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Daytime fire detection using airborne hyperspectral data
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The shortwave infrared region of the electromagnetic spectrum, covering wavelengths from 1400 to
2500 nm, can include significant emitted radiance from fire. There have been relatively few evaluations of the
utility of shortwave infrared remote sensing data, and in particular hyperspectral remote sensing data, for fire
detection. We used an Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) scene acquired over the
2003 Simi Fire to identify the hyperspectral index that was able to most accurately detect pixels containing
fire. All AVIRIS band combinations were used to calculate normalized difference indices, and kappa was used
to compare classification ability of these indices for three different fire temperature ranges. The most
accurate index was named the Hyperspectral Fire Detection Index (HFDI). The HFDI uses shortwave infrared
bands centered at 2061 and 2429 nm. These bands are sensitive to atmospheric attenuation, so the impacts of
variable elevation, solar zenith angle, and atmospheric water vapor concentration on HFDI were assessed
using radiative transfer modeling. While varying these conditions did affect HFDI values, relative differences
between background HFDI and HFDI for 1% fire pixel coverage were maintained. HFDI is most appropriate for
detection of flaming combustion, and may miss lower temperature smoldering combustion at low percent
pixel coverage due to low emitted radiance in the shortwave infrared. HFDI, two previously proposed
hyperspectral fire detection indices, and a broadband shortwave infrared-based fire detection index were
applied to AVIRIS scenes acquired over the 2007 Zaca Fire and 2008 Indians Fire. A qualitative comparison of
the indices demonstrated that HFDI provides improved detection of fire with less variability in background
index values.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Fire detection using remote sensing data has traditionally relied on
two spectral regions: the thermal infrared (8–12 µm) and the middle
infrared (3–5 µm) (e.g. Kaufman et al., 1990, 1998; Prins & Menzel,
1992; Giglio et al., 2003, Ichoku et al., 2003). As fire temperature
increases, blackbody emission increases by temperature to the fourth
power (Stefan–Boltzmann law) and shifts peak emission to shorter
wavelengths (Wien's displacement law) (Fig. 1). At temperatures
above 500 K, there is measurable emitted radiance in the shortwave
infrared, the spectral region from 1400–2500 nm. At a temperature of
1150 K, the wavelength of peak emission is within the shortwave
infrared. Despite ample fire emitted radiance in the shortwave
infrared, this spectral region has been relatively underutilized for
fire detection. Unlike the middle infrared and thermal infrared, fire
detection in the shortwave infrared does not need to account for
background emitted radiance (Fig. 1). However, daytime fire detection

in the shortwave infrared does have to contend with reflected solar
radiance (Thomas & O, 1993).

Hyperspectral remote sensing data typically cover the visible
(400–700 nm), near infrared (700–1400 nm) and shortwave infrared
regions of the spectrum. In addition to capturing emitted radiance in
the shortwave infrared, hyperspectral data possess narrow bands that
may be appropriate for creating effective fire detection indices. An
additional motivation for hyperspectral fire detection algorithms is to
aide fire temperature retrieval. Hyperspectral data include detailed
information on the spectral shape of emitted radiance, which can be
modeled using radiative transfer by assuming blackbody emission.
Green (1996) and Dennison et al. (2006) used linear spectral mixing
techniques to model Airborne Visible InfraRed Imaging Spectrometer
(AVIRIS) radiance spectra as a combination of background reflected
solar radiance and emitted radiance at a specific temperature. This
modeling approach is computationally intensive. Only a small per-
centage of image pixels typically contain fire, so a simple hyperspec-
tral fire detection algorithm could allow temperature retrieval
algorithms to run much more efficiently.

Two hyperspectral fire detection algorithms have been proposed
(Vodacek et al., 2002; Dennison, 2006), but there have been no
comprehensive, quantitative comparisons of potential hyperspectral

Remote Sensing of Environment 113 (2009) 1646–1657

⁎ Corresponding author.
E-mail address: dennison@geog.utah.edu (P.E. Dennison).

0034-4257/$ – see front matter © 2009 Elsevier Inc. All rights reserved.
doi:10.1016/j.rse.2009.03.010

Contents lists available at ScienceDirect

Remote Sensing of Environment

j ourna l homepage: www.e lsev ie r.com/ locate / rse



Author's personal copy

fire detection indices. The objective of this research is to assess and
compare potential daytime hyperspectral fire detection indices, with a
focus on the shortwave infrared region of the spectrum. We used data
fromAVIRIS to evaluate thousands of normalized difference indices for
fire detection, and used the MODTRAN radiative transfer model to
analyze the sensitivity of the best index to varying conditions.

2. Background

2.1. Fire detection using the shortwave infrared

Operational fire detection algorithms use middle infrared and
thermal infrared bands for fire detection, but can also utilize shorter
wavelength bands, including the shortwave infrared, for contextual
screening for false detections (e.g., Giglio et al., 2003). Fire detection
algorithms that specifically take advantage of shortwave infrared
emitted radiance have been developed for Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) and Moderate
Resolution Imaging Spectroradiometer (MODIS) data. ASTER has six
shortwave infrared bands with 30 m spatial resolution, while MODIS
has two 500 m spatial resolution bands covering wavelengths longer
than 1400 nm. Morisette et al. (2005a) used shortwave infrared
ASTER data for validation of a standard MODIS fire detection product
in southern Africa. They found a fixed threshold for ASTER band
9 (2.4 µm) radiance data that allowed reliable discrimination of fire
emitted radiance and cloud-reflected solar radiance. Morisette et al.
(2005b) developed a refined ASTER fire detection algorithm that
converts bands 8 (2.33 µm) and 3 (0.82 µm) to reflectance, and then
examines the ratio of and difference between band reflectance values
to detect fire. ASTER fire detections derived using this algorithm have
been applied to validating standard MODIS fire detection products in
the Brazilian Amazon (Morisette et al., 2005b; Schroeder et al., 2008)
and Siberia (Csiszar et al., 2006). Giglio et al. (2008) evaluated this
same approach for daytime time detection, and band 8 alone for
nighttime fire detection, on 100 ASTER scenes from nine different
global regions.

Wang et al. (2008) examined use of a Normalized Multi-band
Drought Index (NMDI) for detectingfires inMODIS data. The NMDI uses
MODIS band 2 (0.86 µm), 6 (1.64 µm), and 7 (2.13 µm) reflectance, and
was originally intended as a measure of vegetation moisture status
(Wang & Qu, 2007). They found that increased shortwave infrared
emission from fires led to abnormally depressed NMDI values, allowing
for detection of forest fires in MODIS data covering an area of the
southeastern USA. While these studies found that shortwave infrared
data were useful for fire detection, they were restricted to using
wavelengthsmeasured by ASTER andMODIS bands. Hyperspectral data
have narrow bands and cover a muchwider range of wavelengths. Also,
hyperspectral data could be used to determine whether there are more
optimal shortwave infrared bands that can be used for fire detection.

2.2. Hyperspectral fire detection indices

Two hyperspectral fire detection indices have been previously
proposed. Vodacek et al. (2002) noted sharp potassium emission
lines at 767 nm and 770 nm as a signature of burning biomass. They
developed a potassium emission index using the ratio of a band
containing the emission lines and a reference band:

potassium emission index =
L770
L780

ð1Þ

where L indicates radiance from a band centered on the subscript
wavelength, in nm. Index values increase with the presence of fire
within a pixel. Vodacek et al. (2002) used the potassium emission
index to detect fires in AVIRIS data acquired over the Brazilian Amazon.
Dennison (2006) proposed a shortwave infrared algorithm based on
carbondioxide absorption at 2010nm. The depth of this carbondioxide
absorption feature decreases as emitted radiance fromafire is added to
the total radiance measured by a sensor. The Dennison (2006) carbon
dioxide absorption index uses two reference bands:

carbon dioxide absorption index =
L2010

0:666 � L1990 + 0:334 � L2040
: ð2Þ

Dennison (2006) used this index to demonstrate fire detection in
AVIRIS and Hyperion data. Both the Vodacek et al. (2002) and
Dennison (2006) indices rely on relatively narrow spectral features,
and are sensitive to hyperspectral band width and placement. While
both of these studies introduced viable hyperspectral fire detection
indices, they evaluated only a small fraction of the potentially useful
bands that hyperspectral data can provide.

3. Methods

3.1. Evaluating hyperspectral fire detection indices

To derive candidate fire detection indices, we used a map of fire
temperature generated from AVIRIS radiance data covering the 2003
Simi Fire in southern California (Dennison et al., 2006). AVIRIS collects
224 contiguous bands with 10 nm bandwidths covering an approx-
imate spectral range of 370–2510 nm. Precise radiometric calibration
of the AVIRIS instrument permits accurate quantification of at-sensor
radiance (Green et al., 1998). Dennison et al. (2006) used blackbody
emitted radiance endmembers ranging in temperature from 500 to
1500 K, along with background reflected solar radiance endmembers,
to model the dominant temperature of emission for each pixel in the
scene. MODTRAN (Berk et al., 1989) was used to correct the emitted
radiance endmembers for atmospheric attenuation, and the best fit
combination of emitted radiance and reflected solar radiance was
fit to each pixel using multiple endmember spectral mixture anal-
ysis (Roberts et al., 1998). This technique produced maps of fire
temperature (Fig. 2), per pixel fire fractional area, and background

Fig. 1. Blackbody emission curves for temperatures of 300, 500, 700, and 1000 K. The
black dashed line indicates the wavelength of peak emission, and the gray bars
represent the approximate spectral extent (from left to right) of the shortwave infrared,
middle infrared, and thermal infrared atmospheric windows. Note that not all
wavelengths in these spectral regions have high transmittance.
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land cover. Approximately 9% of the AVIRIS scene was found to have a
significant contribution from an emitted radiance endmember
(Dennison et al., 2006). The fire temperaturemap revealed a relatively
small number of pixels along the fire front that contained high tem-
perature emission. A much larger area behind the fire front contained
lower temperature emission, likely due to small fires and smoldering
combustion (Fig. 2). Fire fractional area was less than 10% for most
areas of the fire, but exceeded 50% in a few pixels along the fire front
(Dennison et al., 2006).

Since blackbody emission changes with temperature, the utility of
fire detection indices may also change with temperature. We used the
Dennison et al. (2006) temperature map to create four image masks
for the AVIRIS Simi Fire radiance data. A non-burning mask selected
pixels with no modeled emitted radiance. The first temperature mask
selected all pixels modeled with a fire temperature, covering a range
from 500 to 1500 K. The second and third temperature masks selected
lower temperature pixels, since reduced emission from these pixels
may make fire detection more difficult. The second temperature mask
selected pixels with temperatures from 500 to 1000 K, and the third
temperature mask selected pixels with the coolest fires, ranging from
500 to 750 K. The number of pixels in each mask is shown in Table 1.
AVIRIS pixels containing saturated bands were excluded from the
temperature masks, since the true spectral shape of their emitted
radiance could not be determined.

We used the normalized difference index (NDI) equation to calcu-
late candidate fire detection indices from the masked AVIRIS radiance

data covering the Simi Fire. Our normalized difference indices have
the form:

NDI λ1;λ2ð Þ =
Lλ1

− Lλ2

� �

Lλ1
+ Lλ2

� � ð3Þ

where Lλ1
is the radiance of the band centered on wavelength λ1, and

Lλ2
is the radiance of the band centered on wavelength λ2. The NDI

equation was selected since it can be rapidly calculated, and because
the bounding values of −1 and 1 facilitate easy interpretation. Nor-
malized difference indices were calculated for all possible combina-
tions of AVIRIS bands, for all pixels within the Simi Fire scene. With
224 AVIRIS bands, there are 24,976 unique band combinations not
counting transposition of λ1 and λ2 and indices where λ1 equals λ2.

All of the candidate normalized difference indices were used to
classify the AVIRIS radiance image for the following three cases:

• non-burning vs. burning at any temperature
• non-burning vs. burning at temperatures below 1000 K
• non-burning vs. burning at temperatures below 750 K

A threshold separating non-burning from burning was empirically
determined for each NDI and for each of the above cases using the
kappa statistic (Cohen, 1960). Kappa was calculated from a classifica-
tion error matrix of non-burning vs. burning pixels, and used to
determine fire detection accuracy. Unlike overall accuracy, kappa
accounts for agreement by chance and is a better measure of accuracy
when one class (in this case, non-burning pixels) dominates a clas-
sified image (Congalton, 1991). Kappa ranges between 0 and 1, with
0 indicating no agreement and 1 indicating total agreement. The
detection threshold for each NDI and range of temperatures was
determined by finding the threshold that produced the highest kappa
value. The resulting kappa value represents the maximum accuracy
for each combination of bands and range of temperatures. Since
saturation typically occurred only in shortwave infrared bands, exclu-
sion of pixels containing saturated bands will increase the kappa
values of indices using these bands, while potentially decreasing the
kappa values of indices that use shorter wavelength non-saturated
bands that may function better at higher emitted radiance. The NDI
that had the highest accuracy for all three temperature ranges was
selected for application to the Simi Fire AVIRIS scene and for modeling
index sensitivity.

3.2. Index sensitivity modeling

The selected index (henceforth referred to as the hyperspectral fire
detection index, or HFDI) uses bands containing atmospheric trace gas
absorption, and is thus sensitive to variations in path length and trace
gas concentrations. MODTRAN was used to model index sensitivity to
three varying conditions: elevation, solar zenith angle, and atmo-
spheric water vapor concentration. First, conditions during the Simi
Fire were simulated using the parameters listed in Table 2. MODTRAN
was used to create synthetic radiance spectra based on the reflectance
curve of the ash background endmember selected by Dennison et al.
(2006), plus modeled blackbody emitted radiance. Both temperature

Fig. 2. A SWIR-NIR-red false color composite of an AVIRIS scene collected over the Simi
Fire on October 27, 2003 (left); and fire temperature, in Kelvin, modeled from the same
scene by Dennison et al. (2006) (right).

Table 1
Number of pixels in each image mask applied to the AVIRIS Simi Fire radiance image.

Class Number of pixels

Non-burning 1,781,073
All temperatures 143,853
Tb1000 K 105,426
Tb750 K 8504
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and fire fractional area were varied to create a synthetic image of 101
by 101 pixels. Temperature was varied from 500 to 1500 K in 10 K
increments. Fire fractional area was varied from 0 to 100% in 1%
increments. A nadir view zenith angle was assumed in all cases. HFDI
was calculated for each of the 10,201 spectra in the resulting synthetic
image, allowing evaluation of index response over a wide range of
temperatures and fire fractional areas.

To determine index sensitivity to elevation, solar zenith angle, and
water vapor concentration, one of these parameters was varied while
the remaining parameters were fixed to the values for the Simi Fire
AVIRIS scene(Table2). The sensitivityof theHFDI to elevationwas tested
at elevations of 0, 1, 2, and 3 km. The sensitivity of the HFDI to solar

zenith anglewas evaluated at solar zenith angles of 0°, 25°, 50°, and 75°.
Finally, the sensitivity of the HFDI to water vapor was examined for
water vapor concentrations of 500, 1000, 1500, and 2000 atm cm.

Table 4
The five band combinations and thresholds with the highest Kappa values for pixels
emitting at temperatures less than 1000 K.

Bands Wavelengths (nm) Threshold Kappa Overall Accuracy

216, 179 2429, 2061 −0.06 0.7875 97.93%
219, 175 2459, 2021 −0.21 0.7872 97.90%
219, 173 2459, 2000 −0.27 0.7871 97.90%
213, 179 2399, 2061 −0.08 0.7861 97.91%
220, 173 2469, 2000 −0.17 0.7860 97.90%

The longer wavelength band is used as λ1 from Eq. (3) in all cases, so that pixels
containing fire have higher index values than pixels that do not contain fire.

Fig. 3. Kappa matrices for normalized difference indices using bands i and j, where band i is the row number and band j is the column number. Kappa matrices are shown for
classifications of all fire pixels (top left), fire pixels with a temperature less than 1000 K (top right), and fire pixels with a temperature less than 750 K (bottom left). The black shaded
bars to the top and left of each matrix show band number, and the gray shaded bars to the bottom and right of each matrix show approximate wavelength.

Table 2
AVIRIS scene properties for each fire.

Fire name Simi Zaca Indians

Scene date 27 Oct 2003 12 Aug 2007 11 Jun 2008
Latitude 34.33° 34.62° 36.07°
Longitude −118.65° −119.78° −121.38°
Mean scene time (UTC) 21:06 21:52 20:52
Mean solar zenith angle 52.5° 31.3° 26.4°
Mean ground elev. (m) 650 710 776
Sensor elev. (km) 5.6 5.6 19
Approx. spatial resolution (m) 4 3.8 16
Mean atmospheric water vapor
concentration (atm cm)

926 1435 443

Mean atmospheric water vapor concentration was determined using ACORN (ImSpec
LLC).

Table 3
The five band combinations and thresholds with the highest Kappa values for pixels
emitting at any temperature.

Bands Wavelengths (nm) Threshold Kappa Overall accuracy

216, 178 2429, 2051 −0.01 0.7943 97.27%
216, 180 2429, 2071 −0.02 0.7938 97.27%
216, 179 2429, 2061 −0.04 0.7936 97.26%
221, 173 2479, 2000 −0.01 0.7914 97.19%
219, 179 2459, 2061 0.01 0.7905 97.21%

The longer wavelength band is used as λ1 from Eq. (3) in all cases, so that pixels
containing fire have higher index values than pixels that do not contain fire.
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3.3. Comparison of hyperspectral fire detection indices

The HFDI was applied to AVIRIS scenes acquired over the 2007 Zaca
Fire in southern California and over the 2008 Indians Fire in central
California. Metadata for these AVIRIS scenes are listed in Table 2. Two
additional hyperspectral indices were calculated from these AVIRIS
scenes: the Vodacek et al. (2002) potassium emission index, and
the Dennison (2006) carbon dioxide absorption index. The AVIRIS
radiance data were also corrected to apparent surface reflectance
using ACORN (Imspec LLC) and convolved to match the ASTER sensor
response function using ENVI (ITT Industries Inc.). The Morisette et al.
(2005b) fire detection index using the ratio of ASTER band 8 (2300–
2370 nm) to band 3 (760–860 nm) was then calculated from the
simulated ASTER reflectance data. Images of all four indices were
qualitatively compared to determine the best index for fire detection
in these AVIRIS scenes.

4. Results

The matrices in Fig. 3 display kappa values for the 24,976 unique
combinations of AVIRIS bands. The diagonal line from the upper-left to
lower-right corner of each matrix marks where each NDI is equal to
zero because the same band is used in the NDI twice. The kappa values
to the lower-left of this line are a reflection of the kappa values to the
upper-right, due to reselection of the same bands but in reverse order.

All three matrices feature low kappa values for indices that utilize
visible and near infrared bands (Fig. 3). Emitted radiance is relatively
low in these spectral regions, while reflected solar radiance relatively

high. Also, smoke is an efficient scatterer and absorber of emitted
radiance in the visible and near infrared, greatly reducing classifica-
tion accuracy for indices using bands in these spectral regions. There is
no indication of increased kappa values for indices using the 770 nm
potassium emission feature (Vodacek et al., 2002) for any of the
temperature ranges. Kappa values increased for bands in the short-
wave infrared, with the highest accuracies for all three temperatures
residing between 1900 and 2500 nm. Kappa values were generally
higher for the full temperature range, and decreased as the tempera-
ture range decreased. For both the full temperature range and for
temperatures less than 1000 K, kappa values peaked just below 0.8
(indicated by the red colors). In contrast, the kappa values for
temperatures less than 750 K were much lower, peaking above a more
modest 0.5 (indicated by green colors). As fire temperature decreases,
emitted radiance also decreases, making pixels containing lower
temperature emission more difficult to detect.

In all three kappa matrices there is visible “structure” caused by
atmospheric trace gas absorption features in the shortwave infrared.
Strong atmospheric water vapor absorption features near 1400 and
1900 nm produced very low kappa values. The carbon dioxide
absorption doublet centered on 2010 and 2060 nm increased kappa
values, except at the maximum of the 2010 nm absorptionwhere total
radiance was relatively low. NDI using the 2010 nm band (previously

Fig. 4. This plot shows AVIRIS-measured radiance for a pixel modeled with a 1000 K fire
and a pixel modeled with no fire. The bands listed in Tables 2–4 are marked as boxes on
the radiance curve. Arrows indicate the 2061 and 2429 nm bands selected for the HFDI.

Fig. 5. Values of the HFDI calculated using bands 216 (2429 nm) and 179 (2061 nm) for
the Simi Fire AVIRIS scene are shown in the left image. Pixels selected as containing fire
based on an index threshold of −0.04 are shown as white in the right image.

Table 5
The five band combinations and thresholds with the highest Kappa values for pixels
emitting at temperatures less than 750 K.

Bands Wavelengths (nm) Threshold Kappa Overall Accuracy

216, 175 2429, 2021 −0.35 0.5421 99.67%
219, 175 2459, 2021 −0.29 0.5416 99.67%
217, 175 2439, 2021 −0.29 0.5388 99.67%
220, 175 2469, 2021 −0.20 0.5383 99.67%
215, 175 2419, 2021 −0.25 0.5377 99.67%

The longer wavelength band is used as λ1 from Eq. (3) in all cases, so that pixels
containing fire have higher index values than pixels that do not contain fire.
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used by Dennison (2006)) had markedly lower kappa values, likely
due to lower signal. Alternating bands of higher and lower kappa
values beyond 2300 nm were caused by water vapor and methane
absorption features. Kappa values were highest at absorption minima
and lowest at absorption maxima.

The five NDI with the highest kappa values for each temperature
range are shown in Tables 3–5. The top three kappa values in Table 3
were significantly higher than the lowest kappa value in Table 3
(pb0.05), but otherwise kappa values were not significantly different
within Tables 3, 4 or 5. The bands shown in all three tables came from
two specific wavelength ranges. The shorter wavelength band was
always found between 2000 and 2071 nm, while the longer wave-
length band was always found between 2399 and 2479 nm (Fig. 4).
Furthermore, the shorter wavelength bandswere alwayswithin one of

Fig. 6. HFDI values modeled for the Simi Fire AVIRIS scene using MODTRAN. Fire
fractional area increases at 1% increments moving from left to right, and temperature
increases with 10 K increments moving from top to bottom.

Fig. 7.HFDI values with varying elevation, modeled usingMODTRAN. a) elevation=0 km. b) elevation=1 km. c) elevation=2 km. d) elevation=3 km. Scaling is shown on the color
ramp in Fig. 6.

Fig. 8. HFDI values across a range of temperatures for elevations of 0, 1, 2, and 3 km. The
lower, flat lines indicate index values at 0% fire fractional area. The upper, curved lines
indicate index values at 1% fire fractional area.
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the carbon dioxide absorption features, while all but one of the longer
wavelength bands was found outside of the absorption maxima
between 2399 and 2479 nm. Both of the selected wavelength ranges
are subject to water vapor absorption, although this absorption is
generally stronger in the longer wavelength range.

The functionality of the indices listed in Tables 3–5 was the same.
The longer wavelength bands have similar or lower reflected solar
radiance compared to the shorter wavelength bands (Fig. 4). When
emitted radiance is added to the background reflected solar radiance,
total radiance in the longer wavelength range increases faster than
total radiance in the shorter wavelength range. To allow the NDI
values to increase with the presence of emitted radiance from fire, we
used the longer wavelength as λ1 in Eq. (3). The threshold that
produced the maximum kappa value for each NDI decreased as the
temperature range decreased (Tables 3–5). The cooler fires con-
tributed less emitted radiance, necessitating a lower threshold for
accurate detection.

Due to the low kappa values for the NDI selected for temperatures
less than 750 K, and the relatively small number of pixels in this
temperature category (Table 1), we used the remaining two tempera-
ture categories to select a single NDI for further analysis. Only one NDI
appears in both Tables 3 and 4. The NDI using bands 216 (2429 nm)
and 179 (2061 nm) had the highest kappa value for temperatures
below 1000 K, and the third highest kappa value for all temperatures.
This index is also very similar to the top ranked NDI for all tem-
peratures (Table 3). The NDI using bands centered on 2061 and
2429 nm is henceforth referred to as the Hyperspectral Fire Detection
Index (HFDI). While we selected this NDI for further analysis, we
expect that all of the indices listed in Tables 3–5 would perform
similarly, as they use similar wavelengths.

The HFDI was applied to the Simi Fire AVIRIS scene (Fig. 5). The
threshold value of −0.04 from Table 3 was used for fire detection.
Index values were lowest in unburned vegetation, due to greater
liquid water absorption at 2429 nm. Index values were slightly higher
in ash- and soil-covered areas within the fire scar. Differences in index
values between burned and unburned areas indicate the impact of
spectral reflectance on reflected solar radiance. The fire front is clearly

Fig. 10. HFDI values across a range of temperatures for solar zenith angles of 0, 25, 50,
and 75 degrees. The lower, flat lines indicate index values at 0% fire fractional area. The
upper, curved lines indicate index values at 1% fire fractional area.

Fig. 9. HFDI values with varying solar zenith angle, modeled using MODTRAN. a) zenith angle=0°. b) zenith angle=25°. c) zenith angle=50°. d) zenith angle=75°. Scaling is
shown on the color ramp in Fig. 6.
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visible in Fig. 5, and isolated trees still burning in riparian zones
behind the fire front are visible upon close inspection.

4.1. Index sensitivity

An ideal fire detection index would have a low value when no fire
emission is present, and a rapid escalation in value with the presence
of any fire emissionwithin a pixel. MODTRAN simulations of the HFDI
for the Simi Fire AVIRIS scene indicate that HFDI values do rapidly
increase at low fire fractional area and moderately low temperature
(Fig. 6). The background ash spectrum has an index value of −0.179.
With a modeled blackbody emission temperature of 500 K, 15% of a
pixel's area must be emitting before the index turns positive. At 600 K,
only 3% of a pixel needs to have fire emission to turn the index
positive, and by 680 K the fire fractional area drops to 1%. Interestingly,
the index remains negative across all fire fractional areas for tem-
peratures above 1410 K. Above this temperature, emitted radiance at
2061 nm increases faster than emitted radiance at 2429 nm, which
keeps the index negative. Index values are highest at low tempera-
tures and high fire fractional areas (Fig. 6).

Elevation, solar zenith angle, and atmospheric water vapor con-
centration are likely to impact the HFDI by altering atmospheric
absorption in both of the index bands. For example, carbon dioxide is
a strong absorber, so radiance in the 2061 nm band changes more
rapidly with elevation than radiance in the 2429 nm band. While
solar zenith angle does not impact emitted radiance, it could impact
the background HFDI value through differential absorption and
scattering at the index wavelengths. Finally, water vapor absorption
is stronger at 2429 nm than 2061 nm, so atmospheric water vapor
concentration can also impact index values. To evaluate the impacts
of these factors on the HFDI, MODTRAN was used to evaluate

the sensitivity of HFDI to a change in elevation, solar zenith and
atmospheric water vapor.

For the elevation simulations, the same aerial platform height of
5.6 km above sea level was maintained, but the ground elevation
was varied between 0 and 3 km. Increased ground elevation reduces
the path length for both the reflected solar radiance and the emitted
radiance. Combined carbon dioxide and water vapor absorption at

Fig. 12. HFDI values across a range of temperatures for atmospheric water vapor
concentrations of 500, 1000, 1500, and 2500 atm cm. The lower, flat lines indicate index
values at 0% fire fractional area. The upper, curved lines indicate index values at 1% fire
fractional area.

Fig. 11. HFDI values with varying atmospheric water vapor concentration, modeled using MODTRAN. a) 500 atm cm. b) 1000 atm cm. c) 1500 atm cm. d) 2000 atm cm. Scaling is
shown on the color ramp in Fig. 6.
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2061 nm declined faster with increasing elevation than water vapor
absorption at 2429 nm, resulting in reduced HFDI values. In Fig. 7,
decreased HFDI values are most noticeable at low temperature and
high fire fractional area. Modest decreases occur across the entire
range of temperatures and fire fractional areas. Index sensitivity is
most important at low fire fractional area. Fig. 8 compares
background (0% fire coverage) and 1% fire coverage index values
across all temperatures at the four modeled elevations. At
temperatures below 600 K, there is some overlap between low
elevation background index values and high elevation 1% fire cover
index values.

Solar zenith angle only affects reflected solar radiance. Since
reflected solar radiance is the dominant contributor to total radiance
at low fire temperatures and fire fractional areas, high solar zenith
angles can have an important impact on HFDI values. Fig. 9 reveals
almost no difference in index values between solar zenith angles of 0°
and 25°. As solar zenith angle increases to 50°, index values begin to
visibly increase. At a solar zenith angle of 75°, index values are much
higher relative to the 0° example (Fig. 9). Atmospheric attenuation is

stronger at shorter wavelengths, which reduces solar radiance at
2061 nm more rapidly than solar radiance at 2429 nm. Fig. 10 shows
that background and 1% fire cover index values are nearly identical
at 0° and 25°. Index values are markedly higher at 75°, but separation
between the background and 1% lines is actually enhanced by the
larger solar zenith angle. At temperatures below 660 K, there is
overlap between the high solar zenith angle background and low solar
zenith angle 1% fire cover index values.

Atmospheric water vapor concentration has the greatest impact on
index values. Water vapor absorption is stronger at 2429 nm, so in-
creasingwater vapor concentration decreasesHFDI values (Fig.11).High
water vapor concentrations push the background index value to very
low levels (Fig.12).Water vaporhas less of an impact on the1%fire cover
curves, because the emitted radiance has a shorter path length than the
reflected solar radiance. At temperatures below 660 K, there is overlap
between the 500 atm cm background and 2000 atm cm 1% fire cover
index values. Impacts of elevation, solar zenith angle, and water vapor
concentration on HFDI may prevent a universal threshold for fire
detection under all conditions, but the sensitivity analysis demonstrates

Fig. 13. A comparison of fire detection index values for an AVIRIS scene containing the 2007 Zaca Fire. a) HFDI using bands centered on 2424 nm and 2065 nm. b) Carbon dioxide
absorption index. c) Potassium emission index. d) ASTER reflectance index.
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that separation between the background and 1% fire cover index values
is maintained across the entire range of tested conditions.

4.2. Qualitative index comparison

We tested the HFDI on two previously unmodeled AVIRIS scenes
containing fire. For each of the new AVIRIS scenes, we selected the
bands closest to those selected for the Simi Fire scene. Since AVIRIS
band center wavelengths change from year to year, the bands and
wavelengths used for these scenes differ slightly from those used for
the Simi Fire scene. HFDI images were compared with images for the
Vodacek et al. (2002) potassium emission index, the Dennison (2006)
carbon dioxide absorption index, and the Morisette et al. (2005b)
ASTER reflectance index. For the 2007 Zaca Fire scene, bands centered
on 2424 nm and 2065 nmwere used to calculate HFDI. All four indices
had high values in the largest burning area in the AVIRIS scene
(Fig. 13). The HFDI and the carbon dioxide index detected two smaller
fires on the right side of the scene, which the potassium index missed.
The carbon dioxide index has a large number of high value false
detections that correspond to variation in background land cover.
ASTER index values were elevated within the fire scar due to ash and
soil surfaces with higher reflectance in the shortwave infrared relative
to the near infrared. In many areas the fire scar had an index value
greater than 2, the threshold used by Morisette et al. (2005b) for fire
detection. In comparison to the carbon dioxide and ASTER indices,
HFDI has relatively little background variation. In the magnified
section of the scene (Fig. 14), HFDI detects several “hot pixels” that
may correspond to spot fires, while neither of the other hyperspectral
indices detects these fires.

The HFDI also outperforms the potassium and carbon dioxide
indices in the 2008 Indians Fire AVIRIS scene (Fig. 15). HFDI for this
scene was calculated using bands centered on 2428 nm and 2058 nm.
Little of the fire is detected by the potassium emission index due to
heavy smoke obscuring emitted radiance in the near infrared. The
carbon dioxide absorption index does pick out the fire front, but with
greater background variation. The HFDI and ASTER index images
appear quite similar, but do exhibit a few important differences. HFDI
displays more smoke contamination in the active section of the fire
close to the bottom of the image, while the ASTER index shows

elevated index values for the fire scar in the non-burning section near
the top of the image. In a magnified section of the scene (Fig. 16), HFDI
reveals much more detail on the locations of possible spot fires com-
pared with the other indices.

5. Discussion

The HFDI is best suited to detecting fires at temperatures between
750 and 1400 K. Below 750 K, kappa values for all tested NDI were
relatively low. Overlap in HFDI values with changing elevation, solar
zenith angle, and atmospheric water vapor concentration is also
possible at temperatures below 700 K. Temperatures below 700 K are
indicative of smoldering combustion while flaming combustion starts
at temperatures higher than 700 K (Pyne et al., 1996; Dennison et al.,
2006). The HFDI thus may be most appropriate for the detection of
flaming combustion, but may not be able to reliably detect smolder-
ing. However, due to the low emitted radiance in the shortwave
infrared in the 500–700 K range, reliable detection of smoldering
combustion may not be possible using simple hyperspectral indices
such as a NDI. An approach that integrates total radiance over many
bands could be more successful. HFDI values were low for tem-
peratures in excess of 1400 K due to increased emitted radiance at
2061 nm. Fire temperatures exceeding 1400 K should be relatively
uncommon. In the Dennison et al. (2006) temperature modeling of
the Simi Fire, only 0.15% of pixels modeled with an emitted radiance
had a temperature in excess of 1400 K. Fire detection at the highest
possible temperatures may require a complementary approach to the
HFDI. A complementary index could use a high threshold value for
single band or integrated shortwave infrared radiance to detect high
temperature fires that HFDI is likely to miss.

The sensitivity analysis revealed that there is unlikely to be a single
universal HFDI threshold for fire detection. Still, practical guideline
values can be set. Positive HFDI values are a strong indicator of the
presence of fire within a pixel. HFDI values above −0.1 represent a
likely detection of fire, but background HFDI values and potential
impacts of elevation, solar zenith angle, and water vapor must be
taken into account. Further work is needed to quantify the impact of
background reflectance spectra on the HFDI. Live vegetation and ash/
bare soil had different index values due to differences in spectral

Fig. 14. Magnified subsets of the four fire detection index images shown in Fig. 13.
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reflectance. Our sensitivity analysis used an ash spectrum with an
apparent surface reflectance of 31.7% in both index bands. Darker
background surfaces and surfaces that have decreasing reflectance
with wavelength (e.g., vegetation) will enhance fire detectability.
Brighter background surfaces and surfaces that have increasing reflec-
tance with wavelength could decrease fire detection accuracy.

Water vapor concentration had the greatest impact on HFDI
values, due to stronger water vapor absorption at 2429 nm relative
to 2061 nm. To minimize index sensitivity to changing atmospheric
water vapor concentrations, theHFDI could be altered touse twobands
with more similar water vapor absorption coefficients. The sensor
response functions of hyperspectral sensors vary from sensor to sensor
and even from year to year on some sensors. Optimal bands with
similar water vapor absorption coefficients would ideally be selected
for individual instrument sensor response functions. Our MODTRAN
simulations showed that 2003 AVIRIS bands centered at 1990 nm and
2399 nmhave similar water vapor absorption. The kappa value for this

band combination was moderately lower for all fire temperatures
(0.777), but this small sacrifice in accuracy might be acceptable
for gained versatility under varying atmospheric water vapor
concentrations.

Whilewe compared ourfire detection resultswithfire temperature
mapped using a different hyperspectral technique, a lack of “ground
truth” data on fire locations prevented a true quantitative accuracy
assessment of fire detection. Further research is needed to quantify
accuracy, especially to determine thresholds that minimize false fire
detection. False detection could occur for background materials with
high shortwave infrared reflectance or sharply lower 2061 nm
reflectance compared to 2429 nm reflectance. The circumstances
under which false detection can occur should be further investigated.

Index sensitivity to fire fractional area was only tested for
fractional area greater than 1%. Fire detection limits are likely to
scale with changes in the spatial resolution of the sensor. Thus as the
ground instantaneous field of view increases, the minimum size of fire

Fig. 15. A comparison of HFDI values for an AVIRIS scene containing the 2008 Indians Fire. a) HFDI using bands centered on 2428 nm and 2058 nm. Gray pixels in the center of the
highest emission areas (e.g. left side, center) indicate band saturation. b) Carbon dioxide absorption index. The area of saturation for this index is similar to (a). c) Potassium emission
index. d) ASTER reflectance index. The area of saturation for this index is also similar to (a).
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required for detection is also likely to increase. We have demonstrated
that HFDI is able to detect fires at spatial resolutions of 4 and 16 m.
More investigation is needed to determine how HFDI will function at
coarser spatial resolutions used for existing (e.g., Hyperion) and pro-
posed spaceborne hyperspectral sensors.

6. Conclusions

Our findings verify the utility of hyperspectral shortwave infrared
data for fire detection. Bands centered near 2061 and 2429 nm
provided high accuracy detection of fire within the Simi Fire AVIRIS
scene. While HFDI was sensitive to variable elevation, solar zenith
angle, and atmospheric water vapor concentration, separation be-
tween background and fire HFDI values was preserved across the
entire range of fire temperature. HFDI will be useful as a stand-alone
fire detection algorithm and as a preprocessing step for more complex
hyperspectral fire temperature retrieval algorithms (e.g., Dennison

et al., 2006). Since fires typically cover less than 10% of a scene,
HFDI could potentially decrease temperature retrieval run time by
90% or more. This type of improvement in hyperspectral fire tem-
perature retrieval will be necessary for expeditious application to
future spaceborne hyperspectral data.
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Fig. 16. Magnified subsets of the four fire detection index images shown in Fig. 15.
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