
Dr. Lozada
Econ. 5250

For logistic growth, we have . Har-

vest “H” depends on effort “E” and onX. With harvesting, Ẋ = F (X)−H.
Suppose that for a fixed level of effort E, H depends linearly on X:

|E
If E increases, this line moves up:

If H = F (X) then X will not change, so there will be a steady state. So
let’s get H and F (X) on one graph, so we can make them equal. (In the
graph below, E1 < E2 < E3.)

.K

= sustainable yield

It follows that

if E = E1, steady-state harvest is H1;

if E = E2, steady-state harvest is H2; and

if E = E3, steady-state harvest is H3.
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Graphically:

SS

Clearly more effort does

not always yield more fish.

Algebraic Example. Suppose F (X) = X (1−X) and H = XE1/2. Find
the steady-state relationship between H and E.

Answer: In the steady state, F (XSS) = HSS , so

XSS (1−XSS) = XSSE
1/2
SS

1−XSS = E
1/2
SS

XSS = 1− E
1/2
SS

and therefore HSS = XSSE
1/2
SS = (1− E

1/2
SS )E

1/2
SS = E

1/2
SS − ESS .

In any case, we have in general something like

SS

. Total

revenue is price times quantity produced, namely PH. We’d like to graph
TR versus E assuming a competitive industry (that is, an industry whose
firms all take price P as given). If P = 1, then TR = (1)H = H, so “TR

vs. E” looks just like “H vs. E”: SS . If P = 1/10, then

TR = (1/10) ∗H, so the graph would look like

SS

. If P = 5,
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then TR = 5H, so the graph would look like
SS

. As for total

cost, suppose .

Put the TC graph together with the three TR graphs (for low, medium,
and high prices):

1. Competitive, Open-Access Fishery

First consider the top graph. Suppose no one owns the fish—an “open
access” fishery—and there is no government regulation. Then TR = TC,
because if TR < TC, firms would leave the industry, and if TR > TC, firms
would enter the industry. I’ve marked the “TR = TC” places in the top
graph with “•.” For low, medium, and high prices, the equilibrium effort
levels are El, Em, and Eh. These imply through the bottom graph—which

is just
SS

from page 2 flipped upside down—harvest levels of Hl,

Hm, and Hh. Since from the graph Hl < Hh < Hm, we have:
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Thus we have a backward-bending supply curve.
Suppose demand for this fish rises from D1 to D2 to D3 to D4:

From D1 to D2, P ↑ and H ↑. From D2 to D3, P ↑ and H ↓: as more
people like this fish, the steady-state harvest of it falls! If demand further
rises to D4, supply can never equal demand, and there is no steady-state
equilibrium.

The concludes our analysis of open-access equilibrium, except for one

point: since this occurs at “•” in , where profit equals zero,

the industry is unable to take advantage of the opportunity to produce at
“◦,” where TR ≫ TC, so profit is positive. The point “◦” is better for
the firms and better for the fish (less E ⇒ more fish), but the open access
externality—namely that the harvest of Firm 1 affects X, so it increases the
cost of Firm 2’s harvesting—leads to the worse outcome “•.”

2. Competitive, Private-Property, Net-Present-Value-
Maximizing Fishery

One might think that the competitive, private property solution could be
obtained where short-run profit is maximized, for example, approximately
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the points marked “X” in this diagram:

X
X

X

However, a proper analysis requires acknowledging the intertemporal aspects
of the problem, even if we choose to concentrate on the steady state.

The profit of each firm is

Π(Ht, Xt) = TRt(Ht)− TC(E(Ht, Xt)) (1)

where H is the harvest, X is the stock size, TR is the total revenue, TC is
the total cost, and E is fishing effort, all at time t. The objective of the firm
is to

max

∞∑
t=0

Πt

(1 + δ)t
s.t. (2)

Xt+1 −Xt = F (Xt)−Ht (3)

where F is the natural excess of births over deaths. (3) represents an infinite
number of constraints on (2). Using k1, k2, . . . , to denote the Lagrange
multipliers, the Lagrangian is
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L = Π0 + · · ·+ Π6(H6, X6)

(1 + δ)6
+

Π7(H7, X7)

(1 + δ)7
+

Π8(H8, X8)

(1 + δ)8
(4)

+
Π9(H9, X9)

(1 + δ)9
+

Π10(H10, X10)

(1 + δ)10
+ · · ·

+ k1(X1 −X0 − F (X0) +H0) + · · ·+ k6(X6 −X5 − F (X5) +H5)

+ k7(X7 −X6 − F (X6) +H6) + k8(X8 −X7 − F (X7) +H7)

+ k9(X9 −X8 − F (X8) +H8) + k10(X10 −X9 − F (X9) +H9) + · · · .

We wish to maximize this with respect to Xt and Ht for all t. For example,

0 =
∂L

∂X8
=

∂Π8/∂X8

(1 + δ)8
+ k8 + k9(−1− F ′(X8)) (5)

0 =
∂L

∂H8
=

∂Π8/∂H8

(1 + δ)8
+ k9 (6)

0 =
∂L

∂H7
=

∂Π7/∂H7

(1 + δ)7
+ k8. (7)

(6) and (7) can easily be solved for k9 and k8. Substituting these values into
(5) yields

0 =
∂Π8/∂X8

(1 + δ)8
− ∂Π7/∂H7

(1 + δ)7
+

∂Π8/∂H8

(1 + δ)8
[
1 + F ′(X8)

]
, (8)

so

0 =
∂Π8

∂X8
− (1 + δ)

∂Π7

∂H7
+
[
1 + F ′(X8)

] ∂Π8

∂H8
. (9)

From (1), Π8 = TR8(H8) − TC(H8, X8), so
∂Π8

∂X8
= −∂ TC

∂X8
; call this −C ′

X8

for short. By definition,
∂Π7

∂H7
= MΠ7 and

∂Π8

∂H8
= MΠ8. Also, let F

′(X8) be

abbreviated by F ′
8. Then substituting these results into (9) yields

0 = −C ′
X8 − (1 + δ)MΠ7 + [1 + F ′

8]MΠ8 (10)

which can be rewritten as

(1 + δ)MΠ7 = [1 + F ′
8]MΠ8 − C ′

X8 (11)

or as

(1 + δ)MΠ7 = [1 + F ′
8]MΠ8 +

∂Π8

∂X8
. (12)

If, in (12), there is a steady state, then this equation becomes

(1 + δ)MΠ = [1 + F ′]MΠ + ∂Π
∂X , (13)
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which simplifies to

δMΠ = F ′MΠ +
∂Π

∂X
(14)

or

δ = F ′ +
1

MΠ

∂Π

∂X
. (15)

Finally, to show that this is consistent with what your textbook has,
recall that by definition, C ′

X = ∂ TC/∂X. Your book, in (16.13), assumes
that TC = c(X)H. (Your book uses C instead of c, but I think c is less
confusing.) Maintaining this assumption, C ′

X = ∂
(
c(x)H

)
/∂X = c′(X)H.

In a steady state, Xt+1 = Xt, so from (3), in a steady state, F (X) = H.
Making this substitution results in

C ′
X = c′(X)F (x) . (16)

In addition, in your book, equation (16.13) has π = PH − c(X)H, so

MΠ =
∂π

∂H
= P − c(X) . (17)

Substitute (16) and (17) into (15), remembering that ∂Π/∂X = −C ′
X :

δ = F ′ +
−c′(X)F (X)

P − c(X)
. (18)

This is (16.16) of your textbook.
Steady state with ∂TC/∂X = 0 (“schooling”): (15) ⇒ δ = F ′(X).

If δ is too large (if δ > r), X∗
SS = 0 (extinction).

Steady state with ∂TC/∂X < 0 (“search”): (15) ⇒ F ′ = δ+(C ′
X/MΠ).
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Comparative Statics:

P ↑ ⇒ MΠ ↑⇒ δ + C ′
X/MΠ increases and moves closer to δ ⇒ x∗SS ↓, H∗

probably ↓ (a completely backward-bending SS supply curve) but H∗

could ↑ at first.

∂TC/∂H (“MC”) ↑ ⇒ MΠ ↓, the opposite results from P ↑.

∂TC/∂X more negative ⇒ f ′ = δ + C ′
X/MΠ moves further below δ ⇒

X∗
SS ↑.

Note: if C ′
X = 0, none of these hold since all that matters is δ = F ′(X)

(unless this means π < 0).
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