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Abstract. The Zeroth Law of Thermodynamics defines thermal equi-
librium and temperature. The First Law defines heat, work, and inter-
nal energy so that energy is conserved. The Second and Third Laws
involve entropy, whose interpretation is contested. The entropies of
all chemically important substances have been experimentally deter-
mined. The Second Law indicates the direction time flows, which is
the direction of entropy increase of isolated systems. In Statistical Me-
chanics, entropy is defined by a combinatorial formula which can but
need not be interpreted probabilistically. This formula agrees with the
entropy of Classical Thermodynamics. Thermodynamic entropy has
nothing to do with disorder (defined intuitively): for example, copper
is purified using entropy-increasing chemical processes. Thermody-
namic entropy is completely unrelated to information theory despite
the same mathematical functional form being used in both. The Third
Law asserts that the entropy of all substances at absolute zero is iden-
tical (conventionally, zero) for all systems.
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There are four Laws of Thermodynamics, called the Zeroth, First, Second,
and Third Laws because the Zeroth Law was developed last but is now
seen to be a fundamental underpinning of the other laws. The Second
Law has three equivalent statements and the Third Law has two equivalent
statements; proof of these equivalences can be found in Zemansky (1968).
The term “entropy” is explained below.

Zeroth Law: Two systems which are in thermal equilibrium with a third
are in thermal equilibrium with each other [Dugdale, 1996, p. 13].

First Law: During a process in which no heat is exchanged with the en-
vironment, the work done is only a function of the initial and final
states of the system, not of the path. Furthermore, during any process,
the change in the initial energy of the system, 𝑈 𝑓 −𝑈𝑖, is equal to the
heat flow into the system, 𝑄, minus the net work done by the system,
𝑊 : 𝑈 𝑓 −𝑈𝑖 = 𝑄 −𝑊 . [Ibid., p. 20; Zemansky, pp. 78–79].

Second Law, Kelvin-Planck statement: No process is possible whose sole
result is the absorption of heat from a reservoir and the conversion of
this heat into work [Zemansky, 1968 p. 178].

Second Law, Clausius statement: No process is possible whose sole result
is the transfer of heat from a cooler to a hotter body [ibid., p. 184].

Second Law, entropy statement: In an isolated system, entropy is nonde-
creasing [ibid., p. 234].

Third Law, Unattainability statement: It is impossible to reach absolute
zero by any finite number of processes [ibid., p. 498; Dugdale, 1996
p. 177].

Third Law, Nerst-Simon statement: In the limit as temperature goes to
zero degrees Kelvin, the entropy change of any reaction is zero [Ze-
mansky, p. 498; Rao, 1985, p. 257; Dugdale, pp. 160–161].

In the Zeroth Law, systems are in “thermal equilibrium” with each other if
heat could flow between them but it does not, as evidenced by the obser-
vation that no characteristics of the systems change over time. The Zeroth
Law is needed to be able to conceive of the idea of temperature, which is
the thing that systems in thermal equilibrium with each other have in com-
mon. The First Law reflects conservation of energy, and clarifies that heat
and work are measured in the same units as each other—the Joule, denoted
‘J’, the metric unit of energy (the English units being calories or BTUs)—
and absorption of one unit of heat by a system increases its internal energy
in the same way as when one unit of work is done on the system. “Work”
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is force times distance, and since it involves distance, it is a macroscopic
phenomenon; heat is a microscopic phenomenon. Internal energy changes
are defined but the internal energy level has an arbitrary origin (just like
gravitational or magnetic potential energy). Heat is often referred to as a
“flow” even though its unit is Joules not Joules per second (a “Watt”), be-
cause both heat and work happen over time to cause changes in the stock
of 𝑈. The Third Law concerns behavior near absolute zero, which has little
importance for Ecological Economics except for a few points noted below.

Entropy in Classical Thermodynamics. Let 𝑇 stand for absolute tem-
perature in degrees Kelvin, denoted K. (Kelvin temperature is 273.15 de-
grees higher than Celsius temperature, and is named after William Thom-
son, also known as Lord Kelvin.) Let 𝑄 stand for the flow of heat into a
material (or system, which is a collection of materials). In the “Classical
Thermodynamics” developed in the mid-nineteenth century, the change in
the entropy “𝑆” of the material (or system) is defined to be

𝑑𝑆 = 𝑑𝑄rev/𝑇 , (1)
where the subscript “rev” stands for a reversible process; physicists call a
process “reversible” if it involves no dissipative effects such as friction, vis-
cosity, inelasticity, electrical resistance, or magnetic hysteresis [Zemansky,
1968, p. 193, p. 215; Mackowiak, 1965, p. 59]. As Zemansky adds [ibid.,
p. 225], if a system undergoes an irreversible process between an initial
equilibrium state 𝑖 and a final equilibrium state 𝑓 , the entropy change of the
system is equal to the integral from 𝑖 to 𝑓 of 𝑑𝑄/𝑇 taken over any reversible
path from 𝑖 to 𝑓 . No integral is taken over the original irreversible path.

Suppose one has an isolated system containing two bodies, one hot and
one cold, placed in thermal contact. When a given quantity of heat, 𝑄0,
flows from the hotter body to the colder one, the change in entropy of the
system is

Δ𝑆 =
−𝑄0

𝑇hot
+ +𝑄0

𝑇cold
.

Since 𝑇hot > 𝑇cold, Δ𝑆 > 0. If heat were to flow in the opposite direction,
away from the colder body and toward the warmer body, then the 𝑄0 terms
in the above equation would change sign and Δ𝑆 would be negative, violat-
ing the Second Law.

Heat can flow from a colder body to a warmer one, and thus entropy
can decrease, in a part of a system, or in a system which is not isolated, but
not in an isolated system.

The statement “in an isolated system, entropy never decreases” implic-
itly means that “. . . entropy never decreases as time goes forward.” It fol-
lows that the Second Law is connected with, manifests, or perhaps even
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provides “Time’s Arrow,” that is, the direction in which time flows. Earlier
physical laws, such as Newton’s Laws of Motion, are symmetric in time:
in their mathematical forms, substituting −𝑡 for time 𝑡 generates true state-
ments, which is called “T-symmetry.” The Second Law is time-asymmetric.

Given two dates 𝑡1 and 𝑡2 > 𝑡1, the entropy of an isolated system at 𝑡1 is
less than the entropy of the system at 𝑡2: 𝑆1 < 𝑆2. The Second Law means
it is then impossible to reverse all of the changes which have happened
in this isolated system between 𝑡1 and 𝑡2—assuming the system remains
isolated—because such a reversal would imply a decrease of entropy. This
rules out “perpetual motion machines of the second kind.”

Entropy changes can be measured in laboratories. The entropy change
undergone by a quantity of copper as its temperature is raised from 300 K
to 312 K could be measured if one used a heat source known to deliver
“ 𝑗” Joules per minute to the copper. If it took 𝑡 minutes to heat the copper,
Δ𝑆 would approximately be the heat flow, 𝑗 · 𝑡 Joules, divided by the aver-
age temperature, 306 K. A more accurate procedure would be to find the
number of minutes 𝑡1 needed to raise the temperature from 300 K to 301 K,
multiply it by 𝑗 , and divide the result by the average temperature, 300.5 K,
obtaining the entropy change Δ𝑆1 = 𝑗 𝑡1/300.5; then find the number of
minutes 𝑡2 needed to raise the temperature from 301 K to 302 K, multiply
it by 𝑗 , and divide it by the average temperature, 301.5 K, obtaining the
entropy change Δ𝑆2 = 𝑗 𝑡2/301.5; and so forth, until 312 K is reached; then
sum all the Δ𝑆𝑖’s. More precise methods show the entropy change from
0 K to “standard temperature” (298.15 K) under standard pressure (0.987
atmospheric pressure) of 1 mole (approximately 63.5 g) of copper in the
solid state is 33.3 J/K. Since such “standard entropies” involve 0 K, which
is not attainable, the entropy change near absolute zero cannot be obtained
experimentally and instead has to be obtained theoretically by appealing to
the Third Law.

The “heat capacity” of a substance (its “specific heat”) is the amount of
heat or work needed to raise the temperature of one gram of the substance
by one degree Kelvin (or Celsius). As a general rule, near room temperature,
metals have low heat capacities (witness aluminum foil cooling quickly
when removed from an oven), water has a high heat capacity (witness water
on a stove taking a long time to boil), and most other household substances
have heat capacities in between them. Letting 𝐶𝑝 denote the ‘heat capacity
at constant pressure’ of a substance, one can (assuming no phase changes)
rewrite (1) as

Δ𝑆 =

∫ 𝑓

𝑖

𝐶𝑝 (𝑇)
𝑇

𝑑𝑇 (2)
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where ‘𝑖’ denotes some initial reference state and ‘ 𝑓 ’ denotes the state of
interest. It follows that near room temperature, metals will tend to have
low Δ𝑆 values (low entropy changes), water will have a high Δ𝑆, and other
common household substances usually have Δ𝑆 in between those two.

Using tables of entropy changes for different substances measured in
laboratories under standard conditions, the entropy-increasing, and hence
spontaneous, direction for chemical reactions can be computed. (This is
more commonly done in an alternative but equivalent way using Gibbs
Free Energy, as discussed below.) What can be computed is not only the
initial direction of the chemical reaction, but also the precise equilibrium
proportions of the different chemicals. (While the equilibrium direction
and extent of any chemical reaction can be determined, not all chemical
systems to go equilibrium: some get stuck in a “metastable” state in which
an “activation energy” barrier blocks their path to the equilibrium unless
the reaction occurs in the presence of a catalyst, which works by supplying
the activation energy, which is then returned in full to the catalyst.)

To calculate the total entropy change when an event occurs, the resulting
entropy change of the system’s surroundings must be added to the entropy
change undergone by the system itself. Under conditions of constant pres-
sure and temperature, the former is “the energy released by the system into
its environment” (traditionally represented by −Δ𝐻) times 1/𝑇 , and the lat-
ter is Δ𝑆. Adding these two entropy changes together yields a total entropy
change of Δ𝐻/𝑇 −Δ𝑆 = (1/𝑇) (Δ𝐻 −𝑇Δ𝑆) = (1/𝑇)Δ𝐺 where Δ𝐺 is known
as the “Gibbs Free Energy.” Tables of Gibbs Free Energies of common
substances are readily available, and since such a table is all one needs to
determine how entropy changes when an event occurs under conditions
of a tabulated constant pressure and temperature, Gibbs Free Energy ex-
tremely valuable for chemists. This should not obscure the fact that it is
overall entropy change, not Gibbs Free Energy, which is the fundamental
physical quantity. Similarly, Helmholtz Free Energy 𝐹 = 𝑈 − 𝑇𝑆 (where 𝑈
is internal energy) is useful in situations where volume and temperature 𝑇

are constant, but it is not a fundamental quantity either. (See also Beard and
Lozada, 1999, Section 5.5 and footnote 10, and Lozada, 1999, Appendix.)

Although there is no such thing as “low-entropy energy,” it is possible
to define the entropy of a collection of photons—a “photon gas.”

Another connection between entropy and energy is Lord Kelvin’s “prin-
ciple of the degradation of energy,” which states that whenever an irre-
versible process takes place, the effect on the universe is the same as that
which would be produced if a certain quantity of energy were converted
from a form in which it was completely available for work into a form in
which it is completely unavailable for work. This amount of energy is the
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temperature of the coldest available heat reservoir times the entropy change
of the universe brought about by the irreversible process [Zemansky, 1968,
pp. 236, 237, 239]. As a consequence of this Principle, it is never desirable
to recycle energy, because accomplishing such recycling requires using up
more energy than would be regenerated.

If all the energy in a system has been degraded, the system is in thermo-
dynamic equilibrium, incapable of further entropy increases and therefore
incapable of doing further work. Kelvin’s concept of the “Heat Death of
the Universe” applied this idea to the universe. Lozada (2017) modeled
optimal economic growth if economic activity causes acceleration of the
heat death of the solar system.

The first application of entropy was to “heat engines”—devices, such as
internal combustion engines and steam engines (such as occur in both con-
ventional and in nuclear power plants), which use temperature differences
to do their work. The “efficiency” of a heat engine is defined to be its work
output divided by its heat input. An important implication of the Second
Law is that the maximum efficiency of any heat engine operating between
the temperatures 𝑇low and 𝑇high is 1 − (𝑇low/𝑇high). This is less than 1 be-
cause 𝑇low is strictly greater than zero due to the unattainability statement
of the Third Law. While this establishes a boundary beyond which techno-
logical progress will never cross, it only applies to heat engines, and not
all engines are heat engines: heat pumps are not (they are heat engines in
reverse); fuel cells are not since they do not transfer energy in the form
of heat; and living animals are not, even though their muscles resemble
engines in that they can do mechanical work, because like fuel cells they
do not do work by transferring energy in the form of heat.

Entropy in Statistical Mechanics. While equation (1) gives a precise
definition of entropy, it does not explain theoretically why the entropies
(or specific heats) of different substances are what they are; it provides no
intuitive interpretation of entropy. A theoretical model of entropy, called
Statistical Mechanics, was provided by Ludwig Boltzmann (followed by
Josiah Willard Gibbs) in the late nineteenth century.

To explain Boltzmann’s model, Table 1 illustrates a system composed
of 𝑁 = 3 particles (think of them as being electrons), three energy levels,
and Total Energy = 6 eV (“eV” stands for “electron volts” and is a unit of
energy, approximately 1.6 · 10−19 J). The electrons can be in any energy
level as long as the energy of the entire system is equal to its Total Energy.
There are only two ways to arrange the three particles between the three
given energy levels that are consistent with the total energy level being
6eV. These two ways, called “Macrostates,” are shown in the two columns
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a Macrostate another Macrostate

Electrons’ energy levels
1 eV
2 eV
3 eV

• • •
1 eV
2 eV
3 eV

•
•
•

Macrostate three in 2 eV one in 1 eV, one in 2 eV, one in 3 eV
Microstates:

in 3 eV A A B B C C
in 2 eV ABC B C C A A B
in 1 eV C B A C B A

Number of
Microstates

3!
0!3!0! = 1 3!

1!1!1! = 6

Probabilistic
Interpretation 1/7 of the time 6/7 of the time

Non-probabilistic
Interpretation 0% of the time 100% of the time

Table 1: 𝑁 = 3 particles. Total Energy = 6 eV.

of the Table. The “Microstates” rows pretend that the electrons are distin-
guishable from each other and give each electron a name: A or B or C.
Those rows then illustrate all the microstates which are compatible with
the given 6 eV macrostate. Next is the Table’s “Number of Microstates”
row, showing the formula which gives the correct number of different mi-
crostates corresponding to each of the Tables’ macrostates. With 𝑁 =

∑
𝑖 𝑁𝑖,

the expression
𝑁!

𝑁1! 𝑁2! . . . 𝑁𝑚!
(3)

in combinatorics is called a “multinomial coefficient”; it measures the
number of distinguishable permutations of 𝑁 particles when there are
𝑁𝑖 indistinguishable particles of type 𝑖. In Table 1, the “Number of Mi-
crostates” row is explained by (3), since we consider the electrons to ac-
tually be indistinguishable from each other. In the Table’s “Probabilistic
Interpretation” row, each macrostate is predicted to occur with the follow-
ing probability: “the number of microstates compatible with it” divided
by “the sum of the number of microstates compatible with each of the
system’s macrostates.” (“Compatible” here means “consistent with the sys-
tem’s total energy and with the macrostate’s first row in the Table.”) In
the Tables’ “Non-probabilistic Interpretation” row, the macrostate with the
greatest number of compatible macrostates is assumed to occur 100% of
the time.
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In actual physical systems, there are usually many electrons and en-
ergy levels, and therefore very many possible macrostates, and, typically,
one of the macrostates would, under the Probabilistic Interpretation, occur
with probability much greater than 99.99%. Therefore, it has been experi-
mentally impossible to test whether the Probabilistic or Non-probabilistic
Interpretation is correct, because one never observes the system in any
macrostate other than the “most probable” (modal) one.

The probabilistic interpretation of the Entropy Law would allow occa-
sional spontaneous decreases in entropy, which the Classical Entropy Law
would never allow, and which are never observed. Thus the Probabilistic
Interpretation would seem to be wrong. The proponents of the Probabilistic
Interpretation reply that it could be right because it predicts the probability
of entropy decreases in isolated systems to be so close to zero that they
claim this is consistent with no one ever having observed any yet. This
debate is important to philosophers of science, but most physicists do not
care which interpretation is used because there is no experimentally ob-
servable difference between “a probability of zero” and “a probability of 𝑥”
for sufficiently small 𝑥.

Suppose a system has 𝑁 particles; 𝐸 total energy; and 𝑚 energy lev-
els 𝑒1, 𝑒2, . . . , 𝑒𝑚. The macrostate which the Probabilistic Interpretation
says will occur with highest probability, and which the Non-probabilistic
Interpretation says will occur with probability 100%, is the state which
solves

max
𝑁1,𝑁2,...,𝑁𝑚

𝑁

𝑁1!𝑁2! · · · 𝑁𝑚!
such that

𝑚∑
𝑖=1

𝑁𝑖 𝑒𝑖 = 𝐸 and
𝑚∑
𝑖=1

𝑁𝑖 = 𝑁 . (4)

Let 𝑁∗
1, 𝑁∗

2, . . . , 𝑁∗
𝑚 denote the maximizing values of 𝑁1, 𝑁2, . . . , 𝑁𝑚. In

physics, the objective function of (4), (3), is traditionally given the sym-
bol “𝑊” (from the German for probability, Wahrscheinlichkeit); denote its
maximized value by 𝑊∗.

Note that the 𝑁𝑖’s which maximize 𝑊 are the same as the 𝑁𝑖’s which
maximize 𝑘 ln𝑊 if 𝑘 is any positive constant, since the natural logarithm
is an increasing function of its argument. In the Non-probabilistic Interpre-
tation of Statistical Mechanics, if one defines entropy by

Entropy = 𝑆 = 𝑘 ln𝑊∗ = 𝑘 ln
𝑁!

𝑁∗
1! 𝑁∗

2! . . . 𝑁∗
𝑚!

(5)

then changes in the entropy so defined, when applied to an ideal monatomic
gas, agree with entropy changes derived from the Classical kinetic theory
of an ideal gas based on (1) if 𝑘 is assigned the value 1.38×10−16 ergs/K, a
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value of 𝑘 now known as “Boltzmann’s Constant” [Zemansky, 1968, p 265].
In the Probabilistic Interpretation of Statistical Mechanics, if one defines
entropy as being a random variable which is the following function of the
random variables 𝑁1, 𝑁2, . . . , 𝑁𝑚:

Entropy = 𝑆 = 𝑘 ln𝑊 = 𝑘 ln
𝑁!

𝑁1! 𝑁2! . . . 𝑁𝑚!
(6)

where
∑𝑚

𝑖=1 𝑁𝑖 𝑒𝑖 = 𝐸 and
∑𝑚

𝑖=1 𝑁𝑖 = 𝑁 , then changes in the mode of this
distribution—the mode being the only value ever experimentally observed—
agree with entropy changes derived from the Classical kinetic theory of an
ideal gas based on (1) if 𝑘 equals Boltzmann’s Constant.

The equation (1) from Classical Thermodynamics defines only changes
in entropy; absolute amounts of entropy are not defined. Equations (5)
and (6) can be made consistent with this idea by adding an arbitrary con-
stant 𝑆0 to their right-hand sides. It is sometimes asserted that, instead, in
Statistical Mechanics absolute entropy is defined—equivalently, that the
constant 𝑆0 must be zero. This is not true [Dugdale, 1996, p. 99]; Max
Planck’s erroneous treatment of this issue can be replaced by the one in
Beard and Lozada [1999, p. 118 fn. 12], which retains Planck’s conclu-
sion that the only functional form which could link 𝑊 and entropy is the
logarithm. This controversy has no bearing on laboratory entropy measure-
ments, and thus on scientific practice, because laboratories only measure
entropy differences.

Fallacies: Disorder and Information. One of the most surprising con-
sequences of equation (1) comes from analyzing the mixing of two ideal
gases in a container whose walls allow no heat to flow. (An “ideal” gas
has molecules which do not interact with their neighbors.) The formula
textbooks give for the resulting change of entropy—which is

Δ𝑆 = −𝑅
[
𝑛1 ln

𝑛1

𝑛1 + 𝑛2
+ 𝑛2 ln

𝑛2

𝑛1 + 𝑛2

]
(7)

where 𝑛1 and 𝑛2 are the moles of the gases and 𝑅 is the universal gas con-
stant, 8.31 J/(K ·mole)—seems wrong, because since no heat can flow into
or out of the container, it seems from (1) that the system’s entropy cannot
change. Observers confused by this have even said that (7) represents a
new type of entropy, called “configurational entropy” or “the entropy of
mixing,” which is different from the equation (1)’s entropy, which they call
“thermal entropy.” Actually, however, (7) and configurational entropy are
merely other manifestations of thermal entropy, because entropy change is
not

∫ 𝑓

𝑖
𝑑𝑄/𝑇 (which is zero in the case of mixing) but rather

∫ 𝑓

𝑖
𝑑𝑄/𝑇 over

8



a reversible path. The mixing of two ideal gases is not reversible. The only
way to calculate the entropy change accompanying the mixing of two ideal
gases is to replace the original irreversible path linking the states before
and after the mixing with a reversible path linking those same states, then
performing the integration. Along the reversible path, heat does flow, and
the entropy change (1) turns out to agree with (7). (See Beard and Lozada,
1999, pp. 86–88.)

The result that mixing two gases increases entropy has led observers to
mistakenly think that there is more to the idea of entropy than expressed
by (1)—that entropy measures increasing mixing, or spatial disorder, or
even some general notion of “order,” per se. It should be stressed that
increasing entropy does not in general mean increasing disorder in any
intuitive sense. For example, the spontaneous—i.e., entropy-increasing—
evolution of an oil/water mixture is towards “oil on the top, water on the
bottom,” which is hardly increasing disorder. Treatments which ignore this
caveat, such as Erwin Schrödinger’s famous 1944 essay What is Life and
the enormous literature inspired by it, need to be read with the greatest
caution. Moreover, far from being a source of disorder, we learn from Ilya
Prigogine that the transformation of entropy from low to high can bring
about wonderful “dissipative structures” including, according to Wicken
(1987), life on earth.

The industrial purification of common copper ores illustrates entropy-
increasing processes which result in increasing “order,” intuitively de-
fined. Because CuO is thermodynamically stable at room temperatures,
breaking it up into copper and oxygen would cause an entropy decrease,
so cannot occur spontaneously, but pure copper still can be produced via
the introduction of sulfuric acid: a typical reaction is CuO + H2SO4 −→
Cu++ + SO−−

4 + H2O [Biswas and Davenport, 1994 p. 15], which increases
entropy and is thus spontaneous. Obtaining pure copper from Cu2S is done
by “burning” the ore: Cu2S is thermodynamically metastable, and at suffi-
ciently high temperature, entropy-increasing purification reactions such as
“Cu2S+O2 −→ 2Cu+SO2 + energy” occur, reactions which are so exother-
mic that the process is autothermal at 1500 K. (See Beard and Lozada, 1999
(5.8); Biswas and Davenport, ibid. pp. 194 and 198.)

In typical physical systems the values of the 𝑁𝑖’s in (5) and (6) are
sufficiently large that physicists assume Stirling’s Formula 𝑛! ≈ 𝑛 ln 𝑛 − 𝑛

is a good approximation. It can be shown that this implies from (5) that

Entropy = 𝑆 = 𝑘 ln𝑊∗ ≈ −𝑘𝑁
𝑚∑︁
𝑖=1

𝑁∗
𝑖

𝑁
ln

𝑁∗
𝑖

𝑁
.
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The similar expression
∑

𝑖 𝑥𝑖 ln 𝑥𝑖 appears in the field of information theory,
with of course entirely unrelated meanings for the symbols. This does not
imply any connection between thermodynamic entropy and information,
any more than the similarity between the formula for the sum of scores
on two student examinations (𝑒1 + 𝑒2) and the formula for the sum of the
energy of two hotel elevators (𝑒1 + 𝑒2) implies any connection between
student examination scores and hotel elevators. The “entropy” that appears
in information theory, and that sometimes appears in related fields such as
econometrics, has nothing to do with physical entropy, nor with the Second
Law of Thermodynamics. (Much has been written on this topic; see the
references in Beard and Lozada, 1999, pp. 109–111.)
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