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Abstract

Spectral matching algorithms can be used for the identification of unknown spectra based on a measure of similarity with one or more

known spectra. Two popular spectral matching algorithms use different error metrics and constraints to determine the existence of a spectral

match. Multiple endmember spectral mixture analysis (MESMA) is a linear mixing model that uses a root mean square error (RMSE) error

metric. Spectral angle mapper (SAM) compares two spectra using a spectral angle error metric. This paper compares two endmember

MESMA and SAM using a spectral library containing six land cover classes. RMSE and spectral angle for models within each land cover

class were directly compared. The dependence of RMSE on the albedo of the modeled spectrum was also explored. RMSE and spectral angle

were found to be closely related, although not equivalent, due to variations in the albedo of the modeled spectra. Error constraints applied to

both models resulted in large differences in the number of spectral matches. Using MESMA, the number of spectra modeled within the error

constraint increased as the albedo of the modeled spectra decreased. The value of the error constraint used was shown to make a much larger

difference in the number of spectra modeled than the choice of spectral matching algorithm.
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1. Introduction

Spectral matching algorithms allow the identification of an

unknown spectrum using one or more reference spectra. Two

spectral matching algorithms, multiple endmember spectral

mixture analysis (MESMA; Roberts et al., 1998) and spectral

angle mapping (SAM; Kruse et al., 1993) have found

widespread acceptance in the remote sensing community

for determination of spectral similarity. MESMA and SAM

have been used for a wide array of applications. MESMA has

been extensively used for mapping vegetation species in

Southern California chaparral (Roberts et al., 1998; Dennison

& Roberts, 2003a). MESMA has also been used to map snow

grain size (Painter et al., 1998, 2003), lunar surface

composition (Li & Mustard, 2003) and vegetation and soils
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in semi-arid environments in California (Okin et al., 2001).

SAM has been applied to a similar range of applications,

including mineral identification (Kruse et al., 2003), monitor-

ing land cover change (Sohn et al., 1999), and discrimination

of vegetation type (Lass et al., 2002; Silvestri et al., 2003).

AlthoughMESMA and SAM are widely used, the decision of

which spectral matching algorithm to use is often based on

experience and available software implementation. The

intrinsic assumptions and abilities of each spectral matching

algorithm may have a discernable impact on model results.

This paper explores similarities and differences in the error

metrics and error constraints used by MESMA and SAM.
2. Background

MESMA models spectra as a linear mixture of two or

more bendmemberQ spectra, and is based on spectral mixture
ent 93 (2004) 359–367



Fig. 1. Two spectra, endmember A and modeled spectrum B, are shown

plotted as a vectors with reflectance components from two spectral bands. f

represents the fraction of endmember A. The distance from the origin

indicates the albedo of each point along the vectors. RMSE and spectral

angle error metrics are indicated by the solid and dashed lines, respectively.

A RMSE error constraint is represented by the shaded area. The RMSE

constraint to the left of endmember A has been omitted for the purpose of

clarity.
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analysis (SMA; Adams et al., 1993). SMA techniques

typically utilize a bshadeQ endmember that is used to

account for variations in spectral albedo, while one or more

non-shade endmembers can be used to identify the spectral

constituents of the modeled spectrum (Smith et al., 1990).

Each endmember is assigned a fractional abundance, such

that the reflectance of a modeled spectrum (qkV) is

determined by the sum of the reflectance of each material

within a pixel multiplied by its fractional cover:

qkV ¼
XN
i¼1

fi4qik þ ek ð1Þ

where qik is the reflectance of endmember i for a specific

band (k), fi is the fraction of the endmember, and N is the

number of endmembers. The fit of the model is assessed by

an error metric based on ek, the residual error. Since the

residual error is not scaled by the endmember fractions, ek

increases with an increase in the reflectance of the modeled

spectrum.

MESMA uses the SMA linear model, but rather than

using a rigid set of endmembers, MESMA allows endmem-

bers to vary on a per-pixel basis (Roberts et al., 1998). The

two-endmember case of MESMA can be used for spectral

matching (Roberts et al., 1998; Dennison & Roberts, 2003a).

The standard error metric for MESMA is root mean square

error (RMSE; Roberts et al., 1998). RMSE is calculated as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
k¼1

ekð Þ2

M

vuuuut
ð2Þ

where M is the number of bands. Since the residual error is

partially dependent on the reflectance of each band within

the modeled spectrum, RMSE will be partially dependent on

the albedo of the modeled spectrum. As the albedo of the

modeled spectrum increases, RMSE will also increase.

SAM resolves spectral similarity by calculating a spectral

angle between two spectral vectors that have a common

origin. The length of a spectrum vector (Lq) is calculated as:

Lq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
k¼1

q2
k

vuut ð3Þ

The spectral angle (h) is calculated as:

h ¼ cos�1ðXM
k¼1

qkqkV

LqLqV
Þ ð4Þ

where Lq is the length of the endmember vector and LqV is

the length of the modeled spectrum vector calculated using

Eq. (3) (Kruse et al., 1993). Spectral angle itself is the error

metric for SAM. If the spectral angle of a modeled spectrum

is below a user-determined threshold, the spectrum is

classified as belonging to the endmember class. One of
the primary advantages of SAM is that spectral angle is

insensitive to differences in the albedo of the modeled

spectrum. Spectral angle only measures differences in

spectral shape, and spectral albedo is measured by the

length of each vector.

Schwarz and Staenz (2001) describe a two step process

for determining spectral similarity. First, an error metric is

calculated for the algorithm being used. Second, an error

constraint is used to determine whether spectral similarity is

present or not. Error constraints are typically selected to

minimize classification errors, although automated means of

selecting error constraints have been proposed (Schwarz &

Staenz, 2001).

Fig. 1 illustrates how error constraints differ for MESMA

and SMA. An endmember (A) is used to model a spectrum

(B), both of which are displayed as vectors with reflectance

components from two spectral bands. RMSE (solid lines)

and spectral angle (dashed line) error metrics are shown. For

MESMA, B is modeled as a linear mixture of A and

photometric shade, represented by the origin. A RMSE

constraint is shown as the shaded area (Fig. 1). A spectral

match is found if the RMSE is within the shaded area. The

albedo of A can change, allowing the endmember to slide to

any point along the vector, but the albedo of B is fixed. The

RMSE error constraint is parallel to the endmember vector,

since the shortest distance (lowest RMSE) from the

endmember vector to a point along the modeled spectrum

vector is a line perpendicular to the endmember vector. If

the modeled spectrum is dark (B1), then RMSE will be small

and may fall below the specified error constraint (Fig. 1). If

the modeled spectrum is bright (B2), RMSE will be larger

and may exceed the error constraint. For SAM, the albedo of

the modeled spectrum does not matter with respect a
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spectral angle error constraint. The spectral angle between A

and B will be the same for any pair of points along A and B.

For f1A and B1, the spectral angle will be equivalent to a

smaller RMSE, while for f2A and B2, the spectral angle will

be equivalent to a larger RMSE. Over the entire range of

albedos, there is no direct equivalence between RMSE and

spectral angle error constraints.
3. Methods

3.1. Spectral Library

A library containing 988 spectra of six land cover types

was used to compare error metrics and error constraints from

MESMA and SAM (Table 1). The library spectra were

extracted from a June 14, 2001 Airborne Visible Infrared

Imaging Spectrometer (AVIRIS) scene covering the city of

Santa Barbara and the south-facing slope of the Santa Ynez

Mountains, in California, USA. AVIRIS is a 224 band

imaging spectrometer that covers a spectral range from 400

to 2500 nm (Green et al., 1998). The instrument was flown

on the high altitude ER-2 platform, producing an image

swath width of approximately 11 km and an instantaneous

field of view of approximately 20 m. AVIRIS radiance data

were processed to apparent surface reflectance using a

modified version of the MODTRAN radiative transfer

model (Green et al., 1993). Reflectance was subsequently

adjusted using a field measured spectrum of a sand target

(Clark et al., 2002). The reflectance corrected AVIRIS scene

was registered to an orthorectified SPOT mosaic, trans-

formed using triangulation and resampled using nearest-

neighbor resampling. A subset of 174 bands from the

registered reflectance image was selected to remove bands

with strong water absorption features in the shortwave

infrared (SWIR) and bands with poor signal-to-noise in the

blue end of the visible spectrum and the SWIR beyond 2450

nm wavelength.

Reflectance spectra were extracted from the AVIRIS

image from fifty-nine reference polygons that were at least

75% dominated by a single land cover type (Dennison &

Roberts, 2003b). The six land cover classes are listed in
Table 1

Description of the six land cover classes in the spectral library

Land cover

class

Scientific name Abbreviation Number of

spectra

Chamise Adenostoma fasciculatum adfa 77

Manzanita Arctostaphylos spp. argl 111

Big pod

ceanothus

Ceanothus megacarpus ceme 398

Grassland multiple gras 116

Coast

live oak

Quercus agrifolia quag 107

Impervious

surf.

N/A impv 202
Table 1. Polygons for the five vegetation classes (Adenos-

toma fasciculatum, Arctostaphylos spp., Ceanothus mega-

carpus, Quercus agrifolia, and mixed introduced grasses)

were mapped in June 2002 using field assessed vegetation

cover and a 1-m resolution United States Geological

Survery Digital Orthophoto Quadrangle (DOQ). A sixth

class, impervious surface, was mapped using the DOQ in

January 2003. Polygons were required to be at least 40 m by

40 m in size, and only spectra that were entirely inside a

polygons were extracted to reduce potential spectral mixing

and the effects of registration errors (Dennison & Roberts,

2003b). The polygons contained between two and seventy-

two image spectra, with a mean of 16.8 spectra per polygon.

3.2. Spectral modeling

Two endmember MESMA and SAM were used to model

combinations of spectra from the spectral library. The library

was subset by land cover class, and each spectrum within a

class was used to model the members of the class. The total

number of models (nm) can be calculated as:

nm ¼ n2s � ns ð5Þ

where ns is the number of spectra in the class, and each

spectrum modeling itself is excluded from the total number

of models. If fractional constraints are not imposed, the error

matrix is symmetric and the number of unique models in

each class becomes

nm ¼ n2s � ns

2
ð6Þ

Several of the classes were sufficiently large enough that

displaying model parameters became difficult, so each class

was subset. Fifty spectra were randomly selected from each

land cover class, creating 2450 model pairings and 1225

unique models for each land cover class.

Three different types of comparisons between MESMA

and SAM were investigated:

1. comparison of MESMA and SAM error metrics for all

model pairings within a land cover class,

2. comparison of the number of spectra modeled by a

selected endmember within set MESMA and SAM

error constraints, and

3. comparison of the MESMA and SAM error metrics for

spectra modeled by a selected endmember, across all six

land cover classes.

Two endmember MESMA and SAM were used to model

each spectral pairing within each land cover class. For each

model pairing, one spectrum was designated as the

bendmemberQ and a second spectrum was designated as

the bmodeled spectrumQ. In the case of MESMA, a

photometric shade endmember with a uniform reflectance

of zero was also used. MESMA was not constrained by

fractional or residual constraints. For MESMA, the RMSE



Fig. 2. Spectral angle vs. RMSE for six land cover types.
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and endmember fractions were calculated for each model

using singular value decomposition to solve Eq. (1) (Board-

man, 1989). For SAM, the spectral angle was calculated

using Eq. (4). The lengths of the endmember spectrum

vector (Lq) and the modeled spectrum vector (LqV) were

calculated using Eq. (3).

Error metrics for MESMA and SAM were compared for

each land cover class using linear regression. RMSE was

modeled as a function of spectral angle, and the resulting

slope and intercept terms were used to calculate RMSE

residuals. RMSE residuals were then compared to the vector

lengths of the modeled spectra to examine the effects of

albedo on MESMA.

The effects of error constraints on spectral matching using

MESMA and SAM were also examined. A single endmem-

ber was selected for each land cover class using Endmember

Average RMSE (EAR). EAR is the average RMSE for an
endmember modeling its own spectral class using MESMA

(Dennison & Roberts, 2003a). EAR is calculated as:

EARAi;B ¼

Xn
j¼1

RMSEAi;Bj

n� 1
ð7Þ

where A is the endmember class, Ai is the endmember, B is

the modeled spectra class, and n is the number of modeled

spectra in class B. The bn�1Q term accounts for the

endmember modeling itself. An equivalent endmember

selection method can be created for SAM. The average

spectral angle for an endmember modeling its own class

using SAM can be calculated as:

h¯Ai;B
¼

Xn
j¼1

hAi;Bj

n� 1
ð8Þ



Table 2

Slope, intercept, and R2 for linear regressions of spectral angle (in radians)

against RMSE

Land cover class Slope

(RMSE %/SA)

Intercept

(RMSE %)

R2

Chamise 22.3 �0.066 0.987

Manzanita 20.5 �0.026 0.984

Big pod ceanothus 19.6 �0.015 0.994

Grassland 22.9 0.065 0.966

Coast live oak 20.1 0.022 0.994

Impervious surf. 22.8 0.015 0.865

Table 3

Number of spectra modeled by MESMAwithin a given constraint for each

land cover class

Constraint Number of spectra modeled

adfa argl ceme gras quag impv

0.5% 11 14 5 12 14 1

1.0% 28 31 27 31 36 16

1.5% 35 42 39 37 40 39

2.0% 38 45 46 41 42 45

2.5% 43 49 47 43 44 50
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Endmembers selected using minimum EAR and minimum

average spectral angle techniques were compared.

The EAR-selected endmembers were used to model their

individual land cover classes using MESMA and SAM. A set

of five error constraints for MESMA (2.5, 2.0, 1.5, 1.0, and

0.5 RMSE, in percent reflectance) and four error constraints
Fig. 3. Vector length of the modeled spectra vs.
for SAM (spectral angles of 0.2, 0.15, 0.1, and 0.05, in

radians) were used to determine the number of spectra

modeled in each land cover class at or below each constraint.

Error constraints were selected arbitrarily, and should not be

used as evidence of better performance of one model over

another. Since MESMA was shown to be sensitive to the

albedo of the modeled spectrum, the albedos of the modeled
RMSE residuals for each land cover class.



Table 4

Number of spectra modeled by SAM within a given constraint for each land

cover class

Constraint (radians) Number of spectra modeled

adfa argl ceme gras quag impv

0.05 30 30 26 33 36 23

0.1 40 45 46 42 42 49

0.15 46 50 49 46 45 50

0.2 48 50 50 48 47 50
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spectra were also scaled by a multiplier. Twenty albedo

multipliers ranging from 1.0 (no change in albedo from the

original spectrum) to 0.05 (5% of the original reflectance

spectrum) were used. This multiplier permitted an examina-

tion of the effects of modeled spectrum albedo on the number

of spectra modeled within each constraint.

For the final comparison, models from all six land cover

classes were combined and RMSE and spectral angle for the
Fig. 4. Number of spectra (out of 50) modeled for each land cover class. The multip

represent different RMSE constraints.
EAR-selected endmember models were compared using

linear regression.
4. Results

Comparisons of RMSE and spectral angle for each land

cover class demonstrated that the two error metrics are

closely related (Fig. 2). Model error ranged widely within

each spectral library. The chamise and grassland classes

showed the most spectral variability within each class, with

RMSE and spectral angle having high values on their

respective axes. The ceanothus and impervious surface

classes showed the least amount of spectral variability, with

relatively low RMSE and spectral angles. Linear regression

of spectral angle against RMSE revealed strong correlations

between the two error metrics (Table 2). R2 values ranged

from 0.87 for the impervious surface class to 0.99 for the
lier was used to reduce the albedo of the modeled spectra, and the five lines



Fig. 5. Spectral angle vs. RMSE for all six land cover types. The EAR

selected endmember for each land cover class was used to model that land

cover class.
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ceanothus class. R2 values for all six land cover classes were

above 0.96, with the exception of the impervious surface

class. Fitted slope and intercept values were also similar,

and intercept values were near zero for all six land cover

classes (Table 2).

Each of the scatterplots in Fig. 2 is roughly fan shaped,

with low dispersion of points at lower RMSE and spectral

angle and higher dispersion of points at high RMSE and

spectral angle. A single spectrum modeled by the set of

endmembers forms a line that indicates a fixed relationship

between RMSE and spectral angle. Variations in the albedo

of the modeled spectra create the fan shape. Since RMSE

decreases as the non-shade endmember fraction decreases,

the slope of the relationship between RMSE and spectral

angle will decrease as the albedo of the modeled spectrum

decreases. From this, it can be inferred that the range in

albedo in the impervious surface and grass spectra is much

larger than the range in albedo in the ceanothus, oak, and

manzanita spectra (Fig. 2).

Since the albedo of the modeled spectrum determines

the slope of the relationship between RMSE and spectral

angle, the residuals of the linear regression between RMSE

and spectral angle should be dependent on the length of

the vector of the modeled spectrum. Fig. 3 compares the

RMSE residuals for the six land cover classes calculated

using the slope and intercept values from Table 2 to the

length of the modeled spectrum vector. For each scatter-

plot there is a broad increase in the residual RMSE as the

length of the modeled spectrum vector increases. In Fig. 3,

an individual modeled spectrum modeled by many differ-

ent endmembers forms a line of residuals parallel to the y-

axis. The spread of the residuals is small where the slope

of the trend for that particular modeled spectrum is close

to the slope of the regression line. The spread of the

residuals is much larger where the modeled spectrum is

much darker or brighter than average, forming a bbow-tieQ
shape (Fig. 3).

The six endmembers selected by EAR were used to

model their land cover classes using MESMA and SAM. To

test whether the selected endmembers were favored by the

MESMA model used by EAR, the equivalent minimum

average spectral angle was also calculated. The minimum

average spectral angle selected an identical set of endmem-

bers when compared with those selected by EAR. The

number of spectra modeled by the selected endmembers

below a specific error constraint varied according to the

constraint used (Tables 3 and 4). The MESMA standard

error constraint of 2.5% reflectance (Roberts et al., 1998)

modeled a similar number of spectra within each land cover

class compared with a spectral angle constraint of 0.1

radians. MESMA included a slightly higher number of

spectra than the standard error constraint for SAM. Both

models demonstrated a steep reduction in the number of

included modeled spectra for the most restrictive constraints.

Since RMSE is dependent on the albedo of the modeled

spectrum, the number of spectra modeled within a specific
error constraint by MESMA should increase as the albedo of

modeled spectra decrease. A multiplier was used to reduce

the albedo of the modeled spectra, while the EAR selected

endmembers were kept at constant albedo. The effects of

varying the albedo of the modeled spectra can be seen in

Fig. 4. The number of spectra modeled by each endmember

increases as the albedo of the modeled spectra drops. For

loose RMSE constraints, the number of additional spectra

included by lowering the albedo of the modeled spectra is

relatively small (Fig. 4). As constraints tighten, however, the

number of additional spectra included below the error

constraint continually rises as the albedo of the modeled

spectra is decreased.

Although differences in modeled spectrum albedo do

produce variability in RMSE that is not present in

spectral angle, the models run using the EAR selected

spectra showed that the two metrics are nearly equivalent

when carefully selected endmembers were used. Data

points for spectral angle vs. RMSE for all six land cover

classes are shown in Fig. 5. There is a strong apparent

relationship between RMSE and spectral angle for the

spectral classes examined. A linear regression of RMSE

against spectral angle produces an R2 of 0.97. The

correlation between the two error metrics is slightly lower

if values above the 2.5% RMSE threshold are discarded,

with an R2 of 0.94.
5. Discussion

The correlations between RMSE and spectral angle

demonstrate that the MESMA and SAM error metrics are

not equivalent, but that they are closely related. For

modeling spectra with low variability in albedo, MESMA



Fig. 6. A schematic of error constraint selectivity. Endmember A and

modeled spectrum B correspond to the vectors shown in Fig. 1. r is within

the RMSE error constraint, and s is within the spectral angle error

constraint. The darkest shaded area is the region where the two constraints

overlap. Error constraints to the left of endmember A have been omitted for

the purpose of clarity.
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and SAM should produce equivalent results. The depend-

ence of RMSE on the albedo of modeled spectra should be

taken into account in images with high variability in the

albedo of modeled spectra. Differences in solar illumination

due to topography are of particular concern, since a partially

shaded surface might fall below a given RMSE threshold,

but a fully illuminated surface might not. Selection of

spectral range and the number of bands may increase or

decrease the albedo of the modeled spectra. Relationships

between MESMA and SAM error metrics derived for full

range spectra may not apply to convolved or subset spectra

with different albedos.

The results also demonstrate the importance of error

constraints when using either MESMA or SAM. Error

constraints can be set loosely enough to include a large

number of modeled spectra or tightly enough to include

only those spectra that are most similar to the endmember.

Given similar error constraints, using one model rather

than another is unlikely to produce remarkably different

results; differences will be much more pronounced when

the error constraints themselves are varied. There is a

difference in the selectivity of error constraints based on

the albedo of the modeled spectrum (Fig. 6). Above a

specific modeled spectrum albedo, marked by the dashed

line in Fig. 6, a RMSE error constraint will include a

smaller range of spectral variation than a similar spectral

angle constraint. The opposite applies for modeled

spectrum albedos below the dashed line. If similar error

constraints are used for MESMA and SAM, MESMA will

be more selective for modeled spectra with higher albedos

while SAM will be more selective for modeled spectra

with lower albedos (Fig. 6).

While MESMA provides fractional abundance of end-

members, it does have the drawback of the dependence of

RMSE on the albedo of the modeled spectrum. Thankfully,
the problem of spectral matching is not limited to an either/

or solution. MESMA could be adapted to use an error metric

that is less sensitive to differences in modeled spectrum

albedo. RMSE could be inversely weighted by the albedo of

the modeled spectrum, so that lower albedo would produce

higher RMSE values. Alternatively, error constraints could

be weighted by albedo, allowing a tighter error constraint

for lower albedo spectra and a looser error constraint for

higher albedo spectra. A more promising approach might be

a hybrid model that uses aspects of both models. Gillis and

Bowles (2004) have proposed a hybrid model that uses

endmembers derived from linear mixing to create a new

coordinate system for SAM.
6. Conclusions

Two commonly used spectral matching algorithms,

MESMA and SAM, demonstrate similar results when

applied to a spectral library containing five vegetation

classes and an impervious surface class. Error metrics for

MESMA and SAM are linearly related and highly corre-

lated. Differences between these error metrics are due to

differences in the albedos of modeled spectra.

In choosing between two competing spectral matching

algorithms, each method has advantages and disadvantages.

MESMA is the more flexible algorithm, providing the

ability to calculate fractional abundance and incorporate

additional endmembers where two endmembers are inad-

equate. Unlike MESMA, SAM is not sensitive to variations

in the albedos of modeled spectra. Both models produce

similar results for the two endmember case when used with

properly selected endmembers. The selection of the error

constraint appears to have a much greater impact on the

number of spectral matches than the selection of matching

algorithm. More effort should be invested in determining

appropriate error constraints for both algorithms across a

variety of spectral environments.
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