
Notes for Econ. 7001

by Gabriel A. Lozada

The equation numbers and page numbers refer to Knut Sydsæter and Peter

J. Hammond’s textbook Mathematics for Economic Analysis (ISBN 0-13-

583600-X, 1995).

1. Convexity, Quadratic Forms, and Minors

Let A denote a matrix. It does not have to be square. A “minor of A of

order r” is obtained by deleting all but r rows and r columns of A, then

taking the determinant of the resulting r × r matrix. [p. 466; this page

has a good example.] One can show that a matrix of dimension m× n has(
m!/[r! (m− r)!]

)
·
(
n!/[r! (n− r)!]

)
minors of order r for r = 1, . . . , n.

Now let A denote a square matrix. A “principal minor of A of order r”

is obtained by deleting all but r rows and the corresponding r columns of A,

then taking the determinant of the resulting r × r matrix. [p. 536] (For

example, if you keep the first, third, and fourth rows, then you have to keep

the first, third, and fourth columns.) A principal minor of A of order r

is denoted by ∆r of A. [p. 638] One can show that a square matrix of

dimension n × n has n!/[r! (n − r)!] principal minors of order r for r = 1,

. . . , n.

Again let A denote a square matrix. A “leading principal minor of

A of order r” is obtained by deleting all but the first r rows and the first

r columns of A, then taking the determinant of the resulting r × r matrix. [important]

[p. 534] A leading principal minor of A of order r is denoted by Dr of A.

A square matrix of dimension n × n has only 1 leading principal minor of

order r for r = 1, . . . , n.

Example. Suppose A =

 1
5
9
13

2
6
10
14

3
7
11
15

4
8
12
16

. This matrix is not symmetric.

Usually one is interested in the minors only of symmetric matrices, but there

is nothing wrong with finding the minors of this non-symmetric matrix.

• The leading principal minor of order 1 of A is D1 = |1|.
There are four principal minors of order 1 of A; they are the ∆1’s:

|1| = D1, |6|, |11|, and |16|.
There are sixteen minors of A of order 1.
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• The leading principal minor of order 2 of A is D2 =
∣∣∣15 2

6

∣∣∣.
There are six principal minors of order 2 of A; they are the ∆2’s:∣∣∣15 2

6

∣∣∣ = D2 (from rows and columns 1 and 2),
∣∣∣19 3

11

∣∣∣ (from rows and

columns 1 and 3),
∣∣∣ 113 4

16

∣∣∣ (from rows and columns 1 and 4),
∣∣∣ 610 7

11

∣∣∣
(from rows and columns 2 and 3),

∣∣∣ 614 8
16

∣∣∣ (from rows and columns 2

and 4), and
∣∣∣1115 12

16

∣∣∣ (from rows and columns 3 and 4).

There are thirty-six minors of A of order 2.

• The leading principal minor of order 3 of A is D3 =

∣∣∣∣∣ 159 2
6
10

3
7
11

∣∣∣∣∣.
There are four principal minors of order 3 of A; they are the ∆3’s:∣∣∣∣∣ 159 2

6
10

3
7
11

∣∣∣∣∣ = D3 (from rows and columns 1, 2, and 3),

∣∣∣∣∣ 1513 2
6
14

4
8
16

∣∣∣∣∣ (from

rows and columns 1, 2 and 4),

∣∣∣∣∣ 1913 3
11
15

4
12
16

∣∣∣∣∣ (from rows and columns 1, 3

and 4), and

∣∣∣∣∣ 6
10
14

7
11
15

8
12
16

∣∣∣∣∣ (from rows and columns 2, 3 and 4).

There are sixteen minors of A of order 3.

• The leading principal minor of order 4 of A is D4 = |A|.
There is only one principal minor of order 4 of A; it is ∆4 and it is

equal to |A|.
There is only one minor of order 4 of A; it is |A|.

[End of Example]

Let f be a C2 function mapping Rn into R1. Denote the Hessian matrix

of f(x) by ∇2f(x); this matrix has dimension n × n. Let “Dr of ∇2f(x)”

denote the rth-order leading principal minor of the Hessian of f . Let “∆r

of ∇2f(x)” denote all the rth-order principal minors of the Hessian of f .

Proposition 1. One has

Dr of ∇2f(x) > 0 for r = 1, . . . , n and for all x ∈ S (1)

⇐⇒ ∇2f(x) is positive definite for all x ∈ S (2)

=⇒ f(x) is strictly convex on S . (3)
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Also,

All the ∆r of ∇2f(x) ≥ 0 for r = 1, . . . , n and for all x ∈ S (4)

⇐⇒ ∇2f(x) is positive semidefinite for all x ∈ S (5)

⇐⇒ f(x) is convex on S . (6)

If ∇2f(x) is replaced by an arbitrary symmetric matrix, it is still true that

(1) ⇐⇒ (2) and (4) ⇐⇒ (5).

Proof. (1) ⇐⇒ (2): Th. 15.3 (a), p. 535. (2) =⇒ (3): 17.24, p. 637 or

Th. 17.14 (b), p. 641.

(4) ⇐⇒ (5): p. 536. (5) ⇐⇒ (6): 17.26, p. 638, or Th. 17.13 (b),

p. 640.

The typical procedure is to check (1) first. If (1) doesn’t apply because

one of the signs was strictly negative, then the contrapositive of “(4) iff (6)”

tells you that the function is not convex. (This is because each Di ∈ ∆i.)

[Proposition 1′: Similarly,

Dr of ∇2f(x) alternate in sign beginning with < 0 for r = 1, . . . , n

and ∀ x ∈ S (1′)

⇐⇒ ∇2f(x) is negative definite for all x ∈ S (2′)

=⇒ f(x) is strictly concave on S . (3′)

Also,

All the ∆r of ∇2f(x) alternate in sign beginning with ≤ 0 for r = 1, . . . , n

and ∀ x ∈ S (4′)

⇐⇒ ∇2f(x) is negative semidefinite for all x ∈ S (5′)

⇐⇒ f(x) is concave on S . (6′)

]

Section 17.10 of your textbook has an excellent treatment of quasicon-

vexity and quasiconcavity. You should learn it. However, you should replace

Theorem 17.17 on p. 647 with the remarks which come between here and

the end of this section.

Simon and Blume (p. 526) give the following definition (they use different

notation and a different but equivalent statement): Let S be an open convex
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subset of Rn. A C1 function f : S → R is quasiconvex at x∗ ∈ S if and

only if

∇f(x∗) · (z− x∗) > 0 implies f(z) > f(x∗) for all z ∈ S. (7)

One says that f is “quasiconvex on S” if (8) holds for all x∗ ∈ S.

[Aside: A quasiconcave function is defined by reversing both inequalities in (7).]

Simon and Blume (p. 527) give the following definition: Let S be an

open convex subset of Rn. A C1 function f : S → R is pseudoconvex at

x∗ ∈ S if

∇f(x∗) · (z− x∗) ≥ 0 implies f(z) ≥ f(x∗) for all z ∈ S. (8)

One says that f is “pseudoconvex on S” if (8) holds for all x∗ ∈ S.

[Aside: A pseudoconcave function is defined by reversing both inequalities in (8).]1

1Simon and Blume actually give ≤ instead of ≥ as the second relation in (8); however,

their definition of pseudoconcavity completely agrees with mine, and I believe their def-

inition of pseudoconvexity is wrong. To see why, combine Simon and Blume’s Theorems

21.2 and 21.3:

f concave ⇐⇒ f(z)− f(x∗) ≤ ∇f(x∗) · (z− x∗) .

So as they note in their Corollary 21.4:

f concave ⇐⇒ f(z)− f(x∗) ≤ ∇f(x∗) · (z− x∗) ≤ 0⇒ f(z) ≤ f(x∗) .

Then Simon and Blume define a function f to be pseudoconcave if, as I wrote above:

∇f(x∗) · (z− x∗) ≤ 0⇒ f(z) ≤ f(x∗) .

By analogy and by Simon and Blume’s Theorem 21.2,

f convex ⇐⇒ f(z)− f(x∗) ≥ ∇f(x∗) · (z− x∗) ;

then in the spirit of their Corollary 21.4:

f convex ⇐⇒ f(z)− f(x∗) ≥ ∇f(x∗) · (z− x∗) ≥ 0⇒ f(z) ≥ f(x∗) .

The analogous definition of f being pseudoconvex is therefore

∇f(x∗) · (z− x∗) ≥ 0⇒ f(z) ≥ f(x∗)

which is (8) above. My definition is also the same as the one in S. Schaible, “Second-

order Characterizations of Pseudoconvex Quadratic Functions,” Journal of Optimization

Theory and Applications, vol. 21 no. 1, Jan. 1977, pp. 15–26. Also, note that since

everyone defines pseudoconcavity by ∇f(x∗) · (z − x∗) ≤ 0 ⇒ f(z) ≤ f(x∗) , and since

that implies ∇(−f(x∗)) · (z − x∗) ≥ 0 ⇒ −f(z) ≥ −f(x∗) , my definition ensures that if

f is pseudoconcave then −f is pseudoconvex, as is appropriate.
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Pseudoconvexity is not very interesting in and of itself (though see

point 4 of Section 4 below); its main use lies in its similarity with quasi-

convex functions. By Theorem 21.17 of Simon and Blume (p. 528), one

has:

Proposition 2. [Pseudoconvexity and Quasiconvexity.] Let S be

a convex subset of Rn and let f : S → R be a C1 function. Then:

1. f is pseudoconvex on S =⇒ f is quasiconvex on S.

2. if S is open and if ∇f(x) 6= 0 for all x ∈ S, then:

f is pseudoconvex on S ⇐⇒ f is quasiconvex on S.

[Proposition 2′: Similarly,

1. f is pseudoconcave on S =⇒ f is quasiconcave on S.

2. if S is open and if ∇f(x) 6= 0 for all x ∈ S, then:

f is pseudoconcave on S ⇐⇒ f is quasiconcave on S.

]

The neat thing about pseudoconvex functions is that there is an easy

second derivative test for such functions, a test that is also usually the

easiest check that a given function is quasiconvex [I am partially quoting

from Simon and Blume p. 528]. Here is that test [Simon and Blume Th.

21.19 p. 530]:

Proposition 3. [Test of Pseudoconvexity.] Let f be a C2 function

defined in an open, convex set S in Rn. Define the “bordered Hessian”

determinants δr(x), r = 1, . . . , n by

δr(x) =

∣∣∣∣∣∣∣∣∣
0 f ′1(x) · · · f ′r(x)

f ′1(x) f ′′11(x) · · · f ′′1r(x)
...

...
. . .

...

f ′r(x) f ′′r1(x) · · · f ′′rr(x)

∣∣∣∣∣∣∣∣∣ .
A sufficient condition for f to be pseudoconvex is that δr(x) < 0 for r = 2,

. . . , n, and all x ∈ S.

[Proposition 3′: Similarly, a sufficient condition for f to be pseudoconcave is that δr(x)

alternate in sign beginning with > 0 for r = 2, . . . , n, and all x ∈ S.]

In other words, if you want to check quasiconvexity, you usually check

pseudoconvexity, using Proposition 3, then appeal to Proposition 2.
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2. First-Order Conditions

This is Theorem 18.6 from p. 437 of Simon and Blume:

Proposition 4. Suppose that f , h1, . . . , hj , and g1, . . . , gk are C1 func-

tions of n variables. Suppose that x∗ ∈ Rn is a local minimum of f(x) on

the constraint set defined by the j equalities and k inequalities

h1(x) = c1, . . . , hj(x) = cj , (9)

g1(x) ≥ b1, . . . , gk(x) ≥ bk . (10)

Without loss of generality, we can assume that the first k0 inequality con-

straints are binding (“active”) at x∗ and that the other k − k0 inequality

constraints are not binding.

Suppose that the following “nondegenerate constraint qualification” is

satisfied: the rank at x∗ of the Jacobian matrix of equality constraints and

the binding inequality constraints

∂h1(x
∗)

∂x1
· · · ∂h1(x

∗)

∂xn
...

. . .
...

∂hj(x
∗)

∂x1
· · · ∂hj(x

∗)

∂xn

∂g1(x
∗)

∂x1
· · · ∂g1(x

∗)

∂xn
...

. . .
...

∂gk0(x∗)

∂x1
· · · ∂gk0(x∗)

∂xn


is k0 + j—as large as it can be.

Form the Lagrangian

L (x,λ,µ) = f(x) +

j∑
i=1

λi [ci − hi(x)] +

k∑
i=1

µi [bi − gi(x)] .

Then there exist multipliers λ∗ and µ∗ such that: [important:

L & con-

ditions 1–3

below]

1. ∂L (x∗,λ∗,µ∗)/∂λi = 0 for all i = 1, . . . , j. This is equivalent to:

hi(x
∗) = ci for all i = 1, . . . , j.
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2. ∂L (x∗,λ∗,µ∗)/∂xi = 0 for all i = 1, . . . , n.

(Or, if in addition one requires that x∗i ≥ 0, this condition becomes:

x∗i ≥ 0, ∂L (x∗,λ∗,µ∗)/∂xi ≥ 0, and x∗i
[
∂L (x∗,λ∗,µ∗)/∂xi

]
= 0.)

[p. 691–3]

3. µ∗i ≥ 0, gi(x
∗)− bi ≥ 0, and µ∗i [gi(x

∗)− bi] = 0 for all i = 1, . . . , k.

These three conditions are often called the Kuhn-Tucker conditions. The

last condition is sometimes called the “complementary slackness condition.”

Be sure to read the “Note” on p. 702. (Also, there are other constraint quali-

fications you can use instead of the “nondegenerate constraint qualification”

used above. The other constraint qualifications are given in Th. 19.12, p. 476

of Simon and Blume.)

[Proposition 4′: For a maximum, change (10) to:

g1(x) ≤ b1, . . . , gk(x) ≤ bk. (10′)

Then the Lagrangian is formed in the same way. Condition 1 is unchanged. The first

sentence of Condition 2 is unchanged. In the second, parenthesized sentence of Condi-

tion 2, the sign of ∂L (x∗,λ∗,µ∗)/∂xi should be changed from ≥ 0 to ≤ 0. Condition 3

becomes: µ∗i ≥ 0, gi(x
∗)− bi ≤ 0, and µ∗i [gi(x

∗)− bi] = 0 for all i = 1, . . . , k.]

By the way, it is easy to prove that if g1, . . . , gk are all quasiconcave,

then the set of x’s which satisfy (10) is a convex set. Here is the proof.

For i = 1, 2, . . . , k, define Si = {x: gi(x) ≥ bi}. This is an upper level

set of gi. It is convex if gi is a quasiconcave function. If g1, . . . , gk are all

quasiconcave, then S1, . . . , Sk are all convex, and their intersection
⋂k
i=1 Si

is also convex [[17.13] p. 620]. This intersection is the set of all x which

satisfy the constraints (10). This completes the proof. (See the conditions

on g1, . . . , gk in Section 4 points 3, 4, and 5.)

[Aside: Similarly, if g1, . . . , gk are all quasiconvex, then {x: (10′) is satisfied} is a convex

set. See Section 4 points 3′, 4′, and 5′.]

3. Second-Order Conditions: Local

Let L be the Lagrangian of the optimization problem. In Section 2, I

named the Lagrange multipliers “λ” if they were associated with one of

the j equality constraints and “µ” if they were associated with one of the k
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inequality constraints. In this section: (a) ignore all the nonbinding inequal-

ity constraints at (x∗,λ∗,µ∗); and (b) rename the Lagrange multipliers of

the binding inequality constraints λj+1, λj+2, . . . , λm, where:

m is the number of equality constraints plus the number of bind-

ing inequality constraints.

It is allowed to have m = 0; if m = 0 then there are no Lagrange multipliers.

Denote the m binding Lagrange multipliers collectively by λ. Let there be

n variables with respect to which the optimization is occurring; denote these

variables collectively by x.

First, a heuristic explanation from Simon and Blume (p. 399). Using a

multidimensional version of Taylor’s Theorem, one can show that

f(x∗ + z) = f(x∗) +∇f(x∗) · z + 1
2z
T
[
∇2f(x∗)

]
z +R(z) (11)

where a ‘T ’ superscript denotes the transpose and where R(z) is a remainder

term. I will write

f(x∗ + z) ≈ f(x∗) +∇f(x∗) · z + 1
2z
T
[
∇2f(x∗)

]
z . (12)

The first order condition gives ∇f(x) = 0 at x∗. Therefore

f(x∗ + z)− f(x∗) ≈ 1
2z
T
[
∇2f(x∗)

]
z . (13)

If f(x∗) is to really be a local minimum, then the left-hand side of (13)

should be greater than or equal to zero, which is equivalent to ∇2f(x∗)

being positive semidefinite. Furthermore, if f(x∗) is to really be a strict

local minimum, then the left-hand side of (13) should be greater than zero,

which is equivalent to ∇2f(x∗) being positive definite.

[Aside: Similarly, if f(x∗) is to really be a local maximum, then the left-hand side of

(13) should be less than or equal to zero, which is equivalent to ∇2f(x∗) being negative

semidefinite. If f(x∗) is to really be a strict local maximum, then the left-hand side of

(13) should be less than zero, which is equivalent to ∇2f(x∗) being negative definite.]

Let ∇2L be the following particular Hessian of the Lagrangian: first dif-

ferentiate L with respect to all the Lagrange multipliers, then differentiate
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it with respect to the original variables x.

∇2L =



L ′′
λ1λ1

L ′′
λ1λ2

· · · L ′′
λ1λm

| L ′′
λ1x1

L ′′
λ1x2

· · · L ′′
λ1xn

L ′′
λ2λ1

L ′′
λ2λ2

· · · L ′′
λ2λm

| L ′′
λ2x1

L ′′
λ2x2

· · · L ′′
λ2xn

...
...

. . .
... |

...
...

. . .
...

L ′′
λmλ1

L ′′
λmλ2

· · · L ′′
λmλm

| L ′′
λmx1

L ′′
λmx2

· · · L ′′
λmxn

— — — — — — — — —

L ′′
x1λ1

L ′′
x1λ2

· · · L ′′
x1λm

| L ′′
x1x1 L ′′

x1x2 · · · L ′′
x1xn

L ′′
x2λ1

L ′′
x2λ2

· · · L ′′
x2λm

| L ′′
x2x1 L ′′

x2x2 · · · L ′′
x2xn

...
...

. . .
... |

...
...

. . .
...

L ′′
xnλ1

L ′′
xnλ2

· · · L ′′
xnλm

| L ′′
xnx1 L ′′

xnx2 · · · L ′′
xnxn


If you do this right, ∇2L should have an m ×m zero matrix in its upper

left-hand corner:

∇2L =

(
L ′′
λλ L ′′

λx

L ′′
xλ L ′′

xx

)
=

(
0 L ′′

λx

L
′′T
λx L ′′

xx

)
where L ′′

λx is an m × n matrix and where a ‘T ’ superscript denotes the

transpose.

One has the following result:

Proposition 5a. A sufficient condition for the point (x∗,λ∗) identified in [important]

Proposition 4 to be a strict local minimum is that (−1)m has the same sign

as all of the following when they are evaluated at (x∗,λ∗): D2m+1 of ∇2L ,

D2m+2 of ∇2L , . . . , Dm+n of ∇2L .

[Proposition 5a′: Similarly, one will have a strict local maximum if, when they are eval-

uated at (x∗,λ∗), the following alternate in sign beginning with the sign of (−1)m+1:

D2m+1 of ∇2L , D2m+2 of ∇2L , . . . , Dm+n of ∇2L .]

If m = 0, this is equivalent to the condition that ∇2L (which in such

a case equals ∇2f(x)) be positive definite, which occurs iff f(x) is strictly

convex. (See the discussion concerning (13).)

If m > 0, suppose as above that the binding constraints are written

h1(x) = c1, h2(x) = c2, . . . , hm(x) = cm. Abbreviate this by h(x) = c.

As Simon and Blume write (p. 459), “the natural linear constraint set for

this problem is the hyperplane which is tangent to the constraint set {x ∈
Rn:h(x) = c} at the point x∗. . . . the tangent space to {h(x) = c} at the
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point x∗ is the set of vectors z such that ∇h(x∗) z = 0 [i.e., ∇hi(x∗) · z = 0

for all i = 1, 2, . . . , n] (considered as vectors with their tails at x∗).” It can [not very

important]be shown that the above second-order sufficient condition for a minimum

(Proposition 5a) is equivalent to saying that, for any non-zero vector z which

is tangent to the constraint set—that is, for any non-zero vector z which

obeys ∇h(x∗) z = 0— (14) holds. Formally:

Proposition 5b. A sufficient condition for the point (x∗,λ∗) identified in

Proposition 4 to be a strict local minimum is that for any non-zero vector z

which obeys ∇h(x∗) z = 0, one has

zT
[
∇2
xL (x∗,λ∗)

]
z > 0 . (14)

In a sense, then, ∇2L is positive definite with respect to vectors which sat-

isfy a linearized version of the constraints (or which “satisfy the constraints

to first order”). [See also p. 530.]

[Proposition 5b′: A sufficient condition for a strict local maximum is that the sign in (14)

be reversed. When this holds, there is a sense in which ∇2L is negative definite with

respect to vectors which satisfy a linearized version of the constraints.]

There is a second-order necessary condition for a minimum, also. This

condition is that the strict inequality > in (14) should be replaced by a weak

inequality ≥. Formally:

Proposition 6b. A necessary condition for the point (x∗,λ∗) identified in

Proposition 4 to be a local minimum is that for any non-zero vector z which

obeys ∇h(x∗) z = 0, one has

zT
[
∇2
xL (x∗,λ∗)

]
z ≥ 0 . (15)

In other words, ∇2L should be positive semidefinite with respect to vectors

which satisfy a linearized version of the constraints (or which “satisfy the

constraints to first order”).

[Proposition 6b′. A necessary condition for a local maximum is that the sign in (15) be

reversed. When this holds, there is a sense in which ∇2L is negative semidefinite with

respect to vectors which satisfy a linearized version of the constraints.]

To check the condition given in Proposition 6b, using (4) and (5) for

inspiration, the most obvious analog of Proposition 5a would be:
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Incorrect Guess: A necessary condition for the point (x∗,λ∗)

identified in Proposition 4 to be a local minimum is that “(−1)m

or zero” have the same sign as all of the following when they

are evaluated at (x∗,λ∗): ∆2m+1 of ∇2L , ∆2m+2 of ∇2L , . . . ,

∆m+n of ∇2L .

This guess is incorrect because it is needlessly strict. It is actually not

necessary to check every one of ∆2m+1 of ∇2L , ∆2m+2 of ∇2L , . . . , ∆m+n

of ∇2L ; you only have to check some of them. The following proposition

describes which of the ∆’s have to be checked.

Proposition 6a. Define “∆̂i of ∇2L ” to be the subset of “∆i of ∇2L ”

formed by only considering those “∆i of ∇2L ” which retain (parts of) the

first m rows and first m columns of ∇2L . (If m = 0, there is no difference

between the ∆’s and the ∆̂’s.)

Then a necessary condition for the point (x∗,λ∗) identified in Proposi-

tion 4 to be a local minimum is that “(−1)m or zero” have the same sign

as all of the following when they are evaluated at (x∗,λ∗): ∆̂2m+1 of ∇2L ,

∆̂2m+2 of ∇2L , . . . , ∆̂m+n of ∇2L .

[See Theorem M.D.3 (ii) on p. 938 of Mas-Colell, Whinston, and Green, and

see p. 468 of Simon and Blume. For the case of m = 0, Proposition 6a is

the same result as given in Th. 17.12d p. 639 of your textbook.]

The typical procedure is to check Proposition 5a first. If Proposition 5a

doesn’t apply because one of the signs was strictly the same as (−1)m+1,

then Proposition 6a tells you that (x∗,λ∗) is not a local minimum point.

(This is because each Di ∈ ∆̂i.)

[Proposition 6a′: The version of Proposition 6a for a local maximum requires that the

following, if they are evaluated at (x∗,λ∗), alternate in sign beginning with the sign of

“(−1)m+1 or zero” (then having the sign of “(−1)m+2 or zero” and so forth): ∆̂2m+1 of

∇2L , ∆̂2m+2 of ∇2L , . . . , ∆̂m+n of ∇2L .]

While it is nice that Proposition 6a tells you to check only the ∆̂i’s

instead of all the ∆i’s, there still are very many ∆̂i’s in a typical problem.

Here is an example.

Example. Suppose n = 6 and m = 2. Then ∇2L is 8 × 8. Proposition 5a

requires checking D5, D6, D7, and D8. Proposition 6a requires checking
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∆̂5, ∆̂6, ∆̂7, and ∆̂8. For all these ∆̂’s, you keep rows and columns 1

and 2; this is what makes the ∆̂i’s a subset of the ∆i’s. For example,

each ∆̂5 will keep rows and columns 1 and 2, then choose three out of the

remaining six rows and columns. The number of combinations of x things

taken y at a time is x!/
(
y! (x− y)!

)
. Hence the number of ways of choosing

3 out of the remaining 6 rows and columns is 6!/
(
3! (6 − 3)!

)
= 20 ways,

so there are 20 ∆̂5’s (compared with 56 ∆5’s and one D5). Similarly, there

are 6!/
(
4! (6 − 4)!

)
= 15 ∆̂6’s (compared with 28 ∆6’s and one D6), and

6!/
(
5! (6− 5)!

)
= 6 ∆̂7’s (compared with 8 ∆7’s and one D7). There is only

one ∆̂8; it equals ∆8 and D8. If you are curious, in this example the twenty ∆̂5’s

contain the following rows and columns: 1 2 3 4 5 ( = D5), 1 2 3 4 6, 1 2 3 4 7, 1 2 3 4 8,

1 2 3 5 6, 1 2 3 5 7, 1 2 3 5 8, 1 2 3 6 7, 1 2 3 6 8, 1 2 3 7 8, 1 2 4 5 6, 1 2 4 5 7, 1 2 4 5 8,

1 2 4 6 7, 1 2 4 6 8, 1 2 4 7 8, 1 2 5 6 7, 1 2 5 6 8, 1 2 5 7 8, and 1 2 6 7 8. The fifteen

∆̂6’s contain the following rows and columns: 1 2 3 4 5 6 ( = D6), 1 2 3 4 5 7, 1 2 3 4 5

8, 1 2 3 4 6 7, 1 2 3 4 6 8, 1 2 3 4 7 8, 1 2 3 5 6 7, 1 2 3 5 6 8, 1 2 3 5 7 8, 1 2 3 6 7 8, 1

2 4 5 6 7, 1 2 4 5 6 8, 1 2 4 5 7 8, 1 2 4 6 7 8, and 1 2 5 6 7 8. The six ∆̂7’s contain the

following rows and columns: 1 2 3 4 5 6 7 ( = D7), 1 2 3 4 5 6 8, 1 2 3 4 5 7 8, 1 2 3 4 6 7

8, 1 2 3 5 6 7 8, and 1 2 4 5 6 7 8.

4. Second-Order Conditions: Global

Let (x∗,λ∗) be a point identified in Proposition 4. Let j be the number of

equality constraints and k be the number of inequality constraints.

1. If j = k = 0 (an unconstrained problem) and f(x) is convex, then

x∗ is a global minimum point of f in S. (The converse also holds.)

[p. 631] Furthermore, if j = k = 0 and f(x) is strictly convex, then

x∗ is the unique global minimum point of f in S. (The converse also

holds.)

2. If k = 0 (only equality constraints) and L (x) is convex in x, then x∗

is a global constrained minimum point of f . [p. 667] Furthermore,

if k = 0 and L (x) is strictly convex in x, then x∗ is the unique global

constrained minimum point of f .

3. If j = 0 (only inequality constraints), if g1, . . . , gk are all concave,

and if f(x) is convex, then x∗ is a global constrained minimum

point of f . [p. 699] Furthermore, if j = 0 and f(x) is strictly convex,

then x∗ is the unique global constrained minimum point of f .
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4. Suppose either: (a) j = 0 (only inequality constraints); or (b) j > 0

but all the equality constraints are linear. Then if the binding g1,

. . . , gk are all quasiconcave, and if f(x) is pseudoconvex, then x∗ is a

global constrained minimum point of f . [p. 700; Simon and Blume

Th. 21.16 p. 528 and Th. 21.22 p. 532; and Mas-Colell, Whinston, and

Green Th. M.K.3 pp. 961–2]

5. If the constraint set defined in Proposition 4 is a convex set—which

occurs, for example, when j = 0 and g1, . . . , gk are all quasiconcave—

and if f(x) is strictly quasiconvex, then x∗ is the unique global

constrained minimum point of f . If f(x) is quasiconvex but not

strictly so, then the set of solutions x∗ is a convex set. [Mas-Colell,

Whinston, and Green Th. M.K.4 p. 962. See also Simon and Blume

Th. 21.23 p. 533.]

Note on (5): Strict quasiconcavity—and by analogy, strict quasiconvexity—

is defined on p. 646 of your text. It means that the contour lines cannot

have straight segments.

[Aside: Similarly, using the problem defined in Proposition 4′ and (10′):

1′. If j = k = 0 (an unconstrained problem) and f(x) is concave, then x∗ is a global

maximum point of f in S. (The converse also holds.) Furthermore, if j = k = 0

and f(x) is strictly concave, then x∗ is the unique global maximum point of f

in S. (The converse also holds.)

2′. If k = 0 (only equality constraints) and L (x) is concave in x, then x∗ is a global

constrained maximum point of f . Furthermore, if k = 0 and L (x) is strictly

concave in x, then x∗ is the unique global constrained maximum point of f .

3′. If j = 0 (only inequality constraints), if g1, . . . , gk are all convex, and if f(x) is

concave, then x∗ is a global constrained maximum point of f . Furthermore,

if j = 0 and f(x) is strictly concave, then x∗ is the unique global constrained

maximum point of f .

4′. Suppose either: (a) j = 0 (only inequality constraints); or (b) j > 0 but all the

equality constraints are linear. Then if g1, . . . , gk are all quasiconvex, and if f(x)

is pseudoconcave, then x∗ is a global constrained maximum point of f .

5′. If the constraint set defined in Proposition 4′ is a convex set—which occurs, for

example, when j = 0 and g1, . . . , gk are all quasiconvex—and if f(x) is strictly

quasiconcave, then x∗ is the unique global constrained maximum point of f .

If f(x) is quasiconcave but not strictly so, then the set of solutions x∗ is a convex

set.

]
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