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Abstract—Parameters derived from remote sensing that can
be used to assess fire danger include surface reflectance, live and
dead biomass, canopy water content, species composition, and fuel
state. Spectral bands and wavelength locations of traditional mul-
tispectral data make assessment of fire danger in Mediterranean
shrublands difficult, although fire danger parameters have been
derived from Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) data. We compare nearly simultaneous acquisition of
Hyperion and AVIRIS to evaluate spaceborne monitoring poten-
tial of fire danger in Southern California chaparral. Field spectra
were acquired to support reflectance retrieval and construct a
spectral library for vegetation mapping. Reflectance spectra re-
trieved from Hyperion and AVIRIS had similar shape and albedo,
but SNR was five times higher in AVIRIS. Fuel condition was
assessed using the endmember fractions from spectral mixture
analysis, with both Hyperion and AVIRIS imaging spectrometer
data providing similar fractions and spatial distributions. Hype-
rion demonstrated good capability for separating spectral signals
from bare soil and dry plant litter. Canopy water content was
compared using the 980- and 1200-nm liquid water bands, the
water index, and the normalized difference water index. Results
showed that Hyperion is capable of retrieving canopy water at
1200 nm, but demonstrates poor performance at 980 nm. Sensor
noise and instrumental artifacts account for poor performance
in this spectral region. Overall, full-spectrum measures outper-
formed band ratios because of a lower sensitivity to sensor noise
in individual bands. Species and community mapping showed
similar patterns with better accuracy for AVIRIS relative to
Hyperion, but with both instruments achieving only 79% and
50% overall accuracy, respectively.

Index Terms—Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS), fuel load, fuel model, fuel moisture, Hyperion, imaging
spectrometry, spectral mixture analysis, wildfire.
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I. INTRODUCTION

W ILDFIRE is a major global disturbance mechanism,
impacting large areas of boreal forests, savannas,

Mediterranean ecosystems, and even tropical rainforest [1]–[4].
In Southern California, a Mediterranean climate with hot dry
summers results in summer water deficits and ecosystems that
are highly sensitive to climate perturbations. Summer drought
coupled with the presence of shrub and forested communities
along the wildland urban interface make wildfire one of the
most serious economic and life-threatening natural disasters in
the region [5], with an average annual cost of US $163 million
dollars due to home and property loss state wide [6]. Fire
return intervals range from less than a decade to over 50 years.
The potential of catastrophic wildfire is further exacerbated
by extreme weather events (i.e., Santa Ana Winds), more
than 70 years of fire suppression [7], and periods of extended
drought. Postfire effects, such as erosion and mud slides from
fire-burned slopes, often exceed the cost of the original fire in
damage [8].

Four fuel characteristics are essential for understanding the
behavior of wildfire: fuel type, fuel biomass, fuel moisture, and
fuel condition. Fuel type describes species-specific combustion
properties including surface-area-to-volume ratio, relative
amounts of herbaceous and woody fuels, and phenology.
Traditional fuel models for fire behavior modeling have also
included typical fuel biomass and fuel condition with fuel type
[9]. Fuel biomass describes both live and dead vegetation dry
biomass. Biomass of live herbaceous material is particularly
important in chaparral, because the structure and chemistry of
chaparral leaves make live materials more combustible than
in other vegetation types [10]. Fuel moisture is the percentage
of liquid water present relative to dry weight in both live and
dead fuels. Fuel moisture is potentially the most important fuel
property controlling fire hazard [4]. Unlike dead fuel moisture,
live fuel moisture does not respond strongly to changes in
environmental relative humidity. Finally, fuel condition rep-
resents the relative proportion of live to dead (or senesced)
fuels. Live fuels contain a higher percentage of liquid water
that must be driven off before the fuel undergoes combustion.
Dead fuels contain less moisture and react strongly to changes
in environmental humidity.
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In this paper, we evaluate the potential of Hyperion, an
imaging spectrometer on the Earth Observing 1 (EO-1) satellite
platform, for wildfire danger assessment. We evaluate Hyperion
performance by direct comparison of Hyperion wildfire danger
products to Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) products produced from data acquired within two
days of the Hyperion overpass. This comparison uses AVIRIS
data as the reference dataset. We focus on data acquired in
the vicinity of Santa Barbara, CA, in a region dominated by
schlerophyllous shrub vegetation typical of Mediterranean
climates. This region has experienced a number of catastrophic
fires in recent decades, including one of the most destructive in
California history, the 1990 Painted Cave Fire [11]. Important
remote sensing-based measures that can contribute to fire
danger assessment include the following:

1) direct measures of live fuel moisture;
2) measures of live herbaceous biomass;
3) measures of fuel condition;
4) detailed classifications of fuel type.

Accurate and stable retrieved surface reflectance is necessary
to produce these measures. To evaluate Hyperion performance,
we compared fuel measures derived from a Hyperion scene
acquired on June 12, 2001 to similar measures derived from
AVIRIS on June 14, 2001. Live herbaceous biomass and fuel
moisture were assessed using several hyperspectral measures
of canopy moisture. Fuel condition was assessed using green
vegetation (GV), nonphotosynthetic vegetation (NPV), and soil
as endmembers for spectral mixture analysis (SMA) [12]. Fuel
types were mapped using multiple-endmember spectral mixture
analysis (MESMA) [13]. MESMA allows endmembers to vary
on a per-pixel basis, in contrast to SMA, which uses the same
endmembers for the whole scene. Instrument performance and
the accuracy of vegetation maps was assessed by comparison
with 85 to 91 reference polygons measured in the field.

II. BACKGROUND

Fire behavior is a product of weather, fuels, and terrain, which
vary in importance depending on season and fire regime [4]. Of
these factors, fuels are often the most problematic because of
their high spatial and temporal variability, resulting in a lack
of timely fuels information at an appropriate spatial scale. Fire
danger is most often assessed using broadband sensors such as
the Advanced Very High Resolution Radiometer, Multispectral
Scanner, and Thematic Mapper (TM), through some combina-
tion of fuel type mapping, meteorology and ancillary geographic
information (such as slope, aspect, and elevation), and fire his-
tory [5], [14]–[16]. Most commonly, fuels are mapped using two
fuel classification systems; one is described by Anderson [9] and
is part of the BEHAVE fire prediction system, and the other is
the National Fire Danger Rating System [17].

Robertset al. [18] and Dennisonet al. [19] describe new
measures of fuel properties derived from hyperspectral systems
such as AVIRIS. These measures include 1) direct estimates of
canopy moisture and live biomass, 2) estimation of fuel con-
dition using SMA, and 3) vegetation mapping at the commu-
nity and species level using MESMA [18]. Canopy moisture
and estimates of green-live biomass can be derived directly from

canopy reflectance measured by hyperspectral systems. Exam-
ples of moisture indexes include equivalent liquid water thick-
ness (EWT) [20], [21], the normalized difference water index
(NDWI) [22], and the water index (WI) [23]. The WI is cal-
culated as the ratio of a wavelength outside the strong 980-nm
water band divided by reflectance within this water absorption
feature [23]

WI (1)

NDWI is a normalized difference index the based on wave-
lengths inside and outside the 1200-nm water absorption feature
[22]

NDWI (2)

EWT is estimated from at-sensor radiance or reflectance data
using a Beer–Lambert approach in which the spectral expres-
sion of liquid water is modeled based on the exponential of the
absorption coefficient of liquid water modified by the pathlength
within the medium [24].

Ustinet al. [25] evaluated the potential of EWT as a measure
of canopy moisture in chaparral ecosystems. Serranoet al. [26]
expanded this analysis to compare the NDWI, EWT, and WI
as measures of relative water content (RWC) in chaparral, con-
cluding that WI was most sensitive to RWC, while EWT was
more sensitive to canopy structure. These results are consistent
with Robertset al.[24], who evaluated the relationship between
green leaf area index and EWT, but disagree with [25] and [18],
which document seasonal changes in the relationship between
measures of canopy greenness and measures of canopy mois-
ture.

SMA can be used to estimate fuel condition, by mapping
GV and NPV fractions. The fractions respond to the relative
proportions of live (GV) and senesced (NPV) vegetative land
cover. Vegetation communities and species can be mapped using
MESMA. In MESMA, endmembers are not fixed, but are al-
lowed to vary on a per-pixel basis [13]. The fraction of the dom-
inant cover types is modeled within each pixel. In many cases,
it is possible to spectrally distinguish vegetation at the species
level. Vegetation maps produced by MESMA can be reclassified
to standard fuel models such as those presented by Anderson [9].
Species-level maps can also be used with species-specific fuels
information such as surface area-to-volume ratio.

III. M ETHODS

A. Study Site

The study was conducted primarily in the Santa Ynez Moun-
tains, located north of Santa Barbara, CA (34N, 120 W)
in an area of overlapping Hyperion and AVIRIS data acquisi-
tions (Fig. 1). This area is characterized by winter precipitation,
summer drought, cool winters, and warm summers. Dominant
vegetation in the area is adapted to summer drought, consisting
of a variety of schlerophyllous evergreen plants or drought de-
ciduous species. Although a large number of species are present,
only a few dominate the landscape including chamise (Adenos-
toma fasciculatum), two species of California lilac (Ceanothus
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Fig. 1. Index map showing location of study site and areal coverage of Hyperion and AVIRIS.

megacarpusandC. spinosus), and two oaks (Quercus agrifolia
andQ. dumosa). Grasslands, which are common at lower ele-
vations on relatively flat terrain, are dominated by a number of
European-introduced species. At high elevations, two species
of manzanita (Arctostaphylos glandulosaandA. glauca) are lo-
cally abundant. Coastal sage scrub is uncommon on the southern
flank of the Santa Ynez Range.

Six land-cover classes were mapped in this study including
1) soil, 2) grassland, 3) chamise, 4) Ceanothus, 5) manzanita,
and 6) oak. The twoCeanothusspecies were combined into a
single class because with few exceptionsCeanothus spinosus
rarely occurred in large enough patches to dominate a 20-m
pixel. Quercus dumosawas not included because this species,
while common, was rarely a dominant in any stand.

B. Data

Image data consisted of two remotely sensed datasets, Hy-
perion acquired at approximately 18:26 UTC (11:26 PDT) on
June 12, 2001 and overlapping AVIRIS data acquired at approx-
imately 20:15 UTC (13:15 PDT) on June 14, 2001 (Fig. 1). Hy-
perion is a spaceborne imaging spectrometer consisting of 242
channels ranging from 356–2577 nm, sampled approximately
at a 10-nm sampling interval. It is part of the EO-1 platform
and follows Landsat Enhanced TM in its orbit, providing nearly
simultaneous coverage. It has a nominal ground instantaneous
field of view (GIFOV) of 30 m and 12-bit radiometric quanti-
zation. The cross-track swath consists of 256 samples and has a
nominal swath width of 7.65 km. Down-track image length can
be as high as 185 km, equal to a full Landsat scene (see [27] for
details). AVIRIS is an airborne imaging spectrometer that ac-
quires 224 spectral channels between 350–2500 nm at a nom-
inal sampling interval of 10 nm with a GIFOV of 20 m when
flown on the ER2 at 20 km height [28]. The typical AVIRIS
scene consists of 614 cross-track elements and 512 lines, with a
swath width of approximately 12 km. AVIRIS was flown along
a roughly east–west flight direction, while Hyperion was ac-

quired along the north–northeast track typical of polar orbiting
satellites (Fig. 1). Solar zenith angles were 23for the Hyperion
image acquisition and 12for the AVIRIS image acquisition.
Atmospheric conditions were similar for the two acquisitions,
with cloud-free skies over the target area and high visibilities
occurring on both dates.

Hyperion data were radiometrically calibrated by TRW using
Level 1b processing. Level 1b radiance was corrected using
postlaunch calibration equal to a 1.08 multipier applied to ra-
diance for the VNIR and 1.18 multiplier in the SWIR [29].
Noise-equivalent delta radiance (NEdL) was calculated for both
AVIRIS and Hyperion from the standard deviation of 100 ocean
spectra at 1851 nm, a strong water vapor absorption band. Hy-
perion and AVIRIS data were geometrically rectified to a 20-m
resolution georectified SPOT image, projected to UTM zone 11
using the NAD83 datum.

Field spectra from several homogeneous ground calibration
sites were acquired in late May/early June 2001 just prior to the
Hyperion acquisition. Spectra were acquired using an Analyt-
ical Spectral Devices (ASD) full-range instrument (Analytical
Spectral Devices, Boulder, CO). Spectra were measured along
transects within 2 h of solar noon ( 30 solar zenith) and stan-
dardized using a Spectralon reference panel (Labsphere, Inc.,
North Sutton, NH) measured at the start and end of each tran-
sect and along the transect at time intervals no greater than 5
min. Transect length was dependent on the size of the target.
For this study, a 40-m transect acquired along West Beach was
processed to reflectance and averaged (Fig. 1). An area corre-
sponding to the West Beach transect was extracted from Hy-
perion (six pixels) and AVIRIS (eight pixels) for use in atmo-
spheric correction. ASD spectra were convolved to AVIRIS and
Hyperion using bandpass wavelength centers and a Gaussian
filter function based on the full-width at half-maximum pub-
lished for each sensor. The averaged West Beach spectrum was
used to remove high-frequency artifacts from both Hyperion
and AVIRIS reflectance data, but was not used to produce gross
changes in retrieved surface reflectance from each sensor. We
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use this approach to preserve reflectance differences due to sub-
pixel shadowing.

Over 95 field polygons were identified in the field for use in
vegetation mapping and accuracy assessment. Vegetation poly-
gons were field-identified-based on uniform cover and compo-
sition and a minimum size criterion of 60 m 60 m. For each
polygon, species composition was categorized based on percent
of total cover: 0% to 10%, 10% to 25%, 25% to 50%, 50% to
75%, 75% to 90%, and 90% to 100%. This approach was se-
lected because 1) chaparral is typically patchy and is rarely dom-
inated by a single species and 2) these broad categories could be
quickly identified in the field with high accuracy. Polygons were
mapped in the field on 1-m resolution digital orthophoto quads,
then digitized in the laboratory and resampled to Hyperion and
AVIRIS spatial resolutions. Ultimately, 85 polygons were iden-
tified within the Hyperion scene and 91 polygons were identi-
fied within the AVIRIS scene, with 79 polygons shared between
the two scenes. For accuracy assessment, Hyperion or AVIRIS
classifications were considered correct if the dominant species
mapped within the polygon agreed with the field estimate of
dominance.

C. Image Analysis

1) Reflectance Retrieval:Surface reflectance was retrieved
for both datasets using Atmospheric Correction Now ver. 3.12
(ACORN) (Analytical Imaging & Geophysics, Boulder, CO).
Hyperion Level 1b radiance was adjusted using postlaunch cor-
rections (1.08 in VNIR, 1.18 in SWIR). To account for spatially
varying water vapor, water vapor was estimated using fits per-
formed on both the 940- and 1130-nm regions on both Hyperion
and AVIRIS. After an initial reflectance retrieval, Hyperion and
AVIRIS reflectance images were adjusted using the West Beach
ground target spectra [30].

2) Moisture/Live Biomass:Canopy moisture and live
biomass were assessed using four hyperspectral measures,
the WI [23], NDWI [22], and EWT [20], [21]. The closest
band centers for Hyperion and AVIRIS were used for the
numerator and denominator for WI and NDWI. A third band
ratio, a modified NDWI (mNDWI), was also calculated. The
hyperspectral band closest to the center of the liquid water
absorption feature and a reference band in the same focal plane
were used to calculate mNDWI for Hyperion

mNDWI (3)

EWT was estimated from Hyperion and AVIRIS reflectance by
regressing the natural logarithm of reflectance against the ab-
sorption coefficient of liquid water across two wavelength re-
gions, 865–1088 and 1088–1285 nm [24]. These measures are
called EWT980 and EWT1200, respectively.

3) Fuel Condition: Fuel condition is defined here as the pro-
portion of live canopy components to dead canopy components.
Fuel condition was mapped using SMA which was used to map
green vegetation (green leaves), nonphotosynthetic vegetation
(stems, wood, and litter), shade and soil. The reference end-
members used in this study were derived from field and labora-
tory spectra and are the same as we have used for several years

for fuel mapping in the Santa Barbara area and Santa Monica
Mountains [18].

4) Fuel Type: Dominant vegetation types were mapped
using MESMA [13]. In MESMA, endmember models are
selected from the library of potential models based on whether
they are physically reasonable (fractions are between 0%
and 100%) and meet criteria based on the overall fit (rms)
and residuals. Given several models that fit the criteria, the
model with the lowest overall rms is selected as the best
candidate. Models are evaluated starting with two-endmember
combinations between shade and a second material (i.e., GV or
NPV from several species and plant communities). For pixels
not adequately modeled, the analysis then progresses to more
complicated models consisting of three or more endmembers.

Several innovations were employed in this study. First, unlike
previous applications [13], in which two-endmember combina-
tions were given precedence over all three-endmember com-
binations, in this paper two-endmember models were only se-
lected if a three-endmember model provided only slight im-
provements in fit. The choice between the best two- and three-
endmember cases was made if the rms decreased beyond a spec-
ified threshold, in this case determined empirically to be 0.008
reflectance (0.8%). A second innovation involved the develop-
ment of the spectral library. A reference endmember library was
constructed from AVIRIS spectra selected from the reference
polygons dominated by each vegetation species. In this case,
our objective was to develop a library that was parsimonious,
including the minimum number of spectra required to map in-
dividual species with the least confusion between species. To
do this, a spectral library was developed for each species, then
analyzed as if it were an image using MESMA, similar to the
approach described in [31]. The top three to five spectra for
each species were selected starting with the spectrum that met
the MESMA criteria for the largest number of spectra within
the library, followed by spectra that accounted for the greatest
number of spectra that remained unmodeled within the same
library. This procedure was repeated for each species we in-
tended to map. Once the best candidates were selected for each
species, these spectra were applied to the other spectral libraries,
to determine the extent to which they were confused with the
wrong species. The value of a spectrum could be determined by
a comparison of its ability to map the correct species, compared
to confusion with other species. If considerable confusion oc-
curred with only marginal value within it own species, the spec-
trum was not used as a candidate.

An example is provided for chamise- and oak-dominated
endmembers (Table I). For chamise, a library consisting of 92
chamise-dominated spectra was extracted from the AVIRIS
image using the reference polygons. MESMA was applied
to the chamise-dominated library using the same library as a
source, and the spectrum that modeled the greatest number of
members of the library was selected as the top candidate. Here,
the spectrum evf57.14 modeled 59 out of 92 spectra, accounting
for 64.1% of the chamise-dominated library. After selecting
this model, MESMA was applied again, but this time excluding
evf57.14. The next best spectrum, which accounted for the
greatest number of unmodeled chamise spectra in the library,
was evf56.5. Ultimately, four chamise-dominated spectra were
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TABLE I
MODEL SELECTION AND CONFUSIONBETWEENMODELS. EXAMPLES FORCHAMISE- AND OAK-DOMINATED ENDMEMBERSARE SHOWN. SPECTRAL NAMES ARE

BASED ON THEREFERENCEPOLYGON NAME AND NUMBER OF THESPECTRUMWITHIN THE POLYGON. THE TOPROW LISTS THENUMBER OF SPECTRAWITHIN

EACH LIBRARY, EQUAL TO 92 FOR CHAMISE-DOMINATED, 143FOR CEANOTHUS-DOMINATED (CEANO), 178FOR OAK-DOMINATED, AND 52 FOR

MANZANITA -DOMINATED (MANZA). COLUMNS INCLUDE 1) SPECTRAL NAME, 2) NUMBER MODELED WITHIN THE LIBRARY, 3) PERCENTAGE OF

THAT LIBRARY MODELED, 4) PRIORITY OF SELECTION, 5) AND UP, NUMBER MODELED AND PERCENTAGEMODELED OF ADIFFERENTLIBRARY

(a) (b)

Fig. 2. Radiance and reflectance spectra of the west beach ground calibration target. (a) AVIRIS spectra. (b) Hyperion. Plots show the
mean� one standard deviation based on eight (AVIRIS) or six (Hyperion) spectra. A lower number of targets is used for Hyperion because it has a coarser
spatial resolution.

selected accounting for all but 24 spectra out of the 92. Analysis
of the remaining members of the library demonstrated that
most required a third endmember and were, thus, not suitable
candidates. For oak, five spectra were selected that accounted
for all but 19 out of 178 spectra in the oak-dominated library.
The top choice in this case was evf86.19, which accounted for
75.3% of the library.

The extent of confusion between species is also illustrated
in Table I. For example, if we consider the chamise-dominated

spectrum, evf57.14, this spectrum is relatively distinct from oak,
modeling only 6.7% of oak library but is confused withCean-
othus- and manzanita-dominated spectra, modeling 37.8% and
76.9% of the members of these libraries. The oak spectra, on
the other hand, are rarely confused with chamise and never con-
fused with manzanita, but often confused withCeanothus.

A total of 27 two-endmember models were selected using
the process described above. Models included five soils, five
NPV, four chamise, fiveCeanothus, three manazanita, and five
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(a) (b)

Fig. 3. Reflectance spectra for eight common materials. (a) AVIRIS spectra. (b) Hyperion spectra. The upper frames show five common materials, including a
reservoir, golf course, live oaks, soil, and grassland. The lower frames show three chaparral dominants: manzanita,Ceanothus, and chamise. The arrows point to
important chemical absorption features.

oak spectra. For three-endmember models, one endmember was
selected from each of the six classes that accounted for the
largest area mapped. These spectra were used to develop sets
of three-endmember models corresponding to soil-NPV-shade,
Soil-GV-shade, and NPV-GV-shade. A total of 20 three-end-
member models were applied to the image.

AVIRIS spectra selected using this process were translated
to equivalent Hyperion spectra using cubic spline interpolation
and the AVIRIS and Hyperion band centers. The same sets of
two- and three-endmember models developed for AVIRIS were
applied to Hyperion.

IV. RESULTS/DISCUSSION

A. Reflectance Retrieval

Surface reflectances retrieved from Hyperion and AVIRIS
using ACORN are comparable (Figs. 2 and 3). Radiance mea-
sured from AVIRIS (upper left) and Hyperion (right) exhibit
a similar shape, differing primarily because of the larger solar
zenith angle for Hyperion (23) relative to AVIRIS (12 ). Im-
portantly, the postlaunch radiance corrections used here are gen-

eral corrections developed earlier in the life of Hyperion, sug-
gesting that the sensor is radiometrically stable. Higher noise
levels in Hyperion result in a higher standard deviation shown in
the spectra. Based on NEdL, Hyperion appears to have a signal
to noise approximately five times worse than AVIRIS; NEdL for
AVIRIS was estimated as 0.021 Wm msr , with Hyperion
equal to 0.107 Wm msr , at 1851 nm.

Hyperion reflectance was compared to AVIRIS for a selec-
tion of dominant vegetation types (Fig. 3). The general shape of
retrievals is similar, although a higher solar zenith for Hyperion
results in decreased reflectance in vegetation while poorer in-
strumental performance results in a higher standard deviation.
Hyperion has the ability to resolve most of the major chem-
ical features of vegetation (water, chlorophyll, ligno-cellulose
bands) and showed the same general trends in brightness, with
highest NIR reflectance found in golf courses. The ability of
Hyperion to resolve ligno-cellulose bands, and thus distinguish
NPV from soils, is particularly significant for fire danger assess-
ment.

To evaluate the potential of Hyperion for species-level map-
ping, spectra of chamise, manzanita, andCeanothusextracted
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(a) (b)

Fig. 4. Images showing NDWI for (a) Hyperion and (b) AVIRIS. Artifacts in Hyperion are evident as down-track striping, sharpened edges, and high NDWI
values on the right side of the image.

(a) (b)

Fig. 5. Images showing mNDWI for (a) Hyperion and (b) AVIRIS. Down-track striping is enhanced in Hyperion, but edge effects and spectral smile are minimized.

from the reference polygons for both were compared for both
sensors (Fig. 3, lower left and right). Subtle differences in the
spectra are evident with lower visible reflectance, higher NIR re-
flectance, and the lowest SWIR shown forCeanothus. Chamise
and manzanita have comparable visible reflectance and NIR,
but chamise has higher reflectance in the SWIR. The same gen-
eral trends are observed in Hyperion, although the overall re-
flectance is lower because of the larger zenith. Hyperion spectra
show considerably higher variance than AVIRIS spectra, espe-
cially in strong liquid water bands at 980 nm and in the SWIR.

B. Fuel Moisture/Live Biomass

All Hyperion measures dependent upon the 980-nm liquid
water band performed poorly due to very low signal in this
wavelength region [27]. Images for the WI and EWT980 are
not shown due to space limitations. NDWI performance was
generally good (Fig. 4). In this figure, NDWI is scaled from

0.15 to 0.12 (dark to bright). The general patterns measured

by AVIRIS are captured by Hyperion. For example, senesced
areas have low NDWI in both scenes; dense vegetation has high
NDWI in both scenes as well. However, Hyperion is subject to
a large number of spatial artifacts that reduce its effectiveness.
For example, vertical striping is evident, resulting from the de-
sign of the instrument in which each cross-track element cor-
responds to a different spectrometer. High NDWI values on the
right side of a Hyperion image are possibly due to cross-track
wavelength shifts, commonly referred to as spectral smile. Mis-
alignment between the VNIR and SWIR focal planes results in
enhanced edges when bands from the two different portions of
the spectrum are ratioed. For a detailed discussion of Hyperion
artifacts and their origins, see [27].

As anticipated, mNDWI showed even greater correspondence
between Hyperion and AVIRIS (Fig. 5). Low and high values
of mNDWI from the two sensors are similar. Although vertical
striping is still present in Hyperion, enhanced edges and the ef-
fects of spectral smile do not appear to be as severe. EWT1200
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(a) (b)

Fig. 6. Image showing EWT1200 for (a) Hyperion and (b) AVIRIS. Down-track striping and the black line on the left of the Hyperion image are artifacts.

(a) (b)

(c) (d)

Fig. 7. Scatterplots showing various moisture measures from Hyperion (x) and AVIRIS (y). The central point is the mean derived from reference polygons, and
error bars equal one standard deviation. Plots show (a) NDWI, (b) mNDWI, (c) EWT980, and (d) EWT1200.

showed similar performance to the mNDWI (Fig. 6). However,
in this case there was a significant bias between the two sen-
sors, resulting in significant brightness differences between the
images, especially for areas where EWT1200 was low.

More quantitative comparisons were made using scatterplots,
plotting AVIRIS along the axis and Hyperion along the
(Fig. 7). Error bars on all points represent1 standard deviation.

The data points plotted represent mean and standard deviations
determined from the reference polygons. The highest correla-
tion between AVIRIS and Hyperion was observed for mNDWI,
followed by NDWI, which had values 0.76 and 0.75, respec-
tively. Slopes between the two measures departed from a 1 : 1 re-
lationship, with Hyperion consistently showing higher values in
both cases. Error bars were generally higher for Hyperion than
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Fig. 8. False color composite showing fraction images for NPV (red), GV (green), and soil (blue).

AVIRIS, consistent with image artifacts and the lower SNR for
Hyperion. In both cases, the intercept was near zero. EWT1200
showed a similarly high correlation between the two sensors,
with an of 0.66. The slope departed significantly from a 1 : 1
relationship. Unlike the NDWI and mNDWI, the intercept de-
parted significantly from zero, equal to 1.01 mm. The relation-
ship between EWT980 for the two sensors was poor, with an

of 0.28. Hyperion showed a much larger range of EWT980
values than AVIRIS, due to low SNR for Hyperion in this spec-
tral region [27]. Poor performance of EWT980 derived from
Hyperion data, while not surprising, is unfortunate because the
980-nm band is the most commonly used wavelength and is gen-
erally superior for moisture assessment due to the proximity of
the 1200-nm band to the primary water vapor band centered at
1500 nm.

C. Fuel Condition

Hyperion’s ability to map fuel condition using SMA was
good (Fig. 8). In this figure, areas mapped as red (NPV) are
considered to have the highest fire danger because of an abun-
dance of senesced plant material. Areas with high GV fractions
are considered to have lower danger because of the presence of
large amounts of live leaf material with its associated moisture.
Areas with high soil fractions (blue), would be considered low
risk areas due to a lack of combustable fuels. The highest GV
fractions are in golf courses and parks with moderate levels in

more mesic sites dominated byC. spinosusandQ. agrifolia. The
lowest GV fractions were found primarily in senesced grass-
lands, which were mapped as almost pure NPV.

Similarities between Hyperion and AVIRIS for broad-based
spectral measures are not surprising. SMA, because it utilizes
the entire spectrum, not just a few wavelengths, will be less
sensitive to sensor noise in individual bands. Unless the errors
are systematic, noise in individual bands will tend to cancel out
when fit is assessed across all wavelengths. Although Hyperion
has a coarser spatial resolution of 30 m, the larger areal coverage
is a major advantage relative to an airborne sensor.

More quantitative comparisons were made using scatterplots
of AVIRIS ( ) modeled fraction against Hyperion () modeled
fraction (Fig. 9). NPV measured by the two sensors was nearly
identical, with a slope near one and intercept near zero (0.03)
and a high (0.75). This is a very encouraging result, because
it is difficult to distinguish NPV from soil using broadband sen-
sors, and NPV is a critical component of fuel. Higher scatter for
Hyperion, caused by lower SNR, is evident in the larger error
bars. A similar relationship was observed for soils (lower left),
which had a slope near one, anof 0.77, and an intercepted
that departed only slightly off of zero. The most significant dif-
ference between the sensors was observed for the GV and shade
fractions. GV showed the highest (0.83), but had a slope sig-
nificantly greater than one. The most likely explanation is the
difference in solar zenith. Hyperion, which was acquired at a
solar zenith of 23, would be expected to have a much higher
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(a) (b)

(c) (d)

Fig. 9. Scatterplots showing spectral fractions from Hyperion (x) and AVIRIS (y). The central point is the mean derived from reference polygons, and error bars
equal one standard deviation. Plots show (a) NPV, (b) GV, (c) soil, and (d) shade.

shade fraction than AVIRIS, in which the solar zenith was only
12 . Because the fractions are constrained to sum to unity, a
high shade fraction in Hyperion translates to lower fractions for
the other endmembers. The differences are most significant for
live vegetation because these surfaces have greater vertical ex-
pression and, thus, cast shadows, whereas shadowing is only
minor in senesced grasslands and bare soil. The lowest correla-
tion was found for shade (0.54), most likely because this fraction
includes a mixture of cover types that cast shadows (live vegeta-
tion) and cover types that do not (senesced grasslands and bare
soil). A plot of shade restricted to bare soil and grasslands would
be expected to be closer to a 1 : 1 line with a higher.

1) Fuel Type Maps:Vegetation dominance was mapped
for Hyperion and AVIRIS for six dominant classes: soil (red),
senesced grass (yellow), chamise (orange),Ceanothus(blue),
manzanita (cyan), and oak (green); see Fig. 10. In general,
the AVIRIS map for dominance is consistent with expected
locations, showing manzanita at higher elevations where it
occurs, oaks in valleys,Ceanothuson the lower elevation
slopes, and chamise at high elevations along the spine of
Santa Ynez Range. Soils and grasslands appear to be mapped
correctly. Visual comparison between AVIRIS and Hyperion
indicates that soils, grasslands, and chamise are mapped in
similar locations by the two sensors. However, significant
differences are evident as well: larger areas are mapped as
Ceanothus-dominated by AVIRIS and mapped as oak by

Hyperion. More subtle differences are also evident, in which
many areas mapped as chamise-dominated by AVIRIS are
mapped asCeanothus-dominated by Hyperion.

Performance of the two sensors was evaluated by compar-
ison to the reference polygons measured in the field. Standard
measures of accuracy include overall accuracy (correct/total),
producer’s accuracy (correct/reference), user’s accuracy (cor-
rect/mapped), and Kappa [32]. When comparing two classifiers,
an accepted procedure is to calculate Kappa variance [33], [34]
and compare values for each classified map.

AVIRIS accuracy was assessed using 91 polygons, 79 of
which were located in the overlap zone between the two
sensors and were sufficiently large enough to constitute at least
six pixels at 30-m resolution (Table II). Overall accuracy of
AVIRIS was found to be 79.1%, below a desirable level of
85% with a kappa of 0.722. Producer’s accuracies for each
class ranged from 100% for 15 grassland-dominated sites, to a
low of 28.6% for manzanita-dominated sites (Table II). Most
classes were mapped with individual accuracies between 75%
and 85.7%. With the exception of manzanita, all classes met
a minimum 70% accuracy. According to the error matrix, the
greatest source of confusion was betweenCeanothusand oaks,
in which six Ceanothus-dominated polygons were mapped
as oak-dominated and where two oak-dominated polygons
were mapped asCeanothus-dominated. A majority of the
manzanita-dominated sites were misidentified asCeanothus,



ROBERTSet al.: EVALUATION OF THE POTENTIAL OF HYPERION FOR FIRE DANGER ASSESSMENT 1307

Fig. 10. Images showing vegetation dominants mapped using MESMA. Six classes are shown including soil (red), senesced grass (yellow), chamise (orange),
Ceanothus(blue), manzanita (cyan), and oak (green).

TABLE II
ERRORMATRIX FOR AVIRIS. COLUMN TOTALS ARE FORREFERENCEDATA, ROWS IMAGE CLASSES. INCLUDES SEVEN CLASSES: SOIL, GRASS, CHAMISE,

CEANOTHUS(CEANO), MANZANITA (MANZAN), OAK, UNCLASSIFIED(UNCL), PRODUCER’S (PROD), USER’S, AND OVERALL ACCURACIES(ACCUR)

although in most of the cases, the second most abundant class
in the polygon was manzanita. User’s accuracies ranged from
50% for oak to 100% for soils, grasslands and manzanita with
92.3% for chamise and 79.5% forCeanothus. Low user’s ac-
curacies for oak- andCeanothus-dominated polygons suggests
that these two classes are overmapped.

Confusion between oak andCeanothuswas anticipated based
on the process used to select reference endmembers (Table I).
During library development, the two species most often con-
fused wereCeanothusand oaks, with some confusion being un-
avoidable. Poor performance for manzanita was not anticipated
based on the spectral library. During this analysis, manzanita
proved to be highly distinct from all classes except chamise.
More detailed analysis of the two- and three-endmember models
identified the source of the error. In the case of two-endmember
models, manzanita was selected as the correct model in almost
all cases. However, the fit was poor (high rms), primarily be-
cause the library lacked spectra for the rock outcrops commonly
found in association with the manzanita. When expanded to
include a third endmember, the GV model switched toCean-
othusand soil, and the rms dropped significantly. In essence, the
wrong vegetation when combined with the wrong soil fit better
than the right vegetation without soil included in the model. In-
clusion of the correct rock spectrum in the library would be

expected to eliminate this source of error, but because spectra
were extracted from the image, this was not possible because
the rocks are only pure at subpixel scales.

Hyperion performance was considerably worse than AVIRIS
with an overall accuracy of 0.506 and kappa of 0.318 based
on 85 points (several used for AVIRIS were off the scene)
(Table III). Producer’s accuracies ranged from a low of only
12.75% for manzanita to a high of 100% for soils (only two
sites were used, however). Most producer’s accuracies were
unacceptably low ranging from 33.3% (chamise) to 57.1% for
oak. User’s accuracies were better, with three categories (soils,
grass, and chamise) mapped at 100%. In most cases, greater
confusion with Hyperion could be predicted from the library
and AVIRIS analysis. Confusion between classes experienced
with AVIRIS was exacerbated by Hyperion, including an
increased confusion between oaks,Ceanothus, and manzanita.
Oaks were substantially overmapped at the expense ofCean-
othus, while many reference polygons of chamise or manzanita
were mapped asCeanothus.

Performance of Hyperion and AVIRIS was compared using
79 overlapping reference polygons with at least six pixels in
each polygon. Based on this more limited set of reference
polygons, AVIRIS and Hyperion overall accuracy dropped
slightly, equal to 77.2% and 49.4%, respectively. Kappa also
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TABLE III
ERRORMATRIX FOR HYPERION. COLUMN TOTALS ARE FORREFERENCEDATA, ROWS IMAGE CLASSES. INCLUDES SEVEN CLASSES: SOIL, GRASS, CHAMISE,

CEANOTHUS(CEANO), MANZANITA (MANZAN), OAK, UNCLASSIFIED(UNCL), PRODUCER’S (PROD), USER’S, AND OVERALL ACCURACIES(ACCUR)

decreased, equaling 0.675 for AVIRIS and 0.289 for Hyperion.
Kappa variance was calculated as 0.004 495 for AVIRIS and
0.007 479. Based on a calculation of the statistic from
Kappa and Kappa variance, AVIRIS outperformed Hyperion at
above the 0.95 confidence level ( ). While Hyperion
performance was disappointing, the ability of Hyperion to
distinguish soils from senesced grasslands, which is commonly
infeasible with a broadband sensor, is very important for fire
danger assessment. Chamise, a very important chaparral fuel,
was also well mapped by Hyperion, with a high user’s accuracy.
Lower accuracies for Hyperion likely result from a number
of factors including a lower SNR, coarser spatial resolution,
spatial artifacts, and a higher solar zenith. For example, many
of the spectral differences between chaparral species are subtle
(Fig. 3). Furthermore, chaparral is typically patchy, with fairly
small uniform patch size. A decrease in SNR, lower overall
reflectance, and coarser spatial resolution would be expected
to reduce separability of these classes. Correction of spatial
artifacts, such as vertical striping and spectral smile, would
improve Hyperion performance.

V. CONCLUSION

In this paper, we evaluated the performance of Hyperion rel-
ative to AVIRIS for fire danger assessment. We focused on the
Santa Barbara area, a region that has experienced a number of
recent catastrophic fires. We compared reflectance, measures of
fuel moisture/live biomass, fuel condition, and fuel type derived
from spatially overlapping Hyperion and AVIRIS datasets ac-
quired in early June 2001.

Postlaunch radiometric calibration of Hyperion is remarkably
good, producing radiance values that are similar to AVIRIS and
resulting in high-quality retrievals of surface reflectance. Ra-
diometric stability appears to be good, which is a fundamental
requirement for monitoring surface change. The SNR of Hype-
rion appears to be, at best, 20% of AVIRIS based on the NEdL.
All measures of canopy moisture based on the 980-nm liquid
water band proved to be ineffective for measurement by Hy-
perion. However, measures based on the 1200-nm band, such
as EWT1200, NDWI, or mNDWI, provided a good match to
AVIRIS, suggesting that Hyperion can map canopy moisture for
across a wide range of vegetation types. Measures of fuel condi-

tion, derived using SMA, were essentially the same between the
two sensors, showing a 1 : 1 correspondence for soil and NPV,
but differing for shade and GV due to differences in solar zenith.
The ability of Hyperion to distinguish NPV from soils is partic-
ularly valuable, because NPV is an important component of fire
danger assessment that cannot be distinguished from soils using
broadband systems except under limited conditions (i.e., grasses
are confused with many, but not all soils).

Vegetation types were mapped using MESMA. While neither
sensor exceeded 85% accuracy, AVIRIS came close to this re-
quirement and produced a map significantly more accurate than
Hyperion. However, Hyperion was capable of mapping three
critical land-cover classes at high accuracy that are of impor-
tance to fire danger: bare soil, senesced grasslands, and chamise.

Although a spaceborne imaging spectrometer, such as Hype-
rion, does not have the instrumental performance of AVIRIS, it
has several advantages. First, the ability to image portions of the
globe that cannot be visited by an aircraft is nontrivial. Although
we do not take advantage of it here, a 16-day repeat cycle offers
the potential of mapping seasonal changes in fuel properties that
cannot be readily done from an airborne platform. For example,
at least three other Hyperion datasets have been acquired over
Santa Barbara, including data from March, May, and November
2001.
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