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Abstract 

 Multiple endmember spectral mixture analysis (MESMA) models mixed spectra 

as a linear combination of endmembers that are allowed to vary in number and type on a 

per pixel basis.  For modeling an image using MESMA, a parsimonious set of 

endmembers is desirable for computational efficiency and operational simplicity.  This 

paper presents a method of selecting endmembers from a spectral library for use in 

MESMA.  Endmember average root mean square error (EAR) uses MESMA to 

determine the average error of an endmember modeling spectra within its land cover 

class.  The minimum EAR endmember is the most representative endmember for a land 

cover class within the spectral library, and can be used to model the larger image.   

 These techniques were used to map land cover, including four dominant 

vegetation species, soil, and senesced grass, in the Santa Ynez Mountains above Santa 

Barbara, California, USA.  Image spectra were extracted from a 20 m resolution Airborne 

Visible Infrared Imaging Spectrometer (AVIRIS) reflectance image using reference 

polygons and combined into a library of 915 spectra.  Possible confusion between land 

cover classes was determined using the class average RMSE (CAR).  EAR was used to 

select the single most representative endmember within each land cover class.  The six 

minimum EAR endmembers were used to map the AVIRIS image.  Land cover class 

accuracy was assessed at 88.6%.  Using a fractional accuracy assessment, undermodeling 

of dominant land cover classes and overmodeling of absent land cover classes was found 

at the pixel scale.  Land cover mapped using the minimum EAR endmembers represents 

a substantial improvement in accuracy over previous efforts. 
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Introduction 

A spectrum measured by a sensor is the combination of the spectra of the 

materials within the sensor’s field of view.  This spectral mixing occurs at all scales, from 

the microscopic scale of mineral grains, where mixing is typically non-linear, to 

kilometer scale land cover.  Spectral mixture analysis (SMA), a technique based on 

modeling image spectra as the linear combination of endmembers, has been used to 

derive the fractional contribution of endmember materials to image spectra in a wide 

variety of applications.  SMA has been extensively applied to the characterization of 

surface materials on the Moon and Mars (Adams et al., 1986; Mustard and Head, 1996; 

Pinet et al., 2000; Bell et al. 2002).  SMA has also been used in applications as diverse as 

monitoring urban environments (Phinn et al., 2002; Small, 2002), measuring water 

turbidity (Kameyama et al., 2001), and mapping land degradation (Metternicht and 

Fermont, 1998; Haboudane et al., 2002).  SMA has become an essential tool for remote 

sensing vegetation analysis.  Since SMA can be used to provide a full spectrum 

measurement of vegetation response, SMA fractions are more robust than traditional 

vegetation indices (Elmore et al., 2000; Peddle et al., 2001; Riano et al., 2002).  Fractions 

modeled by SMA have been linked to vegetation biophysical parameters in boreal forest 

and savannah ecosystems (Hall et al., 1995, Asner et al., 1998, Peddle et al., 1999; Peddle 

et al., 2001).  Vegetation fractions produced by SMA have been used to describe 

fractional vegetation cover (e.g. Cross et al., 1991), land cover change (Elmore et al., 

2000; Roberts et al. 2002; Rogan et al., 2002), seasonal changes in vegetation (Roberts et 

al., 1997a; Garcia and Ustin, 2001) and regeneration after disturbance (Riano et al., 

2002).   
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Roberts et al. (1998) introduced multiple endmember spectral mixture analysis 

(MESMA), a technique for identifying materials in a hyperspectral image using 

endmembers from a spectral library.  MESMA has been applied in a variety of 

environments for vegetation and geological analysis.  Roberts et al. (1997b; 1998; 2003) 

and Dennison et al. (2000) used MESMA to map vegetation species and land cover type 

in Southern California chaparral.  Painter et al. (1998; 2003) mapped snow grain size in 

the Sierra Nevada of California using a MESMA approach.  MESMA has also been used 

to map lunar surface composition (Li and Mustard, 2003) and vegetation in semi-arid 

environments in California (Okin et al., 2001) and Namibia (Theseira et al., 2002).  This 

paper expands on these efforts by providing a method for selecting the most 

representative endmember of a land cover class from a spectral library using MESMA.  

The selected endmembers were used to map vegetation species and fractional cover from 

an AVIRIS image, and the accuracies of the mapped variables were assessed.   

 

Background 

 SMA is a model based on the linear mixing of two or more “pure” spectral 

endmembers (Adams et al., 1993).  SMA allows for variability in composition and 

illumination within an image.  Image pixels (spectra measured within the instantaneous 

field of view) are modeled as the linear mixture of the endmembers, and a shade 

endmember is used to account for variation in illumination.  One or more non-shade 

endmembers represent different materials within the image.  Endmembers can be selected 

from image pixels, measured in the field or laboratory, or even created as “virtual” 

endmembers (Gillespie et al., 1990; Adams et al., 1993; Tompkins et al., 1997).      
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 In SMA, the reflectance of a pixel (ρ´λ) is determined by the sum of the 

reflectance of each material within a pixel multiplied by its fractional cover:  
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where ρiλ is the reflectance of endmember i for a specific band (λ),  fi is the fraction of the 
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where M is the number of bands.  SMA typically assumes single interactions between 

photons and surfaces, producing linear mixing of the surface fractions and their 

reflectances.  Non-linear mixing due to multiple scattering by vegetation canopies or 

vegetation and soil surfaces can become significant (Huete, 1986; Roberts et al., 1993; 

Borel and Gerstl, 1994; Ray and Murray, 1996).  Inability to account for non-linear 

mixing is an acknowledged limitation of SMA (Adams et al., 1993).  In line with the 

assumptions of SMA, this paper assumes mixing is linear. 

Tompkins et al. (1997) point out that endmember selection is vital to SMA.  To 

take advantage of the ability of SMA to provide a physically meaningful fraction, the 

selected endmembers must be carefully chosen.  Various methods for selecting 

endmembers for SMA rely on choosing extreme endmembers.  Smith et al. (1985) used 

 3



principal component analysis (PCA) on a library of mineral spectra.  Endmembers were 

projected onto the principal axes of variation to determine their purity for modeling 

mineral mixtures.  Bateson and Curtis (1996) used PCA and multidimensional 

visualization software to select endmembers interactively.  Boardman (1993) used a 

different approach, selecting image endmembers through the determination of a simplex 

that fits the image data.  A convex shape that contains the image data is derived, and the 

vertices of the best fitting simplex are used as endmembers (Boardman, 1993).  

Boardman et al. (1995) developed a Pixel Purity Index (PPI) that can be used to select 

image endmembers.  Pixels from the image are transformed and projected onto a random 

unit vector.  The most extreme pixels are determined for each projection onto a random 

unit vector.  The number of times the pixel is selected as extreme determines its PPI and 

pixels with high PPIs are selected as endmembers for the image (Boardman et al., 1995).  

Tompkins et al. (1997) introduced a modified SMA in which virtual endmembers are 

chosen to minimize RMSE within user-specified constraints.  This approach permits the 

creation of endmembers that are “more pure” than potential endmembers from the image 

itself.   

 The endmembers used in SMA are the same for each pixel, regardless of whether 

the materials represented by the endmembers are present in the pixel.  Uncommon 

materials, which may not merit their own endmember, may be poorly modeled by SMA.  

SMA also does not account for spectral variations present within the same material, since 

it permits only one endmember per material.  MESMA addresses these concerns by 

allowing endmembers to vary on a per-pixel basis (Roberts et al., 1998).  Endmembers 

are selected from a regionally-specific spectral library, which can contain image and/or 
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reference spectra (Roberts et al., 1999).  Model fit is determined by three criteria: 

fraction, RMSE, and the residuals of contiguous bands (Roberts et al., 1998).  The 

minimum RMSE model is assigned to each pixel, and can be used to map materials and 

fractions within the image (Painter et al., 1998).  Since the number of possible materials 

in an image can be very large, and since MESMA permits multiple endmembers for each 

material, an appropriate spectral library could contain hundreds of spectra.  Modeling a 

large number of spectra for each pixel reduces the computational efficiency of MESMA 

and complicates interpretation of the resulting image.  Endmember selection is necessary 

to create a balance between the inclusiveness of the spectral library and computational 

efficiency (Okin et al., 2001).   

Several endmember selection methods have been proposed for multiple 

endmember techniques.  These methods have concentrated on finding the set of 

endmembers that best represents spectral variations of materials in an image.  Painter et 

al. (1998) and Okin et al. (2001) used a limited number of reference spectra or a priori 

knowledge to select endmembers for their analyses.  Roberts et al. (1997b) devised a 

hierarchical endmember selection rule that classified endmembers as specialists or 

generalists based on their ability to model the spectra of other materials.  Specialist 

endmembers were used to unmix the scene first; unmodeled pixels were then unmixed by 

more generalist endmembers.  Roberts et al. (1998) addressed endmember selection as a 

maximal covering problem (Church and Revelle, 1974).  Endmembers were selected to 

maximize the area mapped and minimize the overlap between models.  Bateson et al. 

(2000) grew endmember “bundles” within a simplex containing the image spectra.  The 

multiple endmembers within each bundle account for the spectral variation in endmember 
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materials.  Orthogonal projection and PCA have also been used to find suitable candidate 

endmembers for unmixing image spectra (Maselli 1998, Pinet et al., 2000).  This paper 

presents a new technique for selecting endmembers for MESMA by using the 

endmembers that best model the spectral library.  The endmember with the minimum 

average RMSE within a class is selected as the most representative endmember for the 

class.   

 

Methods 

Study Area 

The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data used in this 

study were collected over the city of Santa Barbara, California, USA and the southern slope 

of the Santa Ynez Mountains.  The elevation within the study area ranges from sea level at 

the Pacific Ocean to over 1100 meters at the crest of the Santa Ynez Mountains.  Natural 

vegetation cover on the southern slope of the Santa Ynez Mountains consists of 

schlerophyllous evergreen chaparral, dominated by Ceanothus megacarpus (big pod 

ceanothus), Adenostoma fasciculatum (chamise), and Quercus agrifolia (coast live oak).  

Arctostaphylos glandulosa (eastwood manzanita), Arctostaphylos glauca (bigberry 

manzanita), Ceanothus spinosus (greenbark ceanothus) and introduced European grasses 

are locally abundant.  Six land cover classes were chosen for mapping using MESMA, 

dominated by C. megacarpus, A. fasciculatum, Q. agrifolia, Arctostaphylos spp., grassland 

and soil, respectively.  C. spinosus was determined to dominate primarily at a scale less 

than 20 meters and was not mapped.  The two species of Arctostaphylos dominant in the 

Santa Ynez Mountains are often intermixed but seldom solely dominant at a resolution of 
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20 meters, so these species were combined into a single land cover type.  Grassland and 

soil are of particular interest for fire hazard, since the two land cover types are difficult to 

separate using broad band sensors and have very different implications for fire behavior.   

 

AVIRIS Data 

AVIRIS is a 224 band imaging spectrometer that covers a spectral range from 

400-2500 nm (Green et al., 1998).  Flown at an altitude of 20 km, AVIRIS has an image 

swath approximately 11 km wide and an instantaneous field-of-view of approximately 20 

m.  Three AVIRIS scenes (614 by 512 pixels) were acquired over the Santa Barbara and 

the Santa Ynez Mountains on June 14, 2001.  The scenes were acquired at approximately 

solar noon with a solar zenith of 12°.  The AVIRIS scenes were processed to apparent 

surface reflectance using a modified version of the MODTRAN radiative transfer model 

(Green et al., 1993).  Calculated image reflectance was calibrated using the field-

measured reflectance of a large sand target.  AVIRIS reflectance data were registered to 

an orthorectified SPOT mosaic projected to Universal Transverse Mercator (UTM; zone 

11; North American Datum 1983) and resampled to a resolution 20 meters. 

 

Reference Data 

Reference polygons used for the endmember selection and accuracy assessment 

were mapped using field-assessed vegetation cover and orthophotographs.  Each reference 

polygon was determined to meet the following requirements: 

1. Size greater than 40 meters by 40 meters, so that at least one 20 meter AVIRIS 

pixel fell entirely within the polygon 
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2. Dominated by a single land cover type (vegetation species, grassland or soil) that 

was at least 50% dominant.   

 3. Uniform slope and aspect at the pixel scale  

A total of 74 reference polygons were identified in the field in June, 2002.  Six classes were 

used to facilitate rapid identification of land cover dominance in the field.  Land cover 

dominance was categorized based on percent cover into one of six classes: 0-10%, 10-25%, 

25-50%, 50-75%, 75-90%, and 90-100%.  The coverage classes of the dominant land cover 

(based on the six land cover classes) and subdominant land covers (not limited to the six 

land cover classes) were described for the top three constituents of each polygon.  Polygons 

were mapped on hardcopy United States Geological Survey (USGS) 1 meter resolution 

grayscale digital orthophoto quads (DOQs).     

 

Spectral Library 

 A spectral library was constructed from image spectra extracted from the registered 

AVIRIS scenes.  Reference polygons were digitized and image spectra were extracted from 

57 polygons that were 75-90% or 90-100% dominated by a single land cover class.  Image 

spectra were not extracted from the 50-75% dominated polygons due to concerns about 

decreased spectral purity with decreased dominance.  AVIRIS image pixels entirely inside 

reference polygons were included in the spectral library.  Pixels only partially inside 

polygons were excluded to avoid spectral mixing of the dominant land cover type with 

other land cover types outside the reference polygon.  A total of 915 spectra were included 

in the spectral library (Table 1).   

<Insert Table 1 About Here> 
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 The library of 915 image spectra was unmixed by each component spectrum and 

shade using MESMA, so that a total of 914 unique two endmember models were run for 

each spectrum.  Models were fit using modified Gram-Schmidt orthogonalization (Golub 

and van Loan, 1989).  The best-fit linear models were subject to constraints empirically 

determined to be optimal by Halligan (2002).  Halligan (2002) found that the accuracy of 

hyperspectral land cover mapping in Yellowstone National Park using MESMA was 

highest when endmember fractions were constrained to 106%.  For this paper, land cover 

endmember fractions were constrained to less than 106%.  For best-fit models with land 

cover endmember fractions above 106% RMSE was calculated using an endmember 

fraction of 106%.  No constraints were placed on model residuals or RMSE to allow the 

creation of a complete RMSE matrix (Figure 1).  The brightness of each cell in the matrix 

indicates the RMSE for the endmember on the x-axis modeling the spectrum on the y-axis.  

The RMSE matrix is not symmetrical due to the brightness constraint placed on the mixing 

models.  An endmember modeling a spectrum more than 106% brighter than itself 

possesses a high RMSE because the maximum non-shade fraction is constrained to 106%.   

<Insert Figure 1 Here> 

Class Average RMSE (CAR) 

Class Average RMSE (CAR) was used to determine potential confusion between 

land cover classes.  CAR was calculated as the average RMSE for one land cover class 

unmixing another.  If endmembers from class A are modeling spectra from class B,  

nm

RMSE
CAR

nm

ji
BA

BA

ji

∗
=
∑

==

,

1,1
,

,     (4) 

 9



where m is equal to the number of endmembers in class A, and n is equal to the number of 

modeled spectra in class B.  In the special case of a class modeling itself, m is equal to n 

and the class diagonal will be modeled with zero RMSE.  The number of unique, non-zero 

models then becomes n2-n, so that 
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CAR is equivalent to averaging the RMSE for all the models within a square defined by 

two land cover classes on the model image (Figure 2).  Land cover classes used for each 

CAR can be the average of a single class modeling itself (C. megacarpus unmixing C. 

megacarpus) or the average of a class modeling a different class (Q. agrifolia unmixing C. 

megacarpus).  In Figure 2, an example of CAR is shown as the average RMSE of all 

models where Q. agrifolia spectra unmix C. megacarpus spectra.   

<Insert Figure 2 About Here>  

 CAR was used to evaluate the likelihood of confusion between land cover classes.  

CAR calculated for each combination of classes produces a confusion matrix that permits a 

relative assessment of modeling error.  If the average RMSE of one class unmixing another 

class is lower or similar to the average RMSE of that class unmixing itself, then confusion 

between those two classes is probable.  For example, C. megacarpus endmembers may 

unmix Q. agrifolia image spectra better (with lower class average RMSE) than Q. agrifolia 

endmembers themselves.  CAR is also an indicator of within-class spectral variability.  For 

example, both senesced grass and green grass spectra could be included in a grassland land 

cover type.  Senesced grass endmembers will model green grass spectra poorly and green 
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grass endmembers will model senesced grass spectra poorly.  Within-class CAR will be 

lowest for the spectrally most homogeneous classes.   

 

Endmember Average RMSE (EAR) 

Endmember Average RMSE (EAR) was used to select a representative endmember 

for each land cover class.  EAR was calculated for each endmember by averaging the 

RMSE of the set of models that use that endmember to unmix the spectra belonging to the 

same land cover class:   

1
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=
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j
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where A is the endmember class, A is the modeled spectra class, n is the number of spectra 

in class A, and Ai is the endmember.  The term “n-1” accounts for the endmember modeling 

itself, which produces a zero RMSE.  EAR is equivalent to averaging the RMSE for all the 

models of a single endmember within the same land cover class (Figure 2).    The modeled 

spectra within the C. megacarpus land cover class included in the EAR for spectrum 2 are 

highlighted in light gray.  The EAR for spectrum 2 is the average of the model RMSE for 

endmember 2 unmixing all the spectra within the C. megacarpus class.  In the actual 

spectral library, the EAR for a single C. megacarpus endmember was calculated as the 

average RMSE for the 397 C. megacarpus spectra it modeled.   

EAR was used to evaluate the ability of each endmember to model the spectra 

within its own class.  EAR does not provide a measure of endmember “purity”, but rather 

measures the actual performance of an endmember for unmixing spectra within its own 

class.  The endmember with the minimum EAR was selected to map the AVIRIS scene.  
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Endmembers possessing a lower EAR model spectra within their land cover class better 

than endmembers with a higher EAR.  The minimum EAR endmember should be the most 

representative of its modeled class.  Again, the spectral diversity within a class plays a role.  

If the spectra within a class are very diverse and possess a high CAR, the endmember with 

the lowest EAR may be representative of only a portion of the class, or in the worst case 

not representative of the class at all.   

 

Endmember Models 

Endmembers selected by EAR were used with MESMA to map class and class 

fraction in the AVIRIS image.  A hierarchical approach that allows for both 2 and 3 

endmember models was used.  The image was modeled using 6 two endmember models 

(using the minimum EAR endmember for each class and shade) and 9 three endmember 

models.  For the 3 endmember case, the minimum EAR endmember was used to create the 

following models:   

1. The 4 minimum EAR green vegetation endmembers (A. fasciculatum, 

Arctostaphylos spp., C. megacarpus, and Q. agrifolia), the minimum EAR 

grassland endmember and photometric shade (4 total) 

2. The minimum EAR green vegetation endmembers, the minimum EAR soil 

endmember, and shade (4 total) 

3. The minimum EAR grassland endmember, the minimum EAR soil endmember, 

and shade 

Fraction constraints for both the two endmember and the three endmember models were set 

to be equivalent to the constraints used for creating the model image.  Non-shade fractions 
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were constrained to between -6% and 106%.  Additional constraints were also placed on 

the models.  Residuals were not allowed to exceed 2.5% reflectance for more than 7 

contiguous bands (Roberts et al., 1998), and RMSE was constrained to below 2.5% 

reflectance. 

 For each pixel, the lowest RMSE two endmember model and the lowest RMSE 

three endmember model were selected and compared.  The three endmember model was 

assigned to the pixel if the two endmember model did not meet the model constraints.  If 

neither model met the constraints, then the pixel was left as unmodeled.  If both the 

minimum RMSE 2 and 3 endmember models fit the pixel spectrum, the two models were 

compared.  Three endmember models will always have lower RMSE than two endmember 

models, but the improvement may not significantly change endmember fractions.  Simpler 

two endmember models are preferred over more complex three endmember models, except 

in cases where adding an endmember significantly improves RMSE.  Using the same 

AVIRIS scene, Roberts et al. (2003) empirically determined that an RMSE improvement of 

0.8% reflectance justified selection of the three endmember model.  In this study, three 

endmember models were selected over two endmember models where the three 

endmember model improved RMSE by more than 0.8% reflectance.   

 

Results 

CAR 

 Table 2 shows the matrix of CAR values calculated for all combinations of land 

cover classes.  Columns show CAR for each endmember class, while rows show CAR for 

each modeled spectrum class.  Within-class CAR is found along the diagonal.  Within-class 
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CAR is a measure of the spectral variability within a land cover class.  A high within-class 

CAR indicates endmembers may poorly model the spectra within their own class.  Soil has 

the highest within-class CAR, a product of the high spectral variability of soils and variable 

subdominant vegetation fraction.  A. fasciculatum also has a high within-class CAR, and A. 

fasciculatum endmembers unmixed Arctostaphylos spp. spectra slightly better than they 

unmixed the spectra within their own class.  Variable soil fraction at sub-pixel resolution 

could contribute to both the higher within-class spectral variability of the A. fasciculatum 

class and the low CAR of A. fasciculatum unmixing Arctostaphylos spp.  Grassland also 

demonstrated a high within-class CAR, which can be attributed to variable expression of 

grassland senescence and soil in the spectra of this class.   

<Insert Table 2 About Here> 

 Between-class CAR is a measure of the spectral confusion between land cover 

classes.  Grassland and soil are very distinct from the green vegetation land cover classes 

(high between-class CAR), while the between-class CAR between green vegetation classes 

was generally much lower (Table 2).  Arctostaphylos spp., C. megacarpus, and Q. agrifolia 

endmembers modeled spectra within their class better on average than they modeled 

spectra in other classes.  Modeled classes with between-class CAR values less than 2.5%, 

the RMSE threshold used for MESMA class mapping, may highlight possible confusion 

between classes in the final map.  A. fasciculatum was best modeled by itself, but was also 

modeled by Arctostaphylos spp.  Arctostaphylos spp. was modeled by itself, C. 

megacarpus, and A. fasciculatum.  Arctostaphylos and Q. agrifolia  modeled C. 

megacarpus below a CAR threshold of 2.5%, while Q. agrifolia, grassland, and soil were 

only modeled by themselves below this threshold.   Based on this analysis these three land 
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cover classes are more distinct and less likely to be modeled by endmembers from other 

land cover classes.  Based on CAR, confusion between land cover classes is most likely to 

occur for the three chaparral classes: A. fasciculatum, Arctostaphylos spp., and C. 

megacarpus. 

 

EAR 

 EAR was calculated for a total of 915 spectra within 6 land cover classes.  The 

endmember with the minimum EAR was selected from each land cover class (Table 3).  Q. 

agrifolia had the lowest EAR value among the six land cover classes.  A. fasciculatum, 

grassland and soil endmembers had higher minimum EAR values, demonstrating the higher 

within-class spectral variability of these land cover classes.   To assess the extremeness of 

the selected endmembers, a tasseled cap transformation (Kauth and Thomas, 1976; Crist 

1985) was used to measure the relative brightness and greenness of each endmember in 

comparison its class.  AVIRIS reflectance data were convolved to Landsat TM and 

brightness and greenness were calculated using the coefficients from Crist (1985).  To 

facilitate comparison between land cover classes, brightness and greenness were 

standardized using the mean and standard deviation of each land cover class.  The z-score 

was calculated as  

     
x

xz
σ
µ−

=      (7) 

where x is the brightness or greenness value of the selected endmember, µ is the mean 

brightness or greenness of the land cover class, and σx is the standard deviation of the 

selected endmember.  The brightness, greenness, and z-scores of each minimum EAR 

endmember are displayed in Table 3.   
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<Insert Table 3 About Here> 

Transformed greenness and brightness demonstrate discernable trends in the 

minimum EAR endmembers selected for each land cover class (Table 3).  All of the 

minimum EAR endmembers, with the exception of Arctostaphylos, possessed higher-than-

average brightness (Z>0).  Green vegetation endmembers had slightly higher than average 

greenness, while grassland and soil endmembers had slightly lower than average greenness.  

Brightness and greenness values for nearly all of the selected endmembers were not found 

to be extreme.  All greenness values and all but one brightness value were within one 

standard deviation of the mean of the land cover class.  The grassland minimum EAR 

endmember was the most extreme in brightness, with a Z-score of 1.5.  The wide range in 

the spectral brightness of grasslands, dependent on the height of the grass and the degree of 

senescence, likely favored the selection of a brighter endmember that could model both 

brighter and darker grass.   

 

Mapping 

The selected minimum EAR endmembers were used to model the AVIRIS image.  

A dominant land cover class map resulting from the minimum RMSE derived from two and 

from three endmember models is shown in Figure 3.  The Pacific Ocean is evident along 

the lower edge of the image, and the mostly unmodeled area in the lower half of the image 

is urban Santa Barbara.  The south facing slope of the Santa Ynez Mountains comprises the 

top half of the image.  24.0% of the image was not modeled, largely due to the absence of 

urban and ocean spectral classes.  Urban vegetation was frequently modeled as the 

Arctostaphylos spp. land cover class.  The endmembers from this class contain green 
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vegetation, rock, and non-photosynthetic vegetation spectral components, making them the 

best model for the highly heterogeneous urban landscapes.   

If urban and ocean areas are excluded, the percentage of the image modeled by the 

selected endmembers climbs considerably to 93.1%.  Urban areas were masked using the 

1998 urban extent of Santa Barbara resampled to 20 meters resolution.  59.3% of the 

masked image was modeled by 2 endmember models and 33.8% of the masked image was 

modeled by 3 endmember models.  27.0% of the masked image was mapped as C. 

megacarpus, 26.9% as A. fasciculatum, 26.2% as Q. agrifolia, 6.3% as Arctostaphylos spp., 

5.4% as grassland, and 1.2% as soil.  Qualitatively, the map (Figure 3) is a good 

approximation of the distribution of these land cover types.  C. megacarpus is dominant on 

the lower slopes, while A. fasciculatum and Arctostaphylos occur most frequently at higher 

elevations.  Q. agrifolia is correctly placed in canyons and on north facing slopes and 

grasslands are largely confined to the foothills of the Santa Ynez Mountains.  The 

unmodeled areas, comprising 6.9% of the masked image, are predominantly riparian 

vegetation.  These areas are dominated by Q. agrifolia, Umbellularia californica (california 

bay laurel), and Platanus racemosa (western sycamore).  The inability of the selected Q. 

agrifolia endmembers to model these areas is discussed in the next section. 

   <Insert Figure 3 about here> 

Fraction images were constructed using the modeled fraction from the selected 2 or 

3 endmember model.  The modeled fractions for Q. agrifolia and grassland land cover 

classes are shown as examples of fraction images (Figures 4 and 5).  The modeled fractions 

displayed in these figures have not been normalized by their corresponding shade fraction.  

Shade normalization divides each non-shade fraction by the sum of all non-shade fractions, 
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and in two endmember models produces uniform normalized fractions of 100%.  In the Q. 

agrifolia fraction image (Figure 4), fractions are highest in the canyons and north facing 

slopes immediately north of Santa Barbara.  Less contiguous and lower Q. agrifolia 

fractions are also found in the wildland urban interface, where this class is likely mapping 

both Q. agrifolia in residential areas as well as ornamental trees.  The grassland fraction 

image (Figure 5) highlights several areas with high grassland fraction, including parks in 

Santa Barbara (lower left) and pasture (middle left).  Brightness is likely a large control on 

grassland fraction, since the areas with the highest fractions in this image are largely short 

grass pastures.  Taller ungrazed grass possesses lower grassland fraction, as shadows cast 

by the stems increases the shade fraction. 

 <Insert Figures 4 and 5 about here> 

 

Accuracy  

The accuracy of the modeled dominant land cover class and fractions for each 

polygon was assessed using the entire set of reference polygons.  All 74 reference 

polygons, each at least 50% dominated by a single land cover class, were used.  Since the 

reference polygons were selected using a purity constraint, accuracy assessed using the 

polygons may not reflect the accuracy of more heterogeneous areas within the modeled 

image.  Modeled class and fractional coverage for pixels entirely within each reference 

polygon were extracted from the image.  Land cover class accuracy was assessed by 

grouping all the pixels within a polygon and selecting the most frequently modeled 

dominant land cover class as the dominant class for the polygon.  User’s accuracies, 

representing errors of commission, and producer’s accuracies, representing errors of 
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omission, were calculated for each land cover class.  Four polygons were excluded from the 

land cover class accuracy assessment because of ties between dominant classes.  Fraction 

accuracy was assessed by normalizing the fractions and calculating the mean fractions of 

all land cover classes for all the pixels within a polygon.  For the reference polygons, land 

cover classes that were not recorded as one of the top three dominant or subdominant 

classes were given a fraction of 0%.  The mean modeled fractions were binned to match the 

categories used for describing dominance in the reference polygons: 0%, 0-10%, 10-25%, 

25-50%, 50-75%, 75-90% and 90-100%.   

 The confusion matrix comparing reference dominant land cover class and modeled 

dominant land cover class is displayed in Table 4.  Dominance was correctly assigned for 

62 of the 70 reference polygons, giving an overall accuracy of 88.6%.  Kappa was 

calculated as 0.86 (Cohen, 1960; Congalton, 1991).  This represents an improvement over 

previous efforts.  Previous work mapping vegetation in the study area using MESMA 

produced an overall accuracy of 79.1% and a kappa of 0.72 (Roberts et al., 2003).  User’s 

accuracies ranged from 67% for Q. agrifolia to 100% for Arctostaphylos, grassland, and 

soil (Table 4).  Producer’s accuracies ranged from 67% for Arctostaphylos to 100% for A. 

fasciculatum, grassland, and Q. agrifolia.  Two out of six Arctostaphylos polygons were 

mapped as C. megacarpus.  C. megacarpus also had a lower producer’s accuracy, with four 

C. megacarpus polygons mapped as Q. agrifolia.  A single C. megacarpus polygon was 

also mapped as A. fasciculatum.  Analysis of the CAR matrix indicated that Q. agrifolia 

endmembers modeling C. megacarpus spectra was a probable source of confusion between 

vegetation classes.  While the CAR matrix indicated possible confusion between 

Arctostaphylos endmembers and the spectra of the C. megacarpus class, the selected 
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Arctostaphylos endmember was dominant only in Arctostaphylos polygons.  One soil 

polygon was left unmodeled because of its unusual brightness.   

    <Insert Table 4 about here> 

 The confusion matrix comparing fraction classes of the reference polygons and the 

binned modeled fractions is shown in Table 5.  A total of 444 land cover fractions within 

the 74 polygons were available for accuracy assessment.  Overall accuracy of the modeled 

fractions was 55.9% with a Kappa of 22.1%.  User’s and producer’s accuracies were low 

for all fractional coverage classes with the exception of the 0% fraction class, 

demonstrating that the large number of zero fractions artificially inflated the overall 

accuracy.  58 of the 74 reference polygons, primarily A. fasciculatum, Arctostaphylos spp., 

and C. megacarpus dominated polygons, were modeled as having at least one land cover 

class fraction that was not present in the polygon according to the field assessment.  

However, while the modeled fraction was clearly overestimated where the actual coverage 

was at or near 0%, 83 of the 108 overestimated fractions were modeled below 25% 

fractional coverage (Table 5, shaded outlined box).  Underestimation of fractional coverage 

was a problem for reference fractions above 50%.  The land cover class actually 

dominating the polygon was not modeled in three cases and was undermodeled in 41 of the 

74 polygons (Table 5, unshaded outlined box).  C. megacarpus and Arctostaphylos spp. 

were the two land cover types with the most consistent undermodeling of dominant 

reference fractions.   

<Insert Table 5 about here>  

 Pixel level spectral confusion resulting in misclassification had the greatest impact 

on fractional accuracy.  CAR values for the three chaparral land cover classes indicated 
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probable confusion between these classes.  In most of the vegetated polygons a minority of 

pixels were modeled as A. fasciculatum, Arctostaphylos spp., C. megacarpus, or Q. 

agrifolia.  Averaging at the polygon level, the misclassification of these pixels resulted in 

low modeled fractions of these species being included in the polygons.  For example, 

18.1% of C. megacarpus pixels were incorrectly modeled as Q. agrifolia, and 27.3% of 

Arctostaphylos spp. pixels were incorrectly modeled as A. fasciculatum.  The 

misclassification of pixels within the vegetation polygons also resulted in a reduction of the 

modeled fraction of the dominant vegetation class.  As a result, dominant fractions were 

undermodeled in many cases (Table 5).  Aggregating the modeled fractions to the polygon 

level decreased the fractional coverage of the misclassified pixels to below 50% in most 

cases, resulting in a correct classification.  This fractional component was still apparent in 

the fractional accuracy assessment as seen in overmodeling of absent land cover classes 

and undermodeling of dominant land cover classes.   

 

Discussion 

 EAR provides a method for assessing which endmembers will perform the best for 

mapping a hyperspectral image using MESMA.  The selected minimum EAR endmembers 

were chosen because they best modeled the image spectra extracted from a subset of the 

reference polygons.  These endmembers modeled the AVIRIS image and produced a land 

cover map of acceptable accuracy as assessed from the entire set of reference polygons.  

The advantage of selecting endmembers using EAR is that, unlike previous methods of 

selecting endmembers for MESMA, the selection is based on a measure of error central to 

the MESMA model.  The selected endmembers are not the most pure or the most extreme, 
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but are the most representative of their class.  While EAR is demonstrated here using image 

endmembers, it is not limited to image spectra.  EAR can also be calculated for reference or 

field spectra modeling themselves, or for reference or field spectra modeling image spectra.   

EAR has three potential shortcomings.  Endmembers with low average RMSE for 

modeling their own class may also have a low average RMSE for modeling another class.  

Since EAR is based only on the RMSE within a class, EAR does not account for spectral 

confusion between classes.  The minimum EAR endmember from one class could 

potentially model another class better than that class’s selected endmember.  Second, EAR 

as it is currently presented is only applicable to two endmember models.  To be more useful 

for land cover mapping, EAR should also be valid for three and four endmember models.  

Finally, EAR also does not select spectrally extreme endmembers.  Extreme endmembers 

are not excluded from being chosen as the lowest EAR endmembers, since RMSE, which is 

most dependent on spectral shape, is the criterion upon which selection is based.  However, 

extreme endmembers are not favored for selection, leaving the potential for brighter pixels 

in the image to remain unmodeled.   

Extremeness effects were apparent in the modeled AVIRIS image.  A soil polygon 

was classified as unmodeled because the spectra of a majority of the pixels within the 

polygon were too bright to be modeled by the selected minimum EAR endmember.  

Approximately 3% of the polygon spectra were unmodeled, most commonly in the soil and 

A. fasciculatum classes.   Riparian areas in the image were not modeled, even though many 

of these areas are dominated by Q. agrifolia.  The Q. agrifolia class did not contain 

endmembers that were bright or green enough to adequately model the riparian areas.  In 
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this instance, including riparian polygons, whether as part of the Q. agrifolia class or as 

their own class, likely would have improved the percentage of the image modeled.    

There are several possible methods for improving EAR-based endmember selection 

for MESMA.  CAR and EAR could be used to improve endmember selection by 

minimizing confusion between endmember classes.  Classes likely to be confused with 

each other would be determined using the CAR matrix (Table 2).  To reduce the apparent 

confusion between Q. agrifolia and C. megacarpus, for example, endmember selection 

could be guided by both a within-class EAR and a between-class EAR.  A low average 

RMSE is desirable for modeling spectra within the same class, while a higher average 

RMSE is desirable for modeling spectra from a confused class.  Selecting endmembers that 

model their own class well and the confused class poorly could help reduce confusion 

between classes.  If a single EAR selected endmember is inadequate for modeling a 

spectrally diverse class, the methods presented here could be diversified to allow for the 

selection of multiple endmembers for a class.  Spectra poorly modeled by the minimum 

EAR endmember could be subset and then modeled again.  Subsequent endmembers could 

be chosen until the percentage of unmodeled spectra drops below a predetermined 

threshold.  To select more extreme endmembers, endmembers could be weighted by their 

brightness.  The most desirable endmembers would be selected based on a combination of 

the lowest EAR and the highest brightness.  Alternatively, the endmembers in a class could 

be subset by their extremeness.  A brighter subset could be used to model the entire class, 

and the minimum EAR endmembers from the subset would be selected.  Other criteria, 

such as number of modeled pixels in the image, could also be used to guide endmember 

selection.   
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Conclusions 

 MESMA is a powerful technique for mapping the materials present in an image and 

their fractional coverage.  Two new measures are presented for selecting endmembers for 

MESMA.  CAR calculates the average RMSE for same-class models (i.e. C. megacarpus 

modeling C. megacarpus) and for endmembers of one class modeling another class (i.e. Q. 

agrifolia modeling C. megacarpus).  CAR highlights potential confusion between classes 

and spectral diversity within classes.  EAR calculates the average RMSE for a single 

endmember modeling the spectra within its land cover class (i.e. endmember ceme241 

modeling C. megacarpus spectra).  EAR is dependent on how well the endmember models 

the spectra within its land cover class.  The minimum EAR endmember within a class best 

represents that class, and can be selected for mapping that class using MESMA.   

CAR values for three chaparral land cover classes indicated the classes were 

spectrally similar and prone to confusion.  This confusion was responsible for a consistent 

undermodeling of dominant land cover classes and overmodeling of absent land cover 

classes.  Spectral confusion may be an obstacle to pixel scale mapping of chaparral species.  

Aggregating MESMA classification to the polygon level reduced the confusion between 

land cover classes, and may be necessary to produce accurate maps of vegetation cover in 

chaparral.  Endmembers selected using EAR were able to map land cover class at the 

polygon level with an accuracy of 88.6%.   

Future efforts will focus on expanding the capabilities of endmember selection 

using EAR.  While developed using AVIRIS data, these endmember selection techniques 

can also be applied to other hyperspectral data (e.g. Hyperion) and multispectral data (e.g. 

Landsat TM).  Hierarchical selection, measures of spectral extremeness and separability, 
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and maximal covering may be used to select second and third endmembers for each land 

cover class, increasing the number and area of materials modeled.  Measures of spectral 

separability may also be used to help determine separable land cover classes in cases where 

spectral confusion is probable, such as urban environments (Small, 2001).  Endmember 

selection techniques proven in Southern California chaparral will be applied to vegetated 

ecosystems for mapping of species, arid ecosystems for mapping of vegetation and soil 

types, and urban environments for mapping of urban materials.  
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Table 1. Number of representative spectra in each land cover class. 
Land cover class Spectra 

C. megacarpus 398 
grassland 129 
Q. agrifolia 125 
Arctostaphylos spp. 111 
A. fasciculatum 76 
soil 76 
Total  915 
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Table 2. Class average RMSE (CAR) for the six land cover classes, in percent reflectance.  
The endmember classes are listed in the first row and the modeled spectra classes are 
listed in the first column.  Values are percent reflectance. 

  Endmember Class 
  A. fasc. Arcto. spp. C. mega. grassland Q. agri. soil 

A. fasc. 2.26% 2.49% 3.11% 7.35% 4.58% 8.24% 
Arcto. spp. 2.20% 1.45% 2.08% 8.17% 3.34% 8.92% 
C. mega. 2.54% 1.90% 1.63% 8.60% 2.39% 9.42% 
grassland 9.36% 10.88% 11.73% 2.53% 13.67% 2.92% 
Q. agri. 4.52% 3.58% 2.87% 11.10% 1.38% 11.94% M

od
el

ed
 

C
la

ss
 

Soil 18.43% 20.07% 21.12% 10.61% 22.51% 3.57% 
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Table 3. Spectra from each land cover class with the lowest endmember average RMSE.  
EAR values are percent reflectance.  Also shown are brightness (bright) and greenness 
(green) values from a tasseled cap transformation, and the z-scores for these brightness 
and greenness values within each land cover class.   

Class Endmember EAR bright green Zbright Zgreen

A. fasciculatum adfa030 1.61% 0.35 0.15 0.20 0.11 
Arctostaphylos spp. argl022 1.08% 0.33 0.15 -0.36 -0.06 
C. megacarpus ceme247 1.08% 0.32 0.18 0.79 0.25 
grassland gras104 1.42% 0.49 0.03 1.50 -0.31 
Q. agrifolia quag119 0.89% 0.31 0.24 0.66 0.66 
Soil soil026 1.27% 0.73 0.00 0.90 -0.41 
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Table 4. Polygon dominant land cover class confusion matrix, including user’s and 
producer’s accuracies. 
  Reference Dominant 
  A. fasc. Arcto. C. mega. grass Q. agri. soil unmod. user’s

A. fasc. 13 0 1 0 0 0 0 0.93 
Arcto. 0 4 0 0 0 0 0 1.00 

C. mega. 0 2 19 0 0 0 0 0.90 
grass 0 0 0 12 0 0 0 1.00 

Q. agri. 0 0 4 0 8 0 0 0.67 
Soil 0 0 0 0 0 6 0 1.00 

Im
ag

e 
D

om
in

an
t 

unmodel. 0 0 0 0 0 1 0 0.00 
 producer’s 1.00 0.67 0.79 1.00 1.00 0.86 -- 

 

  

 34



Table 5. The fractional coverage confusion matrix, with the shade normalized and binned 
fractions of each of the six land cover classes.  Fractions describing land cover classes that 
were absent from the reference data were classed as 0% fractional coverage.  Modeled 
fractions overestimated for 0% reference fractional coverage are outlined and shaded 
gray.  Dominant reference fractions that were underestimated are outlined and unshaded. 
 
  Reference Polygon Fractional Coverage 
 

 0% 
0%-
10% 

10%-
25% 

25%-
50% 

50%-
75% 

75%-
90% 

90%-
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Figure Captions 
 
Figure 1. An image of RMSE resulting from unmixing the spectral library against itself.  
Endmember spectra are on the x-axis and modeled spectra are on the y-axis.  Classes are 
ordered by number.  The bright bands are higher RMSE values resulting from grass and 
soil modeling green vegetation.  Zero values mark the diagonal where a spectrum models 
itself.   
 
Figure 2. A diagrammatic example of endmember average RMSE (EAR; light gray) and 
class average RMSE (CAR; dark gray).  The spectral library in this example has 9 spectra, 
with 5 C. megacarpus spectra and 4 Q. agrifolia spectra.  Endmembers that model 
themselves along the diagonal are not included in CAR or EAR.   
 
Figure 3. Dominant land cover class mapped by the minimum EAR endmembers using 
MESMA.  Black areas are unmodeled.  From south to north, the major features in the 
image are the Pacific Ocean, urban Santa Barbara, and the Santa Ynez Mountains. 
 
Figure 4. A fraction image of the Q. agrifolia land cover class. 

Figure 5. A fraction image of the grassland land cover class.  
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