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Section 1. Optimal Control Theory

The core of the material in this handout is based on Mathematical Bioeco-
nomics: The Optimal Management of Renewable Resources by Colin W.
Clark (Second Edition, 1990).

Consider the problem of how to find

T
J(x0) :max/ f(x,u,t)dt (1)
u Jo
such that
xl‘ = g(xa I/t, t) (2)
with xq given, u, € U for all #, and raised dots denote derivatives with respect
to time. Here x is the “state variable” and u is the “control variable.” For

simplicity, consider them scalars instead of vectors. Often we will use a
final time 7 = co. Form the “Hamiltonian”:

= f+Ag

where A is a function of time called the “adjoint variable” or the “costate
variable.”! The “Maximum Principle” gives two necessary conditions for
optimality (using asterisks to denote optimal values):

max 7, Vit (3)
u, €U

. 0F;

/l::_ axt Vt (4)

The Maximum Principle also states that A; is continuous and is piecewise
continuously differentiable (where “continuously differentiable” means that
the derivative exists and the derivative is itself a continuous function, though
the derivative may not be differentiable).

There are infinitely many maximizations implied by (3), one for every 7,
but each one is a problem in standard calculus. Usually (3) implies

S du =0, (5)

but if there are constraints on u then the standard Kuhn-Tucker complemen-
tary slackness conditions would hold. If U = [u,u], the best way to write

n cases of no economic importance, it is mathematically possible that the correct Ham-
iltonian is actually Of + Ag = Ag.
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these is
04 10u <0 ifu"=u
0#10u=0 ifu* € (u,u) (6)
0" 0u >0 ifu* =u.

When we discuss fisheries below, u will be zero, and we will not mention
an upper bound, which implicitly means taking u = co.

A solution u; is said to be “interior” if it is an element of the interior
of U. For example, if U = [u,u], then u; would be “interior” if it was an
element of (u,u).

An interesting special case occurs when #€ is linear in u: say, 7€ = ocu+z
or, more explicitly,

S =0x, A, t)u+z(x,4,1) (7)

where o and z are some functions which do not depend on u. (A mathemati-
cian would object to this use of the word “linear” because of the presence of
the “+ z(x, A, 1)” term; a mathematician would call such a function “affine”
not “linear.” In these notes, when we say “linear” we technically usually
mean “affine” instead.) In economics, this often occurs when firms are com-
petitive and have constant returns to scale.? In this case, d46/0u = o, so (6)
implies

c<0 ifu"=u

oc=0 ifu" e (u,u) (8)

c>0 ifu"=u

or, seen from another perspective,

=u ifo<0
u'q€u,ul ifo=0 9)
=u if o > 0.

The o # 0 solutions are called “bang-bang” solutions because in many
problems, as time goes on, the optimal control changes discontinuously from
u to u or vice versa as the “switching function” o changes sign. The o =0
solutions are called “singular” solutions. Since (7) implies that 04 /0u = o,
and since o = 0 on a singular solution:

2A firm’s profit is total revenue (price times output) minus total cost (average cost times
output). Let “output” be the control, u. If the firm is competitive then price “p” is not a
function of u. If the firm has constant returns to scale then average cost “AC” is not a
function of u. Thus profit would be pu — AC u, which would be linear in u since neither p
nor AC would depend on u. Then # = (p — AC) u + A1 g, whose the first term is linear in u.

If g is linear in u as well, then #€ would be linear in u, as in (7).
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(5) characterizes optimality both for interior solutions to nonlin-
ear problems and for singular solutions to linear problems.

We could almost say:
(5) characterizes optimality for interior solutions to all problems.

The only error in this formulation is that it ignores the fact that singular
solutions to linear problems could have u* being equal to u or u. In the
fisheries problems we study in these Notes, the second formulation is good
enough.

Defining Jo = J(xp) as in (1), it can be shown that

0o _

A 10
L (10)

as long as Jy is differentiable. (In economics, the left-hand side is how
much the present discounted value Jy of the initial resource stock xg would
increase if the initial stock rose by one unit; so Ag is the “shadow value”
or “shadow price” of the resource.) Although (2) does not allow x; to make
discontinuous jumps, discontinuous jumps would be permitted if (2) only
held “almost everywhere” (“a.e.,” synonymous with “virtually everywhere,”
“v.e.,” which all mean “except on a set of measure zero”). If we were to
allow x; to make a discontinuous jump at time 7 > 0, and define J, as

max,, fTT f(x,u,t)dt subject to (2) and u, € U V t > 7 and the new x., then

oJ:
oxy

(see p. 323 of Sydsater, Hammond, Seierstad, and Str¢m, Further Math-
ematics for Economic Analysis, 2005). A result which can be helpful in
signing the costate variable is due to Caputo (Foundations of Dynamic Eco-
nomic Analysis, 2005, (13) p. 57): there is a function 8, > 0Vt (whose
definition you do not need to know) such that

Az (11)

T
=g [ Besianar. (12)

This can be helpful because often one knows the sign which f; will have
in the future.

If the final time T in (1) is finite, then (since we put no conditions on
x7 except nonnegativity, which I don’t go into here), the following “trans-
versality condition” is necessary for an extremum (that is, a maximum or a
minimum):

A7 =0. (13)
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However, if T = oo, the situation requires special treatment. If neither f
nor g depend explicitly on z, the optimal control problem is called “au-
tonomous.” We will not study any autonomous problems. However, if f
takes the special form f(x,u) e %" and g does not depend explicitly on 7,
we say that the problem is “autonomous except for geometric discounting.”
Some of the problems we study are such problems (namely, the monopo-
list’s problem and the social planner’s problem—but not the problem of the
competitive firm). In such problems, if T = oo the following “transversality
condition” is necessary for an extremum:

tlim S =0 (14)

(see Caputo, op. cit., Theorem 14.9).
Conditions (3) and (4), together with the appropriate transversality con-
dition, are necessary conditions for optimality. Sometimes it is useful to

know sufficient conditions for optimality. For a maximum, the sufficient
conditions are the necessary conditions plus either:

Mangasarian Sufficient Condition: #€(x,u, A%, t) is concave in (x, u) for all ¢
[0, T] and for all admissible (x, u). If # is strictly concave, the optimal
solution is unique.

Arrow Sufficient Condition: #€(x,u*, A%, t) is concave in x at x* for all ¢ €
[0, T]. If #€¢ is strictly concave, the optimal path of x is unique but the
optimal path of u is not necessarily unique.

(See for example Caputo, op. cit., pp. 53 and 60-61.) For a minimum,
change “concave” to “convex.” For a refresher on how to do the concav-
ity check called for in the Mangasarian sufficient condition (concavity of
a function of more than one variable), see the Econ. 7005 mathematical
prerequisites notes.

Section 2. Elementary Mathematical Ecology

Let x denote the number of fish in a population (or let it denote their
biomass), and let F(x) denote their excess of births over natural deaths.
In the absence of human interference, X = F(x).

In the Examples and Exercises of these Notes we will consider the im-
portant special case where F is the “logistic” growth function

F(x):rx(l—%) , (15)
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Figure 1. Logistic growth. The bottom graph is in the time dimension; its lowest
function shows the “S” shape for which logistic growth is well known.

2

where r is called the “intrinsic growth rate” and K is the “carrying capacity.
While we call x the “growth” of the population, we call x/x its “growth
rate.” With logistic growth and no human interference, X, = F(x;) = rx —
(r/K)x?. Figure 1 shows how the logistic growth function’s F(x) could be
derived from birth and death curves, and what the solution of the nonlinear
differential equation X = F(x) = rx (1 -x/K) can look like for three example
values of xg. An analytical expression for the solution of the nonlinear
differential equation X = F(x) is given in (81).
Under logistic growth, the species’ growth rate is
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) X
lim ( — ) =r.
x—0 \ X
Hence the intrinsic growth rate r is the maximum growth rate, and the
population grows at rate r in the limit as x goes to zero. For logistic growth,

2
F’(x):r——rxSr and
K

F'0)=r,

which provides another interpretation of r: it is the maximum value of F’,
and that maximum value occurs at x = 0. (The two interpretations are
different because X/x # F’, as can be seen from their expression above.)

Cases, such as logistic growth, in which F”’ < 0 are called cases of
“pure compensation” as shown in Figure 2. Another case shown in that
figure is the case of “depensation,” in which F is convex for small x, then
becomes concave, while F > OVx € (0, K). The final case shown in the
figure is of “critical depensation” which is when F < 0 for some small x,
F > 0 for medium values of x, and F < 0 for large values of x. In critical
depensation, there are two positive values of x for which F(x) = 0, labeled
Ko and K in Figure 2 (c), and if x is ever less than the lower of these two
values (Kj), then F(x) is negative, the population falls, then F(x) is still
negative, so the population falls further, and this repeats until the population
becomes extinct. Large mammals, such as elephants and whales, tend to
be characterized by critical depensation: if the population falls below a
critical level, it is doomed. Small organisms, such as bacteria, tend to be
characterized by pure compensation.
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Figure 2. Clark’s Figure 1.5, types of biological growth functions. Compenstion is
(a), depensation is (b), and critical depensation is (c).
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Section 3. Private-Property Fishery:
The General Formula

The problem of each firm is to

max/ n(x, by, 1) e O dt (16)
(he) Jo
subject to
X = F(x;) — Iy (17)
and
hy >0Vt (18)

where x and F are as in Section 2, & is the amount of fish harvested, 7 is
profit, and ¢ is the discount rate.
To start, form

9 = e O n(xs, by t) + A [F(xy) — he]. (19)

Let MII denote marginal profit dr/dh and let F’(x) mean 0F /0x not 0F /Ot.

In general, 7 is nonlinear in 4. However, if the production function has
constant returns to scale (and there are no fixed costs), and the firm is com-
petitive, then 7 is linear in & (see footnote 2). In that case, (19) implies that
A€ is linear in h, which is the case described by (7).

In this paragraph, assume either that /4; is interior or, if 7 is linear in A,
then assume the solution is singular. Then as explained in Section 1, (5)
characterizes the optimal solution. We have:

Proposition 1. Assume h; is interior or, if  is linear in h, assume the
solution is singular. Then the solution to (16) subject to (17) and (18) is

SMIT, = MI1, F + MIT, + & (20)

which can be rewritten as

MII, N on(xs, hy,t)/0x

0= F'(xi) + 3, MII,

if MIT +# 0. (21)

This implicitly defines h; as a function of 6, x;, and t.
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Proof. This proof rests on using (5). To begin, (5) and (19) imply

0H* _s OT _
O:W:e&a—ht—/lt:e&MH,—/l,,
SO
A, = e ST MIT, . (22)

On the other hand, (4) implies
A = —e %" (dn;/0x) — A, F)(x). (23)

Using (22), this is equal to —e =% (dn,/0x) — e~ %" MIT, F’ (x,), or
i = —e® [%—’; + MH,F;] . (24)

But differentiating (22) with respect to time gives A, = —de~ ' MII, +
e 9" MII, = e~ %' (MII, — MIT,). Equating this with A, from (24) gives:

—e o [%—’; + M, F;] = =% (MI, - 6MII,)
~9% _ MIT, F] = MIT, - MIT, .
This leads directly to (20). |}

Proposition 1 assumes interior solutions; we should now determine the
circumstances under which solutions actually are interior. The proof uses
“£” to mean “is defined to be.”

Lemma 1. Suppose that there are no fixed costs, i.e., that if h = O then
m =0 (formally: n(x;,0,t) = 0 for all t and all x > 0). Then h; > 0 if and
only if

n(h,x;,1)/h > A, €®" for some h > 0. (25)

Proof. Maximizing #¢ over h would be equivalent to maximizing # £ 7€ —
A; F(x,) since the last term does not involve 1. We have 76 = e~ % nt(x;, h;, t)—
A; h;. Since there are no fixed costs, if #; = 0 then #€ = 0.

If (25) holds, then e~ %7 > Ah for some h > 0, s0 # = e~ %'n—Ah > 0 for
some i > 0. Hence if (25) holds, setting i; = 0 would not maximize #,, nor
maximize ¥;; and not maximizing #¢; violates the Maximum Principle’s

3-1
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Lemma 1’s condition is not easy to check. In particular, it implies that even
if there exists some & > 0 such that 7( h, x;, t) > 0, there is no guarantee that
h; > 0, because the hurdle to be overcome is not r > 0, itis 7/h > Ade ot

Lemma 1 said roughly that if (potential) profit at a particular date is large
enough, then harvest at that date will be strictly positive. The next result is a
partial converse of that result: it says that if harvest is strictly positive, profit
at that date is (weakly) positive.

Lemma 2. Suppose that there are no fixed costs. Then if hy > 0 and A7 > O,
one has r; > 0.

Proof. Suppose not; then i; > 0 and A; > 0 but 7; < 0. From this and (19),
%t = e_étﬂ'(.xt, ht,t) +/l,F(x,) - /lthl‘ < /ltF(.xt) . (26) .

However, if instead one set i; = 0, then the Hamiltonian would be # =
e % m(x;,0,t) + A, [F(x;) — 0] = A; F(x;), which is larger than the Hamilto-
nian in (26). Hence setting 4; > 0 does not maximize the Hamiltonian and
is not actually optimal. This is a contradiction. ]

Lemma 2 involves the sign of 1*; the next result discusses that sign. In
all of the fisheries we study later, 0, /0x, > 0 will hold, so this lemma will
ensure that 1* > 0.

Lemma 3. We have A; > O (strictly) if and only if 0n,/dx, > O (strictly)
over an interval of time of positive measure where T > t. Also, Ay = 0 if and
only if On/0x, =0 for all T > t (except possibly on a set of measure zero).

Proof. Using (16), the “f” of (1) is 7r; e~ 9. It follows that (12) implies

T
A= ﬁi/ Bre 0T (Omy)0xy) dT . (27)
t Jt

Since B, > 0 from the discussion concerning (12), and since e %7 > 0,
one can conclude from (27) that as long as 9, /dx is strictly positive over
some interval of time after ¢, it will be true that A7 > 0, and if d7,/0x is
zero for all dates after ¢, then Ay = 0. ]

For dates when the solution is not interior (which happens for problems
linear in the control for dates when the solution is not singular), 4; = 0. On
those dates the Kuhn-Tucker conditions (6) imply that instead of 04 /dh =
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e~ %" MIT; - A, being equal to zero, it would only have to be less than or equal
to zero on those dates; so on those dates, (22) is replaced by

A > e " MIT, (28)

and (21) does not hold.
We next find conditions sufficient to ensure that 4; will not take jumps
in the interior of the (x, &) plane.

Lemma 4. If marginal profit is continuous in h for all h > 0, and if h;
jumps at time 7, then either the value of harvest just before 7, h’,_, or the

value of harvest just after T, h’;,, must be zero.

Proof. Suppose to the contrary that 47 jumps at time 7 but that both A7 _
and h%, are strictly greater than zero. Then A; = e~ %' MII, (which is (22))
rather than A, > e~ % MIT, (which is (28)) holds for both 7— and 7+:

A %7 = MIT ,_

Aer €975 = MIT ., . (29)

Both A7 and e~ %" are continuous at all dates, the former because continuity
of A is a basic property asserted by the Maximum Principle. Hence from
(29), MIT* must be continuous at 7. Since marginal profit is assumed to be
continuous in 4 for all 4 > 0, and since by assumption /4 > 0 both before
and after 7, the continuity of M/ at T in turn implies that 4™ is continuous
at 7. However, that contradicts the supposition that 4; jumps at time 7. This
contradiction establishes the proof. |

Since the transversality condition (14) is only applicable to problems
that are autonomous (except possibly for geometric discounting), it only
applies when 7 (x;, hs, ) in (19) does not depend explicitly on 7. Hence it
does not apply when studying competitive firms, because their profit depends
on the exogenous time trend of prices (exogenous to them). When it does
apply, it requires

lim[e %' n+A(F—-h)] =0. (30)

t—o00

If the solution is interior (or singular), (22) holds; substituting it into (30)
yields
lim e % [x + MIT (F - h)] =0. (31)

t—00

This will hold as long as the term in brackets, [7+ MII(F — h)], grows with
time more slowly than e®’. This will be the case if the system approaches a
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steady state or a limit cycle, where a “steady state” is defined to be a situation
where all time derivatives are zero, and a “limit cycle” is an “isolated closed
trajectory.” (Mathematicians sometimes call a steady state an “equilibrium,”
but we will not do that, reserving the term “equilibrium” to mean “quantity
supplied equals quantity demanded,” which may happen outside of a steady
state.)

This completes listing the necessary conditions for solving (16) subject
to (17) and (18), both for the nonlinear and the linear case. Traditionally,
however, the linear case has been analyzed in a different way, and I explain
that traditional way for the rest of this paragraph. When r is linear in % (a
mathematician would say “when 7 is affine in 4™ as explained after (7)), it
can be written as

7 (xs, heyt) = (X, t) by + (X4, 1)

for some functions m; and ;. To rule out fixed costs, which give rise to
nonconvexities which could imperil existence of an optimal solution, it is
necessary to require that 7(x,, 0, r) be identically zero; this means m, = 0.
That means that 7y is equal to average profit and is equal to marginal profit;
accordingly, I will rename 7| to “AMII.” The Hamiltonian then becomes

H = e T AMIT (x4, 1) hy + A, [F (x7) — hy]
= [e " AMII (x;,1) — A;] hy + A; F(x;)
2 0 (xs, s, 1) by + A4 F(x;) (32)

defining the “switching function” o as e~%’ AMIT — A. This has the form of
(7), so from (9) the optimal solution is:

0 ife S"AMII, — 2, <0
h; =4€[0,00) ife ®"AMII, -2, =0 (33)
+00 lf e_étAMHt - /lt > 0.

In the singular solution, e~ %" AMII, — A, = 0, which means that e ~%' MIT —

A; = 0, which is the same as (22). This is to be expected because (22) came
from (5), which is valid both for interior solutions to nonlinear problems
and for singular solutions to linear problems, as discussed just after (9).
The nonsingular solution 4; = 0 has e S'AMII, — A, < 0, which means
that A, > e~ % MII,, just as concluded in (28). Note that if 4, > 0 and
AMII, = p; — c(x;) < O then the first line of (33) implies that 4; = 0O; this
loosely resembles a converse of Lemma 2.
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Section 4. Private-Property Dynamic Competitive Equilibrium

In most of these Notes we will be concerned with the dynamic competi-
tive equilibrium. In such an equilibrium, firms take the future time path
of prices, p; for t € [0, o), given. On that basis, each of the N firms (we
suppose them to be identical) solve an optimal control problem to obtain
their supply in future periods, Nh; for t € [0, c0). Meanwhile, consumers
also take the future time path of prices as given, and their market demand
curve determines quantity of fish demanded at each date. There is a dynamic
competitive equilibrium if quantity supplied by firms is equal to quantity
demanded by consumers at every date, now and in the future.

Let p; be the market price. The total revenue of a competitive firm at
date t is p; h;, where the firm takes p; as given, that is to say, the firm
perceives absolutely no connection between its /4, and the prevailing p;,.

Suppose the market inverse demand curve is denoted by ¢, (/). The basic
assumptions we will make throughout these Notes are that ¢ (/) is decreas-
ing in & (a downward-sloping demand curve); that ¢(h) is continuous in &
except possibly at 4 = 0; and that ¢’ (&) is continuous in & except possibly
ath =0.

If supply equals demand at date ¢ then p; = ¢;(N; h;). This is the basic
condition for market equilibrium. I will always suppose that neither N nor
the demand curve are time-varying, so the condition for market equilibrium
at date 7 can be simplified to p, = ¢(Nh,). For notational simplicity, I will
always assume N = 1. (The firm does not know that N = 1 so it still thinks
it is in a competitive industry, not that it is a monopolist.) This makes the
market equilibrium condition

pr=¢(ht). (34)

Another basic assumption we will make throughout these Notes is that
the total cost function TC(x, h) is (weakly) convex in A. If this were to fail,
existence of a competitive equilibrium would be questionable. We will also
assume that TC(x, h) is twice differentiable in A for all values of & > 0.
Therefore dTC/dh > 0, and this derivative is itself differentiable.®> Call
these assumptions together “the basic assumptions on costs.”

We can show that the only jumps which 4; may take are down to zero
or up from zero.

Lemma 5. Make the basic assumptions on costs. Then in dynamic compet-
itive equilibrium, h; will not take jumps in the interior of the (x, h) plane.

3All we actually need below is for this derivative to be continuous.
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Proof. From Lemma 4, it will suffice to show that marginal profit is contin-
uous in & for all 2 > 0. Substituting the market equilibrium condition (34)
into 7 = ph — TC(x, h), total profit is ¢(h) h — TC(x, h), and

We always assume in these Notes that ¢(/) and ¢’ (&) are continuous for all
h > 0. We have also assumed that TC/dh is continuous in 4. This confirms
that marginal profit is continuous in 4 for all & > 0. JJ

Furthermore, we can show that the only jumps which A; may take are up
from zero.

Proposition 2. Make the basic assumptions on costs. Then in dynamic
competitive equilibrium, h; is continuous.

Proof. Because of Lemma 5, the only kind of jumps which can be taken
are either from or to 4 = 0. So all we need to prove is that /#; never jumps
up from or down to zero.

Suppose by way of contradiction that at time 7, 4; did jump up from
or down to zero. If it jumped down to zero, then for some small € > O,
h(t—e) > 0 and h(7+€) = 0. If it jumped up from zero, then for some small
€ < 0 (note the sign), h(7+€) = 0 and h(7t—€) > 0. In both cases, therefore,
h(t—e€) > 0 and h(t+€) = 0; all that distinguishes the two cases is the sign
of €. Note this implies that h(t—€) > h(t+€) = 0.

Since h(t—€) > 0 and h(7+€) = 0, from (22) and (28),

A(t—€) e®™™ = MII (t—¢€)
A(T+€) e®™" > MII (T+€) .

Since both A and e~ %! are continuous, and since the proof of Lemma 5
showed that marginal profit is continuous in 4 for all 4~ > 0O, to get a dis-
continuous jump in 2 we need a discontinuous jump in MI1: MII(t—€) >
MII (t+€). This implies (using MC for “marginal cost”): p(t—e)—MC(1t—€) >
p(t+€) — MC(7+€), and hence that

p(t—€) — p(t+€) > MC(h(t—€)) — MC(h(t+€)) = MC(h(t—€)) — MC(0).

By the (weak) convexity of total cost in h, MC(h(t—€)) — MC(0) > 0.
Then p(t—€) > p(t+e€). In competitive equilibrium, p; = ¢(h,) (that is
(34)), so the implication is that ¢(h(7—€)) > ¢(h(t+€)). Since ¢ is strictly
decreasing in A, this implies that #(7—€) < h(7+€), which contradicts the
previous paragraph’s conclusion that A(7—€) > h(t+€) = 0. |
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As we noted in Section 3, the transversality conditions at infinity (30)
and (31) are inapplicable to the problem of competitive firms, whose prob-
lem is non-autonomous because it involves the exogenously-varying func-
tion p; (“exogenous’ to the firm, that is). On page 97 of the third (2010)
edition of Clark’s book, he suggests “first looking at the case of a finite
time horizon T, and then letting T — 0.” At the end of Section 5 we will
follow Clark’s hint, but in order to do so, we need to know the finite-time
transversality condition:

Lemma 6. IfT < oo and if hy > 0 then MIIt = pr—MCr = 0, or, imposing
market equilibrium, ¢(ht) = MCr.

Proof. If T < oo, (13) has to hold. From (22), A; = e"%"MII, when h; > 0.
|

From (11), 0J/0xr = Ar = 0, so the fish stock is valueless at the margin
at T—which makes intuitive sense because if it were not, then it would not
be optimal to stop fishing at 7. This is merely “intuitive” because it is not the
firm’s choice whether or not to stop fishing at 7': it is an external constraint
imposed on the firm.

Section 5. Private-Property Competition:
Search Fisheries & Constant Returns to Scale

In general, total cost is a function of both stock size and harvest, and it
could be an explicit function of time as well (if, for example, input prices
are exogenously changing with time): TC(x;, i, t). In these Note, we will
assume that there is no exogenous time change in total cost: TC(xp, h;).
Mathematically, both TC/x and TC/h could be referred to as “average cost,
but in the rest of economics, “average cost” only means total cost divided
by output, TC/h, so we follow that convention in these notes. Similarly,
mathematically, both 0TC/dx and 0T C/dh could be referred to as “marginal
cost, but in the rest of economics, “marginal cost” only means the derivative
of total cost with respect to output, dTC/dh, so we follow that convention
in these notes. In the rest of economics, “constant returns to scale,” which
we assume in this section (see the section title), implies that average cost is
a constant, which is to say that 7C/h is not a function of 4. In the context of
fisheries, it could still be a function of x; as long as it is not a function of A,
the technology will be characterized has having constant returns to scale. It
follows that TC = c¢(x) - h would be an appropriate specification for fisheries
costs under constant returns to scale, because it implies that average cost
TC/h = c(x), which is not a function of 4.
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Given these remarks, profit under constant returns to scale and perfect
competition can be expressed for the static and dynamic cases as

n(x,h)=[p—-c(x)]h and (35s)
m(xe, heyt) = [ pr —c(x0)] hy (35d)

Because the function c is total cost divided by 4, the function c is the average
cost function. Because the function ¢ is the derivative of total cost with
respect to h, the function c is also the marginal cost function. The fact
that average cost is equal to marginal cost comes from the assumption of
constant returns to scale.

We will always assume that c(x) is a continuous function of x.

As pointed out above, in both (35s) and (35d), price is not a function
of A, in order to describe competitive behavior. (35s) is the special case of
(35d) in which all the variables are constant. Therefore, if (35d) ever reaches
a steady state, the steady state will be the solution to (35s).

To summarize this section so far: in general, the total cost function is
written as TC(x;, h;, t), and average cost TC/h would in general also be a
function of x;, A, and ¢. If, as in (35s) and (35d), the average cost function ¢
does not depend on 4, and the firm is competitive, then

* marginal cost is equal to average cost (where “marginal” means the
derivative with respect to output 4, not with respect to x, and “average”
means divided by output not x);

* we say that there is “constant average cost,” even though c¢(x), which
is both average and marginal cost, may vary with x, because “constant
average cost” in the rest of economics means that average cost does
not vary with output and we want to use the same terminology in these
Notes;

¢ the production function has constant returns to scale;
e i is linear in A;

* average profit is equal to marginal profit; and finally, as mentioned in
Section 3 in the paragraph after (19),

e € is linear in h.

In order for harvest to be neither zero nor infinity, (33) requires that the
solution be singular. Therefore we will use (21) for studying both (35s) and
(35d).
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If ¢ actually does not depend on x, the fishery is said to be a “schooling”
fishery. By contrast if, as intended in (35s) and (35d), ¢ does depend on
x, the fishery is said to be a “search” fishery (see Philip A. Neher, Natural
Resource Economics: Conservation and Exploitation, Cambridge University
Press 1990, p. 177, p. 195). In a search fishery, ¢’(x) < 0: as the stock
declines, average costs go up, the “stock effect.” In this section, we consider
a search fishery (as reflected in the section title); Section 6 will consider
schooling fisheries.

Throughout this section, we will make the additional assumption that

¢’ (x) >0. (36)

The first reason to make this assumption is that it is difficult to make the
opposite assumption, ¢’ < 0, and draw a c(x) function with ¢’ < 0 that
still obeys c(x) > O for all x. On the other hand, “difficult” does not mean
impossible, and one could in addition argue that ¢’’ could be negative for
small and medium x and positive for x’s so large as to be economically
irrelevant. Another reason to assume (36) is that it is plausible that the stock
effect is largest for very small x, where it becomes difficult to find any fish
at all.
We need to establish two short technical results before continuing.

Lemma 7. With a private-property search fishery having constant returns
to scale, A7 > 0 if and only if h, > O (strictly) over an interval of time of
positive measure where T > t. Also, and Ay = 0 if and only if h; = O for
all T > t (except possibly on a set of measure zero).

Proof. From (35d), dn;/0x; = —c¢’(x;) h.. Under the “search fishery” as-
sumption of this section, ¢’ < 0,80 dn/dx; > 0if hy > 0and dn/0xr =0
if hy = 0. The conclusion follows from Lemma 3. |j

Corollary. With a private-property search fishery having constant returns
to scale, if hy > O then nr; > 0.

Proof. Combine Lemmas 2 and 7. |]

Subsection a. The Steady State Case

First consider (35s). It implies that 07 /0x = —c’(x) h and AMII = p — c(x).
We will want to use (20) from Proposition 1, but that requires 4} to be

interior or singular. The following result explains how to rule out situations

when fishing never occurs. Recall from Section 2 that K is the carrying

capacity. (If growth is not logistic, define K as the largest strictly positive

stock size x at which F(x) =0.)
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Lemma 8. Fishing never occurs if
$(0) < c(K). (37)
Fishing never occurs only if ¢(0) < ¢(K).

Proof. Sufficiency (“if”):

From (35s), AMII = p — c(x).

Because the inverse demand curve is downward-sloping, the largest pos-
sible equilibrium value of price is ¢(0), at 2 = 0.

Because ¢’(x) < 0, the smallest possible steady-state value of c(x)
is ¢(K). Smaller values of x would give rise to larger values of ¢, and larger
values of x could never be steady states because they would always have
x=Fx)-h<F(x)<0.

It follows that the largest possible value of AMIT is ¢(0) — c(K); in other
words, AMII < ¢(0) — c(K).

From Lemma 7, 1* > 0.

If $(0) — ¢(K) < 0, then from the steps so far, we have

AMIT < ¢(0) —c(K) <0 < A.

From (33), if e"%’AMII, < A, then h; = 0. Evaluated at t = 0, the
premise is AMII < A. The preceding paragraph shows that if ¢(0)—c(K) < 0
then this premise AMII < A is met, and therefore that #* = 0. This proves
sufficiency.

Necessity (“only if”):

If h = 0, then price is ¢(0), average and marginal cost is ¢(K), meaning
that AMIT = p — c(x) = ¢(0) — c(K).

If h =0 then dr/0x = —c’(x) h = 0, implying from Lemma 3 that 2 = 0.

From (33), if & = 0 then e 9'AMII, — A, < 0. Evaluated at ¢t = 0, this is
AMII — A < 0. Substituting from the previous two paragraphs, if 4 = 0 then
#(0) —c(K) -0<0,s0 ¢(0) < c(K). This proves necessity. ||

Sometimes we will follow other authors and call ¢(0), which is the intersec-
tion of the demand curve with the price axis, the “choke price,” denoted “p.,”
since this is the price that “‘chokes off” demand. As noted in the sufficiency
part of this proof, the choke price is the largest possible equilibrium value
of price.

Accordingly, for the rest of this section, assume that ¢(0) > ¢(K). This
ensures that some fishing will occur. Then A is interior or singular, mean-
ing that we can use (20) from Proposition 1. That equation leads to the

§5 Search, Const. Ret. Sc.  (a) Steady State 19



following:

o[p—c)]=1[p—c)]F'(x)+0-c"(x)h
[6 = F'()][p —c(x)] ==c"(x) h. (38)

In a search fishery the right-hand side is not zero (assuming that % is not
zero, for which see Lemma 8). Therefore, 6 — F’(x) # 0 and

3 —hc’
TS5 F

p-c
hc’
6—F" "

p=c(x)- (39)
(Time subscripts have been omitted because (35s) pertains to the steady
state.) In a sense, (39) is a steady-state supply curve for fish—it can be
rewritten as

0-F ) L [e@]6 - F'(v)]

"o ! )
_0- ) _,F ) [c(x) - p]., (40)
¢’ (x)

which explicitly shows i depending on p—but (40) contains x, which is
tied to the value of 4 in the steady state in a way not captured by (40).* To
get a complete “supply relationship” (I would not strictly call it a “supply
curve”), substitute the steady-state condition X = O into (17), obtaining

{ h=F(x), thenuse (39) to obtain (41)
_ c’(x) F(x)
P—C(X)—(S_T,(x)- (42)

(42) and (41), which appear as equations (5.8) and (5.9) on page 135 of the
second edition of Clark’s book, work together to yield a complete supply
relationship between price and the steady-state value of quantity h: each
value of x will give a value for price p from (42), and it will give a value
for h from (41), so running through values of x will give rise to price—
quantity combinations; the graph of these combinations is the steady-state
supply relationship of this firm. For details, see the Example 1 below or see
Figure 5.12, p. 136 of Clark, reproduced as Figure 3 here. In that figure,
Quadrant IV shows (41) and Quadrant Il shows (42) in a special case which
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136 ) SUPPLY AND DEMAND

NW P NE

Discounted
supply

|
|
|
|
|
|
I curve
|
l
|
|
|

p = Hy(x*)

—_— -

k= F(x*)

SW x* SE

Figure 5.12. Discounted supply curve (Schaefer model).

Figure 3. Clark’s Figure 5.12. The axis he labels “Y” is our “h.”
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is analyzed in the paragraph after next; Clark denotes the right-hand side of
(42) by “Hs(x*).”

Before analyzing Quadrant I1 of Figure 3, we explain what that figure’s
“xs”° means.

Lemma 9. Implicitly define xs by

F'(xs) =06 ifsuch anxg > 0 exists, and
xs =0 otherwise. (43)

If h; > 0, thenx; # x5, F'(x;) < 6, and AMII; > 0.

Proof. Suppose to the contrary that x* = xs. There are two cases.

In the first case, xs = 0, implying that x* = 0, which contradicts the
assumption that 2* > 0.

In the second case, xs > 0, implying that 6 = F’(xs) = F’(x*). Then the
left-hand side of (38) in the steady state is zero. However, the right-hand
side of (38) cannot be zero, because A" > 0 was assumed, and because in
a search fishery, ¢’(x) # 0. This contradiction establishes the proof that
X+ Xs.

To show that F’(x*) < §, suppose on the contrary that F’(x*) > 8. Then
6 — F’(x) < 0. Also, p — c(x) = 0 because from Lemma 2, for harvest to
strictly positive (which we assumed in the lemma), profit must be nonneg-
ative. It follows that the left-hand side of (38) is less than or equal to zero.
However, the right-hand side of (38) is strictly positive, because h* > 0 was
assumed, and because in a search fishery, —c¢’(x) > 0. This contradiction
establishes the proof that F’(x*) < §.

The AMII, > O claim follows from the Corollary to Lemma 7. |]

To say more requires putting more structure on F(x).

Lemma 10. Assuming logistic growth,

K —
BI20 ity >6and
xs=32 r (44)
0 otherwise.
Also, assuming logistic growth,
hi >0= F'(x}) < 6,x; > x5 and AMII; >0 ; (45)
X <xs = F'(x;) >6and h; =0. (46)

4From (38), another not-particularly-useful expression is [6 — F'(x)] [¢(F(x)) — c(x)] =
—c’(x) F(x) where ¢ is the inverse demand curve, as defined just before Proposition 3.
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Proof. For logistic growth, (43) means 6 = F'(xs) = r — 2rxs/K. Equation
(44) follows.

Lemma 9 showed that if 4* > O then F’(x*) < §. For logistic growth,
this means that 6 > r —2rx/K, sox > K (r —6)/(2r). This implies from (44)
that x > xs. This and Lemma 9 prove (45).

It remains to prove (46). If x5 = 0, the premise of (46) cannot hold. So
assume xs > 0, that is, F’(xs) = 6. The first paragraph in this proof gives
F’(x); inspection shows that it is decreasing in x. So if x < xs, F'(x) >
F’(xs) = 6. This means the first term on the left-hand side of (38) is negative.
If h; were positive, (38) would imply that p — c¢(x) < 0, but that violates the
Corollary to Lemma 7, so h; cannot be positive. ||

In Figure 3, Clark uses xs as defined in (43), and defines
hs =F(xs). (47)

Having explained what x s means, we now turn attention to Quadrant II
of Figure 3. First note that in general, one cannot show that p = Hs(x) (the
right-hand side of (42)) is monotonic in x. This is because we will not be
able to sign

B c”(x)F(x) _ ¢’ (x)F' (x) B F"(x)
§—F'(x) 6—-F(x) (6-F'(x))?

9P _ vy

o ' (x)F(x).

We can sign ¢’(x) < 0,5 - F’(x) > 0 from (45), F(x) > 0 (because F(x) <0
cannot be a steady state, as noted in the sufficiency part of the proof of
Lemma 8), and ¢”(x) > 0 from (36), but F’(x) and F” (x) are ambiguous
(although in the special case of (15), F”” < 0 and F’ is positive or negative
as x is less than or greater than K/2). This leads to

dp _ () - (D) (DF(x)  (D)if logistic
dx (+) (+) (+)
= (-) = (+) + {(+) for small x, (—) for large x} + (-) .

(=) (+) ; if logistic,

For the logistic case (Quadrant IV shows this case), for large x this can be
signed, and it is negative, as drawn in Quadrant II of Figure 3, but for small x
it is ambiguous even in the logistic case. (We are not concerned with values
of x smaller than xs because they could not be steady states with fishing.)
If we impose not only (15) but also

c(x) =v/x (48)
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for some constant y then we have what Clark (p. 45) calls “the Schaefer

model.” Figure 4 uses Mathematica to analyze it. The basic conclusions
are as follows. (1) Although in Quadrant II of Clark’s figure the relation-
ship between p and x is monotonic, it does not seem possible to guarantee
monotonicity, because dp/dx in ‘Out[7]’ is difficult to sign. (2) ‘Out[6]’
confirms Clark’s figure’s property that limy_ p(x) = 0. (3) The results
after ‘In[12] are that lim,_,., x(p) is zero if 6 > r and itis K (r — ) /(2r)
if 6 < r. From (44) this means that

Jim x(p) = x5 (49)
as shown in Clark’s graph, meaning that our definition of xs is the same as
his, and that (49) is connected to requiring that profit be positive.

This completes our mathematical analysis of Figure 3, which comes
from (41) and (42) and which characterizes the steady-state supply curve
in this section. For the intuition behind that figure’s Quadrant I, note that
at low prices, the steady state supply curve is upward-sloping, and it is
generated from steady state values of x which are rather large, between K /2
and K, where F’(x) < 0. As price rises along this upward-sloping supply
curve, x falls towards K /2 and & rises towards maximum sustainable yield
“MSY.” But once price rises sufficiently, x will fall below K/2, making h
fall. These low values of x form the backward-bending part of the steady
state supply curve. When price is high, the fishing industry can make x
small, but it cannot make / large. Indeed, by responding to high prices
by pushing stock size down, the industry causes harvest to fall. This is in
part because we have imposed a sustainability requirement on this analysis:
steady states are by definition sustainable. In the “real world,” with no
sustainability requirement and with firms that are not far-sighted, high prices
might not cause low harvests, they might cause high harvests, harvests that
are unsustainable.

Clearly in this graph, in light of (45), the interesting situation is where
x > xs and 7 > 0. But why is 7 > O—under constant returns to scale, we
are used to thinking, from other microeconomics courses, that 7 = 0. The
reason is that the fish here are a scarce resource and are privately owned, so
the earn an economic rent, just like land does. Profit in this fishery is rent.’

Next, I slightly extend an interesting result of Clark (pp. 60-61) to show
that if ¢ is sufficiently large and if, unlike in (48), c(0) is sufficiently small,

5Some authors call either marginal profit or A; = e~ %" MII; (from (22)) rent, but that
term is incorrect. Marginal profit or A could be called marginal rent.
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Inf}:= (* Schaefer model, p. 45 of Clark 1976 =x)
F[x ] := rx (1-x/K)

c[x ] := gamma / x

@)= (* Clark p. 157 H_delta =)
c[x] - Dlc[x], x] F[x] / (delta -D[F[x], x])
gamma gamma r (1 - i)

X +x(delta+%—r(1—’—;))

Out[3]=

Inf4)= Simplify [%]
gamma (delta K+ r x)
x (delta K-Kr+2rx)

outf4]=

= Plx_ ] = Simplify [%%]
gamma (delta K+ r x)
x (delta K-Kr+2rx)

out[s)=
6= Limit[p[x], x -» Infinity]
outigl= 0

n7= D[p[x], x] // Simplify

gamma (delta® K?-delta Kr (K-4 x) + 2 r? x?)

out[7l= -
x? (delta K-Kr+2 rx)2

ng)= Solve[p == p[x], x]

-delta Kp+gamma r + Kp r—\/8 delta gamma Kp r + (delta Kp-gamma r -Kp r)?
out[8]= {{x - },

4pr

{ -delta K p + gamma r+Kpr+\/8delta gamma Kp r + (delta Kp-gamma r -Kp r)?
X >
4pr }}

nE= X[p_]1 :=x/. Part[Solve[p == p[x], x] , 2]

info= x[p]

-delta Kp+gammar+Kpr+\/8 delta gamma Kp r + (deltaKp—gammar—Kp:&c)2

out[10]=
4pr

in(1):= Limit [x[p], p » Infinity]

-delta K+1\/K? (delta-r)? +Kr

4 r

outf11]=

in(12}= FullSimplify [Limit[x[p], p -» Infinity], Assumptions - {K > 0}] /. Sqrt[x %2] - Abs[x]

Simplify [%, Assumptions - {delta -r < 0}]
Simplify [%%, Assumptions - {delta - r >= 0}]
K (-delta + r + Abs [delta - r])

4r

Out[12]=

K (-delta +r)

out[13]= 5
r

out[14]= 0

Figure 4. A Mathematica analysis of Quadrant II of Figure 3 and of (42). Lines
‘In[13]° and ‘In[14]’ are not marked in this printout, but they are the lines which
immediately follow ‘In[12].”
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the stock may be driven to extinction. This would be “socially optimal
extinction,” assuming the First Welfare Theorem holds (optimality of com-
petitive equilibrium)—but only if no human, in the present or in the future,
assigns any value to the existence of this population. (“Population” rather
than “species” because this might be one isolated “population” of species,
which would have other populations as well.) If some human, now or in the
future, would value this fish beyond just wanting to eat it, then externalities
come into play, and the model becomes quite different. For example, there
would be a value placed on x; our model has no value directly placed on x,
only value placed on %, and x then only obtains value via imputation, like
agricultural land, being valued not in and of itself, but only as an instrument
to produce something else which is of value.

Proposition 3. Let max, F(x) = MSY for “maximum sustainable yield.”
Suppose that (41) holds, that x > 0, and that:

¢’ (x) > 0 (this is (36)),

c(0) < p(MSY), (50)
6 >2F'(0), (51)
F"(x) <0Vx >0, and
F(0) =0.
Then (42) cannot hold.
Proof. Rewrite (42) as
“CWFW
p—cx)

In market equilibrium, this means steady-state x and /4 obey

—c’(x) F(x)
¢(h) — c(x)

Suppose £ is in (0, x). I will show below that

=6-F'(x). (52)

—c’(x) F(x) - —c’(x) F(x)

¢(h) —c(x) = p(MSY) — c(x) (53)
—c’(x) F(x)
c(0) - c(x) (54)
_ W)
G (55)
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< F'(&) (56)

< F'(0) (57)
<F'(0)+[F'(0) - F'(x)] (58)
= 2F’(0) - F'(x) (59)
<6—F'(x). (60)

Since the left-hand side (“LHS”) of (53) is the LHS of (52), and the right-
hand side (“RHS”) of (60) is the RHS of (52), this will prove it is impossible
for (52) to hold.

To prove (53): First note that —¢” > 0. By definition, F(x) < MSY. By
(41), this means h < MSY. Since ¢ is downward-sloping, ¢(h) > ¢(MSY).

To prove (54): use the second assumption of the proposition.

To prove (55): By the Generalized Mean Value Theorem (sometimes
known as the Cauchy Mean Value Theorem),®

F(0) - F(x) _ F'(¢)
c0) —c) (@)

The last assumption of the proposition gives F(0) = 0; hence

for some & € (0, x). (61)

“F(x) _F(O)-F(x) _F©)
) —c()  c(O-c) @

To prove (56): ¢ < x, and by the proposition’s first assumption, ¢’ > 0,
so ¢’ (&) < ¢’(x). Dividing by ¢’(¢) and recalling that ¢’(x) < O for all x, we
get1 > c’(x)/c’ (&) > 0.

To prove (57): 0 < &, and by the proposition’s fourth assumption, F”’ < 0,
so F'(0) > F'(&).

To prove (58): The proposition assumes that O < x. Then as in the proof
of (57), F’(0) > F’(x); so the term in brackets in (58) is positive.

(59) is trivial, and (60) follows from the proposition’s third assumption.

5The Mean Value Theorem itself states, for example, that ¢(0) — c(x) = ¢’ (£)(0 — x)
for some ¢ € (0,x). In words: there will exist at least one point & between zero and x at
which the tangent line to ¢ (x) will be exactly parallel to the line joining ¢(0) with c(x). Bartle
(Elements of Real Analysis, Second Edition, p. 197) writes, “In fact the Mean Value Theorem
is a wolf in sheep’s clothing and is the Fundamental Theorem of the Differential Calculus.”
One could divide F’(€) = (F(0)—F(x))/(0—x) for & € (0,x) by ¢’ (£) = (c(0)—c(x))/(0—x)
to obtain the left-hand side of (61), but the other side would be F’(£)/c¢’(¢) instead of the
right-hand side of (61), so the Generalized Mean Value Theorem is not a trivial consequence
of the Mean Value Theorem.

for some & € (0, x).
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Corollary (‘“Extinction’). Under the conditions of Proposition 3, the only
possible steady state would have x = 0.

Remark 1. Since h < MSY, in the right-hand side (50), ¢(MSY) < ¢(h),
that is, ¢(MSY) is the smallest market equilibrium price possible. Since c is
a decreasing function of x, c(x) < ¢(0), that is, ¢(0) is the largest marginal
cost possible. The equation (50) thus guarantees that marginal cost is less
than price for all possible equilibrium x and 4. (This is rather strong.)

Remark 2. The conditions for Proposition 3, which result in a great deal
of fishing, are in some sense the opposite of the conditions for Lemma 8§,
which result in no fishing. Proposition 3’s equation (50) postulates that
the lowest possible steady state price, ¢(MSY), is higher than the highest
possible average cost, c(0). In contrast, Lemma 8’s equation (37) postulates
that the highest possible steady state price, ¢(0), is lower than the lowest
possible steady state average cost, c(K).

The assumption F(0) = 0 is true in any fishery. The assumption F”’ < 0,
pure compensation, usually means that F(x) is larger for small x than in
the cases of depensation, and always means that F'(x) is larger for small x
than in cases of critical depensation (those ecological terms were defined in
Section 2). Typically, extinction is more likely under depensation, and even
more under critical depensation, than under pure compensation. The most
important assumptions on the economic side are (50) and (51). Equation
(50) states that the cost of driving the stock to extinction is not too high,
and that the demand for fish is not too low. Equation (51) requires ¢ to be
high. If growth is logistic, we know from Section 2 that F’(0) = r and that
r is the highest possible growth rate x/x, so(51) requires ¢ to be larger than
twice the highest possible growth rate.” As stated in the corollary, under the
conditions of the proposition the only possible steady-state outcome would
be extinction. Exercise 5 below suggests a graphical method by which one
might be able to show that what happens is indeed a steady state with extinc-
tion. However the proposition does not rule out non-steady-state outcomes
(such as limit cycles), so if a graphical analysis such as that suggested by
Exercise 5 does not show that the outcome is a steady state with extinc-
tion, then a dynamic analysis would be needed to determine whether or
not extinction is the inevitable outcome of the situation in the proposition.

"The proposition goes through even if either the third or the fourth strict inequality in its
assumptions is turned into a weak inequality.
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(Clark p. 61 by contrast says that ‘(41) holds but (42) does not hold’ “clearly
implies that extinction is optimal.” This seems hasty.?)

We next return to Figure 3 and show how to calculate its Quadrant I
precisely, using Mathematica. To do this requires giving each parameter a
numerical value. The example uses the Schaefer model.

Example 1, steady state: (35s) with: c(x) = qlx, g=1v9 =50, Fx) =
rx(l — %) withr = 0.1, K = 100; and 6 = 0.2. (The function c(x)
has two constants instead of one by tradition.) Since r < 9§, x5 = 0 by
(44), so x is unrestricted. Since ¢(0) = oo, Proposition 3’s condition
(50) fails, which suggests that extinction is unlikely. To ensure that,
on the other hand, some fishing does occur, Lemma 8’s condition (37)
involves calculating ¢(K), which is 50/(1-100) = 0.5; so if ¢(0) > 1/2,
h* will not be zero, but if ¢(0) < 1/2, h* will be zero.

In this example (42) can be proven to lead to

0% K6 +rx

:q_xK(é—r)+2rx' (62)

p
The proof begins by noting that ¢’(x) = —y/(gx?) and F'(x) = r —
(2rx/K). Substituting these into (42) yields
y q_—)?;rx(l - %)
b= qx o—r+ erx
y ;—Zr(K - X)
Cgx  K(6-r)+2rx
_y ,_ yr(K-x)
gx qK(6—r)+2qrx
Y r(K —x)
ogx K(6—r)+2rx
_ Yy K6—Kr+2rx+rK —rx
Cogx K& —-r)+2rx

which simplifies to (62).

Figures 5 and 6 show the (identical) Quadrant I steady-state supply
curve as derived using Mathematica in the following way. The expres-
sion for p[x_] is from (42).

8Clark p. 61 also says “We show that in this case Eq. (2.42) has no solution x > 0,” but
his proof only goes through if it is assumed that x > 0.
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Figure 5. The steady state supply curve for Example 1. Superimposed on it are two
hypothetical linear demand curves whose / intercept is 2.8. Dynamic analysis of
the upper-most “1 intersection” region is given in Figure 12A based on (63); of the
middle “3 intersections” region is given in Figure 14A based on (65); and of the
lower-most “1 intersection” region is given in Figure 16A based on (67).
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(* For Steady-State Supply Curve ¥*)
(* Definitions:

x: stock size (of fish)
c[x]: average & marginal cost (decreases in x, constant in h)
F[x]: excess of natural births over deaths
delta: interest rate
r: intrinsic growth rate
K: carrying capacity
h: harvest size
phi[h]: inverse demand curve, not used below
xdot[x,h]: derivative of x with respect to time
hdot[x,h]: derivative of h with respect to time

7‘:)

plx_] := c[x] - (D[clx], x]*F[x])/(delta - D[F[x], x1)

(* steady-state price as a function of x; see above *)
hix_] := F[x]

(* steady-state yield as a function of x; see above. *)

(* One example *)

c[x_] := gamma/(q*x)
Flx_] r*x*(l - x/K) (* logistic growth *)

gamma = 50

q=1

r = 0.1 (* intrinsic growth rate *)
K = 100 (* carrying capacity *)
delta = 0.2 (* interest rate *)

(* Steady-State Supply Curve *)
ParametricPlot[Evaluate[{h[x],p[x]}], {x,1,100}];
Show[%, PlotRange->{{0,3.5},{0,15}3}];

Intersections of Figure 5 and 6’s the steady-state supply curve with
the market demand curve will determine the steady-state equilibrium
values of & and p. However, if the demand curve’s choke price p. =
#(0) is less than 1/2, then as noted at the beginning of this Example,
no fishing will occur, even if the demand curve intersects Figure 5’s
supply curve.’

9Preliminary numerical work suggests that the steady-state supply curve intersects the
price axis at 1/2. If that is the case, then if the demand curve’s choke price p. = ¢(0) is less
than 1/2, it cannot intersect Figure 5’°s supply curve.
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Figure 6. The steady state supply curve for Example 1. Superimposed on it are
some hypothetical linear demand curves whose # intercept is 3.5.
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For concreteness, suppose the demand curve is linear and pivots around
the point & = 2.8, as sketched in Figure 5. As the slope gets progres-
sively steeper, demand intersects supply: once; twice (but only for a
single slope); three times; twice (but only for a single slope); and once.
So, depending on the slope of the demand curve, there may be one,
two, or three steady-state equilibria.

On the other hand, if the demand curve is linear and pivots around the
point & = 3.5, as sketched in Figure 6, then demand always intersects
supply exactly once.

Figure 5’s behavior is more complicated than Figure 6’s, and repays a
closer look. Figure 7 superimposes onto Figure 5 a set of five alterna-
tive demand curves which are all linear and all pivot around the point
h = 2.8. They all have the form p = (—=b/2.8)h + b where b is their
p-intercept. These demand curves are:

p=(-15/2.8) h+15 (greatest demand) (63)
p=(-122/28)h+12.2 (64)
p=(-10/2.8) h + 10 (65)
p=(-9/2.8)h+9 (66)
p=(-5/2.8)h+5 (least demand). (67)

Two of these demand curves ((64) and (66)) are the dashed lines in
Figure 5; the other three lie in the three sectors into which the dashed
lines divide Figure 5.

One way to derive the arrows in Figure 7 would be to apply a con-
ventional, dubious “stability” analysis, in which price is assumed to
fall if quantity demanded is less than quantity supplied, and price is
assumed to rise if the opposite occurs. This is dubious because the
analysis assumes competitive firms and consumers, so no agents think
they can change the price. The correct way to derive the arrows in
Figure 7 is to do a fully dynamic analysis, which is done in the next
subsection. The result turns out to be the same in this situation (see
Exercise 1, below).

So far, we have analyzed the pair (41) and (42) by using only one c¢(x)
and considering different demand curves. However, one could also analyze
it by using only one demand curve and considering different forms for c(x).
To do that, use the four-quadrant diagram of Figure 8 to derive ¢(F(x)) for
one given inverse demand curve ¢ (/). Next, transfer the derived ¢(F(x)) to
Figure 9 and consider different c¢(x) curves.
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Figure 7. Superimposing demand curves (63)-(67) onto Figure 5. Steady-state
market equilibrium occurs at the intersection(s) of demand and supply. Bifurcations
occur at choke prices of 9 and 12.2. The demand curve with p. = 10 is “dash dot”
marked simply to aid in legibility. The roman numerals are used to help create
Figure 18 from this figure. The arrows and characterizations of steady-state points
by type come from the subsection on dynamics.
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Lemma 11. For the situation graphed in Figure 9, if cost is c4, N0 X5 €Xists.

If cost is c3, x55 € (x3,K).

If cost is ¢p, x5 € {(x21,Xx22) U (x23,K)}; if § < r, there is an additional
restriction that xg; > xs5.

If cost is ¢y, xg5 € (x1,K); if § < r, there is an additional restriction that
Xgs > X2, which may mean that no x,g exists.

Proof. Equation (42) was derived from (38), and it is more convenient
to use (38) than (42) to analyze Figure 9. Imposing market equilibrium
(p = ¢(h)) onto (38) yields

[6 = F'(xs) 1P (F (x55)) = ¢(x55)] = =" (x55) F(xs5) - (68)

At xg = 0 or K one has F = 0 and hence the right-hand side of (68) is
zero, but for all interesting xs € (0, K) the right-hand side of (68) is strictly
positive, so for xg; between 0 and K we need the left-hand side of (68) to
be strictly positive as well. Because of Lemmas 2 and 7, assuming 2" > 0,
the second term on the left-hand side of (68) is strictly positive; thus we
need the first term to be positive as well. If 6 > r, as ¢; is in Figure 9, then
the first term of (68) is always positive. If § < r, as §; is in the graph, then
the first term of (68) is only positive to the right of x>, so we will require
Xss > X52-

For a c(x) function like c4 in Figure 9, it is impossible for the second
term on the LHS of (68) to be positive, so no xg, exists. This is to be expected
from Lemma 8, because c4(K) > ¢(0).

As noted above, if 4* > 0 then the second term on the left-hand side of
of (68) is strictly positive: ¢(F(x)) > c(x). For the cost function c3, x thus
has to lie between x3 and K. We can use a small table and the Intermediate
Value Theorem to prove that there exists at least one xz; € (x3, K) which
satisfies (68) (that is, for which the left-hand side of (68) is equal to the
right-hand side of (68)):

x LHS of (68) RHS of (68) LHS — RHS
X3 0 + _
K + 0 +

For the cost function ¢, to prove the claim given in the lemma, note
that just as in the c3 case, we can show that there exists at least one xg in
(x23, K) which satisfies (68), but there might be one (or more than one) x in
(x21,x22) which also satisfies it. If § < r one needs to recall the additional
restriction that x,; > x52.

§5 Search, Const. Ret. Sc.  (a) Steady State 35



Figure 8. The derivation of ¢(F(x)) for a given demand curve ¢.
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Figure 9. Superimposing some potential search-fishery average cost functions c(x)
onto the ¢(F(x)) function of Figure 8. Because in this section we assume constant
returns to scale, ¢(x) is not a function of harvest.

§5 Search, Const. Ret. Sc.  (a) Steady State 37



For the cost function ¢y, using similar reasoning to the c3 case there
is an xg in (xq, K) satisfying (68) in the 6 > r case. In the § < r case, the
additional restriction that xz; > x s> makes it impossible to prove in principal
that a suitable x, exists, though it is likely to. |

Subsection b. The Dynamic Case

Now consider (35d). As before (though now with time subscripts), MIIl; =
pr —c(x;) and dn/0x = —c’(x;) h;. We also have MIT, = p, — ¢’ (x;) x;. If
h; > 0, (20) holds, and substituting (35d) into (20) therefore gives

b(p—c)=(p-c)F +p—-c'x—-c'h
6-F)Yp-c)=p-c'x—-c'h (69)
=p-c'F (70)

where (69) becomes (70) due to (17).
One could solve (69) for & to give

[-p+cWII6 - F' ()] p-c'(0)*
¢’ (x) c(x)
If all these time derivatives are zero, (71) is the same as (40). However, (71)

is too complicated to be particularly enlightening. Alternatively, one could
solve (70) for p to get

h= (71)

_ p—c'(x) F(x)
p=e()+ = (72)
then combine it with (from (17))
h=F(x;) - % (73)

to get a dynamic version of the pair (42) and (41). However, the presence of
time derivatives makes it impossible to proceed as before to sketch a (now
dynamic) supply curve.

At this point, we abandon any attempt to further describe the firm’s
supply response, and instead proceed to combine: (i) what we know about
the firm’s supply response, with (ii) a market demand curve. This will enable
us to derive the market equilibrium dynamic paths. Substituting the market
equilibrium condition p; = ¢(h;) (namely (34)) into (72) gives:

¢'(h) h = ¢’ (x) F(x)

$) = clx) + s

(6—F)p—-c)=¢'h—C'F.
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This leads to

[0 — F'(x)][¢(he) — c(xe)] + " (x) Fxy)

hy = 74
’ &) i
which along with
X =F(x;) —hy (17)
forms a dynamical system of the form
X = fi(x;, h
t =N ( t t) (75)

ht = fz(xt, ht)

where f] is the right-hand side of (17) and £ is the right-hand side of (74).
To derive the phase-plane diagrams of the dynamics one finds the isoclines
(more properly, the “nullclines”), which are the set of all (x, #) which make
% or h equal to zero. (Notice that if one sets the time derivatives of the
system (74)/(17) equal to zero, one obtains the basic equations we used for
the steady state, (41) and (42).)

Because neither f; nor f, in (75) depends explicitly on ¢, the dynamic
system (75) is autonomous. It follows that paths in its phase space can-
not cross, because every (x, ) generates a unique (X;, ht), that is, a unique
direction of motion in phase space.

The % = 0 and & = 0 isoclines divide the (x, &) phase plane into “isosec-
tors”; inside one isosector, neither x nor & change signs.

Lemma 12. The area of the (x, h) plane which lies above the X = 0 isocline
has x < 0; similarly, the area of the (x, h) plane which lies below the X = 0
isocline has x > 0.

If § > F’(x), the area of the (x, h) plane which lies above the h = 0
isocline has h > 0, and the area of the (x, h) plane which lies below the
h = 0 isocline has h < 0.

If § < F’(x), the area of the (x, h) plane which lies above the h = 0
isocline has h < 0, and the area of the (x, h) plane which lies below the
h = 0 isocline has h > 0.

Proof. If one started on a point (x, #) which made x = 0, then kept x the
same but increased 4, (17) implies that X would change from being zero to
being negative. This proves the first paragraph.

If one started on a point (x, #) which made h =0, then kept x the same
but increased 4, (74) implies that 4 would change from being zero. To see
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how it would change, abbreviate (74)’s numerator so that

a(x, h)
¢'(h)

h=

Then on the /# = 0 curve,

% _ oa/dh _ " _ oa/oh _ ¢_”h
dh ¢’ (¢)? ¢’ ¢’
_ da/0h  ¢” 0= da/oh
¢’ ¢’ ¢’
W —5-F. (76)

Hence if § > F’(x), deviating from the 7 = 0 isocline by raising & will
raise & from zero to something positive—implying that the area of the (x, )
plane which lies above the h = 0 isocline has & > 0, and the area of the
(x, h) plane which lies below the h = 0 isocline has i < 0. Conversely, if
§ < F’(x), then deviating from the / = 0 isocline by raising & will lower A
from zero to something negative ||

In order to ensure that Proposition 2 governs harvest in this case, we
need to verify that the basic assumptions on costs of Section 4 hold in
this section. Those assumptions were that total cost TC(x, h) was (weakly)
convex in & and that dTC/dh was nonnegative and differentiable. In this
section, from (35), total cost is ¢(x) h, which is linear in /4 and so is convex
in h, and TC/d0h = c¢(x), which is nonnegative and differentiable. Hence
Proposition 2 does govern harvest in this case.

While (74) and (17) follow from the necessary conditions for solving
(16) and (17) given (35d), the question of sufficiency arises. The Mangasar-
ian sufficiency condition of Section 1 requires

yell %Il
2up _ hh hx
v [% %]

to be negative semidefinite. However, here (using = to mean “is defined to
be,” as in (32))

#=e0 [Pt - C(-xt)]ht + 4 [F(xt) - ht]

= {e“” [p: —c(x:)] = ﬂt}hr +A; F(x;)
2 o (xp, A1) e + A, F(xy) (77)
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meaning that #¢;, = 0, hence that |V2¥¢| = —(#) )? = —(d0/dx)* =
—[—e~%¢’(x;)]?, which means ¢ fails the test for strict concavity, and fails
the test for concavity whenever #;’ # O (in other words, whenever ¢’ # 0),
as is always the case for search fisheries. To check the Arrow sufficiency
condition, first note that either we follow a singular solution, in which case
o = 0,or i* = 0 (or h* = oo, which is not interesting); in either case,
#6* = A, F(x;). Along a singular solution, A is given by (22) as e~ %" MIT,
and here MII = p — ¢, so

#* = e [pr = cO)]F(x7) .

Then #:' = e %' [-c'F+ (p—c)F'] and #6.,” = e %! [-c"F - c'F' = 'F’ +
(p — ¢)F"']; collecting terms,
HE " =e O [(p—c)F' =2'F' - "' F]. (78)
In many situations (though not all) we can rule out F being negative; for
example, with logistic growth, as long as x is never greater than the carrying
capacity, F will not be negative. Typically, p — ¢ > 0 (from Lemma 2),
F” < 0 (from logistic growth), ¢’ < 0 (which characterizes a search fishery),
and ¢”” > 0 (which is (36)). F’ can have either sign, but if F’(x;) < OVt
together with the other common conditions, (78) would be negative and
the Arrow sufficient condition for a maximum would hold. For the case of
logistic growth, a sufficient condition for F’(x;) < OVt is that x; > K/2V1t.
We will further illustrate the qualitative theory of dynamic systems such
as (74) and (17) by going through “Example 1, dynamics” below. This
paragraph briefly discusses the quantitative theory (see Natural Resource
Economics: Notes and Problems by Jon M. Conrad and Colin W. Clark,
1987, pages 45 and 52). General mathematical notation for such systems is

X = F(xs,y1)

Yi =G (x¢, 1)
where this F is unrelated to fisheries—a notation clash between mathematics
and ecology. Let (x*, y*) be a steady-state point, i.e., a point making both
F and G equal to zero. (This is a notation clash between mathematics and

economics: economists use asterisks to denote optima, not steady states.) A
first-order Taylor Series approximation to F' can be written

F(x,y) ~ F(x',y") + FL(x", y) (x = x) + Fy(x, y) (y = y7) .
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A similar approximation holds for G. Indeed, if we take gradient vectors,
e.g. VF* = [F}, F;], to be row vectors, we could write

F| _|F* N VF*| [x —x*

G|~ |G*| " |VG*H| |y -y*| -
Since (x*, y*) is defined to be a steady-state point, both F* and G* are zero.
Taking this into account and writing the gradients explicitly, to a first order

approximation,
X *OFS] [x-x
.| = % 7 «| - 79
H [G GyHy-y] 7

Note that the first matrix on the right-hand side consists entirely of numbers

(constants), not variables. (It is a Jacobian matrix, a matrix of first deriva-
tives, where each row is the gradient of a function.) If we define & = x — x*
and n = y — y*, then the (£,7n) plane has its origin precisely at the point
(x*,y*). Clearly £ = x and 17 = y. So

il=1e: ol
7| |6y Gyllnl

a system of linear differential equations whose solution is

~

~%

=

[i] =avy R + by el

where v and v; are the eigenvectors, and R; and R; are the corresponding
eigenvalues, of the matrix of the differential equation system.

It can be shown that if the eigenvalues are both real and positive, the
steady-state point is unstable. Such steady-state points are called “unstable
nodes” or “repellers.” See Figure 10 for what different types of steady-state
points look like.'?

If the eigenvalues are both real and negative, the steady-state point is
stable. Such steady-state points are called “stable nodes” or “attractors.”

If the eigenvalues are both real and one is positive and the other is neg-
ative, the steady-state point is called a “saddle point” or just a “saddle.”
Saddle points are common in economic models. Mathematicians call saddle
points “unstable” but economists do not, because in economics, a firm or
consumer or social planner often can control the system so that it stays on
the saddle point’s convergent separatrix, which is defined to be the only

10The source of Figure 10 is http://www.scholarpedia.org/article/Equilibrium.
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Figure 10. Types of steady-state points. The vertical axis T denotes the trace of
the Jacobian matrix of (79) and the horizontal axis A denotes the determinant
of that Jacobian matrix, although I prefer to analyze behavior using that matrix’s
eigenvalues rather than using 7 and A. In each of the six parts of this diagram, there
is a small graph with two dots; the dots represent the eigenvalues, and the horizontal
and vertical axes represent, respectively, the real and the imaginary component of
each eigenvalue.
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path leading to the saddle point. (The divergent separatrix is the only path
leading away from the saddle point.) It can be useful to know how to calcu-
late the position of the convergent separatrix. To do this, pick R, < 0 < R
since it is arbitrary which eigenvalue is positive and which one is negative.
Then in order for an arbitrary (£p,70) to goto (¢7,77) = (0,0) as t — oo, we
need a = 0. If we therefore impose a = 0, then the ratio of n to £ as t — oo

is given by v,. For example, if v, = [1711] , then the slope of the convergent

separatrix is m (in the £-n7 plane, but it has the same slope in the x-y plane).

If the eigenvalues are complex then they will occur in a “conjugate pair”
a + Bi where i = V=1. It can be shown!! that in this case, the solution can
be rewritten for some constants a; and by as

[i] =a; e cos(bt) + by e sin(br) .

If the real part (“a”) is positive, the steady-state point is an unstable spiral,
whereas if the real part is negative, the steady-state point is a stable spiral
(and if the real part is exactly zero, the steady-state point is a center).

We will encounter one type of steady-state point which is not depicted
in Figure 10, called a “saddle node.” Saddle nodes look like a combination
of a saddle and a (stable or unstable) node; Figure 11 depicts a saddle node
which is a combination of a saddle and a stable node.'> A saddle node’s
Jacobian matrix in (79) has one eigenvalue which is real and positive and the
other which is real and exactly zero. In Figure 10, this occurs at the boundary
between its Quadrants I (two positive eigenvalues) and II (one positive and
one negative eigenvalue), and at the boundary between Quadrants IV (two
negative eigenvalues) and III. These two boundaries are labeled “Saddle-
Node Bifurcation” in the figure. (Mathematicians could have called each
boundary by its own name, a “Saddle-Repeller Bifurcation” or a “Saddle-
Attractor Bifurcation,” but they did not.)

llgee for example https://math.libretexts.org/Bookshelves/Analysis/Supplemen
tal_Modules_(Analysis)/Ordinary_Differential_Equations/3%3A_Second_Order_Li
near_Differential Equations/3.4%3A_Complex_Roots_of_the_Characteristic_Equat
ion. That reference assumes you know Euler’s Formula, for which see https://www.ma
thsisfun.com/algebra/eulers-formula.html. That reference also assumes you know
that problems like ours, which is a system of two first-order differential equations, can
be rewritten as a single second-order differential equation, as shown for example in http
s://mjo.osborne.economics.utoronto.ca/index.php/tutorial/index/1/sim/t. This
mathematics is also covered in Clark’s book.

12The source of Figure 11 is https://www.larserikpersson.se/webcourse/ix-introd
uction-to-the-theory-of-dynamical-systems-chaos-stability-and-bifurcations
/7-classification-of-critical-points/.
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Example 1, dynamics. Assume (35d) with, just as “Example 1, steady state”: c¢(x) =

Figure 11. Phase-plane paths near a “saddle node.” This particular saddle node has
characteristics of a saddle point in the lower part of the diagram, and of an attractor
in the upper part of the diagram; this author refers to attractors as “sinks.” Therefore,
this saddle node corresponds to the boundary between Quadrants III and IV in
Figure 10. There is another type of saddle node which has characteristics of a
saddle point and a repeller, which corresponds to the boundary between Quadrants
I and II in Figure 10.

Y

qx’

g =1,y =50; F(x) = rx(1 — %) with » = 0.1, K = 100; and 6 = 0.2. Unlike
in “Example 1, steady state,” it is necessary to also assume a particular demand
function ¢(h). We will assume linear demand curves which pivot as in Figure 5, not
as in Figure 6, and in particular, we will study each of the demand curves given by

(63)—(67). They are the ones graphed in Figure 7.

Assuming that the Mathematica code in “Example 1, steady state” above has been
read in, the procedure to draw isoclines with Mathematica follows. The first non-

comment line of code is (17) and the second is (74).

(* For Isoclines of the Phase Diagram *)
(* Definitions: *)

:= F[x] - h

xdot[x_,

hdot[x_,
((delta - D[F[x], x1)*(phi[h] - c[x]) + D[c[x], x]*F[x]
)/D[phi[h], h]

h_]
h_]

xdotisocline =
ContourPlot[Evaluate[xdot[x,h]],{x,1,125},{h,0,3.5},

Contours->{0},ContourShading->False,PlotPoints->50];
(* this got the xdot=0 isocline *)

(* First demand curve *)

intercept = 15;

phi[h_] := (-intercept*h)/2.8 + intercept
hdotisocline=
ContourPlot[Evaluate[hdot[x,h]],{x,1,125},{h,0,3.5},
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Contours->{0},ContourShading->False,PlotPoints->50];
Show[hdotisocline,xdotisocline];
(* for a finite final date *)
terminalsurface=
Plot[h/.Solve[phi[h]==c[x], h1[[1]]1[[1]1],
{x,1,125},PlotRange->{0,3.5}];
Show[hdotisocline,xdotisocline, terminalsurface,
PlotRange->{0,3.5}];

(* Second Demand Curve*)
intercept = 12.2;
phi[h_] := (-intercept*h)/2.8 + intercept
hdotisocline=
ContourPlot[Evaluate[hdot[x,h]], {x,1,125},{h,0,3.5},Contours->{0},
ContourShading->False,PlotPoints->50];
Show[hdotisocline,xdotisocline];
terminalsurface=
Plot[h/.Solve[phi[h]==c[x], h][[1]]1[[1]1],
{x,1,125},PlotRange->{0,3.5}];
Show[hdotisocline,xdotisocline, terminalsurface,
PlotRange->{0,3.5}];

(* etc. *)

Using these techniques, demand curve (63) yields Fig. 12A; similarly, (64) yields
Fig. 13A; (65) yields Fig. 14A; (66) yields Fig. 15A; and (67) yields Fig. 16A. See
also Figure 6.12, p. 187 of Clark, reproduced as Figure 17 here. The “B” versions of
each graph, and Figure 9, are explained after the Exercises below.
In this example, growth is logistic and 6 = 0.2 > 0.1 =r > F’(x), so 6 > F’(x) for
all x. This means from (76) that /1/8h > O (the area of the (x, 4) plane which lies
above the /2 = 0 isocline has & > 0). It means, from the notation of (44), that x5 = 0.
In this example, the given functional forms (without needing to replace p with ¢(h))
imply that (78) is
—2pr

x
This is strictly negative and shows according to the Arrow sufficiency result that any
path in this example which satisfies the necessary conditions is optimal, and that there
is only one optimal path for x.

* 1 _
ey =

Exercise 1. Finish drawing the phase plane diagrams in Figs. 12—-16. Locate the trajectory
to the steady state in each diagram assuming xg = K (recall that K = 100). Just
after these exercises, we will show, using the “B” versions of the graphs, that these
trajectories are optimal. Locate the optimal trajectories from other values of x(, and
confirm the arrows shown in Figure 7.

Exercise 2. Using the results of Exercise 1, as the demand curve pivots clockwise in Fig. 5,
locate the equilibrium points. Note the bifurcation when, as demand increases, sud-
denly quantity jumps down and price jumps up. One way to summarize the results
of Exercise 1 and Figure 7’s analysis is to see how steady-state price and harvest var-
ied with the choke price p.. Explain how Figure 7 leads to Figure 18. Bifurcations,
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Figure 12A. Demand curve is p = —%h + 15 (equation (63)), corresponding to a
choke price of 15 and an intersection in the upper-most “1 intersection” region of
Figure 5. Drawing the phase plan paths is left to the reader, who should conclude
that the steady-state point is a saddle point whose convergent separatrixes approach
from the northeast and southwest. Note: the plural form of separatrix is sometimes
spelled “separatrices.”
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Figure 12B. Figure 12A combined with the finite-time terminal surface. The in-
finite-horizon behavior implied by studying the finite-horizon behavior in this fig-
ure is reflected in Figures 7 and 18.
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Figure 13A. Demand curve is p = —%h + 12.2 (equation (64)), corresponding to

a choke price of 12.2 and a demand curve on the knife edge between the middle,
“3 intersections” region of Figure 5 and that figure’s upper-most “1 intersection”
region. Drawing the phase plan paths is left to the reader, who should conclude that
the left steady-state point is a saddle point whose convergent separatrixes approach
from the northeast and southwest, and that the right-most steady-state point is a
saddle node (repeller on the left, saddle on the right). The steady-state points are
joined by a path, because the path which converges to the left-hand steady-state
point from the right cannot have, in its past, crossed either the x = 0 isocline or the
h = 0 isocline, because paths crossing those isoclines leave the isosector and thus
cannot converge to the steady-state point. Paths that join two steady-state points
are called “heteroclinic orbits.” If xg = K, the equilibrium path gets stuck at the
saddle node.
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Figure 13B. Figure 13A combined with the finite-time terminal surface. The in-
finite-horizon behavior implied by studying the finite-horizon behavior in this fig-
ure is reflected in Figures 7 and 18.
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Figure 14A. Demand curve is p = —%h + 10 (equation (65)), corresponding to

a choke price of 10 and an intersection in the middle, “3 intersections” region of
Figure 5. Drawing the phase plan paths is left to the reader, who should conclude
that the left and right steady-state points are saddle points whose convergent separa-
trixes approach from the northeast and southwest, and that the middle steady-state
point is a repeller. Each saddle point is joined to the middle steady-state point
(repeller) by a path (a “heteroclinic orbit””) which converges to that saddle point,
for geometrical reasons like those given at the end of the caption of Figure 13A.
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Figure 14B. Figure 14A combined with the finite-time terminal surface. The in-
finite-horizon behavior implied by studying the finite-horizon behavior in this fig-
ure is reflected in Figures 7 and 18.
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Figure 15A. Demand curve is p = —%h + 9 (equation (66)), corresponding to
a choke price of 9 and a demand curve on the knife edge between the middle,
“3 intersections” region of Figure 5 and that figure’s lower-most “1 intersection”
region. Drawing the phase plan paths is left to the reader, who should conclude
that the left steady-state point is a saddle node (saddle on the left, repeller on the
right) and the right-most steady-state point is a saddle point whose convergent
separatrixes approach from the northeast and southwest. The steady-state points
are joined by a path (a “heteroclinic orbit””) for geometrical reasons like those given
at the end of the caption of Figure 13A.
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Figure 15B. Figure 15A combined with the finite-time terminal surface. The in-
finite-horizon behavior implied by studying the finite-horizon behavior in this fig-
ure is reflected in Figures 7 and 18.
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Figure 16A. Demand curve is p = —%h + 7 (equation (67)), corresponding to a
choke price of 7 and an intersection in the lower-most “1 intersection” region of
Figure 5. Drawing the phase plan paths is left to the reader, who should conclude
that the steady-state point is a saddle point whose convergent separatrixes approach
from the northeast and southwest. This case represents a lower demand curve than
Figure 14A, yet is has a higher A} (and higher xj; and lower p), as anticipated in
Figure 5, since Figure 14A is along the backward-bending part of the steady state
supply curve.
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Figure 16B. Figure 16A combined with the finite-time terminal surface. The in-
finite-horizon behavior implied by studying the finite-horizon behavior in this fig-
ure is reflected in Figures 7 and 18.
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Figure 6.12. Bifurcation of supply and demand equilibria in the nonlinear fishery model.

Figure 17. Clark’s Figure 6.12.

which are large qualitative changes resulting from infinitesimally small parameter
changes, occur around the choke prices 12.2 and 9. The bifurcations in Figure 18
are “saddle-node bifurcations” (sometimes called “fold bifurcations”). Use Figure 18
and Figs. 12—16 to explain why “saddle-node bifurcations™ is an appropriate name
(“saddle-repeller bifurcations” would have been an even more appropriate name, but
mathematicians do not use it). Also, each of the two bifurcations in Figure 18, the
one at p. = 9 and the one at p. = 12.2, correspond to moving from one quadrant of
Figure 10 to another; which two quadrants of Figure 10 are they?

Exercise 3. Re-solve “Example 1, dynamics” with a value of 6 which is less than r = 0.1.
Note from Lemma 12 that 9h/dh has a more complicated behavior than when § > r.

Exercise 4. Re-solve “Example 1, dynamics” with demand curves like those in Fig. 6 instead
of those in Fig. 5. The phase plane diagram will look as in Figs. 12 and 16. (Why?)
As demand pivots clockwise in Fig. 6, there will not be a bifurcation. (Why?)

Exercise 5. Re-solve “Example 1, steady-state” with a growth function F(x) that exhibits
critical depensation and show that this results in Clark’s Figure 5.18a, p. 144, repro-
duced as Panel a of Figure 19 here. May extinction result from this model? What is
the dynamic behavior like?

Exercise 6. Re-solve “Example 1, steady-state” with a cost function c(x) that has ¢(0) < oo
and show that this results in Panel b of Figure 19. May extinction result from this
model? What is the dynamic behavior like?

Exercise 7. Verify the dependence of the steady-state supply curve on ¢ which is illustrated
in Fig. 5.13, p. 137 of Clark, reproduced as Figure 20 here.

In phase diagrams such as the ones in the Exercises, it is unfortunately
not trivial to prove that the convergent separatrix is optimal (that is, that it
is optimal to approach the steady state). In Section 3, we pointed out that
the transversality conditions (30) and (31) do not help because they are
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Figure 18. A not-to-scale summary of bifurcations from Figure 7. The horizontal
axis of both graphs is the demand curve’s choke price, p.. Bifurcations occur at
pe =9 and p. = 12.2, and are called “saddle-node bifurcations.” The dashed lines
trace unstable steady state points, as conjectured by a naive stability analysis and
as confirmed by the dynamic analysis subsection. The axes are distorted, using
evenly-spaced roman numerals instead of actual coordinates, to make the figure

more legible.
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Figure 5.18. Discounted supply curves: (a) critical depensation model, with F'(K,)<s: (]
finite extinction cost, with F'(0) < 8.

Figure 19. Clark’s Figure 5.18.
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Figure 5.13. Discounted supply curve and its limiting positions.

Figure 20. Clark’s Figure 5.13.
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inapplicable to the problem of competitive firms, whose problem is non-
autonomous. In Section 4, we mentioned Colin Clark’s approach to this
problem. His precise words were:

(Is there some way to prove that the optimal solution must ap-
proach [the steady state] (x*, h*) as t — co? This can be done
by first looking at the case of a finite time horizon 7, and then
letting T — oo. We skip the details.)

—p. 97 of the third (2010) edition

At the end of Section 4 (which assumed perfect competition), we showed
that in Lemma 6 that if the final date were not infinity but instead 7' <
oo, then the transversality condition would be that at 7, price should equal
marginal cost. Using the constant returns to scale assumption of the current
section, that means that at T, price should equal average cost, and so profit
should equal zero. Imposing equilibrium, this condition is ¢(hr) = c(xT).
The (x, h) points satisfying this equation form a curve we can call the “finite
time terminal surface.” With our constant returns to scale assumption, this is
also a zero-profit surface. We can plot this curve using Mathematica. In the
Mathematica code given above in “Example 1, dynamics,” this is done in
the terminalsurface lines. Fig. 12B superimposes that set of points (that
curve) onto Fig. 12A, and similarly for the “B” versions of the other figures.
The size of T determines which point on this finite-time terminal surface
is the right one; if T is small, the path from the initial point to the terminal
surface will be short (such as “Path C” of Figure 12B), but if T is 5 billion
years, it will be long (such as “Path D” of Figure 12B). The greater the
value of T, the closer the path has to get to the steady state, where motion
slows because the path is so close to the nullclines. This is known as the
“turnpike” property (the analogy being that one does not go from H to U
in Figure 21 via a straight line, but rather by detouring near—not literally
on—the JS “turnpike”).!3

As noted in the preceding paragraph, the finite-time terminal surface in
this section is also a zero-profit surface.!* Starting from a point on it and
increasing i while keeping x constant, p — ¢ = ¢(h) — c(x) will fall from

13Here, “turnpike” refers to high-speed highway which is the fastest route between two
cities even though it is not the shortest route between two cities.

14There is another zero-profit surface, at & = 0, but it is not a finite-time terminal surface.
Proof: on that surface, 1 = AMII - h is zero but AMII is not zero, so, from (22),4; = e~ ‘”MH,
is not zero; but on a finite-time terminal surface A7 = 0 from (13), so & = 0 is not a finite-time
terminal surface.
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Figure 21. A generic phase-plane diagram loosely based on Figure 12B, equation
(63). The finite-time terminal surface is the solid line with small hatch marks
dividing the plane into negative-profit and positive-profit areas.
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zero to a negative value; so it divides the phase plane into areas of negative
profit above it and positive profit below it.

Figure 21 enables a complete analysis. It is a redrawing of Figure 12A,
based on (63), distorted in the interest of legibility. Suppose T < oo. If
xo = X, then the paths from A, K, and L cannot be optimal because they
cannot reach the finite-time terminal surface. Similarly, if xo = X, then the
paths from M and I cannot be optimal because they cannot reach the finite-
time terminal surface. From %, a small 7 would result in an optimal path
being like BC; for a larger 7, an optimal path would be like DE; and for
an even larger T, it would be like FG. From %, a small 7 would result in an
optimal path being like VW; for a larger T, an optimal path would be like
QR; and for an even longer T, an optimal path would be like HU.

For very large T, evidently the optimal path is will be extremely close to
the convergent separatrix until dates far into the future. We could then either
conclude, somewhat heuristically, that for T = oo, the convergent separatrix
is optimal; or we could conclude that for very large T, the optimal path is so
close to the convergent separatrix for so long that any eventual differences
between them have no economic importance and can be ignored. So from
now on, we will take the convergent separatrix as being the optimal path
when 7 is infinite, which is our usual case.

This proves that NS or JS are optimal, except for the case of xy being
very small.

Lemma 13. Let X denote the point at which the convergent separatrix in-
tersects the x axis. If xo < X, the optimal strategy is to set h* = 0 for an
initial period of time. This path follows the x axis going to the right. Once
x reaches X, h* follows the convergent separatrix.

Proof. We first show that a plan having an initial period with A* = 0 is
consistent with the mathematics of Optimal Control Theory. Recall that our
phase-plane paths were constructed from (17) and (74); the latter came from
(70), which came from (21), which came from (5), which came from assum-
ing an interior (or, in the case of #€ linear in & as we have, a “singular”)
solution. Therefore there is indeed an alternative to following a phase-plane
path, namely by not assuming an interior (technically, a “singular”) solu-
tion. That means setting the control to be at its minimum or maximum
allowed value (which is called taking a “most rapid approach path,” abbre-
viated “MRAP”); in our case, it means setting s; = 0. This confirms that the
equations of Optimal Control Theory do allow one to set iy = O for some
time.
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Figure 22. This situation with X < Z cannot occur.

To determine when the initial no-harvest period will end, first note that
during it, x rises because there is no harvesting.

Proposition 2 requires that /; be continuous. If & were kept at zero while
x grew beyond X, the only way at any future date to get to the convergent
separatrix would be for % to jump up, which is not allowed. If & were kept
at zero for such a short time that x had not yet reached ¥, there would be
no way to adjust /4 so as to be on the convergent separatrix, because the
convergent separatrix does not exist at such small levels of x. So & should
be kept at zero just until x reaches x. ||

We also need to rule out a geometry which is different from Figure 21°s.

Lemma 14. Let Z be the point at which the finite-time terminal surface
intersects the x axis. Then Z < x.

Proof. Suppose not; then Figure 22 holds. Recall (as shown in Figure 12B)
that the region above and to the left of the finite-time terminal surface is a
region of negative profit. This region is so marked (“zm < 0”) in Figure 22.

As the proof of Lemma 13 pointed out, the path of 4; has to be con-
tinuous, and the only continuous phase-plane path which sets 4 = 0 over
an initial interval and then joins the convergent separatrix has to join the
convergent separatrix at X. Once that has happened, in Figure 22, following
the convergent separatrix to the right of ¥ leads through the 7* < 0 region.
However, according to Lemma 2, 4™ > 0 is incompatible with 7* < 0 (recall-
ing from Lemma 7 that we know that A; > 0). This contradiction establishes
the proof. ||
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Presumably, if one used a computer to calculate the location of X, one would
find that it satisfies this lemma.

Rather remarkably, despite the nonlinearity of the system, we can find
analytical expressions for the time paths of all the variables (harvest, price,
stock size, and the adjoint variable) during any initial period of no harvesting.
(This presumes one first knows the coordinate of X, which requires using a
computer.) This result is not very important, however, because Lemma 13
already described the qualitative features of this path.

Lemma 15. Ifxo < X, the optimal plan is to set hy = O until the switching
time tg implicitly defined by

_ K
I= —pr (80)
1+ X—Oe s

Fort < tg, price is (an arbitrary path which remains greater than or equal

to) ¢(0). Fort < ty,
K

X = ) (81)
t 1 + K;Oxoe_rt
Using the value of ¢, implicitly defined by
In(1 + E=20erts)
e %5 [¢(0) — c(X)] = exp{2r |ts + 0 —rtg+cop, (82)
r

fort < tg the time path of A; is

In(1 + X201y
A; =exp{2r|t+ 0 —rt+coyp . (83)

r

Proof. During the period of time when harvest is kept at zero, it is sufficient
to describe the time path of price by saying that it will be constant at ¢(0).
Technically, however, price could follow a completely arbitrary path greater
than or equal to ¢(0); all that matters is that price remains always at or
above the choke price, so that quantity demanded is zero.
Next, note that whenever h; = 0, (28) gives e 9'MII, < A,. In market
equilibrium this is
e [$(0) — c(x)] < A, . (84)

Also, h = 0 implies A, = —0#/0x = —d[e % (p — c)h + A(F — h)]/0x =
~[-e~%"¢’h+AF'] = =4, F'(x;). From Lemma 7), 1o > 0 as long as fishing
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will occur at some point; and since for small x, F > 0 because we have
assumed logistic growth, we have Ay = —AoF < 0, so the right-hand side
of (84) starts by falling. When h = 0, the left-hand side of (84) rises: the
proof begins with de=% [¢(0) — c(x;)]/0t = =5e~ %" [¢p(0) — c] — e %'c'x =
—5e % [p(0) — c] — e % ¢'F = —e 9 {6[¢(0) — c] + ¢'F}, then notes that
¢'F < 0and ¢(0) — c < 0 for points such as Y that lie to the left of the finite-
time terminal surface. Hence the left-hand side and the right-hand side are
getting closer, and at some date, in order not to have % being equal to zero
forever, (84) will be met with equality, and & will cease being zero. That
time is called the “switching time,” which we denote by ¢,. To calculate ¢,
note that while 2 =0, (17) and (15) give x = rx(1 — (x/K)). (In this exercise,
K =100 and r = 0.1.) The solution of this nonlinear differential equation
is (81). To find the switch time ¢, set x; in (81) equal to ¥ and solve for
the corresponding ¢. That will be ¢, and proves (80). The equation (80) is
simple enough that ¢, could be expressed analytically, an exercise left to the
reader.

Meanwhile, when & = 0 we saw above that A = —AF"; dividing by 4 and

substituting F’ =r — %(—rx and substituting for x; from (81) ago gives
dajdt 2 2 K
/ :—rx—r:—r——r. (85)
A K K 1+ Me—rf
X0

The solution to this nonlinear differential equation is obtained by moving
dt to the other side and integrating both sides, which turns out to give

In(1 + Kx;oxoe_”)

r

Ind=2r [t+ ]—rt+c2 (86)

for some constant c;. (I did the difficult integral with Mathematica, but it
is easy to verify its correctness by differentiating.) So the right-hand side of
(84) follows (83). Evaluating (83) at #; must yield, by (84), e =% [¢(0) —c(X].
That yields (82), which is one equation in the one unknown, c;, and is simple
enough that ¢; could be determined analytically, an exercise left to the reader.

The reason we were able to analytically solve the pre-t; period was that we
(with Mathematica) were able to solve two nonlinear differential equations.
This was only possible because we got lucky: 7 = O resulted in easy equa-
tions. The post-t; specification cannot be analytically solved, even using
Mathematica 6.0. Moreover, we need to use the post-z; specification to find
the coordinate of x, which is used in this lemma.
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Figure 23. Isoprofit lines for Figure 21. Blue is negative profit, and profit increases
with lighter colors.

Path JS is rather close to the zero-profit surface; one may wonder why
it is optimal, suspecting that there are other feasible points which generate
more profit. Figure 23 shows that the highest steady-state profit occurs on
the F(x) function at approximately x = 80, h = 1.3. If for example xo = 80
then it would be feasible to stay at that point forever, earning, at each date,
more profit than at any date on Path JS. However, Figure 23 shows profit
taking the demand curve into account, but the competitive firm has no idea
where the demand curve is. The (x, ) = (80, 1.3) point may maximize
profit for a monopolist (whether it does or not is not relevant here), but the
competitive firm has to maximize profit given the exogenous prices it faces,
and Path JS is the correct answer to that problem.

We have extensively discussed Example 1, based on one cost function
and various demand curves, originating from Figure 5, but we have not
said anything in this subsection about a dynamic analysis for Figure 9,
based on one demand curve and different cost functions. The main reason
is that it was easy to parameterize the difference in the demand curves of
Figure 5, since they only differ in one parameter, their choke prices, but I
drew the different cost functions in Figure 9 freehand, without any analytical
expressions, let alone expressions which differed in just one parameter. It
would be interesting to investigate how different cost functions affect the
dynamic behavior of the system, but search fisheries have complicated cost
functions (even if one assumes constant returns to scale), so I have not
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done this. In the next section, on schooling fisheries, the cost functions
are simpler, and there I do analyze how different costs affect the dynamic
behavior of the system.

It is appropriate to close this section with a note about how other authors
approach this constant-returns-to-scale, private-property fishery. Most other
analyses (e.g., Caputo op. cit. p. 137) assume that price p, is fixed in time.
This implicitly means either that one just wishes to derive the steady-state
supply curve and leave determination of equilibrium to further work (note
that there is no analogous procedure for the dynamic analysis), or that the
actual market demand curve for this fish is horizontal, which would violate
consumers’ budget constraints. To analyze this case, start with assuming
an interior (or, technically, a singular) solution; then (5) characterizes the
optimum, and it leads to (70). When p is fixed in time, the p term in (70)
drops out, and (70) becomes the following, for a constant value of x called
x" which implicitly defined by (87):

0-c'(x") F(x")
p—c(x)

§=F(x")+ (87)

If xo # x', the system has to get from xq to x' in the beginning. If xT # x7,
the system has to get from x' to x7 at the end. In such cases, the system has
to spend some time off of the interior (technically, the singular) path which
is given by (87). The only alternative to (70) is following a noninterior
(technically, a nonsingular) path, i.e., setting harvest to be one of its extreme
values, either 4 = 0 or 2 = max h (which we have taken to be infinite, but
which in reality would be finite). Hence the solution is to follow a MRAP

from xg to x', then follow the interior (singular) path x; = x" as long as
possible, then follow a MRAP from x" to xr.

Section 6. Private-Property Competition:
Schooling Fisheries and Constant Returns to Scale

The next pair of examples is

n(x,h)=[p—-c]h and (88s)

m(xe, he 1) = [ pe = c] by (88d)

As noted when discussing (35), this average cost function c(x;, h;) = ¢
is appropriate for “schooling” fisheries; the average cost function for (35),

which was c(x;, h;) = c¢(x;), is appropriate for “search” fisheries. In working
out case (88) you should start with (20), because it is unknown whether the
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additional assumptions used to derive (21) (namely MII # 0) and (42)
(namely 6 — F’(x) # 0) hold in this section. You should find that

[6 - F'(x)] [¢(h) —c]
¢’ (h) ’

which together with (17) governs the schooling fishery phase-plane dia-

grams. Figures 26—29 can help you work through these cases. The following

notation is used in those graphs, where D(p) denotes the market demand
curve:

h=

(89)

Xs asin (44);
hs = F(xs) as in (47);
h such that ¢(h) = ¢ or h = D(c).

You should find that when, among other conditions, § > r, it is possible for
no steady state to exist. That may imply extinction.!?

Figure 30 is a summary of some aspects of Figures 2625 and Figure 31
is a summary of the similar aspects of Figures 28—-29. The governing equa-
tion for the steady state is

[0 = F' (xs) | [#(F(xs5)) —c] = 0. (90)

This is similar to (68) for a search fishery (the left-hand sides of the two
equations are the same and the right-hand sides are different), but (90) is
easier to analyze because it is satisfied wherever ¢ (F(x,)) is exactly equal
to ¢, and because c is a constant here, instead of being a declining function
as it was for search fisheries. In search fisheries, there was no one single dia-
gram that showed all the different possible types of behavior: Figure 18 only
applied to demand curves which were all linear and all had an /-coordinate
of 2.8 and was analyzed with identical costs, and Figure 9, which had one
demand curve and different costs, could not even be connected to a bifur-
cation diagram because the difference in costs could not be summed up in
a single parameter. By contrast, in schooling fisheries, Figures 30 and 31
make clear that only one parameter is needed to summarize the different
situations, and that parameter, h = D(c), combines both the demand side
through D and the supply side through c¢. The details of what the rest of the

I5Extinction can occur in cases (35) but not with the particular functional form we chose
for ¢(x) in Example 1, namely c(x) = vy/(gx) with the traditional constant “4” being set
equal to one, because with that functional form the marginal cost of driving x to zero is
infinite (see Exercises 4 and 5 above).
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Figure 24. The steady-state supply curve is denoted by “S.” At ks, profit is negative.
Here § < rand D(c) =28 = h < hs.
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Figure 25. The steady-state supply curve is denoted by “S.” Here 6 < r and
D(c) =37.5=h=hs.

§6 Schooling, Const. Ret. Sc. 71



Yo

Figure 26. The steady-state supply curve is denoted by “S.” Here 6 < r and
D(c)=45=h > hs but h < MSY.
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Figure 27. The steady-state supply curve is denoted by “S.” Here 6 < r and
D(c) =54 =h > hgs and h is bigger than this figure’s MSY, which is 50.
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Figure 28. The steady-state supply curve is denoted by “S.” Here 6 > r and

D(c) =45 = h < MSY.
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Figure 29. The steady-state supply curve is denoted by “S.” Here 6 > r and
D(c) = 54 = h, which is bigger than this figure’s MSY, which is 50.
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demand curve looks like are irrelevant to Figures 30 and 31. Those figures
of course do require the very simple cost structure of schooling fisheries,

however.
Another pair of examples is

n(x,h)=[p—-c(x,h)]h and (91s)
n(xe, hest) = [ pr = c(xp, hes )] by (91d)

This is the most general form of the competitive firm’s problem.
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Figure 30. A summary of how steady-state points change with h=D(c)in Figures

26-25, which cover the case of § < r. The part to the left of /s is from Figure 24;
the part at & is from Figure 25; the part between hs and MSY is from Figure 26;
and the part to the right of MSY is from Figure 27. The arrows are not phase paths,
but do show how x, beginning at different values of xy would change with time,

depending on where / lies.
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Figure 31. A summary of how steady-state points change with 7 = D(c) in Figures
28-29, which cover the case of 6 > r. The part to the left of MSY is from Figure 28;
the part to the right of MSY is from Figure 29. The arrows are not phase paths,
but do show how x, beginning at different values of xg would change with time,
depending on where h lies. T have not determined behavior below the “repeller”
line, or behavior to the right of MSY.
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Section 7. Monopoly

In the case of monopoly,
m(xe, hey 1) = [ @e(he) — (X, by, )] By (92)

is the most general form of the problem, where ¢(#) is the market demand
curve. (Compare with (91). Also note that before (74), imposing p; = ¢(h;)
was the last step, whereas here it is the first step.) Just as in the elementary
case of a producible good, the monopolist has no supply curve; there is no
relationship mapping p to h because the monopolist never takes p as given.
Therefore, there is no steady-state analysis for the monopolist analogous to
that giving rise to steady-state supply curves for the competitive industry. '
Substituting (92) into (21) gives the general solution for the monopolist.
Instead of exhibiting this, consider the following special case of (92):

mw(xe, he) = [@(he) —c(xe)] by (93)

This uses the same cost function as (35). Let TR be total revenue ¢(h;) h;
and MR be marginal revenue d TR /dh. One has MIT = MR(h) — c(x), MII =
MR — ¢, dn/0x = ¢’ (x) h, and so substituting (93) and these results into (21)
yields
MR — ¢(x;) = ¢’ (x;) by

0= Fx)+ MR — c(x;)
But
MR = G [¢(h) - h1=¢'(h) - h+¢ =
MR =¢"hh+¢'h+¢'h
=¢" " hh+2¢'h
and
¢ = %c(x) =c'(x)-x,
SO

¢"hh+2¢'h—c'%—c'h

5=F ,
¥ Sh+d—c

16There is a relationship mapping ¢ (%) to h for the monopolist, but this is not a supply
curve (which maps R! to R!) but a supply functional (mapping a function space into Rb).
Any given demand curve ¢ (/) does have a point (call it (p;, h1)) which the monopolist
would choose, but this is not a point on a supply curve because one could draw another
demand curve ¢, (k) through the same (p, h1) and with ¢, the monopolist might not choose
to produce at (p1, h1). All this is the same as in the case of a static producible resource.

§7 Monopoly 79



gathering the / terms and noting that —¢’x — ¢’h = —¢’F from (17) yields

sy ($h+2¢)h - 'F
$h+¢—c

Solving this last equation for / gives the following dynamic system:

[0 — F'(x)][¢" (h)he + ¢ (hy) — c(x0)] + ¢ (x;) F(x;)
¢ (he)he +2¢" (hy)
Xr =F(x;)— hy. (17

]:lt:

(94)

(Compare this with the system formed by (74) and (17) in Section 5.)

Exercise. Re-work “Example 1, dynamics” for the case of a monopolist. Use the same
functional forms c¢(x) and F(x) as in “Example 1, dynamics,” together with the same
parameters g, y, r, K, and 6. Also use the same demand curves, (63)—(67). Once
you have found the steady-state price-quantity combination, sketch a graph showing
each demand curve and marking the steady-state price-quantity combination on it
(obviously there is no steady-state monopoly supply curve). Compare this graph with
Figure 5 and especially with the graph from Exercise 2 of Section 5.

Exercise. In (74), show that the h = 0 isocline is characterized by dh/dx > 0 and dzh/ dx? <
0. Is this true for the 2 = 0 isocline under (94)?

Section 8. Competitive, Open Access Fishery:
Steady States

In open access steady-state equilibrium, total profit is zero: 0 = n(x, h) =
ph—c(x,h)h (so p = c(x,h)). Also, 0 = x = F(x) — h. Combining these
equations yields

p =c(x,F(x))

h=F(x). ©3)

If, as a special case, we have constant average cost (hence constant returns
to scale and average cost equals marginal cost), then c¢(x, #) = ¢(x) and (95)
becomes

p=c(x)
h=F(x).

(95) and especially (96) should be compared with the system formed by
(42) and (41). As in the previous system, each value of x will give a value
for price p and for quantity & from (95) or (96). Running through values
of x will thus give rise to price—quantity combinations; the graph of these
combinations is the steady-state supply curve. Alternatively, the steady-state
supply curve can be derived graphically, using the same technique illustrated

(96)
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in Figure 3. (Note that in the limit as 6 — oo, the system formed by (42)
and (41) approaches (96).)

The traditional way of deriving this supply curve is completely different.
In this traditional approach, harvest & (also called yield Y) is a function
of x and of “fishing effort” E: Y = h(E,x). In the steady state, x = 0 so
Y = F(x) from (17). Hence, given E; (whose subscript denotes steady state),
Xss solves the equation h(Eg, x55) — F(xs) = 0. Write the solution of this
equation as xg(Eys). Then the “yield-effort curve” is defined by Y (Ey) =
F (x4 (Es)). Total cost incurred by the firm is some function TC(E). Total
revenue is p Y (Eg). In open-access equilibrium, total revenue equals total
cost, so TC(Es) = pY(Eg). This yields Eg as an implicit function of p;
call this E(p). Then steady-state harvest is Y (Eg(p)), which is the supply
curve.
Exercise. Find the open-access steady-state supply curve for: (a) logistic growth; (b) depen-

sation; (c) critical depensation. Use c(x) = y/(gx).

Note that between the cases of private property and open access there
are intermediate cases where enforcement of property rights exists but is
imperfect.

Section 9. Competitive, Open Access Fishery:
Dynamics
Along with the biological equation (17), we require an equation describing
the dynamic behavior of firms. Open-access firms are usually not modeled
as solving an explicit intertemporal maximization problem because there is
no benefit to them of leaving fish in the ocean (because someone else will
fish them out today). For open-access dynamics, the most common ad hoc
assumption is that, if E is fishing effort, then E is proportional to profit:

E =kr=k[ph(E,x)-TC(E)]. (97)

(The constant of proportionality k is not to be confused with the usual
notation for carrying capacity K.) In order to compare this with our previous
results, we would like to change from (97) to an equation giving 4. To do
this, note that since it is natural to assume 0h(E,x)/0E # 0 (and in fact
that 0h(E, x)/0E > 0 since x is held constant in this derivative), the Implicit
Function Theorem assures us that it is possible for the equation 4 (E, x) to be
inverted to give effort as a function of 4 and x: E(x, h). Then (97) becomes

%E(x, h) = k[ ph - TC(E(x,h))] or
OE, O
%h t o= k[ ph—TC(E(x,h))]
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” _ k[ pthe = TC(E(x;, he))] - ‘g—f[F(xt) — hy]

! AE |dh

Combined with (17), (98) gives a dynamical system in (x, &) as in previous
sections above. The final step would be to impose equilibrium, namely
pr = ¢(hy). (Setting p; = ¢(h;) was also the final step in Section 5, because
it also dealt with competition, and it was the first step in Section 7, because
that was about monopoly.) The final dynamical system would be

(98)

j = k[ ¢(h)hy = TC(E(xs, ht))] - Z—f[F(xt) — h]
t OE[dh (99)

X =F(x;) = hy

Note that if in (99) X = 0 together with h =0, then we do get (95).

In deriving the explicit dynamic equation for private-property competi-
tion, (74), and for monopoly, (94), I assumed that the total cost incurred by
the firm had the special form c¢(x;) &, (which is constant average cost). It is
possible to make special assumptions on TC(E) here which also imply that
total cost is c(x;) h;:

Proposition 4. Suppose that TC(E) is proportional to E (so that TC(E) can
be written as o E for some @ > 0). Suppose that E(x, h) is linear in h and
is separable in x and h (so that E(x, h) can be written as E(x) - h for some
function E;(x)). Then if a new function c(x;) is defined as aE|(x;) and a
new constant j is defined as k - «, total cost TC(E) can be written c¢(x) - h,
and in addition (99) becomes

_ JLd(h) —c(xe)] = " (x)[F(xr) — hy] h,

I c(x) (100)

thF(x,)—ht.
Proof. To prove that total cost can be written c(x) h:
TC(E(x,h)) =aE(x,h) since TC(E)=aFE

=aEi(x)h since E(x,h) = E{(x)h
=c(x) h by the definition of c(x).

It follows that

=i =c()/a
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OE _ OEi(x) _ dlc(x)/al _h
E‘h 0x =h ox —ac(x).

Making these substitutions into (99), along with j = ka, results in (100). |}

Example. Suppose TC(E) = v - E and h = gEx (so that E(x,h) = h/(gx)). Then the
conditions of the above proposition are satisfied with @ = y and E{(x) = 1/(gx), so
c(x) =y/(gx) and j = k - y. From (100),

_ ky[ () = y/(gx)] + (v/(@x) [F (x1) = he]

hy = hy .
' ¥/ (qx) '
Simplifying yields the dynamic system
i Fxe) = hy
h=|k hi)x; —ky+ ———|h
q¢(he) xe —kvy xt t (101)
).Ct =F()Ct)—ht.

Exercise. (See the Exercise in Section 7.) Re-work “Example 1, dynamics” for the case
of open access. Use the same functional forms c(x) and F(x) as in “Example 1,
dynamics” (which, because of the above comments on costs, means (100) holds),
together with the same parameters ¢, v, r, K, and §. Also use the same demand curves,
(63)—(67). Once you have found the steady-state price-quantity combination, sketch
a graph showing each demand curve and marking the steady-state price-quantity
combination on it. Compare this graph with Figure 5 and especially with the graph
from Exercise 2 of Section 5.

Section 10. Summary

Throughout this section assume that total costs have the form c(x) - & (con-
stant returns to scale).
The steady-state supply curve for a private-property competitive fishery
is
c’(x) F(x)
= -— 42
p=cx) G- F() (42)
h = F(x) (41)

whereas the steady-state supply curve for an open-access fishery is

p=c(x)
96
h = F(x). 96)
There is no steady-state supply curve for a monopolist.
The dynamic system for a private-property competitive fishery is
2 0= GOlB(h) — ()] +/ () Fx,) | o

¢’ (h:)
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xt:F(xt)—hz. (17)
The dynamic system for a monopolist is

[0 — F'(x)][¢" (he) b + ¢ (hy) — c(x0)] + ¢ (x;) F(x;)

h, = %4
t ¢ (h)he +2¢/ (hy)
)'Ct =F(x,)—h,. (17)
The dynamic system for an open-access fishery is
j o JLoh) — )] = ) [F ) = bl
f c(x) f (100)
X =F(x) = hy.

By the First Theorem of Welfare Economics, competitive equilibria are
socially optimal. Therefore it would have been possible to find the com-
petitive equilibrium by first solving the social planner’s problem and then
appealing to the First Theorem of Welfare Economics. That would have
been easier than what we did above, which was to find the competitive
equilibrium path of prices; but it is good to know how to find competitive
equilibria.

Section 11. Outline of Regulatory History
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