18.8 Robinson Crusoe Economy. Laborlleswre tradeoff. Criticisms:

Fig. 18.1 : the
assumed
CRS case. $\$ \leftarrow$ (an abbreviation for "Suppose")
m (labor) $=3$ labor.
$t_{\text {mangoes }}$
work hours are always a choice Leisure Balways better than working
labor \rightarrow Consumption wi no natural resources

Firm: $\pi=p_{m} m$ (labor) $-w \cdot$ labor
max over labor \Rightarrow

$$
0=p_{m} m^{\prime}-w
$$

$\Rightarrow m^{\prime}=W / p_{m}$. Since m^{\prime} is a constant (3), this determines the real wage,
$3=w / p_{m}$. So this equilibrium price has been determined wo knowing demand. \uparrow (an abbreviation for
Could choose $p_{m} \equiv 1 \Rightarrow 3=w / 1 \Rightarrow w=3$; or "without")

$$
\begin{aligned}
& w \equiv 1 \Rightarrow 3=1 / p_{m} \Rightarrow p_{m}=\frac{1}{3} ; \text { or } \\
& p_{m}+w \equiv 1 \Rightarrow p_{m}+3 p_{m}=1 \Rightarrow p_{m}=\frac{1}{4} \Rightarrow w=\frac{3}{4} .
\end{aligned}
$$

We'll choose the. second. $\pi^{*}=\frac{1}{3} \cdot 3$ labor $-1 \cdot$ labor $\equiv 0$.
or $w \omega=p_{m} m+w$ leisure
Consumer: Budget constraint is $\begin{aligned} w(c o-l e i s u n e) & =p_{m} m \quad \text { (no profit mat } \\ \text { or } w \omega & =p_{m} m+w \text { leisure }\end{aligned}$
 next page
or $m=\frac{w}{p_{m}}(\omega-$ Leisure $)$

$$
m=\frac{-w}{p_{m}} \text { Leisure }+\frac{w c o}{p_{m}}
$$

$$
=\frac{-w}{p_{m}} \text { leisure }+\frac{w}{p_{m}} w \text {. (It's best not }
$$ to substifte pricesinat this stage so you canget the labor supply α mango demand curves.)

Suppose $u=a \ln m+(1-a) \ln$ (l azure). Maximizing a sit. the B.C. yields $\quad \mathcal{L}=a \ln m+(1-a) \ln$ (Laisve $)+\lambda\left[-\frac{w}{p_{m}}\right.$ leisure $\left.+\frac{w}{p_{m}} w-m\right]$.

$$
0=\partial L / \partial m=\frac{a}{m}-\lambda \Rightarrow \lambda=\frac{a}{m} \text { and }
$$

$$
\begin{aligned}
0=\text { dL/dlasure } & =\frac{1-a}{\text { leisure }}-\frac{\lambda w}{p_{m}} \\
& =\frac{1-a}{\text { leisure }^{m}}-\frac{a}{m} \frac{w}{p_{m}} \Rightarrow \frac{a w}{m p_{m}}=\frac{1-a}{\text { leisure }} \Rightarrow \frac{a w}{1-a} \frac{\text { leisure }}{p_{m}}=m .
\end{aligned}
$$

Substituting in to the $B C$,

$$
\begin{aligned}
& \frac{a w}{1-a} \frac{\text { lasune }}{p_{m}}=\frac{-w}{p_{m}} \text { leisure }+\frac{w}{p_{m}} w \\
& \left(\frac{a w}{1-a} \frac{1}{p_{m}}+\frac{w}{p_{m}}\right) \text { leisure }=\frac{w \omega}{p_{m}} \\
& \left(\frac{a w}{(1-a) p_{m}}+\frac{(1-a) w}{(1-a) p_{m}}\right) \text { leisure }=\frac{w \omega}{p_{m}} \\
& {\left[\frac{a}{(1-a) p_{m}}+\frac{1-a}{(1-a) p_{m}}\right] \text { leisure }=\frac{\frac{c o}{p_{m}}}{(1-a) p_{m}} \text { laiure }=\frac{\omega}{p_{m}} \Rightarrow \frac{1}{1-a} \text { leisure }=\omega \Rightarrow} \\
& \text { leisure }=(1-a) \omega, \text { the demand cumefor }=\text { leisure. }
\end{aligned}
$$

The corresponding supply core for labor is

$$
\omega \text {-leisure }=\omega-(1-a) \omega=a \omega \text {. }
$$

Also, the demand for mangoes is

$=\frac{1}{3}$ in equ. but leave unspecified for now

Fig. 18.2 עRS case.
Firm

$$
\left.\begin{array}{l}
\pi=p_{m} m(1 a b o r)-w \cdot \text { labor } \\
\text { max over labor } \Rightarrow \\
0=p_{m} m^{\prime}-w \\
\Rightarrow m^{\prime}=w / p_{m} .
\end{array}\right\} \text { As mCRS case. }
$$

Since $m^{\prime}(\mid a b b r)=w / p_{m}$, the demand for labor is labor $=\left(m^{\prime}\right)^{-1}\left(w / p_{m}\right)$, and the supply of mangoes is $m\left[\left(m^{\prime}\right)^{-1}\left(w / p_{m}\right)\right]$. Also,

$$
\pi=p_{m} m\left[\left(m^{\prime}\right)^{-1}\left(w / p_{m}\right)\right]-w \cdot\left(m^{\prime}\right)^{-1}\left(w / p_{m}\right)
$$

Consumer. Budget Constraint $w($ co-Leiswre $)+\pi=\rho_{m} m$

$$
\begin{aligned}
& \Leftrightarrow \frac{w}{p_{m}} \omega-\frac{w}{p_{m}} \text { leisure }+\frac{\pi}{p_{m}}=m \rightarrow m=\frac{-w}{p_{m}} \text { leisure }+\frac{w \omega+\pi}{p_{m}} \\
& \Leftrightarrow \frac{-w}{p_{m}} \text { leisure }+\frac{w}{p_{m}} \omega-\left(m-\frac{\pi}{p_{m}}\right)=0
\end{aligned}
$$

which is the same as the budget constraint in the CRS case except that " $m-\frac{\pi}{p_{m}}$ " here mplaces " m " there. One can check that the $0=22 / 8 \mathrm{~m}$ and $0=$ 22/0 leisure F.O.C.'s are the same as in the CRS case. Substituting into the B.C.,

$$
\frac{-w}{p_{m}} \text { leisure }+\frac{w}{p_{m}} w-\frac{a w}{1-a} \frac{\text { leisure }}{p_{m}}+\frac{\pi}{p_{m}}=0
$$

$$
\begin{aligned}
\Rightarrow \frac{w c_{0}}{p_{m}}+\frac{\pi}{p_{m}} & =\text { leisure }\left[\frac{w}{p_{m}}+\frac{1}{p_{m}} \frac{a w}{1-a}\right] \\
& =\text { leisure }\left[\frac{w(1-a)+a w}{p_{m}(1-a)}\right]=\text { leisure } \frac{w}{p_{m}(1-a)} \\
\frac{w}{p_{m}}+\frac{\pi}{w p_{m}} & =\frac{\text { leisure }}{p_{m}(1-a)} \Rightarrow \text { leisure* }=(1-a) w+\frac{(1-a) \cdot \pi}{w},
\end{aligned}
$$

the demand for leisure. The comesponding supply of labor is $\omega-$ Leisure $=a \omega-\frac{(1-a) \cdot \pi}{W}$. The demand for mangoes is

$$
m=\frac{a w}{1-a} \frac{1}{p_{m}}\left[(1-a) w+\frac{(1-a) \cdot \pi}{w}\right]
$$

$$
=a w \frac{c o}{p_{m}}+\frac{a \pi}{p_{m}} .
$$

Note: If we take labor as the numeraive, then equilibnum can be obtained by clearing either the mango market or the labor market.

* or mangoes as the numarave, or use a simplex,

