Dr. Lozada Econ. 5250

For logistic growth, we have

vest "H" depends on effort "E" and on X. With harvesting, $\dot{X} = F(X) - H$. Suppose that for a fixed level of effort E, H depends linearly on X:

If E increases, this line moves up:

If H = F(X) then X will not change, so there will be a *steady state*. So let's get H and F(X) on one graph, so we can make them equal. (In the graph below, $E_1 < E_2 < E_3$.)

It follows that

if $E = E_1$, steady-state harvest is H_1 ; if $E = E_2$, steady-state harvest is H_2 ; and if $E = E_3$, steady-state harvest is H_3 .

Clearly more effort does

not always yield more fish.

Algebraic Example. Suppose F(X) = X(1 - X) and $H = XE^{1/2}$. Find the steady-state relationship between H and E.

Answer: In the steady state, $F(X_{SS}) = H_{SS}$, so

$$X_{SS} (1 - X_{SS}) = X_{SS} E_{SS}^{1/2}$$

$$1 - X_{SS} = E_{SS}^{1/2}$$

$$X_{SS} = 1 - E_{SS}^{1/2}$$

and therefore $H_{SS} = X_{SS} E_{SS}^{1/2} = (1 - E_{SS}^{1/2}) E_{SS}^{1/2} = E_{SS}^{1/2} - E_{SS}.$

In any case, we have in general something like

revenue is price times quantity produced, namely PH. We'd like to graph TR versus E assuming a competitive industry (that is, an industry whose firms all take price P as given). If P = 1, then TR = (1) H = H, so "TR vs. E" looks just like "H vs. E": \mathbb{TR}_{SS} . If P = 1/10, then TR = (1/10) * H, so the graph would look like \mathbb{R}_{SS} . If P = 5,

Put the TC graph together with the three TR graphs (for low, medium, and high prices):

E

1. Competitive, Open-Access Fishery

First consider the top graph. Suppose no one owns the fish—an "open access" fishery—and there is no government regulation. Then TR = TC, because if TR < TC, firms would leave the industry, and if TR > TC, firms would enter the industry. I've marked the "TR = TC" places in the top graph with "•." For low, medium, and high prices, the equilibrium effort levels are E_l , E_m , and E_h . These imply through the bottom graph—which is just H_{\pm} from page 2 flipped upside down—harvest levels of H_l , H_m , and H_h . Since from the graph $H_l < H_h < H_m$, we have:

Thus we have a backward-bending supply curve.

Suppose demand for this fish rises from D_1 to D_2 to D_3 to D_4 :

From D_1 to D_2 , $P \uparrow$ and $H \uparrow$. From D_2 to D_3 , $P \uparrow$ and $H \downarrow$: as more people like this fish, the steady-state harvest of it falls! If demand further rises to D_4 , supply can never equal demand, and there is no steady-state equilibrium.

The concludes our analysis of open-access equilibrium, except for one

point: since this occurs at "•" in $\frac{\pi}{12}$, where profit equals zero,

the industry is unable to take advantage of the opportunity to produce at " \circ ," where $TR \gg TC$, so profit is positive. The point " \circ " is better for the firms and better for the fish (less $E \Rightarrow$ more fish), but the open access externality—namely that the harvest of Firm 1 affects X, so it increases the cost of Firm 2's harvesting—leads to the worse outcome " \bullet ."

2. Competitive, Private-Property, Net-Present-Value-Maximizing Fishery

One might think that the competitive, private property solution could be obtained where short-run profit is maximized, for example, approximately the points marked "X" in this diagram:

However, a proper analysis requires acknowledging the intertemporal aspects of the problem, even if we choose to concentrate on the steady state.

The profit of each firm is

$$\Pi(H_t, X_t) = TR_t(H_t) - TC(E(H_t, X_t))$$
(1)

where H is the harvest, X is the stock size, TR is the total revenue, TC is the total cost, and E is fishing effort, all at time t. The objective of the firm is to

$$\max\sum_{t=0}^{\infty} \frac{\Pi_t}{(1+\delta)^t} \quad \text{s.t.}$$
(2)

$$X_{t+1} - X_t = F(X_t) - H_t$$
(3)

where F is the natural excess of births over deaths. (3) represents an infinite number of constraints on (2). Using k_1, k_2, \ldots , to denote the Lagrange multipliers, the Lagrangian is

$$L = \Pi_0 + \dots + \frac{\Pi_6(H_6, X_6)}{(1+\delta)^6} + \frac{\Pi_7(H_7, X_7)}{(1+\delta)^7} + \frac{\Pi_8(H_8, X_8)}{(1+\delta)^8}$$
(4)
+ $\frac{\Pi_9(H_9, X_9)}{(1+\delta)^9} + \frac{\Pi_{10}(H_{10}, X_{10})}{(1+\delta)^{10}} + \dots$
+ $k_1(X_1 - X_0 - F(X_0) + H_0) + \dots + k_6(X_6 - X_5 - F(X_5) + H_5)$
+ $k_7(X_7 - X_6 - F(X_6) + H_6) + k_8(X_8 - X_7 - F(X_7) + H_7)$
+ $k_9(X_9 - X_8 - F(X_8) + H_8) + k_{10}(X_{10} - X_9 - F(X_9) + H_9) + \dots$

We wish to maximize this with respect to X_t and H_t for all t. For example,

$$0 = \frac{\partial L}{\partial X_8} = \frac{\partial \Pi_8 / \partial X_8}{(1+\delta)^8} + k_8 + k_9(-1 - F'(X_8))$$
(5)

$$0 = \frac{\partial L}{\partial H_8} = \frac{\partial \Pi_8 / \partial H_8}{(1+\delta)^8} + k_9 \tag{6}$$

$$0 = \frac{\partial L}{\partial H_7} = \frac{\partial \Pi_7 / \partial H_7}{(1+\delta)^7} + k_8.$$
(7)

(6) and (7) can easily be solved for k_9 and k_8 . Substituting these values into (5) yields

$$0 = \frac{\partial \Pi_8 / \partial X_8}{(1+\delta)^8} - \frac{\partial \Pi_7 / \partial H_7}{(1+\delta)^7} + \frac{\partial \Pi_8 / \partial H_8}{(1+\delta)^8} \left[1 + F'(X_8) \right],$$
(8)

 \mathbf{SO}

$$0 = \frac{\partial \Pi_8}{\partial X_8} - (1+\delta)\frac{\partial \Pi_7}{\partial H_7} + \left[1 + F'(X_8)\right]\frac{\partial \Pi_8}{\partial H_8}.$$
(9)

From (1), $\Pi_8 = TR_8(H_8) - TC(H_8, X_8)$, so $\frac{\partial \Pi_8}{\partial X_8} = -\frac{\partial TC}{\partial X_8}$; call this $-C'_{X8}$ for short. By definition, $\frac{\partial \Pi_7}{\partial H_7} = M\Pi_7$ and $\frac{\partial \Pi_8}{\partial H_8} = M\Pi_8$. Also, let $F'(X_8)$ be abbreviated by F'_8 . Then substituting these results into (9) yields

$$0 = -C'_{X8} - (1+\delta)M\Pi_7 + [1+F'_8]M\Pi_8$$
(10)

which can be rewritten as

$$(1+\delta)M\Pi_7 = [1+F_8']M\Pi_8 - C_{X8}'$$
(11)

or as

$$(1+\delta)M\Pi_7 = [1+F_8']M\Pi_8 + \frac{\partial\Pi_8}{\partial X_8}.$$
(12)

If, in (12), there is a steady state, then this equation becomes

$$(1+\delta)M\Pi = [1+F']M\Pi + \frac{\partial\Pi}{\partial X}, \qquad (13)$$

which simplifies to

$$\delta M\Pi = F' M\Pi + \frac{\partial \Pi}{\partial X} \tag{14}$$

or

$$\delta = F' + \frac{1}{M\Pi} \frac{\partial \Pi}{\partial X} \,. \tag{15}$$

Finally, to show that this is consistent with what your textbook has, recall that by definition, $C'_X = \partial TC/\partial X$. Your book, in (16.13), assumes that TC = c(X)H. (Your book uses C instead of c, but I think c is less confusing.) Maintaining this assumption, $C'_X = \partial (c(x)H)/\partial X = c'(X)H$. In a steady state, $X_{t+1} = X_t$, so from (3), in a steady state, F(X) = H. Making this substitution results in

$$C'_X = c'(X)F(x).$$
(16)

In addition, in your book, equation (16.13) has $\pi = PH - c(X)H$, so

$$M\Pi = \frac{\partial \pi}{\partial H} = P - c(X) \,. \tag{17}$$

Substitute (16) and (17) into (15), remembering that $\partial \Pi / \partial X = -C'_X$:

$$\delta = F' + \frac{-c'(X)F(X)}{P - c(X)}.$$
(18)

This is (16.16) of your textbook.

Steady state with $\partial TC/\partial X = 0$ ("schooling"): (15) $\Rightarrow \delta = F'(X)$.

If δ is too large (if $\delta > r$), $X_{SS}^* = 0$ (extinction). Steady state with $\partial TC / \partial X < 0$ ("search"): (15) $\Rightarrow F' = \delta + (C'_X / M\Pi)$.

Comparative Statics:

 $P \uparrow \Rightarrow M\Pi \uparrow \Rightarrow \delta + C'_X/M\Pi$ increases and moves closer to $\delta \Rightarrow x^*_{SS} \downarrow, H^*$ probably \downarrow (a completely backward-bending SS supply curve) but H^* could \uparrow at first.

 $\partial TC/\partial H$ ("MC") $\uparrow \Rightarrow M\Pi \downarrow$, the opposite results from $P \uparrow$.

 $\partial TC/\partial X$ more negative $\Rightarrow f' = \delta + C'_X/M\Pi$ moves further below $\delta \Rightarrow X^*_{SS}$ \uparrow .

Note: if $C'_X = 0$, none of these hold since all that matters is $\delta = F'(X)$ (unless this means $\pi < 0$).