
nt 106 (2007) 253–267
www.elsevier.com/locate/rse
Remote Sensing of Environme
Sub-pixel mapping of urban land cover using multiple endmember spectral
mixture analysis: Manaus, Brazil

Rebecca L. Powell a,⁎, Dar A. Roberts a, Philip E. Dennison b, Laura L. Hess c

a Department of Geography, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
b Department of Geography, University of Utah, 260 S. Central Campus Dr., Room 270, Salt Lake City, UT 84112, USA

c Intsitute for Computational Earth System Science, University of California-Santa Barbara, Santa Barbara, CA 93106, USA

Received 3 June 2005; received in revised form 1 September 2006; accepted 3 September 2006
Abstract

The spatial and spectral variability of urban environments present fundamental challenges to deriving accurate remote sensing products for
urban areas. Multiple endmember spectral mixture analysis (MESMA) is a technique that potentially addresses both challenges. MESMA models
spectra as the linear sum of spectrally pure endmembers that vary on a per-pixel basis. Spatial variability is addressed by mapping sub-pixel
components of land cover as a combination of endmembers. Spectral variability is addressed by allowing the number and type of endmembers to
vary from pixel to pixel. This paper presents an application of MESMA to map the physical components of urban land cover for the city of
Manaus, Brazil, using Landsat Enhanced Thematic Mapper (ETM+) imagery.

We present a methodology to build a regionally specific spectral library of urban materials based on generalized categories of urban land-cover
components: vegetation, impervious surfaces, soil, and water. Using this library, we applied MESMA to generate a total of 1137 two-, three-, and
four-endmember models for each pixel; the model with the lowest root-mean-squared (RMS) error and lowest complexity was selected on a per-
pixel basis. Almost 97% of the pixels within the image were modeled within the 2.5% RMS error constraint. The modeled fractions were used to
generate continuous maps of the per-pixel abundance of each generalized land-cover component. We provide an example to demonstrate that land-
cover components have the potential to characterize trajectories of physical landscape change as urban neighborhoods develop through time.
Accuracy of land-cover fractions was assessed using high-resolution, geocoded images mosaicked from digital aerial videography. Modeled
vegetation and impervious fractions corresponded well with the reference fractions. Modeled soil fractions did not correspond as closely with the
reference fractions, in part due to limitations of the reference data. This work demonstrates the potential of moderate-resolution, multispectral
imagery to map and monitor the evolution of the physical urban environment.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Urban areas are currently among the most rapidly changing
types of land cover on the planet. Though covering only a few
percent of the global land surface, cities are the loci of human
population and activity and are thereby sites of significant
natural resource transformation (Lambin et al., 2001). Remote
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sensing imagery can provide a timely and synoptic view of
urban land cover, as well as a means to monitor change in
urbanizing landscapes and to compare urban environments
globally. However, deriving accurate, quantitative measures
from remote sensing imagery over urban areas remains a
fundamental research challenge due to the great spectral and
spatial variability of the materials that compose urban land
cover (Forster, 1985; Lu & Weng, 2004; Xian & Crane, 2005).
The highly heterogeneous nature of urban surface materials is
problematic at multiple spatial scales, resulting in a high
percentage of mixed pixels in moderate resolution imagery and
even limiting the utility of high spatial resolution imagery
(Myint et al., 2004; Small, 2005).
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The most common approach to characterizing urban environ-
ments from remote sensing imagery is land-use classification,
i.e. assigning all pixels in the image to mutually exclusive
classes such as residential, industrial, recreational, etc. (Carlson
& Sanchez-Azofeifa, 1999; Forster, 1985; Ridd, 1995).
However, this approach can be problematic for several reasons.
First, most urban land-use classes are not spectrally distinct,
resulting in considerable confusion between classes (Ridd,
1995; Small, 2005). Second, the physical composition of land-
use classes may vary dramatically from region to region due to
different building materials and different construction practices,
and therefore cross-regional comparisons between urban areas
are limited (Small, 2005). In rapidly growing cities, particularly
in the developing world, multiple forms of land use may occur
within the same geographic space, limiting the usefulness of
traditional land-use categories. Finally, urban land-use classes
have little correlation with physical parameters–i.e. they are
social constructs imposed on the physical urban environment–
and partitioning the urban landscape into such classes simplifies
the heterogeneity that is a key characteristic of the urban
environment (Ridd, 1995).

In contrast, mapping the urban environment in terms of its
physical components preserves the heterogeneity of urban land
cover better than traditional land-use classification (Clapham,
2003; Ji & Jensen, 1999), characterizes urban land cover
independent from analyst-imposed definitions (Jensen, 1983;
Ridd, 1995), and more accurately captures change through time
(Ji & Jensen, 1999; Rashed et al., 2005). Ridd (1995) proposed
that any urban environment can be conceptualized in terms of
three primary physical components: vegetation, impervious
surfaces, and soil (V–I–S components), in addition to water. Lu
and Weng (2004) provide an overview of current research that
has applied the V–I–S model to characterize urban environ-
ments. However, with few exceptions, these studies have used
V–I–S components as input to urban land-use classification,
transforming the continuous variables captured by the V–I–S
characterization into mutually exclusive land-use classes (e.g.
Lu & Weng, 2004). Exceptions to this include Wu and Murray
(2003) and Wu (2004), who generated maps of continuous
values representing the fraction of impervious surface for the
metropolitan area of Columbus, OH. Another exception is the
work by Rashed et al. (2003), who mapped the physical
gradients of the three V–I–S components in the Los Angeles
area and suggested links between the socio-economic char-
acteristics of neighborhoods and their corresponding V–I–S
composition. Similarly, Rashed et al. (2005) mapped the V–I–S
components for the greater urban area in Cairo, Egypt, and
identified change between the physical components aggregated
to census tracts. They proposed that monitoring the V–I–S
components between dates provided a more accurate estimate of
urban land-cover change, as much change occurred within land-
use classes.

The goal of this paper is to demonstrate a methodology to
map the variation of V–I–S components in an urban environ-
ment using moderate-resolution remote sensing imagery.
Spatial variability is addressed by mapping the sub-pixel com-
ponents of land cover using spectral mixture analysis (SMA),
which models each pixel as a linear sum of spectrally ‘pure’
endmembers (e.g. Adams et al., 1993). Traditional SMA uses a
fixed number of endmembers to map the entire landscape.
Previous studies that applied SMA to map urban environments
have noted that the limited number of allowed endmembers
cannot adequately capture the high spectral heterogeneity of
urban materials (Lu & Weng, 2004; Rashed et al., 2005; Song,
2005; Wu, 2004). In this study, therefore, spectral variability is
addressed by applying multiple endmember spectral mixture
analysis (MESMA), which allows the number and type of
endmembers to vary on a per-pixel basis (Roberts et al., 1998b).

The potential of using MESMA to map the V–I–S com-
ponents of an urban area was demonstrated by Rashed et al.
(2003). We expand their work by developing a methodology to
build a regionally specific spectral endmember library from a
large collection of reference and image endmembers. Addition-
ally, we utilize aerial videography collected over the study area
to assess the accuracy of maps of fractional V–I–S cover, and
investigate the question of the appropriate scale of analysis for
comparative or change detection studies. The product of our
work is a set of maps representing the per-pixel fractional cover
of each component—vegetation, impervious surfaces, and soil.
These maps are locally specific, capturing the spectral vari-
ability that is distinct to the region, yet globally representative of
urban land cover, allowing comparison of urban composition
across regions and through time. We test our methodology on
case study, a rapidly growing city located in the Brazilian
Amazon.

2. Methods

2.1. Study site and data

The study area is the region immediately surrounding the city
of Manaus, in the state of Amazonas, Brazil (Fig. 1). Manaus is
located on the banks of the Rio Negro, approximately 18 km
north of the confluence with the Rio Solimões, forming the main
stem of the Amazon River. Though located approximately
1200 km up-stream from the mouth of the Amazon, Manaus is
currently the most populated city in the Amazon region, with a
population of almost 1.4 million recorded in the 2000 national
census (IBGE, 2000). Founded as a Portuguese settlement in
1669, Manaus first grew to national prominence during the
rubber boom between 1870 and 1920. However, the city's real
growth as an urban and industrial center has occurred since 1967,
when the federal government of Brazil declared the city and port
of Manaus a Free Trade Zone (Zona Franca de Manaus), leading
to a dramatic increase in public and commercial infrastructure,
manufacturing and industrial facilities, and corresponding
population growth (Browder & Godfrey, 1997; Silva-Forsberg,
1999).

A Landsat Enhanced Thematic Mapper (ETM+) scene (path
231, row 62) acquired on August 11, 2001, was used in this
study. A 750-km2 region centered over Manaus was subset
from the Landsat image, and the georegistration was refined by
co-registering the subset to a 1:100,000 topographic maps
published by the Brazilian Institute of Geography and Statistics



Fig. 1. Study area. Regions highlighted on the Landsat sub-scene are discussed in the Results section.
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(IBGE). Twenty-three georegistration points were located, and
nearest-neighbor resampling was applied to a first-degree po-
lynomial fit. The average root mean squared error (RMSE) for
the registration points was 0.16 pixels. Reference data were
produced from digital aerial videography collected over Ma-
naus on June 12, 1999, as part of the Validation Overflights for
Amazon Mosaics (Hess et al., 2002). The flight lines were
designed to provide almost complete and continuous coverage
of the city. Wide-angle and zoom videography were collected
simultaneously; however, only the wide-angle videography
was used for this study. Average swath width was approx-
imately 1 km; average ground instantaneous field of view
(GIFOV) was 1.5 m. Global positioning system (GPS) location
and time code, aircraft altitude, and aircraft height data were
encoded on each videography frame and used to automatically
generate geocoded videography mosaics, with an estimated
absolute geolocation error of 5–10 m along the center third of
the videography.
2.2. Multiple endmember spectral mixture analysis

Spectral mixture analysis (SMA) is based on the assumption
that the reflectance P' measured at pixel i can be modeled as the
linear sum of N endmembers, or spectrally ‘pure’ materials,
weighted by the fraction fki of each endmember within the field
of view of pixel i (e.g. Adams et al., 1993; Roberts et al.,
1998a). That is, for a given wavelength, λ:

P
;
ik ¼

XN

k¼1

fki⁎Pkk þ eik; ð1Þ

where eiλ is a residual term indicating the disagreement between
the measured and modeled spectra. The modeled fractions are
typically constrained by the following:

XN

k¼1

fki ¼ 1: ð2Þ



Fig. 3. Summary of MESMA spectral library construction.

Fig. 2. Methods flowcharts.

Table 1
Allowed models by generalized material classes

Two-endmember (26) Three-endmember (286) Four-endmember (825)

npv+shade npv+veg+shade npv+ imp+imp+shade
veg+shade npv+soil+shade veg+ imp+imp+shade
soil+shade npv+ imp+shade soil+ imp+imp+shade
imp+shade veg+soil+shade

veg+ imp+shade
soil+ imp+shade
imp+imp+shade

Numbers in parentheses indicate the total number of models generated for all
permutations of endmembers included in the final library.
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Model fit is assessed by calculating the root mean squared error
(RMSE) of the residuals for each pixel across all bands (Adams
et al., 1993; Roberts et al., 1998a), given by:

RMSEi ¼ ðXk

k¼1
ðeikÞ2=NÞ1=2

: ð3Þ

Endmember spectra can be collected in the field or lab (reference
endmembers) or extracted from an image (image endmembers).
Constraints for selecting appropriate models for each pixel can be
specified in terms of the range of endmember fractions, residuals
for each wavelength, and the RMSE (Roberts et al., 1998b).

In a standard application of SMA, a fixed number of repre-
sentative endmembers–usually between two and five–are selected
and the entire image is modeled in terms of those spectral com-
ponents. However, this procedure is limited because the selected
endmember spectra may not effectively model all elements in the
image, or a pixel may be modeled by endmembers that do not
correspond to the materials located in its field of view. Both cases
result in decreased accuracy of the estimated fractions (Sabol et al.,
1992). These limitations of simple SMA are particularly prob-
lematic in urban environments, which exhibit high degrees of
spectral heterogeneity on fine spatial scales. A technique that
addresses these limitations is multiple endmember spectral
mixture analysis (MESMA), which allows the number and type
of endmembers to vary on a per pixel basis (Roberts et al., 1998b).
In this case study, MESMA was implemented following the
procedure illustrated in Fig. 2 and detailed in the sections that
follow. First, an endmember library was constructed from can-
didate image and reference endmembers. Next, a series of simple
SMA models–based on all combinations of library endmembers
presented in Table 1–was applied to every pixel in the image, and
the ‘best-fit’model was selected for each pixel. The models were
generalized into the land-cover components of interest (i.e.
vegetation, impervious surface, soil), and an image of fractional
coverage per pixel was generated for each component. To assess
how well these fraction images represented the actual fraction of
each land-cover component on the ground, fractional cover de-
rived from MESMAwas compared to fractional cover measured
from classified aerial videography. Agreement between modeled
fraction cover and reference fraction cover was used to refine the
combinations of endmembers allowed for SMA modeling, as
well as to select to most appropriate constraints for MESMA
application to Landsat data.

2.3. Library construction

Essential to any application of SMA is the careful selection of
endmembers (Dennison & Roberts, 2003; Tompkins et al.,
1997), as endmembers must accurately and comprehensively
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represent ground materials if the output of SMA is to be physi-
cally meaningful. Endmember selection for standard SMA
commonly relies on identifying an extreme spectrum to represent
each material of interest (e.g. Adams et al., 1995; Boardman
et al., 1995; Smith et al., 1985). In contrast, endmember selection
for MESMA focuses on identifying a set of spectra that
represents the spectral variation for each material in the scene
(Okin et al., 2001; Painter et al., 1998; Roberts et al., 1998b). The
particular challenge in building a spectral library for use in
MESMA is twofold. First, for each class of materials, the library
should include a sufficient number of spectra to adequately
represent the spectral variation of the material on the ground.
Second, as the total number of endmembers–and therefore po-
tential models–increases, the computational efficiency of the
MESMA exponentially decreases (Halligan, 2002), and therefore
the endmember library should remain sufficiently small so that
the application of MESMA remains computationally viable.

To attain these goals, we followed a three-step process to
construct the MESMA library used in this application (Fig. 3).
First, we compiled a collection of possible endmembers,
including image and reference endmembers. Based on previous
applications of SMA in the region (e.g. Roberts et al., 1998a),
we knew that to adequately capture the vegetation class we need
to include spectra of green vegetation and non-photosynthetic
vegetation (NPV), i.e. dry or senesced vegetation. Therefore, we
organized the collection of endmembers into four groups: green
vegetation, NPV, impervious surfaces, and soil. Second, for
each class of materials, a subset of endmembers was selected
that best represented the class in the library collection. Finally,
from this subset, endmembers were selected that best repre-
sented materials on the ground. Each step is discussed in more
detail below.

2.3.1. Endmember collection
The first step in library construction consisted of collecting

candidate endmembers for each group of interest. To include the
broadest range of possible endmembers, we employed three
methods of spectral collection: endmembers derived from the
2001 Landsat ETM+ sub-scene, reference endmembers collect-
ed in the field, and reference endmembers collected in a
laboratory. Reference endmembers were collected with a variety
of instruments, including a Beckman DK2a (Beckman Instru-
ments, Fullerton, CA, USA), a Cary-5E (Varian, Sunnyvale,
CA, USA), and an ASD-FR spectrometer (Analytical Spectral
Devices, Boulder, CO, USA). Water was obviously an impor-
tant component of the scene, but it was treated separately from
the other materials of interest. Dark pixels are highly degenerate
(i.e. they can be modeled successfully by a large shade fraction
and a small bright fraction of almost any material), and therefore
they cannot be modeled very accurately using spectral mixture
analysis. A water/dark-pixel mask was generated by applying a
threshold to Landsat band 7, and those pixels were removed
from further evaluation.

Image endmembers were collected by applying a pixel purity
index (PPI) to the 2001 sub-scene. The PPI algorithm identifies
extreme pixels in multidimensional space by projecting the
spectrum of each pixel on multiple vectors randomly oriented in
feature space and recording the number of times the pixel is
found to be extreme (Boardman et al., 1995). Pixels identified
as extreme were visually inspected, and the spectra of those
which could be classified with confidence as one of the
materials of interest were collected. In general, all edge pixels–
particularly between land and water–were eliminated from
further consideration.

Reference endmembers for materials in the NPV and soil
classes were collected in the field in 1991, along with
calibration targets that could be located on a 1991 Landsat
Thematic Mapper (TM) scene. Reflectance calibration targets
from 1991 were used to retrieve apparent reflectance from the
1991 Landsat data using an empirical line calibration (Conel,
1990; Roberts et al., 1985). The 1991 reflectance image was, in
turn, used as a reference to intercalibrate the 2001 image using a
relative radiometric calibration approach, in which encoded
radiance was regressed against reflectance using the mean
spectra of invariant ground targets (Furby & Campbell, 2001).
This technique is based on two assumptions: first, that invariant
surfaces which include a range of brightness values can be
found between the two dates, and second, that there is a uniform
atmosphere over each scene (Souaza et al., 2005). To reduce
data volume, all processing was actually accomplished in en-
coded radiance space by inverting equations for reflectance to
convert reflectance to DN.

Vegetation spectra collected in the field do not easily ‘scale
up’ to match spectra measured by a Landsat sensor because field
spectra are collected on the scale of individual leaves or branches,
and cannot adequately capture the multiple-scattering environ-
ment of a canopy. A Landsat pixel, however, captures the
reflectance of an entire canopy (or multiple canopies); as a result,
the spectrum measured at the sensor is the result of both direct
reflection and multiple scattering of incoming solar radiation.
The ideal scale for collecting plant spectra, therefore, would be a
scale roughly comparable to the sensor scale; however, in this
study, field collection of vegetation spectra at the appropriate
scale was not possible. To include vegetation spectra of known
materials, therefore, we used spectral proxies, derived either from
leaf stacks or branches measured in North America, or from
canopies measured by the Airborne Visible Infrared Imaging
Spectrometer (AVIRIS), to augment our library of vegetation
image endmembers. In both cases, the proxy spectra were col-
lected from plant species with the same physiognomy. As the
dominant controls on spectra measured by Landsat TM are
biophysical, i.e. related to the tree and leaf structure, not species
specific, we are confident that such spectra would be repre-
sentative of the dominant plant spectra found in the Amazon.

Reference endmember spectra for the impervious surface
class were collected in the laboratory by importing samples of
commonly used roof materials from a construction supply store
in the Amazon. As no field spectrometer was available for the
collection of urban materials, reference spectra for roads and
other paved impervious surfaces were not included in the library.
Reflectance spectra for green vegetation and for impervious
materials were convolved to TM reflectance spectra and
converted to 2001 digital number equivalents based on the con-
version values developed for the NPV and soil field spectra
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above. The resulting collection of endmembers–hereafter referred
to as the ‘library collection’–consisted of 664 endmembers, 302
image endmembers and 362 reference endmembers. The number
of endmembers in the library collection grouped by material class
was as follows: 192 green vegetation, 105 NPV, 78 impervious,
and 289 soil.

2.3.2. Endmembers representative of library
The next steps in MESMA library construction were to

remove spectra that had a high probability of confusion with
other material classes and to identify which spectra were most
representative of the spectra within their material class. We
followed a procedure developed by Dennison and Roberts
(2003) in which each spectrum in the library collection was
modeled as a series of two-endmember models, using all other
spectra in the collection and photometric shade. Including a
shade endmember in each SMA model (i.e. a spectrum with a
reflectance of zero in all bands) accounts for variation in
illumination (Dennison & Roberts, 2003). This resulted in 663
unique two-endmember models for each spectrum, and the
RMSE for all models was recorded. Any image spectrum that
was successfully modeled by a reference endmember from
another class was removed from further consideration, elim-
inating image spectra that were potentially confused with
materials of other classes. To identify the most representative
spectra for each material class, a measure termed ‘endmember
average RMSE,’ or EAR, was applied (Dennison & Roberts,
2003). The RMSE for each spectrum unmixing all other spectra
within its class was averaged. For each class, the spectrum with
the lowest average, or EAR, was considered the endmember
that best represented that class.

2.3.3. Endmembers representative of image materials
How well a spectrum models other spectra within the library

collection does not necessarily indicate how well that spectrum
will model its class of materials in the image (Song, 2005).
Furthermore, the best ‘average’ spectrum of a class in the library
collection may not successfully account for the spectral diver-
sity of materials on the ground. Therefore, a link needed to be
made between the endmembers that best represented their
groups within the library collection and the endmembers which
sufficiently represented materials of their class on the ground.

Such a link was established by running a series of two-
endmember models for each class of materials on the image and
developing a set of criteria for selecting endmembers for the
MESMA library. For each class, the procedure started with the
spectrum with the lowest EAR, and the image was modeled as a
two-endmember model (spectrum(1)+shade). Then, spectrum
(1) was removed from the library collection, along with any
spectra that it modeled, and EAR was recalculated. A new
library, consisting of spectrum(1)+spectrum(2)+shade was
used to model the entire image as two-endmember models.
Spectrum(2) and any spectra that it modeled were removed from
the library collection, EAR recalculated, and the new library of
three bright endmember spectra was used to model the image,
etc. At each iteration, the following were recorded: (1) the
number of pixels modeled by each spectrum included in the
library (i.e. number of pixels modeled by each in presence of
competition), and (2) the number of pixels that would have been
modeled by each spectrum had there been no other spectra in the
library (i.e. number modeled by each without competition). The
process was repeated until the increase in the number of pixels
modeled when a new spectrum was added to the library was
negligible.

Spectra were included in the final MESMA library based on
two criteria: (1) the spectrum modeled a minimum number of
pixels −0.01% of the number of land pixels in the image, or at
least 633 pixels, and (2) a substantial proportion of pixels that
could be modeled by spectrum(i) with no competition had to be
modeled by spectrum(i) in the face of competition. That is, the
ratio of the number of pixels modeled by spectrum(i) in the last
run of image unmixing to the number of pixels that could be
modeled by spectrum(i) with no competition must be greater than
a specified threshold. For this case study, a threshold of 20% was
applied. For example, to select which endmembers of the NPV
class to include in the final MESMA library, 10 spectra were
tested based on their EAR ranking (Table 2). Note that when
spectra(9) and (10) were added to the library, the number of new
pixels modeled was negligible, and so no further spectra were
considered. Even with no competition, spectrum(7) modeled
fewer than the threshold value (b0.01%), and therefore was not
included in the final MESMA library. Of the remaining spectra,
those with EAR ranks of 1, 2, 3, 5, and 6 successfully met the
second criterion, and therefore were considered necessary to
capture the spectral diversity of this class of materials in the
image. Thus, the final MESMA library included five endmem-
bers for the NPV class. The procedure was repeated to determine
the endmembers for the other three classes of materials.

2.4. SMA models

The endmember library developed above was used to map
each pixel in the image in terms of the fractional abundance of
each class. Two-, three-, and four-endmember models were
applied and compared to determine the best model for each
pixel. Allowed combinations of material classes are given in
Table 1; all possible permutations of spectra for each model in
Table 1 were tested. In an effort to increase computational
efficiency by reducing the total number of models tested, all
models were limited to different classes of materials, with the
exception of allowing two types of impervious surfaces in a
single model. This exception was deemed necessary based on
visual inspection of the videography reference data, as well as
preliminary analyses indicating that accuracy of all the modeled
fractions increased if multiple impervious surfaces were al-
lowed. To account for variations in brightness of surfaces due to
viewing angle, topography, and other forms of shading, all
models included the shade endmember (Dennison & Roberts,
2003).

Every allowed model was evaluated for every pixel in the
image. Candidate models were selected based on the following
constraints: (a) The bright fraction values were constrained be-
tween −0.10 and 1.10. (b) The shade fraction values were con-
strained between −0.10 and 0.50. (c) A RMSE threshold of 0.025



Table 2
Criteria used to select NPV endmembers for the MESMA library

Emb. name No. map Lib. Vers. 1 2 3 4 5 6 7 8 9 10 Total map

PLRA0004 16,009 1 16,009 16,009
DIMBARK6 14,406 2 13,197 11,029 24,226
mc190441 6062 3 12,517 10,278 2423 25,218
mc229416 1672 4 12,517 9940 2144 1072 25,673
mc326221 9126 5 10,811 9821 2099 1061 4870 28,662
ma417303 2326 6 10,811 9680 2095 244 4859 1895 29,584
ma107476 598 7 10,804 9673 2088 231 4841 1894 62 29,593
mc192444 5767 8 10,804 9622 1335 226 4841 1894 62 868 29,652
i355103 1461 9 10,804 9622 1334 213 4841 1883 62 868 56 29,683
ARME0020 1061 10 10,804 9617 1334 211 4841 1883 62 825 56 128 29,753

map(v10)/no. map: 0.675 0.668 0.220 0.126 0.530 0.810 0.104 0.143 0.038 0.121

Potential endmembers for the NPV material class were linked to materials on the ground by running a series of two-endmember models. The first run used a library
with only one NPVendmember–that identified as the most representative of its class based on the EARmeasure–and photometric shade. For each subsequent version,
an additional NPV endmember was added to the library; the order endmembers were added was determined by the EAR measure (see text for full description). The
number of pixels that could be mapped by each endmember if it were the only NPVendmember in the library (i.e. no competition) is indicated in the column labeled
No. map. The total number of pixels successfully modeled by two-endmember models using all of the NPVendmembers for that version of the library is indicated in
the column labeled Total map. Each row indicates the number of pixels mapped by each endmember for that version of the library. For example, Library Version 3
consisted of three NPV endmembers, and all 3 two-endmember models were tested for all pixels in the scene. The result was that endmember(1) modeled 12,517
pixels; endmember(2) 10,278; and endmember(3) 2423. However, in Library Version 10, 10 NPVendmembers were competing to model each pixel, and the number of
pixels modeled by endmember(3) in that competitive environment dropped to 1334. The last row of the table indicates the ratio of the number of pixels modeled by
each endmember in Library Version 10 to the number of pixels that could be modeled by that endmember in the absence of competition. For endmember(3), that ration
is 1334/6062, or approximately 22%.

259R.L. Powell et al. / Remote Sensing of Environment 106 (2007) 253–267
maximum reflectance (equivalent to approximately 6.4 DN) was
applied. The constraints for the bright fractions and maximum
shade fraction were tested on this data set and selected as the best
compromise between the goal of physically reasonable fractions
and the imprecision of per-pixel analysis introduced by the
modular transfer function of Landsat data (Forster, 1985; Huang
et al., 2002; Townshend et al., 2000). The RMSE constraint is
most commonly accepted in the literature (e.g. Dennison &
Roberts, 2003; Roberts et al., 1998b).

For each pixel, the best model at each level of model com-
plexity (i.e. two-endmember, three-endmember, or four-end-
member) was selected by comparing all models which met the
constraints above and selecting the model with the lowest RMS
error—i.e. assumed best fit (Painter et al., 1998). If no model met
all constraints, the pixel was left unmodeled. At this stage, each
pixel was associated with up to three potential models. Previous
work has shown that there is a negative correlation between
increasing model complexity and accuracy (Halligan, 2002;
Sabol et al., 1992). Additionally, there is a positive correlation
betweenmodel complexity and computational expense (Halligan,
2002; Roberts et al., 1998b). We therefore assumed the optimal
model was themodel with lowest complexity, thoughwe note that
this assumption is not tested empirically in this case study and it is
possible that we lose information by choosing the simplest model.
Specifically, model selection was based on the following steps: if
pixel(i) could be modeled by a two-endmember model, the two-
endmember model was selected as the optimal model. Otherwise,
if pixel(i) could be modeled by a three-endmember model, the
three-endmember model was selected, etc. Thus, pixel(i) was
modeled as a four-endmember model only if no other option
existed within the model constraints detailed above. The output of
this selection process was an image indicating the optimal model
per pixel, as well as the fractional value of each endmember
associated with that model.
2.5. Mapping

The final product of our analysis was a set of fractional
abundance maps for each class of materials (i.e. vegetation,
impervious surfaces, soil, and water). Because shade was not
considered a land-cover component, but rather a variant on
endmember brightness, the fractions associated with each
optimal model had to be converted to fractions that represented
the physical abundance of the material present within each
pixel. The fractions of each pixel were therefore shade-
normalized, that is, each non-shade fraction was divided by
the sum of the non-shade fractions for that pixel (Adams et al.,
1993). For two-endmember models, the resulting shade-
normalized fraction is 100%. After shade normalization, the
endmembers were re-labeled as their corresponding generalized
class. The NPV and green vegetation fractions were combined
into a single vegetation class, as these two categories of spectra
effectively represent all states of vegetation, i.e. NPV spectra
model senesced vegetation and bark/stems, while green
vegetation spectra model live, leafy vegetation. These shade-
normalized, class-generalized fractions were combined to
generate an image of each land-cover material, with values
representing the physical abundance of that material. Pixels
included in the water mask were assigned a fraction value of
100% water. An image of the RMSE values corresponding to
the optimal model selected for each pixel was also generated.

2.6. Accuracy assessment

The videography time code was divided in to 15-s intervals,
which were randomly sampled. Sampled intervals were
mosaicked, georeferenced and inspected for cloud cover and
unacceptable distortion due to aircraft movement. This resulted
in a total of fifty-five 15-s mosaics. Each reference image was
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classified into the four material classes of interest–vegetation,
impervious, soil, and water–by applying a multi-resolution
segmentation algorithm and subsequent supervised classifica-
tion as implemented in eCognition software (Baatz et al., 2003).
The segmentation parameters were held constant for the
processing of all 15-s mosaics. Classified segments were
visually inspected for accuracy, and errors were manually
corrected. The center timecode of each mosaic was used to
locate the sample center on the reference image, and the UTM
coordinates were extracted to locate the sample on the Landsat
image. For each sample, the size of the sampling unit was
varied, and the fractions of materials within each window size
were extracted from the classified videography mosaics and
from the corresponding window on the Landsat image.
Unmodeled pixels were excluded from the average fraction
calculations.

Window sizes corresponded to blocks of Landsat pixels,
ranging from a single Landsat pixel (30 m×30 m) to a 17×17
block of Landsat pixels (510 m×510 m) in increments given in
Table 3. Window sizes were variable for several reasons: (1) No
assessment of the geometric error between the Landsat ETM+
image and the videography mosaics was conducted, and such
error could potentially negatively impact the accuracy measures
(Powell et al., 2004); (2) The precision of estimating per-pixel
land cover may be limited by the modulation transfer function
(MTF) of the Landsat sensor; in other words, the signal
measured by the sensor for a given pixel is partially influenced
by the land cover of surrounding pixels (Forster, 1985;
Townshend et al., 2000; Huang et al., 2002); and (3) Though
we derived our results from 30×30-m resolution data, we had
no real knowledge of the appropriate spatial scale for
Table 3
Accuracy measures for MESMA fraction images (n=55)

Win_size 1 3 5 9 13 17

Vegetation
Slope 0.66 0.79 0.84 0.97 1.01 1.03
Intercept 13.5 7.8 4.4 −3.0 −5.2 −5.8
RSQ 0.43 0.65 0.71 0.85 0.89 0.91

Impervious
Slope 0.58 0.81 0.83 0.93 0.96 0.96
Intercept 19.7 13.6 13.7 12.3 12.5 12.5
RSQ 0.30 0.66 0.70 0.85 0.89 0.90

Soil
Slope 0.23 0.19 0.24 0.45 0.51 0.54
Intercept 5.8 6.7 5.8 2.2 0.8 −0.1
RSQ 0.07 0.05 0.08 0.31 0.46 0.57

MAE
Vegetation 23.9 16.1 14.5 10.4 9.3 8.3
Impervious 25.1 15.7 15.3 12.2 11.7 11.8
Soil 15.5 13.3 11.2 10.0 8.1 7.8

Bias
Vegetation −4.3 −3.5 −4.3 −4.7 −4.9 −4.4
Impervious 7.2 7.9 8.8 10.5 11.4 11.5
Soil −5.3 −4.4 −4.5 −5.8 −6.4 −7.0

Window size refers to the sample dimensions in units of Landsat ETM+ pixels.
interpreting the fractions generated. Varying the window size
allowed us to investigate how measures of accuracy were
impacted based on the size of the sampling unit, as well as to
consider how confidence in the estimates of land-cover
fractions might vary with spatial scale.

Accuracy measures were based on the correlation between
modeled fractions and reference fractions from the videography.
The ‘goodness’ of the correlation was assessed by the slope,
intercept and R-squared of the relationship, where, in an ideal
case, the slope of the relationship would equal one, the intercept
zero, and the R-squared value would approach one. Two types
of error measurement were also used to evaluate the accuracy of
the fraction estimations, mean absolute error and bias. Mean
absolute error (MAE) is average absolute value of the difference
between modeled and measured fraction values, while bias is
the average of the error, indicating trends in over- or under-
estimation (Schwarz & Zimmermann, 2005).

Those equations are given as:

MAE ¼ ðXn

i¼1

j Z̄ki−ZkijÞ=n ð4Þ

bias ¼ ðXn

i¼1

ð Z̄ki−ZkiÞÞ=n ð5Þ

where Z̄ki is the modeled fractional value of land-cover
component k measured at pixel i, Zki is reference fractional
value, and n is the number of samples.

3. Results and discussion

3.1. MESMA library and models

The final endmember library was selected based on the
criteria described above and consisted of 26 endmembers in
addition to photometric shade (Fig. 4). The number of
endmembers per generalized class was as follows: non-
photosynthetic vegetation—five (2 reference endmembers, 3
image endmembers), green vegetation—two (image endmem-
bers), soil—eight (1 reference, 7 image endmembers), and
impervious—11 (3 reference, 8 image endmembers). The
allowed models consisted of all possible permutations of the
generalized combinations listed in Table 1. This resulted in 26
two-endmember models, 286 three-endmember models, and
825 four-endmember models.

Within the study area, 95.9% of the land pixels were
successfully modeled. The distribution of model complexity for
the final MESMA output is given in Table 4. Over 50% of the
non-water pixels in the study area were modeled by two-
endmember models, while an additional 45.5% of non-water
pixels were modeled by three-endmember models. Four-
endmember models were not included in the final product for
several reasons. The inclusion of four-endmember models
resulted in a very small increase in the number of successfully
modeled pixels, approximately 1% of land pixels; yet, the



Fig. 4. Spectra included in the final endmember library: (a) NPV, (b) green vegetation, (c) soil, (d) impervious. Average reflectance values for each class–except green
vegetation–are represented by the dashed line, and minimum values for each band by the dotted lines. (For interpretation of the references to colour in this figure
legend, the reader is referrred to the web version of this aticle.)
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computational expense of including four-endmember models is
quite high. Additionally, including four-endmember models did
not appreciably improve accuracy statistics, and visual
inspection of the pixels modeled by four-endmember models
indicated substantial errors. The majority of four-endmember
models were either edge pixels between water and land or were
located in topographically shaded areas of primary forest.
Therefore, the final MESMA product that was used to generate
maps of V–I–S fractions included only two- and three-
endmember models.

3.2. Fraction maps

Maps of the generalized fractions are shown in Fig. 5. Bright
areas represent higher fractions and dark areas lower fractions,
while black pixels indicate that the material is not present. The
oldest part of the city, which coincides with the central business
district highlighted by the circle in Fig. 1, has very little vege-
tation and very high impervious values. In fact, for the heavily
built-up areas of the city, the vegetation fraction map is almost the
Table 4
Number of pixels successfully modeled for each level of model complexity

Model Pixels modeled % Non-water area % Total area

Water mask 200,690 – 24.1
Two-endmember 319,323 50.4 38.3
Three-endmember 288,188 45.5 34.5
Four-endmember 6,485 1.0 0.8
inverse of the impervious fraction map. Major roads are high-
lighted on the impervious map, as is the international airport
located towards the upper left corner on the map. In the upper
right portion of the map, there is a sharply defined area that has
no impervious or soil fractions present; this is the southern edge
of the Reserva Ducke, a natural reserve in which no development
is permitted. The distribution of the soil fraction is much spottier
than the vegetation and impervious fractions. Bare soil tends to
be most prominent in areas undergoing construction and ex-
pansion, such as the area in the north, central portion of the map,
adjacent to the Reserva Ducke, indicated by the oval in Fig. 1.
Some roads are also highlighted on the soil fraction map. One
source of spectral confusion stands out on the impervious map:
some lowland areas that are seasonally flooded are mapped as
having a relatively high impervious fraction, for example, along
the edges of the two islands in the lower right portion of the map.

The composition of V–I–S fractions can be compared
between different neighborhoods. For example, we sampled
four neighborhoods that represent a gradient of ages (Fig. 1). The
oldest–highlighted by a circle–is the central business district
(Centro), which was built up during the 19th Century. The
second–highlighted by a square–is the neighborhood of
Coroado, founded in the early 1970s (Silva-Forsberg, 1999).
The third–highlighted by a parallelogram–is a part of the São
José Operário neighborhood that has been constructed since
1996. The fourth–highlighted by an oval–an area north of the
neighborhood of Cidade Nova, represents the most recent devel-
opment, as construction began only after 1999. The dates for the



Fig. 5. Fraction images generated from MESMA: (a) vegetation fraction, (b) impervious fraction, (c) soil fraction, and (d) water mask. Brighter areas indicate higher
fractions, while darker areas indicate lower fractions.
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latter two sites were determined by inspecting Landsat imagery
collected in 1996 and 1999. The average values for V–I–S
fractions within each neighborhood are displayed in Fig. 6.
Among these samples, the fraction of soil tends to decrease with
age of the neighborhood, while the fraction of impervious surface
tends to increase with age. This simple analysis suggests that
trajectories of physical landscape change within a city may be
characterized by mapping V–I–S fractions for multitemporal
observations.

3.3. Accuracy assessment

The correlation between reference fractions and modeled
fractions are reported for each window size in terms of slope,
intercept, and correlation coefficient (i.e. R-squared value, see
Table 3) and presented graphically for the 9×9 window size
(Fig. 7). Note that the modeled vegetation fraction for each pixel
is the sum of the shade-normalized green vegetation and NPV
Fig. 6. V–I–S distribution for neighborhoods of different ages.
(i.e. senesced vegetation) fractions. Correspondence between
reference and modeled fractions when the sampling unit cor-
responds to a single pixel (i.e. 1×1 window size) was low for all
land-cover categories. However, as the sample unit increased in
area, the correlation increased; i.e. the slope and R-squared value
of the relationship both approached 1.0 for all fractions. Based on
the values reported in Table 3, we propose that the minimum
window size for an acceptable correlation is 9×9 pixels (i.e.
270 m×270 m). At that window size, slopes for vegetation and
impervious were equal to 0.97 and 0.93 respectively; the inter-
cept values were near zero for the vegetation and reasonably
constrained for the impervious fractions, and both fractions had
an R-squared value equal to 0.85. The mean absolute error
(MAE) for the 9×9 window size ranged between 9.98 for soil
and 12.23 for impervious. However, the correlation between
reference and modeled soil fractions at this window size was still
quite poor; in fact, agreement for soil fractions remained low
across all window sizes.

Analysis of residuals in terms of the bias indicated that the
impervious fractions were consistently over-estimated by the
modeled output, while vegetation and soil were consistently
under-estimated relative to the reference fractions (Table 3). The
over-estimation of impervious as indicated by the positive bias
was approximately equal to the under-estimation of the soil and
vegetation fractions, a result of the SMA constraint that the
fractions for any pixel must sum to 1.0 (Eq. (2)). A graph of the
bias for each sample as a function of the reference fraction
revealed patterns of over- and under-estimation (Fig. 7). The
impervious fractions were estimated more accurately for samples
with high fractions of impervious materials (N70%), and least
accurately for the samples with low fractions of impervious



Fig. 7. Comparisons between reference andmodeled fractions, window size=9×9 pixels: (a) vegetation fraction scatter plot, (b) vegetation fraction residuals, (c) impervious
fraction scatter plot, (d) impervious fraction residuals, (e) soil fraction scatter plot, (f ) soil fration residuals.
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surfaces (b30%). In only a handful of samples was the im-
pervious fraction underestimated. The negative bias reported for
vegetation suggested that overall vegetation fractions were
under-estimated. Agreement was highest for very low (b10%)
and very high (N90%) fractions, while the residuals for fractional
cover in between were rather randomly distributed, with a few
extremely negative values. The soil fraction was consistently
under-estimated, except for one positive outlier, and residuals
became increasingly negative as the reference fraction increases.

3.4. Discussion

3.4.1. Representative endmembers
Other researchers have noted the potential of applying

MESMA to urban environments because the limited number of
endmembers used in standard SMA studies does not sufficiently
capture the spectral heterogeneity of urban environments (Lu &
Weng, 2004; Rashed et al., 2003; Wu, 2004). In other words, a
single endmember per category of material is not sufficient. Our
work also indicates that it is not sufficient to build a spectral
library based on the most representative endmembers of each
category. The ‘purest’ endmember fractions are not necessarily
representative of materials within the scene, and representative
spectra may not necessarily be selected as ‘pure’ endmembers
(Song, 2005). An endmember that is the ‘most representative’ of
its class, in this case determined by EAR, may not capture land
cover with distinct spectra that occupy small areas within the
scene. For example, in the case of selecting the NPVendmembers
(Table 2), spectrum(6) maps a relatively small area of the scene as
a two-endmember model, but more than 80% of the pixels
potentially mapped by spectrum(6) were mapped in the presence
of competition. In other words, spectrum(6) represented a spec-
trally distinct material with small areal extent. Therefore, while
spectrum(6) was not identified as most representative of the



Table 5
Accuracy measures for MESMA library constructed from top 3 EAR spectra for
each class (n=55)

Win_size 1 3 5 9 13 17

Vegetation
Slope 0.76 0.78 0.86 0.99 1.03 1.05
Intercept 12.2 14.2 7.8 0.2 −1.9 −2.4
RSQ 0.54 0.65 0.73 0.84 0.88 0.91

Impervious
Slope 0.34 0.46 0.53 0.57 0.61 0.62
Intercept 3.1 3.5 2.8 0.9 0.3 0.1
RSQ 0.19 0.54 0.65 0.85 0.92 0.94

Soil
Slope 0.03 0.05 0.12 0.30 0.35 0.35
Intercept 6.9 7.8 6.0 2.7 1.5 1.3
RSQ 0.00 0.01 0.04 0.23 0.44 0.53

MAE
Vegetation 43.0 41.5 39.4 38.5 38.0 36.5
Impervious 33.4 30.8 31.5 29.8 29.2 28.0
Soil 18.9 16.1 13.5 13.5 12.5 11.6

Bias
Vegetation −0.4 2.6 0.3 −0.4 −0.1 0.2
Impervious −16.6 −12.5 −10.6 −10.9 −10.3 −10.2
Soil −7.2 −5.2 −5.9 −7.4 −8.0 −8.4
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endmembers in the library, it was included as an endmember in
the final MESMA library because it could model materials that
would be not be captured by more ‘representative’ endmembers.

To compare the improvement resulting from the multi-step
endmember selection method presented in this paper to a
spectral library composed of the ‘most representative’ end-
members, we built a spectral library consisting of the three most
representative endmembers for each material class within the
library, as measured by EAR. This ‘EAR library’ therefore
consisted of 12 spectra in addition to photometric shade, and
MESMA was applied to the image using the same constraints
and models as detailed in the Methods section above. The EAR
library successfully modeled 80.3% of the non-water pixels, a
significant decrease (−15.6%) compared to the pixels modeled
by the MESMA library built by linking spectra to the scene. The
agreement between reference fractions and fractions modeled
by the EAR library is presented in Table 5. The correlation for
the vegetation fraction is essentially equivalent to the
correlation reported for the final MESMA library because two
of the three vegetation endmembers were identical for the two
libraries. However, the number and combinations of end-
member included in each library for the other material classes
were quite different, and correlations for the impervious and soil
fractions are greatly improved when endmembers were selected
based on the spectral variability of materials within the scene.

3.4.2. Accuracy assessment
While other studies have applied SMA to map the fractional

abundance of the physical components in an urban environ-
ment, this is the first study to our knowledge that provides a
quantitative accuracy assessment of the continuous fraction
values for all components. However, it should be remembered
that the measures reported for any accuracy assessment,
including those discussed above, refer to the agreement between
reference data and modeled data, and do not necessarily reflect
agreement between modeled data and ‘truth’ (Foody, 2002). An
additional step in qualitatively assessing the accuracy of the
modeled fractions, therefore, is to consider the quality of the
reference data, in particular, whether the over- and under-
estimation attributed to the modeled fractions might in part be
due to systematic errors in the reference data classification
(Powell et al., 2004). For example, analysis of residuals indi-
cated that the vegetation fractions tended to be under-estimated
by the MESMA output. Close inspection of the classified
videography, however, suggested conditions that may have
resulted in a systematic over-estimation of the vegetation
fraction in the reference data. Specifically, areas that were
highly shaded, such as spaces between buildings, were classi-
fied as vegetation in the videography, but more likely consisted
of impervious surfaces or bare soil. Similarly, very dark roofs
were classified as vegetation, resulting in an over-estimate of
vegetation and corresponding under-estimate of the impervious
area in the reference data. This could partly account for some of
the biases noted above.

Two issues associated with classifying the reference data also
provide insight concerning the low agreement between
reference and modeled soil fractions. First, visually distinguish-
ing between impervious and soil cover was difficult, especially
in areas that were highly built-up. As a result, it was often
difficult to verify the accuracy of the eCognition classification.
Second, comparing the fractional cover generated by MESMA
with the traditional exclusive and exhaustive classes imposed on
the videography mosaics introduced a fundamental problem,
that of equating two different types of data-continuous and
discrete. While the segmentation algorithm implemented by
eCognition provided an efficient means of classifying the
complex videography mosaics, classifying the segments into
discrete classes of materials was problematic in two cases.

The first type of problem occurred because the segments
generated did not always correspond to a single class of land-
cover materials. For example, in densely built-up areas, bare
soil tended to occur in tiny slivers, and the segments generated
often included soil slivers in addition to some surrounding
impervious materials. If these segments were consistently clas-
sified as soil on the videography, the reference soil fractions
would have been over-estimated. The second type of problem
occurred when two classes of materials existed as a mixture
within the segment. For example, a vacant lot could consist of
soil mixed with senesced grasses. The segment which included
that lot had to be classified as one material or the other–the
segment was assigned to the material that was most visually
abundant–while the MESMA output captured and quantified
the presence of both materials. If, the videography segments in
such cases were consistently classified as soil, the reference soil
fractions would again have been over-estimated.

Finally, presenting accuracy assessment in terms of correla-
tions had a distinct disadvantage compared to presenting a
traditional error matrix. The former provides no specific
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information concerning the confusion between classes of
materials, while the latter displays counts of agreement and
disagreement between classes (Foody, 2002). While the
correlation measures indicate the level of agreement between
reference and modeled data, there is no way to unravel
specifically where the disagreement lies. In other words, we
may know that impervious surfaces were in general over-
estimated, but we do not know, without looking at each sample
individually, whether impervious surfaces were generally
confused with NPV, with green vegetation, or with soil. From
previous work we have conducted in this region, we do know
that common sources of confusion for Landsat data include
some NPVand soil spectra, as well as some soil and impervious
spectra. Both sources of spectral confusion could also
contribute to the low accuracy of the soil fraction.

We investigated five of the largest residuals across all
materials that resulted from the accuracy assessment using a
9×9 window size. In four of the five cases, the samples were
located on a sharp and long boundary between two contrasting
land cover types, such as between a highly built-up area (i.e.
dominant impervious fraction) and a tract of forest (i.e.
dominant vegetation fraction). Because the boundary between
land-cover types cut through the entire accuracy sample, the
impact of a georegistration error between the reference and
modeled data is quite severe. For example, if a 9×9 sample is
centered over a border between two homogeneous land-cover
types, the fractions recorded for that sample are 50% for each
material class. If the sample window is shifted one pixel in a
direction perpendicular to the boarder, the fractions change to
39% and 61%. If the window is shifted two pixels, the fractions
Table 6
Accuracy measures with revised samples (n=50)

Win_size 1 3 5 9 13 17

Vegetation
Slope 0.75 0.85 0.89 0.98 1.00 1.02
Intercept 11.6 6.2 3.5 −2.0 −4.1 −5.0
RSQ 0.53 0.73 0.81 0.90 0.90 0.92

Impervious
Slope 0.63 0.85 0.87 0.95 0.97 0.97
Intercept 15.4 10.1 10.0 9.9 11.0 11.4
RSQ 0.36 0.73 0.78 0.91 0.92 0.92

Soil
Slope 0.48 0.43 0.42 0.48 0.49 0.50
Intercept 2.1 3.2 3.1 1.3 0.8 0.4
RSQ 0.26 0.25 0.28 0.63 0.65 0.71

MAE
Vegetation 21.5 14.0 11.9 8.6 8.6 8.1
Impervious 22.9 13.8 13.1 10.2 10.2 10.7
Soil 11.4 9.9 8.5 7.0 6.7 6.8

Bias
Vegetation −1.4 −1.8 −2.1 −3.0 −4.1 −4.0
Impervious 3.3 5.2 6.0 8.5 10.0 10.5
Soil −4.5 −3.6 −4.0 −5.4 −5.8 −6.3

The spectral library applied was the final MESMA library (compare to Table 3).
change to 28% and 72%, resulting in a significant over-estimate
of one fraction and corresponding under-estimate of the other,
even if the modeled and reference data would have agreed
exactly had they been accurately georeferenced. The fifth case,
with an extremely large residual, was clearly the result of land-
cover change that occurred between the date the videography
was collected and the date the ETM+ image was acquired, a
difference of 2 years.

The samples resulting in the five largest residuals were
removed from the pool, and accuracy assessment measures
recalculated using the remaining 50 samples (Table 6). For all
materials and at all window sizes, the accuracy measures
improved, especially for the soil fraction. In all cases, slope and
R-squared values increase (i.e. approach 1.0), and the intercept
shifted closer to zero. The MAE and the bias also decreased in
all cases. We can conclude, therefore, that a truer measure of
modeled fraction accuracy would require more careful co-
registration of the reference and image data, screening reference
samples for possible change between dates, and perhaps using
higher resolution reference data so that more accurate
discrimination of land-cover materials was possible. However,
the fundamental problem of comparing the exclusive and
exhaustive reference data classes with the continuous values of
the modeled fraction data remains, and may ultimately limit the
quality of accuracy assessment for continuous data, a challenge
also noted by Rashed et al. (2005).

3.4.3. Unit of analysis
The effect of increasing correlation between reference and

modeled fractions as window size increased was an expected
result for several reasons: (a) increasing the window size should
decrease the impact of geolocation error, though not in all cases,
as discussed above; (b) the signal recorded at the sensor for a
single pixel is affected by the spectral properties of surrounding
pixels, and aggregating the modeled data reduces this effect
(e.g. Forster, 1985; Huang et al., 2002; Townshend et al., 2000);
and (c) the process of averaging fractions over larger areas
should reduce the variance of each data set (Woodcock &
Strahler, 1987), and thereby increase correlation between
fractions, assuming the means of the two datasets are similar.
Given the challenges of accuracy assessment for continuous
fractions across the urban landscape and the subsequent
limitations on confidence in relating reference and modeled
fractions, generating accuracy measures with different sample
sizes provides a way to assess the appropriate unit of analysis
for a given application (Small, 2001). For example, an analyst
might want to consider the level of agreement that would be
required for confidence in the results of change detection
between two dates. Based on the accuracy measures for this
case study as reported in Tables 3 and 6, we suggest that the
minimum resolution required for such a comparison is the 9×9
window size. While aggregating the modeled fractions to this
resolution (270 m) results in considerable loss of heterogeneity
and specificity, it is still a resolution that allows assessment of
the general physical composition of the urban landscape, as well
as comparisons between subdivisions of the city, such as
neighborhoods.
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3.5. Conclusion

In this paper, we have presented: a) an application ofMESMA
in an urban environment using regionally specific endmembers
to map the physical abundance of generalized urban materials;
b) a methodology for endmember selection which incorporates
multiple sources of spectra and links the most representative
spectra in each library class to the spectral variability of materials
present on the landscape; and c) accuracy assessment for fraction
images corresponding to each physical component. These tech-
niques adequately characterized the diversity of materials that
compose land cover within a diverse urban area, and at the same
time provided a conceptual structure for grouping the specific
materials into three general classes—vegetation, impervious, and
soil. These generalized classes can characterize urban land cover
regardless of specific construction materials or local environ-
mental variation (Ridd, 1995), facilitating comparison of urban
data sets on a global scale. We have demonstrated the feasibility
of deriving these measures from moderate spectral/spatial resolu-
tion imagery. Because of the global availability and historic
archive of such data (i.e. over 30 years of Landsat data), regional
comparisons of urban development through time are possible.

Future research directions include improving the quality of
the reference data to better assess the accuracy of the modeled
fractions. In addition, more systematic documentation of the
confusion between specific material classes might provide
insight into the limitations of spectral mixture analysis applied to
data of moderate spectral resolution due to spectral confusion.
Analysis of spectral confusion could also lead to development of
techniques to screen spectra from the MESMA library based on
potential confusion with other material classes. Another issue to
investigate is whether different selection rules for determining
model complexity lead to higher fraction accuracy, as it is pos-
sible that selecting for computational efficiency does not produce
the most accurate results. Finally, we plan to apply the method-
ology developed herein to other cities with different populations,
different development histories, and different natural environ-
ments to assess the generality of these techniques.
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