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BACKGROUND: Mammalian oocyte stocks reach maximum size in early development and begin depletion immediately thereafter. This
depletion ends women'’s fertility by midlife. Here we compare five models proposed to characterize human follicular depletion, highlight
underlying variation in atresia, and use oocyte counts from laboratory mice to illustrate possible effects of known covariates.

METHODS: We compared statistical models, of human data, from five well-known sources and also compared the models’ fit to data from
four genetically distinct strains of mice.

RESULTS: A model first published by Hansen et al. (2008) fit the human data better than any of the alternatives. Best-fit models of cocyte
loss in the four strains of mice differed substantially from the best-fit model of the aggregated mouse data.

CONCLUSIONS: Although the power model published by Hansen et al. (2008) fit the human data best, Faddy and Gosden’s (1996) differ-
ential equation model may be a more useful characterization of human follicular atresia. However, these models leave a great deal of variation
unexplained. Mouse strain comparisons show that follicle loss in genetically distinct subpopulations can differ substantially from the pattern in
the aggregate population. This indicates that differences in follicular stock size between and within populations depend upon more than a
single predictor (i.e. age or follicle stocks at previous time points). Our reliance upon data from Western populations represents this
study’s most important limitation. Expanding data collection to include likely covariates and a wider range of human populations would
improve the basis for predicting individual trajectories of follicle loss as more women worldwide opt to delay childbearing and risk aging

beyond their own windows of fertility.
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Introduction

The challenge of characterizing the human pattern of ovarian follicle
loss has inspired a number of statistical models over the past three
decades (see Mattison, 1985; Thomford et al., 1987; Faddy et dl.,
1992; Faddy and Gosden, 1996; Faddy, 2000; Hansen et al., 2008).
Though difficult, modeling follicle loss in the human ovary is important
for a number of reasons. We are concerned with two. First, as evol-
utionary anthropologists, we seek an accurate characterization of
human follicle loss to help understand distinctive features of human
life history (e.g. Cant and Johnstone, 2008). Statistical modeling can
help distinguish derived from conserved features in the evolution of
the human lineage by facilitating cross-species comparisons of follicular
atresia (Robson et al., 2006; Jones et al., 2007; Hawkes, 2006; Hawkes
et al., 2009; Hawkes and Smith, 2010). Second, models of follicular
atresia might help women make informed reproductive decisions
(Faddy and Gosden, 1996; Broekmans et al., 2009). But, as others

have recognized, the current models have limited utility for that job.
The model comparisons we have conducted demonstrate the pitfalls
of forecasting individual reproductive trajectories using extant models.

Oocyte stocks are established before birth in humans (Baker, 1963)
and then begin to decline, mostly through atresia, at rates very similar to
those described in chimpanzees (Jones et al., 2007). While chimpanzees
usually die before the end of their childbearing years, women do not
(Hawkes, 2003; Hawkes and Blurton Jones, 2005). Even in human popu-
lations with life expectancies less than 40, girls who survive childhood
usually outlive their fertility (Howell, 1979; Hill and Hurtado, 1996;
Blurton Jones et al, 2002). This difference between ovarian and
somatic aging is a distinctive feature of human life history (Robson
etal., 2006). Human post-menopausal longevity reveals individual differ-
ences in ovarian aging that are obscured by death in our closest living
relatives (Hawkes and Smith, 2010). Without an accurate model of
human follicle loss we cannot conclusively discriminate unique attributes
of reproductive aging in our species.

© The Author 2010. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.

For Permissions, please email: journals.permissions@oxfordjournals.org

0102 ‘gg loqueldag uo s|elas-qi] 1I9S YyyesH saj003 1e 610'swumo!pm;xodammq wioJj papeojumo


http://humrep.oxfordjournals.org/

Statistical models of ovarian follicle loss

1797

In addition to these evolutionary issues, the character and cause of
individual differences in initial follicular stocks and trajectories of
depletion are of growing interest now as more women delay child-
bearing to ages at which natural pregnancies are unlikely (Broekmans
et al., 2009). Previous research suggests that an accurate description of
follicular atresia could help forecast the timing of important thresholds
in declining fertility and so alert women to time remaining on their bio-
logical clocks (Faddy and Gosden, 1996).

Over the past two decades, many statistical models have been
advanced to account for changes in follicle numbers across the human
lifespan (Mattison, 1985; Thomford et al., 1987; Faddy et al.,, 1992;
Gougeon et al., 1994; Faddy and Gosden, 1996; Faddy, 2000; Hansen
et al., 2008). During that time, one model—which we refer to as the
biphasic model—developed by Faddy et al. (1992) became the conven-
tional wisdom for many researchers (e.g. Fitzgerald et al., 1998; Kline
et al., 2000; Al-Azzawi, 2001; Lobo, 2005, Cant and Johnstone, 2008,
Tilly and Telfer, 2009) in spite of telling criticism (Leidy et al., 1998),
even by its authors (Faddy and Gosden, 1996). A consensus on
which model is the most helpful has not been reached, however, and
researchers continue to propose potentially useful alternatives.

These models describe mean trajectories of follicle loss and allow
comparisons between populations and species, but they leave substan-
tial within-group variation unexplained. The magnitude of that variation
makes them inadequate guides for personal planning (te Velde and
Pearson, 2002; Broekmans et al., 2009; Hawkes et al., 2009). Hansen
et al. (2008) emphasized this problem as they introduced a new
method for counting non-growing follicles, a new data set, and a new
model of follicular atresia. They note a 25-fold difference in primordial
follicle numbers in two of their 30-year-old subjects, making their model
(which we consider below) ‘inadequate for predicting the reproductive
lifespan for an individual’ (p. 206). They suggest that, ‘the incorporation
of other variables such as clinical markers of ovarian reserve (e.g. early
follicular phase FSH and antral follicle counts obtained by transvaginal
ultrasound examination) and lifestyle factors would improve the predic-
tive power of the model’ (p. 207). Some of the variation in follicle
counts by age could be random (Finch and Kirkwood, 2000), but
a portion is demonstrably linked to quantifiable traits (VWesthoff
et al, 2000; Hardy and Kuh 2002; Broekmans et al, 2009;
Tom et al., 2010). Smoking is one frequently nominated example (Do
et al., 1998; Kato et al., 1998; Harlow and Signorello, 2000; Westhoff
et al., 2000; Gold et al., 2001; Palmer et al., 2003; Kinney et al., 2007).

In addition to heterogeneity within populations, distributions appear
to differ between human populations as well (Thomas et al., 2001;
Sievert, 2006; Bentley and Muttukrishna, 2007). Some of this variation
is surely due to methodological discrepancies. Age at menopause
varies depending on measurement techniques (Sievert and Hauta-
niemi, 2003) and inter-population differences are reduced when
methods are held constant (Morabia and Costanza, 1998). But
many careful studies (e.g. Goodman et al., 1985; Sarin et al., 1985;
Wood et al., 1985; Bentley and Muttukrishna, 2007) find mean ages
at menopause that depart from the classic Minnesota study of
Treloar et al. (1981). An analysis of ages at menopause for different
racial/ethnic subsets of American women showed that menopausal
age covaries with group identification (Henderson et al., 2008). This
finding suggests that the current data set, drawn from a subset of
Western (specifically, American and European) populations, probably
does not represent the full range of variation in human follicle loss.

Surprisingly, inbred laboratory mice show levels of individual vari-
ation similar to that observed in the classic human samples. As
noted by Finch and Kirkwood (2000: p. 23), ‘there is a threefold
range in the numbers of ovarian oocytes present at birth among indi-
viduals in inbred mice as well as in unrelated humans’. And the vari-
ation is even greater in adults, ‘at the onset of reproductive
senescence in mice, oocyte numbers vary from none ...up to 1000
in others of the same age...studies of premenopausal women...
showed a 1000-fold range of oocytes’ (Finch and Kirkwood 2000:
p. 80). To demonstrate the effects of measurable traits on follicle
loss at the level of the subpopulation, we fit models of follicular
atresia to oocyte counts from four genetically distinct strains of labora-
tory mice (Jones and Krohn, 1961; Faddy et al., 1976, 1983) and then
compared the best-fit models of each strain to one another.

Our analyses consisted of statistical model comparisons conducted
with two data sets. In order to better characterize the pattern of fol-
licle loss in humans, facilitate cross-species comparisons, and define
the range of variation in follicular atresia, we fitted five unique
models to follicle counts from 238 human females and then compared
them using Akaike Information Criteria or AIC (Akaike, 1974). As
mentioned above, we also fit the three most flexible, though not
the most biologically plausible, models to mouse oocyte counts in
order to highlight similarities and differences between strains. These
comparisons produced two main findings. First, models presented
by Hansen et al. (2008) and Faddy and Gosden (1996; Faddy, 2000)
do the best job of describing human follicle loss in the current
sample. Second, population-wide models of follicular atresia can
differ dramatically from the best-fit models for subsets of that
population.

Materials and Methods

Data

Human data came from five sources: Block (1952, 1953), Forabosco and
Sforza (2007), Gougeon et al. (1994) and Richardson et al. (1987), and the
recent sample published by Hansen et al. (2008). Detailed descriptions of
these data can be found in the original publications. We included all data
from all sources except Forabosco and Sforza (2007). Since it remains
unclear when prenatal follicle stocks stop growing (Forabosco and
Sforza, 2007: p. 681), we have elected to include follicular data gathered
nine months or more after conception. To the best of our knowledge,
this data set constitutes the largest aggregation of human follicular data
analyzed thus far (n = 238).

The mouse data came from Jones and Krohn (1961). They reported
oocyte numbers and ages for parous and nulliparous mice from four
genetic strains (n = 275). As with human data, a more detailed description
of the data and their collection can be found in the source article. Since the
authors did not report oocyte numbers and ages for each mouse, one of
us (J.E.C.; at the recommendation of Roger Gosden) obtained approxi-
mate values by measuring the location of data points presented graphically
and calculating the oocyte number and age in days based on the points’
locations. Since we were not concerned with variation in oocyte counts
with parity, we pooled the data from parous and nulliparous mice prior
to analysis.

Models

We considered five unique models to approximate mean follicle loss. Four
of the five functions have been used previously. We included one
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unpublished model based on the Gompertz function in our comparisons.
Initially, we modeled both changes in the mean number of follicles with age
and changes in the variance. However, this process introduced a number
of complications and contributed little to our understanding of follicle loss.
As a consequence, we used a single, constant variance parameter (v). In all
functions except the differential equation (Egs. (5—7)), y symbolizes follicle
counts and x is age.

The simplest functional form we included in model comparisons was
exponential, similar models published by Thomford et al. (1987) and Mat-
tison (1985). The parameters to be estimated are labeled a and b:

y = exp(a + bx) (h

We also used a biphasic or bi-exponential model similar to the version first
published by Faddy et al. (1992):

y = exp(a| + b|X), fory < Ve (2)

y = exp(ay + bax), fory >y, €
—bya; + bya

C = L L 4

y exp( by — by ) @

In this model, ay, a,, b; and b, are the parameters to be estimated.

We also considered a differential equation model (Faddy and Gosden,
1996; Faddy, 2000), where the number of follicles at each point (i)
depends upon the number of follicles at the previous point (i — I). This
model generalizes the idea described by Faddy et al. (1992) that follicle
loss transitions from a low initial rate to a higher rate as follicle stocks
decline. The equation at the root of this model is:

dy B

The solution is the limit of y; as i approaches infinity. Values of y; are given
by the following equations:

n= exp(— P x) ®)
(B/@)log[(ayi—1 + ay+ B)/(ay, + ay+ B)]+
ylog(yi—1/yo) + (ay + B)x .
i =Yi-1 — , fe >2
= B/(ay +ay+ B + v/ o=
(7)

The parameters to be estimated are «, 8 and y. We drew the appropriate
value for yq (i.e. mean number of follicles at time zero) from the data.

The final published model we incorporated was the power function pro-
posed by Hansen et al. (2008):

y = exp(axb +0) (8)

There are three parameters to be estimated in this model: @, b and c. As
mentioned above, we also included a previously unused model based on
the Gompertz function:

y = a(l — exp(—b exp(—cx))) )

As with the power function, there are three parameters to estimate for
this model: a, b and c. Gougeon et al.’s (1994) model Ill would seem an
obvious candidate for inclusion in model comparisons since it describes
a progressive decline in follicle stocks with age. It incorporates five par-
ameters, however, which makes it more complex than the power function
model, while less biologically plausible than the differential equation model.
As a consequence, we elected to exclude it.

Statistical analyses

To allow for straightforward comparisons between our results and those
of previous researchers (Faddy et al., 1992; Gougeon et al., 1994; Faddy,
2000; Hansen et al., 2008), we log-transformed human follicle and mouse
oocyte counts before model fitting. Leidy et al. (1998) noted that log-
transforming follicle counts erroneously increases the appeal of a biphasic
model since the transformed data display a sharp bend when plotted
against age. Yet, log transformation also highlights deviations from a con-
stant rate of loss, a useful attribute when studying follicular atresia. Since
both data sets included zeroes, we add a small constant (0.1) to all follicle
counts before log transformation. We assumed normally distributed error
in log-transformed follicle counts; an assumption justified by Faddy et al.
(1992). Using the mle2 function in R statistical package (R Development
Core Team, 2008), we estimated parameters via maximum likelihood.
After parameter estimation, we compared the relative fit of each model
of the mean using AIC (Akaike, 1974). AIC compares the relative predic-
tive power of statistical models (see Anderson et al., 2000). AlCc is a
modification of AIC specially formulated for analyses where the ratio of
data points to parameters is relatively small. Although not all of our
models required the use of this modification, AICc produces the same
results as AIC with increased sample size to parameter ratios (Burnham
and Anderson, 2004). We therefore used AICc in all model comparisons
for the sake of consistency. We relied most heavily upon AlCc weights in
comparing models. As described by Anderson et al. (2000:918), AICc
weights provide a relative ranking of statistical models’ predictive value
by quantifying the informational evidence in favor of each. Whereas
AlCc scores provide an absolute index of each model, with lower
scores leading to a higher rank, AlCc weights are relative: each model’s
predictive utility is ranked against all other models in the set. Higher-
ranked models have larger AICc weights. All else being equal, models
with fewer parameters receive higher ranks. As a consequence, competing
models may have similar AICc scores and very different weights. We
report both the absolute AlCc scores and relative AlCc weights below.

Results

Human model comparison

In the human data set, the power model (Hansen et al., 2008) out-
ranked all others (AlICc = 616.4, weight = 0.55; Table | and Fig. I),
with the differential equation model (Faddy and Gosden, 1996;
Faddy, 2000) ranked a close second (AIC = 616.8, weight = 0.43;
Table | and Fig. 1). The biphasic model (Faddy et al., 1992) received
an AlCc weight slightly greater than zero (AICc = 623.0, weight =
0.02; Table | and Fig. 2). The gompertz model (AlCc= 626.9,
weight = 0.00; Table | and Fig. 2) and the exponential model were
ranked last (AlCc = 662.2, weight =0.00; Table | and Fig. 2).
Judging from both absolute AICc scores and AlCc weights, the
power model and differential equation model appear to be superior
descriptions of human follicular atresia.

Mouse model comparison

We compared models of oocyte loss for each genetic strain of mice,
as well as for the aggregated population (i.e. data from all strains
lumped together). The biphasic model was top-ranked for the aggre-
gated data set (AICc = 518.5, weight = 0.49; see Table Il and Fig. 3).
The exponential model followed closely behind (AlCc=519.2,
weight = 0.34). The power model ranked last (AICc=520.7,
weight = 0.17). Model comparisons conducted with data from
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Table | Models of human follicle loss.

Parameter 2

Parameter 3

Parameter 4

Parameter 5

Model Mean AICc DF Weight Parameter |

Power Eq. (8) 6164 4 0.55 a= —0.00008
(—0.002,
—0.00005)

Differential Egs (6and7) 6168 4 0.43 a= —2.52
(—2.64, —2.44)

Biphasic Egs (2and3) 6230 5 0.02 a;=5.85 (549,
6.17)

Gompertz  Eq. (9) 6269 4 0.00 a = 302625.60
(172726.10,
549006.40)

Exponential  Eq. (1) 6622 3 0.00 a=6.36 (6.05,
6.66)

b=330 (246, c=556(530, v=087(080, -
4.43) 5.83) 0.95)

B = 952.06 y=664.15 y=087 (0.80, -
(706.21, (384.56, 0.95)

1279.16) 1616.09)

a;=10.70 b= —0.03 b,=—0.16 v=0.88 (0.80,
(9.56, 12.15) (—0.05, —001) (—0.19, —0.13) 0.96)
b= 3092.47 =029 (023, v=088(08I, -
(268.19, 0.36) 0.97)

127014.50)

b= —0.06 v=096 (088, - -

(—0.07, —0.06) 1.05)

Values in parentheses indicate 95% confidence intervals.

Differential

log(Follicles)
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Figure | Highest ranked models of human follicle loss (plot shows log of follicle counts versus age in years). Solid line is the fitted model and dashed

lines represent 95% confidence intervals (n = 238).

individual strains of mice generally mirrored this ranking, but with the
difference that the biphasic model was even more highly ranked (Strain
A: AlCc = 77.7, weight = 0.91; Strain CBA: AlICc =149.0, weight =
[.0; Strain CBAxA: AICc= —78.7, weight=0.83; Strain RIIl:
AlCc = —61.3, weight = 1.0; see Table Il and Fig. 4).

Discussion

Our findings, in concert with research on physiological mechanisms of
follicle loss, add to the reasons to reject the biphasic model of human
follicle loss of Faddy et al. (1992), suggesting as it does a population-
wide physiological shift in women as they reach the age of 37.5
(Faddy and Gosden, 1996; Leidy et al., 1998; Hawkes and Smith,
2010). Though the power model (Hansen et al., 2008) was ranked

higher, the differential equation model developed by Faddy (Faddy
and Gosden, 1996; Faddy, 2000) may be a more useful descriptor
of human follicular atresia because it accords with recent findings
regarding the physiology of follicle loss (see discussion below; Da Silva-
Buttkus et al., 2009). However, wide variation around mean follicle
count at most ages highlights the inadequacy of any model of loss
based upon a single input variable (i.e. age or previous follicle
counts) for predicting individual trajectories.

Our analysis of the follicle counts in inbred strains of mice revealed
subpopulation differences. Although ‘the variations within a [mouse]
strain approximate the variations between strains in the average
oocyte number and in the timing of reproductive senescence’
(Finch, 2007: p. 308), the differences are not trivial. Our mouse com-
parisons indicate two aspects of atresia that likely characterize humans
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Figure 2 Lower ranked models of human follicle loss (plot shows log of follicle counts versus age in years). Solid lines are fitted models and dashed

lines represent 95% confidence intervals (n = 238).

Table Il Models of oocyte loss in aggregated mouse data (all strains).

Parameter 3

b, = —0.004
(—0.004, 0.003)
v=062 (0.57,
0.67)

c=3.90 (3.77,
4.05)

Parameter 4

by = —0.02
(—0.02, —0.02)

v=061 (0.57,
0.67)

Parameter 5

v=061 (0.56,
0.66)

Model Mean AlICc DF Weight Parameter | Parameter 2
Biphasic Egs (2 5185 5 0.49 a; =3.93 (3.83, a, = 16.99 (6.22,
and 3) 4.03) 18.42)
Exponential  Eq. (1) 5192 3 0.34 a=3.94 (3.84, b= —0.004
4.05) (—0.004,
—0.004)
Power Eq. (8) 5207 4 0.17 a= —0.002 b=1.08 (0.88,
(—0.008, 1.26)
—0.001)

Values in parentheses indicate 95% confidence intervals.

as well. First, genetic differences between subpopulations can have
substantial effects on trajectories of oocyte loss. Second, genetic
differences alone do not account for all of the variation observed
within strains. Recent research suggests that stochastic and environ-
mental factors, both pre- and postnatal, can have measurable effects
on ovarian aging (Ibanez et al., 2000, 2003; Hardy and Kuh, 2002;

Gosden et al., 2007; Tom et al., 2010). Our results agree with
these earlier findings.

Population versus individual trajectories

As shown in Fig. 4 and Table Ill, mean follicle loss follows different tra-
jectories in the four strains of mice studied by Jones and Krohn (1961;
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Figure 3 Models of oocyte loss in aggregated mouse data (all strains). Solid lines are fitted models and dashed lines represent 95% confidence

intervals (n = 275).

Table 11l Description of highest ranked models of oocyte loss in each mouse strain.

Strain Mean AICc DF Weight Parameter | Parameter 2 Parameter 3 Parameter 4 Parameter 5
A Eqs 2and 777 5 091 a;=3.89 (3.76, a,=6.58 (4.78, by = —0.003 b, = —0.009 (—0.01, v=0.38(0.33,
3) 4.02) 7.22) (—0.003, —0.002) —0.008) 0.46)

CBA  Egs(2and 149.0 5 1.00 a;=395378, a,=—139 by = —0.007 b, =0.002 (0.0001,  v=10.53 (0.46,
3) 4.12) (—2.94,0.54) (—0.007, —0.006) 0.005) 0.62)

CBAXA Egqs(2and —787 5 0.83 a;=3.953.90, a,=4.26(4.09, by = —0.002 b, = —0.003 v=0.11(0.09,
3) 3.99) 4.64) (—0.002, —0.002) (—0.003, —0.002) 0.13)

Rill Eqs(2and —61.3 5 1.00 a =392 (387, a,=625(596, by = —0.002 b, = —0.007 v=0.13 (0.1,
3) 3.97) 6.77) (—0.003, —0.002) (—0.007, —0.006) 0.16)

The biphasic model was ranked highest for all strains.

see also Faddy et al., 1976, 1983). This result was somewhat surpris-
ing, since the strains were derived from a highly inbred population of
laboratory mice (Jones and Krohn, 1961) with relatively little genetic
diversity. Differences in the shape of atresia led to highly inconsistent
predictions of oocyte numbers. For example, predicting the number of
remaining oocytes for a 200 day-old mouse with the aggregate

population model would yield an estimate of 1349. This number con-
flicts with the estimate of 1950 oocytes using the A strain model, 355
oocytes using the CBA model, 3548 oocytes using the CBAXA model
and 331 | oocytes using the RIll model. Genetic differences may have
an equally important role in determining ovarian aging in humans
(Voorhuis et al., 2010).
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Figure 4 Highest-ranked models of oocyte loss in each mouse strain. The biphasic model was ranked highest for all strains. Solid lines are fitted

models and dashed lines represent 95% confidence intervals (n = 275).

Since genetic diversity within the strains is low, much of the within-
strain variation must be either due to chance or the influence of
environmental factors on initial oocyte stocks and rates of loss.
Treloar et al. (2000) reported substantial variation in the timing of
menopause between monozygotic human twins—attesting to differ-
ences in ovarian aging among genetically identical individuals in our
own species. While there are differences between laboratory
rodents and humans in oocyte development and loss (McGee and
Hsueh, 2000; Adhikari and Liu, 2009), diversity within mouse strains
could result from the kinds of variation in pre- and post-natal
somatic growth and development that have been nominated as impor-
tant determinants of human oocyte stocks and rates of loss (Ibanez
et al., 2000, 2003; Hardy and Kuh, 2002; Gosden et al., 2007; Hart
et al., 2009; Tom et al., 2010).

Variation in rates of oocyte loss among mouse strains leads us to
expect a range of trajectories in human subpopulations and, as a con-
sequence, similarly inaccurate predictions when relying upon a single
model based solely on age or stock size in the previous time interval.
Forecasting a woman’s age at menopause with such models is likely to

be a less accurate process than previous research suggests (see Faddy
and Gosden, 1996; Lobo, 2005). Longitudinal samples would be the
ideal way to investigate individual trajectories but primordial or
non-growing follicles can only be counted in surgically removed or
autopsied ovaries. As a consequence, samples are necessarily
cross-sectional. Expanding these samples to include likely covariates
(e.g. smoking, birthweight, weight in infancy, ethnic/racial background,
socioeconomic standing, early follicular phase FSH, antral follicle
counts, inhibin-B and AMH recorded prior to surgery) and individuals
from a more diverse range of human populations and subpopulations
is a feasible way to improve cross-sectional data.

Modeling human follicle loss

In spite of longstanding critiques (Faddy and Gosden, 1996; Leidy
et al., 1998), the biphasic model is still used to describe human follicle
loss ( Fitzgerald et al., 1998; Kline et al., 2000; Al-Azzawi, 2001; Lobo,
2005; Cant and Johnstone, 2008; Tilly and Telfer, 2009). Our results
add to previous objections. Statistical measures of predictive utility
rank it far below the differential equation model and power model
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(Table ). As authors of the biphasic model noted themselves (Faddy
and Gosden, 1996), it implies a biologically implausible process. Both
the power model and the differential equation model are clearly pre-
ferable to the widely cited biphasic model. Of these two, the differen-
tial equation model (Faddy and Gosden, 1996; Faddy, 2000) is more
consistent with recent developments in the study of mechanisms of
follicle depletion.

Research into these physiological mechanisms increasingly points to
intra-ovarian communication as an influential factor in the recruitment
of primordial follicles. The notion that follicular loss depends upon the
number of remaining follicles formed the foundation of Faddy and
Gosden’s (1996) introduction of the differential equation model.
They based their idea upon an uncertain supposition that paracrine
factors might play a role in atresia (Faddy and Gosden, 1996:
p. 1486). Their supposition has gained substantial support in the inter-
vening years. Investigators working with reproductive specimens from
a variety of mammals have postulated that resting primordial follicles
depend upon inhibitory signals to avoid initial recruitment, though it
remains unclear where such signals originate (for reviews of relevant
research see McGee and Hsueh, 2000; Adhikari and Liu, 2009).
Nilsson et al. (2007) showed that anti-Mullerian hormone secreted
by granulosa cells surrounding primary and secondary follicles inhibits
follicle activation in rodents (see also Visser and Themmen, 2005).
Recent findings reported by Da Silva-Buttkus et al. (2009) suggest
that primordial follicles may themselves produce the inhibitory signal
suggested by previous researchers. Though the specific hormonal
agents responsible for inhibition remain unidentified, these findings
support the premise of the differential equation model that a follicle’s
chance of undergoing initial recruitment depends upon the number of
follicles remaining in the ovary.

Limitations

Although biphasic models fit the mouse data much better than the
alternatives, they are no more biologically plausible for mice than
humans. Inspection suggests that fitting a biologically plausible model
to the mouse data will not be easy. We did not try to construct
one. The biphasic model, as well as the power and exponential
models, serve here for their simplicity and flexibility and not for
their utility as descriptions of physiological processes. We used
them to demonstrate differences among identifiable subpopulations
and to underscore the variation that remains even when genetic differ-
ences are minimal. We look forward to the development of biologi-
cally informed models of follicle loss in rodents.

The differential equation model is the best description of human fol-
licle loss for the current human sample, but it remains unclear how it
would fit subpopulations distinguished by initial stock size (if that could
be assayed) or other covariates. The data used in model fitting come
from Western Caucasian women for whom early developmental
characteristics and other likely covariates are not available. Potential
differences in initial stocks and rates of atresia in non-Western
women remain unknown, as does the range of variation among
more diverse groups of Westerners. Quantitative studies of the
timing of menopause show a range of variation between populations
(Morabia and Costanza, 1998; Thomas et al., 2001; Bentley and
Muttukrishna, 2007). This likely relates to ovarian follicle counts by
age (Westhoff et al., 2000). Follicle counts that include covariates

and come from a wider range of human groups would allow investi-
gation of inter- and intra-populational differences. The medical and
social importance of variation between and within groups will continue
to increase as ages at first birth climb higher and fertility reaches evo-
lutionarily unprecedented lows.
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