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Abstract

Multiple endmember spectral mixture analysis (MESMA) models mixed spectra as a linear combination of endmembers that are allowed

to vary in number and type on a per pixel basis. For modeling an image using MESMA, a parsimonious set of endmembers is desirable for

computational efficiency and operational simplicity. This paper presents a method of selecting endmembers from a spectral library for use in

MESMA. Endmember average root mean square error (EAR) uses MESMA to determine the average error of an endmember modeling

spectra within its land cover class. The minimum EAR endmember is the most representative endmember for a land cover class within the

spectral library and can be used to model the larger image.

These techniques were used to map land cover, including four dominant vegetation species, soil, and senesced grass, in the Santa Ynez

Mountains above Santa Barbara, CA, USA. Image spectra were extracted from a 20-m resolution airborne visible infrared imaging

spectrometer (AVIRIS) reflectance image using reference polygons and combined into a library of 915 spectra. Possible confusion between

land cover classes was determined using the class average RMSE (CAR). EAR was used to select the single most representative endmember

within each land cover class. The six minimum EAR endmembers were used to map the AVIRIS image. Land cover class accuracy was

assessed at 88.6%. Using a fractional accuracy assessment, undermodeling of dominant land cover classes and overmodeling of absent land

cover classes was found at the pixel scale. Land cover mapped using the minimum EAR endmembers represents a substantial improvement in

accuracy over previous efforts.
D 2003 Elsevier Inc. All rights reserved.
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1. Introduction

A spectrum measured by a sensor is the combination of

the spectra of the materials within the sensor’s field of view.

This spectral mixing occurs at all scales, from the micro-

scopic scale of mineral grains, where mixing is typically

non-linear, to kilometer scale land cover. Spectral mixture

analysis (SMA), a technique based on modeling image

spectra as the linear combination of endmembers, has been

used to derive the fractional contribution of endmember

materials to image spectra in a wide variety of applications.

SMA has been extensively applied to the characterization of

surface materials on the Moon and Mars (Adams, Smith, &

Gillespie, 1986; Bell, Farrand, Johnson, & Morris, 2002;
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Mustard & Head, 1996; Pinet, Shevchenko, Chevrel, Day-

dou, & Rosemberg, 2000). SMA has also been used in

applications as diverse as monitoring urban environments

(Phinn, Stanford, Scarth, Murray, & Shyy, 2002; Small,

2002), measuring water turbidity (Kameyama, Yamagata,

Nakamura, & Kaneko, 2001), and mapping land degrada-

tion (Haboudane, Bonn, Royer, Sommer, & Mehl, 2002;

Metternicht & Fermont, 1998). SMA has become an essen-

tial tool for remote sensing vegetation analysis. Since SMA

can be used to provide a full spectrum measurement of

vegetation response, SMA fractions are more robust than

traditional vegetation indices (Elmore, Mustard, Manning,

& Lobell, 2000; Peddle, Brunke, & Hall, 2001; Riano et al.,

2002). Fractions modeled by SMA have been linked to

vegetation biophysical parameters in boreal forest and

savannah ecosystems (Asner, Bateson, Privette, Elsaleous,

& Wessman, 1998; Hall, Shimabukuro, & Huemmrich,

1995; Peddle et al., 2001; Peddle, Hall, & LeDrew, 1999).

Vegetation fractions produced by SMA have been used to
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describe fractional vegetation cover (e.g. Cross, Settle,

Drake, & Paivinen, 1991), land cover change (Elmore et

al., 2000; Roberts et al., 2002; Rogan, Franklin, & Roberts,

2002), seasonal changes in vegetation (Roberts, Green, &

Adams, 1997; Garcia & Ustin, 2001), and regeneration after

disturbance (Riano et al., 2002).

Roberts et al. (1998) introduced multiple endmember

spectral mixture analysis (MESMA), a technique for iden-

tifying materials in a hyperspectral image using endmem-

bers from a spectral library. MESMA has been applied in a

variety of environments for vegetation and geological anal-

ysis. Roberts, Gardner, Church, Ustin, and Green (1997),

Roberts et al. (1998, in press), and Dennison, Roberts, and

Regelbrugge (2000) used MESMA to map vegetation spe-

cies and land cover type in Southern California chaparral.

Painter, Roberts, Green, and Dozier (1998) and Painter,

Dozier, Roberts, Davis, and Green (2003) mapped snow

grain size in the Sierra Nevada of California using a

MESMA approach. MESMA has also been used to map

lunar surface composition (Li & Mustard, in press) and

vegetation in semi-arid environments in California (Okin,

Roberts, Murray, & Okin, 2001) and Namibia (Theseira,

Thomas, & Sannier, 2002). This paper expands on these

efforts by providing a method for selecting the most

representative endmember of a land cover class from a

spectral library using MESMA. The selected endmembers

were used to map vegetation species and fractional cover

from an AVIRIS image, and the accuracies of the mapped

variables were assessed.
2. Background

SMA is a model based on the linear mixing of two or

more ‘‘pure’’ spectral endmembers (Adams et al., 1993).

SMA allows for variability in composition and illumina-

tion within an image. Image pixels (spectra measured

within the instantaneous field of view) are modeled as

the linear mixture of the endmembers, and a shade

endmember is used to account for variation in illumination.

One or more non-shade endmembers represent different

materials within the image. Endmembers can be selected

from image pixels, measured in the field or laboratory, or

even created as ‘‘virtual’’ endmembers (Adams et al.,

1993; Gillespie et al., 1990; Tompkins, Mustard, Pieters,

& Forsyth, 1997).

In SMA, the reflectance of a pixel (qkV) is determined by

the sum of the reflectance of each material within a pixel

multiplied by its fractional cover:

qkV¼
XN
i¼1

fi*qik þ ek ð1Þ

where qik is the reflectance of endmember i for a specific

band (k), fi is the fraction of the endmember, N is the

number of endmembers, and ek is the residual error. The
modeled fractions of the endmembers are commonly con-

strained by:

XN
i¼1

fi ¼ 1 ð2Þ

Model fit is assessed using the model residuals (ek) or the
root mean squared error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM
k¼1

ðekÞ2

M

vuuuut
ð3Þ

where M is the number of bands. SMA typically assumes

single interactions between photons and surfaces, producing

linear mixing of the surface fractions and their reflectances.

Non-linear mixing due to multiple scattering by vegetation

canopies or vegetation and soil surfaces can become signif-

icant (Borel & Gerstl, 1994; Huete, 1986; Ray & Murray,

1996; Roberts, Smith, & Adams, 1993). Inability to account

for non-linear mixing is an acknowledged limitation of

SMA (Adams et al., 1993). In line with the assumptions

of SMA, this paper assumes mixing is linear.

Tompkins et al. (1997) point out that endmember selec-

tion is vital to SMA. To take advantage of the ability of

SMA to provide a physically meaningful fraction, the

selected endmembers must be carefully chosen. Various

methods for selecting endmembers for SMA rely on choos-

ing extreme endmembers. Smith, Johnson, and Adams

(1985) used principal component analysis (PCA) on a

library of mineral spectra. Endmembers were projected onto

the principal axes of variation to determine their purity for

modeling mineral mixtures. Bateson and Curtiss (1996)

used PCA and multidimensional visualization software to

select endmembers interactively. Boardman (1993) used a

different approach, selecting image endmembers through the

determination of a simplex that fits the image data. A

convex shape that contains the image data is derived, and

the vertices of the best fitting simplex are used as endmem-

bers (Boardman, 1993). Boardman, Kruse, and Green

(1995) developed a Pixel Purity Index (PPI) that can be

used to select image endmembers. Pixels from the image are

transformed and projected onto a random unit vector. The

most extreme pixels are determined for each projection onto

a random unit vector. The number of times the pixel is

selected as extreme determines its PPI and pixels with high

PPIs are selected as endmembers for the image (Boardman

et al., 1995). Tompkins et al. introduced a modified SMA in

which virtual endmembers are chosen to minimize RMSE

within user-specified constraints. This approach permits the

creation of endmembers that are ‘‘more pure’’ than potential

endmembers from the image itself.

The endmembers used in SMA are the same for each

pixel, regardless of whether the materials represented by the

endmembers are present in the pixel. Uncommon materials,

which may not merit their own endmember, may be poorly
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modeled by SMA. SMA also does not account for spectral

variations present within the same material, since it permits

only one endmember per material. MESMA addresses these

concerns by allowing endmembers to vary on a per-pixel

basis (Roberts et al., 1998). Endmembers are selected from a

regionally specific spectral library, which can contain image

and/or reference spectra (Roberts, Dennison, Ustin, Reith, &

Morais, 1999). Model fit is determined by three criteria:

fraction, RMSE, and the residuals of contiguous bands

(Roberts et al., 1998). The minimum RMSE model is

assigned to each pixel, and can be used to map materials

and fractions within the image (Painter et al., 1998). Since

the number of possible materials in an image can be very

large, and since MESMA permits multiple endmembers for

each material, an appropriate spectral library could contain

hundreds of spectra. Modeling a large number of spectra for

each pixel reduces the computational efficiency of MESMA

and complicates interpretation of the resulting image. End-

member selection is necessary to create a balance between

the inclusiveness of the spectral library and computational

efficiency (Okin et al., 2001).

Several endmember selection methods have been pro-

posed for multiple endmember techniques. These methods

have concentrated on finding the set of endmembers that best

represents spectral variations of materials in an image.

Painter et al. (1998) and Okin et al. (2001) used a limited

number of reference spectra or a priori knowledge to select

endmembers for their analyses. Roberts, Gardner, et al.

(1997) devised a hierarchical endmember selection rule that

classified endmembers as specialists or generalists based on

their ability to model the spectra of other materials. Specialist

endmembers were used to unmix the scene first; unmodeled

pixels were then unmixed by more generalist endmembers.

Roberts et al. (1998) addressed endmember selection as a

maximal covering problem (Church & Revelle, 1974).

Endmembers were selected to maximize the area mapped

and minimize the overlap between models. Bateson, Asner,

and Wessman (2000) grew endmember ‘‘bundles’’ within a

simplex containing the image spectra. The multiple end-

members within each bundle account for the spectral varia-

tion in endmember materials. Orthogonal projection and

PCA have also been used to find suitable candidate end-

members for unmixing image spectra (Maselli, 1998, Pinet et

al., 2000). This paper presents a new technique for selecting

endmembers for MESMA by using the endmembers that best

model the spectral library. The endmember with the mini-

mum average RMSE within a class is selected as the most

representative endmember for the class.
3. Methods

3.1. Study area

The airborne visible infrared imaging spectrometer

(AVIRIS) data used in this study were collected over
the city of Santa Barbara, CA, USA and the southern

slope of the Santa Ynez Mountains. The elevation within

the study area ranges from sea level at the Pacific Ocean

to over 1100 m at the crest of the Santa Ynez Mountains.

Natural vegetation cover on the southern slope of the

Santa Ynez Mountains consists of schlerophyllous ever-

green chaparral, dominated by Ceanothus megacarpus

(big pod ceanothus), Adenostoma fasciculatum (chamise),

and Quercus agrifolia (coast live oak). Arctostaphylos

glandulosa (eastwood manzanita), Arctostaphylos glauca

(bigberry manzanita), Ceanothus spinosus (greenbark cea-

nothus), and introduced European grasses are locally

abundant. Six land cover classes were chosen for mapping

using MESMA, dominated by C. megacarpus, A. fasci-

culatum, Q. agrifolia, Arctostaphylos spp., grassland, and

soil, respectively. C. spinosus was determined to dominate

primarily at a scale less than 20 m and was not mapped.

The two species of Arctostaphylos dominant in the Santa

Ynez Mountains are often intermixed but seldom solely

dominant at a resolution of 20 m, so these species were

combined into a single land cover type. Grassland and soil

are of particular interest for fire hazard, since the two land

cover types are difficult to separate using broad band

sensors and have very different implications for fire

behavior.

3.2. AVIRIS data

AVIRIS is a 224-band imaging spectrometer that covers

a spectral range from 400–2500 nm (Green et al., 1998).

Flown at an altitude of 20 km, AVIRIS has an image swath

approximately 11 km wide and an instantaneous field-of-

view of approximately 20 m. Three AVIRIS scenes (614

by 512 pixels) were acquired over the Santa Barbara and

the Santa Ynez Mountains on June 14, 2001. The scenes

were acquired at approximately solar noon with a solar

zenith of 12j. The AVIRIS scenes were processed to

apparent surface reflectance using a modified version of

the MODTRAN radiative transfer model (Green, Conel, &

Roberts, 1993). Calculated image reflectance was calibrat-

ed using the field-measured reflectance of a large sand

target. AVIRIS reflectance data were registered to an

orthorectified SPOT mosaic projected to Universal Trans-

verse Mercator (UTM; zone 11; North American Datum

1983) and resampled to a resolution 20 m.

3.3. Reference data

Reference polygons used for the endmember selection

and accuracy assessment were mapped using field-

assessed vegetation cover and orthophotographs. Each

reference polygon was determined to meet the following

requirements:

1. Size greater than 40 by 40 m, so that at least one 20-m

AVIRIS pixel fell entirely within the polygon.



Fig. 1. An image of RMSE resulting from unmixing the spectral library

against itself. Endmember spectra are on the x-axis and modeled spectra are

on the y-axis. Classes are ordered by number. The bright bands are higher

RMSE values resulting from grass and soil modeling green vegetation. Zero

values mark the diagonal where a spectrum models itself.
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2. Dominated by a single land cover type (vegetation species,

grassland, or soil) that was at least 50% dominant.

3. Uniform slope and aspect at the pixel scale.

A total of 74 reference polygons were identified in the field

in June 2002. Six classes were used to facilitate rapid

identification of land cover dominance in the field. Land

cover dominance was categorized based on percent cover

into one of six classes: 0–10%, 10–25%, 25–50%, 50–

75%, 75–90%, and 90–100%. The coverage classes of the

dominant land cover (based on the six land cover classes)

and subdominant land covers (not limited to the six land

cover classes) were described for the top three constituents

of each polygon. Polygons were mapped on hardcopy

United States Geological Survey (USGS) 1-m resolution

grayscale digital orthophoto quads (DOQs).

3.4. Spectral library

A spectral library was constructed from image spectra

extracted from the registered AVIRIS scenes. Reference

polygons were digitized and image spectra were extracted

from 57 polygons that were 75–90% or 90–100%

dominated by a single land cover class. Image spectra

were not extracted from the 50–75% dominated polygons

due to concerns about decreased spectral purity with

decreased dominance. AVIRIS image pixels entirely inside

reference polygons were included in the spectral library.

Pixels only partially inside polygons were excluded to

avoid spectral mixing of the dominant land cover type

with other land cover types outside the reference polygon.

A total of 915 spectra were included in the spectral

library (Table 1).

The library of 915 image spectra was unmixed by each

component spectrum and shade using MESMA, so that a

total of 914 unique two endmember models were run for

each spectrum. Models were fit using modified Gram–

Schmidt orthogonalization (Golub & Van Loan, 1989). The

best-fit linear models were subject to constraints empiri-

cally determined to be optimal by Halligan (2002). Halli-

gan found that the accuracy of hyperspectral land cover

mapping in Yellowstone National Park using MESMA

using MESMA was highest when endmember fractions

were constrained to 106%. For this paper, land cover

endmember fractions were constrained to less than 106%.
Table 1

Number of representative spectra in each land cover class

Land cover class Spectra

C. megacarpus 398

Grassland 129

Q. agrifolia 125

Arctostaphylos spp. 111

A. fasciculatum 76

Soil 76

Total 915
For best-fit models with land cover endmember fractions

above 106% RMSE was calculated using an endmember

fraction of 106%. No constraints were placed on model

residuals or RMSE to allow the creation of a complete

RMSE matrix (Fig. 1). The brightness of each cell in the

matrix indicates the RMSE for the endmember on the x-

axis modeling the spectrum on the y-axis. The RMSE

matrix is not symmetrical due to the brightness constraint

placed on the mixing models. An endmember modeling a

spectrum more than 106% brighter than itself possesses a

high RMSE because the maximum non-shade fraction is

constrained to 106%.

3.5. Class average RMSE (CAR)

CAR was used to determine potential confusion be-

tween land cover classes. CAR was calculated as the

average RMSE for one land cover class unmixing another.

If endmembers from class A are modeling spectra from

class B,

CARA;B ¼

Xm;n
i¼1;j¼1

RMSEAi;Bj

m*n
ð4Þ

where m is equal to the number of endmembers in class A

and n is equal to the number of modeled spectra in class B.

In the special case of a class modeling itself, m is equal to
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n and the class diagonal will be modeled with zero RMSE.

The number of unique, non-zero models then becomes

n2� n, so that

CARA; A ¼

Xn
i¼1;j¼1

RMSEAi; Aj

n2 � n
ð5Þ

CAR is equivalent to averaging the RMSE for all the

models within a square defined by two land cover classes

on the model image (Fig. 2). Land cover classes used for

each CAR can be the average of a single class modeling

itself (C. megacarpus unmixing C. megacarpus) or the

average of a class modeling a different class (Q. agrifolia

unmixing C. megacarpus). In Fig. 2, an example of CAR

is shown as the average RMSE of all models where Q.

agrifolia spectra unmix C. megacarpus spectra.

CAR was used to evaluate the likelihood of confusion

between land cover classes. CAR calculated for each

combination of classes produces a confusion matrix that

permits a relative assessment of modeling error. If the

average RMSE of one class unmixing another class is

lower or similar to the average RMSE of that class

unmixing itself, then confusion between those two classes

is probable. For example, C. megacarpus endmembers

may unmix Q. agrifolia image spectra better (with lower

class average RMSE) than Q. agrifolia endmembers

themselves. CAR is also an indicator of within-class

spectral variability. For example, both senesced grass

and green grass spectra could be included in a grassland
Fig. 2. A diagrammatic example of endmember average RMSE (EAR; light

gray) and class average RMSE (CAR; dark gray). The spectral library in

this example has nine spectra, with five C. megacarpus spectra and four Q.

agrifolia spectra. Endmembers that model themselves along the diagonal

are not included in CAR or EAR.
land cover type. Senesced grass endmembers will model

green grass spectra poorly and green grass endmembers

will model senesced grass spectra poorly. Within-class

CAR will be lowest for the spectrally most homogeneous

classes.

3.6. Endmember average RMSE (EAR)

EAR was used to select a representative endmember for

each land cover class. EAR was calculated for each end-

member by averaging the RMSE of the set of models that

use that endmember to unmix the spectra belonging to the

same land cover class:

EARAi; A ¼

Xn
j¼1

RMSEAi; Aj

n� 1
ð6Þ

where A is the endmember class, A is the modeled spectra

class, n is the number of spectra in class A, and Ai is the

endmember. The term n� 1 accounts for the endmember

modeling itself, which produces a zero RMSE. EAR is

equivalent to averaging the RMSE for all the models of a

single endmember within the same land cover class (Fig. 2).

The modeled spectra within the C. megacarpus land cover

class included in the EAR for spectrum 2 are highlighted in

light gray. The EAR for spectrum 2 is the average of the

model RMSE for endmember 2 unmixing all the spectra

within the C. megacarpus class. In the actual spectral

library, the EAR for a single C. megacarpus endmember

was calculated as the average RMSE for the 397 C.

megacarpus spectra it modeled.

EAR was used to evaluate the ability of each endmember

to model the spectra within its own class. EAR does not

provide a measure of endmember ‘‘purity’’, but rather

measures the actual performance of an endmember for

unmixing spectra within its own class. The endmember with

the minimum EAR was selected to map the AVIRIS scene.

Endmembers possessing a lower EAR model spectra within

their land cover class better than endmembers with a higher

EAR. The minimum EAR endmember should be the most

representative of its modeled class. Again, the spectral

diversity within a class plays a role. If the spectra within a

class are very diverse and possess a high CAR, the end-

member with the lowest EAR may be representative of only

a portion of the class, or in the worst case not representative

of the class at all.

3.7. Endmember models

Endmembers selected by EAR were used with MESMA

to map class and class fraction in the AVIRIS image. A

hierarchical approach that allows for both two and three

endmember models was used. The image was modeled

using 6 two endmember models (using the minimum EAR
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endmember for each class and shade) and 9 three end-

member models. For the three endmember case, the

minimum EAR endmember was used to create the follow-

ing models:

1. The four minimum EAR green vegetation endmembers

(A. fasciculatum, Arctostaphylos spp., C. megacarpus,

and Q. agrifolia), the minimum EAR grassland end-

member and photometric shade (four total).

2. The minimum EAR green vegetation endmembers, the

minimum EAR soil endmember, and shade (four total).

3. The minimum EAR grassland endmember, the minimum

EAR soil endmember, and shade.

Fraction constraints for both the two endmember and the

three endmember models were set to be equivalent to the

constraints used for creating the model image. Non-shade

fractions were constrained to between � 6% and 106%.

Additional constraints were also placed on the models.

Residuals were not allowed to exceed 2.5% reflectance for

more than seven contiguous bands (Roberts et al., 1998),

and RMSE was constrained to below 2.5% reflectance.

For each pixel, the lowest RMSE two endmember

model and the lowest RMSE three endmember model

were selected and compared. The three endmember model

was assigned to the pixel if the two endmember model

did not meet the model constraints. If neither model met

the constraints, then the pixel was left as unmodeled. If

both the minimum RMSE two and three endmember

models fit the pixel spectrum, the two models were

compared. Three endmember models will always have

lower RMSE than two endmember models, but the

improvement may not significantly change endmember

fractions. Simpler two endmember models are preferred

over more complex three endmember models, except in

cases where adding an endmember significantly improves

RMSE. Using the same AVIRIS scene, Roberts et al. (in

press) empirically determined that an RMSE improvement

of 0.8% reflectance justified selection of the three end-

member model. In this study, three endmember models

were selected over two endmember models where the

three endmember model improved RMSE by more than

0.8% reflectance.
Table 2

Class average RMSE (CAR) for the six land cover classes, in percent reflectance

Modeled class Endmember class

A. fasciculatum Arctostaphylos spp.

A. fasciculatum 2.26% 2.49%

Arctostaphylos spp. 2.20% 1.45%

C. megacarpus 2.54% 1.90%

Grassland 9.36% 10.88%

Q. agrifolia 4.52% 3.58%

Soil 18.43% 20.07%

The endmember classes are listed in the first row and the modeled spectra classe
4. Results

4.1. CAR

Table 2 shows the matrix of CAR values calculated for all

combinations of land cover classes. Columns show CAR for

each endmember class, while rows show CAR for each

modeled spectrum class. Within-class CAR is found along

the diagonal. Within-class CAR is a measure of the spectral

variability within a land cover class. A high within-class

CAR indicates endmembers may poorly model the spectra

within their own class. Soil has the highest within-class

CAR, a product of the high spectral variability of soils and

variable subdominant vegetation fraction. A. fasciculatum

also has a high within-class CAR, and A. fasciculatum

endmembers unmixed Arctostaphylos spp. spectra slightly

better than they unmixed the spectra within their own class.

Variable soil fraction at sub-pixel resolution could contribute

to both the higher within-class spectral variability of the A.

fasciculatum class and the low CAR of A. fasciculatum

unmixing Arctostaphylos spp. Grassland also demonstrated

a high within-class CAR, which can be attributed to variable

expression of grassland senescence and soil in the spectra of

this class.

Between-class CAR is a measure of the spectral confu-

sion between land cover classes. Grassland and soil are very

distinct from the green vegetation land cover classes (high

between-class CAR), while the between-class CAR between

green vegetation classes was generally much lower (Table

2). Arctostaphylos spp., C. megacarpus, and Q. agrifolia

endmembers modeled spectra within their class better on

average than they modeled spectra in other classes. Modeled

classes with between-class CAR values less than 2.5%, the

RMSE threshold used for MESMA class mapping, may

highlight possible confusion between classes in the final

map. A. fasciculatum was best modeled by itself, but was

also modeled by Arctostaphylos spp. Arctostaphylos spp.

was modeled by itself, C. megacarpus, and A. fasciculatum.

Arctostaphylos and Q. agrifolia modeled C. megacarpus

below a CAR threshold of 2.5%, while Q. agrifolia,

grassland, and soil were only modeled by themselves below

this threshold. Based on this analysis, these three land cover

classes are more distinct and less likely to be modeled by
C. megacarpus Grassland Q. agrifolia Soil

3.11% 7.35% 4.58% 8.24%

2.08% 8.17% 3.34% 8.92%

1.63% 8.60% 2.39% 9.42%

11.73% 2.53% 13.67% 2.92%

2.87% 11.10% 1.38% 11.94%

21.12% 10.61% 22.51% 3.57%

s are listed in the first column. Values are percent reflectance.



Table 3

Spectra from each land cover class with the lowest endmember average

RMSE

Class Endmember EAR Bright Green Zbright Zgreen

A. fasciculatum adfa030 1.61% 0.35 0.15 0.20 0.11

Arctostaphylos spp. argl022 1.08% 0.33 0.15 � 0.36 � 0.06

C. megacarpus ceme247 1.08% 0.32 0.18 0.79 0.25

Grassland gras104 1.42% 0.49 0.03 1.50 � 0.31

Q. agrifolia quag119 0.89% 0.31 0.24 0.66 0.66

Soil soil026 1.27% 0.73 0.00 0.90 � 0.41

EAR values are percent reflectance. Also shown are brightness (bright) and

greenness (green) values from a tasseled cap transformation, and the z-

scores for these brightness and greenness values within each land cover

class.
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endmembers from other land cover classes. Based on CAR,

confusion between land cover classes is most likely to occur

for the three chaparral classes: A. fasciculatum, Arctosta-

phylos spp., and C. megacarpus.

4.2. EAR

EAR was calculated for a total of 915 spectra within 6

land cover classes. The endmember with the minimum EAR

was selected from each land cover class (Table 3). Q.
Fig. 3. Dominant land cover class mapped by the minimum EAR endmembers u

features in the image are the Pacific Ocean, urban Santa Barbara, and the Santa
agrifolia had the lowest EAR value among the six land

cover classes. A. fasciculatum, grassland, and soil endmem-

bers had higher minimum EAR values, demonstrating the

higher within-class spectral variability of these land cover

classes. To assess the extremeness of the selected endmem-

bers, a tasseled cap transformation (Crist, 1985; Kauth &

Thomas, 1976) was used to measure the relative brightness

and greenness of each endmember in comparison its class.

AVIRIS reflectance data were convolved to Landsat TM and

brightness and greenness were calculated using the coeffi-

cients from Crist (1985). To facilitate comparison between

land cover classes, brightness and greenness were standard-

ized using the mean and standard deviation of each land

cover class. The z-score was calculated as

z ¼ x� l
rx

ð7Þ

where x is the brightness or greenness value of the selected

endmember, l is the mean brightness or greenness of the

land cover class, and rx is the standard deviation of the

selected endmember. The brightness, greenness, and z-

scores of each minimum EAR endmember are displayed

in Table 3.
sing MESMA. Black areas are unmodeled. From south to north, the major

Ynez Mountains.
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Transformed greenness and brightness demonstrate dis-

cernable trends in the minimum EAR endmembers selected

for each land cover class (Table 3). All of the minimum

EAR endmembers, with the exception of Arctostaphylos,

possessed higher-than-average brightness (Z>0). Green veg-

etation endmembers had slightly higher than average green-

ness, while grassland and soil endmembers had slightly

lower than average greenness. Brightness and greenness

values for nearly all of the selected endmembers were not

found to be extreme. All greenness values and all but one

brightness value were within one standard deviation of the

mean of the land cover class. The grassland minimum EAR

endmember was the most extreme in brightness, with a Z-

score of 1.5. The wide range in the spectral brightness of

grasslands, dependent on the height of the grass and the

degree of senescence, likely favored the selection of a

brighter endmember that could model both brighter and

darker grass.

4.3. Mapping

The selected minimum EAR endmembers were used to

model the AVIRIS image. A dominant land cover class map

resulting from the minimum RMSE derived from two and

from three endmember models is shown in Fig. 3. The

Pacific Ocean is evident along the lower edge of the image,
Fig. 4. A fraction image of the Q
and the mostly unmodeled area in the lower half of the

image is urban Santa Barbara. The south facing slope of the

Santa Ynez Mountains comprises the top half of the image.

Twenty-four percent of the image was not modeled, largely

due to the absence of urban and ocean spectral classes.

Urban vegetation was frequently modeled as the Arctosta-

phylos spp. land cover class. The endmembers from this

class contain green vegetation, rock, and non-photosynthetic

vegetation spectral components, making them the best

model for the highly heterogeneous urban landscapes.

If urban and ocean areas are excluded, the percentage of

the image modeled by the selected endmembers climbs

considerably to 93.1%. Urban areas were masked using

the 1998 urban extent of Santa Barbara resampled to 20 m

resolution. The 59.3% of the masked image was modeled by

two endmember models and 33.8% of the masked image

was modeled by three endmember models. The 27.0% of

the masked image was mapped as C. megacarpus, 26.9% as

A. fasciculatum, 26.2% as Q. agrifolia, 6.3% as Arctosta-

phylos spp., 5.4% as grassland, and 1.2% as soil. Qualita-

tively, the map (Fig. 3) is a good approximation of the

distribution of these land cover types. C. megacarpus is

dominant on the lower slopes, while A. fasciculatum and

Arctostaphylos occur most frequently at higher elevations.

Q. agrifolia is correctly placed in canyons and on north

facing slopes and grasslands are largely confined to the
. agrifolia land cover class.
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foothills of the Santa Ynez Mountains. The unmodeled

areas, comprising 6.9% of the masked image, are predom-

inantly riparian vegetation. These areas are dominated by Q.

agrifolia, Umbellularia californica (california bay laurel),

and Platanus racemosa (western sycamore). The inability of

the selected Q. agrifolia endmembers to model these areas is

discussed in the next section.

Fraction images were constructed using the modeled

fraction from the selected two or three endmember model.

The modeled fractions for Q. agrifolia and grassland land

cover classes are shown as examples of fraction images

(Figs. 4 and 5). The modeled fractions displayed in these

figures have not been normalized by their corresponding

shade fraction. Shade normalization divides each non-shade

fraction by the sum of all non-shade fractions, and in two

endmember models produces uniform normalized fractions

of 100%. In the Q. agrifolia fraction image (Fig. 4),

fractions are highest in the canyons and north facing slopes

immediately north of Santa Barbara. Less contiguous and

lower Q. agrifolia fractions are also found in the wildland

urban interface, where this class is likely mapping both Q.

agrifolia in residential areas as well as ornamental trees. The

grassland fraction image (Fig. 5) highlights several areas

with high grassland fraction, including parks in Santa

Barbara (lower left) and pasture (middle left). Brightness

is likely a large control on grassland fraction, since the areas

with the highest fractions in this image are largely short
Fig. 5. A fraction image of th
grass pastures. Taller ungrazed grass possesses lower grass-

land fraction, as shadows cast by the stems increases the

shade fraction.
5. Accuracy

The accuracy of the modeled dominant land cover class

and fractions for each polygon was assessed using the entire

set of reference polygons. All 74 reference polygons, each at

least 50% dominated by a single land cover class, were

used. Since the reference polygons were selected using a

purity constraint, accuracy assessed using the polygons may

not reflect the accuracy of more heterogeneous areas within

the modeled image. Modeled class and fractional coverage

for pixels entirely within each reference polygon were

extracted from the image. Land cover class accuracy was

assessed by grouping all the pixels within a polygon and

selecting the most frequently modeled dominant land cover

class as the dominant class for the polygon. User’s accura-

cies, representing errors of commission, and producer’s

accuracies, representing errors of omission, were calculated

for each land cover class. Four polygons were excluded

from the land cover class accuracy assessment because of

ties between dominant classes. Fraction accuracy was

assessed by normalizing the fractions and calculating the

mean fractions of all land cover classes for all the pixels
e grassland cover class.



Table 4

Polygon dominant land cover class confusion matrix, including user’s and producer’s accuracies

Image dominant Reference dominant

A. fasciculatum Arctostaphylos spp. C. megacarpus Grass Q. agrifolia Soil Unmodeled User’s

A. fasciculatum 13 0 1 0 0 0 0 0.93

Arctostaphylos spp. 0 4 0 0 0 0 0 1.00

C. megacarpus 0 2 19 0 0 0 0 0.90

Grass 0 0 0 12 0 0 0 1.00

Q. agrifolia 0 0 4 0 8 0 0 0.67

Soil 0 0 0 0 0 6 0 1.00

Unmodeled 0 0 0 0 0 1 0 0.00

Producer’s 1.00 0.67 0.79 1.00 1.00 0.86 –
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within a polygon. For the reference polygons, land cover

classes that were not recorded as one of the top three

dominant or subdominant classes were given a fraction of

0%. The mean modeled fractions were binned to match the

categories used for describing dominance in the reference

polygons: 0%, 0–10%, 10–25%, 25–50%, 50–75%, 75–

90%, and 90–100%.

The confusion matrix comparing reference dominant

land cover class and modeled dominant land cover class

is displayed in Table 4. Dominance was correctly assigned

for 62 of the 70 reference polygons, giving an overall

accuracy of 88.6%. j was calculated as 0.86 (Cohen,

1960; Congalton, 1991). This represents an improvement

over previous efforts. Previous work mapping vegetation in

the study area using MESMA produced an overall accuracy

of 79.1% and a j of 0.72 (Roberts et al., in press). User’s

accuracies ranged from 67% for Q. agrifolia to 100% for

Arctostaphylos, grassland, and soil (Table 4). Producer’s

accuracies ranged from 67% for Arctostaphylos to 100% for

A. fasciculatum, grassland, and Q. agrifolia. Two out of six

Arctostaphylos polygons were mapped as C. megacarpus.

C. megacarpus also had a lower producer’s accuracy, with

four C. megacarpus polygons mapped as Q. agrifolia. A

single C. megacarpus polygon was also mapped as A.

fasciculatum. Analysis of the CAR matrix indicated that

Q. agrifolia endmembers modeling C. megacarpus spectra

was a probable source of confusion between vegetation

classes. While the CAR matrix indicated possible confusion

between Arctostaphylos endmembers and the spectra of the
Table 5

The fractional coverage confusion matrix, with the shade normalized and binned

Fractions describing land cover classes that were absent from the reference data w

0% reference fractional coverage are outlined and shaded gray. Dominant referen
C. megacarpus class, the selected Arctostaphylos endmem-

ber was dominant only in Arctostaphylos polygons. One

soil polygon was left unmodeled because of its unusual

brightness.

The confusion matrix comparing fraction classes of the

reference polygons and the binned modeled fractions is

shown in Table 5. A total of 444 land cover fractions within

the 74 polygons were available for accuracy assessment.

Overall accuracy of the modeled fractions was 55.9% with a

j of 22.1%. User’s and producer’s accuracies were low for

all fractional coverage classes with the exception of the 0%

fraction class, demonstrating that the large number of zero

fractions artificially inflated the overall accuracy. Fifty-eight

of the 74 reference polygons, primarily A. fasciculatum,

Arctostaphylos spp., and C. megacarpus dominated poly-

gons, were modeled as having at least one land cover class

fraction that was not present in the polygon according to the

field assessment. However, while the modeled fraction was

clearly overestimated where the actual coverage was at or

near 0%, 83 of the 108 overestimated fractions were

modeled below 25% fractional coverage (Table 5, shaded

outlined box). Underestimation of fractional coverage was a

problem for reference fractions above 50%. The land cover

class actually dominating the polygon was not modeled in

three cases and was undermodeled in 41 of the 74 polygons

(Table 5, unshaded outlined box). C. megacarpus and

Arctostaphylos spp. were the two land cover types with

the most consistent undermodeling of dominant reference

fractions.
fractions of each of the six land cover classes

ere classed as 0% fractional coverage. Modeled fractions overestimated for

ce fractions that were underestimated are outlined and unshaded.
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Pixel level spectral confusion resulting in misclassifica-

tion had the greatest impact on fractional accuracy. CAR

values for the three chaparral land cover classes indicated

probable confusion between these classes. In most of the

vegetated polygons, a minority of pixels were modeled as A.

fasciculatum, Arctostaphylos spp., C. megacarpus, or Q.

agrifolia. Averaging at the polygon level, the misclassifica-

tion of these pixels resulted in low modeled fractions of

these species being included in the polygons. For example,

18.1% of C. megacarpus pixels were incorrectly modeled as

Q. agrifolia, and 27.3% of Arctostaphylos spp. pixels were

incorrectly modeled as A. fasciculatum. The misclassifica-

tion of pixels within the vegetation polygons also resulted in

a reduction of the modeled fraction of the dominant vege-

tation class. As a result, dominant fractions were under-

modeled in many cases (Table 5). Aggregating the modeled

fractions to the polygon level decreased the fractional

coverage of the misclassified pixels to below 50% in most

cases, resulting in a correct classification. This fractional

component was still apparent in the fractional accuracy

assessment as seen in overmodeling of absent land cover

classes and undermodeling of dominant land cover classes.
6. Discussion

EAR provides a method for assessing which endmembers

will perform the best for mapping a hyperspectral image

using MESMA. The selected minimum EAR endmembers

were chosen because they best modeled the image spectra

extracted from a subset of the reference polygons. These

endmembers modeled the AVIRIS image and produced a

land cover map of acceptable accuracy as assessed from the

entire set of reference polygons. The advantage of selecting

endmembers using EAR is that, unlike previous methods of

selecting endmembers for MESMA, the selection is based on

a measure of error central to the MESMA model. The

selected endmembers are not the most pure or the most

extreme, but are the most representative of their class. While

EAR is demonstrated here using image endmembers, it is not

limited to image spectra. EAR can also be calculated for

reference or field spectra modeling themselves, or for refer-

ence or field spectra modeling image spectra.

EAR has three potential shortcomings. Endmembers with

low average RMSE for modeling their own class may also

have a low average RMSE for modeling another class. Since

EAR is based only on the RMSE within a class, EAR does

not account for spectral confusion between classes. The

minimum EAR endmember from one class could potentially

model another class better than that class’s selected end-

member. Second, EAR as it is currently presented is only

applicable to two endmember models. To be more useful for

land cover mapping, EAR should also be valid for three and

four endmember models. Finally, EAR also does not select

spectrally extreme endmembers. Extreme endmembers are

not excluded from being chosen as the lowest EAR end-
members, since RMSE, which is most dependent on spectral

shape, is the criterion upon which selection is based.

However, extreme endmembers are not favored for selec-

tion, leaving the potential for brighter pixels in the image to

remain unmodeled.

Extremeness effects were apparent in the modeled AVI-

RIS image. A soil polygon was classified as unmodeled

because the spectra of a majority of the pixels within the

polygon were too bright to be modeled by the selected

minimum EAR endmember. Approximately 3% of the

polygon spectra were unmodeled, most commonly in the

soil and A. fasciculatum classes. Riparian areas in the image

were not modeled, even though many of these areas are

dominated by Q. agrifolia. The Q. agrifolia class did not

contain endmembers that were bright or green enough to

adequately model the riparian areas. In this instance, in-

cluding riparian polygons, whether as part of the Q. agri-

folia class or as their own class, likely would have improved

the percentage of the image modeled.

There are several possible methods for improving EAR-

based endmember selection for MESMA. CAR and EAR

could be used to improve endmember selection by mini-

mizing confusion between endmember classes. Classes

likely to be confused with each other would be determined

using the CAR matrix (Table 2). To reduce the apparent

confusion between Q. agrifolia and C. megacarpus, for

example, endmember selection could be guided by both a

within-class EAR and a between-class EAR. A low average

RMSE is desirable for modeling spectra within the same

class, while a higher average RMSE is desirable for mod-

eling spectra from a confused class. Selecting endmembers

that model their own class well and the confused class

poorly could help reduce confusion between classes. If a

single EAR selected endmember is inadequate for modeling

a spectrally diverse class, the methods presented here could

be diversified to allow for the selection of multiple end-

members for a class. Spectra poorly modeled by the mini-

mum EAR endmember could be subset and then modeled

again. Subsequent endmembers could be chosen until the

percentage of unmodeled spectra drops below a predeter-

mined threshold. To select more extreme endmembers,

endmembers could be weighted by their brightness. The

most desirable endmembers would be selected based on a

combination of the lowest EAR and the highest brightness.

Alternatively, the endmembers in a class could be subset by

their extremeness. A brighter subset could be used to model

the entire class, and the minimum EAR endmembers from

the subset would be selected. Other criteria, such as number

of modeled pixels in the image, could also be used to guide

endmember selection.
7. Conclusions

MESMA is a powerful technique for mapping the

materials present in an image and their fractional coverage.
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Two new measures are presented for selecting endmembers

for MESMA. CAR calculates the average RMSE for same-

class models (i.e. C. megacarpus modeling C. megacar-

pus) and for endmembers of one class modeling another

class (i.e. Q. agrifolia modeling C. megacarpus). CAR

highlights potential confusion between classes and spectral

diversity within classes. EAR calculates the average RMSE

for a single endmember modeling the spectra within its

land cover class (i.e. endmember ceme241 modeling C.

megacarpus spectra). EAR is dependent on how well the

endmember models the spectra within its land cover class.

The minimum EAR endmember within a class best repre-

sents that class, and can be selected for mapping that class

using MESMA.

CAR values for three chaparral land cover classes

indicated the classes were spectrally similar and prone to

confusion. This confusion was responsible for a consistent

undermodeling of dominant land cover classes and over-

modeling of absent land cover classes. Spectral confusion

may be an obstacle to pixel scale mapping of chaparral

species. Aggregating MESMA classification to the polygon

level reduced the confusion between land cover classes, and

may be necessary to produce accurate maps of vegetation

cover in chaparral. Endmembers selected using EAR were

able to map land cover class at the polygon level with an

accuracy of 88.6%.

Future efforts will focus on expanding the capabilities of

endmember selection using EAR. While developed using

AVIRIS data, these endmember selection techniques can

also be applied to other hyperspectral data (e.g. Hyperion)

and multispectral data (e.g. Landsat TM). Hierarchical

selection, measures of spectral extremeness and separability,

and maximal covering may be used to select second and

third endmembers for each land cover class, increasing the

number and area of materials modeled. Measures of spectral

separability may also be used to help determine separable

land cover classes in cases where spectral confusion is

probable, such as urban environments (Small, 2001). End-

member selection techniques proven in Southern California

chaparral will be applied to vegetated ecosystems for

mapping of species, arid ecosystems for mapping of vege-

tation and soil types, and urban environments for mapping

of urban materials.
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