C. Changes in Income and Prices

1. Assume that X is a normal good and Y is an inferior good.
(a) Graph the income expansion path for X and Y. (Illustrate at least three different points on the income expansion path.) Show indifference curves on your graph and explain your graph.
(b) Sketch the Engel Curves for X and Y. Explain!
2. Referring to Figure 1, fill in a chart like the following one. Under " X " write 'normal,' 'inferior,' and/or 'Giffen.' (Be sure to write all that apply.) Under " Y " do the same thing. Under " X and Y " write either 'complements' or 'substitutes.'

	X	Y	X and Y
1			
2			
3			
4			
5			

3. Referring to Figure 3, fill in a chart like the following one. Under X write "normal," "inferior," and/or "Giffen." Under Y do the same. Under " X and Y " write either "complements" or substitutes."

(Write your answers on your answer sheet, not on this piece of paper.)
4. Referring to Figure 1, fill in a chart like the following one on your answer sheet. Under " X " write 'normal,' 'inferior,' and/or 'Giffen.' (Write all that apply.) Under " Y " do the same. Under " X and Y " write either 'complements' or 'substitutes.' Also, very briefly explain each of your answers.

	X	Y	X and Y
1			
2			
3			
4			
5			

5. Assume that X is a normal good and Y is a normal good. Also, assume that X and Y are complements. Graphically illustrate the income and substitution effects of a rise in the price of Y. Put Y on the vertical axis and X on the horizontal axis, as we usually do. Explain your answer step by step.
6. Assume that X is a normal good and Y is an inferior good. Also, assume that X and Y are complements. Graphically illustrate the income and substitution effect of a rise in the price of Y. Put Y on the vertical axis and X on the horizontal axis, as we usually do.
7. A consumer buys two goods X and Y. Graph X on the horizontal axis and Y on the vertical axis. Suppose the price of Y falls. Suppose X and Y are just on the border between being complements and being substitutes.
(a) Which is stronger: the income effect for X or the substitution effect for X ?
(b) Which is stronger: the income effect for Y or the substitution effect for Y ?

There are two correct answers to (a); give both of them. There are also two correct answers to (b); give both of them. Explain.
8. In a two-good economy, suppose the price of good Y rises while the price of X is unchanged. Illustrate the income and substitution effects in a graph in which you plot X on the horizontal axis and Y on the vertical axis. Are X and Y complements or substitutes in your graph? Is X a normal good or an inferior good? Is Y a normal good or an inferior good? Thoroughly explain.
9. Suppose there are only two goods in the economy, X and Y. By drawing a graph with X on the horizontal axis and Y on the vertical axis, prove that the following statement is FALSE: "If X and Y are normal goods, then they must be complements."
10. Suppose a consumer's budget constraint passes through the bliss point of his preference map (the map is the X - Y plane, where X and Y are the two goods).
(a) Does he consume where his marginal rate of substitution equals the price ratio? Explain, making a sketch in the $X-Y$ plane. Also: explain what is meant by the "price ratio," and explain that the "marginal rate of substitution" is really the "marginal rate of substitution of [fill in the blank] for [fill in the blank]."
(b) Suppose the price of X drops a little. How does the consumer's demand for X change? How does the consumer's demand for X change if the price of X increased a little? Sketch these changes in the $X-Y$ plane. Then, sketch the consumer's demand curve for X.
11. Farmer Sam consumes only two goods, x and y. The price of x is $p_{x}=\$ 1 /$ unit and the price of y is $p_{y}=\$ 1 /$ unit.
Farmer Sam grows 4 units of x and he grows 3 units of y.
(a) Sketch Farmer Sam's budget constraint.
(b) Suppose Farmer Sam decides to consume more than 4 units of x. Sketch the indifference curve passing through Farmer Sam's utilitymaximizing bundle of x and y.
(c) Show on your graph that a small rise in the price of x would make Farmer Sam worse off.
(d) Re-draw the graph you drew in part (b) and show on this graph that a large rise in the price of x could make Farmer Sam better off.
12. Suppose: there are two goods X and Y; their prices are $p_{X}=1$ and $p_{Y}=1$ respectively; and the consumer's income is $\$ 2$. Then the budget constraint looks as in Figure 1. (The consumer is not forced to buy an integer number of units of X or Y such as $0,1,2$, etc. units; he could buy a fractional number of units of X or Y, such as 1.523 units of X, if he wished.)
(a) Now suppose the seller of good X offers buyers the following "volume discount": if the buyer buys more than 1 unit of X, the additional units of X beyond 1 unit will have their price cut from $\$ 1.00$ per unit to $\$ 0.50$ per unit.
On Figure 1, draw the new budget constraint.
(b) Turn to Figure 2. Figure 2 is identical to Figure 1, and it is based on the same assumptions: $p_{X}=1, p_{Y}=1$, and the consumer's income is $\$ 2$.
Starting from Figure 2, now suppose the seller of good X offers buyers the following "two for one" offer: if the buyer buys 1 or more units of X (but less than 2 units of X), the seller will give the buyer an additional unit of X free; if the buyer buys 2 or more units of X (but less than 3 units of X), the seller will give the buyer an additional 2 units of X free; and so forth.
i. On Figure 2, draw the new budget constraint.
ii. On Figure 2, draw old and new optimal indifference curves.
iii. Based on the indifference curves you drew in (ii), was the effect of the "two for one" offer to increase purchases of Y or to decrease purchases of Y ?
iv. Based on the indifference curves you drew in (ii), was the effect of the "two for one" offer to increase expenditures on Y or to decrease expenditures on Y ?
v. Based on the indifference curves you drew in (ii), was the effect of the "two for one" offer to increase total consumption of X or to decrease total consumption of X ?
vi. Based on the indifference curves you drew in (ii), was the effect of the "two for one" offer to increase expenditures on X or to decrease expenditures on X ? (Hint: remember your answer to part (iv).)
13. The government wishes to give a fixed amount of money to a consumer who only buys two goods. Should the government give the money to the consumer as a lump sum, or as a subsidy on the price on one of the two goods? Illustrate your answer with a carefully drawn graph. An algebraic proof is not necessary; you can reason by analogy with a lecture I gave on a similar topic.
14. Show that a lump-sum subsidy is superior to a subsidy on the price of one good. You can do this in one of two ways:
i. Show that if the government spends the same amount on a lumpsum subsidy or on a subsidy on one good, consumers will reach a higher level of utility under the first plan than under the second plan.
or
ii. Show that the government can save money by switching from a subsidy on one good to a lump-sum subsidy, and keep consumers just as well off as before.

Method (i) is probably easier since it is closer to something that was done in class.
15. Prove, using a diagram, that a consumer is better off under a lumpsum tax than under a specific tax on one good that produces equal revenue. Label your graph carefully.
Also, explain how the following algebraic steps help in your argument. Here I is the consumer's income, p_{x} is the price of good X, p_{y} is the price of good Y, t is the amount of the specific tax, and $\left(X_{s}, Y_{s}\right)$ is the optimum consumption bundle of a consumer facing a specific tax.
(a) $I=p_{x} X+t X+p_{y} Y$.
(b) $I=p_{x} X_{s}+t X_{s}+p_{y} Y_{s}$.
(c) I - lump sum tax $=p_{x} X+p_{y} Y$.
(d) lump sum tax $=$ specific tax.
(e) $I-t X_{s}=p_{x} X+p_{y} Y$.
(f) $I-t X_{s}=p_{x} X_{s}+p_{y} Y_{s}$?
16. Mr. B has indifference curves as in Figure 2. His income is $\$ 10$ and the price of Y is $\$ 2$. Sketch three points on his demand curve for X.

Figure 1

Question 12 's Fig. 1

Figure 2

Question 12's Fig. 2

Question 16's Fig. 2

Answers

\uparrow income $\Rightarrow B C$ shifts out. So $B C_{1}, B C_{2}$, and $B C_{3}$, which ane parallel, denote ever-increasing income.

As you go from $B C_{1}$ to $B C_{3}$, the optimal amount of $X \uparrow$, so $X, 3$ normal.
As you jo from $B C_{1}$ to $B C_{3}$, income \uparrow but the optimal amount of $y \psi$, so y is inferior.

The maxine expansion path is therefore downward sloping.
(5) budget conutrinats
(5) Waiting proper points un budget constriants (with indiffencece corves) for Xnormad, Y inferior
(5) income expansion path drawn correctly
b.

I: income
normal: $X \uparrow$ when $I \uparrow \Rightarrow$ Engol Curve \oplus sloped
inferior: $y \downarrow$ when $I \uparrow \Rightarrow$ Engel Curve Θ sloped.
(2) The changes in X and Y tabulated in rows 1 to 5 are measured from the point I've labeled "B" on the next page. The "Giffen" result just below row 5 is measured from point "A," as are the changes in the "X and $Y^{\prime \prime}$ column. X
and $Y^{\prime \prime}$ column. X

Measure from the initial consumption bundle (rightmost vertical dashed line, lower horizontal dashed line). Inferior: I \uparrow, consumption \downarrow. Normal: I \uparrow, consumption \uparrow. Measure using 2 parallel lines, new B.C. and "imaginary" B.C. Measure from leftmost vertical dashed line's mtersection with upper horizontal dashed line.

$$
X
$$

1) normal ${ }^{x} \downarrow$
2)

$$
" \quad x \downarrow
$$

2) " x_{\downarrow} inferior ${ }^{y \uparrow}$

Substitutes $\quad x \downarrow y \uparrow$
3) $11 \quad x \downarrow$
complements $\quad x \downarrow y \downarrow$,
$" \quad x \downarrow y \downarrow$
4)
4)
" $\quad x \downarrow$
normal ${ }^{y} \downarrow$
" $\quad x \downarrow$
substitutes $x \uparrow y \downarrow$
5) inferior $x \uparrow$ normal ${ }^{x \downarrow}$
Since the affordable set has shrink in the y direction,
By has \uparrow in this graph. This resembles a
1 pto each
\downarrow in income even though in one is unchanged. $\begin{gathered}1 \frac{1}{4} \text { pto each } \\ \text { entry }\end{gathered}$
\downarrow in income even though in cone is unchanged. $1 \frac{1}{4}$ pts each
$x \uparrow y \downarrow$
substitutes

Original point: intersection of leftmost vertical dashed line and upper horizontal dashed hive. Imaginary inter-
mediate point:" " rightmost" " " lower " " "
Complements: Xe y more in the same direction(substitutes is the opposite). Measure form
Normal: \uparrow income $\Rightarrow \uparrow$ consumption (inferior s the opposite). Measure ungual point.
from "imaginary intermediate point" to get a parallel shift (like a change in income).
Giffen: $P_{y} \uparrow \Rightarrow$ demand for $y \uparrow$ (or vice versa, $P_{y} \downarrow \Rightarrow$ demand for $\check{y} \downarrow$). Giffen goods have upward-sloping demand curves.
(4)

	X	Y	$X \& Y$	
1	Tuferror	normal	subs.	
2	normal	normal	subs.	
3	normal	normal	comp.	2porats/eatry
4	normal	inferior	comp.	
5	normal	inferior Giffen	subs.	

(5) The graph for this question is on the next page. The rise in Ply causes the budget constraint to shift from $B C_{1}$ to,$B C_{3}$. Wo is the original indifference wove and $B C_{2}$ $t_{3 \text { pts }}$.
is tangent to it and parallel to $B C_{3}$, so the movement from A to B is the substitution effect. (4porits)

If X is normal then the drop in "income" from $B C_{2}$ to $B C_{3}$ means that the final amount of X demanded should be less than " "m" $\frac{\left(8 p_{0} \text { "ns) }\right.}{}$ on the graph. If Y is urrmal then the final amount of it demanded should be $\frac{\text { lass than "th"" on the graph. Finally, }}{\text { (8pounts) }}$ " if X and Y are complements then
X mores left of " l " and " Y " mores below " j "
(spouts) so that they both decrease. This only leones the part of $B C_{3}$ between "i" and " n " as a possible choice for the final location " C." The movement from B to C is the income effect. (2 points)

(6) Y

$B C_{3}$: Θ
re cognition of in come effect: (5)
X normal,
y'inferior: (5)
X, Y complements: (5)
$B L_{1} \rightarrow B L_{Z}$ because $\uparrow P_{Y}$ shrinks the affordable set in the Y direction.
$A \rightarrow C: X \downarrow, Y \downarrow$. Since they go in the same direction, A and C are complements.
$B \rightarrow C$ is the in come effect since $B L_{3}$ is a parallel translation of $B L_{2}$ and $B L_{3}$
is tangent to U_{0}. From B to $C, I \psi, X \psi, y \uparrow$. So X B normal and Y is inferior.
(7)

(2pts
If the price of Y falls, the budget constraint twists out as shown. X and Y are complements if they more in the same direction and substintes if they more in opposite directions (as measured from the anginal point A). $B C_{3}$, the new budget construait, can be divided in to three sections according to whether X and Y would be complements or substitutes if the foal point C were in that section (see the graph). C_{1} and C_{2} are on the borders of those sections, so they are the points the question refers to.

First suppose C_{1} is the final point. $A \rightarrow B$ is the substitution effect and $B \rightarrow C_{1}$ is the income effect. So for X; the substitution effect is $x_{2} \rightarrow x_{1}$, the in come effect is $x_{1} \rightarrow x_{2}$, which are equal in magnitude and opposite in sign.

For y, the substitution effect is $y_{1} \rightarrow y_{2}$ and the incorve effect is $y_{2} \rightarrow y_{3}$, which are in the same direction (which one is bigger will vary with your (graph).

Now suppose C_{2} is the final point. Then for $X, x_{2} \rightarrow x$, is the substitutioneffect and $x_{1} \rightarrow x_{3}$ is the income effect: thesehere opposite signs and the income effect is larger. For $y, y_{1} \rightarrow y_{2}$ is the substitution effect and $y_{2} \rightarrow y_{1}$ is the in come effect; these ane equal in magnitude and opposite in sign.
(8) Your graph should look like the one on the following page, with only one of the indifference curves labeled 1-5. $B C_{1}$ is the original budget constraint, $B C_{3}$ is the final budget constraint, and $B C_{2}$ is parallel to $B C_{3}$ and tangent to the original indifference curve U_{0}. The substitution effect is the nowrement from A to B; the
 $r_{5 \text { pts }}$
in come effect is the movement from B to the appropriate final point on $B C_{3}$. X and y are complements if the final indifference curves are like 2 or 3 (since then the purchases explenction: 3 pts of both goods fall, compared to point A). other answer: 4 pts the goods are substitutes. Since the movement from $B C_{2}$ to $B C_{3}$ is like a fall in income, this movement entails a fall in the consumption of normal goods and a rise in the consumption of inferior goods. Hence:

| | 1 | 2 | 3 | 4 | 5 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | inferior inferior normal normal normal (The comparison is made from point B.)

The initial consumption point is point A where the indifference curve Uso is tangent to the original budget line BC,. Suppose that the price of x falls such that the initial budget line $B C$, shifts to $B C_{3}$. Now draw a hypothetical budget line which is parallel to $B C_{3}$ and tagent to U_{0}; this touches: U_{0} at the point E The income effect it represented by the movement from B to. the final point on $B C_{3}$. Since both X and Y are normal good, the consumption of x and Y must, increase by the movement fro B to the final point on $B C_{3}$. Hence the final consumption point must be between the two points marked NN'. by the norma good requirment.
which
Complements are goods both inerese or both decrease with a price change. It is measured by the movement from the original point A to the final point on $B C_{3}$. For X and Y to be complements, the final consumption point on $B C_{3}$ must be between the two points marked c and ' c ' in thin care.
We need to show a situation in which both x and Y are normal but not complements. Any final point between N and N^{\prime} is normal but only the points between N and c^{\prime} are complements. Even though the points between C^{\prime} and N^{\prime} are normal, they are not complements (for example, the point D).
(10)

The large dot lying on the original budget constraint is the bliss point, Which is the combination of X and Y that makes the consumer as happy ashe con. possibly be.
(3pt) a) The "prize ratio" is $\frac{P_{x}}{P_{y}}$, the opposite of the slope of the budget constraint.
The "marginal rate of substitution" is the MRS of X for Y on this graph, and the usual condition for utility maximization is that $\frac{P_{x}}{P_{y}}=M R S$ of X for $Y . \quad \begin{aligned} & \text { Also } O X \text { is } P_{y} P_{x}, M R S \text { of } \\ & Y \text { for } X, \text { and usually } \frac{P_{y}}{P x}=\text { ones of } Y \text { for } \rightarrow\end{aligned}$

Originally, the consumer is at his bliss point. There is no mar final rato of substitution here, so MRS of X for $Y \neq P_{x} / P_{y}$.

Spots
b) When $p x$ falls, X remains at X_{0} because X_{0} is the best the consumer can do. When $p x$ rises, X falls, for example to X^{\prime} in the graph on $p .2$. So:

The demand curve falls until x_{0} can be afforded, then the demand cure becomes vertical.
(11)
a)

Farmer Sam can certainly consume the bundle ($x=4, y=3$) just by eating what he grows, not trading with anyone.

If he wants to trade, he has to sell some of one good in order to buy more of the other. Mus moves him aw an from $\operatorname{his}(4,3)$ point either
down and to the right or up and to the left. The slope of the budget constraint is $-p_{x} / p_{y}=-1 / 1=-1$. The intercepts of the budget constraint are $(0,7)$ and $(7,0)$. These are determined by stating at $(4,3)$ and then mooing $-3, i n$ the y direction (and hence +3 in the x direction, leading to $(7,0)$) or moving -4 in the x direction (and hence +4 in the y direction, leading to $(0,7)$).
a) 12 points
b) $6{ }^{\prime \prime}$
d) $8 "$ (4 for budget constraint, 4 for con clusion)

(12) a) If the consumer buys less than 1 unit of x, the affordable set is un changed. expands. Its
slope be comes $\frac{-P_{x}}{P_{y}}=-\frac{0.5}{1}=\frac{-1}{2}$ instead of $-\frac{p_{x}}{P_{y}}=-\frac{1}{1}=-1$. H the consumer spends all his income on X, he can buy 3 units, since the frost unit costs $\$ 1$ and the remaining units cost $50 \not \&$ each. So on Figure 1, the new bu deject constraint is the lire 'abc'. (Apts)
b) i) The new budget constraint is shown by the points 'abcde' on Figure 2 . Between points ' b ' and ' f ', the affordable set shifts 1 uni in the X direction (t_{0} 'cd') because of the 1 free unit of X; at ' f ', the affordable set shifts 2 units in the X direction because of the 2 free units of X.
ii) U_{0} and U_{1} form one of the many possible pairs of old and new indifference curves in tho question. The optimal points are labeled I and II. For different consumers, Un might be tangent between ' a ' and ' b ' (in which case $U_{0}=U_{1}$), or pout II might be at ' e ' (this would be the case when the indifference curves ore steep straight lines, or very steep curves).
iii) In my graph, $Y \uparrow$. since II is higher then I. Your graph will look different, and you may hare $y \downarrow$ or y unchanged.
iv) $y \uparrow, p_{y}$ is unchanged, so expenditures $p_{y} y$ go up in my graph.
v) In my graph, $X \uparrow$ since II is farther right then I.
vi) In come is unchanged, and since from (iv) expenditives on Y went up in my graph, expenditures on x must fall so that expenditines in total do not exceed the unchanged income.

In my example, then, the merchant collects lass money from the consumer after the "two-tor one" offer than before.

Figue 1

A subsidy on one good (x) shifts the budget line from $B C_{1}$ to $B C_{2}$, and the consumer can reach the indifference curve U_{2}. t points On the other hand, lump-sum subsidy will result in a paralld shift of budget line from $B C$, to $B C 3,55$ points

The position of $B C_{3}$ it determined by the requirement that the government spend same on the lump-sum subsidy at on the subsidy on only one good. This results in $B C$, parring through point B. On BC3, U_{3} can be reached, to the consumer ir spoints better off with the lump-sum subsidy, so that is what should be done.tid points
(14) (i)
 with lump - Sum subsidy (parallel to old budget constraint) copts
Point M is the chosen point with the specific subsidy. The key to the answer is that the budget constraint with the lump-sum subsidy has to go through

Point M in order for the government to spend the same amount of money on both programs. Superiority of the lump- Sum subsidy is shown because point N is preferred to point M.
(ii)

$$
\left.\begin{array}{l}
X \text { : taxed food } \\
B L_{1} \text { : before sales tox (budget love) } \\
B L_{2} \text { : after ". ". }
\end{array}\right\} 5 \text { pts. }
$$

U_{1} : indifference cure after sales tax
$B L_{3}$: budget line with lomp-sum tax instead of soles tax $\}$
U_{2} : "better" indifference curve than U_{1}, with lump-sum tax Sp ts
over \rightarrow
(instead of a "salestax," the precise term is a "specifi coax," as mentioned in the question.)

The algebraic part of the question 3:
(a) is the specific tax budget constraint (supposing the tax is on X)
(b) states that $\left(X_{s}, Y_{s}\right)$ is on the specific tax budget constraint
(c) is the lump-sum tax budget constraint
(d) is the "equal revenue" idea mentioned in the question's frost sentence
(e) substitutes (d) into (c) then uses the fact that since under a specific tor the consumer buys X_{S}, the revenue raised by the specific tor is $t X_{S}$.
(f) Asks if $\left(X_{s}, y_{s}\right)$ is on the lump-sum budget constraint given by (e).

Optional: Since the answer to (f) is "yes" be cause of step (b), the lump-sum budget constraint passes through $\left(X_{s}, Y_{s}\right)$.

(16) \ln come $=\$ 10$

$$
P_{y}=\$ 2
$$

Hence the point $(x=0, y=5)$ is on the budget constraint (see Fig. 1).
We want to know how the optimal amount of X demanded varies as P_{X} changes, since this is what a demand cure tell us. The slope of the budget constraint is $\frac{-P_{x}}{P_{y}}=\frac{-p_{x}}{2}$, so budget constraints of different slopes comes pond to different values of P_{X}.

Budget Constraint X Demanded P_{x}
(1)

$$
\text { slope of B.C. }=\frac{-p_{x}}{2}=\frac{-5}{2 / 2}=-2 \text {, so }
$$

$$
p_{x}=4
$$

Check: $\left(x=2 \frac{1}{2}, y=0\right)$ cote $2 \frac{1}{2}(4)+0=710$.
(2)

$$
3 \quad \text { slope of } B . C .=\frac{-p_{x}}{2}=\frac{-5}{5}=-1 \text {, so } p_{x}=2
$$

Check: $(x=5, y=0)$ cost $5(2)+0=\$ 10$.
(3)
slope of B.C. $=\frac{-p_{x}}{2}=\frac{-5}{10}=\frac{-1}{2}$, so $p_{x}=1$.
Check: $(x=10, y=0) \cot 10(1)+0=\$ 10$.

Ore point on the D cure correct: 20 points The other two porous correct: 10 pores each

