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Abstract

Wildfire temperature retrieval commonly uses measured radiance from a middle infrared channel and a thermal infrared channel to separate fire

emitted radiance from the background emitted radiance. Emitted radiance at shorter wavelengths, including the shortwave infrared, is measurable

for objects above a temperature of 500 K. The spectral shape and radiance of thermal emission within the shortwave infrared can be used to

retrieve fire temperature. Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data were used to estimate fire properties and background

properties for the 2003 Simi Fire in Southern California, USA. A spectral library of emitted radiance endmembers corresponding to a temperature

range of 500–1500 K was created using the MODTRAN radiative transfer model. A second spectral library of reflected solar radiance

endmembers, corresponding to four vegetation types and two non-vegetated surfaces, was created using image spectra selected by minimum

endmember average root mean square error (RMSE). The best fit combination of an emitted radiance endmember and a reflected solar radiance

endmember was found for each spectrum in the AVIRIS scene. Spectra were subset to reduce the effects of variable column water vapor and

smoke contamination over the fire. The best fit models were used to produce maps of fire temperature, fire fractional area, background land cover,

land cover fraction, and RMSE. The highest fire temperatures were found along the fire front, and lower fire temperatures were found behind the

fire front. Saturation of shortwave infrared channels limited modeling of the highest fire temperatures. Spectral similarity of land cover

endmembers and smoke impacted the accuracy of modeled land cover. Sensitivity analysis of modeled fire temperatures revealed that the range of

temperatures modeled within 5% of minimum RMSE was smallest between 750 and 950 K. Hyperspectral modeling of wildfire temperature and

fuels has potential application for fire monitoring and modeling.
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1. Introduction

Fire propagates through the combustion of fuels consisting

of live and dead plant material. Fuel temperature must be high

enough to volatilize and ignite these materials. Once ignition

has occurred, the energy released through combustion raises

the temperature of adjacent fuels. Pyne et al. (1996) links

stages of combustion to temperatures at which they typically

occur. As fuel temperature increases above 470 K, the

volatilization of fuels begins, in a process called pyrolysis.

Volatilized fuels can combust once the fuel temperature reaches
0034-4257/$ - see front matter D 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.rse.2005.10.007

* Corresponding author.

E-mail address: dennison@geog.utah.edu (P.E. Dennison).
700–750 K. Flaming combustion typically occurs in wildland

fuels between flame temperatures of 1070–1470 K, although

maximum temperatures are believed to be as high as 2500 K.

Smoldering combustion occurs at lower temperatures in denser

fuels (Pyne et al., 1996).

As the temperature of the combusting fuels increases, the

energy radiated by the fire increases and shifts to shorter

wavelengths. By measuring thermal emission within multiple

channels, remote sensing can be used to determine the

dominant temperature of a fire. A temperature retrieval

method developed by Dozier (1981) utilizes a middle infrared

(MIR) channel and a thermal infrared (TIR) channel to

separate the spectral contributions of fire and a cooler

background. Planck functions for the fire thermal radiance

and background thermal radiance are used to determine fire
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Table 1

Temperature, wavelength of peak radiance (kmax), total radiance (L) and

radiance within the spectral region covered by AVIRIS (LAVIRIS)

Temperature (K) kmax (Am) L (W m�2 sr�1) LAVIRIS (W m�2 sr�1)

288 10.06 1.24�102 4.09�10�4

300 9.66 1.46�102 9.45�10�4

400 7.24 4.62�102 1.58�10�1

500 5.80 1.13�103 3.65�100

600 4.82 2.34�103 3.12�101

700 4.14 4.33�103 1.50�102

800 3.62 7.39�103 5.06�102

900 3.22 1.18�104 1.33�103

1000 2.90 1.80�104 2.96�103

1100 2.63 2.64�104 5.81�103

1200 2.41 3.74�104 1.04�104

1300 2.23 5.15�104 1.72�104

1400 2.07 6.93�104 2.68�104

1500 1.93 9.14�104 4.00�104
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temperature and fire fractional area, the percent area of a fire

within a pixel:

Lk ¼ ffireb k; Tfireð Þ þ fbackgroundb k; Tbackground
� �

ð1Þ

where Lk is the radiance at a specific wavelength k, ffire is the
fire fractional area, fbackground is the background fractional area,

b(k,T) is a Planck function, Tfire is the temperature of the fire

and Tbackground is the temperature of the background. The fire

fractional area and background fractional area sum to 1. Eq. (1)

exists for the spectral radiance in each channel, and for two or

more channels the equations can be solved simultaneously to

estimate fire temperature. Modifications of the Dozier (1981)

technique have been used to retrieve fire temperature from

Advanced Very High Resolution Radiometer (AVHRR) data

(Matson & Holben, 1987), airborne radiometer data (Riggan et

al., 2004), and Bi-spectral InfraRed Detection (BIRD) data

(Oertel et al., 2004; Wooster et al., 2003; Zhukov et al., 2005).

These approaches have used a small number of channels in the

MIR and TIR to determine fire temperature.

The shortwave infrared (SWIR), the spectral region between

1100 and 2500 nm wavelength, can also be used for retrieving

fire temperature. Unlike the MIR and TIR, the spectral

contribution of background emitted radiance in the SWIR is

minor. However, reflected solar radiance does make a

significant contribution to the total measured radiance in the

SWIR, even for hot fires. Like in the TIR and MIR, smoke has

a relatively high transmittance in the SWIR. Green (1996)

adapted the Dozier (1981) method to Airborne Visible Infrared

Imaging Spectrometer (AVIRIS) radiance data that included the

SWIR spectral region. AVIRIS collects 224 contiguous

channels across an approximate spectral range of 370–2510

nm. Precise radiometric calibration of the AVIRIS instrument

permits accurate quantification of at-sensor radiance (Green et

al., 1998). The method proposed by Green (1996) models

reflected solar radiance and two emitted blackbody radiances.

The sum of these three radiances is fit to the spectral shape of

the AVIRIS measured radiance using a non-linear least squares

fitting routine.

This research expands on the method developed by Green

(1996) for hyperspectral data. Reflected solar radiance and

emitted radiance from a single source were summed and

compared to AVIRIS measured radiance for a 2003 wildfire in

Southern California. Radiance endmembers were used to create

a linear spectral mixing model, and the best fit linear spectral

mixing model was used to identify fire temperature and land

cover within a fine spatial resolution AVIRIS scene. This

research significantly improves the Green (1996) method by

allowing multiple possible land cover endmembers. Simulta-

neous modeling of fire and fuel properties may allow improved

modeling of fire behavior.

2. Background

The total spectral radiance measured by a sensor imaging a

fire in daylight will be a combination of emitted radiance and

reflected solar radiance. Atmospheric absorption and scattering
of both emitted and reflected radiance (path radiance) must also

be accounted for in the measured at-sensor radiance. Wave-

length-specific, at-sensor radiance (Lkt) can be expressed as a

sum of the individual source radiances:

Lkt ¼ Lkr þ LkPr þ Lke þ LkPe ð2Þ

where Lkr is the reflected solar radiance, LkPr is the reflected

solar path radiance, Lke is the emitted radiance, and LkPe is the

emitted path radiance. A single emission source is assumed. Lkr

and LkPr are influenced by two-way transmission through the

atmosphere, accounting for both the downwelling solar

irradiance and the resulting upwelling reflected solar radiance.

Assuming that the emission source is on the ground, Lke and

LkPe are solely upwelling radiance terms influenced by one

way path transmittance through the atmosphere.

Emitted radiance is a function of temperature, emissivity,

and atmospheric absorption and scattering. The emitted

spectral radiance of a blackbody can be calculated using

Planck’s equation:

Lk ¼
2hc2

k5 e
hc
kkT � 1

�� ð3Þ

where T is the temperature in Kelvin, k is the wavelength, c is

the speed of light, h is Planck’s constant, and k is Boltzmann’s

constant. The wavelength of peak radiance (kmax) for a

blackbody can be determined by taking the derivative of Eq.

(3):

kmax ¼
a

T
ð4Þ

where a is a constant equal to 2.898�10�3 K m. The total

radiance for a blackbody can be determined by taking the

integral of Eq. (3):

L ¼ 2k4p4T4

15h3c2
ð5Þ

Eqs. (4) and (5) show that as temperature increases, the

wavelength of peak radiance shifts to shorter wavelengths and

the total emitted radiance increases. Table 1 lists the



Fig. 1. A SWIR-NIR-red composite of the Simi Fire AVIRIS scene.
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wavelength of peak radiance, the total radiance emitted, and

radiance emitted within the portion of the spectrum measured

by AVIRIS for a blackbody over a range of temperatures from

300 to 1500 K. The mean temperature of Earth’s surface (288

K) is included for comparison. The spectral range measured by

AVIRIS was assumed to be from the shorter half-maximum of

the shortest wavelength channel (367 nm) to the longer half-

maximum of the longest wavelength channel (2513 nm), using

the 2003 configuration of the instrument.

The shift in the wavelength of peak radiance with increasing

temperature demonstrates that spectral shape is an indicator of

the temperature of an emitting body. Close to Earth’s mean

temperature, very little radiance occurs within the spectral

range of AVIRIS. As temperature increases, the wavelength of

peak radiance shifts from the MIR to the SWIR, and a larger

percentage of the total radiance is emitted at wavelengths

within the spectral range of AVIRIS. At temperatures above

1150 K, the wavelength of peak radiance falls within the

spectral range of AVIRIS. Differences between the spectral

shape of radiance emitted from thermal sources and the spectral

shape of reflected solar radiance can be used to determine both

the thermal contribution to the total radiance and the

temperature of the emitting body (Green, 1996).

3. Data

Reflected and emitted radiance were modeled for an

AVIRIS scene acquired over the 2003 Simi Fire in Southern

California, USA. The Simi Fire was part of the catastrophic

Southern California Fire Complex in October 2003. The

combination of Santa Ana winds and low live fuel moisture

promoted the rapid growth of seven large wildfires in Southern

California. The Simi Fire was ignited on October 25, 2003 and

consumed nearly 44,000 ha in the Santa Susana Mountains

between ignition and full containment on November 5, 2003.

The Simi Fire destroyed 315 structures and cost approximately

$10 million to suppress (California Department of Forestry and

Fire Protection, 2003).

Vegetation in the Santa Susana Mountains varies by slope,

aspect, and elevation. Tall, dense stands of coast live oak are

typically found close to streams and on north-facing, mesic

slopes. Lower stature chaparral species, including chamise,

scrub oak, and several species of Ceanothus, are found across a

wide range of slopes and aspects at higher elevations. More

xeric, lower elevations sites feature a mix of chaparral and

coast sage scrub species, including sagebrush and sage. Grass

and herb species are common in disturbed areas.

The AVIRIS instrument was flown over the Simi Fire on

October 27, 2003 as the fire moved east through the Santa

Susana Mountains. The data were acquired from the AVIRIS

low-altitude platform, a Twin Otter airplane, from an altitude of

5.6 km above sea level. A scene containing the fire front was

acquired between 1:01 PM and 1:11 PM Pacific Standard

Time. The ground sample distance (spatial resolution) of the

acquired scene was approximately 5 m. The 13.6 km long

portion of this scene containing approximately 15 km of fire

front and large areas of burned and unburned vegetation was
used for this study. The AVIRIS scene was radiometrically

calibrated (Green et al., 1998) and spatially corrected using

onboard global positioning system and inertial data (Board-

man, 1999). A false color composite using the 1682, 1107, and

655 nm channels of the AVIRIS scene (displayed as red, green,

and blue, respectively) is shown (Fig. 1). In this composite, the

fire is moving east and the wind direction is northeast.

Vegetated areas appear green and burned areas appear dark

gray. Smoke appears bright blue due to high reflectance in the

655 nm channel. Fire varies from red (cooler fires) to yellow

(hotter fires) in Fig. 1.

4. Methods

The reflected solar radiance measured by AVIRIS varies

with surface reflectance, in contrast to solar path radiance

which varies with atmospheric path length. To isolate reflected
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solar radiance, AVIRIS scaled radiance data were corrected for

solar path radiance using the atmospheric radiative transfer

model MODTRAN (Berk et al., 1989). MODTRAN was used

to model the expected solar path radiance given the mean

height of the aircraft (5600 m), the mean elevation of the terrain

in the scene (600 m), solar zenith and an assumed mid-latitude

summer atmosphere with 23 km visibility. Atmospheric water

vapor depth was retrieved by fitting the image with the

absorption spectra of water vapor and liquid water (Green et

al., 1993). The mean water vapor in the relatively smoke-free

areas to the north and east of the fire, 822 atm-cm, was used to

calculate path radiance. The resulting modeled path radiance

spectrum was fit to sampled path radiance found in deeply

shadowed areas of the scene, and then subtracted from each

spectrum in the scene. Variation in solar path radiance due to

differences in terrain height and spatial variability in column

water vapor were not corrected.

With solar path radiance removed from the image, Eq. (2)

becomes:

Lkm ¼ Lkr þ Lke þ LkPe ð6Þ

where Lkm is the solar path corrected radiance:

Lkm ¼ Lkt � LkPr: ð7Þ

Radiative transfer modeling can be used to model the

emitted radiance and the emitted path radiance. If the reflection

of emission by surfaces adjacent to the thermal source and

atmospheric scattering of emitted radiance from adjacent

thermal sources are ignored (adjacency effects), the emitted

radiance and emitted path radiance can be assumed to be

interdependent and combined into a single term:

Lkm ¼ Lkr þ Lket ð8Þ

where LEet is the total emitted radiance.

Two modeling assumptions were made following Dozier

(1981). First, the fire was assumed to be a blackbody emitter.

Second, the fire within each AVIRIS image pixel was assumed

to have a single temperature. The validity of these assumptions

and potential errors introduced by these assumptions were

addressed by Giglio and Kendall (2001). Eq. (8) can be

expressed as a linear mixing model,

Lkm ¼ frLkr þ fetLket þ fsLs þ e ð9Þ

where fr is the reflected solar radiance fraction and fet is the fire

fractional area. Ls is a shade radiance and fs is a shade radiance

fraction. The shade radiance is zero across all wavelengths and

does not add to the measured radiance. The shade radiance and

fraction allow the reflected solar radiance fraction and the fire

fractional area to vary independently and allow the model

equation to be solved using singular value decomposition. ( is

an error term that accounts for any differences in spectral shape

between the measured radiance (Lkm) and the sum of the

reflected solar radiance, emitted radiance, and shade radiance

( frLkr + fetLket + fsLs). For all wavelengths, the residuals can be

summed to calculate root mean square error (RMSE).

The reflected solar radiance fraction represents the relative

reflectance of the image spectrum compared to the reflected
solar radiance endmember. Fire fractional area represents the

areal percentage of a pixel that is emitting the modeled

radiance. Since linear mixing between fire emitted radiance and

reflected solar radiance is assumed, the reflected solar radiance

fraction, the fire fractional area, and the shade fraction are

constrained to sum to 1.

Eq. (9) is a three-endmember linear spectral mixing model.

Traditional spectral mixture analysis (SMA) uses fixed end-

members for all spectra in an image (Adams et al., 1993). SMA

is inadequate for modeling reflected solar radiance or emitted

radiance due to variation in surface composition and fire

temperature. Multiple endmember SMA (MESMA) compares

endmembers from a spectral library and determines the best

combination of endmembers to fit each image spectrum

(Roberts et al., 1998). The best combination of endmembers

for each image spectrum is determined by the magnitude of the

error term, (. A lower error indicates a better fit to the modeled

spectrum.

Image spectra were modeled using MESMA to find the best

fit combination of a reflected solar radiance endmember, an

emitted radiance endmember, and a shade endmember. The

best fit endmembers for each image spectrum were selected

from two spectral libraries, one spectral library containing the

reflected solar radiance endmembers and a second spectral

library containing emitted radiance endmembers. The reflected

solar radiance endmembers were used to map land cover. These

endmembers were selected from the image using Endmember

Average RMSE (EAR; Dennison & Roberts, 2003a, 2003b).

Endmembers were selected for six classes chosen based on

their fuel characteristics, and included four vegetation classes

(oak forest, dense chaparral, sparse chaparral/sage scrub, and

grass) and two burned or unburnable surfaces (ash and soil/

rock). Multiple polygons with apparent uniform composition

were determined, totaling 200 image spectra for each class.

EAR was used to determine the most-representative end-

member for each land cover class. The six EAR-selected

endmembers, one for each class, constitute the reflected solar

radiance spectral library (Fig. 2a). Ash outside the area used to

select the ash endmember was found to be brighter than the

selected ash endmember. To increase the ability of the ash

endmember to model ash in the AVIRIS image, the ash

endmember radiance was multiplied by 1.25 across all

wavelengths. The brightness-enhanced ash endmember is

shown in Fig. 2a.

Asner and Lobell (2000) demonstrated that vegetation type

and land cover in semiarid landscapes can be determined based

on spectral shape in the SWIR. SWIR emitted radiance should

also allow modeling of fire temperature, up to temperatures and

fire fractional areas for which all SWIR channels are saturated.

To reduce the impacts of smoke and water vapor, AVIRIS

spectra were subset to omit visible and near infrared channels

shorter than 1200 nm and channels within water vapor

absorption bands. Smoke has low transmittance in the visible

and near infrared, but transmittance increases from the near

infrared through the SWIR. At wavelengths longer than 1200

nm, the contribution of smoke to total reflected solar radiance

is small, except in shadowed areas where the background
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Fig. 3. Two subsets of the MODTRAN modeled emitted radiance library.

Table 2

MODTRAN parameters for emitted radiance models

Parameter Value

Spectral albedo 0

Atmosphere Mid-latitude summer

Visibility 23 km

Date October 27

Time 21.1028 GMT

Location 34.3527- N, 118.6463- W

Sensor altitude 5.6 km

Ground altitude 0.6 km

Water vapor 822 atm-cm

Carbon dioxide 375 ppm
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Fig. 2. The six reflected solar radiance endmembers selected using EAR, shown

for the full spectrum (a) and for the set of wavelengths used for modeling (b).
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reflected solar radiance is very low. Variation in column water

vapor also impacts measured radiance. Spatial variation in

smoke and terrain elevation affects reflected solar and emitted

radiance within SWIR water absorption bands. To reduce the

impacts of smoke and water vapor, spectral mixing was

modeled for a subset of AVIRIS channels. Omitted AVIRIS

channels included:

& channels centered on wavelengths shorter than 1200 nm

(channels 1–89)

& channels between 1320 and 1510 nm (channels 104–122)

& channels between 1775 and 1975 nm (channels 150–170)

& channels centered on wavelengths longer than 2365 nm

(channels 210–224).

Fig. 2b shows the six EAR-selected endmembers for the

subset of AVIRIS channels used for modeling.

The emitted radiance library was constructed from radiance

endmembers modeled using MODTRAN. A temperature range

of 500–1500 K (227–1227 -C) was selected for modeling,

using 500 K as the probable lowest temperature at which

pyrolysis would occur. Saturation of all SWIR channels was

expected to occur at temperatures near 1500 K. Emitted

radiance was modeled at increments of 10 K between 500

and 1500 K for the subset of AVIRIS channels (Fig. 3),

creating a total of 101 emitted radiance endmembers. Para-
meters used in the MODTRAN emitted radiance calculations

are listed in Table 2.

Both radiance spectral libraries were converted to AVIRIS

encoded radiance. AVIRIS encoded radiance is equal to the

radiance, in units of AW cm�2 nm�1 sr�1, multiplied by a gain

factor. For 2003 AVIRIS data, this gain factor was 500 for

channels 1–160 and 1000 for channels 161–224. For each

encoded radiance spectrum in the AVIRIS scene, all combina-

tions of emitted radiance endmembers and reflected solar

radiance endmembers were tested. Each AVIRIS image

spectrum was tested for saturation, and only unsaturated

channels were modeled. Singular-value decomposition was

used to solve for the endmember fractions for each model, and

RMSE was used to compare the fit of all models. Only models

with land cover fraction and fire fractional area summing to

between 0 and 1 were considered. Of these models, the single

model with the lowest RMSE was selected for each image
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Fig. 4. Example fits for an unsaturated AVIRIS spectrum (a) and a saturated

AVIRIS spectrum (b).
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spectrum, and the temperature, land cover class, and calculated

endmember fractions for that model were assigned to each

pixel. RMSE and residuals were not constrained.

A traditional accuracy assessment of land cover class

mapping using ground reference data was not possible, since

all the vegetation within the AVIRIS scene burned on October

27 or on subsequent days of the fire. Spectral shape and image

context were used to identify 50 widely spaced pixels

belonging to each land cover class within burned and unburned

areas of the AVIRIS scene. The land cover map was compared

to these reference data and used to construct an error matrix.

Producer’s accuracy, user’s accuracy, overall accuracy, and

Kappa coefficient (Cohen, 1960; Congalton, 1991) were

calculated from the confusion matrix. No in situ fire

temperature measurements were made for the Simi Fire, given

the difficulty and danger of measuring the temperature of an

actively burning wildfire. A MIR/TIR sensor might provide

independent measurements of fire temperature. Unfortunately,

no airborne or satellite sensors that might be able to provide

these data were able to acquire imagery during the time the

AVIRIS scene was acquired.

5. Results

The spectral mixing model assigned the best fit endmembers

to each pixel within the AVIRIS scene. An example of a model

fit for an unsaturated image spectrum is shown in Fig. 4a. A

total of 606 endmember combinations were tested for each

pixel, with 101 emitted radiance endmembers and 6 reflected

solar radiance endmembers. The best fit model for this

spectrum used the 910 K emitted radiance endmember and

the ash reflected solar radiance endmember. The fire fractional

area was modeled as 0.5% and the reflected solar radiance

fraction was modeled as 32.3%. The remaining fraction

(67.2%) was shade. RMSE in this example was 24.0 encoded

AVIRIS radiance units.

Saturation of SWIR channels is dependent upon fire

temperature and fire fractional area. As fire fractional area

and temperature increase, the number of saturated channels

also increases. The longest wavelength channels were first to

saturate due to the shape of the emitted radiance curve. Fig. 4b

shows an example of an AVIRIS spectrum saturated at

wavelengths longer than 2020 nm. The model can only

determine fit for wavelengths shorter than 2020 nm, reducing

the number of channels used within the mixing model. The best

fit model for this spectrum used the 790 K emitted radiance

endmember and the ash reflected solar radiance endmember.

The fire fractional area was modeled as 21.3% and the reflected

solar radiance fraction was modeled as 58.0% for this example.

The RMSE of this example was much higher, at 136.1 encoded

AVIRIS radiance units.

The modeled endmembers were used to map fire temper-

ature and land cover type within the AVIRIS scene. In areas

where no fire was present, a high temperature endmember was

mapped with an extremely low fire fractional area. In these

cases, the emitted radiance endmember was being used to

account for variation in the shape of the reflected solar
spectrum. A radiance threshold was used to separate burning

and non-burning areas. Where the peak radiance of the emitted

radiance endmember exceeded 100 AVIRIS encoded radiance

units, the pixel was flagged as burning. Where the peak

radiance of the emitted radiance endmember was less than 100

AVIRIS encoded radiance units, the pixel was flagged as non-

burning. Lower encoded radiance thresholds flagged many

non-burning areas as burning, while higher encoded radiance

thresholds were found to miss burning areas along the fire

front.

Fig. 5 shows the masked fire temperature and fire fractional

area. In these images the fire is moving from left to right. Fire

temperatures were highest within the fire front, where the fire is

burning into new fuels. The hottest fires had a modeled

temperature of 1500 K, but with a very low fire fractional area.

Fires that either had a higher fire fractional area, or a higher fire

temperature, are apparent in the unmodeled black centers of the

northern fire front. These spectra were saturated throughout the

modeled spectral range. The northern fire front was modeled as

having higher temperatures than the southern fire front.

Temperatures along the northern fire front were higher than

1100 K in many areas, while the southern fire front seldom

reached this high temperature. Temperatures behind the fire



Fig. 5. Retrieved temperature ranging from 500 to 1500 K (a) and fire fractional area ranging from 0 to 1 (b).
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front were modeled as much lower than temperatures within

the fire front generally ranging from 800 to 1000 K along the

northern fire front. Fire fractional area was below 10% in most

areas of the fire (Fig. 5). Higher fire fractional area occurred

primarily along the fire front, where fire fractional area was as

high as 95%.

Land cover was mapped using the reflected solar radiance

endmembers. Fig. 6a demonstrates a sharp difference between

endmembers mapped within burned and unburned areas.

Unburned areas within the AVIRIS scene were mostly

modeled as one of four vegetation types: oak forest, dense

chaparral, sparse chaparral, or grass. Oak forest and dense

chaparral dominated in the higher elevation, mesic slopes in

the northern half of the AVIRIS scene. Oak forest was also

modeled in the riparian corridor on the right edge of the Fig.
6a. Sparse chaparral and grassland were modeled more

frequently on lower elevation, xeric slopes in the southern

half of the scene. Bare soil, rock outcroppings, and roads

within the unburned areas of the scene were modeled with the

soil/rock endmember.

The fire scar was mapped by the ash, soil/rock, and grass

endmembers (Fig. 6a). Areas within the fire scar mapped by

soil/rock and grass were consumed by the fire, so there should

be no standing vegetation and ash should be the most likely

land cover type. Areas mapped as soil/rock or grass within the

fire scar all correspond to co-occurrence of smoke and either

dark ash or shadows. The combination of smoke and a dark

background, such as shadows or dark ash, created a spectral

signature similar to soil or grass in the SWIR. Although the

scattering caused by smoke in the SWIR was relatively minor,



Fig. 6. The modeled reflected solar radiance endmember (a) and the fraction of that endmember, ranging from 0 to 1 (b).
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for dark spectra the additional solar radiance reflected by

smoke was enough to change the characteristic spectral shape

of the background surface. A riparian corridor that was burned

through, but still contained green vegetation, was mapped as a

combination of dense chaparral and sparse chaparral rather than

oak forest. The fire likely burned understory vegetation but

apparently did not burn the upper portion of tree canopies

within the riparian corridor. The standing vegetation may have

been reduced enough to cause the riparian corridor to be

mapped as dense and sparse chaparral. While most of the

actively burning pixels within the image were modeled as ash,

many of the saturated spectra were modeled as a different land

cover type. The saturated spectra limited the number of

channels that were used in the first step modeling of reflected
solar radiance. The reduced number of channels sometimes led

to ambiguity between the reflected solar radiance endmembers.

The reflected solar radiance endmember fraction was

dependent on the mapped land cover type (Fig. 6b). Since

each endmember possessed different mean radiances, shifts in

the endmember fraction are visible where the endmember

changes from one land cover type to another. Reflected solar

radiance endmember fractions were highest for vegetated areas

and brightly illuminated, south facing slopes. Reflected solar

radiance endmember fractions were lowest for shadowed

slopes and for dark ash surfaces.

Model RMSE was highest along the fire front (Fig. 7).

Spectra that were modeled with the highest temperatures and

fractional fire had the highest radiance, and correspondingly



Fig. 7. Root mean square error for the best model fit, in AVIRIS encoded

radiance.
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had the highest RMSE. Within non-burning areas of the

AVIRIS image, RMSE was highest for brightly illuminated

slopes within the fire scar (Fig. 7).

The accuracy of the land cover map was assessed using 50

reference pixels belonging to each land cover class (Table 3).

The overall accuracy of the land cover map based on the

reference data was 68.0%, with a Kappa value of 0.62. Oak

forest and soil/rock reference pixels had the highest producer’s

accuracy, with these two classes being mapped as the correct

class in at least 45 of the 50 pixels. Grass reference pixels had

the lowest Producer’s accuracy, being mapped as grass only 21

pixels. Dense chaparral was most often confused with oak

forest, sparse chaparral was most often confused with grass,
and grass and ash were most often confused with soil/rock. In

each case, the reference pixels were most likely to be mis-

modeled as a spectrally similar endmember. If land cover

classes are grouped into oak forest/dense chaparral, sparse

chaparral/grass, and rock/soil/ash classes, overall accuracy

climbs to 87.3%.

6. Discussion

While a quantitative assessment of fire temperature accuracy

was not possible, there is an interesting correspondence

between fire temperature, fire extent, and vegetation type.

The hotter, larger fires in the northern half of the scene are

moving primarily through dense chaparral. Cooler, smaller

fires in the southern half of the scene are moving primarily

though a mixture of dense chaparral, sparse chaparral and

grass. Higher fuel loadings in dense chaparral would be

expected to produce hotter, larger fires than sparse chaparral

or grass. Few apparent ‘‘false positive’’ fire detections were

located within the AVIRIS scene. Low temperature radiance

spectra were mapped in two areas of dense chaparral directly in

front of the hottest sections of the fire front. These areas do

contain SWIR spectral signatures characteristic of emission

from fires, but were vegetated and separated from the fire front.

This emitted radiance could have been caused by sub-canopy

fuels burning ahead of the fire front, or by reflected emitted

radiance from the fire front. An examination of a digital

elevation model of the area of the anomaly showed that these

pixels possessed aspects that faced away from the fire front,

and thus could not have been reflecting emitted radiance

directly from the fire to the sensor. It is much more likely that

the measured low temperature emitted radiance was due to

small ground fires ahead of the main fire front.

A total of 170,556 pixels (8.9% of the AVIRIS scene) were

modeled with a fire temperature based on radiance that

exceeded the radiance threshold. The distribution of modeled

fire temperatures is shown in Fig. 8. Relatively few pixels are

modeled with fire temperatures below 750 K. The radiance

threshold, while reducing the number of false detections, likely

also causes the loss of pixels with low temperatures and low

fractional area. The number of pixels modeled at each fire

temperature peaks at 920 K, and then declines through 1490 K.

The highest fire temperatures should be limited to the

combustion of large amounts of unburned fuel along the fire

front, so a decrease in the frequency of fires mapped at high

temperatures was expected. Saturation of SWIR bands may

further reduce the number of pixels modeled with high fire

temperatures. The number of pixels mapped at 1500 K

increases from the number of pixels mapped at 1490 K. This

increase can be attributed to spectra that were nearly entirely

saturated, but that had a few unsaturated channels that caused

the pixel to be modeled with the highest possible fire

temperature.

RMSE was used to quantify the sensitivity of modeled

temperature. For each pixel, all three endmember models with

RMSE within 5% of the minimum RMSE were compared. The

set of endmember models with RMSE within 5% of the



Table 3

An error matrix comparing reference and modeled land cover for 50 pixels within each reference land cover class

Reference land cover

Oak For. Dense Ch. Sparse Ch. Grass Soil Ash

User’s

Modeled land cover Oak For. 45 22 0 0 0 0 0.67

Dense Ch. 4 27 0 0 0 0 0.87

Sparse Ch. 0 0 29 0 0 1 0.97

Grass 1 1 20 21 3 2 0.44

Soil 0 0 1 19 47 12 0.59

Ash 0 0 0 10 0 35 0.78

Producer’s 0.90 0.54 0.58 0.42 0.94 0.70
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minimum RMSE contained a range of temperatures, including

a minimum and a maximum. The median minimum and

maximum for all pixels modeled as a (minimum RMSE)

temperature were then calculated (Fig. 8). For example, for the

6332 pixels that were best modeled by a three endmember

model containing a 920 K emitted radiance endmember, the

median minimum temperature modeled within 5% RMSE was

880 K, and the median maximum temperature modeled within

5% RMSE was 970 K. The range between the median

minimum and maximum temperatures was smallest for

modeled temperatures between 750 and 950 K, varying

between 70 and 90 K. At both lower and higher temperatures,

the range between the median minimum and maximum

temperatures increased. Below a modeled temperature of 600

K, this range varied from 160 to 230 K. Above a modeled

temperature of 1400 K, the range varied from 70 to 190 K.

RMSE of the modeled radiance may be increased by

unmodeled adjacency effects. Adjacency effects will be highest

in severely smoke-contaminated areas and in rugged terrain.

The likely impact of adjacency effects would be an overesti-

mation of temperature in cool regions adjacent to hot sources

and an underestimation of the temperature of the hot source

because of a loss of radiance to adjacent cooler pixels.

However, because the wavelength specific nature of scattering

is not perfectly correlated with the temperature of the source,

the primary spectral shape of the source may still be preserved.

In this case, the primary impact of adjacency effects would be
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Fig. 8. The frequency of modeled fire temperatures from 500 to 1500 K, with

error bars indicating the median range of temperatures modeled within 5% of

the RMSE for the indicated temperature.
an increase RMSE and a slight error in estimating the fire

fractional area. While fully quantifying the extent of this error

is beyond the scope of this paper, we have attempted to

minimize adjacency effects by reducing the fit region to those

spectral regions least impacted by smoke.

The range between the median minima and maxima

indicates that the 10 K temperature increment used to model

the emitted radiance component of SWIR spectra may be

excessively small. Larger temperature increments, such as 50 K

or 100 K, would still permit temperature modeling across a

wide range of temperatures and would reduce the number of

potential models, correspondingly decreasing computation

time. Reliable modeling of pixels with high temperatures or

high fire fractional areas will require the use of shorter near

infrared and visible wavelengths. Addition of shorter wave-

length channels would also likely improve the modeling of

land cover. A spectral model of smoke would allow greater use

of these wavelengths. A fourth smoke endmember may be able

to model some of the spectral effects of smoke, but this

endmember would have to account for both variable transmit-

tance and reflectance of smoke.

7. Conclusions

High-resolution AVIRIS data were used to model fire

temperature and background land cover for the 2003 Simi

Fire. Using a previously underutilized spectral region, the

SWIR, fire temperatures were mapped between 500 and 1500

K. A multiple endmember linear spectral mixing model was

used to determine the best fit combination of emitted radiance

and reflected solar radiance endmembers. Modeled temperature

and land cover were consistent with known patterns of fire

behavior and vegetation distribution, although SWIR saturation

and smoke did produce errors.

The unique ability of hyperspectral data to retrieve both fire

temperature and background land cover can be utilized by fire

modeling. Vegetation type mapped ahead of the fire could be

assigned to fuel classes. Fire positional information and fuel

class, along with meteorological and terrain data, are sufficient

for modeling fire spread using the current generation of

operational predictive fire spread models (e.g. Finney, 1998).

Additional fuel variables may be retrievable from active fire

hyperspectral data. Depending on the level of smoke obscura-

tion, NIR and SWIR channels may be used for determining

canopy liquid water content, allowing quantitative assessment
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of live fuel moisture during the fire (Dennison et al., 2003;

Serrano et al., 2000; Ustin et al., 1998). Spectral mixture

analysis can also provide relative fractions of live and senesced

fuels (Dennison et al., 2000; Roberts et al., 2003). Fire spread

models currently in development (e.g. Linn et al., 2002) can

utilize more detailed fire and fuels information that can

potentially be provided by hyperspectral data, including fire

temperature, fuel type, and fuel moisture. Simultaneous fire

and fuel information extracted using hyperspectral data could

provide the basis for eventual real-time complex fire spread

modeling.
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