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ABSTRACT Ovarian cycling continues to similar ages
in women and chimpanzees yet our nearest living cousins
become decrepit during their fertile years and rarely outlive
them. Given the importance of estrogen in maintaining
physiological systems aside from fertility, similar ovarian
aging in humans and chimpanzees combined with somatic
aging differences indicates an important role for nonovar-
ian estrogen. Consistent with this framework, researchers
have nominated the adrenal androgen dehydroepiandros-
terone (DHEA) and its sulfate (DHEAS), which can be
peripherally converted to estrogen, as a biomarker of aging

Humans have remarkably long lives compared to
other members of the great ape clade (Raisz, 1999; Rob-
son et al., 2006). Survival well beyond menopause is a
distinctive feature of human life history (Bogin and
Smith, 1996) and contrasts with patterns observed in
most other mammals including all nonhuman primates
(Levitis and Lackey, 2011). Because human life expect-
ancies have nearly doubled in some populations since
the nineteenth century (Oeppen and Vaupel, 2002), the
human pattern is widely assumed to be a novelty of
recent history. But those recent changes are largely due
to reductions in infant and juvenile mortality (Oeppen
and Vaupel, 2002). Where nutritional and technological
advances responsible for the reduced old age mortality of
some contemporary populations (Kirkwood, 2008;
Hawkes, 2010) are absent, women have continued to be
economically productive well beyond the fertile ages
(Hamilton, 1966; Hawkes et al., 1989, 1997, Kaplan
et al., 2000; Blurton Jones et al., 2002; Kaplan et al.,
2010) and in hunter-gatherer socioecologies they show
little decline in strength into their sixties (Blurton Jones
and Marlowe, 2002; Walker and Hill, 2003).

Hypotheses about why natural selection favored
slower aging in many human somatic systems (Hawkes
et al., 1998; Kaplan et al., 2000; Hawkes, 2003; Kaplan
et al., 2010) are silent on the physiological mechanisms
that make it possible. This mechanism question is espe-
cially pressing because, aside from fertility, the steroid
hormones collectively referred to as estrogen affect
diverse tissues and cells (osteal: Raisz, 1999; cardiovas-
cular: Kim and Levin, 2006; Turgeon et al., 2006; immu-
nological: Wise et al., 2009; neurological: Lacreuse, 2006;
Wise et al., 2005). While men produce testosterone,
which is locally converted to estrogen in peripheral tis-
sues throughout life, women produce ovarian estrogen
only as ovarian follicles grow from a nonrenewing stock
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in humans and other primates. Faster decline in production
of this steroid with age in chimpanzees could help explain
somatic aging differences. Here, we report circulating levels
of DHEAS in captive female chimpanzees and compare
them with published levels in women. Instead of faster, the
decline is slower in chimpanzees, but from a much lower
peak. Levels reported for other great apes are lower still.
These results point away from slowed decline but toward
increased DHEAS production as one of the mechanisms
underlying the evolution of human longevity. Am J Phys
Anthropol 151:643-648, 2013.  © 2013 Wiley Periodicals, Inc.

that begins declining before birth (Peters et al., 1978;
McGee and Hseuth, 2000).

When follicle stocks fall below a threshold needed to
support ovulation, cycling stops (Faddy and Gosden,
1996; McGee and Hsueh, 2000) and, estrogen secretion
plummets to levels so low that it remains controversial
whether postmenopausal ovaries produce any (Labrie
et al., 2011). Many aspects of somatic aging in Western
women have been linked with this drop (e.g., Riggs
et al.,, 1998; Pfeilschifter et al., 1978; Turgeon et al.,
2006; Stevenson and Thornton, 2007; Wise et al., 2009;
Gibbs, 2010; Henn, 2010). Yet postmenopausal declines
in physiological competence are not large enough to
cause an inflection in mortality (Hamilton, 1966; Gavri-
lov and Gavrilova, 1991) or stop postmenopausal women
from continuing high levels of economic productivity
(e.g., Hawkes et al., 1989, 1997). If estrogen is important
for physiological maintenance, postmenopausal women
must produce it from nonovarian sources. Other steroids
that can be converted to estrogen in peripheral tissues
are obvious candidates.

Additional Supporting Information may be found in the online
version of this article.
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TABLE 1. Parameter estimates, sample size, and estimated maximum DHEAS at the start of adulthood for models of DHEAS loss
in human and chimpanzee females

Max. DHEAS
Sample N Functional form A (95% CI) B (95% CI) (ng/dL)
Chimpanzee Table S1 65 y=A+B *In(x) 180.73 (114.71, 250.44) —33.86 (—55.20, —13.64) 89.04
(Supporting Information)
Human Table S2 698 y=eMA+B X x) 6.24 (6.10, 6.35) —0.03 (—0.03, —0.03) 281.46
(Supporting Information)
Human standard 11 y=eMA+B X x) 6.14 (6.02, 6.25) —0.03 (—0.04, —0.03) 254.68

In all three models, x corresponds to years of age. The second row is a model fitted to data from Ravaglia et al. (1996), Sulcova
et al. (1997), and Davison et al. (2005) detailed in Table S2 (Supporting Information). The third row describes a model fitted to 11
age-class means reported by Orentreich and colleagues (1984), which serves as check on the generality of our individual-based
human model. To estimate maximum DHEAS (i.e., expected DHEAS concentration at the start of adulthood) reported in the last
column, we evaluated our chimpanzee model at 15 years and the human models at 20 years.

After cholesterol, the adrenal androgen dehydroepian-
drosterone (DHEA) and its sulfate ester dehydroepian-
drosterone sulfate (DHEAS) are the most abundant
steroids circulating in young human adults. They are
the main products of the human adrenal gland (Long-
cope, 1986), circulating at nanomolar and micromolar
concentrations respectively (Longcope, 1995; Baulieu,
1996; Longcope, 1996). Peripherally, DHEA and DHEAS
are interconverted by sulfotransferase enzymes present
in a wide variety of tissues (Fujikawa et al., 1997; Dalla
Valle et al.,, 2006). As DHEAS has a longer circulating
half-life and concentration several orders of magnitude
higher, it is generally considered to be a reservoir for
DHEA (Longcope, 1986; Rosenfeld et al., 1975; but see
Hammer et al., 2005; Siiteri, 2005 for debate). Circulating
levels are “1,000 to 10,000 times higher than those of
estradiol” in women (Labrie et al., 1998:322), so that
intracrine conversion of DHEA in peripheral target tissues
may be responsible for “75% of estrogen before menopause
and close to 100% after menopause” (Labrie, 1991:C116).

Faster decline in adrenal androgen production across
adulthood might help explain why chimpanzees become
decrepit while their ovaries are still secreting estrogen.
Follicle stocks decline with age at the same rate in chim-
panzees and humans (Jones et al., 2007); and, like us,
they can have last pregnancies into their forties (Roof
et al., 2005; Emery Thompson et al., 2007). But chim-
panzees display geriatric symptoms in their thirties
(Goodall, 1986; Huffman, 1990; Nishida et al., 2003;
Matsuzawa, 2007). Even in captivity where mortality is
reduced (Dyke et al., 1995; Hill et al., 2001), chimpan-
zees rarely live beyond their cycling years (Lacreuse
et al., 2008; Herndon et al., 2012).

Declines in circulating levels of DHEAS have been meas-
ured in several primate species; and those declines have
been proposed as biomarkers of aging in humans and non-
human primates (Lane et al., 1997; Kemnitz et al., 2000;
Roth et al., 2002). Ingram et al. (2001:1030-1) say that

“The rate of age-related change in a candidate bio-
marker should be proportional to differences in
lifespan among related species. For example, the
rate of change in a candidate biomarker of aging
in chimpanzees should be twice that of humans
(60 vs. 120 years maximum lifespan); in rhesus
monkeys about three times that of humans (40 vs.
120 years maximum lifespan).”

This expectation is consistent with general scaling
assumptions and supported empirically for circulating
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DHEAS data on captive rhesus and humans (Lane et al.,
1997). Building on these observations we hypothesized
that circulating levels of DHEAS would decline twice as
fast with age in female chimpanzees when compared to
published levels in women.

MATERIALS AND METHODS

To test this hypothesis, we requested blood samples
from female chimpanzees at Yerkes National Primate
Research Center. Samples were drawn only when sub-
jects were sedated for reasons unrelated to this project
with a protocol approved by IJACUCs at the University of
Utah and Yerkes. During 2007, 2009, 2010, and 2011,
samples were taken from 70 females then immediately
processed for serum and kept frozen until analyzed for
DHEAS by the Biomarkers Core Lab at Yerkes using
RIA for samples from 2007 and LC-MS thereafter (Sup-
porting Information Table S1). Here, we compare the
results from 65 chimpanzee females over the age of 15
with a combined sample of published DHEAS levels for
71 Czech women between the ages of 20 and 80 reported
by Sulcova et al. (1997), 68 Italian women between the
ages of 19 and 78 reported by Ravaglia et al. (1996), and
530 Australian women aged 20-76 reported by Davison
et al. (2005) (see Supporting Information Table S2). We
used these sources because their published figures
allowed recovery of individual DHEAS levels, not just
age class means and because they provided DHEAS lev-
els across adulthood.

Some of our chimpanzee measurements came from
subjects on hormonal contraception (Supporting Infor-
mation Table S1). As exogenous hormone supplements
reduce DHEAS levels 26-32% in women (White et al.,
2005), we looked for a similar effect in chimpanzees by
splitting our sample into the 53 measurements taken
when a subject was not on hormone contraception and
the 12 when on. Comparison of models fitted to these
subsamples (Supporting Information Fig. S1) showed no
substantial differences.

Methods differed slightly among the human studies,
so we used R statistical package (R Development Core R
Development Core Team, 2011) to fit models of DHEAS
concentrations against age for each dataset separately
(Supporting Information Fig. S2) and found that the
95% confidence intervals overlap. To evaluate represen-
tativeness of our sample for women, we extracted 5-year
age class means of DHEAS levels from figures reported
by Orentreich et al. (1984), fit a model using the proce-
dure described above, and found very close agreement
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TABLE 2. Slope of declining human and chimpanzee DHEAS concentrations averaged over 5-year age intervals
Chimpanzees Humans
Chimpanzee
Age range N Mean slope Age range N Mean slope slope/human slope
15-19 24 -1.60 20—24 31 —6.37 0.25
20-24 8 -1.23 25-29 48 —5.48 0.23
25-29 7 -1.01 30-34 75 —4.72 0.21
30-34 8 —-0.85 35-39 73 —4.06 0.21
35-39 5 -0.73 4044 92 —3.49 0.21
40-44 5 —-0.65 45-49 85 -3.01 0.21
45-49 2 -0.58 50-54 62 —2.59 0.22
50-54 5 -0.52 55-59 60 —2.23 0.23
- - 60-64 44 -1.92
- - 65-69 44 -1.65
- - 70-74 64 —1.42

To calculate an age interval’s mean slope, we evaluated the relevant model (see Table 1 for parameter estimates) at the first and
last years of the interval. We then subtracted the DHEAS estimate for the older age from that of the younger age and divided the
resultant sum by five. The far right column shows the ratio of chimpanzee slope to human slope in each five-year interval following

peak concentration.
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Fig. 1. Concentrations of DHEAS (ug/dL) as a function of

age in both human (n = 698) and chimpanzee (n = 65) females.
Lines represent best-fit models of DHEAS decline with age in
humans and chimpanzees. See Table 1 for parameter estimates.

between models of human DHEAS decline in our com-
bined human sample and that of Orentreich and col-
leagues (Table 1).

We then compared our combined human sample to our
chimpanzee sample by fitting a number of functional
forms, both linear and nonlinear, with maximum likeli-
hood estimation in order to approximate the relationship
between DHEAS concentrations and age. Using Akaike
Information Criterion (Akaike, 1974) we determined the
best fitting models for each species.

RESULTS

A logarithmic function where DHEAS (pg/dL) = 189.73—
33.86 X In(age) best fit the chimpanzee data, while an
exponential model where DHEAS (ng/dL) = e”\(6.24 — 0.03
X age) fit the human data best (Table 1). Using these

models, we estimated peak concentrations of DHEAS at
the start of adulthood (using 15-years-old for chimpanzees
and 20 years for humans because these are close to the
beginning of adulthood in each species and allow compari-
son of 5-year age class means; Table 1) and average rates
of DHEAS decline across 5-year age classes (Table 2). We
calculated the ratio of chimpanzee to human slope for
each 5-year age class after peak in Table 2 to simplify
comparison. Figure 1 shows the distribution of individual
DHEAS concentrations by age and species, with the best-
fit models for each.

Contrary to the hypothesis that circulating levels of
DHEAS would decline twice as fast in chimpanzees as
they do in humans, declines are more gradual in chim-
panzees. Average declines in chimpanzee DHEAS range
between 21 and 25% of human rates (Table 2). Com-
pared to chimpanzees, women begin adulthood with
more than three times the circulating levels of DHEAS
(281.46 vs. 89.04 pg/dL for chimpanzee females; Table 1).
Human concentrations do not fall to the highest chim-
panzee levels until the tenth 5-year interval—starting at
65 and ending at 69.

DISCUSSION

Circulating levels of DHEAS in our chimpanzee sam-
ple do not support the hypothesis of a faster decline
with age. Instead, when compared to women, female
chimpanzees begin adulthood with DHEAS concentra-
tions less than one-third as high that decrease at less
than one fourth the rate. Assuming that DHEAS levels
are an index of investment in somatic maintenance, we
should have anticipated that maximum circulating lev-
els would be substantially higher in humans. Evolu-
tionary theories of aging link slower senescence and
longer average adult life spans to increased somatic
investment (Williams, 1957; Hamilton, 1966; Williams,
1966; Kirkwood and Rose, 1991). More investment in
maintenance reduces vulnerability to mortality (e.g.,
Ricklefs, 1998), and selection favors more maintenance
when that tradeoff increases lifetime fitness (Hamilton,
1966; Williams, 1966; Kirkwood and Rose, 1991;
Hawkes, 2003).

The chimpanzee-human DHEAS comparison is consist-
ent with the inference that adrenal steroids play an
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important role in somatic maintenance. In humans—and
we assume in chimpanzees as well—estrogenic bioactivity
is important for both fertility and somatic maintenance.
This link between higher DHEA/S levels and increased
somatic maintenance in humans is consistent with a
broader hypothesis that higher circulating levels of
DHEAS in primates versus nonprimate mammals (Labrie
et al.,, 2001; Nguyen and Conley, 2008) contribute to
greater longevity in our order (e.g., Austad and Fischer,
1992; Charnov and Berrigan, 1993). But this generaliza-
tion warrants further scrutiny in light of complex varia-
tion in adrenal glands across the order (Conley et al.,
2004; Nguyen and Conley, 2008). An implicit corollary of
the hypothesis that DHEAS plays a role in primate lon-
gevity is that similarities in somatic maintenance
between chimpanzees and other great apes derive partly
from similarities in DHEAS levels. Bernstein and collabo-
rators (Bernstein et al., 2012) recently presented data
inconsistent with this corollary.

They reported serum levels of DHEA and DHEAS
across the life span in captive great apes and showed, as
do our data here, that circulating levels of DHEAS are
much lower in chimpanzees than humans. Although
they did not analyze changes across adulthood, their
findings are generally concordant with those of our sam-
ple. Surprisingly they found marked differences between
genus Pan and the other great apes. As ages at last
birth and maximum lifespans are similar among the
nonhuman great apes, we had assumed mechanisms of
ovarian and somatic aging would be similar as well. But
Bernstein and colleagues found otherwise. The level
they calculated for gorillas (Gorilla gorilla)—again aver-
aging both sexes—was only 34% that of Pan. Even more
striking, orangutans (Pongo abelii and P. pygmaeus of
both sexes) had average levels only 16% of Pan, the low-
est average reported among catarrhines.

The differences in DHEAS levels across the nonhuman
great apes suggest that androgens we have not investi-
gated may be important in somatic maintenance. Lasley
et al. (2012) further highlighted this possibility by sug-
gesting the importance of another adrenal androgen,
Androstenediol (Adiol), in perimenopausal women. They
found (McConnell et al.,, 2012) that the transient
increase in circulating DHEAS observed in perimeno-
pausal women (Crawford et al., 2009) is accompanied by
similar changes in the circulating levels of other adrenal
androgens. Adiol is of particular interest because, in con-
trast to DHEA/S, it activates the estrogen receptor with-
out intracrine conversion. Circulating at levels
substantially higher than estrogen in postmenopausal
women, Adiol may be vital to estrogenic bioactivity (Las-
ley et al., 2012).

Before concluding, we consider some limitations of our
sample. Although often collapsed into age class averages,
the individual variation in DHEAS levels in European,
Australian, and American women is marked (see review
in Enea et al., 2008). Yet Western women and captive
chimpanzees do not represent the likely range of varia-
tion. For chimpanzees, captive conditions are known to
affect ovarian hormone levels compared to those measured
in the wild (Emery and Whitten, 2003; Emery Thompson,
2005) and adrenal steroid levels may vary between captiv-
ity and the wild as well. In the same way, human varia-
tion may be even wider if non-Western subjects were
included. Ovarian hormone levels are known to differ
between industrial and traditional populations, with cova-
riates including diet, work, and disease load (e.g., Ellison
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et al., 1993; Ellison, 1994; Jasienska and Jasienski, 2008;
Vitzthum, 2008). Adrenal steroid levels may also differ.

If research into variation in male steroid levels is a
guide to the magnitude of differences in women, differ-
ences in adrenal androgen levels may be smaller than
differences in gonadal levels. Campbell et al. (2006,
2007) reported levels of both for Turkana men in
nomadic and settled communities. Levels were signifi-
cantly different for testosterone, but—except in the old-
est subjects—DHEAS levels were not. On the other
hand, Crawford et al. (2009) found dramatic differences
in both DHEAS level and rate of change with age for
American women of different ethnic groups between the
ages of 42 and 52. Through those ages some of the
women in their dataset had DHEAS levels that overlap
our chimpanzee sample. However, little difference
between African American and Caucasian women has
been found in studies of DHEAS levels in younger adults
(e.g., Kitabchi et al., 1999; An et al., 2001), and levels in
these younger women are substantially higher than
those of chimpanzees.

With those caveats we conclude that declines in circu-
lating levels of DHEAS are not steeper in female chim-
panzees than in women; but levels are substantially
lower in chimpanzees; and the human difference from the
other great apes is even larger than the difference from
genus Pan. Contrasts among the other hominids raise
additional questions, but also further distinguish the high
DHEAS production in humans, a distinction consistent
with the likelihood that this mechanism contributes to
the extraordinary longevity of our own lineage.
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