## Section 7:

## Partial Equilibrium and Positive General Equilibrium

## 1. [8 points] In Utah:

- Both farmers and people who live in cities use water supplied by government water companies. There are different government water companies for cities and for farms.
- Farmers pay a much lower price for water than city dwellers do.
- In the future, farmers might start reselling the water they buy to city dwellers. (Ignore why they do not do this now.)
- The price that city dwellers pay for water is lower than in neighboring states because Utah city water companies also get a great deal of money from taxes which have nothing to do with water. These taxes are called "property taxes."
- The Utah legislature is considering eliminating the flow of money from "property taxes" to the city water companies.

Question: If Utah legislature did eliminate the flow of money from "property taxes" to the city water companies, would this make the price of water sold by farmers to city dwellers go up or down? (No water is sold by farmers to city dwellers right now, but ignore that.) In particular, analyze in detail each claim made in the following paragraph written by an economics professor at another university in Utah, and explain whether you think his analysis is correct or not:
"I don't see why the property tax will affect much the value of water used in agriculture. A higher urban price because of the elimination of the tax subsidy will induce conservation that will reduce the urban demand for new water. This will reduce the demand for ag[ricultural] water and may reduce the equilibrium transfer price. Therefore, we might expect opposition from farmers to eliminating the [property] tax subsidy."

Hint: It is possible to correctly answer this question by drawing a graph but using no other mathematics.

Summer 2012, Qualifying Exam, Section 2 Qu. 1

Section 2.
(1)


In a model with no sales of agriwitural water, the elimination of the property tax subsidy causes the supply curve of water to shift from $S$ to $S^{\prime}$. This
results in "a higher wan price," as the paragraph from the other protesor says. However, the fall in $Q$ from $Q$, to $Q_{2}$ is a fall in quantity demanded, not a fall in demand. If the agniwltural p nice of water $13 \mathrm{pa}_{\mathrm{a}}$, then before, any price between $p_{a}$ and $p_{1}$ would in che farmers to sell water to city dwellers and city dwellers to buy the water. After
since the price is $>\mathrm{pa}$
since the price is $<p_{1}$
the shift in supply, any prize between $p_{a}$ and $p_{2}$ would induce farmers to sell water and city dwellers to buy if from them. Since $p_{2}>p_{1}$, this means the prince farmers could get for their water has gone up maximum
and the minimum price has stayed the same. Thus farmers would benefit (o rat least not be hurt) by the change.

One way to model the supply of agniultural water would be


Coupled with the city water company supply cones S and S' given before, this makes the equilibrium look like

and farmers would prefer $P_{4}$ to $P_{3}$, so they would favor elimination of the property tax.

Another way to model the supply of agniw/toral water would be


Coupled with the city water company supply curses Sand S' given before, this makes the equilibrium look like

and farmers would prefer $P_{6}$ to $P_{5}$, so they would favor elimination of the property tax.

The enow in the other economist's cundysis is to contuse a fall in quantity demanded with a fall in demand. The former is what happens when the property tax subsidy is removed, but he thought the latter occurred. Since in reality it is not the demand cure but the supply cure which shifted, there is no fall in "demand," only decreasing availability of water form the source farmers would be competing against hence a greater desire for the farmers' water, not a lesser desire.
old: 2007 Final Exam Qu 6, but with an added third word, 'competitive"

## 4. [16 points]

Consider a competitive equilibrium in the market for a single commodity, such as apples. Suppose there is an increase in the price of one of the inputs used to produce apples. What effect will that have on the equilibrium price of apples? Be as rigorous and as general as you can be in answering this question (though if you wish to use the Envelope Theorem or the Slutsky Equation, you need not prove them).

Let $p$ be the output price (the pure of apples).
Let wo be the price of the input whose price changes.
Let $D$ be market demand for apples.
Let $S$ be market soppy for apples.
In single-market equilibrium,

$$
D(p)=S(p, w \text {; price of other inputs })
$$

these remain constant so we can ignore them in what follows

Take the differential of both sides:

$$
\begin{aligned}
\frac{d D}{d p} d p & =\frac{\partial s}{\partial p} d p+\frac{\partial S}{\partial w} d w \\
\left(\frac{d D}{d p}-\frac{\partial S}{\partial p}\right) d p & =\frac{\partial s}{\partial w} d w \\
\frac{d p}{d w} & =\frac{\partial s / \partial w}{\frac{d D}{d p}-\frac{\partial s}{\partial p}}
\end{aligned}
$$

As long as apples are not a biffin food, $\frac{d D}{d p}<0$. In particular, using the slutsky equation, $\frac{d D}{d p}=\frac{\partial h}{\partial p}-\frac{\partial D}{\partial m} \cdot D$, So a sufficient condition for

$\theta$ since
Hicksiandemand corves slope downwards
$\rightarrow$ Proved by applying the Europe theorem to $e(p, \bar{u})=\min _{x} p_{\sim}+x$ sit. $u(x)=\bar{u}$, obtain ny $\frac{\partial}{\partial p_{i}}=x_{i}$, or $h_{i}$ as we usually call it; $\hat{\partial}^{2} e / \partial p_{1}^{2}=\partial h_{i} / \partial p_{i}$, and $\angle H S$ is $\Theta$ by the concavity of $e$ in $p$
$\frac{\partial S}{\partial p}>0$ since output supply curves are upward sloping.
(Proof: apply the Envelope theorem to $\pi=\max p \cdot y$ s.t. $y \in Y$, obtaining $\frac{\partial \pi}{\partial p_{i}}=y_{i}$; then $\frac{\partial^{2} \pi}{\partial p_{i}^{2}}=\frac{\partial y_{i}}{\partial p_{i}}$, and LHS is $\oplus$ by the convexity of $\pi$.)

$$
\frac{\partial S}{\partial w}=\frac{\partial s}{\partial \text { input 1 }} \frac{\partial_{\text {input }}}{\partial w}+\cdots+\frac{\partial s}{\partial \text { lest input }} \frac{\text { last input }}{\partial w}
$$

Presumably, $\frac{\partial s}{\partial \text { input }}>0 \quad \forall$ inputs lotherwise the firm shorldn't be buying So much of that muput).
If " $\omega$ " is the price of the first input. then $\frac{\partial \text { moat } 1}{\partial w}<0$ since mut demand comes are downward-scopiry (see $\partial y_{i} / \partial p_{i}>0$ clove). So
$\frac{\partial S}{\partial w}=\underbrace{\oplus \theta}_{\Theta}+\cdots+\oplus \frac{\partial \text { last input }}{\partial w}$. A sufficient condition for OS/ 0 w to be negative would be for $\frac{\partial \text { mat }}{\partial w}$ to be negative for all muts.
Conclusion: if apples are a normal yod and if $\frac{\partial \text { mut }}{\partial w}<0$ for all muts, then


## 2008 Qualifier <br> Sec. 1

## 2. [12 points]

(a) Are individual firm's supply curves always upward-sloping? Usually? Never? Defend your answer with as general a mathematical argument as you can provide.
(b) Are individual demand curves always downward-sloping? Usually? Never? Defend your answer with as general a mathematical argument as you can provide.
(c) The US federal government imposes a tax on gasoline. Gasoline has recently greatly risen in price, and two presidential candidates, Sen. Hillary Clinton and Sen. John McCain, have proposed eliminating this tax this summer. The other major presidential candidate, Sen. Barack Obama, opposes eliminating the tax this summer. Irrelevant to this qualifying exam question are most of Sen. Obama's reasons (such as encouraging alternative energy sources), but one reason is relevant: some of Sen. Obama's supporters have said that if the tax is eliminated, the gasoline companies will just raise the price by the amount of the eliminated tax, so the "net price to consumers" will not change. Is this true?
To answer this, derive a general mathematical equation showing how a marginal decrease (or marginal increase) of a tax changes the market price of a commodity. Will a marginal decrease of a tax increase, decrease, or have no effect on the "net price to consumers?"

Hint: Recall that 19th century Scottish historian Thomas Carlyle (who also coined the term "dismal science" to denote economics) said, "Teach a parrot the terms 'supply and demand' and you've got an economist." So, begin there (mathematically), in a market with no tax.
(2)
a)

In class, we proved that the profit function

$$
\pi(p)=\max _{y} \underset{\sim}{p} \cdot \underset{\sim}{y} \text { s.t. } y \in Y
$$

is convex. By the Envelope Theorem,

$$
\nabla_{p} \pi(\underset{\sim}{p})={\underset{\sim}{p}}^{\mathcal{L}^{*}}=\nabla_{p}(\underset{\sim}{p} \cdot y)=\underset{\sim}{y}
$$

So

$$
\nabla_{p}^{2} \pi=\nabla_{p} Y_{\sim}
$$

The LHS is positive semi-definite be cause $7 T(p)$ is convex. So the RHS is positive seni-definite. Positive semi-detiurte matrices have positive (or zero) terms on their.main diagonal (as proven in class). So $\partial y_{i} / \partial p_{i} \geqslant 0$. Outputs i are positive in this framework $\left(y_{i}>0\right)$, so if an output price rises. the amount of output rises: an upward-sloping supply curve.
b) In class, we proved that the expenditurefuction

$$
e(p, u)=\operatorname{mix}_{\sim}^{x} \underset{\sim}{p} \cdot \underset{\sim}{x} \text { s.t. } u(\underset{\sim}{x}) \geqslant \bar{u}
$$

is concave in P. By the Envelope Theorem,

$$
\nabla_{\sim} e(\underset{\sim}{p}, u)={\underset{\sim}{p}}_{p} \mathcal{Z}^{*}={\underset{\sim}{p}}_{\underset{\sim}{p}}\left(\underset{\sim}{p} \cdot{\underset{\sim}{x}}^{*}\right)=\underset{\sim}{x} \text { or, in better notation, }
$$

${\underset{\sim}{n}}^{*}$, the Hicksion demand functions.

So

$$
\nabla_{\underset{\sim}{p}}^{2} e(\underset{\sim}{p}, u)=\nabla_{p}{\underset{\sim}{h}}^{\alpha}
$$

The LHS is negative semi-definite because $e(p, 4)$ is concave in $p$. So the RHS is negative semi-definite. Negative seni-definite matres hare negative (or zero) terms on their main diagonal (as proven in class).

So $\partial h_{i} / \partial p_{i} \leqslant 0$ : downwerd-sloping Hicksian dement curves.
However, the slope of the Marshallion demand ave is

$$
\frac{\partial x_{i}}{\partial p_{i}}=\frac{\partial h_{i}}{\partial p_{i}}-x_{i} \frac{\partial x_{i}}{\partial m}
$$

by the slutsky Equation. Hence even though $\partial h_{i} / \partial p_{i} \leq 0, \partial x_{i} / \partial p_{i}$ could be positive, not negative, if $-x_{i} \cdot \frac{\partial x_{i}}{\partial m}$ were sufficiently positive (i.e., if $\partial x_{i} / \partial m$ were sufficiently negative - a very inferior food).

That would be the case of a Giffenjood. They are exceedingly pare (or nonexistent) in practice.
c) Begin with "supply equals demand":

$$
S(p)=D(p)
$$

If firms are taxed

$$
\begin{aligned}
& S(p-t)=D(p) \\
& \uparrow \\
& \operatorname{tax}\rangle \\
& p-t=\text { net pricetofirms } \\
& p=\text { price to consumers }
\end{aligned}
$$

If consumes are taxed

$$
S(p)=D(p+t)
$$

net price to consumers $p=$ price to firms
comparative statics:

$$
\begin{array}{r}
s^{\prime} d p+s^{\prime}(-1) d t=D^{\prime} d p  \tag{1}\\
\left(s^{\prime}-D^{\prime}\right) d p=s^{\prime} d t \\
\frac{d p}{d t}=\frac{s^{\prime}}{s^{\prime}-D^{\prime}}
\end{array}
$$

$$
\begin{array}{r}
\frac{d \rho}{d t}=\frac{s^{\prime}}{s^{\prime}-D^{\prime}} \\
=\frac{d(\text { net price consumers) }}{d t}
\end{array}
$$

Left-hand side of (1) is

$$
\begin{aligned}
& \frac{d s}{d(p-t)} \frac{\partial(p-t)}{\partial p} d p+\frac{d s}{d(p-t)} \frac{\partial(p-t)}{\partial t} d t . \\
& \hat{\tau}_{s^{\prime}}^{\prime} \quad t_{1}
\end{aligned}
$$

Right-hand side of (2) is

$$
\frac{d D}{d(p+t)} \frac{\partial(p+t)}{\partial p} d p+\frac{d D}{d(p+t)} \frac{\partial(p+t)}{\partial t} d t .
$$

$$
\tau_{D^{\prime}} \tau_{1} \tau_{D^{\prime}} r_{1}
$$

So whichever framework you chose to use,

$$
\frac{d \text { (net price to consumers) }}{d t}=\frac{S^{\prime}}{S^{\prime}-D^{\prime}}=\frac{1}{1-\frac{D^{\prime}}{S^{\prime}}} .
$$

From parts (a) and (b), $S^{\prime}>0$ and $D^{\prime}$ is usually $<0$, making $\frac{1}{1-\frac{D^{\prime}}{S^{\prime}}}$ be between $O$ and 1. A decrease ma tax hence usually lowers the "net price to consumers." If $S^{\prime}=O$ (avertical supply curve " $L_{s}$ ), then $\frac{S^{\prime}}{S^{\prime}-D^{\prime}}=0$ and taxes would not affect the net price to consumers, but this is an extreme case which is unlikely to hold.

Question 2. Suppose a competitive firm transforms a single input $(z)$ into two outputs ( $q_{1}$ and $q_{2}$ ) according to a well-behaved, fully differentiable inverse production function.

Further suppose that the government introduces a tax $(t)$ on each unit of $q_{1}$ sold.
a) How will this tax change:
i. the firm's demand for the input $z$;
ii. the supply of the taxed commodity $q_{1}$; and
iii. the supply of the untaxed commodity $q_{2}$ ?
b) How will a change in the price of $q_{1}$ affect the supply of $q_{1}$ ?
c) How will a change in the price of $q_{1}$ affect the supply of $q_{2}$ ?
d) How will a change in the price of $q_{2}$ affect the supply of $q_{1}$ ?
e) How will a change in the price of $q_{2}$ affect the supply of $q_{2}$ ?
f) Now suppose that all competitive firms jointly producing $q_{1}$ and $q_{2}$ are subject to this tax on $q_{1}$. Derive an expression for the effect of this tax on the equilibrium price of $q_{1}$. What is the sign of this expression? What did you expect the sign of this expression to be, and why?

## 2000 Qualifying Exam, Question 2

Answers to 6710 section of 2000 Qualify,y Exam
Question 2, Required Section.
$z=f\left(q_{1}, q_{2}\right)$
$\uparrow_{i n p u t} \uparrow \imath_{\text {outputs }}$ one could call this the inverse production function
Let $w$ he the price of $z$, let $p_{1}$ be the price of $q_{1}$, and let $p_{2}$ be the price of $q_{2}$. Note that this is for a spectate tare. For an ad valorem tax, this world instead be
Profit $\pi=p_{1} q_{1}+p_{2} q_{2}-\omega z-\tilde{t} \hat{q}_{1}$

$$
=\left(p_{1}-t\right) q_{1}+p_{2} q_{2}-w f\left(q_{1} q_{2}\right) .
$$ $t_{p}, q_{1}$. Either formulation is ox. Thecenderes cree for the spentity case.

Endogenous: $q_{1}, q_{2}$
Exogenous: $p_{1}, t, p_{2}, w$

$$
\text { F.O.C.: } \begin{aligned}
0^{\prime} & =\frac{\partial \pi}{\partial q_{1}}=p_{1}-t-w \frac{\partial f}{\partial q_{1}} \\
0 & =\frac{\partial \pi}{\partial q_{2}}=p_{2}-w \frac{\partial f}{\partial q_{2}}
\end{aligned}
$$

For comparative statics, find the to tael differential:

$$
\begin{aligned}
0 & =(1) d p_{1}+(-1) d t+0+(\cdot) d w+\left(-w f_{11}^{\prime \prime}\right) d q_{1}-w f_{11 \prime}^{\prime \prime} d y_{1}^{\prime \prime} \\
0 & =0+0+(1) d p_{2}+(\cdot) d w+\left(-w f_{12}^{\prime \prime}\right) d q_{1}-w f_{22}^{\prime \prime} \\
\Rightarrow & \tau_{\text {or }-w f_{21}^{\prime \prime}}^{w} \\
& {\left[\begin{array}{ll}
w f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\
w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d q_{1} \\
d q_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] d p_{1}+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] d t+\left[\begin{array}{c}
0 \\
1
\end{array}\right] d p_{2}+\left[\begin{array}{c}
(\cdot) \\
(\cdot)
\end{array}\right] d w . }
\end{aligned}
$$

a)

$$
\text { Clearly, } \begin{aligned}
\frac{d z}{d t} & =\frac{d f\left(q_{1} q_{2}\right)}{d t} \\
& =f_{1}^{\prime} \frac{d q_{1}}{d t}+f_{2}^{\prime} \frac{d q_{2}}{d t}
\end{aligned}
$$

From the last equation on P. 1, using Cranmer's $R_{u} 6$, with $d p_{1}=d p_{2}=$ $d w=0$, we have

$$
\begin{align*}
& \text { S.O.C. for maximum are that } \\
& D_{1} \text { of } \nabla_{\pi}^{2} \text { is }<0 \\
& D_{2} \text { of } D^{2} \pi \text { is }>0 \\
& \text { therefore }-w f_{11}^{\prime \prime}<0 \text { (or } f_{11}^{\prime \prime}>0 \text { ) } \\
& \omega^{2} f_{11}^{\prime \prime} f_{22}^{\prime \prime}-\omega^{2} f_{12}^{\prime \prime} f_{21}^{\prime \prime}>0 \Leftrightarrow \\
& \left|\begin{array}{ll}
\omega f_{11}^{\prime \prime} & \omega f_{12}^{\prime \prime} \\
\omega f_{21}^{\prime \prime} & \omega f_{22}^{\prime \prime}
\end{array}\right|>0 . \tag{2}
\end{align*}
$$

(1) states that $f_{1 "}^{\prime \prime}>0$. Since. the designation of " 1 " and "2"labects is arbitrary, it is reasonable to assume that $f_{22}^{\prime \prime}>0$. From this and (2), $\frac{d q_{1}}{d t}=\frac{-\omega \oplus}{\oplus}<0$. When $t \uparrow$, the supply of the taxed commodity, which is $q_{1}, \downarrow$. This answers (ii).
For (iii), from the last equation on p. 1,

$$
\frac{d q_{2}}{d t}=\frac{\left|\begin{array}{cc}
\omega f_{11}^{\prime \prime} & -1 \\
\omega f_{21}^{\prime \prime} & 0
\end{array}\right|}{\left|\begin{array}{cc}
\omega f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\
w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}
\end{array}\right|}=\frac{\omega f_{21}^{\prime \prime}}{\oplus} .
$$

Finally, firm the top of p. 2 and the answers to (ii) and (iii),

$$
\begin{aligned}
\frac{d z}{d t} & =\left[\begin{array}{lll}
f_{1}^{\prime} & \left(-w f_{22}^{\prime \prime}\right)+f_{2}^{\prime} & \left(w f_{21}^{\prime \prime}\right)
\end{array}\right] /\left|\begin{array}{cc}
w f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\
w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}
\end{array}\right| \\
& =-w f^{\oplus}{ }^{\oplus}
\end{aligned}
$$

$$
=-\underline{{ }^{\oplus} f_{1}^{\prime} f_{22}^{\prime \prime}+w \stackrel{\oplus}{f_{2}^{\prime}}{ }^{f_{21}^{\prime \prime}}}
$$

so this s ambiguous. If $f_{21}^{\prime \prime}$ were zero, it would be negative. Note that $f_{1}^{\prime}$ and $f_{2}^{\prime \prime \prime}$ are positive as long as more output requires more apout, a natural assumption.
b) Let $\Delta$ be defined to be $\left|\begin{array}{ll}\omega f_{11}^{\prime \prime} & \omega f_{12}^{\prime \prime} \\ \omega f_{21}^{\prime \prime} & \omega f_{22}^{\prime \prime}\end{array}\right|$. From (2), $\Delta>0$.
$\frac{d q_{1}}{d p_{1}}=\frac{+w f_{22}^{\prime \prime}}{\Delta}=\frac{+w \oplus}{\Theta}>0$ canted denved either by applying Cramp's Rule to the last equation on p.1, or by noting that $\frac{d q_{1}}{d p_{1}}$ has to be -1 times $\frac{d q_{1}}{d t}$, then wing the answer to part (a)(ii).
c) $\frac{d q_{2}}{d p_{1}}=\frac{-\omega f_{21}^{\prime \prime}}{\Delta}$ (ambiguoussifa) for similar reasons as in part (b).
d) $\frac{d q_{1}}{d p_{2}}=\frac{\left|\begin{array}{cc}0 & w f_{12}^{\prime \prime} \\ 1 & w f_{22}^{\prime \prime}\end{array}\right|}{\Delta}=\frac{-w f_{12}^{\prime \prime}}{\Delta}$ (ambignovis sign) by Cranes $R_{\nu} l$ le.
e) $\frac{d q_{2}}{d p_{2}}=\frac{\left|\begin{array}{cc}w f_{11}^{\prime \prime} & 0 \\ \omega f_{21}^{\prime \prime} & 1\end{array}\right|}{\Delta}=\frac{\omega f_{11}^{\prime \prime}}{\Delta}=\frac{\text { and the last equation on } p .1 \text {. }}{\Theta}>0$ an upwerd-sloping supply
f) Let "D "stand for demand and let "S" stand for supply. In makes equilibrium,

$$
\begin{aligned}
& q_{1}^{D}\left(p_{1}\right)=q_{1}^{s}\left(p_{1}, p_{2}, \omega, t\right) \\
& q_{2}^{D}\left(p_{2}\right)=q_{2}^{s}\left(p_{1}, p_{2}, \omega, t\right)
\end{aligned}
$$

From part (c), we know that a change in $p_{1}$ (b ecase of the tax) will change $q_{2}^{s}$, and hence $p_{2}$. So the tax on $q_{1}$ will affect the equilibrium for $q_{2}$, and both markets must be consilered.
Totally differvatiating,


$$
\begin{aligned}
& \frac{d q_{1}^{D}}{d p_{1}} d p_{1}=\frac{\partial q_{1}^{s}}{\partial p_{1}} d p_{1}+\frac{\partial q_{1}^{s}}{\partial p_{2}} d p_{2}+(\cdot) d w+\frac{\partial q_{1}^{s}}{\partial t} d t \\
& \frac{d q_{2}^{s}}{d p_{2}} d p_{2}=\frac{\partial q_{2}^{s}}{\partial p_{1}} d p_{1}+\frac{\partial q_{2}^{s}}{\partial p_{2}} d p_{2}+(\cdot) d w+\frac{\partial \dot{q}_{2}^{s}}{\partial t} d t
\end{aligned}
$$

Rearranging,

$$
\left[\begin{array}{cc}
\frac{d q_{1}^{D}}{d p_{1}}-\frac{\partial z_{1}^{s}}{\partial p_{1}} & -\frac{\partial q_{1}^{s}}{\partial p_{2}} \\
-\frac{\partial q_{2}^{s}}{\partial p_{1}} & \frac{d q_{2}^{s}}{d p_{2}}-\frac{\partial q_{2}^{s}}{\partial p_{2}}
\end{array}\right]\left[\begin{array}{l}
d p_{1} \\
d p_{2}
\end{array}\right]=\left[\begin{array}{l}
\partial q_{1}^{s} / \partial t \\
\partial q_{2}^{s} / \partial t
\end{array}\right] d t .
$$

Dividing by it and wing the results of previous parts of this greation, Answer 2 cont..

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\frac{d q_{1}^{D}}{d p_{1}}-\frac{w f_{22}^{\prime \prime}}{\Delta} & \frac{w f_{12}^{\prime \prime}}{\Delta} \\
\frac{w f_{21}^{\prime \prime}}{\Delta} & \frac{d q_{2}^{D}}{d p_{2}}-\frac{w f_{11}^{\prime \prime}}{\Delta}
\end{array}\right]\left[\begin{array}{l}
\partial p_{1} / \partial t \\
\\
\partial p_{2} / \partial t
\end{array}\right]=\left[\begin{array}{c}
-w f_{22}^{\prime \prime} / \Delta \\
w f_{21}^{\prime \prime} / \Delta
\end{array}\right] \Rightarrow} \\
& \frac{\partial p_{1}}{\partial t}=\frac{\left|\begin{array}{cc}
\frac{-w f_{22}^{\prime \prime}}{\Delta} & \frac{w f_{12}^{\prime \prime}}{\Delta} \\
\frac{w f_{12}^{\prime \prime}}{\Delta} & \frac{d q_{2}{ }^{\circ}}{d p p_{2}}-\frac{w f_{11}^{\prime \prime}}{\Delta}
\end{array}\right|}{D} \\
& \left|\begin{array}{cc}
\frac{d q_{1}^{0}}{d p_{1}}-\frac{w f_{22}^{\prime \prime}}{\Delta} & \frac{w f_{12}^{\prime \prime}}{\Delta} \\
\therefore \frac{w f_{21}^{\prime \prime}}{\Delta} & \frac{d q_{2}^{\prime}}{d p_{2}}-\frac{w f_{11}^{\prime \prime}}{\Delta}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \text { ( }) \text { (sec above) }
\end{aligned}
$$

where $d q_{i}^{D} / d p_{i}<0$ assuming no Iffeen goods.
$=\frac{\Theta \Theta-\oplus}{\Theta \Theta-\oplus}$ which is ambiguous. If $f_{12}^{\prime \prime}$ is close to zero, then this will be close to $\frac{\theta \theta}{\theta \theta}$, which is positive, which is the intuitive result.

## 2016 Qualifying Exam Sec. 1 Qu. 1

1. [14 points] Suppose a competitive, profit-maximizing firm transforms two inputs ( $x_{1}$ and $x_{2}$ ) into one output $(y)$ according to a wellbehaved, concave, fully differentiable production function $f\left(x_{1}, x_{2}\right)$. Let the price of the inputs be $p_{1}$ and $p_{2}$ and let the price of the output be $w$.
Suppose that the government introduces a tax $(t)$ on each unit of $x_{1}$ bought. In other words, assume this tax is a "specific tax," such as $\$ 0.70 /$ unit, not an "ad valorem tax," which would be expressed as a percentage such as $7 \%$.
Feel free to use abbreviations to simplify the answers you derive below.
(a) Assuming no prices change (that is, $p_{1}, p_{2}$, and $w$ do not change), how will this tax change:
i. the firm's demand for the taxed input $x_{1}$;
ii. the firm's demand for the untaxed input $x_{2}$; and
iii. the supply of the output $y$ ?
(b) How will a change in the price of $x_{1}$ affect the demand for $x_{1}$ ?
(c) How will a change in the price of $x_{1}$ affect the demand for $x_{2}$ ?
(d) How will a change in the price of $x_{1}$ affect the supply of $y$ ?
(e) How will a change in the price of $x_{2}$ affect the demand for $x_{1}$ ?
(f) How will a change in the price of $x_{2}$ affect the demand for $x_{2}$ ?
(g) How will a change in the price of $x_{2}$ affect the supply of $y$ ?
(h) How will a change in the price of $y$ affect the demand for $x_{1}$ ?
(i) How will a change in the price of $y$ affect the demand for $x_{2}$ ?
(j) How will a change in the price of $y$ affect the supply of $y$ ?
(k) Now suppose that all competitive firms producing $y$ use $x_{1}$ and $x_{2}$ and are subject to this tax on $x_{1}$. Using Cramer's Rule, derive an expression for the effect of this tax on the equilibrium price of $x_{1}$ when all prices are allowed to change.
Your answer will involve $3 \times 3$ determinants; you should leave it unevaluated to save time. Also to save time, if your answer involves quantities which you derived in parts (a)-(j), you can just write, for example, "(h)" instead of writing in the answer which you found in part (h). As a final time-saving measure,
just assume the number of firms producing $y$ is equal to one even though that is a strange assumption because the firm(s) is (are) competitive.
(A similar question appeared on a previous exam in a past year, and the answer I gave for it only involved a $2 \times 2$ determinant, but that answer should have taken one more market into account, and if it had done so, it would have involved a $3 \times 3$ determinant as well.)
(1)
$y=f\left(x_{1}, x_{2}\right)$
specific
profit $\pi=\omega f\left(x_{1}, x_{2}\right)-p_{1} x_{1}-p_{2} x_{2}-\stackrel{\downarrow}{t} x_{1}$
a) Maximize $\pi$ over $x_{1}$ and $x_{2}$. The F.O.C.'s are:

$$
0=\frac{\partial \pi}{\partial x_{1}}=w \frac{\partial f}{\partial x_{1}}-p_{1}-t
$$

$\tau_{\text {abbreviation: }} f_{1}^{\prime}$

$$
0=\frac{\partial \pi}{\partial x_{2}}=w \frac{\partial f}{\partial x_{2}}-p_{2}=w f_{2}^{\prime}-p_{2}
$$

Take the differential of both sides of each F.O.C.

The wrong approach: wite

$$
\pi=w y-p_{1} x_{1}-p_{2} x_{2}-t x_{1} \text {, and }
$$

don't substitute $f\left(x_{1}, x_{2}\right)$ for $y$, and don't use $f\left(x_{1}, x_{2}\right)=y$ as a constraint on the problem. If you set things up this way, you cant solve for any of the denvatives." Confirm this yourself so you can recognize this symptom of this wrong approach.

* For example, FOC crt. $x_{1}$ is not $0=\frac{\partial \pi}{\partial x_{1}}=-p_{1} \Rightarrow p=0$.

$$
\begin{align*}
& 0=w f_{11}^{\prime \prime} d x_{1}+w f_{12}^{\prime \prime} d x_{2}-d t+f_{1}^{\prime} d w-d p_{1}+0 d p_{2}  \tag{1}\\
& 0=w f_{21}^{\prime \prime} d x_{1}+w f_{22}^{\prime \prime} d x_{2}+0 d t+f_{2}^{\prime} d w+0 d p_{1}-d p_{2} . \tag{2}
\end{align*}
$$

With $d_{w}=d p_{1}=d p_{2}=0$, this is

$$
\underset{\sim}{0}=\left[\begin{array}{ll}
w f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\
w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2}
\end{array}\right]-\left[\begin{array}{l}
d t \\
0
\end{array}\right] \Rightarrow\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{ll}
w f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\
w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} / d t \\
d x_{2} / d t
\end{array}\right] .
$$

(i) By Cranmer's Rule,

$$
\frac{d x_{1}}{d t}=\frac{\left|\begin{array}{cc}
1 & w f_{12}^{\prime \prime} \\
0 & w f_{22}^{\prime \prime}
\end{array}\right|}{\left|\begin{array}{cc}
w f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\
w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}
\end{array}\right|}=\frac{w f_{22}^{\prime \prime}}{w^{2}\left(f_{11}^{\prime \prime} f_{22}^{4}-\left(f_{12}^{\prime \prime}\right)^{2}\right)}
$$

Since $f$ is said to be concave, you know "that $f_{11}^{\prime \prime}<0, f_{22}^{\prime \prime}<0$, and.
$\left|\begin{array}{ll}f_{1 \prime}^{\prime \prime} & f_{12}^{\prime \prime} \\ f_{21}^{\prime \prime} & f_{22}^{\prime \prime}\end{array}\right|>0 \Leftrightarrow f_{11}^{\prime \prime} f_{22}^{\prime \prime}-\left(f_{12}^{\prime \prime}\right)^{2}>0$. This is equivalent to

$$
\begin{gathered}
w^{2}\left(f_{11}^{\prime \prime} f_{22}^{\prime \prime}-\left(f_{12}^{\prime \prime}\right)^{2}\right)>0 \Leftrightarrow \\
\left|\begin{array}{cc}
w f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\
w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}
\end{array}\right|>0
\end{gathered}
$$

$\oplus \rightarrow$ call this " $\Delta$ "for the rest of this problem
So $\frac{d x_{1}}{d t}=\frac{w f_{22}^{\prime \prime}}{\Delta}<0$ : the firm's demand for the taxed input falls.
(ii)

$$
\frac{d x_{2}}{d t}=\frac{\left|\begin{array}{cc}
w f_{11}^{\prime \prime} & 1 \\
w f_{21}^{\prime \prime} & 0
\end{array}\right|}{\Delta}=\frac{-w f_{21}^{\prime \prime}}{\Delta} \text {. This has the sion of }-f_{2}^{\prime \prime} \text { ? unknown at this point. }
$$

(iii)

Using $y=f\left(x_{1}, x_{2}\right)$ and the Chain Rule,

$$
\frac{d y^{s}}{d t}=\frac{\partial f}{\partial x_{1}} \frac{d x_{1}}{d t}+\frac{\partial f}{\partial x_{2}} \frac{d x_{2}}{d t}=\frac{f_{1}^{\prime} w f_{22}^{\prime \prime}-f_{2}^{\prime} w f_{21}^{\prime \prime}}{\Delta}
$$

If $f_{21}^{\prime \prime}>0$ then $d y^{s} / d t<0$.
If $f_{21}^{\prime \prime}<0$ but $f_{21}^{\prime \prime}$ is sufficiently small in absolute valve then the numerator's first term domiantesits second term and $d y^{s} / d t<0$.
b) From (1) and (2), $\underset{\sim}{O}=\left[\begin{array}{ll}w f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\ w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}\end{array}\right]\left[\begin{array}{l}d x_{1} \\ d x_{2}\end{array}\right]+\left[\begin{array}{c}-d p_{1} \\ 0\end{array}\right] \Rightarrow$

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{ll}
w f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\
w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} / d p_{1} \\
d x_{2} / d p_{1}
\end{array}\right] \Rightarrow} \\
& \frac{d x_{1}}{d p_{1}}=\frac{\left|\begin{array}{ll}
1 & w f_{12}^{\prime \prime} \\
0 & w f_{22}^{\prime \prime}
\end{array}\right|}{\Delta}=\frac{\Theta f_{22}^{\prime \prime}}{\Delta}<0
\end{aligned}
$$

c) $\frac{d x_{2}}{d p_{1}}=\frac{\left|\begin{array}{cc}w f_{11}^{\prime \prime} & 1 \\ w f_{21}^{\prime \prime} & 0\end{array}\right|}{\Delta}=\frac{-{ }^{\oplus} f_{21}^{\prime \prime}}{\Delta}$ which is ambiguous.
d)
e) From (1) and (2),

$$
\begin{aligned}
& 0=\left[\begin{array}{ll}
w f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\
w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
-d p_{2}
\end{array}\right] \Rightarrow \\
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{ll}
w f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\
w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} / d p_{2} \\
d x_{2} / d p_{2}
\end{array}\right]}
\end{aligned}
$$

$$
\frac{d x_{1}}{d p_{2}}=\frac{\left|\begin{array}{ll}
0 & w f_{12}^{\prime \prime} \\
1 & w f_{22}^{\prime \prime}
\end{array}\right|}{\Delta}=\frac{-w f_{12}^{\prime \prime}}{\Delta} \text { ambiguovs }
$$

f) $\frac{d x_{2}}{d p_{2}}=\frac{\left|\begin{array}{cc}w f_{11}^{\prime \prime} & 0 \\ w f_{21}^{\prime \prime} & 1\end{array}\right|}{\Delta}=\frac{\begin{array}{c}\Theta \\ \omega f_{11}^{\prime \prime}\end{array}}{\Delta}<0$
(4)
g) $\frac{d y}{d p_{2}}=\frac{\partial f}{\partial x_{1}} \frac{d x_{1}}{d p_{2}}+\frac{\partial f}{\partial x_{2}} \frac{d x_{2}}{d p_{2}}=f_{1}^{\prime} \frac{\left(-w f_{12}^{\prime \prime}\right)}{\Delta \Delta}+f_{2}^{\prime} \frac{w f_{11}^{\prime \prime}}{c \Delta}=?+\Theta$
h) From (1) and (2), $\underset{\sim}{0}=\left[\begin{array}{ll}w f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\ w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}\end{array}\right]\left[\begin{array}{l}d x_{1} \\ d x_{2}\end{array}\right]+\left[\begin{array}{ll}f_{1}^{\prime} & d w \\ f_{2}^{\prime} & d w\end{array}\right] \Rightarrow$

$$
\left[\begin{array}{l}
-f_{1}^{\prime} \\
-f_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
w f_{11}^{\prime \prime} & w f_{12}^{\prime \prime} \\
w f_{21}^{\prime \prime} & w f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} / d w \\
d x_{2} / d w
\end{array}\right] \Rightarrow
$$

$$
\frac{\frac{d x_{1}}{d w}=\frac{\left|\begin{array}{cc}
-f_{1}^{\prime} & w f_{12}^{\prime \prime} \\
-f_{2}^{\prime} & w f_{22}^{\prime \prime}
\end{array}\right|}{\Delta}=\frac{-f_{1}^{\prime} w f_{22}^{\prime \prime}+f_{2}^{\prime} w f_{12}^{\prime \prime}}{\oplus \Delta(?)}=\Theta+?}{\frac{d x_{2}}{d w}=\frac{\left|\begin{array}{cc}
w f_{11}^{\prime \prime}-f_{1}^{\prime} \\
w f_{21}^{\prime \prime} & -f_{2}^{\prime}
\end{array}\right|}{\Delta}=\frac{-f_{2}^{\prime} w f_{11}^{\prime \prime}+f_{1}^{\prime} w f_{21}^{\prime \prime}}{\oplus \Delta}=\oplus+?}
$$

j) $\frac{d y}{d w}=\frac{\partial f}{\partial x_{1}} \frac{d x_{1}}{d w}+\frac{\partial f}{\partial x_{2}} \frac{d x_{2}}{d w}=f_{1}^{\prime} \frac{-f_{1}^{\prime} w f_{22}^{\prime \prime}+f_{2}^{\prime} w f_{12}^{\prime \prime}}{\Delta}+f_{2}^{\prime} \frac{-f_{2}^{\prime} w f_{11}^{\prime \prime}+f_{1}^{\prime} w f_{21}^{\prime \prime}}{\Delta}$

$$
=\frac{-f_{1}^{\prime} f_{1}^{\prime} w f_{22}^{\prime \prime}+f_{1}^{\prime} f_{2}^{\prime} w f_{12}^{\prime \prime}-f_{2}^{\prime} f_{2}^{\prime} w f_{11}^{\prime \prime}+f_{1}^{\prime} f_{2}^{\prime} w f_{21}^{\prime \prime}}{\Delta}
$$

$$
=\oplus+(?+\oplus+?
$$

k) Equitibnum in the market for $x_{1}: x_{1}^{\text {supply }}\left(p_{1}\right)=x_{1}^{\text {demand }}\left(p_{1}, p_{2}, w, t\right)$

$$
\begin{aligned}
& x_{2}: x_{2}^{\text {supply }}\left(p_{2}\right)=x_{2}^{\text {damadad }}\left(p_{1}, p_{2}, w, t\right) \\
& y: y^{\text {demand }}(w)=y^{\text {supply }}\left(p_{1}, p_{2}, w, t\right)
\end{aligned}
$$

Using abbreviations:

$$
\begin{aligned}
& 0=x_{1}^{S}\left(p_{1}\right)-x_{1}^{D}\left(p_{1}, p_{2}, w, t\right) \\
& 0=x_{2}^{S}\left(p_{2}\right)-x_{2}^{D}\left(p_{1}, p_{2}, w, t\right) \\
& 0=y^{D}(w)-y^{S}\left(p_{1}, p_{2}, w, t\right)
\end{aligned}
$$

Take the differential:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\frac{d x_{1}^{s}}{d p_{1}}-\frac{\partial x_{1}^{D}}{\partial p_{1}} & -\frac{\partial x_{1}^{D}}{\partial p_{2}} & -\frac{\partial x_{1}^{D}}{\partial w} \\
-\frac{\partial x_{2}^{D}}{\partial p_{1}} & \frac{d x_{2}^{s}}{d p_{2}}-\frac{\partial x_{2}^{D}}{\partial p_{2}} & -\frac{\partial x_{2}^{D}}{\partial w} \\
-\frac{\partial y^{s}}{\partial p_{1}} & -\frac{\partial y^{s}}{\partial p_{2}} & \frac{d y^{D}}{d w}-\frac{\partial y^{s}}{\partial w}
\end{array}\right]\left[\begin{array}{l}
d p_{1} \\
d p_{2} \\
d w
\end{array}\right]-\left[\begin{array}{l}
\frac{\partial x_{1}^{D}}{\partial t} \\
\frac{\partial x_{2}^{D}}{\partial t} \\
\frac{\partial y^{s}}{\partial t}
\end{array}\right] d t} \\
& {\left[\begin{array}{l}
(a)(i) \\
(a)(i i) \\
(a)(i i)
\end{array}\right]=\left[\begin{array}{ccc}
\frac{d x_{1}^{s}}{d p_{1}}-(b) & -(e) & -(h) \\
-(c) & \frac{d x_{2}^{s}}{d p_{2}}-(f) & -(i) \\
-(d) & -(g) & \frac{\partial y^{D}}{\partial w}-(j)
\end{array}\right]\left[\begin{array}{l}
d p_{1} / d t \\
d p_{2} / d t \\
d w / d t
\end{array}\right]}
\end{aligned}
$$

(using abbreviations retering to previous parts of this problem).

$$
\frac{d p_{1}}{d t}=\frac{\left|\begin{array}{ccc}
(a)(i) & -(e) & -(h) \\
(a)(i i) & d x_{2}^{s} / d p_{2}-(f) & -(i) \\
(a)(i i) & -(g) & \partial y D / \partial w-(j)
\end{array}\right|}{\left|\begin{array}{ccc}
\frac{d x_{1}^{s}}{d p_{1}}-(b) & -(e) & -(h) \\
-(c) & \frac{d x_{2}^{s}}{d p_{2}}-(f) & -(c) \\
-(d) & -(g) & \frac{\partial y}{}{ }^{D} \\
-(j)
\end{array}\right|}
$$

2017 Qualifying Exam Sec. 1 Qu. 2
2. [20 points] Suppose a competitive, profit-maximizing firm transforms two inputs ( $x_{1}$ and $x_{2}$ ) into an output, which is apples (denoted by $a$ ), according to a well-behaved, concave, fully differentiable production function $f\left(x_{1}, x_{2}\right)$. Let the price of the inputs be $p_{1}$ and $p_{2}$ and let the price of apples be $p_{a}$.
Suppose that the government introduces an ad valorem tax $t$ on the price of $x_{1}$. In other words, this tax would be expressed as a percentage such as $7 \%$, not as something like $\$ 0.70 /$ unit (which would be a "specific tax").
Feel free to use abbreviations to simplify the answers you derive below.
(a) How will a change in the price of $x_{1}$ affect the demand for $x_{1}$ ?
(b) How will a change in the price of $x_{1}$ affect the demand for $x_{2}$ ?
(c) How will a change in the price of $x_{1}$ affect the supply of $a$ ?
(d) How will a change in the price of $x_{2}$ affect the demand for $x_{1}$ ?
(e) How will a change in the price of $x_{2}$ affect the demand for $x_{2}$ ?
(f) How will a change in the price of $x_{2}$ affect the supply of $a$ ?
(g) How will a change in the price of $a$ affect the demand for $x_{1}$ ?
(h) How will a change in the price of $a$ affect the demand for $x_{2}$ ?
(i) How will a change in the price of $a$ affect the supply of $a$ ?
(j) Now suppose that all competitive firms producing $a$ use $x_{1}$ and $x_{2}$ and are subject to this tax on $x_{1}$. Using Cramer's Rule, derive an expression for the effect of this tax on the equilibrium price of $x_{1}$ when all three prices are allowed to change.
Your answer will involve $3 \times 3$ determinants; you should leave them unevaluated to save time. As an additional time-saving measure, just assume the number of firms producing $a$ is equal to one even though that is a strange assumption because the firm(s) is (are) competitive.
(A similar question appeared on a previous exam in a past year, and the answer I gave for it only involved a $2 \times 2$ determinant, but that answer should have taken one more market into account, and if it had done so, it would have involved a $3 \times 3$ determinant as well.)

Sec. $1 \# 2$.

$$
\begin{gathered}
a=f\left(x_{1}, x_{2}\right) \\
\uparrow \uparrow \uparrow
\end{gathered}
$$

prices $\mathrm{Pa}_{\mathrm{a}} \mathrm{p}, \mathrm{P}_{2}$
ad valorem tax rate
a) profit $\pi=p_{a} f\left(x_{1}, x_{2}\right)-p_{1}(1+t) x_{1}-p_{2} x_{2}$

Maximize profit over $x_{1}$ and $x_{2}$. The F.O.C.; are

$$
\begin{array}{ll}
0=\frac{\partial \pi}{\partial x_{1}}=p_{a} \frac{\partial f}{\partial x_{1}}-p_{1}(1+t) & =p_{a} f_{1}^{\prime}-p_{1}(1+t) \\
& {\text { abbreviation }=f_{1}^{\prime}}^{\prime}=\frac{\partial \pi}{\partial x_{2}}=p_{a} \frac{\partial f}{\partial x_{2}}-p_{2} \quad
\end{array}
$$

Find the differential of both sides of the F.O.C.'s:

$$
\begin{aligned}
& 0=p_{a} f_{11}^{\prime \prime} d x_{1}+p_{a} f_{12}^{\prime \prime} d x_{2}-(1+t) d p_{1}+0 d p_{2}+f_{1}^{\prime} d p_{a}-p_{1} d t \\
& 0=p a f_{21}^{\prime \prime} d x_{1}+p_{a} f_{22}^{\prime \prime} d x_{2}+0 d p_{1}^{\prime}-d p_{2}+f_{2}^{\prime} d p_{a}+0 d t
\end{aligned}
$$

With $d p_{2}=d p_{a}=d t=0$, this applies

$$
\left[\begin{array}{c}
1+t \\
0
\end{array}\right] d p_{1}=\left[\begin{array}{ll}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2}
\end{array}\right] \Rightarrow\left[\begin{array}{ll}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} / d p_{1} \\
d x_{2} / d p_{1}
\end{array}\right]=\left[\begin{array}{c}
1+t \\
0
\end{array}\right] .
$$

Use Cremes's Rule:

$$
\frac{d x_{1}}{d p_{1}}=\frac{\left|\begin{array}{cc}
1+t & p_{a} f_{12}^{\prime \prime}  \tag{1}\\
0 & p_{a} f_{22}^{\prime \prime}
\end{array}\right|}{\left|\begin{array}{cc}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right|}=\frac{(1+t) p_{a} f_{22}^{\prime \prime}}{p_{a}^{2}\left(f_{11}^{\prime \prime} f_{22}^{\prime \prime}-\left(f_{12}^{\prime \prime}\right)^{2}\right)}
$$

Since it is given that $f$ concave, you know that $f_{11}^{\prime \prime}<0, f_{22}^{\prime \prime}<0$, and

$$
\left|\begin{array}{l}
f_{11}^{\prime \prime} f_{12}^{\prime \prime} \\
f_{21}^{\prime \prime} f_{22}^{\prime \prime}
\end{array}\right|>0 \Leftrightarrow \underbrace{f_{11}^{\prime \prime} f_{22}^{\prime \prime}-\left(f_{12}^{\prime \prime}\right)^{2}}_{\text {call this " } \Delta^{\prime \prime} \text { for the rest of this purblem }}>0 \text {. }
$$

So $\frac{d x_{1}}{d p_{1}}=\frac{(1+t) p_{a} f_{22}^{\prime \prime}}{p_{a}^{2} \Delta}<0$ (a downward- sloping input demand curve).
$\oplus$
(4) Also, $d x_{1} \left\lvert\, d p_{1}=\frac{(1+t) f_{22}^{\prime \prime}}{p_{a} \Delta}\right.$.
b) Using Crammer's Rule on (1) from part a,

$$
\frac{d x_{2}}{d p_{1}}=\frac{\left|\begin{array}{cc}
p_{a} f_{1 \prime}^{\prime \prime} & 1+t \\
p_{a} f_{21}^{\prime \prime} & 0
\end{array}\right|}{\left|\begin{array}{cc}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right|}=\frac{\begin{array}{cc}
(1+t) & p_{a} f_{21}^{\prime \prime}
\end{array}}{\begin{array}{cc}
p_{a}^{2} & \Delta \\
\oplus & \oplus
\end{array}} .
$$

This haste sign of - $f_{21}^{\prime \prime}$, which is
c) Since $a=f\left(x_{1}, x_{2}\right)$,
unknown at this point.
$\underbrace{(+1)}$ $=\frac{-(1+t) f_{2 \prime}^{\prime \prime}}{p_{a} \Delta}$.

$$
\begin{aligned}
d a & =\frac{\partial f}{\partial x_{1}} d x_{1}+\frac{\partial f}{\partial x_{2}} d x_{2} \text { and } \\
\frac{d a}{d p_{1}} & =\frac{\partial f}{\partial x_{1}} \frac{d x_{1}}{d p_{1}}+\frac{\partial f}{\partial x_{2}} \frac{d x_{2}}{d p_{1}} . \text { From parts (a) and (b), } \\
& =f_{1}^{\prime} \frac{(1+t) \cdot * f_{22}^{\prime \prime}}{p_{a} \Delta}+f_{2}^{\prime} \frac{-(1+t) f_{21}^{\prime \prime}}{p_{a} \Delta}
\end{aligned}
$$

$$
=\frac{1+t}{p_{a} \Delta}\left[f_{1}^{\prime} f_{22}^{\prime \prime}-f_{2}^{\prime} f_{21}^{\prime \prime}\right]
$$

(Assume $f_{1}^{\prime}>0$ and $f_{2}^{\prime}>0$ : move input produces more output.)
(1)
$\oplus \Theta$
If $f_{21}^{\prime \prime}>0$ then $d a / d p_{1}<0$.
If $f_{21}^{\prime \prime}<0$ but $f_{21}^{\prime \prime}$ is small in absolute value, then $d a / d p_{1}<0$.
d) Se Hing $d p_{1}=d p_{a}=d t=0 \mathrm{in}(a)$ yields

$$
\underset{\sim}{0}=\left[\begin{array}{ll}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2}
\end{array}\right]-\left[\begin{array}{cc}
0 & d p_{2} \\
d p_{2}
\end{array}\right] \Rightarrow
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{ll}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} l d p_{2} \\
d x_{2} l d p_{2}
\end{array}\right] \text { so by Cranmer's Rule, }} \\
& \frac{d x_{1}}{d p_{2}}=\frac{\left|\begin{array}{cc}
0 & p_{a} f_{12}^{\prime \prime} \\
1 & p_{a} f_{22}^{\prime \prime}
\end{array}\right|}{\left|\begin{array}{ll}
p_{a} f_{11}^{\prime \prime} & p_{4} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right|}=\frac{-p_{a} f_{12}^{\prime \prime}}{p_{a}^{2} \Delta}=\frac{-f_{12}^{\prime \prime}}{p_{a} \Delta} . \\
& \uparrow \uparrow \\
& \oplus \oplus \oplus
\end{aligned}
$$

e) $\frac{d x_{2}}{d p_{2}}=\frac{\left|\begin{array}{ll}p_{a} f_{11}^{\prime \prime} & 0 \\ p_{a} f_{21}^{\prime \prime} & 1\end{array}\right|}{\left|\begin{array}{ll}p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\ p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}\end{array}\right|}=\frac{p_{a} f_{11}^{\prime \prime}}{p_{a}^{2} \Delta}=\frac{\begin{array}{l}f_{11}^{\prime \prime} \\ p_{a} \Delta\end{array} \infty 0 \text {, a clowhuard- }}{\substack{\text { sloping input } \\ \text { demand carve. }}}$
f) Since $a=f\left(x_{1}, x_{2}\right), d a=f_{1}^{\prime} d x_{1}+f_{2}^{\prime} d x_{2}$ and

$$
\begin{align*}
\frac{d a}{d p_{2}} & =f_{1}^{\prime} \frac{d x_{1}}{d p_{2}}+f_{2}^{\prime} \frac{d x_{2}}{d p_{2}} \text { or, from parts (d) and le), }  \tag{?}\\
& =f_{1}^{\prime} \frac{-f_{12}^{\prime \prime}}{p_{a} \Delta}+f_{2}^{\prime} \frac{f_{11}^{\prime \prime}}{p_{a} \Delta}=\frac{-f_{1}^{\prime} f_{12}^{\prime \prime}+f_{2}^{\prime} f_{11}^{\prime \prime}}{p_{a} \Delta} .
\end{align*}
$$

If $f_{12}^{\prime \prime}>0$ then da/ $/ p_{2}<0$.
If $f_{12}^{\prime \prime}<0$ but $f_{12}^{\prime \prime}$ a small in absolute value then dod $p_{2}<0$.
g) Setting $d p_{1}=d p_{2}=d t=0 \mathrm{in}(a)$ yields

$$
\underset{\sim}{O}=\left[\begin{array}{ll}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2}
\end{array}\right]+\left[\begin{array}{ll}
f_{1}^{\prime} & d p_{a} \\
f_{2}^{\prime} & d p_{a}
\end{array}\right] \Rightarrow
$$

$$
\begin{aligned}
& {\left[\begin{array}{c}
-f_{1}^{\prime} \\
-f_{2}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} / d p_{a} \\
d x_{2} / d p_{a}
\end{array}\right]} \\
& \frac{d x_{1}}{d p_{a}}=\frac{\left|\begin{array}{cc}
-f_{1}^{\prime} & p_{a} f_{12}^{\prime \prime} \\
-f_{2}^{\prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right|}{\left|\begin{array}{ll}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right|}=\frac{p_{a}\left(-f_{1}^{\prime} f_{22}^{\prime \prime}+f_{2}^{\prime} f_{12}^{\prime \prime}\right)}{p_{a}^{2} \Delta} \\
& =\frac{\oplus_{1}^{\oplus} f_{22}^{\prime \prime}+\oplus_{2}^{\prime} f_{12}^{\prime \prime}}{P_{a} \Delta} \text { whit ispositive if } f_{12}^{\prime \prime}>0 \text { or if } f_{12}^{\prime \prime}<0
\end{aligned}
$$

(G) $\oplus$

$$
\begin{aligned}
& \frac{d x_{2}}{d p_{a}}=\frac{\left|\begin{array}{cc}
p_{a} f_{11}^{\prime \prime} & -f_{1}^{\prime} \\
p_{a} f_{21}^{\prime \prime} & -f_{2}^{\prime}
\end{array}\right|}{\left|\begin{array}{cc}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{2} f_{22}^{\prime \prime}
\end{array}\right|}=\frac{p_{a}\left(-f_{2}^{\prime} f_{11}^{\prime \prime}+f_{1}^{\prime} f_{21}^{\prime \prime}\right)}{p_{a}^{2} \Delta} \\
& \oplus \oplus \oplus\left(\begin{array}{c} 
\\
\oplus
\end{array}\right. \\
& =\frac{-f_{2}^{\prime} f_{11}^{\prime \prime}+f_{1}^{\prime} f_{21}^{\prime \prime}}{p_{a} \Delta} \text { which is positive if } \\
& \text { (f) (f) } \quad f_{21}^{\prime \prime}>0 \text { or if } f_{21}^{\prime \prime}<0
\end{aligned}
$$

but $f_{2_{1}}^{\prime \prime} 13$ small mabsoute value.
i) Since $a=f\left(x_{1}, x_{2}\right), d a=f_{1}^{\prime} d x_{1}+f_{2}^{\prime} d x_{2}$ and

$$
\begin{aligned}
\frac{d a}{d p_{a}} & =f_{1}^{\prime} \frac{d x_{1}}{d p_{a}}+f_{2}^{\prime} \frac{d x_{2}}{d p_{a}} \text { or from pats }(g) \text { and }(h) \\
& =f_{1}^{\prime} \frac{-f_{1}^{\prime} f_{22}^{\prime \prime}+f_{2}^{\prime} f_{12}^{\prime \prime}}{p_{a} \Delta}+f_{2}^{\prime} \frac{-f_{2}^{\prime} f_{11}^{\prime \prime}+f_{1}^{\prime} f_{21}^{\prime \prime}}{p_{a} \Delta} ; \text { setting } f_{21}^{\prime \prime}=f_{12}^{\prime \prime}, \\
& =\frac{-f_{2}^{\prime} f_{2}^{\prime} f_{11}^{\prime \prime}+\left(f_{1}^{\prime} f_{2}^{\prime}+f_{1}^{\prime} f_{2}^{\prime}\right) f_{12}^{\prime \prime}-f_{1}^{\prime} f_{1}^{\prime} f_{22}^{\prime \prime}}{p_{a} \Delta}
\end{aligned}
$$

(A positive value would mean an upwand-sloping supply cone for apples.)
j) Equilibrium in the market for

$$
\begin{aligned}
& x_{1}: x_{1}^{\text {supply }}\left(p_{1}\right)=x_{1}^{\text {demand }}\left(p_{1}, p_{2}, p_{a}, t\right) \leftarrow s_{0} p_{1} \text { B endogenous } \\
& x_{2}: x_{2}^{\text {supply }}\left(p_{2}\right)=x_{2}^{\text {demand }}\left(p_{1}, p_{2}, p_{a}, t\right) \leftarrow s_{0} p_{2} \text { B endosenas } \\
& a: a^{\text {demand }}\left(p_{a}\right)=a^{\text {supply }}\left(p_{1}, p_{2}, p_{a}, t\right) \leftarrow s_{0} p_{a} \beta \text { Bend ofenous }
\end{aligned}
$$

Using abbreviations:

$$
\begin{aligned}
& 0=x_{1}^{S}\left(p_{1}\right)-x_{1}^{D}\left(p_{1}, p_{2}, p_{a}, t\right) \\
& 0=x_{2}^{S}\left(p_{2}\right)-x_{2}^{D}\left(p_{1}, p_{2}, p_{a}, t\right) \\
& 0=a^{D}\left(p_{a}\right)-a^{S}\left(p_{1}, p_{2}, p_{a}, t\right) .
\end{aligned}
$$

The only exgemors variable

$$
B t \text {. }
$$

Taking differentials:

$$
\approx=\left[\begin{array}{ccc}
\frac{d x_{1}^{S}}{d p_{1}}-\frac{\partial x_{1}^{D}}{\partial p_{1}} & -\frac{\partial x_{1}^{D}}{\partial p_{2}} & -\frac{\partial x_{1}^{D}}{\partial p_{a}} \\
-\frac{\partial x_{2}^{D}}{\partial p_{1}} & \frac{d x_{2}^{S}}{d p_{2}}-\frac{\partial x_{2}^{D}}{\partial p_{2}} & -\frac{\partial x_{2}^{D}}{\partial p_{a}} \\
-\frac{\partial a^{S}}{\partial p_{1}} & \frac{-\partial a^{S}}{\partial p_{2}} & \frac{d a^{D}}{d p_{a}}-\frac{\partial a^{S}}{\partial p_{a}}
\end{array}\right]\left[\begin{array}{c}
d p_{1} \\
d p_{2} \\
d p_{a}
\end{array}\right]-\left[\begin{array}{c}
\partial x_{1}^{D} / \partial t \\
\partial x_{2}^{D} \partial t \\
\partial a^{S} / \partial t
\end{array}\right] d t .
$$

Simplifying and using abbreviations referring to previous pats of the problem:

$$
\begin{aligned}
& \oplus \quad \Theta \quad \oplus \oplus(? \\
& =\frac{-\left(f_{2}^{\prime}\right)^{2} f_{11}^{\prime \prime}+2 f_{1}^{\prime} f_{2}^{\prime} f_{12}^{\prime \prime}-\left(f_{1}^{\prime}\right)^{2} f_{22}^{\prime \prime}}{p_{a} \Delta} \quad \text { which B positive as long as } \\
& \oplus \oplus \\
& f_{12}^{\prime \prime} \text { small in absolute value. }
\end{aligned}
$$

$$
\left[\begin{array}{l}
\frac{\partial x_{1}^{D}}{\partial t} \\
\frac{\partial x_{2}^{D}}{\partial t} \\
\frac{\partial a^{5}}{\partial t}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{\partial x_{1}^{s}}{d p_{1}}-\frac{\partial x_{1}^{D}}{\partial p_{1}} & -\frac{\partial x_{1}^{D}}{\partial p_{2}} & -\frac{\partial x_{1}^{D}}{\partial p_{a}} \\
-\frac{\partial x_{2}^{D}}{\partial p_{1}(b)} & \frac{d x_{2}^{s}}{d p_{2}}-\frac{\partial x_{2}^{D}}{\partial p_{2}} & -\frac{\partial x_{2}^{D}}{\partial p_{a}^{(G)}} \\
-\frac{\partial a^{s}}{\partial p_{1}} & -\frac{\partial a^{s}}{\partial p_{2}} & \frac{d a^{D}}{d p_{a}}-\frac{\partial a^{s}}{\partial p_{a}}
\end{array}\right]\left[\begin{array}{l}
d p_{1} / d t \\
d p_{2} / d t \\
d p a / d t
\end{array}\right]
$$

To faure out these components, set $d p_{1}=d p_{2}=d p_{a}=0$ in $(a)$ yiclang

$$
\begin{align*}
& {\left[\begin{array}{l}
p_{1} \\
0
\end{array}\right]=\left[\begin{array}{cc}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right]\left[\begin{array}{l}
d x_{1} / d t \\
d x_{2} / d t
\end{array}\right],} \\
& \frac{\partial x_{1}}{\partial t}=\frac{\left|\begin{array}{cc}
p_{1} & p_{a} f_{12}^{\prime \prime} \\
0 & p_{a} f_{22}^{\prime \prime}
\end{array}\right|}{\left|\begin{array}{ll}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right|}=\frac{p_{1} p_{a} f_{22}^{\prime \prime}}{p_{a}^{2} \Delta}=\frac{p_{1} f_{22}^{\prime \prime}}{p_{a} \Delta}  \tag{j1}\\
& \frac{\partial x_{2}}{\partial t}=\frac{\left|\begin{array}{ll}
p_{a} f_{11}^{\prime \prime} & p_{1} \\
p_{a} f_{21}^{\prime \prime} & 0
\end{array}\right|}{\left|\begin{array}{ll}
p_{a} f_{11}^{\prime \prime} & p_{a} f_{12}^{\prime \prime} \\
p_{a} f_{21}^{\prime \prime} & p_{a} f_{22}^{\prime \prime}
\end{array}\right|}=\frac{-p_{1} p_{a} f_{21}^{\prime \prime}}{p_{a}^{2} \Delta}=\frac{-p_{1} f_{21}^{\prime \prime}}{p_{a} \Delta} \tag{}
\end{align*}
$$

and $a^{s}=f\left(x_{1}, x_{2}\right) \Rightarrow d_{a}^{s}=f_{1}^{\prime} d x_{1}+f_{2}^{\prime} d x_{2}=0$

$$
\begin{aligned}
\frac{d a^{s}}{d t} & =f_{1}^{\prime} \frac{d x_{1}}{d t}+f_{2}^{\prime} \frac{d x_{2}}{d t}=f_{1}^{\prime} \frac{p_{1} f_{22}^{\prime \prime}}{p_{a} \Delta}+f_{2}^{\prime} \frac{-p_{1} f_{21}^{\prime \prime}}{p_{2} \Delta} \\
& =\frac{p_{1} f_{1}^{\prime} f_{22}^{\prime \prime}-p_{2} f_{2}^{\prime} f_{21}^{\prime \prime}}{p_{a} \Delta} j^{3}
\end{aligned}
$$

2017 Qualifying Exam Sec. 3 Qu. 2
2. [10 points] Consider a partial equilibrium in the market for apples, with the following (aggregate) supply and demand curves:

$$
\begin{aligned}
D(p) & =10-p \\
S(p) & =3 p+1 .
\end{aligned}
$$

(a) Find the equilibrium price and quantity of apples the way most undergraduate students would do it, by solving the two equations in two unknowns.
(b) Find the equilibrium price of apples by formulating this as a fixed-point problem. Then determine the equilibrium quantity of apples. (Do not determine the equilibrium quantity of apples first.)
(c) Find the equilibrium quantity of apples by formulating this as a fixed-point problem. Then determine the equilibrium price of apples. (Do not determine the equilibrium price of apples first.)

Sec. 3 Qu 2

$$
\begin{aligned}
& D(p)=10-p \\
& s(p)=3 p+1
\end{aligned}
$$

a)

$$
\begin{aligned}
& D(p)=S(p) \\
& 10-p=3 p+1 \\
& 9=4 p \Rightarrow p=9 / 4, \quad D(9 / 4)=10-9 / 4=\frac{40-9}{4}=\frac{31}{4} . \\
& \text { ophonal } \longrightarrow \text { Check: } S(9 / 4)=3\left(\frac{9}{4}\right)+1=\frac{27}{4}+\frac{4}{4}=\frac{31}{4}, \text { or. } .
\end{aligned}
$$

b)


$$
s(p)=3 p+1 \Rightarrow \frac{s-1}{3}=p \text {, the } S^{-1} \text { function. }
$$

So find $\frac{D\left(R_{1}\right)-1}{3}=P_{1}$

$$
\begin{aligned}
& \frac{10-p_{1}-1}{3}=p_{1} \\
& 10-p_{1}-1=3 p_{1}
\end{aligned}
$$

c)


$$
\begin{aligned}
& D(p)=10-p \Rightarrow p=10-D(p) \text {, the } D^{-1} \text { function. } \\
& S\left(D^{-1}\left(Q_{D 1}\right)\right)=S(10-D)=3(10-D)+1=30-3 D+1=31-3 D . \\
& \text { Find } S\left(D^{-1}\left(Q_{D 1}\right)\right)=Q_{D 1} \\
& 31-3 D=D \\
& \qquad 31=4 D \Rightarrow D=31 / 4 \text {. This is quantity. } \\
& \text { Then price is } 10-D(P)=10-31 / 4=\frac{40}{4}-\frac{31}{4}=9 / 4 .
\end{aligned}
$$

## 2020 Qualifying Exam Sec. 1 Qu. 1

1. [17 points] Denote a commodity by $x$, denote the supply of that commodity by $x^{S}$, and denote the demand for that commodity by $x^{D}$.
Suppose that $x$ is supplied by an industry whose firms take the price of $x$, which is denoted by $p_{x}$, given, and they also take the wage rate, which is denoted by $w$, given. Suppose that $x^{S}$ depends on both $p_{x}$ and on $w$. Just for simplicity, suppose that there is only one firm.
Suppose that $x$ is demanded by consumers who take the price of $x$, which is denoted by $p_{x}$, given, and they also take the wage rate, which is denoted by $w$, given. Suppose that $x^{D}$ depends on both $p_{x}$ and on $w$. Just for simplicity, suppose that there is only one consumer.

This problem is inspired by study of minimum wage legislation, so we will always suppose that the market for $x$ clears but we will make no assumption about whether the market for labor is in equilibrium or not. We wish to study the effect of an exogenous increase in the wage rate $w$, caused, for example, by an increase in the minimum wage.
(a) Show that

$$
\begin{equation*}
\frac{d p_{x}}{d w}=\frac{\frac{\partial x^{D}}{\partial w}-\frac{\partial x^{S}}{\partial w}}{\frac{\partial x^{S}}{\partial p_{x}}-\frac{\partial x^{D}}{\partial p_{x}}} . \tag{1}
\end{equation*}
$$

(b) Suppose the firm produces $x$ from labor $\ell$ using the production function $x=2 \sqrt{\ell}$. Recalling that the price of $x$ is denoted by $p_{x}$ in this problem, and that the wage rate is denoted by $w$, show that the firm's supply curve for $x$ is given by $x^{S}=2 p / w$.
(c) Suppose the consumer obtains utility from consuming $x$, from consuming another good $y$, and from leisure, according to

$$
u=x \cdot y \cdot \text { leisure },
$$

where leisure $=24-\ell$. If the consumer's only income comes from supplying labor, show that the consumer's demand curve for $x$ is given by $x^{D}=8 w / p_{x}$.
(d) Show that, for the above firm and consumer, (1) implies

$$
\begin{equation*}
\frac{d p_{x}}{d w}=\frac{p_{x}}{w} . \tag{2}
\end{equation*}
$$



Figure 1. The market for good $x$. Demand curves are denoted by $x^{D}$ and supply curves are denoted by $x^{S}$.
(e) Show that

$$
\frac{d\left(p_{x} / w\right)}{d w}=0
$$

and use this fact to explain why Figure 1 illustrates what happens in the market for $x$ when $w$ is exogenously increased. You should label the two unlabeled curves of Figure 1 and provide an intuitive explanation of what is going on.
(f) If the original situation had $w=1$ and $p_{x}=2$, and the new situation has $w=2$, then what are the new values for $p_{x}$, for $x$, and for $\ell$ ?

Answer to 2020 Qualifier, Section 1 Quation 1
a) equitibnum in the $x$ market:
$x^{D}\left(p_{x}, w\right)=x^{S}\left(p_{x}, w\right)$. Take the differential of bothsides:

$$
\begin{aligned}
& \frac{\partial x^{D}}{\partial p_{x}} d p_{x}+\frac{\partial x^{D}}{\partial w} d w=\frac{\partial x^{s}}{\partial p_{x}} d p_{x}+\frac{\partial x^{s}}{\partial w} d w \\
&\left(\frac{\partial x^{D}}{\partial p_{x}}-\frac{\partial x^{s}}{\partial p_{x}}\right) d p_{x}=\left(\frac{\partial x^{s}}{\partial w}-\frac{\partial x^{D}}{\partial w}\right) d w \\
& \frac{d p_{x}}{d w}=\frac{\frac{\partial x^{s}}{\partial w}-\frac{\partial x^{D}}{\partial w}}{\frac{\partial x^{D}}{\partial p_{x}}-\frac{\partial x^{s}}{\partial p_{x}}}=\frac{\frac{\partial x^{D}}{\partial w}-\frac{\partial x^{s}}{\partial w}}{\frac{\partial x^{s}}{\partial p_{x}}-\frac{\partial x^{D}}{\partial p_{x}}}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \pi=p_{x} x^{s}-w l=p_{x} \alpha \sqrt{l}-w l \\
& 0=\frac{d \pi}{d l}=\frac{p_{x}}{\sqrt{l}}-w \Rightarrow w=\frac{p_{x}}{\sqrt{\ell}} \Rightarrow \sqrt{\ell}=\frac{p_{x}}{w} \Rightarrow l^{D}=\frac{p_{x}^{2}}{w^{2}} .
\end{aligned}
$$

Therefore $x^{S}=2 \sqrt{e^{D}}=2 \sqrt{\frac{P_{x}^{2}}{w^{2}}}=\frac{2 P x}{W}$.
c) $u=x y(24-e)$. Budget constraint: $p_{x} x+p_{y} y=w l$

$$
\begin{aligned}
& \mathcal{L}=x y(24-e)+\lambda\left[w l-p_{x} x-p_{y} y\right] \\
& \text { F.O.C. } \quad 0=\partial \mathcal{L} / \partial \lambda=\omega l-p_{x} x-p_{y} y \\
& \left.\begin{array}{l}
0=\partial z / \partial x=y(24-e)-\lambda p_{x} \\
0=\partial Z / \partial y=x(24-e)-\lambda p_{y}
\end{array}\right\} \lambda=\frac{y(24-e)}{p_{x}}=\frac{x(24-e)}{p_{y}}=\frac{x y}{W} \\
& 0=\partial z / \partial l=-x y+\lambda w \quad \\
& \frac{y}{p_{x}}=\frac{x}{p_{y}} \quad \frac{24-l}{p_{y}}=\frac{y}{w} \\
& y=\frac{P_{x}}{P_{y}} x \quad 24-l=\frac{P_{y} y}{W} \\
& l=24-\frac{P_{y} y}{w}=24-\frac{p_{y}}{w} \frac{P_{x}}{P_{y}} x
\end{aligned}
$$

$$
\Rightarrow l=24-\frac{P x}{w} x
$$

Hence

$$
\begin{aligned}
w l=p_{x} x & +p_{y} y \Leftrightarrow \\
w\left(24-\frac{p_{x}}{w} x\right) & =p_{x} x+p_{y} \frac{p_{x}}{p_{y}} x \\
24 w-p_{x} x & =p_{x} x+p_{x} x \\
24 w & =3 p_{x} x \\
\frac{8 w}{p_{x}} & =x, \text { the demand for } x .
\end{aligned}
$$

d)

$$
\begin{array}{rlrl}
\frac{\partial x^{p}}{\partial w} & =\frac{\partial}{\partial w} \frac{8 w}{p_{x}} \text { from (c) } & \frac{\partial x^{s}}{\partial w}=\frac{\partial}{\partial w} \frac{2 p_{x}}{w} \operatorname{from}(b) \\
& =8 / p_{x} . & & =\frac{-2 p_{x}}{w^{2}} . \\
\frac{\partial x^{D}}{\partial p_{x}} & =\frac{\partial}{\partial p_{x}} \frac{8 w}{p_{x}} & \frac{\partial x^{s}}{\partial p_{x}}=\frac{\partial}{\partial p_{x}} \frac{2 p_{x}}{w}=\frac{2}{w} . \\
& =\frac{-8 w}{p_{x}^{2}} & &
\end{array}
$$

Substituting into (1),
e)

$$
\begin{gathered}
\frac{d\left(p_{x} / w\right)}{d w}=\frac{1}{w} \frac{d p_{x}}{d w}-\frac{p_{x}}{w^{2}} \frac{d w}{d w}=\frac{1}{w} \frac{p_{x}}{w}-\frac{p_{x}}{w^{2}}=0 . \\
\text { from (d) }
\end{gathered}
$$

From (b), $x^{s}=2\left(\frac{P_{x}}{W}\right)$, so if $\frac{P_{x}}{W}$ does not change when $w$ changes, which we know since $\frac{d\left(p_{x} / w\right)}{d w}=0$, then $x^{5}$ does not change when $w$ changes.

Equilitonom in the $x$ market implies

$$
\begin{aligned}
& 2 \frac{P x}{w}=x^{s}=x^{D}=\frac{8 w}{P_{x}} \\
& \uparrow \text { from (c) } \\
& \operatorname{from}(b)
\end{aligned}
$$

$$
\begin{aligned}
\frac{p_{x}^{2}}{w^{2}}=4 \Rightarrow \frac{p_{x}}{w}=2 \text { and } x^{s} & =2 \frac{p_{x}}{w}=2 \cdot 2=4 \\
x^{D} & =8 \frac{w}{p_{x}}=8 / 2=4
\end{aligned}
$$

So $x^{*}=4$.
When $w$ rises exogenously, $x^{s}=2 p_{x} / w$ falls (supplyshifts left) and $x^{D}=8 w / p_{x}$ rises (demand shifts night), as shown in the figure in the next page. The equitiniom $x$ remains at 4 , so the new supply and demand curves intersectat $x=4$, as the old ones did.
f) From $(e), \frac{P_{x}}{w}$ remains unchanged when wises. Before, $\frac{P_{x}}{w}=\frac{2}{1}=2$, So in the new situation, $2=\frac{P_{x}}{w}=\frac{P_{x}}{2} \Rightarrow P_{x}=4$. So $P_{x}$ has nee from 2 to 4. As in $(e), x^{*}=4=2 \sqrt{e^{*}}$ so $e^{*}=4$ : $x$ and $l$ are unchanged.

Optional: Here the increase in $w$ increases demand for $x$ so much that it offsets the fall in $x$ 's supply wove caused by the increase in $W$. Ore might think of this as a Keynesian aggregate demand effect, but clearly it's present in prefect-compctition micro.
$\rightarrow$ Optional comments contivive on the pase after next $\rightarrow$


Figure 4. The market for good $x$. Demand curves are denoted by $x^{D}$ and supply curves are denoted by $x^{S}$.

This-page is optional!

However, not imposing equitibriven in the labor market raises questions about how correct this analysis is. In $(f)$ we concluded that $x^{*}=4=2 \sqrt{e^{*}}$ so $\ell^{*}=4$. However in (c), $\ell=24-\frac{P_{k}}{w} x=24-(2)(4)=24-8=16$, not 4. The 16 is labor supply, the 4 is labor demand. The consumer's budfet anstraint is, from (c),

$$
\left.\begin{array}{rl}
P_{x} x+P_{y} y & =w l \\
\frac{P_{x}}{w} x+\frac{P_{y}}{w} y & =l ; \text { from }(c), y=\frac{P_{x}}{P_{y}} \times s_{0} \\
\frac{P_{x}}{w} x+\frac{P_{x} x}{w} & =l \quad \text { expenditure } / w \\
\frac{2 P_{x} x}{w} & =l \Rightarrow 2 \cdot(2) \cdot(4)=16
\end{array}\right)=l .
$$

So if actually only 4 units of labor are sold, the values derived in the problem won't satisfy the budget constraint: expenditure will be more than income.

Ore might try to address this by re taining (b) but changing (c) to make $l$ exogenous to the consumer (and equal to the firm's $l^{D}$ ). One would still get $y=\frac{P_{x}}{P_{y}} x$. Then from the budget constraint, $w l=p_{x} x+p_{y y}=p_{x} x+p_{x} x=2 p_{x} x \Rightarrow x^{D}=\frac{w l}{2 p_{x}}$. setting $l$ equal to labor dem and $l^{D}=\left(\frac{P_{x}}{w}\right)^{2}$ from (b), $x^{D}=\frac{\ell}{2} \frac{w}{P_{x}}=\frac{1}{2} \frac{P_{x}^{2}}{w^{2}} \frac{w}{P_{x}}=\frac{1}{2} \frac{P_{x}}{w}$. However $x^{s}=2 \frac{P x}{w}$ from (b), so it's not possible to set $x^{D}$ equal to $x^{s}$. In general, modeling a mon-equilisrivm situation requires careful thought and is not easy.
5. [11 points] Attached to this exam is a copy of page 321 of Varian's textbook.
(a) Why is it that the theorem at the top of the page is labeled "Existence of Walrasian Equilibrium"? In other words, what is it about the theorem that leads Varian to call it that?
(b) The proof of the theorem ends on the next page of the textbook. That next page is not attached to this exam. Give the rest of the proof of the theorem.

Existence of Walrasian equilibria. If $\mathbf{z}: S^{k-1} \rightarrow R^{k}$ is a continuous function that satisfies Walras' law, $\mathbf{p z}(\mathbf{p}) \equiv 0$, then there exists some $\mathbf{p}^{*}$ in $S^{k-1}$ such that $\mathbf{z}\left(\mathbf{p}^{*}\right) \leq 0$.

Proof. Define a map $g: S^{k-1} \rightarrow S^{k-1}$ by

$$
g_{i}(\mathbf{p})=\frac{p_{i}+\max \left(0, z_{i}(\mathbf{p})\right)}{1+\sum_{j=1}^{k} \max \left(0, z_{j}(\mathbf{p})\right)} \quad \text { for } i=1, \ldots, k
$$

Notice that this map is continuous since $z$ and the max function are continuous functions. Furthermore, $\mathbf{g}(\mathbf{p})$ is a point in the simplex $S^{k-1}$ since $\sum_{i} g_{i}(\mathrm{p})=1$. This map also has a reasonable economic interpretation: if there is excess demand in some market, so that $z_{i}(\mathbf{p}) \geq 0$, then the relative price of that good is increased.

By Brouwer's fixed-point theorem there is a $\mathbf{p}^{*}$ such that $\mathbf{p}^{*}=\mathbf{g}\left(\mathbf{p}^{*}\right)$; i.e.,

$$
\begin{equation*}
p_{i}^{*}=\frac{p_{i}^{*}+\max \left(0, z_{i}\left(\mathbf{p}^{*}\right)\right)}{1+\sum_{j} \max \left(0, z_{j}\left(\mathbf{p}^{*}\right)\right)} \quad \text { for } i=1, \ldots, k \tag{17.1}
\end{equation*}
$$

We will show that $\mathbf{p}^{*}$ is a Walrasian equilibrium. Cross-multiply equation (17.1) and rearrange to get

$$
p_{i}^{*} \sum_{j=1}^{k} \max \left(0 ; z_{j}\left(\mathbf{p}^{*}\right)\right)=\max \left(0, z_{i}\left(\mathbf{p}^{*}\right)\right) \quad i=1, \ldots, k
$$

Now multiply each of these $k$ equations by $z_{i}\left(\mathbf{p}^{*}\right)$ :

$$
z_{i}\left(\mathbf{p}^{*}\right) p_{i}^{*}\left[\sum_{j=1}^{k} \max \left(0, z_{j}\left(\mathbf{p}^{*}\right)\right)\right]=z_{i}\left(\mathbf{p}^{*}\right) \max \left(0, z_{i}\left(\mathbf{p}^{*}\right)\right) \quad i=1, \ldots, k
$$

Sum these $k$ equations to get

$$
\left[\sum_{j=1}^{k} \max \left(0, z_{j}\left(\mathbf{p}^{*}\right)\right)\right] \sum_{i=1}^{k} p_{i}^{*} z_{i}\left(\mathbf{p}^{*}\right)=\sum_{i=1}^{k} z_{i}\left(\mathbf{p}^{*}\right) \max \left(0, z_{i}\left(\mathbf{p}^{*}\right)\right)
$$

Now $\sum_{i=1}^{k} p_{i}^{*} z_{i}\left(\mathbf{p}^{*}\right)=0$ by Walras' law so we have

$$
\sum_{i=1}^{k} z_{i}\left(\mathbf{p}^{*}\right) \max \left(0, z_{i}\left(\mathbf{p}^{*}\right)\right)=0
$$

Each term of this sum is greater than or equal to zero since each term is either 0 or $\left(z_{i}\left(\mathbf{p}^{*}\right)\right)^{2}$. But if any term were strictly greater than zero, the

Fall 2006
(5) a) $Z$ is access demands.
$z^{2}$ cannot be positive in competitive equilibrium:
$z$ cold be negative in compectifire equititarum, for free foods: access supply (neg alive excess demand) is OK in equilibrium for free foods (whose price is zero).

So a price vector $P_{\sim}^{*}$ making $\underset{\sim}{Z} \leq \underset{\sim}{0}$ is an equitioriom price vector.
b) .. the sum could not be zoo because there would not be dryyregative trims to cancel the strictly positive term and yield a zero sum. Hence everytarmmist be exactly zero:

$$
z_{i} \quad \max \left(0, z_{i}\right)=0 \forall i
$$

This is OK for $z_{i}=0$, and if $z_{i}<0$, it is $z_{c} * 0=0$, which is still of. If $z_{i}>0$, this is $z_{i}^{2}>0$, which is wrong. So $z_{i}>0$ is rube out, $z_{i} \leqslant 0 \forall i$ is the only possibility, so $z \leqslant 0$.

This is better notation than the original version. The original version is on the next page. I did not write an answer with this improved notation.
old: Fall 2009 Final, Qu. 1 (but with different notation)

## 2. [17 points]

Consider a two-person, two-commodity economy in which the two people are named Smith (abbreviated $s$ ) and Jones (abbreviated $j$ ) and the two commodities are apples (abbreviated $a$ ) and bananas (abbreviated $b$ ). Let " $x_{i j}$ " represent the amount of commodity $i(i \in\{a, b\})$ belonging to person $j(j \in\{s, j\})$. Suppose the utility function of Smith is

$$
\ln x_{a s}+\ln x_{b s}
$$

and the utility function of Jones is

$$
\ln x_{a j}+\ln x_{b j}
$$

Suppose the initial endowments of Smith and Jones are $\boldsymbol{\omega}_{s}=\omega_{s}\left(a_{s}, b_{s}\right)=$ $(1,1)$ and $\omega_{j}=\omega_{j}\left(a_{j}, b_{j}\right)=(2,1)$, respectively. Find the competitive general equilibrium of this economy. (That is, find the price of each good and find the quantities of each good consumed by each person.)

## Frolsxam Foll 2009

1. [20 points] Consider a two-person, two-commodity economy in which " $x_{i j}$ " represents the amount of commodity $i$ belonging to person $j$. Suppose the utility function of person 1 is

$$
\ln x_{11}+\ln x_{21}
$$

and the utility function of person 2 is

$$
\ln x_{12}+\ln x_{22}
$$

Suppose the initial endowments of persons 1 and 2 are $\omega_{1}=(1,1)$ and $\omega_{2}=(2,1)$, respectively. Find the competitive general equilibrium of this economy. (That is, find the price of each good and find the quantities of each good consumed by each person.)

Answer to Question 1, 2009 Fall Final Exam, Econ. 7005

$$
\begin{array}{ll}
u_{1}\left(x_{11}, x_{21}\right)=\ln x_{11}+\ln x_{21} & \omega_{1}=(1,1) \\
u_{2}\left(x_{12}, x_{22}\right)=\ln x_{12}+\ln x_{22} & \omega_{2}=(2,1)
\end{array}
$$

We could choose a numerate but I'll we the simplex: $p_{1}+p_{2}=1$.

$$
\Rightarrow \quad p_{2}=1-p_{1}
$$

so I won't use $P_{2}$ any more, just $1-p_{1}$.
Consumer 1: max $u$, s.t. expenditives $=$ income

$$
\left.\begin{array}{rl}
p_{1} x_{11}+\left(1-p_{1}\right) x_{21} & =p_{1}(1)+\left(1-p_{1}\right)(1) \\
& =p_{1}+1-p_{1}=1 \\
\mathcal{L}=\ln x_{11}+\ln x_{21}+\lambda\left[1-p_{1} x_{11}-\left(1-p_{1}\right) x_{21}\right] \\
0=\partial \mathscr{L} / \partial \lambda=1-p_{1} x_{11}-\left(1-p_{1}\right) x_{21} \\
0=\partial \mathscr{L} / \partial x_{11} & =\frac{1}{x_{11}}-\lambda p_{1} \\
0=\partial \mathscr{L} / \partial x_{21} & =\frac{1}{x_{21}}-\lambda\left(1-p_{1}\right)
\end{array}\right\} \Rightarrow \frac{1 / x_{11}}{1 / x_{21}}=\frac{\lambda p_{1}}{\lambda\left(1-p_{1}\right)} \begin{aligned}
\frac{x_{21}}{x_{11}} & =\frac{p_{1}}{1-p_{1}} \\
x_{21} & =\frac{p_{1}}{1-p_{1}} x_{11} . \text { Substitute }
\end{aligned}
$$

into the budget constraint:

$$
\left.\begin{array}{rl}
0 & =1-p_{1} x_{11}-\left(1-p_{1}\right) \frac{p_{1}}{1-p_{1}} x_{11} \\
& =1-p_{1} x_{11}-p_{1} x_{11}=1-2 p_{1} x_{11} \\
2 p_{1} x_{11} & =1 \\
x_{11}^{D} & =\frac{1}{2 p_{1}} \text { and } \\
x_{21}^{D} & =\frac{p_{1}}{1-p_{1}} \frac{1}{2 p_{1}}=\frac{1}{2\left(1-p_{1}\right)}
\end{array}\right\} p
$$

\}Person 1's demand corves.

Consumer 2: $\max u_{2}$ s.t. expenditures = income

$$
\left.\begin{array}{rl}
p_{1} x_{12}+\left(1-p_{1}\right) x_{22} & =p_{1}(2)+\left(1-p_{1}\right)(1) \\
& =2 p_{1}+1-p_{1}=p_{1}+1 \\
\mathscr{L}=\ln x_{12}+\ln x_{22}+\lambda\left[p_{1}+1-p_{1} x_{12}-\left(1-p_{1}\right) x_{22}\right] \\
0=\partial z / \partial \lambda=p_{1}+1-p_{1} x_{12}-\left(1-p_{1}\right) x_{22} \\
\begin{array}{l}
0=\partial z / \partial x_{12}
\end{array}=\frac{1}{x_{12}}-\lambda p_{1} \\
0=\partial L / \partial x_{22} & =\frac{1}{x_{22}}-\lambda\left(1-p_{1}\right)
\end{array}\right\} \Rightarrow \frac{1 / x_{12}}{1 / x_{22}}=\frac{\lambda p_{1}}{\lambda\left(1-p_{1}\right)} \begin{aligned}
\frac{x_{22}}{x_{12}} & =\frac{p_{1}}{1-p_{1}} \\
x_{22} & =\frac{p_{1}}{1-p_{1}} x_{12} . \text { Substituting }
\end{aligned}
$$

into the budget Constraint:

$$
\left.\begin{array}{rl}
0 & =p_{1}+1-p_{1} x_{12}-\left(1-p_{1}\right) \frac{p_{1}}{1-p_{1}} x_{12} \\
& =p_{1}+1-p_{1} x_{12}-p_{1} x_{12}=p_{1}+1-2 p_{1} x_{12} \\
{ }^{2} p_{1} x_{12} & =p_{1}+1 \\
x_{12}^{D} & =\frac{p_{1}+1}{2 p_{1}} \\
x_{22}^{D} & =\frac{p_{1}}{1-p_{1}} \frac{p_{1}+1}{2 p_{1}}=\frac{1}{2} \frac{p_{1}+1}{1-p_{1}}
\end{array}\right\} \text { person 2's demand curves. }
$$

Equdibnim (supply $=$ demand) in: Market for Good $1 \quad x_{11}^{D}+x_{12}^{D}=2+1$

$$
\text { " " } 2 x_{21}^{D}+\chi_{22}^{D}=1+1
$$

We only have to check one market lit it clears, the other will automatically (lear). I do the market for Good 1:

$$
\begin{aligned}
\frac{1}{2 p_{1}}+\frac{p_{1}+1}{2 p_{1}} & =3 \\
\frac{p_{1}+2}{2 p_{1}} & =3 \\
p_{1}+2 & =6 p_{1} \\
2 & =5 p_{1} \\
\frac{2}{5} & =p_{1}
\end{aligned}
$$

So the vest of the equilibnum is

$$
\begin{aligned}
& p_{2}=1-p_{1}=1-\frac{2}{5}=\frac{3}{5} \\
& x_{11}=\frac{1}{2 p_{1}}=\frac{1}{4 / 5}=\frac{5}{4} \\
& x_{21}=\frac{1}{2\left(1-p_{1}\right)}=\frac{1}{2\left(1-\frac{2}{5}\right)}=\frac{1}{2(3 / 5)}=\frac{1}{6 / 5}=\frac{5}{6} \\
& x_{12}=\frac{p_{1}+1}{2 p_{1}}=\frac{(2 / 5)+1}{2(2 / 5)}=\frac{7 / 5}{4 / 5}=\frac{7}{4} \\
& x_{22}=\frac{1}{2} \frac{p_{1}+1}{1-p_{1}}=\frac{1}{2} \frac{(2 / 5)+1}{1-\frac{2}{5}}=\frac{1}{2} \frac{7 / 5}{3 / 5}=\frac{1}{2} \frac{7}{3}=\frac{7}{6} .
\end{aligned}
$$

Optional: Neck feasibility: $\quad 3 \stackrel{?}{=} x_{11}+x_{12}$

$$
\begin{aligned}
& =\frac{5}{4}+\frac{7}{4}=\frac{12}{4} O K \\
2 & \stackrel{?}{=} x_{21}+x_{22} \\
& =\frac{5}{6}+\frac{7}{6}=\frac{12}{6} \text { OK. }
\end{aligned}
$$

## Section 1. <br> Answer all of the following three questions.

1. [14 points] Suppose an economy has two consumers, Smith and Jones, and two commodities, $x$ and $y$. Smith's utility function and initial endowment are

$$
\begin{aligned}
u_{s} & =\ln x_{s}+\ln y_{s} \\
\boldsymbol{\omega}_{s} & =\left(\omega_{s x}, \omega_{s y}\right)=(0,1) .
\end{aligned}
$$

Jones's initial endowment is

$$
\boldsymbol{\omega}_{j}=\left(\omega_{j x}, \omega_{j y}\right)=(1,0)
$$

So the only way Jones can get any of good $y$ is to get it from Smith. Jones's true utility function is

$$
u_{j}=\ln x_{j}+\ln y_{j}
$$

but he may be unsure about the quality of the $y$ which he gets from Smith; we will model this by assuming Jones's utility function is instead

$$
u_{j}=\ln x_{j}+\psi \ln y_{j}
$$

where $0 \leq \psi \leq 1$.
(a) What situation does $\psi=1$ represent?
(b) What situation does $\psi=0$ represent?
(c) Find the general equilibrium $x_{j}, y_{j}, x_{s}$, and $y_{s}$ if $\psi>0$.
(d) Find the general equilibrium $x_{j}, y_{j}, x_{s}$, and $y_{s}$ if $\psi=0$. Be sure your answer makes intuitive sense.
(e) Set up an Edgeworth Box Diagram. Show on this diagram how the allocations of $x$ and $y$ to Smith and Jones change as $\psi$ changes from 1 to 0 . (It makes no sense to draw indifference curves on this diagram because changing $\psi$ implies changing utility functions.)

Summer 2012, Qualifying Exam, Section 1 Qu. 1

Answers to Prof i. Lozada's portion of the
Summer 2012 Micro Qualifying Exam
(1)
a) Jones filly trusts that the $y$ he gets from smith is good.
b) Jones thanks any $y$ he would get from Smith would be of such bad quality that it would not increase Jones's utility.
c) Smith:

Note: It's fine to choose a numeraive or to set

$$
\begin{aligned}
& u_{s}=\ln x_{s}+\ln y_{s} \\
& \omega_{s}=(0,1)
\end{aligned}
$$

$$
P_{x}+P_{y}=1 \text {, but I didneither and I could }
$$ still find the equilibrium quantities.

income: $0_{p_{x}}+1 p_{y}=p_{y}$
expenditures: $P_{x} x_{s}+p_{y} y_{s}$

$$
\begin{gathered}
\text { problem: max us s.t. } p_{y}=p_{x} x_{s}+p_{y} y_{s} \\
\mathscr{L}=\ln x_{s}+\ln y_{s}+\lambda\left(p_{y}-p_{x} x_{s}-p_{y} y_{s}\right) . \text { F.o.c.s: } \\
0=\partial \alpha / \partial x_{s}=\frac{1}{x_{s}}-\lambda p_{x} \Rightarrow \lambda=\frac{1}{p_{x} x_{s}} \mathbb{y} \\
0=\partial z / \partial y_{s}=\frac{1}{y_{s}}-\lambda p_{y} \quad \Rightarrow y_{s}=\frac{1}{\lambda p_{y}}=\frac{p_{x} x_{s}}{p_{y}} \\
0=\partial \not / \partial \lambda=p_{y}-p_{x} x_{s}-p_{y} y_{s} \\
\Downarrow \\
p_{y}=p_{x} x_{s}+p_{y} \frac{p_{x} x_{s}}{p_{y}} \Rightarrow
\end{gathered}
$$

$$
\begin{aligned}
p_{y} & =p_{x} x_{s}+p_{x} x_{s} \\
& =2 p_{x} x_{s} \\
\Rightarrow x_{s}^{*} & =\frac{p_{y}}{2 p_{x}} \text { and } y_{s}^{*}=\frac{p_{x}}{p_{y}} x_{s}^{*}=\frac{p_{x}}{p_{y}} \frac{p_{y}}{2 p_{x}}=\frac{1}{2} .
\end{aligned}
$$

Jones:

$$
\begin{aligned}
& u_{j}=\ln x_{j}+\psi \ln y_{j} \\
& \underset{\sim}{\omega_{j}}=(1,0)
\end{aligned}
$$

income: $1_{p_{x}}+O p_{y}=p_{x}$
expenditures: $p_{x} x_{j}+p_{y} y_{j}$
problem: max $u_{j}$ st. $p_{x}=p_{x} x_{j}+p_{y} y_{j}$

$$
\mathscr{L}=\ln x_{j}+\psi \ln y_{j}+\lambda\left(P_{x}-p_{x} x_{j}-p_{y} y_{j}\right) .
$$

First Order Conditions:

$$
\begin{gathered}
0=\partial \not / \partial x_{j}=\frac{1}{x_{j}}-\lambda p_{x} \Rightarrow \lambda p_{x}=\frac{1}{x_{j}} \Rightarrow \lambda=\frac{1}{p_{x} x_{j}} \\
0, \partial \mathscr{L} / \partial y_{j}=\frac{\psi}{y_{j}}-\lambda p_{y} \Rightarrow \frac{\psi}{y_{j}}=\lambda p_{y}=\frac{1}{p_{x} x_{j}} p_{y} \Rightarrow \\
0=\partial \alpha / \partial \lambda=p_{x}-p_{x} x_{j}-p_{y} y_{j} \quad y_{j}=\psi \frac{p_{x} x_{j}}{p_{y}} . \\
\Downarrow \\
p_{x}=p_{x} x_{j}+p_{y} y_{j}=p_{x} x_{j}+p_{y} \psi \frac{p_{x} x_{j}}{p_{y}} \\
=p_{x} x_{j}+\psi p_{x} x_{j}=(1+\psi) p_{x} x_{j} \Rightarrow
\end{gathered}
$$

$$
\begin{aligned}
& I=(1+\psi) x_{j} \Rightarrow x_{j}^{*}=\frac{1}{1+\psi} \\
& \quad \text { and } y_{j}^{*}=\psi \frac{p_{x}}{p_{y}} x_{j}^{*}=\psi \frac{p_{x}}{P_{y}} \frac{1}{1+\psi}=\frac{\psi}{1+\psi} \frac{p_{x}}{P_{y}} .
\end{aligned}
$$

Either impose market-deenry for $x$ or for $y$ (no need to do both).

- If you chose to impose makect-clearing for $x$ :
$S_{x}=D_{x} \quad$ "supply equals demand"

$$
1=\frac{p_{y}}{2 p_{x}}+\frac{1}{1+\psi}
$$

$$
\tau_{x_{s m \text { th }}^{*}} \tau_{\text {Jones } x_{j}^{*}}
$$

$$
1-\frac{1}{1+\psi}=\frac{p_{y}}{2 p_{x}}
$$

$$
\frac{1+\psi-1}{1+\psi}=\frac{p_{y}}{2 p_{x}}
$$

$\frac{2 \psi}{1+\psi}=\frac{P_{y}}{P_{x}}$, the equitionim price ratio.

$$
\begin{aligned}
x_{j}^{*} & =\frac{1}{1+\psi} \\
x_{s}^{*} & =\frac{p_{y}}{2 p_{x}}=\frac{\psi}{1+\psi} \\
y_{s}^{*} & =\frac{1}{2} \\
y_{j}^{*} & =\frac{\psi}{1+\psi} \frac{p_{x}}{p_{y}}
\end{aligned}=\frac{\psi}{1+\psi} \frac{1+\psi}{2 \psi} \text { if } \psi \neq 0
$$

- If you chose to impose market-clearing for $y$ :

$$
\begin{aligned}
& S_{y}=D_{y} \quad \text { "supply equals demand" } \\
& 1=y_{s}^{*}+y_{j}^{*}=\frac{1}{2}+\frac{\psi}{1+\psi} \frac{P_{x}}{P_{y}} \\
& \frac{1}{2}=\frac{\psi}{1+\psi} \frac{P_{x}}{P_{y}} \\
& \frac{1+\psi}{2 \psi}=\frac{P_{x}}{P_{y}} \text { if } \psi \neq 0 . \text { This equiv librium price ratio fives } \\
& x_{s}^{*}=\frac{P_{y}}{2 P_{x}}=\frac{1}{2} \frac{P_{y}}{P_{x}}=\frac{1}{2} \frac{2 \psi}{1+\psi}=\frac{\psi}{1+\psi} \\
& x_{j}^{*}=\frac{1}{1+\psi} \\
& y_{s}^{*}=\frac{1}{2} \\
& y_{j}^{*}=\frac{\psi}{1+\psi} \frac{P_{x}}{P_{y}}=\frac{\psi}{1+\psi} \frac{1+\psi}{2 \psi}=\frac{1}{2} .
\end{aligned}
$$

(Note that the answers are the same negardless of which one of the two markets you chose for market-clearing.)
d) If $\psi=0$, the demands are

$$
\begin{aligned}
& x_{s}=\frac{p_{y}}{2 p_{x}} \\
& y_{s}=\frac{1}{2} \\
& x_{j}=\frac{1}{1+\psi}=1 \\
& y_{j}=\frac{\psi}{1+\psi} \frac{p_{x}}{p_{y}}=0 .
\end{aligned}
$$

Jones gets noutiity from $y$, so $y_{j}=0$. Jones therefore keeps his entire endowment of $x$ (why should he trade any away for the wortheless $y$ ?): $x_{j}=1$. Since Jones does not want to trade, smith has no one to trade with, so he keeps his endowment, $\omega_{s}=(0,1)$.

This is actually incompatible with competitive equilibrium, since the only competitive equilibrium $y_{s}$ is $\frac{1}{2}$, not 1 . The failure of existence of a competifine general equilitinvm when $\psi=0$ is related to the fact that
Smith has tastay at $\omega_{\sim}=(0,1)$, but at that point his utility is $-\infty$.
e)


$$
\text { For } \begin{aligned}
\psi>0, x_{s} & =\frac{\psi}{1+\psi} \quad y_{s}=\frac{1}{2} \quad . \text { At } \psi=1, \quad x_{s}=\frac{1}{2} \text { and } x_{j}=\frac{1}{2} . \\
x_{j} & =\frac{1}{1+\psi} \quad y_{j}=\frac{1}{2}
\end{aligned}
$$

## Final Exam <br> 2004 <br> Question <br> 3

(5)
3. [19 points] Suppose an economy consists of two persons, "a" and "b". Person "a" has available 1 unit of "time" which he divides between rest $R_{a}$ and labor $l_{a}$. Person "b" has available 1 unit of "time" which he divides between rest $R_{b}$ and labor $l_{b}$.
Good " $x$ " is produced by one competitive firm according to the production function

$$
x=\sqrt{\text { labor hired }} .
$$

This firm is completely owned by Person a.
The utility functions of the two individuals are

$$
\begin{aligned}
& u_{a}=x_{a} R_{a} \\
& u_{b}=x_{b}^{2} R_{b} .
\end{aligned}
$$

Take the price of labor as the numeraire. Find one equation in one unknown, with the unknown being the competitive general equilibrium price of $x$. Do not try to solve this equation for the equilibrium price of $x$.

Final Exam

$$
2004
$$

Answer 3
(3)

$$
\begin{array}{lll}
R_{a}+l_{a}=1 & u_{a}=x_{a} R_{a} & \text { price of labor }=1 \\
R_{b}+l_{b}=1 & u_{b}=x_{b}^{2} R_{b} & \text { price of } x: \text { call this just " } p "
\end{array}
$$

Person a'stirm: $x=\sqrt{\text { labor }}$

$$
\text { Firm: } \left.\begin{array}{rl}
\pi= & p x-1 l \\
= & p \sqrt{l}-l \\
\max \pi \Rightarrow 0=\frac{1}{2} p l^{-1 / 2}-1 \Rightarrow 1=\frac{1}{2} p l^{-1 / 2} \\
& \frac{2}{p}=e^{-1 / 2} \\
& \frac{p}{2}=l^{1 / 2} \Rightarrow \frac{p^{2}}{4}=l \text { labor } \\
\text { demand }
\end{array}\right] \begin{array}{ll}
\pi^{*}=p \sqrt{l^{*}}-l^{2}=p\left(\frac{p}{2}\right)-\frac{p^{2}}{4} \\
= & \\
\frac{p^{2}}{2}-\frac{p^{2}}{4}=\frac{p^{2}}{4} . \quad x \text { supplied }=\sqrt{l^{D *}}=\sqrt{\frac{p^{2}}{4}}=\frac{p}{2} .
\end{array}
$$

Person a bulfet constrant: income $\pi^{*}+1 l_{a}=\frac{p^{2}}{4}+l_{a}$ expunditures $p x_{a}$

$$
\begin{gathered}
u_{a}=x_{a} R_{a}=x_{a}\left(1-l_{a}\right) \\
\mathscr{L}=x_{a}\left(1-l_{a}\right)+\lambda\left(\frac{1}{4} p^{2}+l_{a}-p x_{a}\right) \\
0=\partial \mathscr{L} / \partial \lambda=\frac{1}{4} p^{2}+l_{a}-p x_{a} \\
\left.0=\partial \mathscr{L} / \partial x_{a}=1-l_{a}-\lambda p\right\} \frac{1-l_{a}}{-x_{a}}=\frac{\lambda p}{-\lambda} \\
0=\partial \mathscr{L} / \partial l_{a}=-x_{a}+\lambda \quad \frac{l_{a}-1}{x_{a}}=-p \\
\text { Final Exam } \quad \frac{1-l_{a}}{x_{a}}=p
\end{gathered}
$$

Answer 3 cont...

$$
1-l_{a}=p x_{a}
$$

$1-p x_{a}=l_{a}$ into bufget constraint:

$$
\begin{array}{r}
0=\frac{1}{4} p^{2}+\left(1-p x_{a}\right)-p x_{a}=\frac{1}{4} p^{2}+1-2 p x_{a} \Rightarrow 2 p x_{a}=\frac{p^{2}}{41}+1 \\
x_{a}=\frac{p}{8}+\frac{1}{2 p} .
\end{array}
$$

Persion b budjet constrant $1 l_{b}=\rho x_{b}$

$$
\left.\begin{array}{l}
u_{b}=x_{b}^{2} R_{b}=x_{b}^{2}\left(1-l_{b}\right) \\
\mathcal{L}=x_{b}^{2}-x_{b}^{2} l_{b}+\lambda\left(l_{b}-p x_{b}\right) \\
0=2 \mathcal{L} / \partial \lambda=l_{b}-p x_{b} \\
0=2 \mathcal{L} / \partial x_{b}=2 x_{b}-2 x_{b} l_{b}-\lambda p \\
0=2 \mathcal{L} / \partial l_{b}=-x_{b}^{2}+\lambda
\end{array}\right\} \begin{gathered}
\frac{2 x_{b}-2 x_{b} l_{b}}{-x_{b}^{2}}=\frac{-\lambda_{p}}{\lambda} \\
\Downarrow \\
\frac{2-2 l_{b}}{-x_{b}}=-p \Rightarrow
\end{gathered}
$$

$$
\begin{aligned}
& \frac{2-2 l_{b}}{x_{b}}=p \\
& 2-2 l_{b}=p x_{b} \Rightarrow 2-p x_{b}=2 l_{b} \Rightarrow l_{b}=1-\frac{1}{2} p x_{b} \text { intobudget constraint } \\
& 1-\frac{1}{2} p x_{b}=p x_{b} \\
& 1=\frac{3}{2} p x_{b} \Rightarrow x_{b}=\frac{2}{3 p} . \quad \text { Final Exain }
\end{aligned}
$$

Clear $x \Rightarrow$
2004
Answer 3 cont...

$$
x_{a}^{D}+x_{b}^{D}=x^{S}
$$

$\frac{p}{8}+\frac{1}{2 p}+\frac{2}{3 p}=\frac{p}{2}$ which is the answer.
Optional: $\frac{1}{p}\left(\frac{1}{2}+\frac{2}{3}\right)=p\left(\frac{1}{2}-\frac{1}{8}\right)$

$$
\begin{aligned}
\frac{1}{p} \frac{3+4}{6}=p \frac{4-1}{8} \Leftrightarrow \frac{7}{6 p}=\frac{3 p}{8} \Rightarrow & 7.8=3.6 p^{2} \\
& 7.4=3.3 p^{2} \\
& p=\sqrt{\frac{7.4}{3 \cdot 3}}=\frac{2}{3} \sqrt{7}
\end{aligned}
$$

Ore cold also solve this question by jetting labor supp y fractions and then earning the labor market.
Checks (optional):

$$
\begin{gathered}
x_{b}^{D}=\frac{2}{3 p}=\frac{2}{3} \cdot \frac{3}{2} \frac{1}{\sqrt{7}}=\frac{1}{\sqrt{7}} \\
x^{D}=x_{a}^{D}+x_{b}^{D}=\frac{\sqrt{7}}{12}+\frac{3}{4 \sqrt{7}}+\frac{1}{\sqrt{7}} \\
x^{s}=\frac{1}{2} p=\frac{\sqrt{7}}{3} \\
x^{D}-x^{s}=\frac{\sqrt{7}}{12}+\frac{3}{4 \sqrt{7}}+\frac{1}{\sqrt{7}}-\frac{\sqrt{7}}{3}=\sqrt{7}\left(\cdot \frac{1}{12}-\frac{1}{3}\right)+\frac{1}{\sqrt{7}}\left(\frac{3}{4}+1\right) \\
=\sqrt{7} \frac{1-4}{12}+\frac{1}{\sqrt{7}} \frac{3+4}{4}=\frac{-3}{12} \sqrt{7}+\frac{7}{4} \frac{1}{\sqrt{7}}=\frac{-1}{4} \sqrt{7}+\frac{\sqrt{7}}{4}=0 \text { oi } \\
x \text { clears }
\end{gathered}
$$

Continuation of optional checks
Does 1 clear?

$$
\begin{aligned}
d_{a}^{S} & =1-p x_{a} \\
& =1-\frac{2}{3} \sqrt{7}\left(\frac{\sqrt{7}}{12}+\frac{3}{4 \sqrt{7}}\right) \\
& =1-\frac{14}{36}-\frac{1}{2}=\frac{36-14-18}{36}=\frac{4}{36}=\frac{1}{9} .
\end{aligned}
$$

Final Exam
2004

$$
l_{b}^{5}=1-\frac{1}{2} p x_{b}=1-\frac{1}{2} \frac{2}{3} \sqrt{7} \frac{1}{\sqrt{7}}=1-\frac{1}{3}=\frac{2}{3}
$$

Answer 3 cont...

$$
\begin{aligned}
& l^{D}=\frac{p^{2}}{4}=\frac{1}{4} \frac{4}{9} \cdot 7=\frac{7}{9} \\
& l^{D}-l_{a}^{5}-l_{b}^{5}=\frac{7}{9}-\frac{1}{9}-\frac{2}{3}=\frac{7}{9}-\frac{1}{9}-\frac{6}{9}=0 \text { or, }
\end{aligned}
$$ $l$ clear

Perron a's budget construing:

$$
\begin{aligned}
& \pi=p x^{3}-1 l^{j}=\frac{2}{3} \sqrt{7} \cdot \frac{\sqrt{7}}{3}-\frac{7}{9}=\frac{2 \cdot 7}{9}-\frac{7}{9}=\frac{7}{9} \\
& \text { income }=\pi+1 l a=\frac{7}{9}+\frac{1}{9}=8 / 9 \longleftarrow 4 \\
& \text { expenditures } p x_{a}=\frac{2}{3} \sqrt{7} \cdot\left(\frac{\sqrt{7}}{12}+\frac{3}{4 \sqrt{7}}\right) \\
& \\
& =\frac{2}{3} \cdot \frac{7}{18}+\frac{1}{2}=\frac{7}{18}+\frac{9}{18}=\frac{16}{18}=\frac{8}{9}
\end{aligned}
$$

Person b's budget constraint :

$$
\begin{aligned}
& \text { income }=7 l_{b}^{5}=\frac{2}{3} \\
& \text { expenditures }=p x_{b}=\frac{2 \sqrt{7}}{3} \cdot \frac{1}{\sqrt{7}}=\frac{2}{3} \text {-OK! }
\end{aligned}
$$

## 2015 Final Exam Qu. 1

1. [18 points] Suppose an economy consists of two persons, "a" and "b". Person "a" has available 1 unit of "time" which he divides between rest $R_{a}$ and labor $l_{a}$. Person "b" has available 1 unit of "time" which he divides between rest $R_{b}$ and labor $l_{b}$.
Good " $x$ " is produced by one competitive firm according to the production function

$$
x=\sqrt{\text { labor hired }} .
$$

This firm is completely owned by Person a.
The utility functions of the two individuals are

$$
\begin{aligned}
& u_{a}=x_{a} R_{a} \\
& u_{b}=x_{b}^{2} R_{b} .
\end{aligned}
$$

Take the price of labor as the numéraire. Find the competitive general equilibrium of this economy (that is, find the prices of all the goods, the amount produced of any produced goods, and the consumption bundle of each person).

Answer to Final Exam, Econ. 7005. Fall 2015
(1)

From the previous question (Final Exam 2004 Answer 3), including parts optional in it which were required here, we have:
price of labor $=1 \quad$ price of $x$, called " $p$ ": $\frac{2}{3} \sqrt{7}$
labor supply by a: $\frac{1}{9}$
supply of $x: \sqrt{7} / 3$
labor supply by $b: \frac{2}{3}$
demand for $x$ by $a: \frac{\sqrt{7}}{12}+\frac{3}{4 \sqrt{7}}=\frac{4 \sqrt{7}}{21} *$
total labor supply: $\frac{1}{9}+\frac{2}{3}=\frac{1+6}{9}=\frac{7}{9}$ demand for $x$ by $b: \frac{1}{\sqrt{7}}$
labor demand: $\frac{7}{9}$
total demand for $x: \sqrt{7} / 3=$
Rest of $a=1-\frac{1}{9}=\frac{8}{9}$
Rest of $b=1-\frac{2}{3}=\frac{1}{3}$

Optional: $\left(x_{a}, R_{a}\right)=\left(\frac{\sqrt{7}}{12}+\frac{3}{4 \sqrt{7}}, \frac{8}{9}\right) \approx(0.50,0.89)$

$$
\left(x_{b}, R_{3}\right)=\left(\frac{1}{\sqrt{7}}, \frac{1}{3}\right) \approx(0.38,0.33)
$$

" $a$ " and " $b$ " have the same endowments of time, but " $a$ "owns the firm (which makes stich, portiere petit), so in equilibrium, "a" gets more of both goods.

$$
* \frac{\sqrt{7}}{12}+\frac{3}{4 \sqrt{7}}\left(\frac{\sqrt{7}}{\sqrt{7}}\right)=\frac{\sqrt{7}}{12}+\frac{3 \sqrt{7}}{4.7}=\frac{\sqrt{7}}{4}\left(\frac{1}{3}+\frac{3}{7}\right)=\frac{\sqrt{7}}{4} \frac{7+9}{21}=\frac{16 \sqrt{7}}{4.21}=\frac{4 \sqrt{7}}{21}
$$

## 2017 Final Exam Qu. 3

## 3. [17 points]

Suppose an economy consists of two persons, "a" and "b". Person "a" has available 1 unit of "time" which he divides between rest $R_{a}$ and labor $l_{a}$. Person "b" has available 1 unit of "time" which he divides between rest $R_{b}$ and labor $l_{b}$.
Good " $x$ " is produced by one competitive firm according to the production function

$$
x=\sqrt{\text { labor hired }} .
$$

This firm is completely owned by Person a.
The utility functions of the two individuals are

$$
\begin{aligned}
& u_{a}=x_{a} R_{a} \quad \text { and } \\
& u_{b}=x_{b} R_{b}
\end{aligned}
$$

Take the price of labor as the numéraire. Find the competitive general equilibrium of this economy (that is, find the prices of all the goods, the amount produced of any produced goods, and the consumption bundle of each person).
$R_{a}+l_{a}=1 \quad u_{a}=x_{a} R_{a} \quad$ Take the price of labor to be 1. Let the
$R_{b}+l_{b}=1 \quad u_{b}=x_{b} R_{b} \quad$ price of $x b_{e}$ "p."
Person a's from: $\chi=\sqrt{\text { labor }}$
Firm:

$$
\begin{aligned}
& \pi=p x-1 l^{r} \text { total labor, } l_{a}+l_{b} \\
& =p \sqrt{l}-l \\
& \max \pi \Rightarrow 0=\frac{d \pi}{d l}=\frac{1}{2} p l^{-1 / 2}-1 \Rightarrow 1=\frac{1}{2} p l^{-1 / 2} \\
& \frac{2}{p}=e^{-1 / 2} \\
& \frac{p}{2}=e^{\prime \prime 2} \Rightarrow l=P^{2} / 4 \\
& \uparrow \\
& x \text { supplied }=\sqrt{\ell^{D}}=\sqrt{p^{2} / 4}=P / 2 \text {. } \\
& \pi^{*}=p \sqrt{\ell^{*}}-l^{*} \\
& =p \sqrt{p^{2} / 4}-p^{2} / 4=p\left(\frac{p}{2}\right)-\frac{p^{2}}{4}=\frac{p^{2}}{2}-\frac{p^{2}}{4}=\frac{p^{2}}{4} .
\end{aligned}
$$

Person a. budget constraint: income is $\pi^{*}+1 l_{a}=\frac{p^{2}}{4}+l a$ expenditione is $p x_{a}$

$$
u_{a}=x_{a} R_{a}=x_{a}\left(1-l_{a}\right) .
$$

max $x_{a}\left(1-l_{a}\right)$ st. $p^{2} / 4+l_{a}=p x_{a}$

$$
\begin{aligned}
& \mathscr{L}=x_{a}\left(1-l_{a}\right)+\lambda\left(\frac{p^{2}}{4}+l_{a}-p x_{a}\right) \\
& 0=\partial \mathcal{L} / \partial \lambda=p^{2} / 4+l_{a}-p x_{a} \\
& \left.0=\partial \mathcal{L} / \partial x_{a}=1-l_{a}-\lambda p \Rightarrow \lambda=\frac{l_{a}-1}{p}=\frac{1-l_{a}}{p}\right\} \frac{1-l_{a}}{p}=x_{a} \\
& 0=\partial L / \partial l_{a}=-x_{a}+\lambda \Rightarrow \lambda=x_{a}
\end{aligned}
$$

substinding in to the budfet construant,

$$
\begin{aligned}
\frac{p^{2}}{4}+l_{a} & =p\left(\frac{1-l_{a}}{p}\right) \\
\frac{p^{2}}{4}+l_{a} & =1-l_{a} \\
2 l_{a} & =1-\frac{p^{2}}{4} \\
l_{a} & \left.=\frac{1}{2}-\frac{p^{2}}{8} \text { and } x_{a}=\frac{1-l_{a}}{p}=\frac{1}{p}-\frac{1}{p} l_{a}=\frac{1}{p}-\frac{1}{2 p}+\frac{p}{8}\right) \\
& =\frac{p}{8}+\frac{2}{2 p}-\frac{1}{2 p}=\frac{p}{8}+\frac{1}{2 p} .
\end{aligned}
$$

Person b.
income is $1 l_{b}$; expanditive is $p x_{b} ; u_{b}=x_{b} p_{b}=x_{b}\left(1-l_{b}\right)$
Maximiziry $u_{b}$ s.t. $1 l_{b}=p x_{b} \Rightarrow$

$$
\left.\begin{array}{rl}
\mathscr{L} & =x_{b}\left(1-l_{b}\right)+\lambda\left(l_{b}-p x_{b}\right) \\
0 & =\partial \mathscr{L} / \partial \lambda=l_{b}-p x_{b} \\
0 & =\partial \mathcal{L} / \partial x_{b}=1-l_{b}-\lambda p \Rightarrow \lambda=\frac{1-l_{b}}{p} \\
0=\partial \mathcal{L} / \partial l_{b}=-x_{b}+\lambda \Rightarrow \lambda=x_{b}
\end{array}\right\} \begin{aligned}
& x_{b}=\frac{1-l_{b}}{p} . \text { Substituy into } \\
& \text { thebudjec constraint, } \\
& l_{b}=p\left(\frac{1-l_{b}}{p}\right) \\
&=1-l_{b} \\
& 2 l_{b}=1 \Rightarrow l_{b}=1 / 2 \text { and } \\
& x_{b}=\frac{1-l_{b}}{p}=\frac{1}{2 p} .
\end{aligned}
$$

Method 1: Clear the market for $x$.
supply $x^{5}=p / 2$
demand $x^{D}=x_{a}^{D}+x_{b}^{D}=\left(\frac{p}{8}+\frac{1}{2 p}\right)+\frac{1}{2 p}=\frac{p}{8}+\frac{2}{2 p}=\frac{p}{8}+\frac{1}{p}$. Now impose equitionim:

$$
\begin{aligned}
& \begin{aligned}
& x^{S}=x^{D} \Rightarrow \frac{p}{2}=\frac{p}{8}+\frac{1}{p} \\
& \frac{p}{2}-\frac{p}{8}=\frac{1}{p} \Rightarrow \frac{1}{p}=\frac{4}{4} \cdot \frac{p}{2}-\frac{p}{8}=\frac{4 p-p}{8}=\frac{3 p}{8} \\
& 8=3 p^{2} \\
& 8 / 3=p^{2} \Rightarrow p=\sqrt{8 / 3}=2 \sqrt{2 / 3} . \\
& x_{a}^{D}=\frac{p}{8}+\frac{1}{2 p}=\frac{1}{8} \sqrt{\frac{8}{3}}+\frac{1}{2} \sqrt{\frac{3}{8}}=\frac{2}{8} \sqrt{\frac{2}{3}}+\frac{1}{2} \frac{1}{2} \sqrt{\frac{3}{2}}=\frac{1}{4}\left(\sqrt{\frac{2}{3}}+\sqrt{\frac{3}{2}}\right)=\frac{1}{4} \frac{2+3}{\sqrt{3} \cdot \sqrt{2}} \\
& x_{b}^{D}=\frac{1}{2 p}=\frac{1}{2} \frac{1}{2} \sqrt{\frac{3}{2}}=\frac{1}{4} \sqrt{\frac{3}{2}} \\
& x^{D}= x_{a}^{D}+x_{b}^{D}=\frac{1}{4} \sqrt{\frac{2}{3}}+\frac{1}{4} \sqrt{\frac{3}{2}}+\frac{1}{4 \sqrt{\frac{3}{2}}}=\frac{1}{4}\left(\sqrt{\frac{2}{3}}+2 \sqrt{\frac{3}{2}}\right)=\frac{1}{4} \frac{2+2 \cdot 3}{\sqrt{3} \sqrt{2}} \quad \begin{array}{l}
=\frac{5}{4 \sqrt{6}} \\
=
\end{array} \frac{8}{4 \sqrt{3} \sqrt{2}} \frac{1}{\sqrt{3} \sqrt{2}}=\frac{2}{\sqrt{3}} \\
&=\frac{5 \sqrt{3}}{12 \sqrt{2}}
\end{aligned}
\end{aligned}
$$

$x^{s}=p / 2=\sqrt{2 / 3}$, checks with ${ }^{\uparrow}$ : the market for $x$ clears

$$
\begin{aligned}
& l_{a}^{s}=\frac{1}{2}-\frac{p^{2}}{8}=\frac{1}{2}-\frac{1}{8}\left(\frac{8}{3}\right)=\frac{1}{2}-\frac{1}{3}=\frac{3-2}{6}=\frac{1}{6} \\
& l_{b}^{5}=\frac{1}{2} \\
& l^{5}=l_{a}^{5}+l_{b}^{5}=\frac{1}{6}+\frac{1}{2}=\frac{1}{6}+\frac{3}{6}=\frac{4}{6}=\frac{2}{3} \\
& l^{D}=p^{2} / 4=\frac{1}{4} \cdot \frac{8}{3}=\frac{2}{3} \longleftrightarrow \text { checks } \text { : He manet for kobo clears }
\end{aligned}
$$

Optional note: $x_{b}<x_{a}$ (thedifferace is $\frac{1}{4} \sqrt{\frac{2}{3}}$ )

$$
l_{b}>l_{a} \text { (the difference is } \frac{1}{2}-\frac{1}{b}=\frac{3}{6}-\frac{1}{b}=\frac{2}{6}=\frac{1}{3} \text { ). So the poorer }
$$

person, who dols not own the firm, works longer hover and consumes less $x$ than the owner of the firm, although their endrommats are otherwise the same.

Method z: Clear the market for $l$.
supply $l^{s}=l_{a}^{s}+l_{b}^{s}=\left(\frac{1}{2}-\frac{p^{2}}{8}\right)+\frac{1}{2}=1-\frac{p^{2}}{8}$
demoed $l^{D}=P^{2} / 4$. Now impose equitibrim:

$$
\begin{aligned}
l^{3}=l^{D} \Rightarrow 1-\frac{p^{2}}{8} & =\frac{p^{2}}{4} \\
1 & =\frac{p^{2}}{8}+\frac{p^{2}}{4}=p^{2}\left(\frac{1}{8}+\frac{2}{8}\right)=\frac{3}{8} p^{2} \\
8 / 3 & =p^{2} \Rightarrow p=\sqrt{8 / 3}, \text { as in Method 1. The rest }
\end{aligned}
$$

continues as before. Note that $p$ is the price of $x$, not the price of $l$, which was assumed to be equal to 1 ( $l$ is the numereire). So even though we were clearing the market for $l$, the price we found that clewed the market was the prize of $x$.

1. Consider a two-person two-commodity competitive general equilibrium in which the two people are denoted by 1 and 2 , the two goods by $x$ and $y$, and person $i$ consumes $x_{i}$ of good $x$ and $y_{i}$ of good $y$. Suppose the utility functions of the two individuals are

$$
\begin{aligned}
& U_{1}=x_{1}^{\alpha} y_{1}^{\beta} \quad \text { and } \\
& U_{2}=x_{2}^{\gamma} y_{2}^{\delta} .
\end{aligned}
$$

2005
Qualifier
Sec. 1

Suppose $\alpha, \beta, \gamma$, and $\delta$ are all positive. Suppose both people have 1 unit of good $x$ and 1 unit of good $y$ as their endowment (in other words, $\omega_{1}=\omega_{2}=(1,1)$ ).
What effect will an increase in $\alpha$ have on the amount of good $y$ which person 2 consumes?
Hint: The following answer is wrong: "an increase in $\alpha$ has no effect on the amount of good $y$ which person 2 consumes."

Answers to 7005 portion of 2005
Microeconomics Qualifying Exam


$$
\begin{aligned}
& \max _{x_{1}, y_{1}} x_{1}^{\alpha} y_{1}^{\beta} \text { st. } \\
& \mathscr{L}=x_{1}^{\alpha} y_{1}^{\beta}+\lambda\left(p_{x}+p_{y}-p_{x} x_{1}-p_{y} y_{1}\right) \\
& \text { F.O.C.'s: } 0
\end{aligned}=\partial z / \partial x=p_{x}+p_{y}-p_{x} x_{1}-p_{y} y_{1} .
$$

Then the budget constraint be comes

$$
\begin{aligned}
& p_{x}\left[\frac{\alpha}{\beta} \frac{p_{y}}{p_{x}} y_{1}\right]+p_{y} y_{1}=p_{x}+p_{y} \\
& p_{y} \frac{\alpha}{\beta} y_{1}+p_{y} y_{1}=p_{x}+p_{y} \\
& p_{y} y,\left(\frac{\alpha}{\beta}+1\right)=p_{x}+p_{y} \\
& p_{y} y_{1}\left(\frac{\alpha+\beta}{\beta}\right)=p_{x}+p_{y} \\
& y_{1}=\frac{\beta}{\alpha+\beta} \frac{p_{x}+p_{y}}{p_{y}}=\frac{\beta}{\alpha+\beta}\left(\frac{p_{x}}{p_{y}}+1\right) \\
& =\frac{1}{\frac{\alpha}{\beta}+1}\left(\frac{p x}{p y}+1\right) \\
& \rightarrow \text { Quirk clecks:as } \beta \uparrow \text {, } \\
& \text { consumer likes y moreno } \\
& \text { demand for it should } \uparrow \text {, } \\
& \text { whiclit lies. As by } T \text {, } \\
& \begin{array}{l}
\text { demand for y should } \downarrow \\
\text { (bani bitty words), which }
\end{array} \\
& \text { it coos. So this look ok. }
\end{aligned}
$$

$$
\text { Then } x_{1}=\frac{\alpha}{\beta} \frac{p_{y}}{p_{x}} y_{1}=\frac{\alpha}{\beta} \frac{p_{y}}{p_{x}} \frac{\beta}{\alpha+\beta} \frac{p_{x}+p_{y}}{p_{y}}=\frac{\alpha}{\alpha+\beta} \frac{p_{x}+p_{y}}{p_{x}} \text {. }
$$

Person 2's problem is identical to Person 7's except that $\gamma$ replaces $\alpha$ and $\delta$ replaces $\beta$. So by ana logy:

$$
\begin{aligned}
& y_{2}=\frac{\delta}{\gamma+\delta} \frac{p_{x}+p_{y}}{p_{y}} \\
& x_{2}=\frac{\gamma}{\gamma+\delta} \frac{p_{x}+p_{y}}{p_{x}}
\end{aligned}
$$

Setting demand equal to supply: $x_{1}+x_{2}=2$ and $y_{1}+y_{2}=2$. If one of these markets clears, so does the other, so we only need to analyze one of them:

$$
\begin{aligned}
& 2=y_{1}+y_{2}=\frac{\beta}{\alpha+\beta} \frac{p_{x}+p_{y}}{p_{y}}+\frac{\delta}{\gamma+\delta} \frac{p_{x}+p_{y}}{p_{y}} . \text { Letting y be the numen } \\
& 2=\frac{\beta}{\alpha+\beta} \frac{p_{x}+1}{1}+\frac{\delta}{\gamma+\delta} \frac{p_{x}+1}{1}=\left(\frac{\beta}{\alpha+\beta}+\frac{\delta}{\gamma+\delta}\right)\left(p_{x}+1\right) \\
& \Rightarrow p_{x}^{*}=2\left(\frac{\beta}{\alpha+\beta}+\frac{\delta}{\gamma+\delta}\right)^{-1}-1 .
\end{aligned}
$$

Rerefore

$$
y_{2}=\frac{\delta}{\gamma+\delta} \frac{P_{x}+p_{y}}{P_{y}}=\frac{\delta}{\gamma+\delta} \frac{P_{x}+1}{1}=\frac{\delta}{\gamma+\delta}\left[2\left(\frac{\beta}{\alpha+\beta}+\frac{\delta}{\gamma+\delta}\right)^{-1}\right]
$$

If $\alpha \uparrow, \alpha+\beta \uparrow, \frac{\beta}{\alpha+\beta} \downarrow$, the term. ()$^{-1}$ increases, so $y_{2} \uparrow$.
Intuition (optional): If $\alpha \hat{\gamma}$, consumer 1 buys sos less $y$, so with a fixed supply of $y$, consumer 2 has to buy more of $y$.
Optional: $\frac{\partial y_{2}}{\partial \alpha}=\frac{\delta}{\gamma+\delta}(-2)\left(\frac{\beta}{\alpha+\beta}+\frac{\delta}{\gamma+\delta}\right)^{-2} \frac{(-\beta)}{(\alpha+\beta)^{2}}>0$.

Alternatively, consider

$$
\begin{aligned}
& 0=p_{x}+p_{y}-p_{x} x_{1}-p_{y} y_{1} \\
& 0=\partial u_{1} / \partial x_{1}-\lambda_{1} p_{x} \\
& 0=\partial v_{1} / \partial y_{1}-\lambda_{1} p_{y} \\
& 0=p_{x}+p_{y}-p_{x} x_{2}-p_{y} y_{2} \\
& 0=\partial u_{2} / \partial x_{2}-\lambda_{2} p_{x} \\
& 0=\partial u_{2} / \partial y_{2}-\lambda_{2} p_{y} \\
& 1=x_{1}+x_{2} \\
& 1=y_{1}+y_{2}
\end{aligned}
$$

as a system of 8 equations in 8 unknowns, $x_{1}, y_{1}, \lambda_{1}, x_{2}, y_{2}, \lambda_{2}, p_{x}$, and $p_{y}$. Take the differential of each equation: treat the 8 unknowns given in the lire above as the endojemos variables and treat a as the exogenourvanizble; then vs matrix algebra. fo find $\partial y_{2} / \partial \alpha$. (Actually, you should set $p_{y} \equiv 1$ and drop one of the two last equations, because the fact that if one market clears so does the other implies that the last two equations are not indepenclent of each other.)

2017 Qualifying Exam Sec. 1 Qu. 1

1. [20 points] This question concerns a "Robinson Crusoe" economy.
(a) First consider Robinson Crusoe the consumer. Assume he obtains utility from consumption of bananas, " $b$, " and hours of leisure, " $z$," according to the utility function $2 \sqrt{b}+2 \sqrt{z}$.
Suppose " $L$ " represents his number of hours working per day ("labor time"). Assume he earns wage income at a rate of $w$ per hour. Also assume he receives income $\pi$ from his ownership of the firm.
The fact that there are only 24 hours in a day constrains $z$ and $L$. Suppose the price of bananas is $p$. Suppose Robinson takes $p$ and the wage rate $w$ as given (so he acts in a perfectly competitive way).
What is his demand for bananas?
(b) Next consider Robinson Crusoe the firm. Suppose he produces bananas $b$ from labor $L$ according to the production function $b=$ $L^{2}$.
i. What kind of returns to scale is this production function?
ii. Suppose Robinson:
A. takes the wage rate $w$ as given (so the labor market is competitive); but
B. does not take the price of bananas $p$ as given. Instead, he can control $p$. Also, he knows everything about the answer to part (a) of this question except he does not know that the $\pi$ appearing in the consumer's problem is the same as the firm's profit (Robinson-the-firm treats the $\pi$ in the consumer's problem as just some exogenous constant), and Robinson functions as a monopoly seller of bananas.
Taking the wage rate $w$ as the numéraire, express the firm's profit as a function of $p$, instead of taking the usual approach of expressing the firm's profit as a function of $L$.
Hint 1: A monopolist's total revenue is "price times output," just as for a competitive firm. However, the firm can pick its $p$, and it knows the demand curve for $b$ given in the answer to part (a) above.
Hint 2: As an intermediate step, it might be helpful to express the firm's profit as a function of $b$.
iii. Implicitly find the profit-maximizing level of $p$. It is completely acceptable to leave this as a system of two equations in two unknowns which you do not try to solve and which you do not try to simplify very much (though you should evaluate all derivatives). Of the two unknowns, one of the unknowns should be $p$.

Answers to 2017 Micro Quacityng Exam

Sec. $1 \neq 1$
a)

$$
\begin{aligned}
& \text { income }=\omega L+\pi \quad \text { union } u=2 \sqrt{b}+2 \sqrt{z} \\
& \text { leisure is } z \\
& z+L=24 \text { hours } \Rightarrow L=24-z \text { and income }=\omega(24-z)+\pi
\end{aligned}
$$

expaditure $p b$
Budget constraint expenditure $=$ income

$$
p b=w(24-z)+\pi
$$

Lagrangian

$$
y=2 \sqrt{b}+2 \sqrt{z}+\lambda(w(24-z)+\pi-p b)
$$

First-order Conditions

$$
\begin{aligned}
0=\mathscr{L}_{b}^{\prime}=\frac{1}{\sqrt{b}}+\lambda(-p) \Rightarrow \lambda_{p}=\frac{1}{\sqrt{b}} \Rightarrow \lambda & =\frac{1}{p \sqrt{b}} \\
0=\mathscr{L}_{z}^{\prime}=\frac{1}{\sqrt{z}}+\lambda(-w) \Rightarrow \lambda w=\frac{1}{\sqrt{z}} \Rightarrow & \frac{1}{p \sqrt{b}} w=\frac{1}{\sqrt{z}} \\
& \frac{p \sqrt{b}}{w}=\sqrt{z} \\
& \frac{p^{2}}{w^{2}} b=z
\end{aligned}
$$

and from the budget constraint,

$$
p b=w\left(24-\frac{p^{2}}{w^{2}} b\right)+\pi
$$

$$
=24 w-\frac{p^{2}}{w} b+\pi
$$

$$
p b+\frac{p^{2}}{w} b=24 w+\pi
$$

whin is $b^{D}$, the demand

$$
\left(p+\frac{p^{2}}{w}\right) b=24 w+\pi
$$ for bananas.

b) $b=L^{2}$
i) this is an mereasing returns to scale production function:

$$
b(\alpha L)=(\alpha L)^{2}=\alpha^{2} L^{2} \text { so if } L \text { increases by } \alpha(\text { that is, } \alpha>1)
$$

them $b$ increases by $\alpha^{2}>\alpha$, more than $\alpha$.
ii) profit $=$ total nerenve - total cost

$\downarrow$
spice $w$ is the numéraine

$$
\begin{aligned}
& \frac{p}{p+p^{2}}(24+\pi) \\
= & \frac{24+\pi}{1+p} \\
\text { So profit }= & \sqrt[24+\pi]{1+p}-\sqrt{\frac{24+\pi}{p+p^{2}}} . \\
& =\frac{24+\pi}{1+p}-\sqrt{24+\pi}\left(p+p^{2}\right)^{-1 / 2} .
\end{aligned}
$$

iii) $\checkmark$ this firm can choose $p$
iii) Maximizing profit, set $d$ profit /d $p=0$. Re call that the firm does not know that " $\pi$ " means profit, and the firm takes " $\pi$ " as a constant:

$$
0=\frac{d \text { profit }}{d p}=-\frac{24+\pi}{(1+p)^{2}}+\frac{1}{2} \sqrt{24+\pi}\left(p+p^{2}\right)^{-3 / 2}(1+2 p)
$$

Although the firm does not know that " $\pi$ " is profit, we know that "ir" is profit, so the first equation of the conswer is

$$
\pi=\frac{24+\pi}{1+p}-\sqrt{\frac{24+\pi}{p+p^{2}}}
$$

The second equation of the case is the frost-order condition,

$$
0=-\frac{24+\pi}{(1+p)^{2}}+\frac{1+2 p}{2} \sqrt{24+\pi}\left(p+p^{2}\right)^{-3 / 2}
$$

These form a system of two equations in the two unknowns $p$ and $\pi$.
Optional Material
Solving the second equation for $\pi$ will make it much easier for a computer alfobra system such as Mathematical to find $\rho$ and $\pi$. We have:

$$
\begin{aligned}
\frac{24+\pi}{(1+p)^{2}} & =\frac{1+2 p}{2} \sqrt{24+\pi}\left(p+p^{2}\right)^{-3 / 2} \\
\frac{\sqrt{24+\pi}}{(1+p)^{2}} & =\frac{1+2 p}{2}\left(p+p^{2}\right)^{-3 / 2} \\
\sqrt{24+\pi} & =\frac{1}{2}(1+p)^{2}(1+2 p)[p(1+p)]^{-3 / 2} \\
& =\frac{1}{2}(1+p)^{2}(1+2 p) p^{-3 / 2}(1+p)^{-3 / 2} \\
& =\frac{1}{2}(1+p)^{+1 / 2}(1+2 p) p^{-3 / 2} \\
24+\pi & =\frac{1}{4}(1+p)(1+2 p)^{2} p^{-3}=\frac{(1+p)(1+2 p)^{2}}{4 p^{3}} \\
\pi & =\frac{(1+p)(1+2 p)^{2}}{4 p^{3}}-24
\end{aligned}
$$

Tell this to Mattematica:

$$
\text { many } p i=(1+p)(1+2 p)^{\wedge} 2 /\left(4 p^{\wedge} 3\right)-24
$$

$$
\text { arty }-24+\frac{(1+p)(1+2 p)^{2}}{4 p^{3}}
$$

Then ask Mathematica to solve the first equation on p. 3 :

$$
\begin{aligned}
& \text { my Solve[pi } \left.=(24+p i) /(1+p)-\operatorname{Sqrt}\left[(24+p i) /\left(p+p^{\wedge} 2\right)\right], p\right] / / N \\
& \text { आयद }\{\{p \rightarrow 0 .-0.104257 i\},\{p \rightarrow 0 .+0.104257 i\},\{p \rightarrow-0.142261\},\{p \rightarrow 0.229217\}\}
\end{aligned}
$$

may: $p=p / . \%[[4]]$ S Set $p$ equal to the fourth solution, since $p$ should be a positive veal number CHIT) 0.229217
man pi
30.275 $\leftarrow$ the resulting level of profit

ont $1.42109 \times 10^{-14} \leftarrow$ Close enough to zero
|n fy $=$ (* check profit; these should be equal *)

$$
\left\{p i,(24+p i) /(1+p)-\operatorname{Sqrt}\left[(24+p i) /\left(p+p^{\wedge} 2\right)\right]\right\}
$$

$$
\text { Ort me }\{30.275,30.275\}
$$

If the mompoly had not existed and no firm existed then no bananas would be produced and utility would be $2 \sqrt{b}+2 \sqrt{z}=2 \sqrt{0}+2 \sqrt{24}=2 \sqrt{6.4}=4 \sqrt{6} \approx$ 9.8, which is much less than the utility with the monopolist in charge of production.

2023 Qualifying Exam Sec. 1 Qu. 2 is new
2. [19 points] In this problem, you can get full credit even if you do not check any second-order conditions. (If this were a take-home exam, you would be expected to check second-order conditions.)
Consider a Robinson Crusoe economy (that is, a one-person economy) in which Robinson Crusoe's utility function is

$$
u(a, b, R)=2 \sqrt{a}+2 \sqrt{b}+2 \sqrt{R}
$$

where $a$ is his consumption of apples, $b$ is his consumption of bananas, and $R$ is his consumption of "leisure" or "rest." Out of 24 hours in a day, Robinson spends some in rest, some in labor to produce apples, $\ell_{a}$, and the remainder in labor to produce bananas, $\ell_{b}$. In his role as a consumer, Robinson takes all prices as given.
Let the price of apples be the numéraire, let the price of bananas be $p_{b}$, and let the price of labor be the wage rate, $w$.
In Robinson's role as producer of apples, suppose he earns $\pi_{a}$ in profit. In Robinson's role as producer of bananas, suppose he earns $\pi_{b}$ in profit.
(a) (4 points) Show that Robinson's demand for apples is

$$
a^{D}=\frac{w p_{b}\left[\pi_{a}+\pi_{b}+24 w\right]}{p_{b}+w p_{b}+w}
$$

Robinson's demand for bananas is

$$
b^{D}=\frac{w\left[\pi_{a}+\pi_{b}+24 w\right]}{p_{b}\left(p_{b}+w p_{b}+w\right)},
$$

and Robinson's supply of labor is

$$
\ell_{a}+\ell_{b}=24-\frac{p_{b}\left[\pi_{a}+\pi_{b}+24 w\right]}{\left(w\left(p_{b}+w p_{b}+w\right)\right.}
$$

(b) (1 point) Suppose that in Robinson's role as producer of apples, Robinson is a price taker (is "perfectly competitive"). Suppose the production function for apples is $a=\ell_{a}$. Argue that:
i. The supply function is not "everywhere well-defined."
ii. The equilibrium wage is one.
iii. The equilibrium profit from producing apples is zero.
(c) (1 point) Suppose that in Robinson's role as producer of bananas, Robinson is a price taker (is "perfectly competitive"). Suppose the production function for bananas is $b=\ell_{b}$. Argue that:
i. The equilibrium price of bananas is one.
ii. The equilibrium profit from producing bananas is zero.
(d) (2 points) Show that in the general equilibrium of this economy, $a^{*}=8, b^{*}=8, \ell_{a}^{*}+\ell_{b}^{*}=16$, and $R^{*}=8$.
(e) Now suppose that in Robinson's role as producer of bananas, Robinson is not a price taker, but rather acts as a monopolist. This means that he knows what the demand curve for bananas is (it is given in part (a) above). He also completely understands how the demand for bananas depends on the profit from producing bananas. Nothing changes about Robinson's role as producer of apples; it is still as described in part (b) above. Find the equilibrium:
i. (1 point) wage rate and the profit from producing apples;
ii. (4 points) price of bananas (hint: it is the solution to $0=$ $2 p_{b}^{2}-4 p_{b}-1$, and you get full credit for showing that; you do not have to show the solution to that equation, which is $p_{b}=1+(\sqrt{6} / 2) \approx 2.22$, but you can use this result in the other parts of this problem);
iii. (2 points) number of bananas produced (hint: it is

$$
\frac{6 \sqrt{6}+12}{\left(1+\frac{\sqrt{6}}{2}\right)(3+\sqrt{6})},
$$

and you get full credit for showing that or an equivalent numerical expression; you do not have to show that that simplifies to $12-4 \sqrt{6} \approx 2.20$, but you can use this result in the other parts of this problem);
iv. ( 2 points) number of apples produced (hint: it is

$$
\frac{\left(1+\frac{\sqrt{6}}{2}\right)(6 \sqrt{6}+12)}{3+\sqrt{6}}
$$

and you get full credit for showing that or an equivalent numerical expression; you do not have to show that that simplifies to $2(\sqrt{6}+3) \approx 10.9$, but you can use this result in the other parts of this problem);
v. ( 1 point) amount of rest $R$ (hint: it is $6+2 \sqrt{6} \approx 10.9$, which you should show).
(f) (1 point) Write a summary of the effect on the market for apples and on the market for labor when the banana market becomes monopolized.

## Answer to Summer 2023 Qualifying Exam, Section 1 Question 2

(a) The constraint on labor hours is $\ell_{a}+\ell_{b}+R=24$. Taking this into account by substituting it into the utility function, we have

$$
u=2 \sqrt{a}+2 \sqrt{b}+2 \sqrt{24-\ell_{a}-\ell_{b}} .
$$

Income is $\pi_{a}+\pi_{b}+w\left(\ell_{a}+\ell_{b}\right)$ : the profit of the apple firm, the profit of the banana firm, and the wage rate times the amount of labor supplied. In a Robinson Crusoe economy, Robinson Crusoe as a consumer considers $\pi_{a}$ and $\pi_{b}$ to be exogenous.
Expenditure is $p_{a} a+p_{b} b=a+p_{b} b$ since the price of apples is the numéraire.
The Lagrangian is
$\mathscr{L}=2 \sqrt{a}+2 \sqrt{b}+2 \sqrt{24-\ell_{a}-\ell_{b}}+\lambda\left[\pi_{a}+\pi_{b}+w\left(\ell_{a}+\ell_{b}\right)-1 \cdot a-p_{b} b\right]$.
The first-order conditions are

$$
\begin{aligned}
& 0=\mathscr{L}_{a}^{\prime}=\frac{1}{\sqrt{a}}-\lambda \\
& 0=\mathscr{L}_{b}^{\prime}=\frac{1}{\sqrt{b}}-\lambda p_{b} \\
& 0=\mathscr{L}_{\ell_{a}}^{\prime}=\frac{-1}{\sqrt{24-\ell_{a}-\ell_{b}}}+w \lambda \\
& 0=\mathscr{L}_{\ell_{b}}^{\prime}=\frac{-1}{\sqrt{24-\ell_{a}-\ell_{b}}}+w \lambda
\end{aligned}
$$

Solving these equations for $\lambda$ results in

$$
\lambda=\frac{1}{\sqrt{a}}=\frac{1}{p_{b} \sqrt{b}}=\frac{1}{w \sqrt{24-\ell_{a}-\ell_{b}}} .
$$

The second equality leads to $\sqrt{a}=p_{b} \sqrt{b}$, so $b=a / p_{b}^{2}$. The second and third equalities lead to $\sqrt{a}=w \sqrt{24-\ell_{a}-\ell_{b}}$, so $24-\ell_{a}-\ell_{b}=$ $a / w^{2}$ and $\ell_{a}+\ell_{b}=24-a / w^{2}$. Substituting these expressions for $b$
in terms of $a$ and for $\ell_{a}+\ell_{b}$ in terms of $a$ into the budget constraint yields

$$
\begin{aligned}
0 & =\pi_{a}+\pi_{b}+w\left(24-a / w^{2}\right)-a-p_{b} a / p_{b}^{2} \\
& =\pi_{a}+\pi_{b}+24 w-\frac{a}{w}-a-\frac{a}{p_{b}} \\
& =\pi_{a}+\pi_{b}+24 w-a\left(\frac{1}{w}+1+\frac{1}{p_{b}}\right) \\
& =\pi_{a}+\pi_{b}+24 w-a \cdot \frac{p_{b}+w p_{b}+w}{w p_{b}}
\end{aligned}
$$

and so the demand for apples is

$$
a^{D}=\left(\pi_{a}+\pi_{b}+24 w\right) \frac{w p_{b}}{p_{b}+w p_{b}+w} .
$$

Then using the expression for $b$ in terms of $a$ derived above, the demand for bananas is

$$
b^{D}=\frac{a}{p_{b}^{2}}=\left(\pi_{a}+\pi_{b}+24 w\right) \frac{w}{p_{b}\left(p_{b}+w p_{b}+w\right)}
$$

Using the expression for $\ell_{a}+\ell_{b}$ in terms of $a$ derived above, the supply of labor is

$$
\ell_{a}^{S}+\ell_{b}^{S}=24-\left(\pi_{a}+\pi_{b}+24 w\right) \frac{p_{b}}{w\left(p_{b}+w p_{b}+w\right)}
$$

This proves all of the claims in this part of the problem.
(b) The profit from producing apples is $\pi_{a}=1 \cdot a-w \ell_{a}$, but since the production function is $a=\ell_{a}$, this can be rewritten as $\pi_{a}=a-w a=$ $a(1-w)$. If $w<1$, optimal apple supply is infinity, which cannot be an equilibrium. One says that the supply function "is not welldefined." If $w>1$, optimal apple supply is zero, which could be an equilibrium but is unlikely to be an equilibrium, so we rule it out for now and will return to it if we cannot find an equilibrium with a strictly positive amount of apples. This leaves

$$
w=1 .
$$

That implies $\pi_{a}=a(1-1)=0$, which is not surprising since the production function $a=\ell_{a}$ has constant returns to scale. The apple supply curve will be flat at a price of one (and zero for a price less than one).
(c) The profit from producing bananas is $\pi_{b}=p_{b} b-w \ell_{b}$, but since the production function is $b=\ell_{b}$, this can be rewritten as $\pi_{b}=p_{b} b-$ $w b=b\left(p_{b}-w\right)$. If $p_{b}>w$, optimal banana supply is infinity, which cannot be an equilibrium. If $p_{b}<w$, optimal banana supply is zero, which could be an equilibrium but is unlikely to be an equilibrium, so we rule it out for now and will return to it if we cannot find an equilibrium with a strictly positive amount of bananas. This leaves

$$
p_{b}=w .
$$

That implies $\pi_{b}=b(w-w)=0$, which is not surprising since the production function $b=\ell_{b}$ has constant returns to scale. The banana supply curve will be flat at a price of $w$, which from the answer to part (b) is equal to one. (The banana supply curve will be zero for a price less than one).
(d) We now have $1 \equiv p_{a}=w=p_{b}$ and $\pi_{a}=0=\pi_{b}$. Substituting these into the demand for apples gives

$$
a^{*}=(0+0+24 \cdot 1) \frac{1 \cdot 1}{1+1 \cdot 1+1}=\frac{24}{3}=8
$$

A similar substitution for bananas yields

$$
b^{*}=(0+0+24 \cdot 1) \frac{1}{1 \cdot(1+1 \cdot 1+1)}=\frac{24}{3}=8 .
$$

Using the production functions, $\ell_{a}^{*}=a^{*}=8$ and $\ell_{b}^{*}=b^{*}=8$, so $\ell_{a}^{*}+\ell_{b}^{*}=16$ and $R^{*}=24-16=8$.
(e) Banana profit is $\pi_{b}=p_{b} b-w \ell_{b}$. Using the production function, this is $\pi_{b}=p_{b} b-w b=\left(p_{b}-w\right) b$. Now, however, the banana firm knows the demand curve for bananas, which was given in part (a) above; substituting it in,

$$
\pi_{b}=\left(p_{b}-w\right)\left(\pi_{a}+\pi_{b}+24 w\right) \frac{w}{p_{b}\left(p_{b}+w p_{b}+w\right)}
$$

Since there is still perfect competition and constant returns to scale in apple production, the reasoning in part (b)'s answer still applies, so it is still the case that $w=1$ and $\pi_{a}=0$ (that answers part (i)). Making these substitutions,

$$
\begin{aligned}
\pi_{b} & =\left(p_{b}-1\right)\left(0+\pi_{b}+24 \cdot 1\right) \frac{1}{p_{b}\left(p_{b}+1 \cdot p_{b}+1\right)} \\
& =\left(p_{b}-1\right)\left(\pi_{b}+24\right) \frac{1}{2 p_{b}^{2}+p_{b}}
\end{aligned}
$$

so

$$
\begin{aligned}
2 p_{b}^{2} \pi_{b}+p_{b} \pi_{b} & =p_{b} \pi_{b}+24 p_{b}-\pi_{b}-24, \quad \text { thus } \\
\left(2 p_{b}^{2}+1\right) \pi_{b} & =24 p_{b}-24 \text { and } \\
\pi_{b} & =\frac{24\left(p_{b}-1\right)}{2 p_{b}^{2}+1}
\end{aligned}
$$

The monopolist chooses $p_{b}$ in order to maximize $\pi_{b}$. The first-order condition is

$$
\begin{aligned}
0 & =\frac{24}{2 p_{b}^{2}+1}-\frac{4 p_{b}}{\left(2 p_{b}^{2}+1\right)^{2}} 24\left(p_{b}-1\right) \\
& =\frac{2 p_{b}^{2}+1-4 p_{b}\left(p_{b}-1\right)}{\left(2 p_{b}^{2}+1\right)^{2}} \\
0 & =2 p_{b}^{2}+1-4 p_{b}^{2}+4 p_{b}=-2 p_{b}^{2}+4 p_{b}+1 \\
0 & =2 p_{b}^{2}-4 p_{b}-1,
\end{aligned}
$$

which has roots of

$$
\begin{aligned}
p_{b} & =\frac{+4 \pm \sqrt{(-4)^{2}-4 \cdot 2 \cdot(-1)}}{2 \cdot 2}=\frac{4 \pm \sqrt{16+8}}{4}=\frac{4 \pm \sqrt{24}}{4}=\frac{4 \pm 2 \sqrt{6}}{4} \\
& =\frac{2 \pm \sqrt{6}}{2}
\end{aligned}
$$

The negative sign will result in a numerator of $2-\sqrt{6}<2-\sqrt{4}=0$, which is incompatible with $p_{b}>0$, so we take the positive root: $p_{b}=1+\sqrt{6} / 2 \approx 2.22$. That answers part (ii).

The equilibrium profit in making bananas now is not zero but instead is

$$
\begin{aligned}
\pi_{b} & =\frac{24\left(p_{b}-1\right)}{2 p_{b}^{2}+1}=\frac{24\left(1+\frac{\sqrt{6}}{2}-1\right)}{2\left(1+\frac{\sqrt{6}}{2}\right)^{2}+1}=\frac{12 \sqrt{6}}{2\left(1+\sqrt{6}+\frac{6}{4}\right)+1} \\
& =\frac{12 \sqrt{6}}{2+2 \sqrt{6}+3+1}=\frac{12 \sqrt{6}}{6+2 \sqrt{6}}=\frac{6 \sqrt{6}}{3+\sqrt{6}} \\
& =\frac{6 \sqrt{6}}{3+\sqrt{6}} \cdot \frac{3-\sqrt{6}}{3-\sqrt{6}}=\frac{18 \sqrt{6}-36}{9-6}=6 \sqrt{6}-12 \approx 2.70 .
\end{aligned}
$$

Using Robinson's demand for bananas as given in part (a), we have

$$
\begin{aligned}
b^{*} & =\frac{w\left[\pi_{a}+\pi_{b}+24 w\right]}{p_{b}\left(p_{b}+w p_{b}+w\right)}=\frac{1 \cdot[0+(6 \sqrt{6}-12)+24 \cdot 1]}{\left(1+\frac{\sqrt{6}}{2}\right)\left(1+\frac{\sqrt{6}}{2}+1 \cdot\left(1+\frac{\sqrt{6}}{2}\right)+1\right)} \\
& =\frac{6 \sqrt{6}+12}{\left(1+\frac{\sqrt{6}}{2}\right)(3+\sqrt{6})}=\frac{6 \sqrt{6}+12}{3+\sqrt{6}+\frac{3}{2} \sqrt{6}+3}=\frac{6 \sqrt{6}+12}{6+\frac{5}{2} \sqrt{6}} \\
& =6 \frac{\sqrt{6}+2}{6+\frac{5}{2} \sqrt{6}}=6 \frac{2 \sqrt{6}+4}{12+5 \sqrt{6}} \cdot \frac{12-5 \sqrt{6}}{12-5 \sqrt{6}} \\
& =6 \frac{24 \sqrt{6}-60+48-20 \sqrt{6}}{144-150}=6 \frac{4 \sqrt{6}-12}{-6} \\
& =12-4 \sqrt{6} \approx 2.20 .
\end{aligned}
$$

That answers part (iii). From the production function for bananas, this is also $\ell_{b}$.
Using Robinson's demand for apples as given in part (a), we have

$$
\begin{aligned}
a^{*} & =\frac{w p_{b}\left[\pi_{a}+\pi_{b}+24 w\right]}{p_{b}+w p_{b}+w}=\frac{1 \cdot\left(1+\frac{\sqrt{6}}{2}\right)[0+6 \sqrt{6}-12+24 \cdot 1]}{1+\frac{\sqrt{6}}{2}+1 \cdot\left(1+\frac{\sqrt{6}}{2}\right)+1} \\
& =\frac{\left(1+\frac{\sqrt{6}}{2}\right)(6 \sqrt{6}+12)}{3+\sqrt{6}}=\frac{(2+\sqrt{6})(3 \sqrt{6}+6)}{3+\sqrt{6}} \\
& =\frac{(2+\sqrt{6}) \sqrt{6}(3+\sqrt{6})}{3+\sqrt{6}}=2 \sqrt{6}+6 \approx 10.9 .
\end{aligned}
$$

That answers part (iv). From the production function for apples, this is also $\ell_{a}$.
The equilibrium labor supplied is $\ell_{a}^{*}+\ell_{b}^{*}=(2 \sqrt{6}+6)+(12-4 \sqrt{6})=$ $18-2 \sqrt{6} \approx 13.1$, and so the equilibrium amount of rest is $24-\left(\ell_{a}+\right.$ $\left.\ell_{b}\right)=6+2 \sqrt{6} \approx 10.9$. That answers part (v).
(f) The purely competitive equilibrium was $\ell_{a}^{*}=a^{*}=8, \ell_{b}^{*}=b^{*}=8$, $\ell_{a}^{*}+\ell_{b}^{*}=16$ and $R^{*}=8$, with $p_{a} \equiv 1=w=p_{b}$ and $\pi_{a}=\pi_{b}=0$.
When the banana production was monopolized, the equilibrium was $\ell_{a}^{*}=a^{*} \approx 10.9, \ell_{b}^{*}=b^{*} \approx 2.2, \ell_{a}^{*}+\ell_{b}^{*}=13.1$ and $R^{*}=10.9$, with $p_{a} \equiv 1=w$ and $p_{b} \approx 2.22$, and $\pi_{a}=0$ while $\pi_{b} \approx 2.7$.
The fact that after monopolization of banana production, banana quantity fell a great deal, and banana prices and profits went up, is not a surprise, and the question did not ask about this. What may be more surprising was that the apple market was affected, with apple production going up (although apple price was unchanged), and the labor market was affected also, with the total amount of labor going down (though the wage rate was unchanged). The demand for labor falls a great deal in the banana sector, because the monopoly wants to decrease output of bananas and charge a higher price for bananas. Some of this labor is shifted to the apple sector, increasing apple production; the rest is shifted to leisure.
Optional: Robinson Crusoe's utility in the purely competitive equilibrium was $2 \sqrt{8}+2 \sqrt{8}+2 \sqrt{8} \approx 16.97$, while in the "banana monopoly" equilibrium, it was $2 \sqrt{10.9}+2 \sqrt{2.2}+2 \sqrt{10.9} \approx 16.17$.

## Completely Optional Remarks

Chapter 10 of Mas-Colell, Whinston and Green's book is about how to make normative judgments (assess welfare changes) in a partial equilibrium framework. (So is Varian's Chapter 10.) Mas-Colell, Whinston and Green write (pages 311-312):

Starting in Section 10.C, we narrow our focus to the partial equilibrium context. The partial equilibrium approach, which originated in Marshall (1920), envisions the market for a single good (or group of goods) for which each consumer's expenditure constitutes only a small portion of his overall budget. When
this is so, it is reasonable to assume that changes in the market for this good will leave the prices of all other commodities approximately unaffected [emphasis added] and that there will be, in addition, negligible wealth effects in the market under study. We capture these features in the simplest possible way by considering a two-good model in which the expenditure on all commodities other than that under consideration is treated as a single composite commodity (called the numeraire commodity), and in which consumers' utility functions take a quasilinear form with respect to this numeraire. Our study of the competitive equilibria of this simple model lends itself to extensive demand-and-supply graphical analysis....

In Section 10.D, we analyze the properties of Pareto optimal allocations in the partial equilibrium model. Most significantly, we establish for this special context the validity of the fundamental theorems of welfare economics: Competitive equilibrium allocations are necessarily Pareto optimal, and any Pareto optimal allocation can be achieved as a competitive equilibrium if appropriate lump-sum transfers are made.
[...] In Section 10.E, we consider the measurement of welfare changes in the partial equilibrium context. We show that these can be represented by areas between properly defined demand and supply curves.

In other words, all the normative tools economics has outside of general equilibrium-for example, all the normative tools of undergraduate economics, such as consumer surplus, which are often used to teach that "competitive equilibrium is socially optimal"-pertain only to relatively unimportant commodities. This problem shows that if there are only three commodities (labor, apples, and bananas), then monopolization of one of them leads to large effects on the other two. This violates the assumptions underlying the standard partial equilibrium normative analysis. (So does assuming the utility function given in this problem, which is not of the highly restrictive "quasilinear" type.)
4. [17 points] Consider a Robinson Crusoe economy where the consumer is endowed with one unit of time which he can divide between labor time and non-labor time. There is only one technology available in this economy. It can be employed to make butter " $b$ " from labor according

Fall 2004
Final
to the production function

$$
b=2 * \text { labor }^{2} .
$$

Suppose the consumer's utility function is

$$
U=b * \text { "non-labor time" }
$$

Finally, take the price of labor as the numéraire.
(a) Find the competitive market-clearing prices and quantities for butter and labor, ignoring any strange signs that you come across.
(b) Considering now the strange sign or signs you should have encountered in part (a), and considering the type of production function, describe why the competitive equilibrium you found in part (a) is actually not a competitive equilibrium, and why in fact this economy does not have a competitive equilibrium.

One wold denote working time by a for labor and denote non-working time by $e$ for leisure, but since $a+e=1$ in this problem, I will just set $e=1-a$ and only use "a" from now on. Take $p_{a}=1$

The firms problem is to maximize the price of butter

$$
\begin{aligned}
& \pi=T R-T C \text { where } T R=p_{b} \cdot 2 a^{2} \text { and } T C=p_{a} a=a \\
& \Rightarrow \quad \pi=2 p_{b} a^{2}-a . \\
& \text { F.O.C: } 0=\frac{d \pi}{d a}=4 p_{b} a-1 \Rightarrow a=\frac{1}{4 p_{b}} \text {, labor demand. }
\end{aligned}
$$

Butter supply then is $2\left(a^{*}\right)^{2}=2\left(\frac{1}{4 p_{b}}\right)^{2}=2\left(\frac{1}{16 p_{b}^{2}}\right)=\frac{1}{8 p_{b}^{2}}$.
These results are already strange be cause one would expect that as $P_{b} \uparrow$, the buttertirm's labor demand and butter supply world $\uparrow$ not $\psi$. The firm does not hare constantretrons to scale, so its $x^{* *} \neq 0$. One calculates

$$
\begin{aligned}
\pi^{*} & =2 p_{b}\left(a^{*}\right)^{2}-a^{*}=2 p_{b}\left(\frac{1}{4 p_{b}}\right)^{2}-\frac{1}{4 p_{b}}=2 p_{b} \cdot \frac{1}{16 p_{b}^{2}}-\frac{1}{4 p_{b}} \\
& =\frac{1}{8 p_{b}}-\frac{1}{4 p_{b}}=\frac{-1}{8 p_{b}} \quad \text { which is strange be cause it is regative. }
\end{aligned}
$$

indeed it is wrong be cause the firm could always do better by just shutting down and fettiry $x^{*}=0$. But the question says to grove this for now.

The consumer's expenditure is $p_{b} b$ and. his in come is $p_{a} a+\pi^{*}=a+\pi^{*}$. So his problems to $\max b \underbrace{(1-a)}_{l_{s}=e}$ s.t. $a+\pi^{*}=p_{b} b$. (The consumer is $T_{\square}=e \quad$ "compuctinte"; he the e free knows nothing The Lagrangian is about the production function.)

$$
\left.\left.\begin{array}{rl}
\mathscr{L}=b(1-a)+\lambda\left(a+\pi^{*}-p_{b} b\right) . \\
\left.\begin{array}{rl}
0=\partial L / \partial \lambda=a+\pi^{*}-p_{b} b \Rightarrow p_{b} b=a+\pi^{*} \\
0=\partial Z / \partial a & =-b+\lambda \Rightarrow b=\lambda \\
0=\partial Z / \partial b=1-a-\lambda p_{b}
\end{array}\right\} \Rightarrow 0=1-a-b p_{b}
\end{array}\right\}\right)
$$

Then butter demand is

$$
\begin{aligned}
b & =\frac{a+\pi^{\alpha}}{p_{b}}=\frac{1}{p_{b}}\left[\frac{8 p_{b}+1}{16 p_{b}}+\frac{-1}{8 p_{b}}\right]=\frac{1}{p_{b}} \frac{8 p_{b}+1-2}{16 p_{b}} \\
& =\frac{8 p_{b}-1}{16 p_{b}^{2}} .
\end{aligned}
$$

Equate labordermand and labor supply: (or one cold equate butter demand and

$$
\begin{aligned}
& \quad \frac{1}{4 p_{b}}=\frac{8 p_{b}+1}{16 p_{b}} \Leftrightarrow \frac{16 p_{b}}{4 p_{b}}=8 p_{b}+1 \Leftrightarrow 4=8 p_{b}+1 \\
& 8 p_{b}=3 \Rightarrow p_{b}=3 / 8
\end{aligned}
$$

$\xrightarrow{F}$ Check that this makes an equilibrium in both mericets:

$$
\text { labor supply }=\frac{8 p_{b}+1}{16 p_{b}}=\frac{8\left(\frac{3}{8}\right)+1}{16\left(\frac{3}{8}\right)}=\frac{3+1}{2 \cdot 3}=\frac{4}{6}=\frac{2}{3} \text { and }
$$

$$
\begin{aligned}
\text { labor demand } & =\frac{1}{4 p_{b}}=\frac{1}{4\left(\frac{3}{8}\right)}=\frac{1}{3 / 2}=\frac{2}{3} \text { or,; } \\
\text { butts demand } & =\frac{8 p_{b}-1}{16 p_{b}^{2}}=\frac{8\left(\frac{3}{8}\right)-1}{16\left(\frac{3}{8}\right)^{2}}=\frac{3-1}{4 \cdot 4 \cdot \frac{9}{4 \cdot 2 \cdot 4 \cdot 2}}=\frac{2}{\frac{9}{4}} \\
& =\frac{8}{9}
\end{aligned}
$$

butter supp y $=\frac{1}{8 p_{b}^{2}}=\frac{1}{8\left(\frac{3}{8}\right)^{2}}=\frac{1}{\frac{9}{8}}=\frac{8}{9}$, OK too.
b) Check the firmis S.O.C: $\frac{d^{2} \pi}{d a^{2}}=4 p_{b}>0$, which means we found a (local) it minimum, not maximum! The graph of $\pi r$ versus a is a parabola pointing up, so maximum profit occurs as $a \rightarrow \infty$, making $\rightarrow \rightarrow \infty$. This always happens when the technology is increasing returns toscale and one has assumed a compectitne firm. Since the supply of $a$ will be n, no equilibrium can exist in the "a"market, so the is no (competitive) equitionivm in this econong,

## Section 1.

Answer all of the following three questions.

1. Suppose there are $N$ price-taking (ie., competitive) consumers, all of whom earn the same income $\$ m$, all of whom consume two commodities $x$ and $y$, and all of whom have the identical utility function $U=x^{\alpha} y^{\beta}$ where $\alpha$ and $\beta$ are positive.
Suppose there are $F$ price-taking (i.e., competitive) producers of good $x$, each having the same cost function $C(x)$ for producing $x$.
(a) If $N=1$ and $F=1$ but the agents still act competitively, and if $C(x)=x^{2}$, how will changes in $\beta$ affect the equilibrium price of $x$ ?
(b) If $N$ and $F$ are arbitrary natural numbers and if the form of $C(x)$ is unspecified (but the firms' second-order conditions are met), how will changes in $\beta$ affect the equilibrium price of $x$ ?
(c) If $N=1$ and $F=1$ and $C(x)=x^{2}$ but the agents still act competitively, how does the consumer think changes in $\beta$ will affect the equilibrium price of $x$ ?

Answers to 7005 portion of Miro Qualityny Exam,
Section 1.
Summa 2006
Qu. 1
N consumers; income $\$ m ; U=x^{\alpha} y^{\beta}$
Firms producing $x$; cost function $C(x)$
a) $N=1, F=1, C(x)=x^{2}$

Demand for $x$ : $\max U$ st. $p_{x} x+p_{y} y=m$

$$
\left.\begin{array}{l}
\mathscr{L}=x^{\alpha} y^{\beta}+\lambda\left(m-p_{x} x-p_{y} y\right) \\
0=\frac{\partial x}{\partial \lambda}=m-p_{x} x-p_{y} y \\
0=\frac{\partial z}{\partial x}=\alpha \frac{x^{\alpha} y^{\beta}}{x}-\lambda p_{x} \\
0=\frac{\partial \mathscr{L}}{\partial y}=\beta \frac{x^{\alpha} \beta}{y}-\lambda p_{y}
\end{array}\right\} \begin{aligned}
& \frac{p_{x}}{p_{y}}=\frac{\alpha}{\beta} \frac{y}{x} \\
& \Rightarrow y=\frac{\beta}{\alpha} \frac{p_{x}}{p_{y}} x
\end{aligned}
$$

and so $m=p_{x} x+p_{y}\left[\frac{\beta}{\alpha} \frac{p_{x}}{p_{y}} x\right]$

$$
=p_{x} x+\frac{\beta}{\alpha} p_{x} x=\left(1+\frac{\beta}{\alpha}\right) p_{x} x=\frac{\alpha+\beta}{\alpha} p_{x} x \Rightarrow
$$

$\rightarrow x=\frac{\alpha}{\alpha+\beta} \frac{m}{p_{x}}$ and

$$
\begin{aligned}
& y=\frac{\beta}{\alpha} \frac{p x}{p_{y}} x=\frac{\beta}{\alpha+\beta} \frac{m}{p_{y}} . \\
& \text { and carve for } x
\end{aligned}
$$

Supply for $x$ : $\quad \max \pi=\max P_{x} x-C(x) \Rightarrow 0=P_{x}-C^{\prime}(x) \Rightarrow$

$$
p_{x}=c^{\prime}(x)=2 x \Rightarrow x=p_{x} / 2
$$

Demand $=$ supply (partial equilibrium) $\Rightarrow$

$$
\begin{aligned}
& \frac{\alpha}{\alpha+\beta} \frac{m}{p_{x}}=\frac{p_{x}}{2} \\
& p_{x}=\sqrt{\frac{2 \alpha}{\alpha+\beta} m}=\sqrt{2 \alpha m}(\alpha+\beta)^{-1 / 2} \\
& \frac{\partial p_{x}}{\partial \beta}=-\frac{1}{2} \sqrt{2 \alpha m}(\alpha+\beta)^{-3 / 2} . \text { optional: This is } \frac{-1}{2}(\alpha+\beta)^{-1} \sqrt{2 \alpha m}(\alpha+\beta)^{-1 / 2} \\
& =\frac{-p_{x}}{2(\alpha+\beta)}<0 .
\end{aligned}
$$

b) Demand for $x$ : $x=N \cdot \frac{\alpha}{\alpha+\beta} \frac{m}{P_{x}}$

Supply for $x$ : by one firm, $p_{x}=C^{\prime}(x) \Rightarrow x=\left(C^{\prime}\right)^{-1}\left(p_{x}\right)$.
$\underbrace{\text { wintry supply of } x}_{\text {whole this } x^{\text {s }}}$ is $F\left(C^{\prime}\right)^{-1}\left(p_{x}\right)$.

$$
\begin{aligned}
x^{s} & =F\left(c^{\prime}\right)^{-1}\left(p_{x}\right) \\
x^{s} / F & =\left(c^{\prime}\right)^{-1}\left(p_{x}\right) \\
c^{\prime}\left(x^{s} / F\right) & =p_{x}
\end{aligned}
$$

So

$$
\begin{aligned}
& 0=x-N \frac{\alpha}{\alpha+\beta} \frac{m}{P_{x}} \\
& 0=p_{x}-C^{\prime}(x / F)
\end{aligned}
$$

Method 1: Use the first equation to so we for $x$ and substitute

$$
\begin{aligned}
& 0=p_{x}-C^{\prime}\left(\frac{N m}{F p_{x}} \frac{\alpha}{\alpha+\beta}\right) \\
& 0=\left[1-C^{\prime \prime} \cdot \frac{(-N m)}{F p_{x}^{2}} \frac{\alpha}{\alpha+\beta}\right] d p_{x}+\left[-C^{\prime \prime} \cdot \frac{N m}{F p_{x}} \frac{(-\alpha)}{(\alpha+\beta)^{2}}\right] d \beta \\
& \Rightarrow \frac{d p_{x}}{d \beta}=\frac{-C^{\prime \prime} \cdot \frac{N m}{F p_{x}} \frac{\alpha}{(\alpha+\beta)^{2}}}{1+C^{\prime \prime} \cdot \frac{N m}{F p_{x}^{2}} \frac{\alpha}{\alpha+\beta}} .
\end{aligned}
$$

Method 2: Take differentials of the two equations.

$$
\left.\begin{array}{l}
{\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{cc}
1 & N \frac{\alpha}{\alpha+\beta} \\
\frac{m}{p_{x}^{2}} \\
\frac{-1}{F} C^{\prime \prime} & 1
\end{array}\right]\left[\begin{array}{c}
d x \\
d p_{x}
\end{array}\right]+\left[\begin{array}{cc}
\frac{N m}{p_{x}} & \frac{\alpha}{(\alpha+\beta)^{2}} \\
0
\end{array}\right] d \beta} \\
0
\end{array}\right]=\left[\begin{array}{cc}
1 & N \frac{\alpha}{\alpha+\beta} \frac{m}{p_{x}^{2}} \\
\frac{-1}{F} C^{\prime \prime} & 1
\end{array}\right]\left[\begin{array}{c}
d x / \alpha \beta \\
d p_{x} / d \beta
\end{array}\right] .
$$

Both methods give the same answer.
c) The consumer thanks $\partial p_{x} / \partial \beta=0$ because he thinks his actions (and his preferences) do not affect the price; he is a price-taker.

2016 Qualifying Exam Sec. 1 Qu. 2
2. [14 points] Suppose an economy consists of two agents, "a" and "b," and two goods, " 1 " and " 2 ," and the agents have the following utility functions and endowments:

$$
\begin{array}{ll}
u_{a}=\ln \left(x_{1 a}\right)+x_{2 a} & \omega_{a}=(1,1), \\
u_{b}=\ln \left(x_{1 b}\right)+x_{2 b} & \omega_{b}=(9,9) .
\end{array}
$$

(a) Find the competitive equilibrium prices (or price ratio) and allocation ( $x_{1 a}^{*}, x_{2 a}^{*}, x_{1 b}^{*}, x_{2 b}^{*}$ ) for this economy. You may work either with the price of Good 1, " $p_{1}$," and the price of Good 2, " $p_{2}$," or with their ratio (for example, $\rho=p_{2} / p_{1}$ or $\gamma=p_{1} / p_{2}$ ), or you may choose a numéraire.
(b) Suppose that while the behavior of Person "b" is identical to that in part (a), Person "a" now behaves in the following noncompetitive way regarding Good 2:

- Person "a" knows that $x_{2 a}+x_{2 b}=10$;
- Person "a" knows the demand curve for Good 2 by Person "b" (which you worked out in part (a)); and
- Person "a" can choose $p_{2}$ (or, equivalently, Person "a" can choose $\rho$ or $\gamma$ ).
i. Find the demand by Person "a" for Good 2 as a function of price(s). You should be able to do this without solving an optimization problem by taking into account the first and second "bullet points" above.
ii. Find the resulting non-competitive equilibrium prices (or price ratio) and allocation ( $\hat{x}_{1 a}, \hat{x}_{2 a}, \hat{x}_{1 b}, \hat{x}_{2 b}$ ) for this economy. Hint: in working this out, at one point I got to

$$
0=\frac{p_{2}^{2}}{9 p_{1}}-10 p_{1}+p_{2} .
$$

If you get to the same point, you should be able to use algebra and the quadratic formula to simplify this to

$$
0=\rho^{2}+9 \rho-90=(\rho+15)(\rho-6)
$$

using $\rho=p_{2} / p_{1}$ as mentioned in part (a).
(c) It turns out that the equilibrium allocation for part (a) occurs at the point labeled "C" (for "competitive") in the Edgeworth Box illustrated in Figure 1, and that the equilibrium allocation for part (b) occurs at the point labeled "NC" (for "non-competitive") in Figure 1. Figure 1 is not drawn to scale, and it omits portions of the Edgeworth Box in order to better show its lower-lefthand corner. The numbers next to the figure's indifference curves (the numbers $1,1.81,1.89,11.2,11.3$, and 11.4 ) represent the approximate corresponding value of $u_{a}$ or $u_{b}$.
The straight line through NC represents the non-competitive equilibrium price vector of part (b). At NC, is the indifference curve of Person "b" tangent to this price vector? Why? At NC, is the indifference curve of Person " $a$ " tangent to this price vector? Why?
(d) Suppose that each year, the economy starts at $\left(\boldsymbol{\omega}_{a}, \boldsymbol{\omega}_{b}\right)$ and, because Person "a" has market power, each year the economy ends up at point NC. Furthermore, suppose the US Department of Justice has filed a lawsuit against Person "a" in which a court is asked to prohibit Person "a" from engaging in non-competitive behavior. If the Department of Justice is successful, in future years the economy will be at C. If the Department of Justice is unsuccessful, in future years the economy will continue ending up at NC.
i. If you were an economic consultant for the Department of Justice, what argument or arguments might you make to the court?
ii. If you were an economic consultant for Person "a," what argument or arguments might you make to the court?


Figure 1
(2)
a) Person a's budect constrant

$$
\begin{aligned}
p_{1} x_{1 a}+p_{2} x_{2 a} & =p_{1}(1)+p_{2}(2) \\
& =p_{1}+p_{2} .
\end{aligned}
$$

So $p_{1}\left(x_{1 a}-1\right)+p_{2}\left(x_{2 a}-1\right)=0$.

$$
\left.\begin{array}{c}
\mathscr{L}=\overbrace{\ln x_{1 a}+x_{2 a}}^{u_{a}}-\lambda\left[p_{1}\left(x_{1 a}-1\right)+p_{2}\left(x_{2 a}-1\right)\right] \\
0=\frac{\partial z}{\partial x_{1 a}}=\frac{1}{x_{1 a}}-\lambda p_{1} \Rightarrow \lambda=\frac{1}{p_{1} x_{1 a}} \\
0=\frac{\partial \mathscr{\partial}}{\partial x_{2 a}}=1-\lambda p_{2} \Rightarrow \lambda=\frac{1}{p_{2}}
\end{array}\right\}, ~ \begin{gathered}
\lambda=\frac{1}{p_{1} x_{1 a}}=\frac{1}{p_{2}} \\
\Rightarrow x_{1 a}=\frac{p_{2}}{p_{1}} .
\end{gathered}
$$

Substituting thas in to the bu dfect construant:

$$
\begin{aligned}
p_{1}\left(\frac{p_{2}}{p_{1}}-1\right)+p_{2}\left(x_{2 a}-1\right) & =0 \\
p_{2}-p_{1}+p_{2}\left(x_{2 a}-1\right) & =0 \\
p_{2}\left(x_{2 a}-1\right) & =p_{1}-p_{2} \\
x_{2 a}-1 & =\frac{p_{1}}{p_{2}}-1 \\
x_{2 a} & =\frac{p_{1}}{p_{2}} .
\end{aligned}
$$

Person 6's b-dyet construant

$$
p_{1} x_{1 b}+p_{2} x_{26}=p_{1}(q)+p_{2}(9)
$$

so

$$
\begin{aligned}
& p_{1}\left(x_{1 b}-9\right)+p_{2}\left(x_{2 b}-9\right)=0 . \\
& \mathcal{L}=\overbrace{\ln x_{1 b}+x_{2 b}}^{u_{b}}-\lambda\left[p_{1}\left(x_{1 b}-9\right)+p_{2}\left(x_{2 b}-9\right)\right] \\
& \left.0=\frac{\partial z}{\partial x_{1 b}}=\frac{1}{x_{1 b}}-\lambda p_{1} \Rightarrow \lambda=\frac{1}{p_{1} x_{1 b}}\right\} \\
& \left.\begin{array}{c}
0=\frac{\partial x}{\partial x_{2 b}}=1-\lambda p_{2} \Rightarrow \lambda=\frac{1}{p_{2}}
\end{array}\right\} \\
& \lambda=\frac{1}{p_{1} x_{1 b}}=\frac{1}{p_{2}} \\
& \Rightarrow x_{1 b}=\frac{p_{2}}{p_{1}}
\end{aligned}
$$

Substitioy this in to the budect contriant:

$$
\begin{array}{r}
p_{1}\left(\frac{p_{2}}{p_{1}}-q\right)+p_{2}\left(x_{2 b}-9\right)=0 \\
p_{2}-q p_{1}+p_{2} x_{2 b}-q p_{2}=0 \\
p_{2} x_{2 b}=9 p_{1}+8 p_{2} \\
x_{2 b}=9 \frac{p_{1}}{p_{2}}+8 .
\end{array}
$$

Good 1 has an aggregate supply of 10 and an aggregate demand of $\chi_{1 a}+\chi_{16}=\frac{p_{2}}{p_{1}}+\frac{p_{2}}{p_{1}}$ $=\frac{2 p_{2}}{p_{1}}$. Setting demand equal to supply, $10=\frac{2 p_{2}}{p_{1}}$ so $p_{2} / p_{1}=5$.

Optional: This should clear the Good 2 market. Does it? The syply of bod 2 is 10 and the aggregate dem and for Good 2 is $\chi_{2 a}+\chi_{2 b}=\frac{p_{1}}{p_{2}}+9 \frac{p_{1}}{p_{2}}+8=$ $\frac{10 p_{1}}{p_{2}}+8$. At the equitibnum price ratio established thee lines ago (namely $P_{2} / P_{1}=5$ ), this aggregate demand is $\frac{10}{5}+8=2+8=10$, so the Good 2 market does clear with this price ratio.

The equilibnum allocation is

$$
\begin{array}{ll}
x_{1 a}^{*}=\frac{p_{2}}{p_{1}}=5 & x_{1 b}^{*}=\frac{p_{2}}{p_{1}}=5 \\
x_{2 a}^{*}=\frac{p_{1}}{p_{2}}=\frac{1}{5} & x_{2 b}^{*}=9 \frac{p_{1}}{p_{2}}+8=\frac{9}{5}+8=1 \frac{4}{5}+8=9 \frac{4}{5} .
\end{array}
$$

This is at Point $C$ of the diagram below. That diagram resembles the ore prided on the exam, but the exam's diagram was not drawn to scale and it is easier to read, whereas the diagram below is drawn to scale, although it ak omits parts of the Edgewor th Box.


This page is completely optional!
One could find the contract curve as follows:

$$
\begin{aligned}
\max \alpha u_{a}+(1-\alpha) u_{b} \text { s.t. } \quad x_{1 a}+x_{1 b} & =10 \\
x_{2 a}+x_{2 b} & =10 .
\end{aligned}
$$

Varying a from $O$ to 1 will yield the contract curve.

$$
\begin{aligned}
& \max \alpha\left[\ln x_{1 a}+x_{2 a}\right]+(1-\alpha)\left[\ln x_{1 b}+x_{2 b}\right] \text { s.t. (above conditions hold) } \\
& \Leftrightarrow \\
& \max \alpha\left[\ln x_{1 a}+x_{2 a}\right]+(1-\alpha)\left[\ln \left(10-x_{1 a}\right)+\left(10-x_{2 a}\right)\right] .
\end{aligned}
$$

First-urder conditions:

$$
\begin{aligned}
& \text { First-onder conditions: } \\
& \left.0=\frac{\partial \text { (objective function) }}{\partial x_{1 a}}=\frac{\alpha}{x_{1 a}}-\frac{1-\alpha}{10-x_{1 a}}\right)^{10 \alpha-\alpha x_{1 a}=x_{1 a}-\alpha x_{1 a}} 110 \alpha=x_{1 a}
\end{aligned}
$$

$0=\frac{\partial \text { (objective function) }}{\partial x_{2 a}}=\alpha-(1-\alpha)=2 \alpha-1$ ? We need to be able to vary $\alpha$ between
0 and 1 . We cannot have $\alpha$ always equal to $1 / 2$. Something is wrong. What'surong is that the objective function is linear in $x_{2 a}$,

$$
\begin{aligned}
\text { Objective Function }=\alpha \ln x_{1 a}+(1-\alpha) \ln \left(10-x_{1 a}\right) & +\alpha x_{2 a}+(1-\alpha)\left(10-x_{2 a}\right) \\
& =\alpha x_{2 a}+10-x_{2 a}-10 \alpha+\alpha x_{2 a} \\
& =2 \alpha x_{2 a}-x_{2 a}+10-10 \alpha \\
& =(2 \alpha-1) x_{2 a}+10-10 \alpha \text { so you }
\end{aligned}
$$

maximize the objective function with respect to $x_{2 a}$ by setting $x_{2 a}$ equal to its
extreme values (a corner solution), $x_{2 a}=0$ or 10 , deluding on the sign of $2 \alpha-1$ :

$$
\begin{aligned}
& \text { if } \begin{aligned}
& 2 \alpha-1<0 \text { then } x_{2 a}^{*}=0 \\
& \uparrow \perp 2 \alpha<1 \Leftrightarrow \alpha<1 / 2 \\
& \text { if } 2 \alpha-1>0 \text { them } x_{2 a}^{*}=10 \\
& \qquad 2 \alpha>1 \Leftrightarrow \alpha>1 / 2
\end{aligned}
\end{aligned}
$$

if $2 \alpha-1=0$ then any value of $X_{2 a}$ which is feasible (that is,
 is between $O$ and 10 inclusive) is optimal.

Since $x_{1 a}=10 \alpha$ from the previous page, the contract carve is given by $\left(x_{1 a}, x_{2 a}\right)=$

$$
= \begin{cases}\frac{(10 \alpha, 0)}{(10 \alpha,[0,10])} & \text { if } 0 \leq \alpha<1 / 2 \\ \left.\left.\frac{10}{(10,10)} \alpha 0,10\right]\right) & \text { if } \frac{1}{2}<\alpha \leq 1 .\end{cases}
$$

This is the contract curve position illustrated in the diagram.

b) (i)

Person a controls $p_{2}$.
Person a knows that $x_{24}+x_{2 b}=10$, that is, that $x_{2 a}=10-x_{2 b}$.
Person a knows that $x_{2 b}^{D}=9 \frac{p_{1}}{p_{2}}+8$ from part (a).
Therefore Person a knows that $x_{2 a}=10-\left(9 \frac{p_{1}}{p_{2}}+8\right)$

$$
\begin{equation*}
x_{2 a}=2-9 \frac{p_{1}}{p_{2}} \tag{1}
\end{equation*}
$$

(ii) In Part (a), Person a's Lagrangian was

$$
\ln x_{1 a}+x_{2 a}-\lambda\left[p_{1}\left(x_{1 a}-1\right)+p_{2}\left(x_{2 a}-1\right)\right]
$$

and he maximized over $x_{1 a}$ and $x_{2 a}$. Here, the Lagraspion with be the same except we should use (1) to noplace $x_{2 a}$ with $2-9 \frac{P_{1}}{P_{2}}$, and the maximization should be over $x_{1 a}$ and $p_{2}$.

$$
\begin{aligned}
\mathscr{L} & =\ln x_{1 a}+2-9 \frac{p_{1}}{p_{2}}-\lambda\left[p_{1}\left(x_{1 a}-1\right)+p_{2}\left(2-9 \frac{1}{p_{2}}-1\right)\right] \\
& =-\lambda\left[p_{1}\left(x_{1 a}-1\right)+2 p_{2}-9 p_{1}-p_{2}\right] \\
& =-\lambda\left[p_{1}\left(x_{1 a}-1\right)+p_{2}-9 p_{1}\right] .
\end{aligned}
$$

F.O.C.'s:

$$
\begin{aligned}
& 0=\frac{\partial Z}{\partial x_{1 a}}=\frac{1}{x_{1 a}}-\lambda p_{1} \Rightarrow \lambda=\frac{1}{p_{1} x_{1 a}} \\
& 0=\frac{\partial Z}{\partial p_{2}}=9 \frac{p_{1}}{p_{2}^{2}}-\lambda \Rightarrow \lambda=9 \frac{1}{p_{1} x_{1 a}}=\frac{q p_{1}}{p_{2}^{2}} \Rightarrow x_{1 a}=\frac{p_{2}^{2}}{9 p_{1}^{2}} . \\
& \text { Substitute this in to the bud pet }
\end{aligned}
$$

$\hat{\tau}_{\text {note optimization with }}$
respect to $P_{2}$

$$
\begin{aligned}
0 & =p_{1}\left(\frac{p_{2}^{2}}{q p_{1}^{2}}-1\right)+p_{2}\left(1-q \frac{p_{1}}{p_{2}}\right) \\
& =\frac{p_{2}^{2}}{q p_{1}}-p_{1}+p_{2}-q p_{1}=\frac{p_{2}^{2}}{q p_{1}}-10 p_{1}+p_{2} \text {. Dinde by } p_{2}: \\
0 & =\frac{p_{2}}{q p_{1}}-10 \frac{p_{1}}{p_{2}}+1 . \operatorname{Let} \ell=p_{2} / p_{1}: \\
0 & =\frac{p}{q}-10 / e+1 . \text { Mrltpl by } e: \\
0 & =\frac{1}{q} e^{2}-10+l=\frac{1}{q} e^{2}+e-10 . \text { Multiply by } q:
\end{aligned}
$$

$0=e^{2}+9 e-90=(e+15)(e-6)$. I got these roots form the quadratic

$$
\text { formula } \begin{gathered}
\frac{-9 \pm \sqrt{9^{2}-4(1)(-90)}}{2(1)}=\frac{-9 \pm \sqrt{81+360}}{2}=\frac{-9 \pm \sqrt{441}}{2} \\
=\frac{-9 \pm 21}{2}=\left\{\frac{-30}{2}, \frac{12}{2}\right\}=\{-15,6\} .
\end{gathered}
$$

The equilisium price vector is therefore $\frac{p_{2}}{p_{1}}=\rho=6$ since $\rho=-15$ violates He couctition that pries be positive.

The equilinivim is therefore

$$
\begin{aligned}
& \hat{x}_{1 a}=\frac{p_{2}^{2}}{9 p_{1}^{2}}=\frac{e^{2}}{9}=\frac{6^{2}}{9}=\frac{36}{9}=4 \\
& \hat{x}_{2 a}=2-9 \frac{p_{1}}{p_{2}}=2-\frac{9}{p}=2-\frac{9}{6}=2-1 \frac{1}{2}=\frac{1}{2} .
\end{aligned}
$$

One can find Person's allocation either by using his demand curves, which were denvedon Part (a),

$$
\begin{aligned}
& \hat{x}_{1 b}=\frac{p_{2}}{p_{1}}=e=6 \\
& \hat{x}_{2 b}=9 \frac{p_{1}}{p_{2}}+8=\frac{9}{c}+8=\frac{9}{6}+8=1 \frac{1}{2}+8=9 \frac{1}{2},
\end{aligned}
$$

or by using the feasibility conditions that $10=\hat{x}_{1 a}+\hat{x}_{1 b}=4+\hat{x}_{1 b} \Rightarrow \hat{x}_{1 b}=6$

$$
10=\hat{x}_{2 a}+\hat{x}_{2 b}=\frac{1}{2}+\hat{x}_{2 b} \Rightarrow \hat{x}_{2 b}=9 \frac{1}{2} .
$$

## Answer to Question 2(c):

At NC, the indifference curve of Person " $b$ " is tangent to his budget constraint, which is the straight line going through $\omega$ whose slope is the equilibrium price vector $-p_{1} / p_{2}=-6$. This is because Person " b " is a price-taker in part (b), just as he was in part (a), so the usual condition that "at the optimum, the indifference curve is tangent to the budget constraint" applies to him. However, at NC the indifference curve of Person " a " is not tangent to that line. That is because in part (b), Person " $a$ " is not a price-taker; he controls the price.

Answer to Question 2(d)(i):
Point NC is clearly inefficient, since it is not on the contract curve and (equivalently) the indifference curves of the two people are not tangent there. Both people could be made better off by moving into the lens-shaped area enclosed by the lines passing through M, NC, and N. In particular, points between M and N are efficient, and points strictly between M and N would make both people strictly better off than they are at NC. (In other words: NC is not Pareto Efficient; M and N are Pareto Efficient; and a move from NC to any point between M and N is a Pareto-improving move.) Hence NC is a socially bad point. On the other hand, point C is efficient (that is, it is Pareto Optimal). So it's socially better than NC.

## Answer to Question 2(d)(ii):

Person "a" has the same preferences as Person " $b$," but Person "a" is much poorer, since he has $\omega_{a}=(1,1)$ in contrast to $\omega_{b}=(9,9)$. By giving Person "a" some market power, part (b) of the question improved his utility at least a little bit compared to the competitive equilibrium (a utility level of 1.89 instead of 1.81 , if cardinal utility levels matter). At NC, the rich Person "b" is not damaged much compared to point C ; this can be seen either by observing that NC is not far away from $\omega$, which is quite lopsided in favor of Person "b," or (if cardinal utility levels matter) by observing that the utility level of Person "b" only falls from 11.4 to 11.3 if the economy was at NC instead of at C. It is true that NC is inefficient. A point between M and N would be better than NC. However, the question before the court is not a choice between, on the one hand, points between M and N , and, on the other hand, NC or C. Instead the question before the court is a choice between NC and C . NC is more fair than C (because it has a higher utility
for the poorer person). Society may certainly care about fairness, and it may, in some or even in all situations, value fairness over efficiency. So it is certainly possible for society to prefer NC to C. Society should indeed have this preference, because Person " a " is so disadvantaged.

Optional details related to part (d) follow.

This page is optional!

Utilitylevels. Part (a).

$$
\begin{aligned}
& u_{a}=\ln \left(x_{1 a}^{*}\right)+x_{2 a}^{*}=\ln 5+\frac{1}{5} \approx 1.81 \\
& u_{b}=\ln \left(x_{1 b}^{*}\right)+x_{2 b}=\ln 5+9 \frac{4}{5} \approx 11.4
\end{aligned}
$$

Part (b).

$$
\begin{aligned}
& u_{a}=\ln \left(\hat{x}_{1 a}\right)+\hat{x}_{2 a}=\ln 4+\frac{1}{2} \approx 1.89 \\
& u_{b}=\ln \left(\hat{x}_{1 b}\right)+\hat{x}_{2 b}=\ln 6+9 \frac{1}{2} \approx 11.3
\end{aligned}
$$

At $\underset{\sim}{\boldsymbol{\sim}}:$

$$
\begin{aligned}
& u_{a}=\ln (1)+1=1 \\
& u_{b}=\ln (9)+9 \approx 11.2
\end{aligned}
$$

$x_{2 a}$ at $P_{\text {ont }} M$ : Person's utility is $\ln 6+9 \frac{1}{2} \simeq 11.3$ and $x_{1 a}=5$ so $x_{1 b}=10-5$ $=5$ and

$$
\begin{aligned}
& \ln 6+9 \frac{1}{2}=u_{b}=\ln x_{16}+x_{2 b} \\
& =\ln 5+x_{26} \text {; but } x_{16}+x_{26}=10 \text { so } x_{2 b}=10-x_{16} \text { and } \\
& \ln 6+9 \frac{1}{2}=\ln 5+10-x_{26} \Rightarrow \\
& x_{2 b}=10-9 \frac{1}{2}+\ln 5-\ln 6=\frac{1}{2}+\ln \frac{5}{6} \approx 0.32
\end{aligned}
$$

$x_{2 a}$ at Point $N:$ Person a's utility is $\ln 4+\frac{1}{2} \approx 1.89$ and $x_{1 a}=5$ so

$$
\begin{aligned}
\ln 4+\frac{1}{2}=u_{a}=\ln 5+x_{2 a} \Rightarrow x_{2 a} & =\ln 4+\frac{1}{2}-\ln 5 \\
& =\ln \frac{4}{5}+\frac{1}{2} \approx 0.28
\end{aligned}
$$

This page is optional!

The deadweight loss to Person 6 from having to face Person a's market power can be found as follows. In both parts (a) and (b), Person $b$ s a net buyer of Good 2 and Person a is a net seller of Good 2 (since, in the diagram, Points NC and $($ both lie below $\underset{\sim}{\omega})$. Let $p_{1}=1$ be the numérare. Then in part (a), $\frac{p_{2}}{p_{1}}=5 \Rightarrow p_{2}=5$; and in part (b), $\frac{p_{2}}{p_{1}}=6 \Rightarrow p_{2}=6$. Person a's market power over Good 2 in part (b) causes the prize of Good 2 lot which Person $a$ is a net seller) to rise from 5 to 6 . Person $b$ 's demand for Good 2 is, from part (a), $\quad q \frac{p_{1}}{p_{2}}+8=\frac{q}{p_{2}}+8$. So:

$$
\ln \text { part (a) [competition], } x_{2 b}^{D}=\frac{9}{5}+8=1 \frac{4}{5}+8=9 \frac{4}{5} \text {; }
$$

$$
\text { in part (b) [mon-competitive ], } x_{26}^{D}=\frac{9}{6}+8=1 \frac{1}{2}+8=9 \frac{1}{2} \text {. }
$$



$$
\begin{aligned}
& \underset{5}{\text { Consumer }} \text {. } \mathrm{plus} \text { loss }=\int_{5}^{6}\left(\frac{9}{p_{2}}+8\right) d p_{2}=9 \ln p_{2}+\left.8 p_{2}\right|_{5} ^{6}=9 \ln 6+48-9 \ln 5-40 \\
& =9 \ln \frac{6}{5}+8 \\
& \text { deadweight loss }=9 \ln \frac{6}{5}+8-(6-5) \cdot 9 \frac{1}{2} \\
& =9 \ln \frac{6}{5}-1 \frac{1}{2} \approx 0.14 .
\end{aligned}
$$

The pase is optional!

Suppose the court weretorule in favor of Person a. Could the winner (Person a) compensate the loser (Person b) and still come out a head of where the winner would be if he had lost?
instead of point e
Person b's willingness to accept ("WTA") point $N C_{\Lambda}^{\text {is (measuring interns of the always }}$ in competitive Good 1)

$$
\begin{aligned}
& u_{b}\left(6+w T A, 9 \frac{1}{2}\right)=u_{b}\left(5,9 \frac{4}{5}\right) \\
& \ln (6+\omega T A)+9 \frac{1}{2}=\ln 5+9 \frac{4}{5} \\
& \ln \frac{6+\omega T A}{5}=\frac{3}{10} \\
& \frac{6+\omega T A}{5}=e^{3 / 10} \Rightarrow W T A_{b}=5 e^{3 / 10}-6
\end{aligned}
$$

Person a's willingness to pay ("WTP") for point NC instead of point $C$ is

$$
\begin{aligned}
u_{a}\left(\hat{x}_{1 a}-w T P, \hat{x}_{2 a}\right) & =u_{a}\left(x_{1 a}^{*}, x_{2 a}^{*}\right) \\
u_{a}\left(4-W T P, \frac{1}{2}\right) & =u_{a}\left(5, \frac{1}{5}\right) \\
\ln (4-w T P)+\frac{1}{2} & =\ln 5+\frac{1}{5} \\
\frac{5}{10}-\frac{2}{10} & =\ln \frac{5}{4-\omega T P} \\
e^{3 / 10} & =\frac{5}{4-\omega T P} \\
4-\omega T P & =5 e^{-3 / 10} \Rightarrow W T P_{a}=4-5 e^{-3 / 10}
\end{aligned}
$$

Is the winner's WTP $\geqslant$ the loser's WTA? (over $\rightarrow$ )

$$
\begin{aligned}
4-5 e^{-3 / 10} & \geqslant 5 e^{3 / 10}-6 \\
4+6 & \geqslant 5\left(e^{3 / 10}+e^{-3 / 10}\right)
\end{aligned}
$$

$\rightarrow$ Math trivia note:

$$
e^{3 / 10}+e^{-3 / 10}=\underset{\text { hyperbolic cosine }}{2 \cosh \frac{3}{10}}
$$

$10 \geqslant 10.453$, No. The winner (Person a) cannot filly compensate the loser (Person 6$)$ and still be glad he won. This is another reflection of the fact that $N C$ is inefficient.

$$
\text { Note: } W T A_{b}=5 e^{3 / 10}-6 \approx 0.75, \omega T T_{a}=4-5 e^{-3110} \approx 0.30
$$

Suppose the court were to rule in favor of Person b. Could the winner (Person b) compensate the loser (Person a) and still come out ahead of where the winner would be if he had lost?
个
$\nu$
$\frac{v}{z}$
$g$ of Good 1)

$$
\begin{aligned}
\ln (5-w T P)+9 \frac{4}{5} & =\ln 6+9 \frac{1}{2} \\
9 \frac{8}{10}-9 \frac{5}{10} & =\ln \frac{6}{5-\omega T P} \\
e^{3 / 10} & =\frac{6}{5-\omega T P} \\
5-\omega T P & =6 e^{-3 / 10} \\
\omega T P_{b} & =5-6 e^{-3 / 10} \approx 0,56
\end{aligned}
$$

Is the winner's WTP $\geqslant$ the loser's WTA?

$$
\begin{aligned}
5-6 e^{-3 / 10} & \geqslant 4 e^{3 / 10}-5 \\
& ? 4 e^{3 / 10}+6 e^{-3 / 10} \approx 9.84 \text { Yes the }
\end{aligned}
$$

winner (Person b) can fully compensate the loser (Person a) and still beglad he won.
This reflects the fac ts that NC is inefficient and Cis efficient. (However, this still does mot mean that $C$ is better than NC unambiguously. All thus means is that there exists some point to the right of $C$ (more $X_{1 a}$ than $C$ ) which is Pareto-superior to NC.)

These two results are illustrated on the next page. The first graph shows the frost result (that at N( the winner cannot compensate the loser). Because the indifference curves are tangent at $C$, this conclusion could have been proven just using the graph, without calculating any numbers. The se cond graph, showing the se lond result (that at (the winner can compensate the loser), needs to have numbers calculated in order to ensure the graph is correct.

$$
\text { Finally, note that : }\left\{\begin{array}{l|ll} 
& \text { WTA DTP } \\
a & 0.40>0.30 & \text { That is, an individual's WTA }>\text { their WTP. } \\
b & 0.75>0.56 & \text { Also, } a \text { 's WTA and WTP is lass then } b ' s, ~ p o s s i b l y ~ \\
\text { because } a \text { is poorer than } b .
\end{array}\right.
$$



