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Abstract. Large wildfires in southern California typically occur during periods of reduced live fuel moisture (LFM) and
high winds. Previous work has found evidence that a LFM threshold may determine when large fires can occur. Using a
LFM time series and a fire history for Los Angeles County, California, we found strong evidence for a LFM threshold near
79%. Monthly and 3-month total precipitation data were used to show that the timing of this threshold during the fire season
is strongly correlated with antecedent rainfall. Spring precipitation, particularly in the month of March, was found to be
the primary driver of the timing of LFM decline, although regression tree analysis revealed that high winter precipitation
may delay the timing of the threshold in some years. This work further establishes relationships between precipitation and
fire potential that may prove important for anticipating shifts in fire regimes under climate-change scenarios.

Introduction

Research has shown that the timing and amount of precipitation
each year can have a strong influence on subsequent fire activ-
ity (e.g. Grissino-Mayer and Swetnam 2000; Veblen et al. 2000;
Westerling et al. 2003), usually attributed to the accumulation
and drying patterns of herbaceous fine fuels that can propa-
gate fires in forests. In chaparral-dominated ecosystems, such
as the widespread shrubland landscapes of southern Califor-
nia, fires are intense, stand-replacing, and relatively unaffected
by herbaceous fuel characteristics. As such, research on the
fire regime of chaparral shrublands has emphasized the influ-
ence of the age and spatial arrangement of shrub stands on the
landscape v. fire weather patterns (e.g. Minnich 1983; Keeley
et al. 1999; Moritz 2003). This Mediterranean-climate region
is subject to Santa Anas, multiday episodes of hot, dry, and
intense winds considered the worst fire weather in the world
(Schroeder et al. 1969). Owing to the fact that large fires occur
predominantly during Santa Ana events – and despite the fact
that chaparral-dominated shrublands consist mostly of evergreen
species – live fuel moisture (LFM) has received relatively lit-
tle attention as a control on large fire occurrence. LFM is the
water content of living vegetation, calculated as a percentage
of dry mass. Previous work has shown that area burned tends
to increase as LFM decreases (Davis and Michaelsen 1995;
Schoenberg et al. 2003), a trend that is observed each year
as soil moisture is gradually depleted during the summer–fall
drought period. The amount of precipitation in months before
the fire season has also been shown to correlate with area

burned and LFM drying trends in a particular year (Davis and
Michaelsen 1995).

Dennison et al. (2008) modeled LFM trends in the Santa
Monica Mountains National Recreation Area, near Los Angeles,
California. Comparisons of LFM decline and fire history data
revealed a potential LFM threshold in the 70–80% range. Seven
large fires with areas in excess of 1000 ha only occurred when
LFM was below this threshold. Dennison et al. (2008) also exam-
ined whether the timing of LFM thresholds could be predicted
using precipitation, satellite-derived greenness, or LFM vari-
ables. Spring precipitation, received in the months of March,
April, and May, was most strongly correlated with how early in
the fire season the LFM threshold was reached.

Dennison et al. (2008) examined a relatively small number of
fires over a limited area. As a result, two potential LFM thresh-
olds at 72 and 77% were investigated, but a definitive threshold
could not be determined owing to the small sample size. In addi-
tion, only three precipitation variables were used to model the
timing of the LFM threshold. The present paper improves on
the previous effort by using statistical methods designed for
detecting a LFM threshold and modeling how this threshold
is driven by antecedent precipitation patterns. To determine a
more precise LFM threshold, we examined historical trends in
LFM over a period of 26 years within Los Angeles County,
California. To better evaluate precipitation controls on the LFM
threshold, we evaluated a total of 10 monthly and 3-month pre-
cipitation variables for their ability to predict the timing of the
LFM threshold.
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Fig. 1. The Los Angeles County, California, study area showing the locations of the live fuel moisture (LFM)
measurement sites and number of fires for 1981–2006. The number closest to each point references the site numbers
in Table 1. Fire perimeters were provided by the California Department of Forestry and Fire Protection.

Methods
Live fuel moisture data
Chamise (Adenostoma fasciculatum) is one of the most common
shrub species found in southern California chaparral communi-
ties. Chamise is evergreen, but it is sensitive to seasonal drought.
During southern California’s long dry season, chamise leaf mois-
ture content drops as soil water availability declines (Dennison
and Roberts 2003). Because chamise is an important fuel compo-
nent frequently found in proximity to residential development in
the wildland–urban interface, chamise LFM is commonly used
as a general indicator of wildfire danger in southern California.
LFM is an also important variable in fire behavior and fire spread
models (e.g. Andrews 1986; Finney 1998; Peterson et al. 2009),
and is a factor in the US National Fire Danger Rating System
(NFDRS; Deeming et al. 1972; Burgan 1988).

Los Angeles County possesses what is perhaps the longest-
running continuous record of LFM in the United States. Since
1981, LFM has been manually sampled at multiple sites once
every 2–3 weeks by the Los Angeles County Fire Department
(LACFD). This time series has been used in analyses of how
various environmental factors relate to area burned (Schoenberg
et al. 2003) and to measure correlations between LFM and
remote-sensing variables (Dennison et al. 2005, 2007; Roberts
et al. 2006; Peterson et al. 2008). Chamise LFM measurements
made by LACFD from 1981 through 2006 at 13 sites were used
for the present analysis (Fig. 1; Table 1). Measurements were
made on average every 16 days, although the actual sampling
interval varied by site and through time. Sampling methodology
used by LACFD is described by Countryman and Dean (1979).
The length of time LFM was measured at each site ranged from 3
to 25 years, and 10 sites had records covering 20 years or longer
(Table 1).

The accuracy of LFM sample data is an important source
of uncertainty in the current study. Weise et al. (1998) exam-
ined confidence intervals associated with LFM sample data,
including chamise sites in Los Angeles County. They found that

Table 1. Names and temporal coverage for the 13 live fuel moisture
(LFM) sampling sites in Los Angeles County

Site no. Site name No. of years Years covered
(Fig. 1)

1 Bitter Canyon 25 1982–2006
2 Bouquet Canyon 24 1982–2001, 2003–06
3 Clark Motorway 24 1983–2006
4 Glendora Ridge 4 2003–06
5 La Tuna Canyon 23 1984–2006
6 Laurel Canyon 24 1981, 1984–2006
7 Peach Motorway 3 2004–06
8 Pico Canyon 20 1982, 1984–97, 1999–2003
9 Placerita Canyon 24 1981, 1984–2006
10 Schueren Road 21 1981–93, 1999–2006
11 Sycamore Canyon 14 1989–2002
12 Trippet Ranch 24 1982, 1984–2006
13 Woolsey Canyon 22 1985–2006

confidence intervals were generally in the range of ±20%, and at
the Bouquet Canyon chamise site, they found confidence inter-
vals ranging from ±5% to as high as ±100%. Another source of
uncertainty in analysis of long-term LFM trends is that the exact
locations of the sampling sites have changed over time. LFM
values from different periods in the time series may be sampled
from adjacent, not overlapping, plots. Changes in plot locations
may reduce the strength of correlations between the LFM time
series and other variables.

A critical LFM threshold for chamise was determined by
comparing the LFM time series with fire history data. While
the temporal resolution of the time series was sufficient for cap-
turing the slow decline of LFM during fire season (Countryman
and Dean 1979), it was insufficient for comparison with individ-
ual fire events. To increase the temporal resolution of the LFM
time series, the data were linearly interpolated to a daily reso-
lution at each site. This linear interpolation assumed a constant
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rate of LFM change between sampling dates, and did not provide
actual data below the original 2–3 week temporal resolution of
the LFM time series.

Critical LFM threshold
The interpolated LFM time series was compared with a fire his-
tory compiled by the California Department of Forestry and Fire
Protection. This fire history includes fire perimeters, area, and
the date of ignition. Fuel types burned in each fire were not exam-
ined, although chaparral is the most prevalent fuel type within
the county.The distance between the centroid of each fire and the
closest LFM measurement site operational during the year of the
fire was determined. As the distance between the LFM sites and
fire centroids increased, the LFM measurements were less likely
to be representative of the LFM conditions in the fire. How-
ever, relatively few fires occurred in immediate proximity to the
LFM sites (Fig. 1), so increasing the maximum allowed distance
between sites and fire centroids also increases the number of
fires available for analysis. Rather than arbitrarily select a single
maximum allowable distance between fire centroids and LFM
sites, four distances were chosen for comparison: 5, 10, 15, and
20 km. Fires with centroids within these maximum distances to
the closest LFM site were selected for threshold analysis. A total
of 78, 229, 324, and 383 fires were selected within maximum
distances of 5, 10, 15, and 20 km respectively.

The interpolated LFM value on the date of ignition from the
closest sampling site to each selected fire centroid was assigned
to each fire. Potential critical thresholds necessary for large fires
to develop were then determined using two different methods.
For the first method, ‘large’ fires were defined as fires with areas
in excess of 1000 ha (Dennison et al. 2008). The distributions of
fire size with LFM were compared, and a threshold was selected
based on the large fires with the highest LFM values. For the sec-
ond method, the cumulative area burned with decreasing LFM
was calculated, and piecewise or ‘broken stick’regression (Toms
and Lesperance 2003) was then used to optimally fit multiple
lines at threshold breakpoints in data. Because our data displayed
a clear linear fit on either side of a single critical LFM threshold,
we used the technique appropriate for a sharp-transition model
(Bacon and Watts 1971).

Predictability of the threshold using precipitation data
Once a critical LFM threshold was identified, the timing (day
of year (DOY)) of the threshold during seasonal dry-down
was calculated for all years for each LFM site. Continuous,
directly measured precipitation records within the study area
were found to be poorly located relative to the LFM sites, so
a gridded precipitation product was used to examine the cor-
relations between seasonal precipitation and the timing of the
LFM threshold. Gridded monthly precipitation data with a spa-
tial resolution of 4 km was obtained for 1981–2006 from the
Oregon State University PRISM Group (www.prismclimate.org,
accessed 22 November 2009). PRISM (the Parameter-elevation
Regressions on Independent Slopes Model) interpolates point
precipitation measurements using topographic, rain-shadow, and
coastal effects (Daly et al. 1994). PRISM-estimated precipitation
values are averages over 4-km grid cells, and do not account for
topographic variation at higher spatial resolution. Monthly pre-
cipitation values were extracted from the 4-km cells containing

LFM sites. Monthly precipitation values from the December
through May wet season before LFM decline were used as
stand-alone variables. Monthly precipitation values were also
summed in 3-month intervals, including December, January, and
February (DJF); January, February, and March (JFM); February,
March, and April (FMA); and March, April, and May (MAM).

Regression models were used to test relationships between
precipitation variables and annual timing of the LFM threshold.
Precipitation variables were regressed against the DOY of the
LFM threshold for 11 of the 13 individual sites using simple
linear regression. Two sites had too few (3 or 4) years of LFM
measurements to produce reliable regressions. All other sites
possessed at least 14 years of LFM measurements (Table 1). The
DOY of the LFM threshold from a pooled dataset containing all
13 sites and a total of 252 data points was modeled using both
simple linear regression and multivariate linear regression. Mul-
tivariate regression was used to test whether adding additional
precipitation variables could significantly improve prediction of
the timing of the LFM threshold. Once a variable was selected
by the multivariate regression, related variables were excluded
from the model to avoid collinearity. For example, if MAM pre-
cipitation was selected as the first variable, variables containing
March, April, and May precipitation were prohibited from being
selected as a subsequent variable.

Linear regression assumes that model residuals are normally
distributed. Precipitation variables are prone to outliers that pro-
duce non-normal distributions, which can potentially lead to
non-normally distributed residuals in the regression model. Non-
normally distributed residuals indicate that outlying data points
may be introducing bias into the regression model. We tested
the normality of model residuals using the Shapiro–Wilk test
(Shapiro and Wilk 1965).

To capture any non-linear threshold responses that may exist
between LFM and precipitation, as well as interactions that
monthly precipitation variables could have on LFM, we used
tree-based statistical models (Breiman et al. 1984). We fol-
lowed a similar logic for variable selection to that described for
the multivariate regressions. Analyses were performed with the
recursive partitioning library (RPART) (Therneau and Atkinson
1997) in the open-source statistical package R (Ihaka and Gen-
tleman 1996). Tree-based models are created by recursively
dividing a dataset, based on the value of a single predictor vari-
able at each split that results in the two most homogeneous
subsets of the response variable (Therneau and Atkinson 1997).
This statistical approach is well suited to complex biophysical
relationships and interactions among variables, and graphical
representation of tree-based output facilitates the interpretation
of models (De’eath and Fabricius 2000). Very large (i.e. overfit-
ted) trees are usually built by exhaustively partitioning the dataset
in question, and then the trees can be pruned back to a smaller size
according to several different rules. To prune back our model to
an appropriate size, we used a cost-complexity penalty rule and
10-fold cross-validation as described by Breiman et al. (1984)
and Therneau and Atkinson (1997).

Results

A total of 29 large fires with areas greater than 1000 ha had
centroids within 20 km of any of the LFM measurement sites.

http://www.prismclimate.org
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Fig. 2. Piecewise regression results for live fuel moisture (LFM) v. cumulative area burned for fires with centroids within 5 km (a), 10 km (b),
15 km (c), and 20 km (d) of LFM sites.

Surprisingly, only 14 of these fires occurred in October or
November, when fire danger is typically highest in southern
California owing to more frequent Santa Ana winds (Schroeder
et al. 1969; Raphael 2003). Several large fires occurred much
earlier in the year, with one large fire in May, two large fires
in June, and four large fires in July. Large fires occurred over a
wide range of closest interpolated LFM values, with a maximum
LFM of 78.5% and a minimum LFM of 53.2%. There were no
significant linear correlations between large fire size and either
DOY or LFM.

Cumulative distributions for area burned in fires meeting the
four distance criteria showed clear relationships between fire
activity and LFM, revealing sharp breakpoints (Fig. 2). Large
fires were responsible for the rapid increase in cumulative area
burned at LFMs below the apparent threshold. At LFMs above
the apparent threshold, the slope was much shallower owing to a
lack of large fires adding to the cumulative area burned (Fig. 2).
The threshold was also relatively consistent across all four dis-
tances, spanning an order of magnitude increase in area burned
between the 5- and 20-km distances. The piecewise regres-
sion results demonstrated that a breakpoint for LFM exists in
the relatively narrow 76–79% range. Piecewise linear fits were
consistently stronger for LFM values below the breakpoint (mul-
tiple R2 = 0.92–0.96) than for above (multiple R2 = 0.68–0.76).
Based on the maximum LFM threshold of ∼79% found in both

analyses, this threshold was chosen for subsequent predictability
analysis.

The 79% LFM threshold occurred over a wide range of
DOY values in the interpolated LFM time series (Table 2). The
earliest threshold DOY was 131 (11 May), which occurred in
the Placerita Canyon time series in 1987 and in the Trippet
Ranch time series in 2002. The latest threshold DOY was 295
(22 October), which occurred in the Pico Canyon time series in
1995 and the Placerita Canyon times series in 1998. The differ-
ence between the minimum and maximum DOY was 164 days, or
more than 5 months. The two most interior sites, Bitter Canyon
and Bouquet Canyon, had earlier mean and median threshold
DOY values. However, Schueren Road, one of the most coastal
sites, also had earlier mean and median threshold DOY values.

MAM precipitation was most strongly correlated with the
DOY timing of the 79% LFM threshold. Table 3 shows R2 values
for the simple linear regression models. For individual sites,
MAM precipitation was significantly correlated (P < 0.01) with
the timing of the 79% threshold for all sites with more than
4 years of LFM records, with R2 values ranging between 0.49
and 0.79. All of these relationships were positive, meaning that
more spring precipitation resulted in a later DOY for crossing
the LFM threshold. Only three out of the total 110 single-site
regressions were found to have significantly non-normal residual
distributions (α = 0.05). The average R2 for all sites was highest
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Table 2. The minimum, maximum, mean, and median day-of-year (DOY) for the 79% threshold in the interpolated live fuel moisture (LFM) time
series, for each site

Site name Years covered Minimum DOY (Year) Maximum DOY (Year) Mean DOY Median DOY

Bitter Canyon 25 141 (1997) 266 (1998) 193 187
Bouquet Canyon 24 133 (1999) 262 (1998) 190 190
Clark Motorway 24 160 (2002) 268 (1983) 212 214.5
Glendora Ridge 4 196 (2004) 253 (2005) 233 241.5
La Tuna Canyon 23 137 (2002) 256 (1995) 201 200
Laurel Canyon 24 134 (2002) 277 (2000) 208 212
Peach Motorway 3 156 (2004) 218 (2005) 196 214
Pico Canyon 20 134 (2002) 295 (1995) 209 203.5
Placerita Canyon 24 131 (1987) 295 (1998) 210 209.5
Schueren Road 21 157 (1984) 259 (1983) 194 193
Sycamore Canyon 14 141 (1997) 282 (1995) 209 202
Trippet Ranch 24 131 (2002) 274 (1998) 208 202
Woolsey Canyon 22 151 (1987) 259 (1998) 199 195.5

Table 3. R2 values for linear regressions between monthly and 3-month
precipitation variables and the timing of the 79% live fuel moisture

(LFM) threshold
R2 values with an asterisk (*) indicate models that were found to have signif-
icantly non-normal residuals. DJF, December, January, and February; JFM,
January, February, and March; FMA, February, March, and April; MAM,

March, April, and May

Period Site average R2 Pooled data R2

MAM 0.62 0.48
FMA 0.54 0.44∗
JFM 0.53 0.44
Mar 0.53 0.42
DJF 0.29 0.24
February 0.24 0.20∗
January 0.22 0.19
April 0.14 0.08∗
May 0.11 0.09
December 0.02 0.02∗

for MAM precipitation, followed by FMA, JFM, and March
precipitation (Table 3). All of these variables contain March pre-
cipitation, indicating the importance of March precipitation for
determining LFM decline.

Pooling the site data resulted in lower R2 values, likely owing
to variability in site response to precipitation and to differences
between actual site precipitation and PRISM-modeled precipi-
tation. The pooled R2 was again highest for MAM precipitation,
closely followed by the three other variables containing March
precipitation. The best fit multiple variable model for the pooled
data used both MAM and DJF precipitation. This model moder-
ately increased the adjusted R2 value from 0.48 to 0.56. Unlike
the single-site regressions, normality of residuals was an issue
for the pooled data regressions. The four R2 values marked with
asterisks inTable 3 resulted from models with residuals that were
found to be significantly non-normal by the Shapiro–Wilk test.

Consistent with the regression analysis (Table 3), MAM pre-
cipitation was the most important variable (i.e. top split) in the

regression tree results; we therefore restricted additional pre-
cipitation information to that contained in the DJF precipitation
variable. Our tree-based analyses produced only slightly stronger
models for pooled site data, with the proportion of variation
explained being ∼0.58 for the appropriately sized tree. The
primary advantage of tree-based models, however, is in their
flexibility and interpretability. The pruned regression tree for the
timing of the 79% critical LFM threshold (Fig. 3a) demonstrates
the importance of spring precipitation, but also the importance
of winter precipitation in certain years. Boxplots showing the
range of typical rainfall amounts among stations are also pro-
vided (Fig. 3b) for context. With a much drier than average
spring (i.e. MAM < 7.5 cm precipitation), winter rainfall of that
year does not have a significant influence on the DOY threshold
timing, which can occur as early as mid-June or early July. On
the other extreme, during years with very high spring rainfall
(i.e. MAM ≥ 25.4 cm precipitation), the DOY threshold is not
crossed until early September and again winter precipitation is
not significant. Between these extremes of low and high spring
rainfall in a given year, we see that an unusually wet winter (i.e.
DJF > 42.3 cm precipitation) can extend the DOY threshold date
into mid-August; however, if that winter was not particularly
wet, spring precipitation is again the driver of the critical LFM
threshold (i.e. DOY from mid-July to early August).

Discussion and conclusions

Based on our findings from multiple decades of LFM, fire
history, and climate records for a relatively large chaparral-
dominated region, there is compelling evidence for a relatively
sharp LFM threshold near 79%, above which large fires did not
occur.The date that this critical LFM threshold is crossed is most
strongly correlated with the amount of spring precipitation in
that year, although there may be more complex interactions with
winter rainfall amounts in certain years. Although the R2 values
for single-month precipitation variables never exceeded the R2

values for MAM precipitation, March precipitation appears to be
most important for determining the timing of the LFM threshold.

Interestingly, tree-based models that explicitly incorporated
spatial variation in LFM and a variety of local environmental
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Fig. 3. Regression tree results for the day of year of the 79% live fuel moisture (LFM) threshold modeled
using antecedent December–January–February (DJF) and March–April–May (MAM) precipitation (a), measured
in centimetres. Numbers below each date in the terminal nodes refer to the number of observations (i.e. sampling
sites in different years). The height of branches is scaled to the variation explained at each split, demonstrating the
overall importance of a dry spring. Boxplots show the distribution of DJF and MAM average site precipitation for
the 13 LFM stations (b). The median (center lines), quartiles (bounds of boxes), and outlier ranges (outer whiskers
show the furthest data point within 1.5 times the interquartile range) are indicated.

factors, such as station-specific precipitation anomalies, topo-
graphic aspect, elevation, and distance from coast (data not
shown), did not perform markedly better than models using only
absolute precipitation amounts in winter and spring. This does
not indicate that spatial variation in environmental factors is
unimportant to vegetation characteristics at the scale of our study.
Instead, it appears that the strong connection between LFM dry-
ing patterns and absolute precipitation allows for a relatively
clear and parsimonious set of rules for when the critical LFM
will be reached.

The uncertainty bracketing the 79% threshold could not be
quantified owing to the unknown uncertainty of the original
LFM measurements. Although threshold uncertainty was not
estimated, the 79% threshold should still be a useful guideline
for determining when elevated fire danger may occur. Future
work should assess and reduce uncertainty associated with LFM
sampling and attempt to provide higher-temporal-resolution esti-
mates of LFM, especially during the transition period from high
to low LFM. Results from this paper and from Dennison et al.
(2008) demonstrate that multiple potential LFM threshold values
within this transition zone are likely to be predictable based on
antecedent precipitation.

Decreasing LFM coincides with increasing Santa Ana fre-
quency later in the fire season. As both factors are present in
most large fires in southern California, it is difficult to distin-
guish the relative importance of each. However, evidence from

the 2007 Zaca Fire near Santa Barbara shows that LFM alone
may be a dominant factor in some fires. The Zaca Fire burned
throughout most of the fire season and became one of the largest
shrubland fires on record in California (∼970 km2), and it was
not a typical Santa Ana-driven fire. Instead, record low spring
precipitation levels in 2007 and low LFM early in the fire season
appear to have been driving factors in this event. At the opposite
extreme, large fires may still be possible at higher LFM and very
high wind speeds. The recent 2009 Jesusita Fire, also near Santa
Barbara, appears to have occurred at a LFM well above 80%.
Regardless, it is clear that for most fires in southern California
chaparral, precipitation patterns play an important and somewhat
underappreciated role in dictating fire activity. Further research
is needed on how large fires depend on the combination of low
LFM and extreme weather events, and how these factors interact
with the age of fuels (Moritz et al. 2004).

Understanding climatic influences on fire patterns is crucial,
especially in the face of climate change. Westerling et al. (2006)
found increased fire activity in western US forests and attributed
it to warmer spring temperatures and earlier snowmelt. In con-
trast to this temperature-related signal, large-fire occurrence in
chaparral may be more directly dependent on precipitation vari-
ability. This dependence may apply to other ecosystems with
extended hot and dry fire seasons.The timing and patterns of both
temperature and precipitation should be factored into realistic
scenarios of future fire activity in a warming world.
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