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Abstract. Abstracting from fund expenses, a typical active mutual
fund earns the median return, but a passive fund earns the mean return.
With coin-flipping bets, median wealth is less than mean wealth. With
discrete time, discrete or continuous probability, and i.i.d. investment
returns, wealth is asymptotically lognormal, and the limiting distri-
bution of wealth’s median is less than its mean. In continuous time,
wealth’s median is also less than its mean, given additional assump-
tions. In neither discrete nor continuous time must one assume that
one-period or instantaneous continuously-compounded returns (“log
returns”) are normally distributed.
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In 1991, William Sharpe wrote his famous note on “The Arithmetic of Ac-
tive Management,” which remains a touchstone in any discussion of the
superiority of passive over active management. To recall, he wrote that

1. before costs, the return on the average actively managed dollar will
equal the return on the average passively managed dollar and

2. after costs, the return on the average actively managed dollar will be
less than the return on the average passively managed dollar.

However, in a multi-period setting, Sharpe’s first statement may give too
much credit to active managers. In such a setting, even before costs, the
return of the median actively managed fund will be asymptotically less
than the return on a passively fund, assuming the returns are independent
and identically distributed. The reason is that single-period independent,
identically distributed (i.i.d.) returns give rise to multiperiod wealth which
is asymptotically lognormal, and thus right-skewed, so the mean wealth,
which is what a passive fund earns, is asymptotically higher than the me-
dian wealth, which is what the median active fund earns. These are not new
results, but they are scattered over many decades of literature, starting with
Osborne (1959) if not earlier. In this paper we document where many of
the results originated, synthesize them into a coherent narrative with uni-
form notation, and illustrate a theoretical example. We also add rigor in
two places. Bessembinder, Cooper, and Zhang (2023) (henceforth “BCZ”)
note von Hippel’s (2005) point that positive (right) skewness is actually not
a sufficient condition for the mean to be greater than the median. Since
our interest is in the latter inequality, we will emphasize directly analyzing
the mean and the median, rather than analyzing skewness. Then, analyzing
the mean naturally leads to questions of convergence in expectation, but
the Central Limit Theorem concerns convergence in distribution, which is
a weaker notion of convergence, and it turns out the difference between
those types of convergence has implications even in analyzing the simplest
possible setting, repeated bets on tosses of a fair coin. Overall, we show
that while the mean of multi-period terminal wealth is, in many contexts, a
compounding of the mean of one-period wealth (or of instantaneous change
in wealth), the median of multi-period wealth is, in those contexts, a com-
pounding of the mean of one-period (or instantaneous change in) wealth
reduced because of variance.

The empirical study of skewness has already been significantly ad-
vanced by the admirable studies of Bessembinder (2018) and BCZ. The
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utility of a compact and comprehensive summary of the theoretical back-
ground is suggested by Bessembinder’s remark that “To my knowledge,
the statistical properties of multiple-period returns generated by successive
draws. . . have not been carefully explored” (2018 p. 443).

Section 1 demonstrates that median terminal wealth is less than mean
terminal wealth in the elementary coin-flipping setting. For continuous
probability distributions and discrete time, section 2 sets the stage by show-
ing that if one-period returns are i.i.d. and normally distributed then the dis-
tribution of terminal wealth will be lognormal, thus having positive skew
and a larger mean than median. Then Section 3 shows that, assuming i.i.d.
returns but dropping the assumption that the one-period returns are nor-
mally distributed, the asymptotic distribution of terminal wealth will again
be lognormal. In other words, one does not need to assume a lognormal
model of wealth in order to get an asymptotically lognormal distribution of
wealth. However, the difference between convergence in distribution and
convergence in mean leads to a weaker result than one might expect, and
stating it requires care. Finally, Section 4 shows asymptotic lognormal-
ity in continuous time: a lognormal model of wealth will result in a log-
normal distribution of wealth, but one can get a lognormal distribution of
wealth without assuming a lognormal model of wealth. The continuous-
time result requires assumptions beyond i.i.d. behavior; the (admittedly
weaker) discrete-time result only requires i.i.d. behavior and the passage
of ‘enough’ time, which de La Grandville’s results (1998 p. 79) suggest
can be as little as two time periods.

1. In Repeated Betting on Flips of a Fair Coin, Passive beats Active
BCZ (2023 p. 137) illustrate how multiple-period skewness can arise from
single-period symmetry using a simple example (emphases added):

. . . the compounding of random short-horizon returns induces
positive skewness in long-horizon returns (even if short-horizon
returns are symmetric), a result first formally demonstrated by
Arditti and Levy (1975). Intuitively, this positive skewness arises
because reversals of [identical] percentage magnitudes lead to
compound losses (e.g., successive returns of 5% and −5% in ei-
ther order compound to −0.25%), while continuations of [iden-
tical] percentage magnitudes lead to larger gains than losses
(e.g., continuations of 5% lead to accumulated returns of 10.25%,
while continuations of −5% lead to accumulated returns of
−9.75%).
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Table 1 goes into this example in more detail to foreshadow our upcoming
results for continuous probability distributions. In the last two-thirds of the
Table, with respect to future outcomes, the two-period median of the return
distribution is less than the mean, even if, as in the middle third of the table,
the one-period the return distribution is symmetric. This was Bessembinder
et al.’s point.1 In all three parts of the table, geometric returns are less than
arithmetic returns. This can be related to a “volatility drag” on geometric
returns (discussed below). In the table’s example of “one past realization,”
realized terminal wealth can be written as a function of geometric return,
but not of arithmetic return; so for this situation, volatility drag affects re-
alized terminal wealth. However, in the table’s two analysis of future out-
comes, expected terminal wealth can be written as a function of expected
arithmetic return, but not of expected geometric return2—so expected ter-
minal wealth is unaffected by a volatility drag. Median terminal wealth is,
however. These results will all be echoed in the analysis of the rest of the
paper, which concerns continuous distributions.

Although this paper is about the theoretical probability distribution of
future terminal wealth obtained by investing in one asset, whereas empir-
ical work must concern the realized past distribution of terminal wealth
obtained in the past by investing in many assets, the theoretical future dis-
tribution and the past empirical distribution are asymptotically equal each
other, because that is what it means to say that the random variable has a
particular distribution. This is why Table 2, which shows the most likely
past four observations, has “ensemble averages” (of past data) that equal
the “expected values” (of future outcomes) in the middle of Table 1. The
point of this section is that if one has the choice, at one date, to bet on

1Bessembinder (2018 §2.2) shows using simulations that symmetric one-period simple
returns can result in a right-skewed distribution of 𝑊𝑛. Arditti and Levy (1975 pp. 799–
801), assuming only i.i.d. returns, analytically demonstrated that a single-period skewness
of zero does not necessarily imply multiple-period skewness of zero, and single-period
skewness of zero is consistent with multiple-period skewness that is positive and increasing
in 𝑛. Skewness is further studied in Farago and Hjalmarsson (2023), where the i.i.d. as-
sumption is dropped and econometric estimation procedures are considered. As mentioned
near the end of Section 2, for our purposes, skewness is less important than the mean being
larger than the median.

2One way that terminal wealth is written in the table is as a function of the four
squared geometric returns 𝑙𝑙, 𝑙𝑤, 𝑤𝑙, and 𝑤𝑤; but it is never written as a function of
𝐸[1 + Geom. Ret.].

For a formal statement that “arithmetic mean return, when compounded. . . yields the cor-
rect value of expected wealth. . . if the mean of 𝑅 is unchanged during all 𝑛 periods and re-
turns are independent” see Skoog and Ciecks (2008 p. 8); they survey a controversy about
this in the 1990’s.
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1 Period 2 Periods

𝑙 = 0.95 and 𝑤 = 1.05
One Past Realization

(example) {𝑙, 𝑤} = {.95, 1.05}
1 + Mean Arith. Ret. .95+1.05

2 = 1

1 + Mean Geom. Ret.
√
.95 · 1.05 ≈ .998749

Realized Terminal Wealth .95 · 1.05 = .9975
= (1 + Mean Geo. Ret.)2

Future Outcomes {𝑙, 𝑤} = {𝑙𝑙, 𝑙𝑤, 𝑤𝑙, 𝑤𝑤} =
{0.95, 1.05} {.9025, .9975, .9975, 1.1025}
mean = 1 mean = 1

median = .9975
𝐸[1 + Arith. Ret.] 1

2
𝑙
1 + 1

2
𝑤
1

1
4 ( 𝑙+𝑙2 ) + 1

4 ( 𝑙+𝑤2 ) + 1
4 (𝑤+𝑙

2 )

= 1 + 1
4 (𝑤+𝑤

2 ) = 1

𝐸[1 + Geom. Ret.] 1
2 𝑙

1/1 + 1
2𝑤

1/1 1
4 (𝑙𝑙)1/2 + 1

4 (𝑙𝑤)1/2 + 1
4 (𝑤𝑙)1/2

= 1 + 1
4 (𝑤𝑤)1/2 ≈ 0.99937

𝐸[terminal wealth] 1
2 𝑙 +

1
2𝑤

1
4 (𝑙𝑙) + 1

4 (𝑙𝑤) + 1
4 (𝑤𝑙)

= 1 + 1
4 (𝑤𝑤) = 1

=

(
𝑙+𝑤

2

)2
= (𝐸[1 + Arith. Ret.])2

𝑙 = 0.95 and 𝑤 = 1.1
Future Outcomes {0.95, 1.1} {0.9025, 1.045, 1.045, 1.21}

mean = 1.025 mean = 1.050625
median = 1.045

𝐸[1 + Arith. Ret.] 1.025 1.025

𝐸[1 + Geom. Ret.] 1.025 ≈ 1.02363

𝐸[terminal wealth] 1.025 1.05625 = (𝐸[1 + Arith. Ret.])2

Table 1. Initial wealth of $1; a 50% chance of losing 5% (“𝑙 = 0.95”), and
a 50% chance of winning either 5% (top two-thirds of table, “𝑤 = 1.05”),
or 10% (bottom third of table, “𝑤 = 1.1”).
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many flips of a fair coin, and then faces that choice again and again at fu-
ture dates, then the passive strategy of wagering on all bets at each date is
better than the active strategy of only wagering on some of them, because
the passive strategy earns the mean, which is higher than the median of the
active strategies.

The result that median wealth is affected by volatility drag but mean
wealth is not affected by volatility drag can be generalized as follows.

Proposition 1. In repeated betting on flips of a fair coin where in each round
wins change wealth by a factor of ‘𝑤’ and losses change wealth by a factor
of ‘𝑙’ (which is not necessarily less than 1), where 0 < 𝑙 < 𝑤, and where in
each round all wealth is wagered, then after 𝑛 rounds (𝑛 a strictly positive
even integer),

median wealth = 𝑊0 ·
(√

𝑙𝑤

)𝑛
< 𝑊0 ·

(
𝑙 + 𝑤

2

)𝑛
= mean wealth . (1)

Thus median wealth grows exponentially at the rate of the geometric mean
of 𝑙 and 𝑤, while mean wealth grows exponentially at the rate of the arith-
metic mean of 𝑙 and 𝑤. Also,

lim
𝑛→∞

median (𝑊𝑛)
mean (𝑊𝑛)

= lim
𝑛→∞

(√
𝑙𝑤

𝑙+𝑤
2

)𝑛
= 0 .

Denote the mean of the wealth after one toss when 𝑊0 = 1 as 𝑚1 =

(𝑙 + 𝑤)/2 and denote the variance of the wealth after one toss when 𝑊0 = 1
as 𝑣𝑎𝑟1 = (𝑙 − 𝑤)2/4. Then (1) can be rewritten as

median wealth = 𝑊0 ·
(√︃

𝑚2
1 − 𝑣𝑎𝑟1

)𝑛
< 𝑊0 · (𝑚1)𝑛 = mean wealth . (2)

Hence the mean of 𝑊𝑛 is the one-period mean raised to the 𝑛 th power,
but its median is the one-period mean dragged down by the one-period
variance, raised to the 𝑛 th power.

Proof. Let 𝑊𝑛 be the value, or “wealth level,” after the 𝑛th coin toss. We
first prove the various components of (1).

Proof for the median: For 𝑛 even, the median outcome will be half
losses and half wins. The median wealth will be 𝑊0 times the product of
𝑛/2 𝑙’s and 𝑛/2 𝑤’s. So median wealth will be 𝑊0 · 𝑙𝑛/2𝑤𝑛/2 = 𝑊0 · (𝑙𝑤)𝑛/2.

Proof for the mean: The assertion is 𝐸(𝑊𝑛) = 𝑊0 ((𝑙 +𝑤)/2)𝑛; we prove
by induction that it holds for any positive value of 𝑛. Proof that is is true
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2 Periods

𝑙 = 0.95 and 𝑤 = 1.05

Past Realization #1 {𝑙, 𝑤} = {.95, 1.05}
1 + Mean Arith. Ret. .95+1.05

2 = 1

1 + Mean Geom. Ret.
√
.95 · 1.05 ≈ .998749

Realized Terminal Wealth .95 · 1.05 = .9975
= (1 + Mean Geo. Ret.)2

Past Realization #2 {𝑤, 𝑙} = {1.05, .95}
1 + Mean Arith. Ret. 1.05+.95

2 = 1

1 + Mean Geom. Ret.
√

1.05 · .95 ≈ .998749
Realized Terminal Wealth 1.05 · .95 = .9975

= (1 + Mean Geo. Ret.)2

Past Realization #3 {𝑙, 𝑙} = {.95, .95}
1 + Mean Arith. Ret. .95+.95

2 = .95

1 + Mean Geom. Ret.
√
.95 · .95 ≈ .95

Realized Terminal Wealth .95 · .95 = .9025
= (1 + Mean Geo. Ret.)2

Past Realization #4 {𝑙, 𝑙} = {1.05, 1.05}
1 + Mean Arith. Ret. 1.05+1.05

2 = 1.05

1 + Mean Geom. Ret.
√

1.05 · 1.05 ≈ 1.05
Realized Terminal Wealth 1.05 · 1.05 = 1.1025

= (1 + Mean Geo. Ret.)2

Ensemble Arith. Average of Past Equally-likely Realizations
{𝑙𝑤, 𝑤𝑙, 𝑙𝑙, 𝑤𝑤}
mean = 𝑙𝑤+𝑤𝑙+𝑙𝑙+𝑤𝑤

4 = 1
median = 0.9975

Avg.[1 + Mean Arith. Ret.] 1+1+.95+1.05
4 = 1

Avg.[1 + Mean Geom. Ret.]
√
𝑤𝑙+

√
𝑙𝑤+

√
𝑙𝑙+

√
𝑤𝑤

4 ≈ 0.99937

Avg.[Realized Terminal Wealth] 𝑙𝑤+𝑤𝑙+𝑙𝑙+𝑤𝑤
4 =

(𝑙+𝑤)2

4 = 1
= (Avg.[1 + Mean Arith. Ret.])2

Table 2. Initial wealth of $1; a 50% chance of losing 5% (“𝑙 = 0.95”), and
a 50% chance of winning either 5% (top two-thirds of table, “𝑤 = 1.05”),
or 10% (bottom third of table, “𝑤 = 1.1”).
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for 𝑛 = 1: The random variable 𝑊1 is 𝑊0 · 𝑙 with probability 1/2 and 𝑊0 · 𝑤
with probability 1/2. Thus

𝐸(𝑊1) = 𝑊0 · 𝑙/2 +𝑊0 · 𝑤/2 = 𝑊0 ·
𝑙 + 𝑤

2

which proves the assertion for 𝑛 = 1. Next, suppose the assertion is true
for 𝑛:

𝐸(𝑊𝑛) = 𝑊0

(
𝑙 + 𝑤

2

)𝑛
.

Proof that it is true for 𝑛 + 1: The random variable 𝑊𝑛+1 is 𝑊𝑛 · 𝑙 with
probability 1/2 and 𝑊𝑛 · 𝑤 with probability 1/2. Thus

𝐸(𝑊𝑛+1) = 𝐸
[
𝑊𝑛 · 𝑙/2 +𝑊𝑛 · 𝑤/2

]
= 𝐸[𝑊𝑛] · 𝑙 + 𝑤

2
= 𝑊𝑛

(
𝑙 + 𝑤

2

)𝑛+1

.

This proves the assertion for 𝑛 + 1.
Proof of the inequality: The claim, we will prove is true for all positive

values of 𝑛, is equivalent to

[(𝑙𝑤)1/2]𝑛 < [(𝑙 + 𝑤)/2]𝑛 ⇐⇒
(𝑙𝑤)1/2 < (𝑙 + 𝑤)/2 .

The LHS is the geometric mean of 𝑙 and 𝑤 and the RHS is the arithmetic
mean of 𝑙 and 𝑤, so the inequality follows from the inequality of arithmetic
and geometric means, the “AM-GM inequality.” Its classic proof with 𝑙 ≠ 𝑤

is
0 < (𝑙 − 𝑤)2 = (𝑙 + 𝑤)2 − 4𝑙𝑤 ⇐⇒ 4𝑙𝑤 ≤ (𝑙 + 𝑤)2 ; (3)

take the positive square root of both sides and divide by two.
This proves (1) and the expression for the limit as 𝑛 → ∞. To prove

(2), first note that the variance of wealth after one period if 𝑊0 = 1 is
(1/2)(𝑙 − 𝑚1)2 + (1/2)(𝑤 − 𝑚1)2, which simplifies after some manipulation
to 𝑣𝑎𝑟1. From (3),

(𝑙 + 𝑤)2 − (𝑙 − 𝑤)2 = 4 𝑙𝑤 ; hence

(2𝑚1)2 − 4𝑣𝑎𝑟1 = 4 𝑙𝑤

𝑚2
1 − 𝑣𝑎𝑟1 = 𝑙𝑤 .
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2. When Log Returns are Normally Distributed and i.i.d., Passive beats
Active because the Wealth Distribution is Lognormal

Much of this paper concerns lognormal distributions but notation for the
lognormal distribution is not as standardized as for the normal distribution;
here is the notation we will use. Suppose 𝑍 is a standard normal random
variable. If 𝑌 = 𝑝 + 𝑞𝑍 then 𝑌 is normally distributed with mean 𝑝 and
variance 𝑞2, and we write 𝑌 ∼ 𝑁(𝑝, 𝑞2). The distribution of 𝑒𝑝+𝑞𝑍 = 𝑒𝑌 is
called a lognormal distribution with parameters 𝑝 and 𝑞, denoted 𝐿𝑁(𝑝, 𝑞).
It can be shown that 𝐿𝑁(𝑝, 𝑞) has the following properties:3

mean(𝐿𝑁(𝑝, 𝑞)) = exp
(
𝑝 + 𝑞2

2

)
(4)

median(𝐿𝑁(𝑝, 𝑞)) = exp(𝑝) < mean (5)

variance(𝐿𝑁(𝑝, 𝑞)) = (𝑒𝑞
2 − 1) 𝑒2𝑝+𝑞2

(6)

skewness(𝐿𝑁(𝑝, 𝑞)) =
[
𝑒𝑞

2 + 2
] √︁

𝑒𝑞
2 − 1 . (7)

One can invert (4) and (6) to obtain4

𝑝 = ln
(mean(𝐿𝑁(𝑝, 𝑞)))2√︁

(mean(𝐿𝑁(𝑝, 𝑞)))2 + variance(𝐿(𝑝, 𝑞))

= ln
[
(mean(𝐿(𝑝, 𝑞)))

(
1 + variance(𝐿𝑁(𝑝, 𝑞))

(mean(𝐿𝑁(𝑝, 𝑞)))2

)−1/2]
(8)

𝑞2 = ln
(
1 + variance(𝐿𝑁(𝑝, 𝑞))

(mean(𝐿𝑁(𝑝, 𝑞)))2

)
. (9)

With preliminaries out of the way, as before let 𝑊𝑡 be the value, or
“wealth level,” of a mutual fund or other asset at the end of year 𝑡. Assume
without loss of generality that 𝑊0 = 1. Let

𝑅𝑡−1,𝑡 =
𝑊𝑡 −𝑊𝑡−1

𝑊𝑡−1
=

𝑊𝑡

𝑊𝑡−1
− 1 for all 𝑡 = 1, 2, . . . , 𝑛 (10)

3See (11)–(13) of https://mathworld.wolfram.com/LogNormalDistribution.html;
(2.11) of M. Sharpe (n.d.); https://stats.libretexts.org/Bookshelves/Probability
_Theory/Probability_Mathematical_Statistics_and_Stochastic_Processes_(Siegri

st)/05\%3A_Special_Distributions/5.12\%3A_The_Lognormal_Distribution.
4See de La Grandville’s (10) and (11) or standard references such as https://en.wikip

edia.org/wiki/Log-normal_distribution
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be the simple return of the mutual fund between neighboring dates 𝑡 − 1
and 𝑡. Defining the log return (or “continuously compounded return”) as

𝑟𝑡−1,𝑡 = ln(1 + 𝑅𝑡−1,𝑡) , (11)

it follows that 𝑊𝑡/𝑊𝑡−1 = 𝑒𝑟𝑡−1,𝑡 . Let 𝑅0,𝑛 be the compound annual growth
rate (CAGR), also known as the geometric average rate of return, between
years 0 and 𝑛:

(1 + 𝑅0,𝑛)𝑛 =

𝑛∏
𝑡=1

(1 + 𝑅𝑡−1,𝑡) =
𝑊𝑛

𝑊0
= 𝑊𝑛 . (12)

If we were to assume that the simple return 𝑅𝑡−1,𝑡 were normally dis-
tributed, then 𝑊𝑡/𝑊𝑡−1 = 1+ 𝑅𝑡−1,𝑡 could be negative, which we would like
to rule out. If we assume that the log return 𝑟𝑡−1,𝑡 is normally distributed,
then𝑊𝑡/𝑊𝑡−1 = 𝑒𝑟𝑡−1,𝑡 could not be negative. So in this section we make the
very common assumption that the log return 𝑟𝑡−1,𝑡 is a normally distributed
i.i.d. random variable, and denote

mean[ln(1 + 𝑅𝑡−1,𝑡)] ≔ 𝜇

variance[ln(1 + 𝑅𝑡−1,𝑡)] ≔ 𝜎2 so that

ln(1 + 𝑅𝑡−1,𝑡) = 𝑟𝑡−1,𝑡 ∼ 𝑁(𝜇, 𝜎2) . (13)

In order to avoid misinterpreting 𝜇, note that 𝐸[𝑊𝑡/𝑊𝑡−1] = 𝐸[𝑒𝑟𝑡−1,𝑡 ] >

𝑒𝐸[𝑟𝑡−1,𝑡 ] = 𝑒𝜇 where the inequality comes from Jensen’s Inequality; so
𝐸[𝑊𝑡] > 𝑊𝑡−1 𝑒

𝜇. On average, in one period 𝑊 will grow at a faster expo-
nential rate than 𝜇. From (13) and the definition of a lognormal distribution,

𝑒ln(1+𝑅𝑡−1,𝑡 ) = 1 + 𝑅𝑡−1,𝑡 ∼ 𝐿𝑁(𝜇, 𝜎) , (14)

and from (4)–(9),

𝑀 ≔ mean(1 + 𝑅𝑡−1,𝑡) = exp
(
𝜇 + 𝜎2

2

)
(15)

median(1 + 𝑅𝑡−1,𝑡) = exp(𝜇) =
𝑀

√
𝑀2 +𝑉

(16)

𝑉 ≔ variance(1 + 𝑅𝑡−1,𝑡) = (𝑒𝜎
2 − 1) 𝑒2𝜇+𝜎2

(17)

skewness(1 + 𝑅𝑡−1,𝑡) =
[
𝑒𝜎

2 + 2
] √︁

𝑒𝜎
2 − 1 (18)

𝜇 = ln
𝑀2

√
𝑀2 +𝑉

(19)

𝜎2 = ln
(
1 + 𝑉

𝑀2

)
. (20)
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Equation (15) implies that 𝐸[𝑊𝑡 ] = 𝑊𝑡−1𝑒
𝜇+𝜎2/2 > 𝑊𝑡−1𝑒

𝜇, as we antici-
pated. From (15) and (16), the median is less than the mean because of the
presence of the variance term 𝑉 . From (17), 𝑉 = 0 if and only if 𝜎 = 0.

De La Grandville was concerned with the properties of the random vari-
ables 𝑅0,𝑛; we are concerned with the properties of the random variables
𝑊𝑛 = (1 + 𝑅0,𝑛)𝑛. But it is useful to explain de La Grandville’s result so it
can later be compared with ours. Since 𝑅0,𝑛 is a geometric mean return, if
an analogy to Table 1 holds, then the return should be less than the arith-
metic mean return due to a “volatility drag”; and it is. De La Grandville
proved Proposition 2 through (21).

Proposition 2. Assume the log return 𝑟𝑡−1,𝑡 is distributed as 𝑁(𝜇, 𝜎2), and
is i.i.d. Then 1 + 𝑅0,𝑛 ∼ 𝐿𝑁(𝜇, 𝜎/

√
𝑛) and therefore

𝐸[1 + 𝑅0,𝑛] = exp
(
𝜇 + 𝜎2/𝑛

2

)
= 𝑀

(
1 + 𝑉

𝑀2

) 1
2𝑛−

1
2
. (21)

If 𝑉 is strictly positive, or equivalently if 𝜎 is strictly positive, then for
𝑛 > 1 this multi-period expected return is less than the one-period expected
return,

𝐸[1 + 𝑅0,𝑛]
𝐸[1 + 𝑅𝑡−1,𝑡]

= 𝑒
𝜎2
2 ( 1

𝑛
−1) =

(
1 + 𝑉

𝑀2

) 1
2𝑛−

1
2
< 1 ; (22)

if 𝑉 = 0 or equivalently if 𝜎 = 0 then this ratio is equal to one. There-
fore, the phenomenon illustrated by (22) is called the “volatility drag” or
“volatility decay” or “variance drain” or “volatility tax” on multiperiod re-
turns. The left-hand side of (22) is equal to

𝐸
[

𝑛
√︁∏𝑛

𝑡=1(1 + 𝑅𝑡−1,𝑡)
]

𝐸
[ 1
𝑛

∑𝑛
𝑡=1(1 + 𝑅𝑡−1,𝑡)

] , (23)

where the numerator and the denominator contain, respectively, the geo-
metric mean and the arithmetic mean of 1 + 𝑅𝑡−1,𝑡 for 𝑡 = 1, 2, . . . , 𝑛.

Proof. As in (6) of de La Grandville, from (12) and (11),

1 + 𝑅0,𝑛 =

(
𝑛∏
𝑡=1

exp[ 𝑟𝑡−1,𝑡 ]

)1/𝑛

=

𝑛∏
𝑡=1

exp[ 1
𝑛
𝑟𝑡−1,𝑡 ]

= exp
[ 𝑛∑︁
𝑡=1

1
𝑛
𝑟𝑡−1,𝑡

]
= exp

[
1
𝑛

𝑛∑︁
𝑡=1

𝑟𝑡−1,𝑡

]
. (24)
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From (13),
[∑𝑛

𝑡=1 𝑟𝑡−1,𝑡
]

is the sum of 𝑛 normal random variables 𝑁(𝜇, 𝜎2);
such a sum is distributed as 𝑁(𝑛𝜇, 𝑛𝜎2). Then 1

𝑛

[∑𝑛
𝑡=1 𝑟𝑡−1,𝑡

]
∼ 𝑁(𝜇, 𝜎2/𝑛).

Therefore from (24), 1 + 𝑅0,𝑛 ∼ 𝐿𝑁(𝜇, 𝜎/
√
𝑛). Use (4) to obtain (21). For

𝑛 > 1, the exponents in the second and third terms of (22) are negative.
The numerators of (22) and (23) are the same because of the definition

of 𝑅0,𝑛 in (12). The denominator of (22) is 𝑀 by the latter’s definition
in (15). The denominator of (23) is equal to (1/𝑛)

∑𝑛
𝑡=1 𝐸[1 + 𝑅𝑡−1,𝑡] =

(1/𝑛)
∑𝑛

𝑡=1 𝑀 = 𝑀 as well.

The main purpose of de La Grandville’s paper was to point out that 𝑀−𝑉/2
is not a good approximation of 𝐸[1 + 𝑅0,𝑛], and to supply the exact expres-
sion (21)—though, as pointed out by Becker (2012 p. 2), de La Grandville
added the assumption that ln(1+𝑅𝑡−1,𝑡) be normally distributed. In the limit
as 𝑛 → ∞, one could apply the binomial approximation (1 + 𝑥)𝑎 ≈ 1 + 𝑎𝑥

to (21) to obtain

𝐸[1 + 𝑅0,𝑛] ≈ 𝑀 (1 − 1
2

𝑉

𝑀2 ) = 𝑀 − 𝑉
2𝑀

as an alternative approximation to 𝑀 − 𝑉/2, although it is true that in fi-
nance usually 𝑀 ≈ 1, which would lead back to 𝑀 − 𝑉/2. Authors obtain-
ing 𝑀 −𝑉/2 without making any distributional assumptions include Mess-
more (1995) and Becker (op. cit.); Becker explicitly analyzes the problem
through the lens of the Arithmetic Mean-Geometric Mean Inequality and
Jensen’s Inequality.

The main result of this section is that if returns are lognormally dis-
tributed and i.i.d. then terminal wealth is also lognormally distributed. If
an analogy to Table 1 holds, then mean terminal wealth should be a com-
pounding of the arithmetic mean return or the expected one-period return,
with no influence of a “volatility drag”; and (25) shows that it is, it is simply
𝑀𝑛. Median terminal wealth is less than a compounding of the expected
one-period return, due to 𝑉 .

Proposition 3. Assume the log return 𝑟𝑡−1,𝑡 is distributed as 𝑁(𝜇, 𝜎2), and
is i.i.d. Then 𝑊𝑛 = (1 + 𝑅0,𝑛)𝑛 ∼ 𝐿𝑁(𝑛𝜇,

√
𝑛 𝜎). Therefore,

mean (𝑊𝑛) = exp(𝑛𝜇 + 𝑛𝜎2/2) = 𝑀𝑛 (25)

median (𝑊𝑛) = exp(𝑛𝜇) =
(

𝑀√
𝑀2+𝑉

)𝑛 (26)

variance (𝑊𝑛) = (𝑒𝑛𝜎
2 − 1) 𝑒2𝑛𝜇+𝑛𝜎2

(27)

skewness (𝑊𝑛) =
(
𝑒𝑛𝜎

2 + 2
) √︁

𝑒𝑛𝜎
2 − 1 . (28)
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Hence the mean of 𝑊𝑛 is the one-period mean raised to the 𝑛 th power,
but its median is the one-period mean dragged down by the one-period
variance, raised to the 𝑛 th power. The skewness is positive and increasing
in 𝑛. The

mean (𝑊𝑛) − median (𝑊𝑛) = 𝑒𝑛𝜇 [𝑒𝑛𝜎
2/2 − 1] , (29)

which is positive and increasing in 𝑛, and

lim
𝑛→∞

median (𝑊𝑛)
mean (𝑊𝑛)

= lim
𝑛→∞

𝑒−𝑛𝜎
2/2 = 0 .

Proof. Similarly to (6) of de La Grandville, from (12) and (11),

𝑊𝑛 = (1 + 𝑅0,𝑛)𝑛 =

𝑛∏
𝑡=1

exp[ 𝑟𝑡−1,𝑡 ] = exp
[ 𝑛∑︁
𝑡=1

𝑟𝑡−1,𝑡

]
. (30)

From (13),
[∑𝑛

𝑡=1 𝑟𝑡−1,𝑡
]

is the sum of 𝑛 normal random variables 𝑁(𝜇, 𝜎2);
such a sum is distributed as 𝑁(𝑛𝜇, 𝑛𝜎2). Therefore from (30),𝑊𝑛 ∼ 𝐿𝑁(𝑛𝜇,

√
𝑛 𝜎).

Then use (4)–(7).

Bessembinder (2018 §2.2) also points out that the skewness is positive and
increasing in 𝑛.

Corollary. If the log return is normally distributed and is i.i.d., then, ignor-
ing mutual fund expenses, an index mutual fund balance will exceed the
median active mutual fund balance by the amount given by (29), which is
positive and grows with 𝑛.

Proof. As pointed out implicitly by Michaud (1981 p. 152)5 and explicitly
by Ikenberry, Shockley, and Womack (1998 pp. 14–15)6, and by Heaton,

5“In skewed distributions, the median is often the descriptive parameter of choice for
central tendency. In concrete investment terms, the probability that any given investor will
achieve the mean may be very small. In highly right-skewed terminal wealth distributions,
median terminal wealth is an estimate of the investment performance experienced by a
typical individual or institution over the investment horizon.”

6“However, a second, more subtle factor as to why managers deviate from the S&P
(usually leading to underperformance) relates to the underlying statistical nature of long-
run stock returns. Over short horizons such as a day or even a week, the cross-section of
stock returns is close to Gaussian. . . . Yet over longer horizons, such as a year, this symme-
try disintegrates. In nearly all years, the cross-section of individual stock returns exhibits
considerable right-skewness. This occurs for two reasons. First, limited liability truncates
equity returns (for long positions) to −100%. Second, upside returns are unbounded and,
in any given year, several individual stocks will record extraordinary performance. It is not

12



Polson, and Witte (2017 pp. 690-691, 693)7, ignoring expenses, an index
fund grows as the mean of the distribution of 𝑊𝑛, and the median active
fund grows to the median of the distribution of 𝑊𝑛. That mean minus that
median is given by (29).

If each observation is one stock, lognormality implies that it is better to
invest in the index than in a single stock—but few people invest in a single
stock. More important is that if each observation is a bundle of stocks, such
as a mutual fund, it is better to invest in the index than in one mutual fund.
An investor investing in more than one equity mutual fund is essentially
creating their own mutual fund; the median such investor will do worse
than investing in the index.

unusual to observe the price of ten or more of the 500 issues in the S&P more than double
in a year.

“This asymmetry is problematic for money managers precisely because they hold a small
subset of the index’s component stocks. One can imagine their portfolios coming from a
limited number of “typical” draws from an underlying distribution. If the cross-section of
long-horizon stock returns is positively skewed, the typical stock (or median stock) will
underperform the mean of all stocks together. In short, the typical stock will appear to
underperform an (equal-weighted) index of all the stocks together. . . . Even if active money
managers randomly draw a subset of stocks from this pool (thus exhibiting no stock picking
prowess), the median manager will tend to draw a portfolio that underperforms the index.
This bias handicaps the median active fund manager even before costs and other factors are
considered. . . .

7“In our model, randomly selecting a small subset of securities from an index maximizes
the chance of outperforming the index—the allure of active equity management—but it also
maximizes the chance of underperforming the index, with the chance of underperformance
being larger than the chance of overperformance. To illustrate the idea, consider an index
of 5 securities, 4 of which (although it is unknown which) will return 10% over the relevant
period, and 1 of which will return 50%. Suppose that active managers choose portfolios of
1 or 2 securities and that they equally weight each investment. There are 15 possible 1- or
2-security “portfolios.” Of these 15, 10 will earn returns of 10%, because they will include
only the 10% securities. Just 5 of the 15 portfolios will include the 50% winner.. . . Thus,
in this example, the average active management return will be the same as the index (see
Sharpe [1991]), but two-thirds of the actively managed portfolios will underperform the
index because they will omit the 50% winner. In this example, it is a large positive skewness
in returns that creates a problem for active management, illustrated here as the selection of
1 or 2 securities. The nonsymmetric shape of the distribution of returns means that random
selection—which we might think of as a plausible lower bound on the quality of active
management—will deliver a median return that is worse than the average of the full index
of the securities. . . .

“. . . stock selection itself increases the chance of underperformance relative to the chance
of overperformance in many circumstances.. . . Active managers do not start out on an even
playing field with passive investing. Rather, active managers must overcome an inherent
disadvantage.”
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3. When Log Returns are i.i.d. but otherwise Arbitrarily Distributed,
Passive asymptotically beats Active because the Wealth Distribution is

Asymptotically Lognormal
Again, although our focus is on the behavior of 𝑊𝑡 , we begin with a result
for 1 + 𝑅0,𝑛. Osborne (1959 pp. 154–5) has Proposition 5’s main result,
and Hakansson (1971 pp. 868–9) has the main result of both Propositions
4 and 5.8 Numerous authors have alluded to these results since9; one of
the most recent mentions is Ibbotson (2023 p. 87). He is speaking at an
informal roundtable discussion, implicitly about the second parameter of
the lognormal distribution:

Even if returns were IID, what you would get, of course, is a
lognormal spreading out of wealth outcomes over time—multiplied
by the square root of time. And the compounded return is di-
vided by the square root of time. So, you get two entirely dif-
ferent shapes, depending on whether we’re talking about the
compound return or just your ending wealth. Over time, ending
wealth spreads out in the shape of a tulip. The compound an-
nual return, in contrast, is averaging out and looks more like a
trumpet.
The tulips and trumpets apply only if returns are IID. If there’s
some other sort of return pattern, then the shapes will be differ-
ent.

We present the results, work an example, and at the end of this section we
return to Ibbotson’s tulips and trumpets.

Proposition 4. Assume the log return is i.i.d., and that its distribution has
𝐸[𝑟𝑡−1,𝑡] = 𝑚 < ∞ and var[𝑟𝑡−1,𝑡] = 𝑠2 < ∞. Then as 𝑛 goes to infinity,

8The Lindeberg Theorem invoked by Hakansson is a generalization of the Central Limit
Theorem. For more on the early history of the lognormal distribution in finance see Cootner
(1964 p. 5).

9Among these authors was Michaud (1981 p. 152), whose paper contains the reasoning
both of Proposition 5’s main result and, as pointed out in Section 2, of its corollary. Propo-
sition 4’s main result was rederived by de La Grandville (1998 p. 79). Proposition 5’s main
result was discussed by Kritzman (1992 p. 11) in a short article for practitioners; by Booth
(2002 p. 46; 2004 pp. 5–6) in the context of retirement planning; and by Bodie, Kane, and
Marcus in the eighth (2009 §5.9 ) and subsequent editions of their MBA-level textbook (al-
though not in its seventh edition, even though that is more than 700 pages long). The 2021
SBBI Handbook mentions it as well (Ibbotson and Harrington 2021 p. 126).
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the random variable 1 + 𝑅0,𝑛 converges in distribution to 𝐿𝑁(𝑚, 𝑠/
√
𝑛) and

therefore

𝐸[1 + 𝑅0,𝑛] converges to exp
(
𝑚 + 𝑠2/𝑛

2

)
. (31)

Proof. In the right-hand side of (24), the expression
∑𝑛

𝑡=1 𝑟𝑡−1,𝑡 is now a
sum of i.i.d. random variables of unknown distribution with mean 𝑚 and
variance 𝑠2. For sufficiently large 𝑛, if 𝑚 and 𝑠 are finite, the Central Limit
Theorem for Sums states that the distribution of

∑𝑛
𝑡=1 𝑟𝑡−1,𝑡 converges to

𝑁(𝑛𝑚, 𝑛𝑠2) (Miller and Childers 2004 Theorem 7.3). This implies that the
distribution of 1

𝑛

∑𝑛
𝑡=1 𝑟𝑡−1,𝑡 converges to 𝑁(𝑚, 𝑠2/𝑛), so the entire right-

hand side of (30) converges to 𝐿𝑁(𝑚, 2/
√
𝑛).

Given this result, one might think that similarly, under the assumptions
of Proposition 4, the rest of Proposition 2 holds, asymptotically, if 𝜇 is
replaced by 𝑚 and if 𝜎 is replaced by 𝑠. This is plausible, and likely to
be roughly true in practice, but it is not technically true; we explain the
analogous complication after the next proposition.

Proposition 5. Assume the log return is i.i.d., and that its distribution has
𝐸[𝑟𝑡−1,𝑡] = 𝑚 < ∞ and var[𝑟𝑡−1,𝑡] = 𝑠2 < ∞. Then as 𝑛 goes to infinity, the
random variable𝑊𝑛 = (1+𝑅0,𝑛)𝑛 converges in distribution to 𝐿𝑁(𝑛𝑚,

√
𝑛 𝑠).

The limiting distribution has

mean (𝐿𝑁(𝑛𝑚,
√
𝑛 𝑠)) = exp(𝑛𝑚 + 𝑛𝑠2/2) = [mean (𝐿𝑁(𝑛, 𝑠))]𝑛

median (𝐿𝑁(𝑛𝑚,
√
𝑛 𝑠)) = exp(𝑛𝑚) = [exp(𝑚)]𝑛

=

[
(mean(𝐿𝑁(𝑛, 𝑠)))2√︁

(mean(𝐿𝑁(𝑛, 𝑠)))2 + variance(𝐿(𝑛, 𝑠))

]𝑛
so its mean is the one-period mean raised to the 𝑛 th power, but its median
is the one-period mean dragged down by the one-period variance, raised to
the 𝑛 th power. Also,

skewness (𝐿𝑁(𝑛𝑚,
√
𝑛 𝑠)) =

(
𝑒𝑛𝑠

2 + 2
) √︁

𝑒𝑛𝑠
2 − 1

mean(𝐿𝑁(𝑛𝑚,
√
𝑛 𝑠)) − median(𝐿𝑁(𝑛𝑚,

√
𝑛 𝑠))

= 𝑒𝑛𝑚 [𝑒𝑛𝑠
2/2 − 1] (32)

which is positive and increasing in 𝑛, and

lim
𝑛→∞

median(𝐿𝑁(𝑛𝑚,
√
𝑛 𝑠))

mean(𝐿𝑁(𝑛𝑚,
√
𝑛 𝑠))

= lim
𝑛→∞

𝑒−𝑛𝑠
2/2 = 0 .
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However, the mean, median, and skewness of 𝑊𝑛 as 𝑛 → ∞ may not equal
to the mean, median, and skewness of 𝐿𝑁(𝑛𝑚,

√
𝑛 𝑠) because convergence

in distribution does not imply convergence in expectation.

Proof. In the right-hand side of (30), the expression
∑𝑛

𝑡=1 𝑟𝑡−1,𝑡 is now a
sum of i.i.d. random variables of unknown distribution with mean 𝑚 and
variance 𝑠2. For sufficiently large 𝑛, if 𝑚 and 𝑠 are finite, the Central Limit
Theorem for Sums states that the distribution of

∑𝑛
𝑡=1 𝑟𝑡−1,𝑡 converges to

𝑁(𝑛𝑚, 𝑛𝑠2) (Miller and Childers 2004 Theorem 7.3). This implies that the
distribution of the entire right-hand side of (30) is 𝐿𝑁(𝑛𝑚,

√
𝑛 𝑠). Then use

(4)–(7).

Corollary. If the logarithmic excess return 𝑟𝑡−1,𝑡 is not normally distributed
but is i.i.d., then, ignoring mutual fund expenses, wealth will for large 𝑛

approach an asymptotic distribution whose mean will exceed its median by
the amount given by (32), which is positive and grows with 𝑛.

The mean of 𝑊𝑛, which is what an index mutual fund would earn, is
not guaranteed to approach the mean of the limiting distribution, nor is the
median of 𝑊𝑛, which is what the median active mutual fund would earn,
guaranteed to approach the mean of the limiting distribution; but if they do,
or come sufficiently close to doing so, then the index mutual fund wealth
will exceed the median active mutual fund wealth for large 𝑁 .

To explain the last sentence of the proposition and the last sentence of
the corollary, note first that if 𝐹𝑛(𝑥), 𝑛 = 1, . . . is a sequence of cumu-
lative distribution functions and if 𝐹 is a cumulative distribution function,
one says that 𝐹𝑛 converges to 𝐹 in distribution if 𝐹𝑛(𝑥) → 𝐹(𝑥) for all 𝑥 at
which 𝐹(𝑥) is continuous.10 By contrast, 𝐹𝑛 converges to 𝐹 in expectation
if lim𝑛→∞ 𝐸(𝐹𝑛) is equal to 𝐸(lim𝑛→∞ 𝐹𝑛) = 𝐸(𝐹).11 The problem is that
convergence in distribution (which we have from the Central Limit The-
orem) does not imply convergence in expectation.12 Mistakenly asserting
that if 𝐹𝑛 approaches 𝐹 then 𝐸(𝐹𝑛) approaches 𝐸(𝐹) is somewhat similar to

10McLeish (2003 p. 45).
11See Jiao (2022 p. 6) for this and for claims in the rest of this paragraph. The material

is also covered in Polansky (2011) Ch. 5, leading up to his Theorem 5.13.
12Jiao (ibid.) points out that the expectation operator 𝐸 and the limit operator lim do

not always commute. He writes, “We might expect that convergence in distribution implies
convergence in expectation, because ‘expectation is a feature of the distribution.’ However,
in general, none of convergence a.s. [‘almost surely’], i.p. [‘in probability’], or i.d. [‘in
distribution’] imply convergence in expectation. . . . The convergence of sequences of func-
tions is in general quite complex, and is explored in depth in fields such as measure theory
or functional analysis.”
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the “fallacious manipulation of double limits” which Merton and Samuel-
son criticized (1974 p. 67). Whether ignoring the distinction between the
types of convergence is a serious mistake in applications will depend on the
situation13

To see how the limiting processes in Propositions 4 and 5 work in an
example situation, return to the model of Section 1, flipping a fair coin. To
what extent can a discrete binomial wealth distribution be approximated by
a (continuous) lognormal distribution? In the coin-flipping model the log
return is, from (10) and (11), ln(1 + 𝑅𝑡−1,𝑡) = ln(𝑊𝑡/𝑊𝑡−1), which is “ln(𝑙)
with probability 1/2 and ln(𝑤) with probability 1/2.” This has a mean of
(1/2) ln(𝑙𝑤) = 𝑚 and a variance of (1/4)(ln(𝑤/𝑙))2 = 𝑠2. It follows from
Propositions 4 and 5 that

1 + 𝑅0,𝑛 converges in distribution to 𝐿𝑁

(
ln(𝑙𝑤)

2
,

ln(𝑤/𝑙)
2
√
𝑛

)
𝑊𝑛 converges in distribution to 𝐿𝑁

(
𝑛 ln(𝑙𝑤)

2
,

√
𝑛 · ln(𝑤/𝑙)

2

)
and from Proposition 5,

mean( lim
𝑛→∞

𝑊𝑛) = exp(𝑛𝑚 + 𝑛𝑠2/2) = exp
[
𝑛

ln(𝑙𝑤)
2

+ 𝑛

2
1
4

(ln(𝑤/𝑙))2
]
(33)

median( lim
𝑛→∞

𝑊𝑛) = exp(𝑛𝑚) = exp
[
𝑛

ln(𝑙𝑤)
2

]
= (𝑙𝑤)𝑛/2 . (34)

We know from (1) the mean of 𝑊𝑛 and the median of 𝑊𝑛, from which
we could form lim𝑛→∞ mean(𝑊𝑛) and lim𝑛→∞ median(𝑊𝑛). If these were
equal to (33) and (34), respectively, then we could use the limiting distribu-
tion to discover how the mean and variance behave for large 𝑛, which would
be useful in other cases when the one-period distribution is unknown.

The approximate expression for the median, (34), is not only close to the
exact expression for the median from (1), but the expressions are exactly
the same. So for this example, the limiting distribution’s median is an

13Propositions 4 and 5 assume that variance is finite. This was a controversial assumption
in the 1960’s, but while it may be questionable for daily data, for data on time scales of a
month or more, which is the subject of this paper, it is no longer controversial.See Fama
(1965); Blattberg and Gonedes (1974 p. 249) for monthly data; Upton and Shannon (1979)
for semi-annual and annual data; and Kon (1984 pp. 147–8.). For shorter time scales, the
question was still being investigated by, for example, Grabchak and Samorodnitsky (2010).
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excellent proxy for the exact median derived from knowledge of the exact
one-period distribution of 𝑊𝑛.

To see if this is true for the mean as well, we ask whether its approxi-
mate expression, (33), is equal to the exact expression for the mean from
(1). If they are, then, taking the 1/𝑛 th root of each, we will have

𝑙 + 𝑤

2
?
= exp

[ 1
2 ln(𝑙𝑤) + 1

8(ln 𝑤
𝑙

)2] = exp
[ 1

2 ln(𝑙𝑤)
]
· exp

[ 1
8(ln 𝑤

𝑙
)2]

= exp
[
ln((𝑙𝑤)1/2)

]
· exp

[ 1
8(ln 𝑤

𝑙
)2] = (𝑙𝑤)1/2 · exp

[ 1
8(ln 𝑤

𝑙
)2]

𝑙 + 𝑤

2
√
𝑙𝑤

?
= exp

[ 1
8(ln 𝑤

𝑙
)2]

1 + 𝑤
𝑙

2
√︁

𝑤
𝑙

?
= exp

[ 1
8(ln 𝑤

𝑙
)2] ; letting 𝜆 = 𝑤/𝑙 ≥ 0,

1 + 𝜆

2
√
𝜆

?
= exp

[ 1
8(ln𝜆)2]

ln 1+𝜆
2
√
𝜆

?
= 1

8 (ln𝜆)2

ln
[(

1+𝜆
2
√
𝜆

)8] ?
= (ln𝜆)2 .

If 𝜆 = 1, this is true, but it is not true in general. Thus we predict that
the limit of the exact means from (1) will not be equal to the mean of the
limiting distribution, (33), except in the uninteresting case when 𝑤 = 𝑙. The
good news is that they might be close to each other. The bad news is that,
since for unequal constants 𝑐1 and 𝑐2, one is of the form 𝑐𝑛1 and the other is
of the form 𝑐𝑛2 , their ratio will increasingly diverge from unity as 𝑛 grows.

Table 3 shows the situation for 𝑙 = 0.91 and 𝑤 = 1.23. The approximate
mean, as anticipated, is not converging to the exact mean as 𝑁 increases.
However, they are numerically close to each other, and if one did not know
the exact value of the median divided by the mean, using the approximate
value from the limiting distribution instead would only give an error in the
fourth decimal place. The approximation looks rather good. The last col-
umn shows how quickly the wealth maximum grows; this pulls the mean
above the median. For 𝑁 = 10, Figure 1 shows the discrete, binomial
cumulative probability distribution and its continuous lognormal approxi-
mation14; and Figure 2 shows, for the lognormal approximation, the prob-
ability density function of wealth (blue) and of return (purple). The blue

14Carlen (2018 pp. 1–3) uses more formal methods but also shows the convergence of a
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exact approx. % diff. median/mean exact
𝑁 mean mean means median exact approx. max
4 1.3108 1.3110 0.02% 1.2528 0.9558 0.9556 2.29

10 1.9672 1.9680 0.04% 1.7468 0.8880 0.8876 7.93
20 3.8697 3.8730 0.09% 3.0865 0.7976 0.7969 62.82

Table 3. Summary statistics on wealth when tossing a fair coin with 𝑙 =

0.91 and 𝑤 = 1.23. Exact mean from (1); approximate mean from (33);
and median from (1) and (33) which are identical.

PDF is Ibbotson’s “tulip” and the purple PDF is Ibbotson’s “trumpet.” For
𝑁 = 20, see Figures 3 and 4.

4. Constructing a Continuous-time Case for Passive asymptotically
beating Active because the Wealth Distribution is Lognormal

We first demonstrate Proposition 6. As in discrete time, if an analogy to
Table 1 holds, then mean terminal wealth should be a compounding of the
mean instantaneous return, with no influence of a “volatility drag”; and
(35) shows that it is. Median terminal wealth is affected by volatility drag,
however, as shown by (36).

Proposition 6. Assume wealth 𝑊𝑡 is a continuous-time stochastic process
for which 𝑑𝑊𝑡 : is proportional to 𝑊𝑡 ; has independent, identically dis-
tributed increments; and is normally distributed with mean 𝜇̂ and vari-
ance 𝜎̂2. Setting 𝑊0 = 1 without loss of generality, one has ln𝑊𝑡 ∼
𝑁((𝜇̂−𝜎̂2/2) 𝑡, 𝜎̂2𝑡), and hence

𝑊𝑡 ∼ 𝐿𝑁((𝜇̂−𝜎̂2/2) 𝑡, 𝜎̂
√
𝑡) .

In addition,

mean(𝑊𝑡 ) = exp(𝜇̂𝑡) (35)

median(𝑊𝑡 ) = exp[(𝜇̂ − 𝜎̂2

2 ) 𝑡] (36)

variance(𝑊𝑡 ) = (𝑒 𝜎̂
2 𝑡 − 1) 𝑒2𝜇̂𝑡 (37)

skewness(𝑊𝑡 ) =
[
𝑒 𝜎̂

2 𝑡 + 2
] √︁

𝑒 𝜎̂
2 𝑡 − 1 (38)

discrete random variable to a continuous random variable by using their CDF’s instead of
their PDF’s.
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Figure 1. The exact cumulative density function (red) and the approximate log-
normal cumulative density function (blue) for 𝑁 = 10.
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Figure 2. The approximate probability density function for wealth (blue) and for
return (purple).
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Figure 3. The exact cumulative density function (red) and the approximate log-
normal cumulative density function (blue) for 𝑁 = 10.
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Figure 4. The approximate probability density function for wealth (blue) and for
return (purple).
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so the mean of 𝑊𝑡 is 𝑒 raised to the mean 𝜇̂ of the instantaneous change
𝑑𝑊𝑡 , but the median of 𝑊𝑡 is 𝑒 raised to the mean 𝜇̂ of the instantaneous
change 𝑑𝑊𝑡 dragged down by the variance 𝜎̂ of the instantaneous change.
Also,

mean(𝑊𝑡 ) − median(𝑊𝑡 ) = 𝑒 𝜇̂𝑡 [1 − 𝑒− 𝜎̂2 𝑡/2] , (39)

which is positive and increasing in 𝑡, and its

lim
𝑡→∞

median(𝑊𝑡 )
mean(𝑊𝑡 )

= lim
𝑡→∞

𝑒−𝑡 𝜎̂
2/2 = 0 .

Proof. We first need to show that these assumptions imply that wealth fol-
lows the stochastic process first suggested by Samuelson (1965 (9)), which
is called geometric Brownian motion process with drift parameter 𝜇̂ and
volatility parameter 𝜎̂, and written

𝑑𝑊𝑡 = 𝜇̂𝑊𝑡 𝑑𝑡 + 𝜎̂𝑊𝑡 𝑑𝑧𝑡 (40)

where 𝑑𝑧𝑡 is standard Brownian motion (𝑑𝑧𝑡 is a “Wiener process”) ex-
plained in the next paragraph.15 Samuelson (pp. 13, 15) explains that (40)
is better than the 1900 “arithmetic Brownian motion” proposal of Bache-
lier,16

𝑑𝑊𝑡 = 𝜇̂ 𝑑𝑡 + 𝜎̂ 𝑑𝑧𝑡 , (41)

because the latter can lead to negative values of 𝑊𝑡 , whereas the former
cannot: if 𝑊𝑡 = 0 in (40), 𝑑𝑊𝑡 = 0, so 𝑊𝑡 cannot fall into the negative
region. However, many other formulations would have this property, for
example, 𝑑𝑊𝑡 = 𝜇̂𝑊 𝛼

𝑡 𝑑𝑡 + 𝜎̂𝑊
𝛽
𝑡 𝑑𝑧𝑡 for positive 𝛼 and 𝛽. The 𝛼 = 𝛽 = 1

case makes the most sense because if 𝑊𝑡 doubled, it would make sense
for 𝑑𝑊𝑡 to double. For example, if a stock experienced a 2-for-1 reverse
split, 𝑊𝑡 would double and one would expect 𝑑𝑊𝑡 to double as well, so that
chances of a given percent increase in price would be the same as it was
before the reverse stock split.17 This is the assumption made in the propo-
sition, that “𝑑𝑊𝑡 is proportional to 𝑊 .” Unfortunately for (40), Andersen

15(18.4.1) of Siegrist 2022b.
16Pollock (n.d.) (8).
17For other arguments see Aldrich 2016 https://ealdrich.github.io/Teaching/Econ
236/LectureNotes/wiener.html and Hull (2009 pp. 265–6), who writes (emphasis mine):
“. . . the expected percentage return required by investors from a stock is independent of the
stock’s price. . . . the expected drift rate in 𝑆 should be assumed to be 𝜇𝑆 for some constant
parameter 𝜇. . . . A reasonable assumption is that the variability of the percentage return
in a short period of time. . . is the same regardless of the stock price. . . . This suggests that
the standard deviation of the change in a short period of time should be proportional to the
stock price. . . .”
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et al. (2010 p. 86) point out that “the model is overwhelmingly rejected for
moderately frequently sampled data (say, daily, weekly, or monthly), as it
fails to accommodate the well-documented strong intertemporal volatility
dependencies,” and those authors discuss many other models currently in
use (ibid. §3.1).18 So proportionality is a strong assumption.

The Wiener process 𝑧𝑡 in (40) is usually19 characterized by four traits:

starting point: 𝑧0 = 0

independent increments: if 0 < 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 then 𝑧𝑡2 − 𝑧𝑡1 and 𝑧𝑡4 − 𝑧𝑡3
are independent random variables20

identically distributed increments: for any 𝑠 < 𝑡, 𝑧𝑡 − 𝑧𝑠 is equal in distribu-
tion to 𝑧𝑡−𝑠 (so that the distribution depends only on the length 𝑡 − 𝑠,
not on the individual value of 𝑡 or 𝑠: increments on equally long time
intervals are identically distributed)

normal: 𝑧𝑡 has the normal distribution with mean 𝜇̂𝑡 and variance 𝜎̂2𝑡 for
𝑡 ≥ 0.

These are the assumptions we have used (the starting point assumption is
easily replaced).

It can be shown that the Wiener process is continuous, and Bachelier’s
form (41) implies that 𝑊𝑡 ∼ 𝑁(𝜇̂, 𝜎̂2).21 Using Ito’s Lemma we can differ-
entiate (40) to give

𝑑(ln𝑊𝑡 ) = (𝜇̂ − 𝜎̂2/2) 𝑑𝑡 + 𝜎̂ 𝑑𝑧 which implies (42)

ln(𝑊𝑡/𝑊0) = (𝜇̂ − 𝜎̂2/2) 𝑡 + 𝜎̂𝑧𝑡 and

𝑊𝑡 = 𝑊0 𝑒
(𝜇̂− 𝜎̂2

2 ) 𝑡+𝜎̂𝑧𝑡 .

Equation (42) has the form of arithmetic Brownian motion with drift, as in
(41) above, so ln(𝑊𝑡/𝑊0) ∼ 𝑁((𝜇̂−𝜎̂2/2) 𝑡, 𝜎̂2𝑡).

The main thrust of the following corollary is due to Heaton, Polson, and
Witte (2017).22

18One of the simplest alternatives is 𝑑𝑊𝑡 = 𝜇̂𝑊𝑡 𝑑𝑡+𝜎̂ 𝑑𝑧𝑡 , which exhibits mean reversion
and is known as the Ornstein-Uhlenbeck Process. See also Rao and Jelvis, Appendix C.8
p. 511.

19See Bass (2011 p. 6); Siegrist (2022a); see generally Hull (2009 §12.2).
20This is true not only for pairwise comparisons.
21The references for this paragraph are Kasa (2018, pp. 32, 35), Keng (2022) (4.4), and

Siegrist (2022a, 2022b).
22In particular, in the passage starting at the very bottom of their p. 601.
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Corollary. Under the assumptions of Proposition 6, ignoring mutual fund
expenses, an index mutual fund balance will exceed the median active mu-
tual fund balance by the amount given by (39), which is positive and grows
with 𝑡.

The shortcoming of Proposition 6 is that it assumes normality, thus re-
sembling the approach of Section 2, rather than the more general approach
of Section 3, which used the Central Limit Theorem to relieve us from
having to assume normality. Fortunately, in continuous time, there is an-
other result which relieves us from having to assume normality: the Lévy
characterisation of the Wiener process.

Proposition 7. If in Proposition 6 the assumption that 𝑑𝑊𝑡 is normally dis-
tributed is replaced by the assumption that 𝑑𝑊𝑡 is continuous, then 𝑑𝑊𝑡 will
be normally distributed and the rest of Proposition 6 holds.

Proof. The Lévy characterisation states that if a random variable 𝐵𝑡 satis-
fies

continuity: 𝐵𝑡 is continuous

independent increments: if 0 < 𝑡1 < 𝑡2 < 𝑡3 < 𝑡4 then 𝐵𝑡2 −𝐵𝑡1 and 𝐵𝑡4 −𝐵𝑡3

are independent random variables

identically distributed increments: for any 𝑠 < 𝑡, 𝐵𝑡 − 𝐵𝑠 is equal in distri-
bution to 𝐵𝑡−𝑠

then the distribution of 𝐵𝑡 for each 𝑡 must be normal.23 Therefore, we can
replace the assumption of normality of 𝑧𝑡 with the assumption of continuity
of 𝑧𝑡 .

In other words, the Lévy characterisation says that if one wants the stochas-
tic process to be continuous with i.i.d. increments, it has to be a Wiener
process.

Corollary. If in Proposition 6 the assumption that 𝑑𝑊𝑡 is normally dis-
tributed is replaced by the assumption that 𝑑𝑊𝑡 is continuous, but Propo-
sition 6’s other assumptions are retained, then, ignoring mutual fund ex-
penses, an index mutual fund balance will exceed the median active mutual
fund balance by the amount given by (39), which is positive and grows
with 𝑛.

23Lawler (2014 pp. 44, 222–3) and Kasa (2018 p. 17). Also see https://en.wikipedia
.org/wiki/L\%C3\%A9vy_process.
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Conclusion
Whenever median terminal wealth is less than the mean terminal wealth,
passive investing will beat the median active investor. In a coin-tossing
model, the median terminal wealth is indeed less than the mean terminal
wealth, because variance drags down the median but does not drag down
the mean. With any probability distribution of one-shot returns, in discrete
time, as long as log returns are i.i.d., terminal wealth is asymptotically log-
normally distributed, so it is plausible (though in this case there are tech-
nically no guarantees) that median terminal wealth is less than the mean
terminal wealth and active management asymptotically beats passive man-
agement. In continuous time, terminal wealth is lognormally distributed,
so once more an index mutual fund terminal wealth will exceed the median
active mutual terminal wealth, if log returns are i.i.d., if wealth is assumed
to be continuous, and if 𝑑𝑊𝑡 is proportional to 𝑊𝑡 . In all these cases, me-
dian terminal wealth can be described as being hindered by a volatility drag
which does not hinder mean terminal wealth.

None of the assumptions described above holds in all situations. The
i.i.d. assumption can fail: Bessembinder 2018 p. 447 implies it does for US
stocks; BCZ 2023 p. 145 imply it does for US stock mutual funds; and it
certainly fails for individual bonds which have finite maturity dates. Prices
modeled in continuous time can take discrete jumps and require modeling
using jump processes. Variance can be volatile, contradicting the propor-
tionality of 𝑑𝑊𝑡 to 𝑊𝑡 . The difference between median and mean terminal
wealth in more complicated, realistic cases should be the subject of further
investigation.

Nevertheless, the results of this paper probably hold approximately for
many assets. This bolsters William Sharpe’s case for passive management,
and suggests that a fat right tail should be a starting point when thinking
about the long-term distribution of the value of assets whose prices have
an evolution that can be roughly assumed to be i.i.d. Bessembinder’s em-
pirical finding, that only 4% of US stocks were responsible for the large
out-performance of US stocks over Treasury bills from 1926 to 2016, il-
lustrate a fat right tail which theory tells us should be typical—not perhaps
in magnitude but certainly in direction—of the long-run terminal wealth
distribution of many assets.
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