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This result can be applied whenever a fraction is raised to a negative power. For 
example, 

m-3 

Example A.1 
If ab2 = 2, compute the following: 

Solution 

(a) a2b4 = (al/)2 = 22 = 4 

43 

53 

64 

125 

(b) a-4b-8 = (ab2
)-

4 = T 4 = 1/24 = 1/16 

(c) a3b6 + a- 1b-2 = (ab2
)

3 + (ab2
) -

1 = 23 + 2- 1 = 8 + 1/2 = 17 /2 

Note: An important motivation for introducing definitions [A.2] and [A.3] is that 
we would like the properties in [A.4] to be valid for all exponents. For example, 
consider the consequences of requiring [A.4](a) to be valid for as • a0 . We obtain 
as+o = as, so that as • a0 = as, and hence we must choose a0 = l. If [A.4](a) 
is to be valid for m = -n, we must have an • a-n = an+(-n) = a0 = l. Because 
an• (l/an) = l, we must define a-n by [A.3]. 

Compound Interest 

Powers are used in practically every branch of applied mathematics, including 
economics. To illustrate their use, consider how they are needed to calculate 
compound interest. 

Suppose you deposit $1000 in a bank at 8% interest per year. 1 After one 
year you will have earned $1000 · 0.08 = $80 in interest, so the amount in your 
bank account at the end of the year will be $1080. This can be rewritten as 

1000 • 8 ( 8 ) 
1000 + 100 = 1000 1 + 100 = 1000 • 1.08 

If this new amount of $1000 • 1. 08 is left in the bank for another year at an interest 

1 Remember that 1 % means one in a hundred, or 0.01. To calculate, say, 23% of $4000, we write 

40fgo23 = 920 or 4000 • 0.23 = 920 
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rate of 8%, after a second year, the amount will have grown to a total of 

1000· 1.08+ ' • = 1000· 1.08 1 + - . = 1000- (1.08)2 (lOQ0 • 1.08) • 8 ( 8 ) 
• , 100 100 

Each year the amount will increase by the factor 1.08, and we see that at the end 
of t years, it will have grown to $1000 · (l.08)t. If the original amount is $K 
and the iqter~st rate is p% per year, by the end of the first year, the amount will 
be K + K • p /100 = K (1 + p /100) dollars. The growth f;ctor per year is thus 
1 + p/lOQ. Jn ge~eral, after t (whole) years, the original investment of $K will 
have grown to· an amoµnt 

}· 

K (1 + L)t 
100 

when the interest rate is p% per year (and interest is added to the capital every 
year-that is, compound interest). 

If you see an expression like (1.08)t, you should immediately be able to 
recognize it as the amount to which $1 has grown after t years when the interest ,, 
rate is 8% per year. What would be the interpretation of (1.08)0? You deposit $1 at 
8% per year, and leave the amount for 0 years. Then ygu still have only $1, because 
there has been no time to accumulate any interest, so,.that (1.08)0 must equal 1. 

Are Negative Exponents Useful? 
How much money should you have deposited in the bank 5 years ago in order to 
have $1000 today, given that the interest rate has been 8% per year over this period? 
If we call this amount x, the requirement is that x-(1.08)5 Illµst equal $1000, or that 

X • (1.08)5 = 1000 

The solution for x is 

1000 
X = (l.08)5 = ~000 • (1.08)-

5 

(which is approximately $681). It turns out that $(1.08)-5 is what you should have 
deposited 5 years ago in order to hav~ $1 today, given the constant interest rate 
of 8%. 

In general, $P (1 + p/100) - t is what you should have deposited t years ago 
in order to have $P today if the intere~t rate has ;been p% every year. 

Problems 

1. Compute the following: 

a. 63 b. (i/ c. (- 1)5 d. (0.3)2 

e. (4.5 - 2.5)4 f. 22. 24 g. 22 . 32 . 42 h. (22. 32)3 
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FIGURE 8.5 The graph of the natural logarithmic function g(x) = In x. 

In Fig. 8.5 we have drawn the graph of g(x) = lnx. The shape of this 
graph ought to be remembered. According to Example 8.3, we have g(l/e) = -1, 
g(l) = 0, and g(e) = 1. Observe that this corresponds well with the graph. 

Differentiation of Logarithmic Functions 

If we assume that g(x) = lnx has a derivative for all x > 0, then this derivative 
can be easily found. Differentiate implicitly the equation 

with respect to x, using the result in [8.4]. This gives 

Because eg(x) = x, so xg'(x) = 1. Hence: 

1 
g(x) = lnx ==} g'(x) = -

X 
[8.9] 

Thus, the derivative oflnx at point xis simply the number 1/x. For x > 0, we have 
g' (x) > 0, so that g (x) is strictly increasing. Note moreover that g" (x) = -1 / x 2, 

which is less than O for all x > 0, so that g' (x) is strictly decreasing. This confirms 
the shape of the graph in Fig. 8.5. In fact, the growth of lnx is quite slow. For 
example, lnx first attains the value 10 when x > 22, 026, because lnx = 10 gives 
X = e10 ~ 22, 026.5. 
Note: We derived [8.9] assuming that g(x) = lnx was differentiable. In fact, by 
Theorem 7.9 in Section 7.6, the logarithmic function g is differentiable. Because 
the derivative of f(x) = ex is ex, applying (7.24) to Yo= exo tells us that g'(yo) = 
1/exo = 1/yo. This is the same as [8.9], except that the symbol Yo has replaced x. 
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266 Chapter 8 I Exponential and Logarithmic Functions 

A Characterization of the Number e 
In Section 8.2, we showed by implicit differentiation that if g(x) = In x is differ­
entiable, then g'(x) = l/x. More specifically, g'(l) = 1. If we use the definition 
of g'(l) and [8.7](c), together with the fact that In 1 = 0, we obtain 

, In (1 + h) - In 1 l' 
1 = g (1) = lim ----- = lim -ln(l + h) = lim ln(l + h) 1lh 

h--+0 h h--+0 h h--+0 

Because ln(l + h) 1lh tends to 1 as h tends to 0, it follows that (1 + h) 1lh itself 
must tend to e, and so 

e = lim(l + h) 11h 
h--+0 

TABLE 8.1 Values of (1 + h)1/ h 

h 
(1 + h)1 /h 2.00 

1/2 
2.25 

1/10 
2.5937 ... 

1/1000 
2.7169 ... 

1/100000 
2.71825 ... 

[8.16] 

1/1000000 
2.718281828 ... 

Table 8.1 has been computed using a scientific calculator. The results seem 
to confirm that the decimal expansion we gave for e is correct. From the table, 
we can see that a closer and closer approximation to e is obtained by choosing 
h smaller and smaller. If we let h = l/n, where the natural number n becomes 
larger and larger, we obtain the following: 

e = lim ( 1 + 1 /n t 
n--+oo 

[8.17] 

Another Important Limit 

If a is an arbitrary number greater than 1, then ax ➔ oo as x ➔ oo. For example, 
(l.000lY ➔ oo as x ➔ oo. Furthermore, if p is an arbitrary positive number, 
then xP ➔ oo as x ➔ oo. If we compare (l.000lY and x 1000 , it is clear that , 
the former increases quite slowly at first, 'Whereas the latter increases very quickly. 
Nevertheless, (l.000lY eventually "overcomes" x 1000 . In general, we chim the 
following: 

xP 
lim - = 0 

X--+00 aX 
(a > 1, p is a fixed number) 

[8.18] 
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278 Chapter 8 I Exponential and Logarithmic Functions 

8.5 Compound Interest and Present Discounted 
Values 

Equation [8.21], f'(t) = rf(t) for all t, has a particularly important application to 
economics. After t years, a deposit of $K earning interest at the rate p% per year 
will increase to 

K(l + r)t (where r = p/109) [1] 

(see Section A.I, Appendix A). Each year the principal increases by the factor 1 +r. 
Formula [1] assumes that the interest is added to the principal at the end of 

each year. Suppose instead that payment of interest is offered each half year, but 
at an interest rate p /2. Then the principal after 1 /2 year will have increased to 

Therefore, the principal increases by the factor 1 + r /2 each half year. After 1 year, 
the principal will have increased up to K (l + r /2)2, and after t years it will be 

[2] 

It is clear that a biannual interest payment at the rate ½ p% is better for a lender 
than an annual interest payment at the rate p%. This is easily seen also from the 
fact that (1 + r /2)2 = 1 + r + r2 /4 > 1 + r. 

More generally, suppose that interest at the rate p/n% is added to the prin­
cipal at n different times distributed evenly over the year. Then the principal will 
be multiplied by a factor (1 + r /nt each year. After t years, the principal is 

( 
r )nt 

K l + ~ [3] 

The greater is n, the more profitable is the investment for the lender. See Problem 3. 
In practice, there is a limit to how frequently interest can be added to savings 

accounts. However, let us examine what happens to the expression in [3] as the 
annual frequency n tends to infinity. We put r /n = l/m. Then n = mr and so 

[4] 

As n--+ oo (with r fixed), so m = n/r --+ oo, and according to [8.17], we have 
( 1 + 1 /m r --+ e. Hence, the expression in [ 4] approaches K ert as n tends to 
infinity. When we let n approach infinity, the accumulation of interest happens 
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more and more frequently. In the limit, we talk about continuous compounding 
of interest. After t years, an initial amount $K will have increased to 

K(t) = Kert ( continuous compounding) [8.26] 

The number r is often referred to as the rate of interest. By differentiating [8.26], 
we have the following important fact. ' 

With continuous compounding of interest at rate r, the principal increases at 
the constant relative rate r, so that K' (t) / K (t) = r. 

From [8.26] , we infer that K (l) = Ker, so that the principal increases by the factor 
er during the first year. In general, K(t + l) = Ker(t+l) = Kerter = K(t)er, so 
that with continuous compounding of interest, the principal increases each year by 
the fixed factor er. / 

Comparing Different Forms of Interest 

At an interest rate of p% (= lOOr) per year, continuous compounding of interest 
is best _for the lender. (See Problem 3.) For comparatively low interest rates, 
however, the difference between annual and continuous compounding of interest 
is quite small. 

Example 8.9 
Find the amount by which $1 increases in the course of a year when the 
interest rate is 8% per year and interest is added: 

(a) only at the end of the year 

(b) at the end of each half year 

(c) continuously 

Solution In this case, r = 8/100 = 0.08, so we obtain the following: 

(a) K = (l + 0.08) = 1.08 

(b) K = (l + 0.08/2) 2 = 1.0816 

(c) K = e0•08 ~ 1.08329 

If we increase the interest rate or increase the number of years over which 
interest accumulates, then the difference between yearly and continuous com­
pounding of interest increases. 

Note: A consumer who wants to take out a loan may be faced with several offers 
from financial institutions. It is therefore of considerable importance to compare 
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the various offers. The concept of effective interest rate is often used in making 
such comparisons. Imagine an offer that implies a yearly interest rate p% with 
interest p /n added n times during the year. A principal amount of K will then 
have increased after 1 year to K (l + r /n) n, where r = p/100. Define the effective 
interest rate P as the annual percentage interest rate that, when compounding 
is continuous, gives the same total interest over the year. If R = P /100, then 
after 1 year, the initial amount K increases to K eR. Hence, R is defined by the 
equation 

Canceling K and then taking ln of both sides gives 

R = n ln(l + r /n) [8.27] 

If r = 0.08 and n = I, for example, then R = ln(l + 0.08) ~ 0.077. Thus, a 
yearly interest rate of 8% corresponds to an effective interest rate (with continuous 
compounding) of about 7.7%. 

The Present Value of a Future Claim 

Suppose that an amount K is due for payment t years after the present date. 
What is the present value of this amount when the interest rate is p% per year? 
Equivalently, how much must be deposited today earning p% annual interest in 
order to have the amount K after t years? 

If interest is paid annually, the amount A will have increased to 
A (l + p /lO0l after t years, so that we need A (l + p/100)1 = K. Thus, 
A = K (l + p /100)-t = K (l + r )-t, where r = p /100. If interest is com­
pounded continuously, however, then the amount A will have increased to Ae'1 

after t years. Hence, Ae'1 = K, or A = K e-,t. Altogether, we have the fol­
lowing: 

If the interest rate is p% per year and r 
payable in t years has the present value: 

p /100, an amount K that is 

K -rt 
e ' 

Problems 

with yearly interest payments 

with continuous compounding of interest 

[8.28] 

1. An amount $1000 earns interest at 5% per year. What will this amount have 
grown to after (a) 10 years, and (b) 50 years, when interest is compounded 
(i) yearly, (ii) monthly, (iii) continuously? 
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7. Continuously Varying Interest
Rates

7.1 The Continuous Varying Interest Rate

Formula.

Suppose that interest is continuously com-

pounded with a rate which is changing in time.

Let the present time be time 0, and let r(s)

denote the interest rate per unit at time s

units, s ≥ 0.

The quantity r(s) is called the spot or the

instantaneous interest rate at time s.

Let D(t) be the amount that you will have

in your account at time t if you deposit P at

time 0. In order to determine D(t) in terms

of the interest rates r(s),0 ≤ s ≤ t, note that

by the Simple Interest Formula 1.8, for small

h, we have

D(s + h) ≈ D(s)(1 + r(s) · h),

http://www.mas.ncl.ac.uk/~nzal/MAS267.dir/contvarint.pdf
Author: Zinaida A. Lykova, Reader in Pure Mathematics, Newcastle University, UK

The point of these remaining pages is to derive the last formula on the last page of 
this handout (present value for continuously varying discount rates).



(≈ means “is approximately equal to”)

D(s + h) ≈ D(s) + D(s) · r(s) · h,

D(s + h)−D(s) ≈ D(s) · r(s) · h,

D(s + h)−D(s)

h
≈ D(s) · r(s).

By the definition of the derivative 4.7, taking

the limit as h → 0, we have

D′(s) = D(s) · r(s)

or

D′(s)

D(s)
= r(s).

To solve this differential equation, integrate

both sides: ∫ t

0

D′(s)

D(s)
ds =

∫ t

0
r(s)ds.

Thus

[lnD(s)]t0 =
∫ t

0
r(s)ds



or

lnD(t)− lnD(0) =
∫ t

0
r(s)ds.

Since D(0) = P, we obtain from the preceding

equation that

lnD(t)− lnP =
∫ t

0
r(s)ds

exp (lnD(t)− lnP) = exp
(∫ t

0
r(s)ds

)

exp (lnD(t)) · exp
(
lnP−1

)
= exp

(∫ t

0
r(s)ds

)

D(t) ·P−1 = exp
(∫ t

0
r(s)ds

)
and

D(t) = P · exp
(∫ t

0
r(s)ds

)
.



7.4 The Present Value. The Continu-

ous Varying Interest Rate Formula 7.1 states

that a principal P earning a continuously com-

pounded interest r(s) per unit at time s units

will be worth

D(t) = P · exp
(∫ t

0
r(s)ds

)
at time t. Therefore

P = D(t) ·
[
exp

(∫ t

0
r(s)ds

)]−1

= D(t) · exp
[
−
(∫ t

0
r(s)ds

)]
.
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