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Abstract

Spectral similarity metrics have previously been used to select representative spectra from a class for use in spectral mixture modeling. Since
the tasks of spectral selection for spectral mixture modeling and spectral selection for temporal compositing are similar, these metrics may have
utility for temporal compositing. This paper explores the use of two spectral similarity metrics, endmember average root mean square error (EAR)
and minimum average spectral angle (MASA), for constructing temporal composites. EAR and MASA compositing algorithms were compared
against four previously used algorithms, including maximum NDVI, minimum view zenith angle, minimum blue, and median red. A total of 10
different algorithms were used to create 16-day composites of Moderate Resolution Imaging Spectroradiometer (MODIS) surface reflectance data
over a 6-year period. Algorithm performance was assessed based on short-term temporal variability in spectral reflectance and in a selection of
indices, both within a southwestern California study area and within five land-cover class subsets. EAR compositing produced the lowest
variability for 4 out of 7 MODIS bands, as measured by the root mean square of time series residuals. MASA or EAR compositing produced the
lowest root mean square residual values for all of the tested indices. To assess how compositing algorithms might affect remote sensing
correlations with biophysical variables, correlations between indices calculated from different composites and live fuel moisture were compared.
Correlations between indices and live fuel moisture were higher for shape-based composites compared with the standard composites.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Temporal compositing has routinely been applied to remote
sensing time series data as a means of minimizing the impacts of
cloud effects and changing view geometry, and as a form of data
compression (Qi & Kerr, 1997). Temporal compositing
examines the values of a band or index within a pixel across
time and, using an algorithm, selects the single best band or
index value to represent the entire time period. The resulting
composite image can then be compared with other composites
to characterize vegetation phenology and productivity, classify
land cover, and detect change over time (Box et al., 1989;
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Churkina et al., 2005; Duchemin et al., 1999; Friedl et al., 2002;
Loveland et al., 2000; Lunetta et al., 2006; Paruelo &
Lauenroth, 1998). The challenge of compositing as described
by Qi and Kerr (1997) is retaining useful information in the
composited data while at the same time suppressing background
“noise” caused by cloud, atmospheric, or BRDF effects. Choice
of compositing algorithms can impact the variability of the
composited data and of indices calculated from the composited
data (Roy, 1997) and the accuracy of classifications for specific
applications (Chuvieco et al., 2005).

A multitude of temporal compositing algorithms have been
developed for moderate-to-coarse resolution remote sensing
systems. Holben (1986) established the use of the maximum
value of a vegetation index for compositing. Maximum value
compositing has been the most commonly used compositing
algorithm, but it has been found to favor forward-scattering
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view geometries and is susceptible to atmospheric contamina-
tion (Cihlar et al., 1997; Kasischke & French, 1997; van
Leeuwen et al., 1999). Several other methods rely on low
reflectance in the visible wavelengths to discriminate clear
pixels from cloud-contaminated pixels. Examples of this type of
algorithm include selecting the minimum blue band value
(Vermote & Vermeulen, 1999), the minimum red band value
(Cabral et al., 2003; Chuvieco et al., 2005), or the median red
band value (Dennison et al., 2005). Relying on minimum
reflectance may favor selection of shadowed pixels, as occurs
for the minimum blue compositing method (Roy et al., 2002). A
third class of algorithms takes into account view geometries,
either by explicitly correcting for bidirectional reflectance
distribution function (BRDF) (van Leeuwen et al., 1999; Schaaf
et al., 2002) or by selecting the minimum view zenith angle
(Chuvieco et al., 2005). Selecting for minimum view zenith
angle also minimizes the observational area of pixels by
favoring view zeniths closer to nadir, but minimum view zenith
selection requires rigorous prescreening of data for cloud
effects. BRDF modeling accounts for both view and solar
zeniths and azimuths. An observationally-based BRDFmodel is
used to correct MODIS data to nadir reflectance for the
MOD43B4 16-day Nadir BRDF-Adjusted Reflectance product
(Schaaf et al., 2002). A fourth class of algorithms uses thermal
infrared measures for compositing, such as thresholding
brightness temperature (Gutman et al., 1994) or maximum
surface temperature (Cihlar et al., 1994; Roy, 1997). Algorithms
can also combine multiple criteria, including view zenith
angles, minimum band brightness or maximum index values,
and brightness temperatures (Cabral et al., 2003; Carreiras &
Pereira, 2005; Carreiras et al., 2003; Cihlar et al., 1994).

This study introduces a new class of compositing algorithms
based on two measures of spectral similarity, endmember
average root mean square error (EAR) and minimum average
spectral angle (MASA). This research conclusively demon-
strates that these novel algorithms are able to reduce short-term
variability in spectral indices across several land cover types
within a limited study area.

2. Background

2.1. Spectral matching algorithms

Spectral matching algorithms are used to determine
similarity between reference spectra and image spectra. These
algorithms use a similarity metric to resolve the identity or
composition of an unknown spectrum (e.g. Boardman et al.,
1995; Clark & Roush, 1984; Dennison et al., 2004; Harsanyi &
Chang, 1994; Kruse et al., 1993). Two spectral matching
algorithms have been widely used for determining spectral
similarity: multiple endmember spectral mixture analysis
(MESMA; Roberts et al., 1998) and spectral angle mapper
(SAM; Kruse et al., 1993). MESMA is based on linear spectral
mixture modeling (Adams et al., 1993), and models a spectrum
as the linear combination of spectral “endmembers”. Each
endmember is multiplied by a fractional abundance, such that
the reflectance of a modeled spectrum (ρ′λ) is determined by
the sum of the reflectance of each material within a pixel
multiplied by its fractional cover:

qkV¼
XN
i¼1

fi ⁎ qik þ ek ð1Þ

where ρiλ is the reflectance of endmember i for a specific band
(λ), fi is the fraction of the endmember, N is the number of
endmembers, and ελ is a residual term. Linear spectral mixing
models typically use a dark “shade” endmember that controls
for brightness, along with one or more non-shade endmembers.
MESMA extends linear spectral mixture modeling by allowing
the number and identity of non-shade endmembers to vary on a
per-pixel basis. MESMA measures spectral similarity by the
root mean square of the residual term:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k¼1

ðekÞ2

M
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where M is the number of bands (Roberts et al., 1998).
SAM measures spectral similarity using the angle between

two spectral vectors. The length of a spectrum vector (Lρ) is
calculated as:

Lq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
k¼1
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and spectral angle (θ) is calculated as:

h ¼ cos−1
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where Lρ is the length of the endmember vector and Lρ′ is the
length of the modeled spectrum vector calculated using Eq. (3).
Since the angle between vectors is independent of vector length,
spectral angle does not vary with the brightness of the two
spectra being compared.

MESMA and SAM can both be used to measure the spectral
similarity within a class of spectra. This class normally consists
of spectra of a single land cover type or vegetation species
(Ballantine et al., 2005; Dennison & Roberts, 2003a,b; Powell
et al., 2007). An example of a class consisting of five spectra,
numbered 1 through 5, is shown in Fig. 1. Each spectrum within
the class is a candidate endmember for modeling the other
spectra in the class using MESMA or SAM. Fig. 1 shows each
spectrum in the class being used as an endmember to model
every other spectrum in the class. A spectral matching algorithm
can be used to measure spectral similarity between each pairing
of an endmember and a modeled spectrum. In Fig. 1, the
spectral similarity metric is represented with the symbol σi,j,
where i is the endmember number and j is the modeled
spectrum number. For MESMA, σi,j is RMSE while for SAM
σi,j is θ, the spectral angle. Dennison et al. (2004) showed that



Fig. 1. A matrix showing a class of five spectra (endmembers) being used to
model each spectrum in the class, producing an error metric for each model (σi,j)
and an average error metric for each endmember spectrum (σ̄i).
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for each endmember, an average spectral similarity metric, σ̄ i,
can be calculated:

r̄i ¼

XN
j¼1

ri;j

N−1
ð5Þ

where i is endmember, j is the modeled spectrum, and N is the
number of endmembers. The endmember with the lowest
average spectral similarity metric is the endmember that, on
average, best models its spectral class. Dennison and Roberts
(2003a) refer to this endmember as being the most “represen-
tative” of its class.

Dennison and Roberts (2003a) examined the similarity of
spectra belonging to the same vegetation species using
MESMA. Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) spectra were extracted from polygons containing
field-verified species composition and classed by species.
Endmember average RMSE (EAR) was calculated for each
spectrum to determine which spectrum in each class best
modeled the class:

EARi ¼

XN
j¼1

RMSEi;j

N−1
ð6Þ

The spectrum with the minimum EAR value indicated the
spectrum that had the best average fit to the other spectra within
its class, in terms of RMSE. Dennison and Roberts (2003a) used
the minimum EAR endmember for multiple vegetation species
classes to map species across the entire image. Minimum EAR
values were also compared between species classes to indicate
the relative amount of spectral diversity within each class.
Dennison and Roberts (2003b) introduced a constraint to EAR
to prevent low reflectance spectra from being selected. The
fraction of the non-shade endmember was limited to a
maximum value, which increased the RMSE for darker spectra.
Dennison and Roberts (2003b) also demonstrated that pheno-
logical changes were expressed in minimum EAR endmembers
extracted from a time series of AVIRIS data. Ballantine et al.
(2005) used EAR to select representative endmembers from a
library of MODIS image and reference spectra for mapping
landforms across North Africa, and Powell et al. (2007) used
EAR to select endmembers suitable for mapping impervious
surfaces in the Brazilian Amazon.

Dennison et al. (2004) introduced minimum average spectra
angle (MASA). MASA is the spectral angle equivalent to EAR,
with h replacing RMSE as the error metric:

MASAi ¼

XN
j¼1

hi;j

N−1
ð7Þ

The spectrum with the minimum MASA value is the spectrum
that has the best average fit to the other spectra within its class,
in terms of spectral angle. Unlike EAR, MASA is only sensitive
to differences in spectral shape and is not sensitive to
differences in brightness. EAR and MASA are not equivalent,
but are closely related for spectral classes that have small
variations in albedo (Dennison et al., 2004). If EAR is
unconstrained, the same spectrum frequently possesses the
minimum EAR and MASA values within a class.

While EAR and MASA have predominantly been used to
select spectra from classes extracted from a single land cover
type or vegetation species, there are no explicit limitations on
the membership of the spectral classes used to calculate EAR
andMASA. A spectral class could be comprised of spectra from
the same location, measured at different times. In this case, EAR
or MASA would select the single spectrum that has the best
average fit to the spectra collected over a period of time. Thus,
EAR and MASA have potential for use in temporal compositing
algorithms. Unlike existing compositing algorithms, these EAR
and MASA-based algorithms can select composite spectra
based on how well they match the shape of the spectra within
the compositing period. Spectra with transient cloud or
atmospheric contamination, or infrequent BRDF effects, are
unlikely to be selected because they poorly match the shape of
other spectra within the compositing period.

2.2. Using temporal composites to monitor live fuel moisture

To demonstrate that choice of compositing algorithm might
affect apparent relationships between remote sensing data and a
biophysical variable, correlations betweenMODIS spectral indices
and live fuel moisture were compared for different compositing
algorithms. Several previous studies have examined correlations
between MODIS spectral indices and live fuel moisture of
chaparral vegetation (Dennison et al., 2005; Roberts et al., 2006;



Fig. 2. A sinusoidally projectedMODIS “true color” composite (bands 1, 4, 3) of
southern California. The study area is outlined by the large rectangle. The small
squares outline 10 km by 10 km areas with uniform land cover used for residual
analysis. The locations of 11 live fuel moisture samples sites are marked by
white crosses.
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Stow et al., 2005). Live fuel moisture is calculated as the mass of
water as a percentage of the dry mass of vegetation (md):

live fuel moisture ¼ mw−md

md
ð8Þ

where mw is the mass of the undried vegetation. These previous
studies have compared chaparral live fuel moisture to two classes
of indices: greenness and moisture indices. Greenness indices
utilize the strong spectral contrast between higher NIR or green
reflectance and lower red reflectance caused by chlorophyll
absorption, while moisture indices rely on water absorption
features in the short-wave infrared.

Previous studies have disagreed as to whether specific
greenness indices or moisture indices are more strongly related
to live fuel moisture. Dennison et al. (2005) used a median red
compositing algorithm to create 16-day MODIS surface
reflectance composites. These composites were used to
calculate normalized difference vegetation index (NDVI;
Rouse et al., 1973) and normalized different water index
(NDWI; Gao, 1996). Correlations between these two indices
and live fuel moisture were examined, and NDWI was found to
have a stronger relationship with live fuel moisture than NDVI.
Stow et al. (2005) used the MODIS 8-day surface reflectance
product to generate a monthly time series of MODIS index
values. They compared live fuel moisture values to NDWI and
visible atmospherically resistant index (VARI; Gitelson et al.,
2002) values, and found that VARI was more strongly
correlated with live fuel moisture. Roberts et al. (2006)
examined the relationships between live fuel moisture and a
larger suite of vegetation indices. They used an EAR
compositing algorithm similar to the one presented in this
paper to calculate 16-day MODIS composites, which were then
used to derive NDVI, NDWI, VARI, the vegetation index green
(VIg; Gitelson et al., 2002), the enhanced vegetation index
(EVI; Huete et al., 2002), and normalized difference indices
using MODIS bands 6 and 7 (NDII6 and NDII 7; Hunt & Rock,
1989). Roberts et al. (2006) found consistently stronger
relationships with live fuel moisture for visible-based greenness
indices (VARI and VIg) than for moisture indices.

3. Methods

3.1. Data

Ten compositing algorithms were compared for an approx-
imately 330 by 190 km study area covering southern California,
USA (Fig. 2). The study area was selected based on its diversity
of land cover, including urban and agricultural land uses, and
shrubland and desert vegetation cover. The study area was also
selected to include long-term chaparral live fuel moisture
monitoring sites with Los Angeles County, California (Fig. 2).

The MODIS Terra level 2 g global half kilometer daily
surface reflectance product (MOD09GHK) was used as the
primary input for the compositing algorithms. See Vermote et al.
(1997) and Vermote et al. (2002) for a description of MODIS
surface reflectance processing. MOD09GHK includes 7 visible,
near infrared, and shortwave infrared bands (469 nm, 555 nm,
645 nm, 857 nm, 1240 nm, 1640 nm, and 2130 nm), has a
sinusoidal projection, and a ground sample distance of
approximately 460 m. MOD09GHK data for 2053 days,
spanning 24 February 2000 to 31 December 2005, were used
to construct 16-day composites for the study area. The 16-day
composite period was selected to match the orbital cycle of the
Terra satellite, current standard MODIS vegetation index
products, and several other MODIS land products.

All daily surface reflectance data were screened for cloud
effects and view zenith angle. The MODIS Terra level 2 g 1 km
surface reflectance quality product (MOD09GST) was used to
create a cloud mask. MOD09GST contains cloud masks derived
from the MODIS MOD35 cloud mask product. Flags for cloud
cover, cloud shadow, and cirrus were used to create a cloud
effects mask, which was then resampled to match the resolution
of the MOD09GHK product. The MODIS Terra level 2 g 1 km
daily geolocation angles product (MODMGGAD) was used to
screen out high view zenith angles. View zenith angles higher
than 45° were masked out and then resampled to match the
resolution of the MOD09GHK product. The resulting masks
were applied to the daily surface reflectance data. All unmasked
pixels were required to have no cloud cover, and no cloud
shadow, and no cirrus, and a view zenith angle of 45° or less, as
indicated by the MOD09GST and MODMGGAD data flags.

The remaining dates for each pixel within a 16-day period
formed a spectral class, and were composited using 10 different
algorithms (Table 1). Each algorithm selected a spectrum from
the 16-day period for each pixel in the study area. The
algorithms were used to generate a time series of 129 sixteen-
day composites spanning 2000–2005.

3.2. Compositing algorithms

Four algorithms previously utilized for compositing MODIS
data were used to calculate baseline composite time series. A



Fig. 3. Three MODIS spectra for the Clark Motorway live fuel moisture site
corresponding to days 242 (a), 251 (b), and 249 (c) of 2005.

Table 1
Descriptions of the compositing algorithms used to construct 16-day temporal
composites of daily MODIS surface reflectance data

Composite
abbreviation

Description Reference

maxNDVI Selects spectrum with maximum normalized
difference vegetation index (NDVI).

Holben
(1986)

minVZA Selects spectrum with minimum view zenith
angle (VZA).

Chuvieco et al.
(2005)

minblue Selects spectrum with minimum band 3
(469 nm) reflectance.

Vermote and
Vermeulen
(1999)

medred Selects spectrum with median band 1 (645 nm)
reflectance.

Dennison et al.
(2005)

EAR10 Selects spectrum with minimum endmember
average RMSE (EAR). Maximum mean shade
fraction constrains the brightness of the
selected spectrum and has a value of 10%,
20%, 30%, 40%, or 50%.

Dennison and
Roberts
(2003a)

EAR20
EAR30
EAR40
EAR50
MASA Selects spectrum with minimum average

spectral angle (MASA).
Dennison et al.
(2004)
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maximum value composite (Holben, 1986) using NDVI
(maxNDVI) was used to select the spectrum with the maximum
normalized difference ratio of bands 1 (645 nm) and 2 (856 nm)
within the 16-day composite period for each pixel. A minimum
view zenith angle (minVZA) composite was used to select the
spectrum with the minimum sensor view zenith angle
(Chuvieco et al., 2005). A minimum blue (minblue) algorithm
developed by Vermote and Vermeulen (1999) was used to select
the spectrum containing the minimum band 3 (469 nm)
reflectance, and a median red (medred) algorithm used by
Dennison et al. (2005) was used to select the spectrum
containing the median band 1 reflectance.

The four baseline compositing algorithms were compared
with five algorithms based on EAR and one algorithm based on
MASA. For the shape-based compositing algorithms, the
number of unmasked dates within the compositing period was
determined for each pixel. Since both EAR and MASA require
at least three spectra within a spectral class to find the single
spectrum with the best average fit, the spectrum with the lower
red reflectance was selected when only two spectra were
available within a 16-day compositing period. For three or more
unmasked spectra within a pixel for a compositing period, all
spectra were placed within the same spectral class and EAR and
MASA were calculated for each spectrum. The spectrum with
the lowest EAR or MASA value was selected as the composite
spectrum for that pixel.

The shape-based compositing algorithms differed by the
constraints that were placed on endmember selection. For the
MASA compositing algorithm, no constraints were placed on
endmember selection and the composite spectra were selected
entirely based on spectral shape. Five variations of an EAR
compositing algorithm were compared. Unlike MASA, EAR
can be constrained to select endmembers based both on
brightness and spectral shape. All five EAR algorithms used a
maximum non-shade endmember fractional constraint of 100%,
which penalizes low reflectance endmembers by increasing
their EAR value (Dennison & Roberts, 2003b).

A new constraint on the shade fraction was used to penalize
high reflectance endmembers as well. The mean shade fraction
was calculated for each endmember, and only endmembers with
mean shade fractions below a specified threshold could be
selected for the composite. To illustrate how the mean shade
fraction and RMS were used for compositing, an example using
three spectra derived from the composite period spanning days
241–256 in 2005 is shown in Fig. 3. Spectrum “a” has the
lowest EAR value, but since it is the brightest spectrum in the
compositing period it also has the highest mean shade fraction
(14%). A maximum mean shade fraction constraint limits the
mean shade fraction of the selected spectrum to a value below a
fixed threshold. In this example, if the maximum mean shade
fraction constraint was greater than 14%, then spectrum “a”
would be selected because it had the lowest EAR value and a
mean shade fraction below the constraint. If the maximummean
shade fraction constraint was set at 10%, then spectrum “b”
would be selected because it has the lowest EAR value with a
mean shade fraction below the constraint.

Five different maximum mean shade fraction constraints
were tested. Higher constraints allow spectral selection to be
based more on spectral shape and less on relative brightness,
while lower, more stringent constraints allow spectral selection
to be based more on relative brightness and less on spectral
shape. The five maximum mean shade fraction constraints
tested were 10%, 20%, 30%, 40%, and 50%. The EAR
algorithms will be referred to as EAR10, EAR20, EAR30,
EAR40, and EAR50, with the number corresponding to the
maximum mean shade fraction constraint.

3.3. Variability analysis

The short-term temporal variability of the composite times
series was assessed for each of the 10 compositing algorithms.



Table 2
Spectral indices calculated for each of the 16-day MODIS composites listed in
Table 1

Index Formula (band center wavelengths in nm) Reference

VIg q555−q645
q555 þ q645

Gitelson et al. (2002)

VARI q555−q645
q555 þ q645−q469

Gitelson et al. (2002)

NDVI q857−q645
q857 þ q645

Rouse et al. (1973)

EVI
2:5� q857−q645

q857 þ 6� q645−7:5� q469 þ 1
Huete et al. (2002)

NDWI q857−q1240
q857 þ q1240

Gao (1996)

NDII6 q857−q1640
q857 þ q1640

Hunt and Rock (1989)

NDII7 q857−q2130
q857 þ q2130

Hunt and Rock (1989)
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Large deviations in one composite's reflectance or index values
from a longer-term trend may indicate suboptimal selection of
spectra by the compositing algorithm. These deviations can be
caused by cloud effects such as unmasked cloud or cloud
shadow contamination, or by BRDF, although sudden pheno-
logical or land cover change may also produce similar
deviations. Short-term variability within a five composite
(80 days) moving window was examined for seven MODIS
bands and for seven commonly used vegetation indices listed in
Fig. 4. NDWI values for the Clark Motorway live fuel moisture sampling site,
calculated from the maxNDVI and MASA 16-day composites.
Table 2. For each band or index, variability was measured using
a filtering technique described by Roberts et al. (2006). A low
pass filter was applied to a moving window of five composites,
and a residual was calculated as the raw value from the central
composite minus the filtered value from the central composite.
Residuals were not calculated for the first two composites, the
last two composites, or for any missing values in the composite
time series. Composite residuals can be compared within bands
or indices, but should not be directly compared between
different bands or indices. Fig. 4 compares time series of NDWI
values for two compositing algorithms, maxNDVI and MASA.
Fig. 5 shows the residuals for the filtered time series, along with
the root mean square of the residuals for each series. In this
example, MASA has lower variability than maxNDVI, as
shown by the smaller residuals and lower root mean square
residual value.

Root mean square residuals were calculated for each pixel,
for each band or index, and for each composite produced by a
different compositing algorithm. To permit comparison of
compositing algorithms over the entire study area and within
specific land cover types, root mean square residuals were
spatially averaged. To calculate the average root mean square
residual for the entire study area, water areas within the study
area were masked and the mean root mean square residual was
calculated for all remaining pixels. To examine how land cover
impacts residuals, root mean square residuals were averaged
within five 10 km by 10 km sites containing uniform land cover.
The locations of land cover analysis sites containing agricul-
tural, chaparral, desert, grassland, and urban land cover types
are shown in Fig. 2.

3.4. Live fuel moisture analysis

Higher variability in indices caused by cloud contamination
or BRDF effects may reduce the strength of correlations between
indices and biophysical variables. Correlations between index
Fig. 5. NDWI residuals for the Clark Motorway live fuel moisture sampling site,
calculated from NDWI values shown in Fig. 4.



Table 3
The mean of study area root mean square residuals for MODIS reflectance
bands, shown as percent reflectance

Composite MODIS band

Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7

MASA 1.20% 2.31% 0.68% 1.03% 2.51% 2.25% 1.70%
EAR50 0.97% 1.56% 0.71% 0.85% 1.56% 1.43% 1.19%
EAR40 0.93% 1.55% 0.65% 0.81% 1.56% 1.44% 1.18%
EAR30 0.89% 1.53% 0.61% 0.77% 1.55% 1.44% 1.18%
EAR20 0.85% 1.46% 0.57% 0.73% 1.49% 1.39% 1.15%
EAR10 0.82% 1.42% 0.57% 0.72% 1.44% 1.32% 1.13%
maxNDVI 1.23% 2.56% 0.71% 1.08% 2.69% 2.22% 1.75%
medred 0.72% 1.83% 0.55% 0.66% 1.95% 1.46% 1.21%
minblue 0.84% 1.68% 0.50% 0.70% 1.77% 1.48% 1.32%
minVZA 1.24% 1.65% 1.02% 1.14% 1.82% 1.49% 1.37%

Minimum values for each band are shown in italics.
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values and live fuel moisture were examined for the 10
compositing algorithms. Live fuel moisture was sampled at 14
sites in Los Angeles County, California, USA by the Los
Angeles County Fire Department. Sampling occurred approx-
imately once every 3 weeks during the 2000–2005 study period
(LACFD, 2000–2005). One to three species were sampled at
each site using methods described by Countryman and Dean
(1979) andWeise et al. (1998). Three sites were eliminated from
the analysis due to high land cover heterogeneity within the
MODIS pixel containing the sample site or due to a fire in close
proximity to the site during the study period (Roberts et al.,
2006).

Linear regression was used to assess the relationship
between index values and 16 live fuel moisture samples at 11
sites. r2 values were calculated for each sample, and the average
r2 values for all samples were compared by index and by
composite. A significance test outlined by Dennison et al.
(2005) was used to determine the number of samples that
possessed significantly lower or higher correlations for each
composite, compared with the best composite. Correlation
coefficients were transformed to a normalized distribution using
a Fisher z-transform (Papoulis, 1990):

zf ¼ 0:5d ln
1þ r
1−r

� �
ð9Þ

where r is Pearson's correlation coefficient. The difference in
individual zf scores was then calculated as:

z ¼ zf1−zf2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1−3
þ 1

n2−3

q ð10Þ

where n is the number of samples (Papoulis, 1990). A one-tailed
test was used to determine whether z was significantly positive
or negative to indicate a significantly stronger or weaker
correlation.
4. Results

Dennison and Roberts (2003a) showed that the minimum
EAR value is an indicator of the heterogeneity within a spectral
class. Similarly, EAR and MASA values calculated by the
Fig. 6. Mean minimum EAR (for all composites in the time series) for the spectra
selected by the EAR30 compositing algorithm.
shaped-based compositing algorithms are indicators of the
temporal spectral heterogeneity within a 16-day composite
period. Fig. 6 shows the mean minimum EAR values for all
EAR30 composites in the time series. EAR values are high along
the edges between two land cover types, for example, between
land and water. Agricultural areas such as the Central Valley (Fig.
6 top center–right), the Santa Maria Valley (top left) and Imperial
Valley (bottom right) also exhibit high EAR values. EAR values
are high in these cases because of view zenith effects on the
spatial resolution of MODIS data. As view zenith increases, the
effective observational area of each MODIS pixel also increases
(Wolfe et al., 1998). Changes in the observational area will most
strongly impact heterogeneous (e.g. patchwork fields) or
discontinuous (e.g. shorelines) land cover. As different fractions
of multiple land cover types are measured within the observa-
tional area of a pixel, the spectral response of that pixel will vary.
The dynamic nature of agricultural areas also contributes to their
higher EAR values. Elevated EAR values show evidence of
increased spectral variability at higher elevations in the San
Gabriel and San Jacinto mountain ranges. Rapid changes in snow
cover at higher elevations can create radically different spectral
response over short periods of time. High EAR values at high
elevation reflect snow deposition and ablation on relatively short
time scales.

Tables 3 and 4 summarize the study area root mean square
residuals for image band and index values. The EAR composites
Table 4
The mean of study area root mean square residuals for seven spectral indices

Composite Index

VIg VARI NDVI EVI NDWI NDII6 NDII7

MASA 0.0098 0.0161 0.0170 0.0178 0.0100 0.0162 0.0211
EAR50 0.0105 0.0160 0.0201 0.0156 0.0113 0.0193 0.0248
EAR40 0.0105 0.0163 0.0199 0.0156 0.0111 0.0191 0.0247
EAR30 0.0105 0.0166 0.0199 0.0155 0.0112 0.0189 0.0248
EAR20 0.0107 0.0173 0.0206 0.0155 0.0117 0.0195 0.0260
EAR10 0.0116 0.0189 0.0231 0.0162 0.0133 0.0217 0.0296
maxNDVI 0.0161 0.0317 0.0234 0.0264 0.0153 0.0236 0.0312
medred 0.0125 0.0200 0.0249 0.0220 0.0180 0.0254 0.0348
minblue 0.0164 0.0313 0.0277 0.0187 0.0167 0.0250 0.0346
minVZA 0.0123 0.0208 0.0259 0.0158 0.0217 0.0267 0.0347

Minimum values for each index are shown in italics.



Fig. 7. The mean of root mean square residuals for each land cover type, for MODIS reflectance bands 1–7.
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Fig. 8. The mean of root mean square residuals for each land cover type, for seven spectral indices.
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Table 5
Mean r2 values for comparisons of live fuel moisture and MODIS indices,
averaged for 16 live fuel moisture samples at 11 sites

Composite Index

VIg VARI NDVI EVI NDWI NDII6 NDII7

MASA 0.66 0.66 0.58 0.45 0.65 0.62 0.57
EAR50 0.64 0.63 0.53 0.53 0.59 0.57 0.51
EAR40 0.64 0.64 0.54 0.52 0.59 0.57 0.52
EAR30 0.63 0.62 0.53 0.50 0.59 0.56 0.51
EAR20 0.61 0.61 0.50 0.44 0.51 0.55 0.50
EAR10 0.60 0.58 0.51 0.44 0.50 0.56 0.52
maxNDVI 0.56 0.55 0.45 0.30 0.55 0.55 0.48
medred 0.60 0.59 0.51 0.35 0.46 0.50 0.49
minblue 0.58 0.56 0.45 0.42 0.53 0.56 0.47
minVZA 0.58 0.57 0.44 0.50 0.37 0.55 0.47

The highest r2 values for each composite is shown in italics.
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are listed in order from least restrictive mean shade fraction
constraint (EAR50) to most restrictive mean shade fraction
constraint (EAR10). Residuals calculated for band values and
residuals calculated for index values demonstrated contrasting
trends. For band values, root mean square residuals were
generally lowest for EAR10 or for one of the standard
composites (Table 3). Overall root mean square residuals were
lowest for visible bands 1, 3, and 4, due to lower reflectance
caused by chlorophyll absorption in the visible spectrum. For
these darker bands, the minred or minblue composites possessed
the lowest root mean square residuals. For the brighter bands (2,
5, 6, and 7), the EAR10 composite possessed the lowest root
mean square residuals. The maxNDVI and minVZA composites
each produced the highest root mean square residuals for 3 out of
the 7 bands. Comparing the shape-based composites, MASA
and EAR algorithms most strongly favoring spectral shape had
higher average residuals than EAR with more restrictive mean
shade fraction constraints (Table 3).

In contrast to the residuals for band values, the root mean
square residuals for six of the seven indices were lowest for the
MASA composite (Table 4). The MASA composite possessed
the lowest root mean square residual for every index except
EVI. No single composite produced the highest residuals, with
all four of the baseline composites possessing the highest root
mean square residual for at least one band. The baseline
Table 6
The number of live fuel moisture samples (out of 16 possible) for which the
pairing of the MASA composite and an index possessed a significantly higher r
value (confidence levelN0.95) than the each composite listed and the same
index

Composite Index

VIg VARI NDVI EVI NDWI NDII6 NDII7

EAR50 0 0 0 0 1 0 0
EAR40 0 0 0 0 2 0 0
EAR30 0 0 0 0 1 0 0
EAR20 0 0 1 0 3 0 0
EAR10 1 2 0 1 5 0 0
maxNDVI 5 5 5 5 4 2 3
medred 1 1 5 2 10 1 0
minblue 4 4 6 2 5 2 3
minVZA 3 3 6 0 15 2 2
composite residuals were uniformly higher than those from the
MASA and EAR composites. Table 4 shows only two instances
of a baseline composite with a lower root mean square residual
than a MASA or EAR composite, both for EVI.

Plots of band root mean square residuals for each land cover
type show that the agricultural and grassland land cover types
consistently had the highest residuals (Fig. 7). Both land cover
types also had higher variability in root mean square residuals
when compared across the different compositing algorithms.
The maxNDVI, minVZA, and MASA composites displayed the
highest residuals across all five land cover types. The medred,
minblue, and EAR10 composites generally produced the lowest
residuals, although the desert root mean square residuals
decreased as the mean shade fraction constraint was relaxed.
Variations in the mean shade fraction constraint appeared to
have little effect on residuals for chaparral.

Plots of index root mean square residuals for each land cover
type show that the agricultural land cover type routinely had the
highest residuals (Fig. 8). The desert land cover type had the
lowest root mean square residuals, but this is at least partially due
to the low index values associated with sparse vegetation cover.
The MASA composite produced the lowest residuals for most
indices across all five land cover types. A notable exception
occurs for chaparral EVI, however. For chaparral EVI, theMASA
composite had a higher root mean square residual than any of the
other composites. In general, the EAR and MASA composites
possessed lower residuals than the four baseline composites.

The lower variability of the MASA composite for most
indices in the chaparral land cover type (Fig. 8) may translate to
stronger correlations between indices and live fuel moisture. The
MASA composite did produce higher average r2 values than
every other composite, for every index except EVI (Table 5). For
EVI, the EAR50, EAR40, EAR30, andminVZA composites had
higher average r2 values than theMASA composite did. Over all
composites, VARI and VIg had the strongest correlations with
live fuel moisture. NDWI had lower average correlations than
VIg and VARI for 3 of the 4 baseline compositing algorithms,
but increased to nearly match the average r2 values of VIg and
VARI when the MASA or maxNDVI composites were used.

The significance of differences between composite correlation
coefficients was tested for the seven indices for each of the 16
Table 7
The number of live fuel moisture samples (out of 16 possible) for which a
composite and index pairing possessed a significantly higher r value (confidence
levelN0.95) than the MASA composite for the same index

Composite Index

VIg VARI NDVI EVI NDWI NDII6 NDII7

EAR50 0 0 0 2 0 0 0
EAR40 0 0 0 1 0 0 0
EAR30 0 0 0 0 0 0 0
EAR20 0 0 0 0 0 0 0
EAR10 0 0 0 0 0 0 0
maxNDVI 0 0 0 0 0 0 0
medred 0 0 0 0 0 0 0
minblue 0 0 0 1 0 0 0
minVZA 0 0 0 2 0 0 0
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samples. Table 6 shows the number of samples, out of 16, for
which theMASAcomposite had a significantly higher correlation
compared with the each of the other composites. The differences
between MASA and the baseline composite correlations were
significant more often than the differences between MASA and
other shape-based composite correlations. The largest number of
significantly different correlations occurred for NDWI. Com-
pared with minVZA, MASA was found to have significantly
higher NDWI correlations for 15 sites, while compared with
medred, MASA was found to have significantly higher NDWI
correlations for 10 sites (Table 6). MASA also had several
significantly higher correlations for NDVI. NDII6 and NDII7 had
the smallest number of significantly different samples. Table 7
shows the number of samples, out of 16, for which at least one
other composite had a significantly higher correlation than the
MASA composite. EVI was the only index for which one of the
other composites had significantly higher correlations for any
samples. EAR50 and minVZA had significantly higher correla-
tions than MASA for two samples, while EAR40 and minblue
had significantly higher correlations for one sample.

5. Discussion

The MASA compositing algorithm produced the lowest
index variability across nearly all land cover types and had the
highest correlations with live fuel moisture. One of the few
exceptions to this rule was for EVI. MASA produced higher
EVI variability for the chaparral land cover type and had lower
correlations with live fuel moisture compared with several of
the EAR and baseline composites. These trends did not occur in
any of the other land cover types, but it should be noted that
chaparral has the highest leaf area index (LAI) of all of the land
cover types tested. EVI was designed to reduce index sensitivity
to atmospheric and soil background effects (Huete et al., 2002).
It is possible that EVI's reduced sensitivity to these effects may
negate any advantages that MASA confers through selection
based entirely on spectral shape. Further analysis of MASA-
based EVI for higher LAI land cover is needed.

NDWI was the index most improved by shape-based
compositing. The highest root mean square residual for NDWI
(minVZA) was more than twice the lowest root mean square
residual (MASA), a greater difference than for any other spectral
index. Shape-based composites produced improvements in
NDWI residuals for all five land cover classes. NDWI also
possessed the largest number of live fuel moisture samples for
which MASA produced a significantly higher correlation.
Unmasked cirrus clouds may be responsible for differences in
NDWI variability and live fuel moisture correlations. NDWI is
based on canopywater absorption at 1240 nm, but is also sensitive
to absorption by cirrus (Gao, 1996). Examination of scatterplots
of live fuel moisture versus NDWI calculated from the minVZA
and medred composites showed several dates with anomalously
high NDWI values, indicating increased water absorption. This
increased water absorption is likely due to cirrus not flagged by
MOD09GST. This anomaly is not present in the MASA com-
posites, indicating that the shape-based compositing algorithms
may have reduced sensitivity to cirrus contamination effects.
Correlations between live fuel moisture and spectral indices
were highest for greenness indices based on green-to-red spec-
tral contrast (VARI and VIg). These results agree with the
findings of Stow et al. (2005) and Roberts et al. (2006). The
differences between green/red index correlations and moisture
index correlations are dependent on the compositing algorithm
used, however. As compositing is increasingly weighted to-
wards spectral shape, differences in the strengths of correlations
narrow. For the MASA composite, average r2 values for VARI,
VIg, and NDWI are nearly identical.

While shape-based compositing algorithms may offer
advantages over established algorithms, several important
issues should be addressed before shape-based compositing
can be used operationally. Shape-based metrics are dependent
on the shapes of spectra within the compositing period class.
Dissimilar spectral shapes introduced into the compositing
period class may have a greater effect on MASA- and EAR-
based compositing than on other compositing algorithms. For
this reason, the effects of prescreening data on spectrum
selection should be investigated. More research is needed to
determine whether MASA can similarly reduce index variabil-
ity across a variety of land cover types. MODIS images most of
Earth's land surface daily, while this research analyzed
composite variability within less than 0.05% of this land
surface. Reduced variability and improvements in correlations
produced by shape-based compositing may not extend to all
vegetation measures. This research only analyzed ratio-based
indices. Measures that use both spectral shape and brightness,
such as SMA fractions, may have lower variability when
calculated from an EAR composite rather than a MASA
composite (Roberts et al., 2006). Shape-based algorithms are
more computationally intensive than minimum or maximum
value algorithms, so the practicality of using shape-based
composites over larger areas should be investigated. The shape-
based algorithms do not explicitly account for BRDF effects,
and it is not known whether MASA or EAR favor particular
view geometries. Finally, indices produced using different
compositing algorithms should be compared to a wider variety
of biophysical measures. Based on the reduction in index
variability found by our research, it is likely that shape-based
compositing algorithms will lead to improved correlations of
indices with many vegetation properties.

6. Conclusions

The comparison of 10 different compositing algorithms
demonstrates that there is no single “best” compositing algorithm
possessing the lowest short-term variability. The compositing
algorithms most dependent on spectral shape produced spectral
indices with lower variability when compared with the baseline
compositing methods. The MASA algorithm was shown to pro-
duce the lowest variability in six of the seven indices examined.
However, shape-based compositing algorithms constrained to also
take into account brightness, and baseline compositing algorithms,
produced band brightness values with the lower variability
compared with MASA. Further research on shape-based compos-
iting algorithms is needed to investigate how these algorithms
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reduce index variability, and to determine whether shape-based
compositing algorithms can produce lower index variability across
a wider variety of indices and land cover types. This future research
may provide guidance for situations in which shape-based
compositing should be favored over other compositing techniques.
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