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NOTES ON TIMBER ECONOMICS
Assume the volume of wood in a tree expressed as a function of tree age 𝑡

(for “time”) is 𝑉 (𝑡) and the total cost of cutting down a tree is 𝐶. Suppose
the price of a unit volume of wood (such as 1 liter of wood) is fixed at one
dollar. (This ignores issues of demand and supply at various dates, and so
does not address questions of competitive equilibrium.) Let 𝑇 be the age at
which the tree is cut down, noting that

𝑑

𝑑𝑇
=

𝑑

𝑑𝑡

𝑑𝑡

𝑑𝑇
=

𝑑

𝑑𝑡
· 1 =

𝑑

𝑑𝑡
. (1)

The firm wishes to
max
𝑇

𝑒−𝛿𝑇 [𝑉 (𝑇) − 𝐶] . (2)

Proposition 1. The value of 𝑇 which solves (2) is implicitly defined by

𝛿 =
𝑉 ′(𝑇)

𝑉 (𝑇) − 𝐶
, (3)

which can be rewritten as

𝛿 =
𝑑

𝑑𝑇
ln[𝑉 (𝑇) − 𝐶] . (4)

Proof. The first-order condition for (2) is

0 = −𝛿𝑒−𝛿𝑇 [𝑉 (𝑇) − 𝐶] + 𝑒−𝛿𝑇𝑉 ′(𝑇) , implying
𝑉 ′(𝑇) = 𝛿 [𝑉 (𝑇) − 𝐶] ,

which leads to (3). This and Lemma 1 leads to (4).

Lemma 1.
𝑉 ′(𝑇)

𝑉 (𝑇) − 𝐶
=

𝑑

𝑑𝑇
ln[𝑉 (𝑇) − 𝐶] .

Proof. We have

𝑉 ′(𝑇)
𝑉 (𝑇) − 𝐶

=

𝑑
𝑑𝑇

[𝑉 (𝑇) − 𝐶]
𝑉 (𝑇) − 𝐶

=
𝑑

𝑑𝑇
ln[𝑉 (𝑇) − 𝐶] .
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The right-hand side of (4) is the semi-elasticity of 𝑉 (𝑇) − 𝐶 with respect
to 𝑇 (because the derivative in (4) is taken with respect to 𝑇 instead of with
respect to ln𝑇). In the graph of ln[𝑉 (𝑇) − 𝐶] shown in the bottom part of
Figure 1, the condition (4) is satisfied at the 𝑇 (there labeled “𝐼∗1” for reasons
explained later) at which the slope of ln[𝑉 (𝑇) − 𝐶] is equal to 𝛿.

Next, suppose the tree is replanted after being harvested. Subsume the
planting costs into 𝐶, since replanting occurs just after cutting down (we
model them as occurring at the same date). If 𝑇𝑖 denotes the time at which
the 𝑖th generation of trees is cut down, then the present value of the plot of
land is

𝑒−𝛿𝑇1 [𝑉 (𝑇1)−𝐶] + 𝑒−𝛿𝑇2 [𝑉 (𝑇2−𝑇1)−𝐶] + 𝑒−𝛿𝑇3 [𝑉 (𝑇3−𝑇2)−𝐶] + · · · .

Given that neither costs 𝐶 nor price (which is defined to be equal to one)
depends on time, each generation of trees will be cut down at the same age.
Call this age “𝐼” for “rotation interval” (or “𝐼𝑚” where the 𝑚 stands for
multiple cropping): 𝐼 = 𝑇1 = 𝑇2 − 𝑇1 = 𝑇3 − 𝑇2 = · · · . Then the present value
is

𝑒−𝛿𝐼 [𝑉 (𝐼)−𝐶] + 𝑒−𝛿 ·2𝐼 [𝑉 (𝐼)−𝐶] + 𝑒−𝛿 ·3𝐼 [𝑉 (𝐼)−𝐶] + · · ·

= [𝑉 (𝐼)−𝐶]
∞∑︁
𝑘=1

𝑒−𝑘 𝛿𝐼 =
𝑉 (𝐼) − 𝐶

𝑒𝛿𝐼 − 1
(5)

where the last equality comes from setting 𝑟 = 𝑒−𝛿𝐼 in the formula for the
sum of an infinite geometric series

∞∑︁
𝑘=1

𝑟𝑘 =
𝑟

1 − 𝑟
=

1
1/𝑟 − 1

. (6)

Proposition 2. The value of 𝐼 which maximizes (5), called 𝐼∗𝑚, is implicitly
defined by

𝛿

1 − 𝑒−𝛿𝐼∗𝑚
=

𝑉 ′(𝐼∗𝑚)
𝑉 (𝐼∗𝑚) − 𝐶

, (7)

which can be rewritten as
𝛿

1 − 𝑒−𝛿𝐼∗𝑚
=

𝑑

𝑑𝐼
ln[𝑉 (𝐼) − 𝐶]

����
𝐼∗𝑚

(8m)

(where the “m” in the equation number is for the multiple-cropping case).
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Figure 1. Top diagram: volume of wood as a function of age (with the dotted curve
representing average shrinking of volume as very old trees die); and volume of
wood minus cutting costs. Bottom diagram: the logarithm of the latter.
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Proof. Maximizing (5) with respect to 𝐼 yields the first-order condition

0 =
𝑉 ′(𝐼)
𝑒𝛿𝐼 − 1

− 𝑉 (𝐼) − 𝐶

(𝑒𝛿𝐼 − 1)2 𝛿𝑒𝛿𝐼

𝑉 (𝐼) − 𝐶

𝑒𝛿𝐼 − 1
𝛿𝑒𝛿𝐼 = 𝑉 ′(𝐼)

𝑉 (𝐼) − 𝐶

1 − 𝑒−𝛿𝐼
𝛿 = 𝑉 ′(𝐼)

from which (7) follows. Use Lemma 1 to obtain (8m).

Let 𝑇 = 𝐼∗1 be the optimal age to cut down the tree in the single-crop
case. Then

Proposition 3. We have 𝐼∗𝑚 < 𝐼∗1.

Proof. Note that, using (1),

𝑑

𝑑𝐼
=

𝑑

𝑑𝑡

𝑑𝑡

𝑑𝐼
=

𝑑

𝑑𝑡
· 1 =

𝑑

𝑑𝑡
=

𝑑

𝑑𝑇
. (9)

Therefore, (4) is

𝛿 =
𝑑

𝑑𝐼
ln[𝑉 (𝐼) − 𝐶]

����
𝐼∗1

(8s)

where the “s” in the equation number is for the single-cropping case. Since
the left-hand side of (8m) is larger than the left-hand side of (8s), the right-
hand side of (8m) has to be larger than the right-hand side of (8s). The
right-hand side of these equations is the slope of ln[𝑉 (𝐼) − 𝐶]. Therefore,
the slope of ln[𝑉 (𝐼) − 𝐶] has to be larger in the multi-cropping case than it
is in the single-crop case. As can be seen from our graph of ln[𝑉 (𝐼) − 𝐶],
this means that the multi-cropping case’s 𝐼 must be smaller.

Proposition 4. Another way of comparing the single- and multiple-cropping
cases is

𝑉 ′(𝐼∗𝑚) = 𝛿 [𝑉 (𝐼∗𝑚)−𝐶] + 𝛿 · [𝑉 (𝐼∗𝑚)−𝐶]
∞∑︁
𝑘=1

𝑒−𝑘 𝛿𝐼
∗
𝑚︸                        ︷︷                        ︸

“site value”

(10)

compared with

𝑉 ′(𝐼∗1) = 𝛿 [𝑉 (𝐼∗1)−𝐶] . (11)
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Proof. (11) follows from (3) and the definition of 𝐼1. To obtain (10), rewrite
(7) as

𝑉 ′(𝐼∗𝑚)
𝑉 (𝐼∗𝑚) − 𝐶

= 𝛿
1 − 𝑒−𝛿𝐼∗𝑚 + 𝑒−𝛿𝐼∗𝑚

1 − 𝑒−𝛿𝐼∗𝑚
= 𝛿

[
1 + 𝑒−𝛿𝐼∗𝑚

1 − 𝑒−𝛿𝐼∗𝑚

]
= 𝛿

[
1 + 1

𝑒𝛿𝐼
∗
𝑚 − 1

]
.

Then

𝑉 ′(𝐼∗𝑚) = 𝛿 [𝑉 (𝐼∗𝑚)−𝐶] + 𝛿
𝑉 (𝐼∗𝑚) − 𝐶

𝑒𝛿𝐼
∗
𝑚 − 1

, (12)

from which (10) follows using (6).

Clark (first edition, section 8.1 p. 259) writes (reading 𝐼∗𝑚 for 𝑇)1:

“[(7)] for the optimal rotation period 𝑇 is called the Faustmann for-
mula; it was derived in 1849 by M. Faustmann, a German forester. . . .
The third term [in (12)] reflects the rotation aspect of the problem. The
expression

𝑉 (𝑇) − 𝐶

𝑒𝛿𝑇 − 1
is the present value of this stream of future revenues; in the forestry
literature this expression is called the site value. The condition of
Eq. [(12)] is that the forest be cut at age 𝑇 , when the marginal incre-
ment to the value of the trees equals the sum of the opportunity costs
of investment tied up in the standing trees and in the site.”

Proposition 5. In the limit as 𝛿 → 0, the marginal value of 𝑉 (𝐼𝑚) − 𝐶 is
equal to its average value.

Proof. The left-hand side of (7) has the property that

lim
𝛿→0

𝛿

1 − 𝑒−𝛿𝐼
=

“ 0
0

”
= lim

𝛿→0

1
𝐼𝑒−𝛿𝐼

=
1
𝐼

using L’Hôpital’s Rule. Denoting 𝐼∗𝑚 in the limit as 𝛿 → 0 by 𝐼∗
𝑚0, it follows

that in the limit as 𝛿 → 0, (7) implies

1
𝐼𝑚0

=
𝑉 ′(𝐼∗

𝑚0)
𝑉 (𝐼∗

𝑚0) − 𝐶

𝑉 (𝐼∗
𝑚0) − 𝐶

𝐼𝑚0
= 𝑉 ′(𝐼∗𝑚0) .

1See also https://en.wikipedia.org/wiki/Faustmann%27s_formula.
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This is illustrated by the position of 𝐼∗
𝑚0 in the upper graph of Figure 1.

Proposition 6. In the limit as 𝛿 → ∞, one has 𝑉 (𝐼𝑚) − 𝐶 = 0.

Proof. The left-hand side of (7) has the property that

lim
𝛿→∞

𝛿

1 − 𝑒−𝛿𝐼
= ∞ .

Denoting 𝐼∗𝑚 in the limit as 𝛿 → ∞ by 𝐼∗𝑚∞, it follows that in the limit as
𝛿 → ∞, (7) implies

∞ =
𝑉 ′(𝐼∗𝑚∞)

𝑉 (𝐼∗𝑚∞) − 𝐶
⇒ 𝑉 (𝐼∗𝑚∞) = 𝐶

since there is no way in general to make 𝑉 ′(𝐼) equal to infinity.

This is illustrated by the position of 𝐼∗𝑚∞ in the upper graph of Figure 1.
It follows that one can put bounds (𝐼∗𝑚∞, 𝐼

∗
𝑚0) on the location of 𝐼∗𝑚 in the

upper graph of Figure 1 (as in Clark 1e Fig. 8.3).

Corollary. One has 𝐼∗𝑚∞ < 𝐼∗
𝑚0 < 𝐼∗1.

Proof. First inequality: Propositions 5 and 6, and Figure 1. Second inequal-
ity: Proposition 3.
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