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Abstract

We investigate the spectral complexity and unique spectral characteristics of urban environments using a comprehensive regional field

spectral library of more than 4500 individual spectra. Spectral properties of urban surface materials are presented and interpreted, and their

separability is systematically analyzed using the Bhattacharyya distance (B-distance) as a quantitative measure of spectral discrimination. We

find considerable spectral confusion between urban land cover types (i.e. specific roof and road types) but also show the potential of fine

spectral-resolution remote sensing for detailed mapping of urban materials and their condition based on their spectral signal. An evaluation of

the most suitable wavelengths for separation of urban land cover identified specific spectral features that provided the best separation. There

is a strong indication that current multispectral systems, including IKONOS and LANDSAT ETM+, provide only marginal abilities to resolve

these important features and are limited for urban land-cover mapping.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The spectral characteristics of urban surfaces are known

to be complex. Given the high degree of spatial and spectral

heterogeneity of and within various artificial and natural

land cover categories, the application of remote-sensing

technology to mapping the urban environment requires

specific attention to the spectral dimension. Hyperspectral

data offer capabilities of improved spectral and spatial urban

mapping capabilities (Ben-Dor et al., 2001; Hepner et al.,

1998; Roessner et al., 2001). Potential applications related

to urban planning and management include mapping imper-

vious surfaces for flood management and urban water

quality (Ridd, 1995) roof types for energy use and fire

danger (Oke, 1987; Woycheese et al., 1997) and mapping

urban transportation infrastructure and quality. For example,

impervious surfaces, consisting of roofs, roads, parking lots

and other materials impact the urban hydrological system

and their flood potential (Ridd, 1995; Schueler, 1994). The

presence of roof materials, such as wood shingle, impacts

urban fire danger as a potential source of firebrands for

spotting (Woycheese et al., 1997). Additionally, the reflec-
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tance properties of roofs modify the energy absorbed and

thus impact urban energy balance and energy use, and the

local climate in the urban boundary layer (Oke, 1987). The

condition and age of road surfaces impact the flow of traffic,

safety and the cost of maintenance. Improved mapping of

road materials and characteristics has the potential of

improving current practices in planning, construction and

maintaining transportation infrastructure (Herold et al.,

2003a).

Since the development of imaging spectrometry in the

early 1980s (Goetz et al., 1985), hyperspectral remote

sensing has become an important tool for earth observations

(Green et al., 1998). The main advantage of hyperspectral

remote sensing is the amount of spectral detail it provides. A

large number of contiguous bands allow for precise identi-

fication of chemical and physical material properties (Goetz

et al., 1985). To date, a majority of research has focused on

natural targets such as vegetation (e.g. Asner et al., 1998;

Roberts et al., 1993; Ustin et al., 1998) and minerals (e.g.

Clark, 1999). Far less research has focused on urban areas

using hyperspectral data (Ben-Dor et al., 2001; Herold et al.,

2003b; Roessner et al., 2001) with few published spectra

and limited analysis of their characteristics and separability

(see Background section). Several important questions have

yet to be answered: What are spectral properties of urban
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materials and land cover types? How do those materials

differ in their spectral response? What are the important

spectral features needed for spectral separation and map-

ping? In that context, a growing number of studies have

begun to employ spectral mixture models to map urban

materials at sub-pixel scales (Rashed et al., 2001; Small,

2001a; Wu & Murray, 2003). Their application, however, is

limited by the large diversity of impervious materials and a

lack of knowledge of their spectral properties. Studies of

pure urban spectra, covering a wide variety of materials over

a large range of wavelengths with precise spectral sampling

(e.g. from regional spectral libraries (material scale)), can

aid remote-sensing analysis at the land cover scale. For

example, if specific urban materials are not separable within

a spectral library, they are unlikely to be spectrally distinct

in a remote-sensing dataset.

In this paper, we used a comprehensive field spectral

library acquired between 350 and 2400 nm to interpret and

analyze their spectral characteristics. The library was ac-

quired in the vicinity of Santa Barbara, CA, in a region

consisting of a large diversity of surface types with different

geometry, conditions, and age. To categorize the variety of

materials and evaluate remote-sensing mapping potential,

we applied a hierarchical land cover classification scheme

for urban materials and land cover types based on Anderson

et al. (1976). The Bhattacharyya distance (B-distance) was

applied to assess spectral separability at different classifica-

tion levels and to determine important spectral features of

urban materials. The B-distance also allowed an investiga-

tion of most suitable spectral bands for urban classification

and mapping.
2. Background

The current state of knowledge about urban materials

and their spectral characteristics and separation is inade-

quate. Driven by recent availability of hyperspectral re-

mote-sensing systems, there has been increasing interest in

detailed study of urban spectral properties and their appli-

cation in remote-sensing-based mapping (Hepner et al.,

1998). Investigations of the spectral properties of urban

materials have incorporated both laboratory and ground

spectrometer measurements as well as airborne and space-

borne remote-sensing instruments. A generally accepted

assumption in all related studies is the spectral complexity

of urban materials and land cover types (Forster, 1993;

Jensen et al., 1983). As a result, research has mainly

focused on investigating fundamental issues in spectral

properties, behavior and separation of urban targets to

provide a more comprehensive knowledge base for apply-

ing remote-sensing technology to specific urban mapping

applications. For example, Hepner et al. (1998) and Hepner

and Chen (2001) compared spectra of different urban land

cover types using Airborne Visible Near Infrared Imaging

Spectrometer (AVIRIS) data and interpreted their separa-
bility for urban land cover mapping. Ben-Dor et al. (2001)

acquired an urban spectral library from 400 to 1100 nm

and discussed the importance of different spectral regions

for the mapping of urban areas. They argued that the

physical and chemical characteristics of different urban

surfaces are represented in all parts of the visible (VIS),

near infrared (NIR), shortwave infrared (SWIR) and ther-

mal infrared (TIR) spectrum. Analysis of their urban

spectral library and Compact Airborne Spectrographic

Imager (CASI) data in the VIS–NIR region demonstrated

that urban objects have diagnostic fingerprints in this

spectral region. Heiden et al. (2001) analyzed urban spectra

acquired using HyMap data. They developed a hierarchical

thematic classification of urban land cover types and

materials and provide preliminary spectroscopic analysis

of those targets. A successful application of hyperspectral

remote-sensing material mapping in urban areas was pre-

sented by Clark et al. (2001). The authors used high-

resolution AVIRIS data with continuum-removed spectral

feature analysis to derive a detailed map of material/dust

accumulations in connection with the World Trade Center

attack on September 11, 2001.

Spectra of urban built-up materials show electronic and

vibrational absorption features at specific wavelengths

resulting from material chemistry. However, specific urban

material types may be spectrally similar due to similar

material composition, such as asphalt-based roofs and

roads, or specific urban materials and bare soil surfaces.

Spectral discrimination of these materials is especially

difficult at coarse spectral resolution (Mackay & Barr,

2002; Sadler et al., 1991). Another factor adding to urban

spectral complexity is urban materials which are common-

ly non-Lambertian (Meister, 2000). The non-Lambertian

behavior of urban materials increases at higher solar zenith

angles. While specific targets show forward-scattering

behavior (e.g. concrete, aluminum) others tend to be more

Lambertian (asphalt or roof tiles) or have a stronger

backscattering behavior, especially for increased surface

roughness. The Bidirectoral Reflectance Distribution Func-

tion (BRDF) of these materials is also dependent on the

wavelength, and Mackay and Barr (2002) found that some

urban materials show better spectral separation at off-nadir

viewing geometries. In summary, urban materials are

recognized to be spectrally unique and complex (Price,

1998; Small, 2001b), suggesting that they require specific

attention for remote-sensing-based land cover mapping.

Although these studies provide important insights into

the spectral properties of urban materials, a comprehensive

study of urban spectral characteristics, quantitative assess-

ment of spectral separability, and an evaluation of which

wavelengths are most suitable for spectral separation is still

lacking. The Advanced Spaceborne Thermal Emission and

Reflection Radiometer (ASTER) spectral library represents

one of the most comprehensive spectral libraries available

(ASTER spectral library, 1998). However, the 55 spectra in

that library are fairly generic and lack diversity of variable



M. Herold et al. / Remote Sensing of Environment 91 (2004) 304–319306
age, condition and illumination. A more comprehensive

spectral library of urban materials is necessary for a more

thorough analysis.

All spectral studies must consider the scale of analysis.

Laboratory and field spectra commonly consist of a single

material illuminated under specific conditions. Airborne and

spaceborne observations contain higher within-class variabil-

ity that is dependent on sensor characteristics. This variability

stems from the diversity of materials in the observed area,

object geometry, illumination effects, atmospheric interac-

tions, and spectral resolution as well as spectral mixing

effects as a function of the spatial sensor resolution (Price,

1997). Spatial resolution determines if the spectral informa-

tion measured within the Instantaneous Field of View (IFOV)

originates from a single land cover object (e.g. a roof)

representing a pure material at the specific scale, or if it

encompasses multiple objects within the IFOV representing a

spectral mixture, e.g. of roof and vegetation. For example, a

road surface might consist of different material components

(e.g. intimate mixture of minerals) resulting in a spectrally

mixed response. Coarse spatial resolution has been common-

ly cited as a limitation in the use of remote sensing in urban

areas (e.g. Hepner et al., 1998; Roessner et al., 2001). In

general, a spatial resolution of 5 m or finer is considered

necessary for an accurate spatial representation of urban land

cover objects (land cover scale) such as building structures or

urban vegetation patches (Jensen & Cowen, 1999; Welch,

1982;Woodcock&Strahler, 1987). Field spectra presented in

this study are collected at the material scale and represent a

single object, although they may include intimate mixtures as

described above.

A principal method in spectrometry is the evaluation of

the spectral separability between material types and land

cover categories, and the selection of a prioritized set of the

most suitable bands that contribute the most spectral con-

trast for the application. Appropriate techniques are avail-

able from measures of spectral separability (Chang et al.,

1999; Mausel et al., 1990) including the B-distance that has

recently been proposed and implemented for related analysis

of high-dimensional datasets (Jimenez & Landgrebe, 1999).

The B-distance is defined as (Eq. (1)):

B ¼ 1

8
½l1 � l2�T

R1 þ R2

2

� ��1

½l1 � l2�

þ 1

2
ln

1
2
½R1 þ R2�

�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AR1AAR2A

p ð1Þ

where li and Ai are the mean vector and the covariance

matrix of class one and two, respectively. The B-distance

was developed to measure the statistical distance between

two Gaussian distributions (Kailath, 1967) and incorpo-

rates both first-order and second-order statistics, i.e. Eq.

(1) is a sum where the first part represents the mean and

the second part the covariance difference component

(Landgrebe, 2000). In terms of remote sensing, the B-
distance quantifies the spectral separability over the whole

spectral range investigated. B-distance analyses have been

valued because of the close relationship of this statistical

measure to the Bayes-theorem (Hsieh & Landgrebe, 1998)

and Maximum Likelihood classification (Bruzzone et al.,

1997), and its correlation with the probability of correct

classification (Landgrebe, 2000; Mausel et al., 1990). A

disadvantage of the B-distance is that it provides no pre-

defined thresholds for separability. As a result, only rela-

tive separability can be assessed when comparing specific

classes or different types of targets at different levels of

classification.
3. Methods

3.1. Study area

This study focused on a specific urban region of Santa

Barbara and Goleta, CA, USA, located 170 km northwest

of Los Angeles in the foothills of the California Coast

Range. The land cover types and urban materials found in

the area are diverse and make the study site appropriate

for the proposed spectral analysis. The AVIRIS image

presented in Fig. 1 emphasizes the diversity of land cover

types. In addition to the urban cover types, non-urban land

cover types include water bodies, green vegetation (usu-

ally irrigated urban areas or agriculture), non-photosyn-

thetic vegetation (e.g. senesced grasslands) and bare soil

(e.g. constructions sites). The urban area represents differ-

ent types of land use including residential areas with

different densities and socio-economic structure, mixed-

use areas, and commercial and industrial districts with

various urban built-up cover types such as roofs, roads,

parking lots, sidewalks, recreational surfaces and landscap-

ing elements. The urban materials found in these areas

result from several decades of development with local and

traditional influences, and represent a diversity of material

types and conditions comparable to many urban areas in

the United States, especially in the southwestern parts

(Fig. 1).

3.2. Field library acquisition and processing

Field spectra were acquired with an Analytical Spectral

Devices (ASD) Full-Range (FR) spectrometer (Analytical

Spectral Devices, Boulder, CO, USA). The FR spectrom-

eter samples a spectral range of 350–2400 nm. The

instrument uses three detectors spanning the visible and

near infrared (VNIR) and shortwave infrared (SWIR1 and

SWIR2), with a spectral sampling interval of 1.4 nm for

the VNIR detector and 2.0 nm for the SWIR detectors. All

spectra used in this study were resampled to a spectral

resolution of 2 nm to create 1075-band spectra. A fiber-

optic cable transmits light from the aperture to the spec-

trometer. Both the bare fiber, with a field of view of 22j,
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and an 8j field of view foreoptic lens were used to acquire

field spectra. FR field spectrometer data are widely used

and considered to provide accurate and high-quality spec-

tral measurements. However, the spectra show some sen-

sor-specific features with small-scale variations between

950 and 1000 nm and at 1795 nm. High-frequency noise

between 950 and 1000 nm results from a low signal at the

edge of the 934-nm water vapor band and at the long

wavelength edge of the VNIR detector. An offset at 1795

nm results from a transition from the SWIR-1 to SWIR-2

detectors for this instrument. In general, the major water

absorption bands (1340–1480 and 1770–1970 nm) were

excluded from the statistical analysis. Other sensor-induced

spectral variations relate to the somewhat ‘‘noisy’’ signal in

the SWIR region above 2300 nm, particularly evident in

low reflectance targets. These features will adversely

impact the statistical analysis by increasing wavelength-

specific variance and potentially decreasing separability.

However, they are on average less than 1% reflectance,

and also located within wavelength regions that are subject

to strong water vapor absorption and thus could be suspect

when analyzing airborne or spaceborne data.

The spectra of characteristic urban surfaces, including a

large variety of roof and road types, were measured in the

Santa Barbara urban area between May 23 and June 5, 2001.

The majority of measurements were taken within 2 h of

solar noon, except a few spectra that were acquired at higher

solar zenith angles to study the effect of different Sun
angles. Most surface materials were measured in situ,

although spectra of new roofing material were also acquired

for several roofing types. Spectra of in situ materials were

acquired from a height of 1 m using the bare fiber optic,

with a field of view of 22j (1200 cm2 at a height of 1 m).

Spectra of new roofing materials were acquired from a

height of 0.15 m, using an 8j foreoptic lens (14 cm2 at a

height of 0.15 m). The urban materials were measured in

sets of five spectra for each field target. Four to six sets of

spectra were bracketed by measurements from a Spectralon

(Labsphere, North Sutton, NH, USA) 100% reflective

standard. All spectra were inspected for quality and suspect

spectra were discarded. Each urban surface spectrum was

divided by its appropriate standard spectrum to calculate

reflectance. Approximately 5500 reflectance spectra, repre-

senting 147 unique surfaces, make up the Santa Barbara

urban spectral library. The set of 147 targets was reduced to

108 to exclude targets that were either relatively rare (i.e.

street paint) or did not have a sufficiently high enough

number of field measurements to calculate B-distance. The

remaining spectra of 108 targets (f 4500 individual spec-

tra) were convolved to 224 AVIRIS bands (high-resolution

AVIRIS sensor configuration for 2000) assuming a Gauss-

ian filter function and using the full width half maximum

and band centers provided by Jet Propulsion Laboratory.

Convolution was used to reduce data volume, facilitate data

analysis and provide results that are applicable to the

AVIRIS sensor.
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3.3. Urban land cover classification system

The spectral library consists of f 4500 individual spec-

tra that are categorized in 108 unique surface types. This

surface type categorization is very detailed but has to be

transformed from the material scale to land cover classes to

focus the analysis and results to the scale used in classifying

land cover, e.g. evaluate the separability between roofs and

roads considering all spectral library targets of each land

cover type. There were four hierarchical land cover classi-

fication levels used in this study (Table 1). Forty-six

individual classes were aggregated from the spectral library

categories following the Anderson et al. (1976) scheme for

M. Herold et al. / Remote Sensin308
Table 1

Land cover classification scheme used for the analysis

Level 1 Level 2

1. Built up 1.1 Buildings/roofs

1.2 Transportation areas

1.3 Sport infrastructure

2. Vegetation 2.1 Green vegetation

2.2 Non-photosynthetic vegetation (NPV)

3. Non-urban bare surfaces 3.1 Bare soil

3.2 Beach

3.3 Bare Rock

4. Water bodies 4.1 Natural/quasi-natural water bodies

4.2 Swimming Pools
levels I and II modified for this study. The level I classes

represent main land cover types such as vegetation, built up,

or artificial surfaces, water bodies, and non-urban bare

surfaces. Level II subdivides the level I classes based on

their use, function or other generic characteristics. The non-

built-up classes are not the major focus of the analysis and

only very broad level II classes were defined for this

investigation.

Levels III and IV (user-defined in the Anderson classi-

fication system) further divide the functional land cover

classes based on their material properties to represent the

complexity of the urban spectral library. Level III repre-

sents class detail based on material properties for built-up
Level 3 Level 4

1.1.1 Composite shingle roof 1.1.1.1 Black shingle

1.1.1.2 Blue shingle

1.1.1.3 Brown shingle

1.1.1.4 Green shingle

1.1.1.5 Grey shingle

1.1.1.6 Mixed shingle

1.1.1.7 Orange shingle

1.1.1.8 Red shingle

1.1.1.9 Tan shingle

1.1.1.10 White shingle

1.1.2 Plastic roofs

1.1.3 Glass 1.1.3.1 Light Glass

1.1.4 Gravel roof 1.1.4.1 Gray gravel

1.1.4.2 Red gravel

1.1.5 Metal roof 1.1.5.1 Brown metal

1.1.5.2 Light grey metal

1.1.5.3 Green metal

1.1.6 Asphalt roof 1.1.6.1 Light grey asphalt

1.1.7 Tile roof 1.1.7.1 Red tile

1.1.7.2 Gray tile

1.1.8 Tar roof 1.1.8.1 Black tar

1.1.8.2 Brown tar

1.1.9 Wood shingle roof 1.1.9.1 Dark wood shingle

1.2.1 Asphalt roads 1.2.1.1 Light asphalt (old)

1.2.1.2 Dark asphalt (new)

1.2.2 Concrete roads 1.2.2.1 Light concrete

1.2.3 Gravel roads 1.2.3.1 Light Gravel

1.2.4 Parking lots 1.2.4.1 Dak Parking lot

1.2.5 Railroad 1.2.5.1 Railroad tracks

1.2.6 Walkways 1.2.6.1 Light concrete

1.2.6.1 Red brick

1.2.7 Street paint 1.2.7.1 White street marks

1.2.7.2 Yellow street marks

1.2.7.3 Red street marks

1.2.7.4 Blue street marks

1.2.7.5 Other street marks

1.3.1 Tennis courts

1.3.2 Red Tartan

1.3.3 Basketball court
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classes. The further separation in level IV is based on

spectral properties in the visible spectrum (color) or more

specific material characteristics. The diversity of level III

and level IV classes results from many factors such as

building types, cost and age of the building structure, and

the socioeconomic/urban land use characteristics in that

neighborhood.

There are several urban material and surface character-

istics that are not reflected in this classification scheme.

Examples are materials properties such as grain sizes,

specific material compositions (e.g. minerals, oily compo-

nents), or structural features such as surface roughness.

These properties are considered within-class variability,

i.e. two asphalt roads containing rocky components from

different geologic backgrounds that are reflected in the

spectra are still considered part of one land cover class.

Another feature that strongly influences the spectral signal

from urban surfaces is structure and geometry. Surface

structure generally appears at different scales. Surface

material roughness represents the micro-scale and affects

the BRDF and brightness of the object (Meister, 2000).

Meso-scale object geometry and roughness result from

three-dimensional roof or building structures and micro-

topography affecting the slope and orientation of roads. In

terms of remote sensing, this scale would approximately

correspond to pixel-by-pixel variation or texture in high-

spatial resolution sensors systems (f 1–5 m resolution).

Macro-scale surface geometry mainly results from terrain

structures and will result in radiometric remote-sensing

image distortions known as topographic effects, described

and investigated in many studies using Landsat TM or

similar sensor systems.

3.4. Derivation of spectral separability and most suitable

spectral bands

The B-distance offers a powerful approach for spectro-

scopic analysis of the urban spectral library and was the

central method applied in this study. The B-distance pro-

vides a score for the spectral separability between each pair

of material or cover type of interest based on the mean and

covariance of the categories (Eq. (1)). In this study the B-

distance was calculated using the full spectral range ac-

quired by the field spectrometer from 350 to 2400 nm.

Spectra represent individual urban surface types and the

investigation of spectral characteristics and separability

provides a generic view of their spectral properties and

discrimination, and the most important spectral features for

their separability. Although the results represent the material

scale, they will be evaluated in the context of urban area

remote sensing (land cover scale) to provide general

assumptions and implications of this study for related

applications.

The B-distance was calculated using the public domain

program ‘‘MULTISPEC’’ (Landgrebe & Biehl, 2001). The

B-distance calculation considered 108 individual targets
from the spectral library. The outcome provides a separa-

bility score between each material type resulting in a

108� 108 symmetrical matrix of B-distance values. The

individual B-distance scores can be aggregated to create

‘‘minimum’’ and ‘‘average’’ class separability (considering

all urban material spectra of any two land cover classes, e.g.

roofs versus roads). The average separability reflects the

overall discrimination between two land cover classes

whereas the minimum separability shows the lowest ob-

served discrimination between materials of these land cover

classes. Furthermore, the B-distance values were aggregated

to identify the spectral bands and features that contribute the

largest amount of spectral contrast between classes. This

function is implemented in MULTISPEC considering either

the best average or the best minimum separability for each

category (Landgrebe & Biehl, 2001). The determination of

the top score for best overall separability considers all

possible band combinations and provides the maximum

average B-distance score and the related set of most suitable

wavelengths. The set of bands for best minimum separation

is based on the best minimum B-distance value over all

classes, respectively. A major limitation is that the maxi-

mum number of bands available for each combination is

limited by the smallest number of spectra for an individual

target. For this reason, targets with only a few spectra (2–6)

were discarded from the statistical analysis. Even after

reducing the library from 147 to 108 materials, the number

of bands used for calculating the best average separation

was limited to nine and the best minimum separability was

limited to seven.

The investigation of most suitable spectral bands consid-

ered not only the top score band combinations but also the

frequency that specific bands were selected for spectral

separation. This analysis ranked sets of optimal wavelength

configurations that only show minor differences in their B-

distance scores and represent similar band combinations, e.g.

usually only one or two bands differ between adjacently

ranked sets of most suitable bands. Accordingly, the study

considers a more robust assessment of the most suitable

bands based on the top 20 band combinations for best average

and minimum separability. The frequency of appearance of

each band is considered a score for the importance of a band

in the separation of urban material categories. The frequency

value can reach a maximum of 20 if it is present in all 20 best

average or best minimum separability band combinations.
4. Results

4.1. Spectral signatures of urban materials

The classification scheme described above represents land

cover heterogeneity in the urban environment. In this section

we show representative examples of spectral signatures from

the library for different land cover and material types. Fig. 2

presents the spectra of various categories at different classi-



Fig. 2. Spectra of typical land cover types and materials found in urban areas. High-frequency noise present in some spectra between 950 and 1000 nm is due to

a low signal near the 934 nm water vapor band and low detector sensitivity at the long wavelength range of the VNIR detector (arrow A in diagram D). A minor

peak at 1795 nm represents the transition between the SWIR-1 and SWIR-2 detectors in this instrument (arrow B in Diagram D). Note: different scales are used

for each y-axis.
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fication levels. Fig. 2-A presents spectral plots of level II non-

urban classes. They show the classic spectral characteristics

for vegetation with a reflectance peak in green, minima at

blue and red due to chlorophyll absorption, high reflectance

in the NIR due to internal leaf anatomy and scattering, and

decreasing reflectance in the SWIR due to vibrational absorp-

tions by liquid water and leaf components such as lignin and

cellulose. The spectra of bare soil show general similarities

with the non-photosynthetic vegetation (NPV) targets in

visible and near-infrared parts of the spectrum. However,

the NPV spectra have significant ligno-cellulose vibrational

absorption bands nears 2100 and 2300 nm that clearly

identifies them as such (Roberts et al., 1993).

Fig. 2-B and -C represents level III classification spectra of

a selection of roof and road materials. The road materials

show a general spectral shape of increasing reflectance at
longer wavelengths and a reflectance peak in the SWIR with

concrete and gravel roads having the highest reflectance and

parking lots having the lowest reflectance over the whole

spectral range. Gravel road spectra represent mineral com-

position and show related absorption features from the

silicates at 2200 nm, hydro-carbonates above 2200 nm, and

iron oxides in the visible and near-infrared (near 520, 670 and

870 nm). Asphalt roads represent an aggregate of crushed

stones and various chemical components of tar or oil and

other hydrocarbons. The major mineral components in the

aggregate vary but are dominated by SiO2, CaO and MgO

(Robl et al., 1991). The asphalt spectrum has a very low

overall reflectance and only minor absorption features appear

from silicates at 2200 nm and hydro-carbonates above 2200

nm. Parking lots are fairly pure asphalt/tar surfaces (parking

lot sealant) with low constant reflectance and no significant
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absorption features due to the absence of dominant mineral

components. Concrete road material is comprised of cement,

gravel and water and various other ingredients. Significant

absorptions appear in the SWIR due to calcium carbonate

with a feature at 2300 nm for calcite and at 2370 from

dolomite. The roof spectra (Fig. 2-C) indicate the distinct

spectral signatures of red tile and wood shingle roofs com-

pared to the other roofing materials with both roof types

showing a significant reflectance increase in the NIR and

SWIR region. The wood shingle signature contains the ligno-

cellulose absorptions in the SWIR that are common for all

non-photosynthetic vegetation surfaces (see Fig. 2-A).

Ligno-cellulose absorption bands are unique to these types

of roofs and appear near 2100 and 2300 nm. The reflectance

increase towards longer wavelengths of the red clay tile has

been related to loss of water in the production firing process

(Heiden et al., 2001). Further significant spectral features are

the iron-oxide absorption features at 520, 670 and 870 nm.

The gravel roof spectrum is somewhat similar to the gravel

road spectrum but indicates a different mineral composition

with a strong iron-oxide component. Tar, gray tile and

composite shingle materials show the lowest reflectance with

only minor absorption features in the SWIR. The different

spectra in Fig. 2-D compare different color composite shingle

roofs as described by level IV of the classification scheme.

There is a general difference in target brightness with more

silicate/hydrocarbon absorption features in the SWIR with

increase reflectance. Specific small-scale spectral features

appear in the visible region representing the color of the roof.

The four diagrams in Fig. 2 clearly indicate the within-

class variability within each upper level category, e.g. the

spectral variation found for roofs, roads or an individual

roof material class. This shows the spectral complexity of

the urban environment that has to be considered in any
Fig. 3. Spectral representation of asphalt and concrete materials conditions (the ma

the y-axis).
related image analysis. Fig. 2 also indicates the spectral

similarity of some of the categories, e.g. the spectra of

asphalt roads, parking lots and some roof types (i.e. com-

posite shingle, tar or gray tile) follow a low, fairly constant

reflectance with no unique absorption features. Bare soil

surfaces also appear to have a similar spectral trend to

specific urban targets with increasing reflectance towards

longer wavelength.

Some spectra show high-frequency artifacts near water

absorption bands and in transition between detectors in the

spectrometer (Fig. 2–4). They are obvious in the spectral

signatures (see Fig. 2-D arrows A and B) and affect the

statistical analyses as they add variance to the spectra.

However, these features were generally less than 1% reflec-

tance and significantly smaller than actual spectral differ-

ences between materials. Also, the B-distance separability

measurements are mainly based on the mean spectral differ-

ence given the whole spectral range and these small features

have a minor impact on that. In any case, the evaluation of

optimal spectral wavelengths has to consider these noisy

spectral areas if suitable bands are located within them.

Fig. 3 represents the spectral variation of different trans-

portation materials. Fig. 3-A shows the spectra of different

road conditions due to the aging of asphalt and its effect on

spectral response. The natural aging of asphalt is caused by

reaction with atmospheric oxygen, photochemical reactions

with solar radiation, and the influence of heat, and results in

three major processes (Bell, 1989): the loss of oily compo-

nents by volatility or absorption, changes of composition by

oxidation, and molecular structuring that produces thixotro-

pic effects (steric hardening). The loss of oily components is

relatively short-term; the other two are more long-term

processes. The results of these processes are represented in

the spectra. New asphalt surfaces have the lowest reflectance
jor water vapor absorption bands are interpolated; note the different scales in
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with an increasing signal towards 2100 nm. As a material

ages and its condition deteriorates, reflectance increases in all

parts of the spectrum. This observation can be related to the

loss of oily components and the sealing tar surface that

decreases the general object absorption and the accumulation

of dirt and dust on the road surface. The difference in

reflectance is highest in the NIR and SWIR, peaking at

14%. The spectral shape in NIR and SWIR changes from

convex for new asphalt to concave for older surfaces. The

oxidation process is clearly shown by the appearance of iron-

oxide absorption features at 520, 670 and 870 nm, especially

in spectra 4 and 5 (Fig. 3-A). Other significant small-scale

absorption features appear at 2315 and 2350 nm. They

represent specific hydro-carbon compounds in the asphalt.

Both features are distinct for new asphalt surfaces and vanish

with age and poorer surface conditions. For spectra 2–5 the

spectral contrast betweenf 2100 and f 2350 nm decreases

for older asphalt surfaces. In general, the distinct spectral

variations that represent the aging and condition of asphalt

surfaces represent an interesting spectral contrast that might

be used to map road age and specific conditions from hyper-

spectral remote-sensing systems (Herold et al., 2004).

Variation in the spectral response from concrete sidewalk

surfaces with a change in age or condition is shown in Fig.

3-B. New concrete sidewalk surfaces have the highest

reflectance. Material aging and degradation result in a

decreased reflectance with the largest reflectance change

in the visible and near-infrared region. This change reflects

the continued oxidation of the surface shown by increasing

iron-oxide absorption features and the accumulation of dust

and dirt that decreases the brightness of the concrete surface.

The absorption features in the SWIR concrete spectra show

minor changes with a clear trend of increasing clay absorp-
Fig. 4. Spectra of typical road endmembers (left) and the effects of roof orienta

absorption bands are interpolated, the legend for diagram B describes the roof ma

orientation of the roof).
tions for older surfaces near 2200 nm. A comparison of the

spectral effects of surface age and conditions points out a

somewhat contrary development between asphalt and con-

crete road surfaces. The object brightness increases for

asphalt but decreases for concrete and the SWIR absorption

features disappear for asphalt but get stronger for concrete

roads. This observation should be considered in related

analysis of remote-sensing datasets. Spectrum 5 in Fig. 3-

B represents a sidewalk surface completely shaded by a tree

canopy. The canopy scatters and transmits light downward

onto the shaded surface, obscuring the spectral signature of

the urban surface and creating a signature that is more

characteristic of dark vegetation. While demonstrating over-

all low reflectance, spectrum 5 (Fig. 3-B) possesses subtle

spectral features typical of vegetated land cover, including a

red edge, green peak, and water absorption bands. Shadow-

ing is a problem at all resolutions, and spectra containing

shadowed land cover should be analyzed with specific

attention.

From a remote-sensing point of view, the acquired signal

in a pixel results from a mixture of different individual land

surface targets. Even in high spatial resolution sensor

systems (f 3–5 m spatial resolution) these mixtures can

be very heterogeneous within an urban environment. For

example, Fig. 4-A shows typical spectra found at or near a

road including an asphalt surface, an asphalt bike lane,

gravel alongside the road, fresh white street paint and a

concrete sidewalk. The asphalt has a comparatively dark

spectrum that is significantly different than the other

brighter materials. In a mixed road pixel the asphalt should

dominate the spectral signal but the bright surrounding

materials are high contrast targets and are clearly apparent

in remote-sensing observation. An accurate ‘‘unmixing’’ of
tion on the spectral signatures of roof types (Note: the major water vapor

terial, the time of spectra acquisition representing the Sun azimuth and the
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the pixel requires a consideration of all these built-up

materials and their relative contributions to the total spec-

trum. Related analysis requires a comprehensive and so-

phisticated set of material spectra and appropriate methods

for the spectral mixture analysis (Roberts et al., 1998).

The spectral effects of roof geometry, in this case roof

orientation, are shown in Fig. 4-B. This plot shows three

different types of roofs and their spectral variation at

different local zenith angles. For larger Sun angles the

brightness of the roof signal decreases with no significant

effect on the spectral shape of the roof, at least for the three

common roof types shown in this example. However, as

shown in previous studies, some urban materials have a

strong specular scattering component that changes with

wavelength (Mackay & Barr, 2002; Meister, 2000), i.e.

some surfaces might show more spectral variations than

just brightness effects given changes in solar illumination.

4.2. The spectral separability of urban materials and land

cover types

The urban spectral signatures of land cover types and

materials found in an urban environment provided some

qualitative indication of their separability. A quantitative

evaluation of spectral discrimination is provided by the B-

distance. The output of the B-distance calculation was a

108� 108 symmetric matrix showing the B-distance sepa-

rability score for each pair of individual spectral library

targets. To display the results provided by the 108� 108

matrix, we analyzed the B-distance scores on different levels

according to the land cover classification system (see Table

1). Fig. 5 shows two diagrams that present the separability

scores on classification level I, for built-up and road

materials versus major non-built-up classes. Vegetation is

represented by both green and non-photosynthetic vegeta-

tion, bare land surfaces by bare soil and beach (sand). Each

individual point represents a B-distance score between an

individual built-up category, specified on the x-axis, and a

non-urban class displayed in a specific color. The x-axis

shows the library names of the surface material spectra and

the level III built-up land cover classes. The continuous

lines in the graphs show the mean B-distance value,

representing the average separability (geometric mean of

the B-distance values) between the built-up target (x-axis)

and the specific non-built-up class (color). The number of

individual points of a specific color or non-built-up land

cover type, respectively, is equal to the number of material

spectra of this category used for the analysis. The spread in

B-distance of those points indicates the spectral complexity

in the land cover type. For example, the class non-photo-

synthetic vegetation has a relatively large range of B-

distance values in Fig. 5. This shows a high within-class

spectral variation. The smallest separability scores found for

each built-up target show the minimum spectral discrimina-

tion and clearly indicate spectral similarities between the

specific built-up and non-built-up materials.
The top diagram in Fig. 5 shows an overall high amount

of spectral discrimination between roof materials and non-

urban targets. Green vegetation (green) and beach surfaces

(red) are clearly separable given the mean B-distance scores

of about 1000 for most of the roof materials. The mean

separability for bare soil (brown) and non-photosynthetic

vegetation (NPV, blue) is considerably lower and ranges

between 100 and 1000. The roof spectra are most similar to

bare soil as it shows the lowest average B-distance values.

The smallest separability scores appear for specific NPV

targets that have the lowest discrimination with roofs. Some

individual values drop below 100 for a few composite

shingle roof types and even below 50 for some gray tile

roofs and wood shingle roofs.

The spectral discrimination of road materials and major

land cover classes is shown in the bottom diagram in Fig. 5.

The B-distances have a larger dynamic range than those

shown in the upper diagram of non-built-up cover types

versus roofs. Similar to roof materials, bare soil (brown) had

the lowest average and green vegetation the highest average

separability for most of the targets. For asphalt roads, the

minimum discrimination scores mainly occurred for bare

soil and NPV targets. Concrete roads showed some very low

separability values, especially for beach and bare soil

surfaces. These peaks indicate some important spectral

similarities between these road materials and bright targets

of bare surfaces (beach) with the lowest average B-distance

values of 30–100. Gravel roads and parking lots showed a

better average discrimination. For parking lots, the mini-

mum B-distance scores occur with green vegetation. Those

targets represent dark or shaded vegetation surfaces that

were spectrally similar to the dark parking lot materials.

The spectral separability between roofs and roads is

shown in Fig. 6. This figure corresponds to the level II

discrimination in the classification scheme. In terms of

average B-distance values, gravel and concrete separate

the best for nearly all types of roofs. Parking lots and

asphalt roads show a markedly lower average spectral

discrimination with dark new asphalt roads and parking lots

having the lowest. This is especially true for composite

shingle roofs, tar roofs, and gray tile roofs, which had some

B-distance minima below values of 50. The smallest indi-

vidual B-distance values of f 10 occurred for dark asphalt

roads when compared to composite shingle roofs. These

values clearly indicate a low separability for those targets

and emphasize that some roof and road materials might not

be spectrally distinct enough to be mapped accurately from

remote-sensing data. The low minimum B-distance values

for concrete roads and some roof types represent an impor-

tant issue although concrete roads have a comparatively

high average separability. This demonstrates that there is a

large spectral variability for these surfaces. Low individual

discrimination is especially obvious for gravel roofs and

gray tile roofs and again represents the general spectral

complexity of urban materials. Some land cover types have

good average separation while individual targets are spec-



Fig. 5. Spectral separability scores (B-distance) for roof materials (top diagram) and road materials (bottom diagram) versus major non-built-up cover types

shown as individual points and average measurements shown as lines (geometric mean, note the logarithmic scale of the y-axis).
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trally indistinct compared to other land cover types due to

within-class spectral variability.

The average and minimum values of separability for all

major urban land cover classes are summarized in Table 2.

The results emphasize the generally high degree of sepa-

rability for green vegetation, gravel roofs, red tile roofs,

and roads. Low average and low minimum separability are

obvious between asphalt roads, parking lots, and specific

types of roof materials such as composite shingle, tar and

gray tiles. These classes are spectrally very similar on the
material scale, implying potential difficulty in mapping

them using remote sensing. The spectral similarity of these

classes has already been observed in their spectral signa-

tures (Fig. 2). These targets are composed of similar

materials that generally have related spectral characteristics

of nearly constant low reflectance and no significant broad

absorption features between 350 and 2400 nm. Their

spectral contrast mainly results from differences in bright-

ness that can vary considerably over a wide range of

targets (see Fig. 2). Concrete roads have fairly high



Fig. 6. Spectral separability scores (B-distance) for roof materials versus road materials shown as individual points and average measurements shown as lines

(geometric mean, note the logarithmic scale of the y-axis).
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average separability scores for all classes. However, their

low minimum separability with specific classes such as

bare soil, parking lots and several roof types emphasizes a

distinct spectral similarity caused by the large heterogene-

ity of concrete road surfaces.

Wood shingle roofs and NPV represent another pair of

classes with good average but low minimum separability.

These materials are similar and some confusion between

these classes may be observed in remote-sensing data. Gray

tile, tar, and composite shingle roofs are confused to a very
Table 2

Average and minimum spectral separability (B-distance) for different land cover
high degree. Given the characteristics of remote-sensing

observations that theoretically provide a lower spectral

separation of urban materials and land cover types, these

targets might only be acquired and mapped with insufficient

accuracy.

4.3. Most suitable wavelengths in mapping urban areas

The most suitable wavelengths derived from separabil-

ity analysis of the 108 targets in the spectral library are
types
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shown in Fig. 7. The graph presents the frequency of each

spectral band’s appearance considering the top 20 combi-

nations of nine bands for best average separability and of

seven bands for best minimum separability. A band can

have a maximum frequency of 40 if it appears in all of the

top average and minimum channel combinations. In Fig.

7, a fair number of bands have a score of 20 as they

appear in all of the top 20 combinations for either best

average or minimum separability. For best average sepa-

rability (shown in black) there are eight; for best minimum

separability there are six bands with a score of 20. The

rest of the top band appearances are distributed for bands

that have a frequency of one since the top-ranked band

combinations vary only marginally. Most of these scores

appear in a number of adjacent bands (e.g. at 1700 nm)

and represent important ‘‘most suitable’’ spectral regions

without prioritization of a particular band.

Optimal bands for best average separability appear for

nearly all parts of the spectrum. With a frequency of 20,

there are several bands in the visible region at 420, 440, 570

and 640 nm, three are in the near infrared at 750, 1105 and

1315 nm and one band in the shortwave infrared at 1990

nm, near a strong water vapor band. Further suitable spectral

regions appear for a number of adjacent bands with a

frequency of one for seven bands between 490 and 550

nm and nine bands between 1670 and 1750 nm. These

spectral regions can also be considered as important for

spectral separation.

The distribution of the bands highlights the importance

of specific spectral regions. There are five important spectral

bands/regions in the visible region showing the contribution

of this spectral information. In fact, the color of the urban

materials or the absorption features that cause the object

color (e.g. iron absorptions) seems to be the most prominent

spectral information in separating urban land cover materi-
Fig. 7. Frequency of appearance of most suitable spectral bands for best average an

spectral coverage of IKONOS and LANDSAT TM satellite sensors.
als. Also, the VIS bands are very close to each other

emphasizing small-scale spectral features as important spec-

tral contrast between the targets. There are three more

bands/regions in the near infrared and two in the shortwave

infrared. These bands represent the consideration of spectral

discrimination in this region. They represent the larger

dynamic range of reflectance values related to an increase

in object brightness towards longer wavelengths for several

land cover types (e.g. tile roofs, wood shingle roofs,

vegetation, soils, gravel surfaces). There are also specific

absorption features for different targets that correspond to

the bands of best average separability.

The bands representing the best minimum separability

appear with individual bands at 500, 510, 2000, 2010, 2160

and 2330 nm with 19 consecutive bands between 550 and

700 nm. These bands show a more uneven distribution than

the ones derived for best average separability. This obser-

vation relates to the fact that the minimum value always

corresponds to a particular pair of land cover classes that

have the lowest separability of all classes. The related most

suitable set of bands represents the spectral regions that

contribute most to their discrimination. The distribution of

the most suitable wavelengths reflects this trend. All of the

related bands are located in the visible region and the SWIR

and correspond to small-scale absorption features that are

important spectral properties of urban materials, e.g. object

color or mineral absorption bands. Although these bands are

related to the separation of specific classes, they cover

different spectral regions than the ‘‘best average separability

bands’’ and might have significant contribution to an

improved mapping product. The bands near 2000 nm are

strongly confirmed by the spectral library data but are

located within a CO2 atmospheric absorption feature. This

feature is present in many spectra within the spectral library

and thus may be an artifact of a low signal in a strong CO2
d minimum separability of 108 targets in the spectral library compared to the
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band. The 1990-nm band, which is at the long-wavelength

end of a strong water vapor band, may have a similar

problem. Even if they are not artifacts, atmospheric con-

tamination is likely to limit their utility when applied to

airborne or spaceborne data.

Fig. 7 also provides a comparison between the locations

of most suitable bands and the spectral coverage of two

common spaceborne sensor systems, IKONOS and LAND-

SAT ETM+. This comparison shows that most of the

optimal bands lie outside or near the boundaries of the

spectral range of those sensors. Furthermore, the broad

band character of the channels does not resolve small-scale

spectral absorption features especially in the visible and

SWIR region that have been described for several built-up

and some non-built-up cover types. These results indicate

that common multispectral sensor systems only marginally

resolve the unique spectral characteristics of many urban

materials. Based on this study it is hypothesized that these

sensors have significant spectral limitations for mapping

the complexity of the urban environment at a detailed

level.
5. Conclusions

This study provided a systematic and quantitative inves-

tigation of the spectral complexity and unique spectral

characteristics of urban environments. A comprehensive

regional spectral library of urban materials was developed

in the Santa Barbara region. The central method in spectral

analysis of the library was the B-distance as a quantitative

measurement of spectral separability. This measure was

used to assess the discrimination of spectral library targets

and evaluate the wavelengths that contribute most to spec-

tral contrast. Although the analysis was accomplished with

spectral data that reflect the characteristics of the Santa

Barbara urban area, the focus of interpretation and discus-

sion of the results has been on the implications for remote-

sensing applications in urban area mapping.

The analysis of spectral separability of urban targets

provided a detailed assessment of how specific urban land

cover types separate based on their material properties

using the B-distance. Some land cover classes are not

spectrally distinct over the spectral range between 350

and 2400 nm and have expected limitations in their accurate

mapping from remote-sensing datasets. Examples include

(a) bare soil targets versus concrete roads; (b) asphalt roads

versus composite shingle, tar and gray tile roofs; (c) gray

tile roofs versus composite shingle and tar roofs; and (d)

asphalt roads versus parking lots. These surface types

mainly represent low reflectance targets with no significant

broad absorption features. Road surfaces showed the largest

variance in their spectral material separability and were

especially confused with specific non-transportation cover

types. Accordingly, the mapping of transportation infra-

structure within an urban environment from remotely
sensed data can be considered as particularly problematic

and challenging, at least from the spectral material perspec-

tive considered in this study.

The evaluation of most suitable spectral bands clearly

represents the spectral diversity of urban environments. The

spectral location of the bands emphasizes the important

spectral regions that are most useful in separating urban

land cover types. The bands highlight the visible region with

distinct small-scale spectral variation due to object color.

The short-wave infrared bands represent other specific

characteristics, absorption features and the brightness in-

crease of many urban land cover types during longer wave-

lengths. A comparison of the bands most suitable for

separating urban targets with the spectral configuration of

common multispectral remote-sensing systems showed that

the unique urban spectral characteristics are not resolved in

those sensors due to the location of the bands and their

broadband character, at least considering the results of this

study using the B-distance.

There are, however, certain limitations to this study. The

spectra had specific noise features that added uncertainty to

the statistical analysis. These features are artifacts primarily

due to a low signal in the vicinity of strong water vapor

absorption bands and at the transition between detectors

(950–1000 and 1795 nm). These deviations from the

average spectral signal are minor ( < 1% reflectance) and

should not adversely detract from many of the general

conclusions of this study. The B-distance approach, because

it uses separability scores derived from the full spectral

range, also has limitations. There are other techniques that

are tailored to specific spectral absorption features that may

be more sensitive to subtle spectral differences between

materials. For example, one alternative would be to map

material chemistry, using fitting approaches such as tetra-

corder (Swayze et al., 2003), which has been shown to be

capable of mapping very subtle spectral differences in urban

materials, such as the presence of trace amounts of asbesti-

form minerals in the vicinity of the World Trade Center

disaster (Clark et al., 2001).

Although this investigation has shown some limitations

in separating urban materials and other land cover types

the results have also shown great potential in using hyper-

spectral data in urban area mapping. Detailed investigation

into mapping specific roof materials, road types, conditions

and aging processes of asphalt surfaces that are of interest

should certainly be explored using systems with appropri-

ate sensor characteristics. Previous studies have certainly

provided promising results in hyperspectral remote sensing

of urban materials (e.g. Clark et al., 2001) and in assessing

the effects of spectral sensor resolution in urban land cover

mapping accuracy (Herold et al., 2003b). An additional

research area for remote sensing of urban landscapes

would be to incorporate the spatial dimension in data

analysis. The image analysis approaches discussed and

explored in this research might help overcome the spectral

limitations in mapping urban land cover and help define
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necessary spectral characteristics for future remote-sensing

systems.
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