn-like vegetation of dambo floors. However, due
to regular dambo burning, this was not always a reliable indicator. The
default floor class captured relatively flat wetland areas that lacked
hummocks. Though landscape classes were clearly and unambigu-
ously defined, transitions between classes were often diffuse —

making it sometimes difficult to map class boundaries with meter-
scale precision.

To evaluate the explanatory power of these expert landscape units,
we applied these criteria to 193 soil profiles previously sampled and
characterized from a small 2nd-order catchment within the study area
(Brown, 2007; Brown et al., 2004a,b). Samples from this catchment
were previously crushed, sieved (b2 mm), and air-dried and scanned
with an Analytical Spectral Devices (Boulder, CO, USA) Fieldspec Pro®
spectroradiometer to obtain precise color measurements (Brown
et al., 2004a,b). These spectral data were subsequently employed to
characterize soil clay mineralogy (Brown, 2007) using a global
calibration previously evaluated for this study area (Brown et al.,
2006). Soil organic carbon (SOC) was determined using the dry
combustion method and soil texture was measured with both the
pipette and hydrometer methods (Gee and Bauder, 1986). Soil pH (in
H2O), Effective Cation Exchange Capacity (ECEC) and base saturation
were measured using standard laboratory techniques as reported in
Brown et al. (2003). Using soil data from 0–10, 20–30, 50–60, 90–100,
140–150 and 200–210 cm, we employed generalized least squares
regression within the R nlme package (R Development Core Team,
2008) to model soil properties by depth as a function of landscape
class (bottom, floor, margin and upland encoded as a single factor
variable). Spatial correlation models were fit to the residuals for each
property-depth model as required and overall significance was
extracted using analysis of variance (ANOVA).

3.3. Field observation design

Field measurements were taken during January and February,
2007, with the intention of observing the vegetation variability that
typically occurs during one of the two annual dry seasons in the study
area. To ensure sampling at a variety of scales, stream order values
were used to create a stratified random sample set. Some of the
randomly determined sites were inaccessible in the field; however,
the sample set did include observations from all stream orders within
the drainage system. Two sampling techniques were employed in the
field. First, polygons were used to delineate areas with relatively
homogenous vegetation cover, topographic relief, and soil properties,
indicating that they belonged to single dambo class. These homo-
genous polygons were typically captured using a GPS, although large
or irregularly shaped areas were occasionally outlined on a paper map
for subsequent digitization. Second, to sample the variability within
each dambo class and particularly in the transition areas between
classes, cross-section transects with a width of 120 m were sampled
perpendicular to the hydrologic flow. Transect length varied according
to drainage size at the sample location. Transects were sampled by
using a GPS to record the estimated points of transition between the
dambo classes. Buffers with a width of 60 m on each side of the
centerline were then applied to the linear transects to create
rectangular dambo class areas. Because the transect segments were
not perfectly aligned, the 60-m buffers sometimes resulted in

Table 1
Dambo class field identification criteria

Dambo class Identification criteria

Upland Subsoil chroma≥4 and hue≤7.5 YR, OR chroma≥3 and
hue≤5 YR

Margin SlopeN2% and not upland
Floor Not upland, margin, or bottom
Bottom Hummocky microtopography
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overlapping dambo classes. The dambo class areas were shortened on
each end by 20 m (equivalent to 1 pixel of the highest resolution
remote sensing data used) to eliminate areas of overlap. Points were
sampled only at the transition from one dambo class to another;
therefore, the beginning and end of each transect were typically
located at the upland/margin interfaces. Upland areas, which are
usually recognizable in satellite imagery by their woody vegetation,
were extended from these endpoints for use in the training and
validation sets. A total of 190 homogeneous dambo class polygons and
46 cross-section transects were sampled in the field (Fig. 3). In
addition to the field samples, several large polygons clearly identified
as uplands in multispectral imagery used for this study (discussed
below) were added to the sample data. As dambo bottoms provided
such a small percentage of the total cross-section transect area, the
multispectral images were also used to add several bottom sites
during the classification training process.

3.4. Modeling

A set of 66 variables, mostly derived from remotely sensed data,
served as inputs to the landscape classification (Table 2). The majority
of these input variables were measures of topographic relief or
vegetation cover. While most of these variables were not ultimately
used for the classification, it was necessary to test each of them
comparatively to ascertain which variables contributed to an accurate
classification of the study area.

Two SPOT 4 multispectral satellite images of the study area,
atmospherically corrected to apparent surface reflectance using
ACORN (ImSpec LLC), provided the primary inputs for the classifica-
tion (Fig. 3). The use of these images also established a common
spatial resolution of 20 m, to which other inputs were resampled as
necessary using bilinear interpolation. The SPOT scenes were captured
December 10, 2006, and February 21, 2007, dates that roughly

coincided with the beginning and end of the field campaign, as well
as the local dry season.While this periodwas chosenwith the intent of
monitoring dambo vegetation phenology as moisture decreased

Table 2
Classification input variables subdivided according to source

Multispectral inputsa Topographic inputs Spatial inputs

SPOT 10 Dec 06 DEM UTM northingb

Green (band 1) ρ Slopeb UTM easting
Red (band 2) ρ Relative elevation 11
Near infrared (band 3) ρ Relative elevation 21b

Shortwave infrared (band 4) ρ Relative elevation 31
SPOT 21 Feb 07 Relative elevation 41
Green ρ Relative elevation 51
Red ρ Relative elevation 61
Near infrared ρ Relative elevation 71
Shortwave infrared ρb Relative elevation 81

Vegetation indices Relative elevation 91
Dec. NDVI Relative elevation 101
Feb. NDVI Relative elevation 111
NDVI differenceb Relative elevation 121
Dec. NDII Relative elevation 131
Feb. NDIIb Relative elevation 141
NDII difference Relative elevation 151

Spectral mixture analysis Relative elevation 161
Dec. PV Relative elevation 171
Dec. NPV Relative elevation 181b

Dec. shade Relative elevation 191
Feb. PV Relative elevation 201
Feb. NPV
Feb. shade
PV difference
NPV difference
Shade difference

The symbol ρ signifies reflectance.
a Standard deviation was also included as a variable for all multispectral inputs.
b Denotes variable selected as a decision tree node.

Fig. 3. Sample sites overlaid on the February 21, 2007, SPOT 4 image of study area (includes material © CNES 2007, Distribution Spot Image S.A., France SICORP, USA, all rights reserved).
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within the study area, the contrast between the two scenesmay not be
as drastic as in other years because the winter 2006–2007 dry season
was particularly wet. The reflectance value of each of four image bands
was included as a separate input to the classification. A green band
covers a spectral range of approximately 0.50 to 0.59 µm, a red band
covers approximately 0.61 to 0.68 µm, a near infrared band covers

approximately 0.79 to 0.89 µm, and a shortwave infrared band covers
approximately 1.58 to 1.75 µm.

Reflectance from three of the SPOT bands also provided the source
data for the calculation of two common vegetation indices: the
Normalized Difference Vegetation Index (NDVI) and the Normalized
Difference Infrared Index (NDII). NDVI is a measure of vegetation

Fig. 4. Ranked relative elevation using 11 pixel by 11 pixel (990 m×990 m) window. Brighter tones indicate higher relative rank.

Fig. 5. Ranked relative elevation using 201×201 pixel (18,090 m×18090 m) window. Brighter tones indicate higher relative rank.
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greenness that relies on a spectral change in reflectance caused by
chlorophyll absorption in red wavelengths and leaf additive reflec-
tance in near infrared wavelengths (Rouse et al., 1973). NDVI is
calculated using near infrared wavelength reflectance (ρNIR) and red
wavelength reflectance (ρred):

NDVI =
ρNIR−ρred

ρNIR + ρred
: ð1Þ

NDII is a measure of canopy water absorption in the shortwave
infrared (Hardisky et al., 1983; Hunt and Rock,1989). NDII is calculated
using ρNIR and shortwave infrared reflectance (ρSWIR):

NDVI =
ρNIR−ρSWIR

ρNIR + ρSWIR
: ð2Þ

Spectral mixture analysis (SMA) was also used to provide
classification inputs. SMA models a mixed spectral signature within
a remotely sensed pixel as a combination of purer reference
endmembers (Adams et al., 1993). SMA fractions describe image
pixels in terms of the relative abundance of each of the endmembers.
For the dambo classification, photographic land cover samples were
captured in the field at 10 m intervals along a reference line bisecting
plots composed of a particular class. Upon returning from the field,
these photographs were used to determine the fractional coverage of
the following three endmembers within each plot: photosynthetic
vegetation (PV), non-photosynthetic vegetation (NPV), and shade
(White et al., 2000). Image endmembers used to model the SPOT
scene were then selected using Constrained Reference Endmember
Selection (Roberts et al., 1993). The results of the SMA, namely the
fractional abundance of PV, NPV, and shade for the December and
January images, provided additional inputs to the classification.

Several input variables were calculated to capture spatio-temporal
patterns in index values. First, the difference between February, 2007
and December, 2006 variables was calculated for each multispectral
input variable to assess the impacts of changing moisture availability
during the dry season. Standard deviation was then calculated for
nine-pixel moving windows as a measure of the spatial heterogeneity
of each layer.

Shuttle Radar TopographyMission (SRTM) terrain data provided the
elevation values for the classification; they also served as the basis for
the calculation of slope and 20 ranked relative elevation calculations.
The SRTM data were resampled from 90-m to 20-m resolution and
smoothedusing anine-pixel neighborhoodmean to reduce theeffects of
data anomalies and local topographic variation not related to the
surrounding catchment (e.g., trees and large termite mounds).

Moving from south to north, the study area exhibited a general
decrease in elevation and a flattening in topographic gradient. In other
words, the change in elevation from upland to bottom was generally
greater and more abrupt in the southern part of the study area than in
the north. Due to these terrain attributes, and because dambos exist at
various scales within the drainage system, relative elevation was more
effective at distinguishing classes than overall elevation. BDTs are
capable of processing large volumes of data to select themost significant
input variables for a landscape classification. This allowed for the
inclusion of multiple relative elevation layers calculated for different
spatial scales. Relative elevation was calculated within windows of
varying sizes. These windows ranged in extent from 11 by 11 to 201 by
201 pixels inwidth and height (Figs. 4 and 5), which translates to 990 by
990 m and to 18,090 by 18,090 m respectively. Each pixel was ranked
according to its elevation relative to the other pixels within a moving
window of a given size. To normalize relative elevation values, the rank
of the center pixelwas then divided by the total number of pixelswithin
the window. As the size of the windows increased, so did the
topographic features they accentuated. At the smallest window sizes,
lower order streams and ridges were clearly defined, while the major

rivers were too broad to be portrayed as relative low points (Fig. 4). In
contrast, larger windows captured major topographic features while
ignoring some upper-catchment features (Fig. 5).

In addition to the general decrease in elevation, field observations
and satellite images revealed drier conditions moving south to north
within the study area. The main indicators of this variation were an
increase in senescent vegetation and a decrease in standing water
within the dambo bottoms. These observations led to the inclusion of
northing and easting values derived from a Universal Transverse
Mercator (UTM) projection of the study area to serve as proxies for
climatic gradients that may exist within different spatial sub-regions
of the study area.

Layers containing each of the 66 input variables for the extent of
the SPOT scenes were then consolidated into a single stack in
preparation for use in the landscape classification. Next, field data
were divided into training and validation sets. The homogeneous
polygon samples were stratified according to dambo class, while each
cross-section transect was preserved as an individual unit composed
of multiple classes. The training and validation sets were random
selections consisting of data from both field sampling techniques.
Pixel values from each of the input variables were then extracted for
regions of interest representing the training set. These values provided
the source data from which the “tree” package (Ripley, 2007) in R
constructed the BDT classifier. Construction of the tree also deter-
mined which of the input variables were significant in identifying the
dambo classes for the training set. When applied to the inputs

Table 3
Generalized least squares regression predictions of soil properties by landscape unit and
depth, including number of samples and overall significance of the regression model

Depth (cm) N p-value Bottom Floor Margin Upland

% clay (in fine b2 mm fraction)
5 193 b0.0001 31.3 21.3 17.5 34.1
25 130 b0.0001 30.0 25.5 22.2 41.4
55 117 b0.0001 43.7 57.1 22.1 45.8
95 52 b0.0001 44.5 56.3 25.8 44.2
145 51 0.0017 35.8 41.8 26.6 43.1
205 34 0.1221 32.4 36.3 29.4 43.6

% silt (in fine b2 mm fraction)
5 193 b0.0001 29.6 24.3 10.0 7.3
25 130 b0.0001 23.8 15.8 5.8 6.8
55 117 0.0010 11.5 8.7 7.1 5.2
95 52 0.0099 10.3 5.3 4.0 5.1
145 51 0.3450 7.0 6.8 4.9 5.1
205 34 0.5413 9.2 5.2 7.2 7.9

SOC g kg−1 (in fine b2 mm fraction)
5 61 b0.0001 30.0 27.3 11.8 11.6
25 47 0.0190 14.1 13.6 9.1 8.4
55 50 0.0052 8.0 8.8 4.1 5.8
95 31 0.0391 4.6 2.0 2.6 4.1
145 27 0.0010 3.3 1.5 1.6 3.3
205 18 0.0698 1.5 NA 1.1 2.3

Smectite proportion in clay fraction (VisNIR, ordinal units from 0–5)
5 193 b0.0001 0.3 0.8 0.2 0.0
25 193 b0.0001 0.6 0.5 0.2 0.0
55 184 b0.0001 1.3 1.3 0.3 0.0
95 181 b0.0001 1.9 1.3 0.5 0.1
145 157 b0.0001 2.0 1.6 0.6 0.0
205 130 b0.0001 2.6 1.8 1.8 0.6

Munsell® color, 50–60 cm depth
Hue YR 193 b0.0001 5.7 5.8 5.5 3.4
Value 193 0.3550 4.1 4.1 4.2 4.2
Chroma 193 b0.0001 2.6 2.9 3.1 5.1

Fertility measures, all depths
pH 120 0.0001 6.2 6.3 5.5 5.6
ECEC 120 b0.0001 10.8 10.2 3.3 1.7
Base sat. 120 0.0002 97 100 58 59
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collected for the entire study area, these decision rules produced a
map of dambo classes.

After several iterations of the BDT, it was determined that a single
bottomclass could not adequately classify both the swampy rivers and the
narrow, channel-like bottoms in the upper catchments. A secondary

bottom class was added to capture the rivers, with training sites selected
visually from the SPOT images. Following the creation of the BDT, the two
bottom classes were combined to simplify the results of the classification.

The results of the classification were first evaluated qualitatively,
with a particular focus on the continuity of the classes and the

Fig. 6. Binary decision tree classifier diagram. Intermediate decision nodes shown in white, with terminal dambo class nodes shown in shades of gray.

Fig. 7. Classified map of study area.
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agreement of the classified image with the dambo classes observed in
the field and described in the literature. Quantitative accuracy was
assessed by comparing the validation set with the classified image.
Two common image classification accuracy assessment techniques
were employed. The first was the error matrix, including overall,
producer's, and user's accuracy (Congalton, 1991). Second, because
overall accuracy may not indicate the actual effectiveness of a
classification technique, the more rigorous Kappa analysis was also
performed for the BDT classification (Congalton, 1991; Fitzgerald and
Lees, 1994). The Kappa test is based upon the null hypothesis that
there is no statistically significant relationship between the ground
truth data and the results of the classification. The Kappa coefficient
(Κ) is calculated as:

Κ =
N ∑

r

i = 1
xii− ∑

r

i = 1
xi + Tx + ið Þ

N2− ∑
r

i = 1
xi + Tx + i

ð3Þ

where N is the total number of error matrix values, r is the number of
rows in the error matrix, xii is the number of values within row i and
column i, xi+ is the marginal sum of row i, and x+i is the marginal sum
of column i. Kappa values range between 0 and 1, with 0 indicating no
agreement and 1 indicating total agreement.

To provide a comparative evaluation of BDTpredictive accuracies,we
used all of the samepredictorswith anensemble “bagging”decision tree
classificationmethod, RandomForest (Breiman, 2001; LiawandWiener,
2008). We experimented with the following model combinations

(a) 100, 300, 500 and 1000 trees, (b) 1–3 pixel minimum node sizes
and (c) with and without Northing and Easting in the calibration. As we
found little difference in the results overall (given at least 300 trees),
only results from the best model are reported in this paper: 500 trees,
minimum node size of 1 and inclusion of Northing and Easting.

4. Results

4.1. Landscape class as a soil predictor

The expert-derived soil-landscape units employed in this study
significantly explained soil variability within one 2nd-order catch-
ment located in the larger study area (Table 3). Comparing the top
30 cm in particular, upland and margin soils generally contained less
SOC than floor and bottom soils. Clay content was relatively high for all
soils except the sandy margins and within 50 cm of the surface of
floors. Silt-size particles were found primarily in the upper horizons of
the floors and bottoms. Substantial amounts of kaolinite were found in
all soils (results not reported) with smectites concentrated in themore
poorly drained floor and bottom classes. Soil pH, base saturation and
ECEC were all higher for floor and bottom relative to margin and
upland soils. Similarly, we found substantially redder hues and higher
chromas for upland vs. dambo soils (not surprising given that these
soils were used to establish upland color rules). Overall, upland and
margin soils appear to have distinctive properties with little apparent
separation between soils found in floors and bottoms — despite
important differences in hydrology and vegetation for the lowest two
landscape units.

Fig. 8. Subset of the classified map overlaid with validation transects. Validation transects are outlined with colors corresponding to their class.
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4.2. Landscape classification with binary decision trees (BDT)

The BDT classifier constructed from the training data consisted of
seven intermediate nodes and eight terminal nodes (Fig. 6). In
essence, seven decision rules were used to assign the input data to
membership in one of the four dambo classes. The classification relied
upon a combination of topographic, spectral, and spatial inputs.
Uplands were identified using relative elevation, while a combination
of slope, SPOT bands, vegetation indices, and UTM northing
coordinates were used to identify the other three classes.

Applying the BDT-derived decision rules to the entire extent of the
input data resulted in a map of dambo classes (Fig. 7). A visual
assessment of the classification map showed general agreement with
the idealized dambo cross-section. The lowland classes were sur-
rounded by the higher terrain of the upland class, with themargins as a
transitional band between them. As was observed in the field, dambo
bottoms were more stream-like in the upper catchments, becoming
broader as they approached the rivers. Beyond the boundaries of the
study area, the classification showed decreased visual agreement with
the typical dambo cross-section. Floors and margins appeared to be
overclassified in theseareas, althoughnoaccuracyassessmentdatawere
available to test this observation. Even with the addition of a second
bottom class, the swampy expanses of the Lugogo, Towa, and Mayanja
rivers were occasionally misclassified as upland or margin.

A randomly selected, independent validation set was used to
assess the accuracy of the classification. Examples of qualitative
agreement are shown in a comparison of the classified map with the
validation transects (Fig. 8). On the left, the classification successfully
identified convergent branches of dambo bottom and the floor
between them. On the right, the classification accurately portrayed
an exceptional case in which the margin transitioned directly to
bottomwithout the typical floor in between. A qualitative assessment
of the classification also revealed items in need of improvement. In
Fig. 8, small portions of the margin were erroneously identified as
bottom, and on the left, the transition from margin to upland did not
agree as well with the validation transect.

The quantitative accuracy assessment found an overall accuracy of
75.5%. Subdividing the validation set to construct an error matrix
provided information about individual class accuracy (Table 4;
Congalton, 1991). In an error matrix, the cell values along the diagonal

give the quantity of accurately classified pixels for each class. These
valueswere comparedwith corresponding row totals to provide user's
accuracy, which is the number of correctly identified pixels as a
percentage of the total pixels assigned to the class. Diagonal values
were compared to corresponding column totals to calculate produ-
cer's accuracy, which is class assignment as a percentage of the actual
number of pixels belonging to that class on the ground. Producer's
accuracy and user's accuracy are measures of omission and commis-
sion errors, respectively. The BDT classifier identified uplands more
effectively than any other class, probably due to their direct
connection to relative elevation. The most common classification
errors involved confusion with adjacent ordinal classes, which is not
surprising when assigning discrete class divisions to a continuous
landscape. To illustrate, only 3% of the accuracy assessment pixels
were misclassified by two or more ordinal classes. In other words, 97%
of the pixels were either classified correctly or confused with an
adjacent class. A Kappa value of 0.67 was calculated for the
classification, showing significant agreement between the BDT
classifier and the field data (Fitzgerald and Lees, 1994). This suggests
that the classified map should be relatively reliable for discerning
dambo classes within the study area.

Class membership as a percentage of the overall study area varied
greatly (Table 5). At 59% of the entire study area, the upland class was
by far the most abundant. The margins were the next most plentiful at
21%. The floor and bottom classes represented only 12% and 8% of the
2214 km2 study area, respectively. These class membership percen-
tages seem to approximate the actual relative abundance of the classes
observed in the field.

4.3. Landscape classification with Random Forest

Random Forest yielded only minor improvements in overall
accuracy. Results for the Random Forest run using 500 trees with
northing and easting, and a minimum node size of 1 are shown in
Table 6. This modeling run resulted in an overall accuracy of 78.5%.
Producer's accuracy increased for bottom, margin, and upland classes,
but decreased to 54.1% for the floor class. User's accuracy was higher
for the floor andmargin classes but lower for the bottom class. Bottom
was substantially overclassified and floor was substantially under-
classified relative to the simple BDT.

5. Discussion

5.1. Utility of expert landscape classes

Soil surveyors have long used readily observable ground features
to inexpensively delineate landscape units in the field, often in
combination with auger probing for rapid detection of soil changes
(Clarke, 1936; Kellogg, 1937). We modernized this traditional soil

Table 4
The confusion matrix for the BDT classification of the study area shows the number and
percentages of correctly classified pixels

Ground truth Total User's
accuracy
(%)

Bottom Floor Margin Upland

Classified Bottom 520 142 88 22 772 67.4
Floor 130 1002 232 0 1364 73.5
Margin 56 258 1159 294 1767 65.6
Upland 0 0 102 1396 1498 93.2
Total 706 1402 1581 1712 5401
Producer's accuracy 73.7% 71.5% 73.3% 81.5% 75.5

Column totals indicate the number of ground truth pixels from each class. Row totals
indicate the number of pixels assigned to each class by the BDT classifier. Bold values
along the diagonal indicate the number of pixels classified as the correct class.

Table 5
Classification results by area (km2) and as a percentage of total area

Dambo class Area (km2) Area %

Upland 1306 59.0%
Margin 467 21.1%
Floor 265 12.0%
Bottom 176 7.9%
Total 2214 100.0%

Table 6
The confusion matrix for the Random Forest (500 trees, node size=1) classification of
the study area shows the number and percentages of correctly classified pixels

Ground truth Total User's
accuracy
(%)

Bottom Floor Margin Upland

Classified Bottom 616 362 44 13 1035 59.5
Floor 79 758 82 0 919 82.5
Margin 11 282 1311 147 1751 74.9
Upland 0 0 144 1552 1696 91.5
Total 706 1402 1581 1712 5401
Producer's accuracy 87.3% 54.1% 82.9% 90.7% 78.5

Column totals indicate the number of ground truth pixels from each class. Row totals
indicate the number of pixels assigned to each class by the Random Forest classifier. Bold
values along the diagonal indicate the number of pixels classified as the correct class.
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mapping technique through the use of handheld GPS receivers to
georeference our ground observations, a task traditionally accom-
plished by drawing on aerial photographs in the field. (In a few
instances, we selected pixels through visual examination of satellite
imagery, to augment our field observations.)

Three conditions must be met for this expert approach to work:
(1) landscape classes should be easily identified in the field with
consistent, unambiguous and easily implemented rules; (2) landscape
classification rules must be related directly or indirectly to the
exhaustive spatial covariates available for predictive mapping (e.g.
multispectral imagery and digital elevation); and (3) landscape classes
must predict soil properties of interest. In this study, we initially used
augers to obtain and measure subsoil color in order to delineate
upland areas — a task that slowed field work significantly for the first
week in the field. Recognizing that subsoil colors could be rapidly
observed at the surface due to termite activity allowed us to meet
criterion 1 asmeasuring slope gradient and observing hummocks took
little time. Despite a steep initial learning curve, we were able to
acquire approximately 10,000 pixels of “ground truth” in just four
weeks of field work. Given our validation results, criterion 2 was also
met. For criterion 3, our landscape classes captured important
differences in soil texture, clay mineralogy, chemistry, color and
SOC. Though dambo floor and bottom soils were quite similar, this
could be due to the relatively narrow and dry dambos found in the
2nd-order catchment used for this analysis. Valley floors generally
widen and are saturated for longer periods “downstream.” Future
work should more systematically evaluate landscape class–soil
relationships for the study area as a whole.

5.2. Landscape classification with binary decision trees (BDT)

As mentioned previously, one of the advantages BDTs offer is the
identification of the significant input variables and threshold values
used to create the decision rules for the image classification (Fig. 6,
Table 2). The results of this classification add credence to Tiner's
(1993) warning to avoid relying solely on vegetation data to classify
seasonal wetlands. DEM-derived relative elevation and slope variables
provided three of the seven decision tree nodes. Given the relation-
ship between topography and hydrology, it was not surprising that
these variables were significant inputs for dambo classification.
Uplands were identified by their high relative elevation at fine and
coarse scales (1890 by 1890 m and 16,290 by 16,290 m). On the left
branches of the decision tree, margins were distinguished from the
other classes by their relatively steep slopes. UTM northing was the
other decision node variable not directly linked to vegetation,
although it may have been an indirect measure of relative greenness
due to localized climatic variation. While conducting field work in
January and February, 2007, it was apparent that green vegetation and
standing water decreased from south to north within the study area.
This latitudinal variation coincides with a decrease in elevation and
may also be linked to precipitation gradients.

The remaining decision node variables were derived from satellite
imagery and all seemed to be measures of vegetation phenology,
either directly or indirectly. Changes in NDVI values between
December, 2006 and February, 2007 indicate senescence during the
dry season. The steeply sloping margins with their sandy soils
experienced greater changes in vegetation greenness than the
relatively flat, saturated bottoms. Both shortwave infrared reflectance
and NDII change with grass senescence. These variables allowed
separation of bottoms and floors, since saturated bottom soils sustain
green vegetation even during prolonged dry periods.

Several data-related factors may have limited the accuracy of the
classification. The greatest limitation was the lack of a higher-
resolution DEM. If LIDAR, radar interferometry, or other high-
resolution elevation data were available for this area, classification
accuracy may have been increased. Another limitation may have been

the size and spatial extent of the sample data. Even after four weeks of
rigorous field sampling, some less accessible sections of the study area
remained unvisited (Fig. 3).

The overall performance of the BDT-derived dambo wetland
classifier was promising, although its application in other regions
wouldmost likely require local training and accuracy assessment data.
But the landscape rules derived from this modeling exercise also
contribute directly to the larger body of “expert knowledge” that can
be employed to map dambo catenae elsewhere in Africa. The actual
utility of the class map resulting from this project will be evaluated as
it is employed in ongoing biogeochemical process measurement and
modeling. At the time of this writing, the results of the classification
had already been used to select representative sites for detailed soil,
hydrology, vegetation and methane gas flux measurements.

6. Conclusions

Utilizing 193 soil profiles previously sampled and characterized
from a 2nd-order catchment within the study area, the expert
landscape classes employed in this study yielded highly significant
generalized least squares regressionmodels for most soil properties at
depths of 5 to 205 cm. To highlight major soil differences, we found
redder and higher chroma soils in uplands, sandy soils inmargins, silty
surface soils in floors and bottoms, more acidic soils in uplands and
margins, significant amounts of smectites in floor and bottom subsoils,
and much higher SOC in the top 30 cm of floor and bottom soils. These
results were generally consistent with descriptions and data found in
published surveys and peer-reviewed studies, though floor and
bottom soils were not as distinct as anticipated.

Using multispectral and topographic remote sensing inputs, this
study produced a relatively accurate (75% overall, 97%+/−one class,
and Kappa=0.67), 20 m spatial resolution map of four dambowetland
landscape classes. At 59% of the 2214 km2 study area, the upland class
was by far the most abundant, with margins at 21%, floors at 12% and
bottoms at 8%. For comparison, Random Forest modeling with the
same predictors yielded only a slight overall improvement (78.5%),
substantial problems in bottom classification, and a difficult to
interpret model structure.

Several observations were made in the process of constructing this
model which may be beneficial in future digital soil mapping and
wetland delineation dambo research. The results of this study
demonstrate that binary decision trees (BDT) can use spatial data to
reliably classify soil-landscape elements within dambo-terminated
catenae, including three different dambo wetland classes. Valuable
classification inputs were shown to come from a variety of sources. In
particular, shortwave infrared reflectance, NDVI, NDII, relative eleva-
tion, slope, and northing (possibly a proxy for precipitation) were
important for this classification. We found that field sampling was
critical to the success of this project, as was the capacity to calculate
and compare a variety of topographic and spectral metrics.

We propose the approach described in this paper as a relatively
inexpensive way to accurately disaggregate association or catena map
units. In areas where formal soil surveys are not available, it might still
be possible to disaggregate catenae based upon published information
from similar landscapes, as we did with the three dambo classes in
this study. As such, this study represents an intermediate step
between: (1) expert derivation of landscape rules based upon prior
knowledge; and (2) full-scale field soil sampling and analysis, with
subsequent soil-landscape modeling. Ideally, field-supported land-
scape classification would be followed by targeted soil sampling and
soil-landscape modeling. But for many parts of Africa, simply
disaggregating catenae and assigning the best available soil property
data to these associates would represent a valuable contribution to
soil science and landmanagement even if additional soil samplingwas
not possible.
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