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Whereas labor values are independent of distribution, prices of production vary
if profits rise at the expense of wages or vice versa. The Classicals were aware of this
fact and tried to develop theories which would explain these variations. Notable
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are here Ricardo’s search for an “invariant commodity,” produced by an industry
which would use some average proportion of labor and capital, and the various
“solutions” of the “transformation problem” in Marx’s theory, which try to explain
the sum of all profits by the difference between the value produced by labor and
the wage.

Ricardo states repeatedly the idea sustaining his search for an invariant commod-
ity: Due to increasing costs of capital, the price of a capital-intensive commodity,
i.e. of one produced by an industry with a high rate of value of capital

amount of wages , should
increase relatively to the price of the labor-intensive commodity as the profit rate
increases. This law, which was accepted by all the Classicals, holds true for an econ-
omy with two industries and two goods. If p1 is the price of the capital-intensive
good, then the relative price p1(r)/p2(r) increases with the profit rate r. But
Sraffa (1960, §20) pointed out that such a rule does not extend to economies with
three or more industries. A “capital-intensive” industry may use “labor-intensive”
commodities as inputs, so that its costs do not vary as expected. For more than
two industries, one cannot even uphold the notions “capital-intensive” and “labor-
intensive,” because the ranking of industries may depend on the profit rate.

Only very few economically intuitive regularities have been discovered that gov-
ern the movement of prices of production when distribution changes. The existence,
uniqueness, and positivity of prices of production themselves is one of them, the
fall of real wages, regardless of numeraire chosen, if the profit rate rises, is another.
A more recent result, which is reviewed in this paper, is that prices move closer
to the Perron-Frobenius price vector, the price vector which would prevail under
zero wages, as wages fall. The concept of a distance to be used here is that of the
“Hilbert distance.”

The purpose of this study is to give a broad overview, using a variety of math-
ematical tools, about what can be said about relative prices of production if dis-
tribution changes. We are presenting result concerning the monotonicity of the
movement, and its curvature, from some adequately defined point of view. We find
that even though there are no obvious economic reasons for it, the trajectories of
relative prices follow a strict geometric choreography. The “evidence” given by a
series of computer-generated graphs will be our starting point to discuss the regu-
larities in the movement of relative prices as distribution changes. A self-contained
presentation of the mathematical proofs is given in the Appendix.

1. Curves of Prices of Production

1.1. Representation of the Technology. In our graphs we will display three-
industry, three-commodity economies—but the intention is to exhibit general prop-
erties, and the proofs in the Mathematical Appendix hold for general n. All pro-
cesses of production are of the single-production type, and there is no choice of
techniques. The economies are basic in Sraffa’s sense. The production technology
can therefore be represented by a semipositive irreducible 3× 3 matrix A � O and
a semipositive 3 × 1 column vector ` � o, which collect the input and labor coef-
ficients, respectively. We are using the convention that commodities, the vector of
labor requirements, and price vectors are column vectors, while processes and bas-
kets are row vectors (written as the transposes of column vectors). The transpose
of a matrix A is A>. A matrix or vector is called semipositive, notation A � O,
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if all elements are nonnegative and at least one element is positive. If all elements
are positive we will write H � O.

Even though the numerical data A and ` are necessary to define the technol-
ogy, a technology must not be confused with this numerical representation, more
precisely with any of its representations. Given a technology, the choice of phys-
ical units of measurement for the n goods determines a representation (A, `). If
other units are chosen, the same technology is represented by other data (A′, `′).
Conversion rules are given in Fact 1 in the Appendix. Only those properties of
(A, `) which do not depend on the choice of units are properties of the technology
itself. For example, the diagonal elements aii of A, which give the proportion of
good i entering directly into its own production, are invariants of the technology;
a technology is basic iff one/any of its representative matrices is irreducible; and a
physical commodity bundle which is Sraffa’s standard commodity in one represen-
tation is a standard commodity in all representations (up to a normalization factor).
A change in measuring units also changes the price vectors; but the total price of
a given physical commodity bundle is invariant, and also the capital/labor ratio of
an industry is invariant. By contrast, the concept of Euclidean angles or distances
between price vectors is problematic, since they depend on the representation of
the technology.

1.2. Definition of Prices of Production. The vector p of prices of production
and the wage w associated with an equalized profit rate r for technology (A, `)
satisfy

(1 + r)Ap + w` = p. (1)
If w = 0, semipositive price vectors are possible only for one profit rate, the maximal
profit rate r∗. The corresponding price vectors are eigenvectors of A, namely, they
are proportional to the (up to a factor) unique positive Perron-Frobenius eigenvector
p∗.

Although economists usually use zero as the lower bound of the profit rate, we
will allow profit rates as low as −1. For all profit rates −1 ≤ r < r∗, (1) can be
solved

p = w(I − (1 + r)A)−1`, (2)
If −1 < r < r∗, then (I − (1 + r)A)−1 � O.

Most contemporary economists start with equation (1) which is due to Sraffa,
assuming that the wage is paid post factum (Sraffa, 1960, §9). An equation more
faithful to the classical economists’ idea of a wage advanced from capital is

(1 + r)(Ap + w`) = p. (3)

If p satisfies (3) for wage w, then it satisfies (1) for wage (1+r)w; one will therefore
obtain the same relative prices with (1) and (3), and it suffices to study (1).

1.3. Normalizations. If p and w are solutions of (1) for a given r, then any scalar
multiples αp and αw are solutions as well. In order to remove this ambiguity, we will
normalize prices and wages, using a fixed basket g � o as numeraire. Normalized
prices satisfy the condition g>p = 1, and the normalized wage satisfies (1) together
with the normalized price vector. For every rate of profit there is one normalized
price vector and one normalized wage.

If p = [p1, . . . , pn]> is any given price vector, we will write p = [p1, . . . ,pn]>

(roman font instead of italics) for its normalized version. Normalization conve-
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Figure 2. Equilateral map of unit simplex

niently reduces the dimension of the space of possible prices by one. If n = 3, all
normalized prices are located on a simplex of R3, as shown in Figure 1.

The normalized wage depends negatively on the rate of profit, varying between
1/g>` and 0. Normalized prices form a continuous curve starting (for r = −1) at the
normalized labor coefficient l and converging (for r → r∗) towards the normalized
Frobenius eigenvector p∗. This end point of the price curve does not depend on `.
For r = 0, prices are proportional to labor values.

1.4. Barycentric Coordinates. Normalized prices in our three-commodity ex-
ample economies will henceforth be represented as points in an equilateral plane
triangle, as in Figure 2, which is a map of the simplex in Figure 1. Arbitrary
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irregularly shaped normalizations simplices can be mapped into the equilateral tri-
angle using the barycentric coordinates. This is not an Euclidean mapping of the
normalization simplex into the plane, i.e., it does not keep distances and angles
intact. But this is not much of a loss since distances and angles depend on the
representation of the technology. The barycentric coordinates of the normalized
price vector, by contrast, depend on the technology and on the physical commodity
bundle represented by the normalization vector, but not on the units in which the
different commodities are measured.

Every point in the normalization simplex of Figure 1 is a weighted average of
the corner points, and the barycentric coordinates of this point are these weights.
Since the weights sum to 1, the three barycentric coordinates can be represented
as points in an equilateral triangle. Assuming that the triangle in Figure 2 has
height 1, the barycentric coordinates of the normalized price vector p1, p2, p3 are
the Euclidean distances of point p in Figure 2 to the sides of the triangle yz, zx,
and xy.

From the star-like arrangement of the barycentric coordinates of every vector,
as exemplified with vector p, follows that

• point d, for instance, on xy, has third coordinate equal to 0;
• point n close to x has small second and third coordinates relatively to its

first;
• all points m on zd have same ratio m2/m1 between their second and first

coordinates.

If g is the normalization vector, then the ith barycentric coordinates of the price
vector is the price of gi units of commodity i. If the physical units of the economy
are chosen such that the normalization vector is the vector [1, 1, . . . , 1], then the
components of the normalized price vector coincide with its barycentric coordinates.
In this paper the normalization vector will usually be [1, 1, . . . , 1], therefore the
barycentric mapping of the normalization simplex will be an Euclidean one after
all.

1.5. Special Normalizations. Certain normalizations have special properties.
We will discuss here the normalization by the net product and the normalization
by Sraffa’s standard commodity.

Normalization by the Net Product: Let x> be the gross product and y> =
x>(I −A) the net product of the entire economy. Furthermore define the vector
of labor values by the equation λ = Aλ + `. The normalization which sets the
sum of prices of the net product equal to the sum of values of the net product, i.e.,
which imposes on every price vector p the identity y>p = y>λ, is the normalization
recommended by the “new solution to the transformation problem” (Duménil, 1980;
Foley, 1982), discussed in (Glick and Ehrbar, 1987). Since the value of the net
product is equal to the total labor time performed, one can write this normalization
also as y>p = x>`. One sees easily that in this normalization, the sum of profits
is equal to the sum of surplus-values: x>p−x>Ap−x>`w = x>`(1−w). (Profit
rates need not be equalized for this to hold.)

Normalization by Sraffa’s Standard Commodity: If the basket used for normal-
ization is a left Perron-Frobenius eigenvector of A, call it q∗, (i.e. a multiple of
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A3 = 1
28

[
11 6 1
3 4 5
0 4 8

]

Figure 3. Price curves for different vectors ` but same A = A3

Sraffa’s standard commodity), then the normalized wage is easy to compute:

w =
(
1− 1 + r

1 + r∗

) 1
q∗>`

. (4)

Sraffa’s normalization amounts to setting q∗>` = r∗/(1 + r∗) so that (4) becomes
w = 1− (r/r∗), but we will not impose this condition here. Normalized prices can
be written in terms of the normalized labor coefficients l = `/q∗>` as follows:

p− p∗ =
(
I − (1 + r)A

)−1

(l− p∗)
(
1− 1 + r

1 + r∗

)
(5)

The vector in the normalization simplex going from p(r) to p∗ is therefore a linear
function of the vector going from l to p∗. This accounts for the especially simple
properties of price vectors in this normalization. (See Facts 3, 18, 27, 28, 33, 31
in the Appendix.) We will call this normalization the “standard normalization.”
Most of the Figures shown use the standard normalization, i.e., they describe a
special situation. The general case differs from this special situation by a projective
transformation (collineation).

2. Intersections of Price Curves

2.1. Same Input Matrix: At Most One Intersection Point. In order to
study the dependency of the price curve on the labor vector, we will fix the input
matrix A and allow the labor vector to vary. This corresponds to a variation of the
intensity of labor with otherwise unchanged technology. But the purpose of this
exercise goes beyond this special case. By separating the influence of ` from that
of A, we gain valuable structural information about A.

Figures 3 and 4 show a number of such price curves. To construct these two
Figures, two different input coefficient matrix were chosen, and price curves were
drawn with various starting points, corresponding to various vectors `. As men-
tioned earlier, the normalization vector in all our examples is [1, 1, 1]>, so that
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A4 = 1
12

[
1 1 0
0 4 4
5 1 2

]

k
l

Figure 4. Same set of ` vectors as in Figure 3 but a different
matrix A = A4

the equilateral triangle of barycentric coordinates is at the same time a Euclidean
head-on view of the normalization simplex shown in Figure 1.

The most obvious feature of Figures 3 and 4 is the convergence of all price curves
for the same input matrix toward the common endpoint p∗. But two different price
curves associated with a given input matrix may sometimes also have an additional
intersection point other than this endpoint. This means that two economies with
the same input matrix but different labor requirements may have the same structure
of relative prices. In the Figures shown, different price curves for the same A have
at most one additional intersection point, and the Appendix brings a proof (Fact
15 c) that there can never be more, even in higher dimensions.

2.2. A Surprising Collineation. If one examines the Figures closely, one discov-
ers that the beginning points of two price curves are always collinear with their
intersection point. This can be seen especially clearly in Figure 4, where the curves
starting at k and l and the three other curves starting on the extension of the line
kl all intersect in the same point which again lies on that straight line (Fact 14).

The starting points of the price curves are the normalized prices associated with
profit rate r = −1. The value r = −1 is not special here. The normalized prices
associated with any other profit rate are collinear with the intersection point as
well (Fact 15 b). Figure 5 gives an enlarged view of the situation in Figure 4, with
the price curves dashed at equal profit rates.

If the intersection point moves towards p∗, then the two price curves end up
being tangent at p∗. At the same time, the straight line connecting their beginning
points moves towards p∗. All normalized price curves which are tangent at p∗ start
therefore on the same ray emanating from p∗. This is illustrated in the right half
of Figure 5.

2.3. Radial “Stretching” of the Price Curves. Not only the direction in which
the starting point lies relatively to the common endpoint, but the entire shape of



RELATIVE PRICES: FACTS AND FIGURES 9
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Figure 5. Intersecting and tangent price curves, gapped at equal
profit rates.

the price curve is determined by the direction of the final tangent. In the stan-
dard normalization, which was chosen in these Figures (all example economies have
constant column sums, i.e., the normalization vector [1, 1, 1] is at the same time a
left eigenvector), a movement of the labor vector in a straight line towards p∗ or
away from p∗ induces an exact proportional scaling, a “shrinking” or “stretching,”
of the whole price curve. This follows from the linear relationship (5). Here we
discovered a family of linear transformations which carry the price curves into each
other. Other such linear transformations, called A-endomorphisms, are described
in the first paragraph of Section 4.1.

We will therefore not lose any information about the geometric shapes of the
price curves if we draw in our Figures only the “long” price curves which start at
the edge of the unit simplex. Any price curve starting at an interior point l is simply
a scaled-down version of that “long” curve whose labor input vector is obtained by
extending the line p∗l to the edge of the simplex.

2.4. Nonintersection of “Long” Price Curves. If one draws these long price
curves (Figures 6–9), one discovers that they no longer intersect. Such a noninter-
section property holds whenever the price curves start on the edge of a convex set
which they will not leave again. Proof in Fact 16. The qualitative patterns shown
in Figures 6–9 are representative for all technologies in the case n = 3, with 6 and
7 the generic case, and 8 and 9 the exceptional cases.

By the “trick” of stretching the price curves to the edge of the simplex, we
have therefore generated families of nonintersecting price curves approaching their
common endpoint from all directions. This is a good opportunity to visualize
also the evolution of the profit rate along these curves. All curves (except for
the straight ones) are dashed, and every single dash corresponds to a fixed profit
rate differential—and, since we have standard normalization, also to an equal wage
differential, see equation (4).

One discovers the following:
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A3 = 1
28

[
11 6 1
3 4 5
0 4 8

]

Figure 6. Representative Trajectories for A3 (same A-Matrix as
in Figure 3)

A4 = 1
12

[
1 1 0
0 4 4
5 1 2

]

Figure 7. Representative Trajectories for A4

• For the curves starting at the edge of the unit simplex, the loci of equal
profit rates are triangles with straight edges, we will call them “level trian-
gles.”

• Corresponding sides of different level triangles are “concurrent,” i.e., they
all meet in the same point. This common intersection point is at the same
time the intersection of the “virtual” extensions of the two trajectories
involved. This is shown in Figure 10 for the Northeast sides of the level tri-
angles for A8. This is the same mathematical regularity which was already
illustrated in Figure 5.
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A8 = 1
40

[
12 7 1
3 8 9
5 5 10

]

Figure 8. Limit Case A8 = 7
10A3 + 3

10A4

A9 = 1
24

[
0 4 4
7 3 7
5 5 1

]

Figure 9. Second Limit Case: All Trajectories are Straight

• Every trajectory cuts each level triangle side with which it intersects in the
same proportion. For example, that trajectory starting at the middle of
the side of the simplex cuts each of the triangle sides in half, and similarly
with trajectories starting at other proportions. This last property is an
application of Fact 3; it only holds in the standard normalization.

• The “speed” along the price curves accelerates in some cases (Figures 6–8)
and decelerates in others (Figure 9).
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A8 = 1
40

[
12 7 1
3 8 9
5 5 10

]

Figure 10. Corresponding sides of different “level triangles” are concurrent

3. The Shapes of the Price Curves

Figures 6–9 allow us to study the shapes of all possible price curves associated
with a given input matrix.

3.1. The Degree of Regularity of an Economy. The given examples differ by
the distribution of left-turning, right-turning, and straight curves over the triangle.
Figure 6 has two directions in which the curves are straight; they divide the triangle
into four sectors in which the curves turn alternatively right and left. In Figure 7,
no curves are straight; all curves turn the same way (namely right) as they approach
p∗. In Figure 8, there is one direction of straight curves, which cuts the triangle
into two regions. Both regions house curves turning the same way, namely right.
The curves in the vicinity of the straight curves are still very straight. In Figure 9,
all price curves are straight.

To understand the mathematics of straight price curves, it is useful to go back to
unnormalized price vectors. When normalized prices move on the straight line up∗
in the normalization simplex, then the unnormalized price vectors remain in the
plane defined by the unnormalized price vectors u, p∗, and the origin o (compare
Figure 1). In other words, all price vectors are concentrated in a plane, they do not
span the full R3. Economies whose price vectors do not span all of Rn are called
irregular. The degree of regularity of an economy is the dimension of the price space
of the economy.

The price space of an economy is defined as the vector space spanned by all
price vectors. However this price space can also be defined from a single price
vector p 6= p∗: it is the smallest A-invariant subspace of Rn containing p (Fact 4
in the Appendix). A vector space V ⊂ Rn is called “A-invariant” if p ∈ V implies
Ap ∈ V.
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This determination of the price space by one single price vector has an important
implication for the intersection of price curves: if two different price curves associ-
ated with the same A pass through the same point, then they share the same price
space. This is why one does not see any regular price curves crossing the straight
lines in the examples. Regular and irregular price curves are confined to different
areas of Rn.

The concept of A-invariant subspaces is a generalization of eigenvectors. Every
subspace spanned by a set of right eigenvectors is A-invariant, and so is every
subspace orthogonal to a set of left eigenvectors. The real and imaginary parts
of a complex eigenvector together span an invariant subspace. A-invariance is
responsible for the convenient properties of the standard normalization: it is the
only normalization for which the normalization simplex is parallel to an A-invariant
hyperplane, namely, the hyperplane orthogonal to q∗, which we will denote by H.

To study invariant subspaces one needs the concept of a “complete chain.” This
is a strictly ascending sequence of invariant subspaces

{o} = V0 ⊂ V1 ⊂ · · · ⊂ Vr ⊂ Vs ⊂ Vt ⊂ · · · ⊂ Vm−1 ⊂ Vm = Rn (6)

which has maximal length, i.e., for which there are no invariant subspaces “between”
Vr and Vs. Every complete chain has the same length (Jordan-Hölder theorem, see
Kirillov, 1976, p. 116), and subsequent links in the chain differ in dimension by
either 1 or 2 (Fact 11).

The number of complete chains depends on A. In one extreme case, there is
only one complete chain consisting of subspaces which contain nonnegative vectors,
in the other extreme, any subspace containing p∗ is invariant.

Only those A-invariant subspaces of Rn can be price spaces which contain some
semipositive vector. Since such subspaces are uniquely defined by their intersections
with H (Fact 12), this leads us again to consider the standard normalization, and
look at A-invariant subspaces of H.

If A has a (real or complex) eigenvalue whose associated eigenspace has dimen-
sion 2 or larger, then every price vector is irregular (Fact 9). In the more usual
situation that all eigenspaces are one-dimensional, irregular price spaces are the
exception (Fact 8). If A has m real and q pairs of conjugate complex eigenval-
ues, each with a one-dimensional eigenspace, then all irregular prices are contained
in m invariant hyperplanes (subspaces of Rn of dimension n − 1) and q invariant
“hyperlines” (subspaces of dimension n− 2).

These invariant hyperplanes and hyperlines give important information about
A. The hyperplanes divide the normalization simplex into 2k regions “capturing”
the price curves: every price curve must remain in the region in which it was born.
We will see below in Section 4.1 that these hyperplanes and hyperlines are also
“attractive.”

The determination of the entire price space by a single price vector p, regardless
of the profit rate attached to it, can also be interpreted to mean that a given price
curve has the same degree of regularity along its entire length. This same concept
is expressed in a different way by Fact 6: If an economy has degree of regularity
s, then any s price vectors p(r1), · · · ,p(rs) associated with s different profit rates
−1 ≤ r1 < · · · < rs ≤ r∗ are linearly independent. From this follows that any
price curve which has three points on a straight line must entirely lie on this line; if
any four points of a price curve lie in the same plane, or if any two of its tangents
intersect, then the whole curve lies in that plane, etc.
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3.2. Orientation. If p moves along a regular price curve, det(p,Ap,A2p, . . . ,An−1p)
never vanishes. It has the same sign everywhere. How do price curves with
positive determinant differ from price curves with negative determinant? Here
we need to know that the sign of this determinant is the same as the sign of
det(p(r1), · · · ,p(rn)) for n ascending profit rates −1 ≤ r1 < · · · < rn ≤ r∗ (Fact
7). If n = 3, the sign of the determinant of three successive points determines
whether the price curve turns left or right. Also in higher dimensions this sign de-
fines an orientation. A given curve has everywhere the same orientation, and curves
with different orientation can never intersect. Certain areas of Rn only house left
turning curves, and other areas only right turning curves. If the price curve is
irregular, then determinants can be taken in its s-dimensional price space, and a
similar result holds. One can therefore not only assign a degree of regularity but
also an orientation to a price curve and to the region which it inhabits.

3.3. Discussion of the Case n = 3. In the case n = 3, things are especially
simple since every A-invariant hyperplane containing semipositive vectors has a
basis consisting of eigenvectors (p∗ and one other Non-Frobenius eigenvector), and
is furthermore orthogonal to a left eigenvector (which cannot be q∗). The straight
price curves in our Figures are therefore the lines connecting p∗ with the other
eigenvectors. On the projective plane in which the normalization triangle is em-
bedded these eigenvectors can be visualized to be located somewhere outside the
normalization triangle. Equivalently, one can characterize the straight price curves
as the lines orthogonal to the left Non-Frobenius eigenvectors.

• In Figure 6, matrix A admits two distinct real eigenvectors. The two (solid)
straight price curves are segments of the line connecting p∗ with one right
eigenvector each, and at the same time they are the lines going through p∗

orthogonal to the left Non-Frobenius eigenvectors.
• In Figure 7, matrix A admits no real eigenvectors (the eigenvalues are

complex), hence no price curves are straight, they all turn the same way.
Figures 6 and 7 correspond to generic cases in dimension 3. Figures 8 and 9

illustrate the exceptional cases of double eigenvalues:
• In Figure 8, A has, besides the Perron-Frobenius eigenvalue, a double eigen-

value whose associated eigenspace is only one-dimensional. In this case
there is one direction of straight price curves, on the line connecting p∗

with the single right Non-Frobenius eigenvector, which is at the same time
orthogonal to the single left Non-Frobenius eigenvector.

• In Figure 9, A has a double eigenvalue whose eigenspace has dimension
two. In this case, there are infinitely many right hand eigenvectors; the
economy (A, `) is irregular for every labor vector `. Each of these infin-
itely many straight price curves points from p∗ towards some right Non-
Frobenius eigenvector, or equivalently it is the line orthogonal to some left
Non-Frobenius eigenvector.

3.4. Projective Geometry: Classification of all Collineations. An alterna-
tive approach to the structure of A-invariant subspaces uses the tools of projective
geometry. The following mathematical apparatus is usually derived under the as-
sumption that A is nonsingular, but those facts about collineations that are relevant
for our purposes can also be proved under the weaker condition that the restriction
of A to H is regular.
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If price vectors are considered as homogeneous coordinates of the projective plane
of relative prices, the transformation p 7→ Ap defines a collineation of the triangle
of semipositive prices into itself, which can be extended to a collineation of the
whole projective plane onto itself. Collineations are bijections which map collinear
points into collinear points. Every collineation is induced by a matrix transfor-
mation of the homogeneous coordinates. The invariant subspaces of that matrix
transformation correspond to the fixed points, fixed lines, or higher-dimensional
fixed subspaces of the collineation. Irregular economies correspond to those fixed
subspaces which are generated by a single semipositive vector. According to the
Perron-Frobenius theorem, the collineation induced by A has exactly one fixed
point inside the semipositive triangle, namely that generated by p∗, and it has a
fixed hyperplane which does not intersect the semipositive triangle, namely the hy-
perplane H consisting of all vectors p with q∗>p = 0. Any fixed subspace which
intersects the semipositive triangle must therefore be spanned by p∗ and a fixed
subspace of that H. And if this fixed subspace is generated by a single point, then
its intersection with the hyperplane must also be generated by a single point. The
study of critical subspaces of a technology is therefore that of the fixed subspaces
generated by one point only of the collineation induced by A on H.

The great advantage of this approach is that it reduces the dimensionality of
the problem by 2. If n = 3, then the projective space of normalized prices is two-
dimensional, and H is a projective line in this plane passing somewhere outside
the semipositive triangle. (In the standard normalization, it is the line at infinity.)
Restricted to straight lines, all collineations are “projectivities” (i.e., successions
of “perspectivities”). Such projectivities can have no fixed points, one fixed point,
two fixed points, or they leave the whole line pointwise fixed (Wylie, 1970, pp. 153,
156). (In this last case, the line itself is not generated by a single point.) This gives
immediately the four cases discussed in Figures 7, 8, 6, 9.

3.5. Two Types of Transition. It has been said earlier that the case of a double
eigenvalue is exceptional. It is however important as a limit case or transition when
the data change continuously from 2 to 0 real eigenvalues. Let us, for instance,
choose as the input matrix some linear combination αA3 + (1 − α)A4 of the two
matrices corresponding to Figures 3 and 4, and let us look at the variations of
the critical lines and the curves themselves when α increases from 0 to 1. The
characteristic polynomial Pα(λ) has one real root for α = 0 and three for α = 1.
For the limit case A8 = 0.7A3 +0.3A4, the two non-Frobenius eigenvalues coincide
(Figure 11). In the unit simplex, the critical lines shown in Figure 6 move towards
each other, coincide for α = 0.7, and then vanish. The region occupied by left-
turning curves, in our case, decreases. But for other data, the second type of
transition represented in Figure 9 would be also possible, in which the critical lines
do not coincide in the limiting case, but in which all price curves, whatever their
starting points, become straight lines. Two qualitatively distinct types of transition
are therefore possible between a set of curves as shown in Figure 6 and one as shown
in Figure 7. These qualitative possibilities multiply in higher dimensions.

4. Comparative Statics

Assume the relative price vector p(r) is known at a given profit rate r, and the
rate of profit changes (due to a change in distribution). To fix terminology, we
will always assume the new profit rate to be higher than the old. What can we



16 CHRISTIAN BIDARD AND HANS G. EHRBAR

A4

A8

A3

Figure 11. Characteristic Polynomials

say about the direction of the change of p? Eventually, if the profit rate rises high
enough, the price vector will end up at the Perron-Frobenius vector p∗ = p(r∗). Is
there some sense in which this movement can be shown to be monotonic?

4.1. Attractive Hyperplanes and Hyperellipses. The decomposition of price
curves formulated in Fact 19 and the characterization of indecomposable price
curves in Fact 20 projects general price curves into one- or two-dimensional price
curves, which are monotonic in certain ways. The general price curves inherit these
monotonicity properties from these lower-dimensional price curves.

This decomposition also allows a better understanding of the difference between
Figures 6 and 7. In 6, all price curves can be converted into each other by pro-
portional scaling parallel to one of the critical lines, as illustrated in Figure 12.
In Figure 7, they can be turned into each other by rotation along the ellipses, see
Figure 13. One may say, Figure 6 contains two kinds of curves (those on the critical
lines) and mixtures thereof, while Figure 7 contains only one kind of curve.

The comparative statics results formulated in Fact 20 can be seen in our exam-
ples. In Figure 12, the price curves confined to one of the critical lines approach
p∗ monotonically, the halfspaces bounded by hyperplanes orthogonal to the left
eigenvector corresponding to this critical line are attractive halfspaces. In Figure
13, the ellipses are attractive, and all price curves cross the spokes of the ellipses
in the same direction.

Here is the mathematical formula of the attractive ellipses. Assume A has a
pair of conjugate complex eigenvalues λ1 and λ2, with associated left eigenvectors
q1 = s + ti, q2 = s − ti. Then we know from Fact 20 that, in the standard
normalization, the modulus of the complex inner product

ki(r) =
∣∣q>i p(r)

∣∣ =√(s>p(r)
)2 +

(
t>p(r)

)2 (i = 1, 2) (7)
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Figure 12. Attractive Halfspaces

Figure 13. Attractive Ellipses

decreases as r increases. The loci of normalized price vectors p for which
∣∣q>i p(r)

∣∣
is constant are elliptical hypercylinders (or, if the normalization simplex is two-
dimensional, ellipses), which contain each other and shrink to a hyperline passing
through the point p∗. The fact that ratio (7) decreases as r increases means that the
price curve successively enters into these ellipses, i.e., these ellipses are “attractive.”

4.2. Euclidean Angles Between Price Vectors. Let us assume that matrix A
is symmetric. This implies that there are n−1 real eigenvalues associated with n−1
critical hyperplanes, which are orthogonal to each other and to the normalization
simplex for the standard normalization. We know by the previous section that the
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distance from the normalized p(r) to each of these critical hyperplanes decreases.
By the theorem of Pythagoras, the distance between the normalized p(r) and p∗

also decreases. Since the normalization vector is at the same time a right hand
Frobenius eigenvector p∗, the vector p∗ is orthogonal to the simplex. Since the tri-
angle op∗p(r) is rectangular at p∗, the length of side p∗p(r) is a monotonic function
of the angle between p∗ and p(r). Therefore one can translate the above result into
a form which is independent of the normalization chosen: If A is symmetric, the
angle between p(r) and p∗ decreases monotonically.

More generally, the angle between p(r) and p(s) is a monotonic function of r

and s. All this is also true if A is normal, i.e., if A>A = AA>, which is equivalent
to complex but orthogonal (more precisely, unitary) eigenvectors.

Note that symmetry or normality of A is a property of the representation, not
of the economy. Not every economy has a normal representation, and there is no
economic reason why an economy should have one.

However, if matrix A is diagonalizable (which is the generic case, therefore a
rather weak assumption) one can define a non-Euclidean angle such that the mono-
tonicity property holds. Non-Euclidean angles correspond to attractive ellipses
instead of attractive circles.

For a proof of all this, the reader is referred to (Bidard and Steedman, 1996) and
(Bidard and Steedman, 2001).

4.3. Arbitrary Normalization. Most Figures have been drawn in the standard
normalization, which makes the right hand non-Frobenius eigenvectors pi and pj

parallel to the normalization simplex (because q∗>p1 = q∗>p2 = 0). Under ar-
bitrary normalization g>p(r) = 1, these non-Frobenius eigenvectors intersect the
plane g>x = 1 in points P1 and P2 outside the simplex. In this case it is no longer
true that the distance to the critical lines decreases monotonically, but the price
curves pass all straight lines concurrent on P1 and P2 in the direction pointing
towards the critical lines. In this case the Euclidean distance from a critical line
may vary in a nonmonotonic way.

4.4. The Inverse Problem: Determining Input Coefficients from Prices.
In order to apply the results obtained so far, A must be known. Before going
on to Section 5, in which this information requirements will be relaxed, let us see
how information about A can be built up from prices, or how price curves can be
extrapolated without knowing A. Relative price curves which have more than n
points in common and which also have identical profit rates at these points, coincide
(Fact 13). In our three-commodity economy, four points on any relative price curve,
no three of which lie on a straight line, together with the associated profit rates, will
identify this price curve along with the A-matrix and (up to a factor) the `-vector.
If three points of a price curve lie on a straight line, then the price curve itself
is straight (Fact 6). In this case, therefore, the price curve is identified by three
instead of four points, but A is no longer determined uniquely.

If only prices are known but not the profit rates, then it will be shown in Section
6 that in a three-commodity economy, a price curve is determined if one knows five
points on it.
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5. Hilbert Circles

Results concerning the Hilbert metric have quite different information require-
ments than the results discussed until now. The Hilbert metric is therefore an
alternative tool to gain insights about the behavior of price curves.

5.1. Definition. The Hilbert distance between two positive vectors x � o and
y � o is defined as

d(x,y) = log
(

max
i

xi

yi

/
min

i

xi

yi

)
(8)

and has the following properties:
• d(λx, µy) = d(x,y) for any λ, µ > 0. The Hilbert distance only depends on

the rays supported by x and y. If x and y are price vectors, their Hilbert
distance therefore only depends on relative prices.

• If the jth components of x and y are both multiplied by the same scalar,
d(x,y) is unchanged. If x and y are price vectors, d(x,y) is therefore
independent of the choice of physical units for commodities. (This property
is in sharp contrast with the Euclidean angle.)

• d(·, ·) satisfies the axioms of a distance between positive rays: it is sym-
metric, i.e., d(x,y) = d(y,x); furthermore d(x,y) = 0 if and only if
the relative prices are identical, and finally the triangle inequality holds
d(x,z) ≤ d(x,y) + d(y,z).

• A positive matrix induces contraction between rays: If x � o, y � o,
x 6= λy, and the matrix H � O, then

d(Hx,Hy) < d(x,y) (9)

See (Seneta, 1981, Lemma 3.2 on p. 38) for a proof.
In order to give an intuition of the Hilbert metric, let us draw the “Hilbert circle”

on the unit simplex with center p∗ and going through m, i.e., the set {x : d(p∗,x) =
d(p∗,m)}. To simplify the exposition we will assume p∗ = t, i.e., p∗ lies in the
center of the unit simplex, but the geometric construction of the Hilbert circle
described here is valid in full generality. In our simplified situation, formula (8)
shows that d(t,x) is nothing but the logarithm of the ratio between the extremal
values of x

d(t,x) = log
(
max

i
xi

/
min

i
xi

)
. (10)

The geometric construction is illustrated in Figures 14 and 15. First draw lines
ata′, btb′, and ctc′ which divide the triangle in six regions, each of which char-
acterized by a specific ranking of the components of x. E.g. point m is above line
aa′, therefore m2 < m3; it is below line bb′, therefore m1 < m3; and it is left of
line cc′, therefore m1 > m2. This established the order m1 > m3 > m2. (Figure
14). For all points x in that region, only x1 and x3 matter for the Hilbert distance
from t, and we know (see our above comments regarding Figure 2) that all points
on cm have the same ratio x1/x3. Therefore segment di in Figure 14 is a part of
the Hilbert circle we are drawing. At point d, x1 = x3 and we enter the region
where x1 < x3, i.e. where x3 and x2 become the extremal coordinates. There the
points on the Hilbert circle are those belonging to segment de in Figure 15 (a, d,
and e are collinear), etc., and the Hilbert circle going through m is the hexagon
defghi. The same geometric procedure will also produce the correct Hilbert circle
if its center is not located at the center of the triangle.
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Figure 15. Construction of Hilbert Circle
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•

Figure 16. “Hilbert circles” with radius 0.5, 1, 1.5, 2, . . . around
endpoint of curves in Figures 3 and 6
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498 1 1
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[
1
10
10

]

Figure 17. Euclidean Angle Counterexample

Figure 16 shows the deformation of the Hilbert circles if the endpoint is no longer
in the center and if the radius increases. According to formula (10), the Hilbert
distance to the center of the Hilbert disk grows to infinity as m approaches a side
of the triangle.

5.2. Hilbert Circles are Attractive. The property of the Hilbert distance which
makes it relevant for prices of production is a mathematical consequence of its
contraction property: the Hilbert distance between p(r) and p∗ is a decreasing
function of the profit rate r, i.e., from r < s < r∗ follows d(p(s),p∗) < d(p(r),p∗).
Hilbert circles are therefore attractive for all profit rates. For a proof see Fact 23.
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Figure 17 illustrates the economic law involving the Hilbert distance between
p(r) and p∗: the Hilbert circles are attractive, i.e. every price curve successively
enters into them as the profit rate increases. This is even true for the curve drawn
in Figure 17: Although the Euclidean angle increases locally, the Hilbert distance
between p(r) and p∗ is everywhere decreasing.

The Hilbert circle centered at p∗ is a hexagon with straight sides. In exceptional
cases, the price vector p(r) enters this hexagon at one of its corners, but usually it
enters it on one of its sides. The local information provided by the Hilbert circle
is therefore that the price curve crosses this side or, in the corner case, both sides
involved, moving towards p∗. There is also global information, since the remaining
part of the curve for s ≥ r will remain within this Hilbert circle.

Here are some additional results regarding the Hilbert distance:

• Consider a Hilbert disk centered at p∗, with radius equal to d(p∗,p(t)). The
monotonicity property means that the part of the price curve corresponding
to profit rates smaller than t is outside the disk. It can be shown (Fact 24)
that the straight line segment joining any two outside points on the price
curve also lies outside the Hilbert disk. A curve can therefore not make
such a close turn around a corner of a Hilbert disk that a straight segment
would cut into the Hilbert disk.

• Up to now we have only considered the distance between a price vector
p(r) and the end p∗ of the price curve. It can be shown (Fact 25) that
the distance between p(r) and p(t) decreases as r increases: d(p(r),p(t)) >
d(p(s),p(t)) whenever r < s < t ≤ r∗. Therefore the Hilbert disks centered
at p(t) are attractive for the part of the curve corresponding to profit rates
lower than t. Curiously enough, if there are at least four commodities, then
the expected opposite inequality does not hold: as the profit rate rises above
t, the Hilbert circles centered on t will not always monotonically release the
price curve again.

5.3. Speed of Convergence. Consider the Hilbert distance between p(r) and p∗

as a function of r. It is a decreasing function. Its derivative at r∗ indicates how fast
the relative prices p(r) converge towards p∗ in a neighborhood of r∗. And since
the Hilbert distance between two close positive vectors is an approximation of the
angle between them (more precisely: in a neighborhood of p∗, the ratio between
d(p∗,x) and the angle (p∗x) is lower and upper bounded by positive numbers, see
Fact 26), such a derivative does give an idea of the speed of convergence according
to common intuition.

It can be shown that the first and second derivatives exist. The first derivative
(speed of convergence) depends on the relative position of p∗ and the tangent to
the curve at p∗. See Fact 27 in the Appendix for the exact formula. Except in
the case of uniform organic composition, the first derivative is finite and strictly
negative, indicating that the convergence is neither extremely slow nor extremely
fast. And the second derivative (acceleration of convergence) may be positive or
negative, that is, the convergence may accelerate or decelerate according to the
choice of the labor vector.
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6. Outlook: Additional Results for n = 3

The following results hold for the case n = 3, but can be adequately generalized
for higher dimensions.

• All price curves are conics. If there are two critical lines, the price curve
starting at ` also passes through the three right hand eigenvectors p∗, p1,
and p2 (Fact 29). More precisely, the price curve for −1 ≤ r ≤ r∗ is a
part of this conic. The complementary part, which contains p1 and p2, is
“virtual” and corresponds to profit rates outside this range. However, sev-
eral properties mentioned earlier do hold for the virtual part. Compare for
instance Figure 5 and Figure 10. In Figure 5, the price curves correspond-
ing to different labor vectors ` and m intersect at point p in the simplex
and, more generally, p`(r), pm(r), and p are aligned for any r. In Figure
10, the price curves starting on the Northeast side of the simplex have no
intersection in the simplex other than p∗, see Section 2.4. But their virtual
parts admit another intersection at p̂ outside the simplex, and for any r,
the level lines are concurrent on p̂.

• Any conic is defined by four points and a tangent. Knowing `, p∗, p1, and
p2, one additional piece of information is needed. Most conveniently it is
the tangent in its beginning point ` (Fact 30).

• Any conic is also defined by five points, no four of which are collinear.
Therefore price curves belonging to possibly different A and ` coincide if
they have at least five intersection points, no four of which are collinear.
Compare with Section 4.4; it was asserted there that four intersections
at identical profit rates make the whole price curves coincide. Only one
intersection point is gained if the price curves are not required to intersect
at equal profit rates.

• Let there be only one critical line. There exists only one non-Frobenius
eigenvector p1. In this case, the price curve passes through `, p∗, p1, and
is tangent to the line passing through p1 which is orthogonal to the left
hand Frobenius eigenvector q∗. Again, an additional piece of information
is needed, such as the tangent in `, to define this price curve uniquely.

• In the standard normalization, the conics are hyperbolas if there are two
critical lines, ellipses if there are no critical lines, and parabolas if there is
one critical line (Fact 31).

• In the standard normalization, let ` move parallel to a critical line. Then
the tangents to the different price curves in ` are concurrent on a point
which belongs to the other critical line (if there are two critical lines) or
belongs to the same critical line, if it is the only one (Fact 33).

7. Conclusion

We have studied the behavior of relative prices when the rate of profit varies.
Several pieces of information have been assembled. We first noticed qualitative
properties of the curve, e.g., the fact that they turn ‘left’ or ‘right’ according to
the region to which the labor vector belongs, and within which the whole curve
remains. These regions are delimited by critical lines or critical subspaces in higher
dimensions, which correspond to invariant subspaces with respect to the input
matrix. Quantitative properties have also been found. Our endeavor was to give
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content to the assertion that relative prices vary monotonically, which requires one
to adopt an adequate measure of the distance between price vectors. We have
thus been able to define attractive lines, attractive ellipses, and attractive Hilbert
circles—certainly the most promising route of research.

These results clarify the question of relative prices. Even if their movement is
undoubtedly complex, it is not chaotic, and follows some definite laws.

Appendix A. Mathematical Proofs

The Appendix gives references to justify the statements made in the body of
the paper, and provides proofs of most results, including many new proofs. (A, `)
represents a basic n× n economy without necessarily assuming n = 3.

We will call the vector p 6= o a “virtual price vector for technology (A, `) asso-
ciated with profit rate r,” if a scalar w exists so that

(1 + r)Ap + w` = p. (11)

If moreover−1 ≤ r < r∗ (and therefore w > 0), then p is called a price of production
vector, not qualified as “virtual.”

Representations of the Technology.

Fact 1. Here is a prescription how to transform A, `, and the price vectors p if
physical units are changed. Assume 1 new unit of good i is equal to bi old units
of i, and 1 new unit of labor is equal to d old units of labor. Define the vector b
with elements bi, and the vector c with elements ci = 1/bi, i.e., 1 old unit of good
i is equal to ci new units of good i. Then one has to multiply all old price vectors
element by element by the vector b, multiply the matrix A element by element by
the matrix bc>, and multiply the old labor vector element by element by the vector
1
db

Normalizations.

Fact 2. The barycentric coordinates of normalized price vectors are independent of
the representation of the economy.

Proof. Assume p is normalized such that g>p = 1, i.e. g1p1 + · · ·+gnpn = 1. Using
the unit vectors ei one can write

p = p1e1 + · · ·+ pnen = g1p1
e1

g1
+ · · ·+ gnpn

en

gn
. (12)

This shows that p is the weighted average of the scaled unit vectors ei

gi
, the corners

of the simplex. The barycentric coordinates are therefore simply the gipi. These
are invariant under changes in representation, since a change in units of the ith
commodity affects gi and pi in opposite ways and therefore leaves their product
unchanged. �

Fact 3. In the standard normalization, normalized prices for a given profit rate r
are linear functions of the normalized labor vectors, with the origin in the space of
normalized prices located at p∗. The formulas for normalized wage and price are
equations (4) and (5).
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Proof. For r < r∗, one obtains the normalized wage by combining equation (2) with
g>p = 1:

w =
1

g>(I − (1 + r)A)−1`
. (13)

Seting g = q∗ in (13) gives (4).
Equations (1) and (4) give the following defining equation for normalized prices:

(
I − (1 + r)A

)
p =

`

q∗>`

(
1− 1 + r

1 + r∗

)
(14)

This is a linear function in the normalized labor coefficient l = `/q∗>`, but nor-
malized labor coefficients do not form a linear space. Therefore we subtract the
following identity involving the normalized Perron-Frobenius eigenvector p∗:(

I − (1 + r)A
)
p∗ = p∗

(
1− 1 + r

1 + r∗

)
(15)

This gives (
I − (1 + r)A

)
(p− p∗) = (l− p∗)

(
1− 1 + r

1 + r∗

)
(16)

and therefore (5). �

If r = r∗, then I − (1 + r)A is singular, but on H it remains regular. To prove
this, take any vector t for which the value of q∗>t lies outside the interval [0, 1] (for
instance t = −p∗ or t = −ι will do), and form the matrix I − tq∗>− (1+ r)A. We
will show that this matrix, which coincides on H with I − (1 + r)A, is nonsingular
on all of Rn if r remains in the closed interval −1 ≤ r ≤ r∗. Take any p which
satisfies (

I − tq∗> − (1 + r)A
)
p = o. (17)

If one premultiplies (17) with q∗> it follows(
1− q∗>t− r + 1

r∗ + 1

)
q∗>p = 0, (18)

and therefore q∗>p = 0. Therefore (17) becomes p = (1 + r)Ap. If −1 ≤ r < r∗,
then I − (1 + r)A is nonsingular and it follows p = o. Remains only to investigate
the case r = r∗. Since there is, up to a scalar factor, only one eigenvector associated
with the Perron-Frobenius eigenvalue, p = (1 + r∗)Ap implies p = αp∗. Applying
q∗>p = 0 to this gives α = 0, i.e., again p = o. This concludes the proof of
nonsingularity. Instead of (5) one can therefore also write

p− p∗ =
r∗ − r

1 + r∗

(
I − tq∗> − (1 + r)A

)−1

(l− p∗) (19)

and (19) has the advantage over (5) that it is defined on the entire closed interval
−1 ≤ r ≤ r∗. This may be helpful for computer simulations, and it establishes the
continuity and differentiability of the price curves in their common endpoint.
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The Price Space of an Economy. Given a technology (A, `), we define its price
space P as the linear subspace of Rn spanned by all virtual price vectors p(r)
where r 6= −1 and 1/(1 + r) is not an eigenvector. The dimension of this price
space, s = dim(P), is called the “degree of regularity” of the economy, notation
s = deg(A, `). The economy is called regular (Schefold, 1976) if s = n, and irregular
if s < n.

It is easy to see that P is A-invariant, because ` ∈ P by continuity, and Ap(r) =
(p(r)− w`)/(1 + r) ∈ P. One can say even more:

Fact 4. Given a profit rate r which is either r = −1 or, if it is not, satisfies the
condition that 1/(1 + r) is not an eigenvalue of A. Let p(r) be the price vector
associated with r. Then the price space of the technology (A, `) is the smallest
A-invariant space containing p(r).

Proof. Take any A-invariant V which contains p(r). Then V also contains Ap(r),
hence V 3 −(1 + r)Ap(r) + p(r) = w`. Since 1/(1 + r) is not an eigenvalue, w
must be nonzero, therefore V 3 `. Now take any other r such that 1/(1 + r) is
not an eigenvalue of A, and any other w > 0. The mapping p 7→ (I − (1 + r)A)p
is a monomorphism V → V, therefore also an epimorphism. Since ` ∈ V, the p
satisfying the equation (1+ r)Ap+w` = p is also in V. Hence the price space P of
the technology (A, `) is contained in all A-invariant subspaces containing the given
p(r). Since P itself is A-invariant, the statement follows. �

Fact 5. Assume the economy has degree of regularity s. Then s is the greatest
integer such that the vectors `,A`,A2`, . . . ,As−1` are independent, and the price
space can be written as P = {`,A`,A2`, . . . ,As−1`}.

Proof. Follows immediately from Fact 4. �

Fact 6. Assume the economy has degree of regularity s. For s distinct profit rates
r1, . . . , rs the vectors p(r1), . . . ,p(rs) span the price space P.

Proof. Fact 6 was first proved by Schefold (1976, Theorem 1.1) in the regular
case, and extended by Raneda and Reus (1985) to s < n. The following sim-
ple proof by induction follows (Bidard and Salvadori, 1998, Theorem 1). Given
s virtual price vectors p(ri) associated with different profit rates. If ` is one
of the price vectors, then these price vectors must be rearranged in the form
`,A`,A2`, . . . ,At−1`,p(rt+1), . . . ,p(rs) where 1 ≤ t ≤ s and At` is not one of the
p(ri). If ` is not among the original price vectors, then set t = 0 in what follows. By
construction, ri 6= −1 for t+1 ≤ i ≤ s. Now assume there is a linear dependence re-
lationship between those s vectors. Take the image of the relationship under A, and
substitute (1+ri)−1(p(ri)−wi`) for Ap(ri) for t+1 ≤ i ≤ s. This generates a sec-
ond linear dependence relationship among `,A`,A2`, . . . ,At`,p(rt+1), . . . ,p(rs).
After elimination of p(rt+1) between the first and second relationship, a new rela-
tionship is obtained among `,A`,A2`, . . . ,At`,p(rt+2), . . . ,p(rs). Repeating this
procedure, all original price vectors disappear and a contradiction is obtained since,
by Fact 5, `,A`,A2`, . . . ,As−1` are independent. �

Fact 6 allows us to define the price space as the space spanned by all virtual
price vectors (no restriction on the profit rates); but the same space is also spanned
by all price vectors for profit rates ri in the interval −1 ≤ ri < r∗ or −1 ≤ ri ≤ r∗

etc.



RELATIVE PRICES: FACTS AND FIGURES 27

Fact 7. If the economy is regular, then for any −1 ≤ r1 < · · · < rn ≤ r∗, and for
any r, −1 ≤ r < r∗, the three determinants det

(
p(r1), . . . ,p(rn)

)
,

det
(
p(r),Ap(r), . . . ,An−1p(r)

)
, and det(`,A`, . . . ,An−1`) have the same sign.

Proof. This was proved in (Bidard, 1991, p. 56). The determinant det
(
p(r1), . . . ,p(rn)

)
does not vanish due to Fact 6, and varies continuously with r1 < · · · < rn, therefore
its sign is constant. For rk = −1 + εk (k = 1, . . . , n; ε > 0) and using a Taylor
expansion of p(r) up to order n − 1 it is easily checked that the sign is that of
det(`,A`, . . . ,An−1`). Similarly, the determinant det(p(r),Ap(r), . . . ,An−1p(r))
does not vanish for −1 ≤ r < r∗, and by continuity, when r moves to −1, its sign
is that of det(`,A`, . . . ,An−1`). �

If the economy is irregular, prices vary in a s-dimensional subspace P, and one
can define a determinant within this subspace. For the same reason as above, it
does not vanish and has a constant sign.

Fact 8. An economy is irregular if and only if a (real or complex) left hand eigen-
vector qi of A exists so that q>i ` = 0.

Proof. If the vectors `,A`,A2`, . . . ,An−1` are dependent, the subspace G = {y :
y>` = y>A` = y>A2` = y>An−1` = 0} is not the null space. As G is invariant
under A>, it contains an eigenvector of A>, i.e., a left hand eigenvector qi of
A. Conversely, if q>i ` = 0 and qi is a left hand eigenvector, all vectors Ak` are
orthogonal to qi, hence the n vectors `,A`,A2`, . . . ,An−1` are dependent. �

Fact 9. If A has a (real or complex) eigenvalue with eigenspace of dimension
greater than one, then every economy is irregular.

Proof. Assume λi has two non-proportional left eigenvectors associated with it, call
them q1 and q2. Given any `, the vector (q>1 `)q2 − (q>2 `)q1 is a left eigenvector
orthogonal to `, therefore (A, `) is irregular. �

The literature related to Facts 8 and 9 is discussed in (Bidard and Salvadori,
1995, p. 389).

Fact 10. Every A-invariant subspace of V ⊂ Rn contains an A-invariant sub-
space which is either one- or two-dimensional, and an A-invariant subspace whose
dimension is by either one or two smaller than the dimension of V.

Proof. Whatever V, we can always choose a basis of it and talk in terms of matrices.
I.e., we can assume V = Rm and A is a m×m matrix. The characteristic equation
det(A − λI) = 0 has at least one real or one pair of conjugate complex roots. A
real eigenvector defines a one-dimensional A-invariant real subspace. Now assume
the eigenvectors are complex: call them u + iv, with eigenvalue a + ib, with u, v,
a, and b real. Then the complex identity A(u+vi) = (u+vi)(a+ bi) is equivalent
to the identity between real partitioned matrices

A
[
u v

]
=
[
u v

] [ a b
−b a

]
(20)

Since each column of the matrix on the righthand side is a linear combination of u
and v, it follows that u and v span a 2-dimensional A-invariant subspace.

Rm also has a one- or two-dimensional A>-invariant subspace, call it W, and
the space orthogonal to W is A-invariant and has dimension m − 1 or m − 2.
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(But there is no guarantee that this orthogonal space has a basis consisting of
eigenvectors.) �

Successive application of Fact 10 gives:

Fact 11. There exists a complete chain of A-invariant subspaces

{p∗} ⊂ · · · ⊂ Er ⊂ Es ⊂ Et ⊂ · · · ⊂ Rn (21)

such that the dimensions of consecutive subspaces differ by 1 or at most 2.

Fact 12. Let H be the hyperplane orthogonal to q∗. There exists a one-to-one cor-
respondence between A-invariant subspaces of Rn which contain some semipositive
vector and A-invariant subspaces of H.

Proof. The condition “containing some semipositive vector” may be replaced by
“containing p∗,” because if an A-invariant subspace contains a semipositive vector
` � o, it must contain the end point p∗ of the price curve starting at `.

An invariant subspace E containing p∗ can be decomposed as the direct sum
E = {p∗}⊕S, where S = E∩H and {p∗} is, of course, the space spanned by p∗. Since
both H and E are A-invariant, so is S. Therefore the assignment E 7→ S = E ∩ H
defines a one-to-one correspondence between A-invariant subspaces E of Rn which
contain some semipositive vector and all A-subspaces S ⊂ H. The inverse mapping
is S 7→ E = {p∗} ⊕ S. �

Identification of Price Curves and of Technical Data. If enough price vec-
tors associated with some technique are known, then Fact 6 allows to identify the
price space P and the degree s as s = dimP. If the profit rates associated with
these prices are also known, then the following can be said about the associated
techniques:

Fact 13. (Compare Schefold, 1976). Let (A, `) be an economy of degree s =
deg(A, `) with price space P. Consider a second economy (B,m). Then the fol-
lowing three properties are equivalent:

(i) The virtual relative prices associated with (A, `) and (B,m) coincide for s+1
different profit rates.

(ii) The curves of virtual relative prices associated with (A, `) and (B,m) coin-
cide for any profit rate.

(iii) m = µ` for some µ 6= 0, and B = A+`d>+C where d> is any row vector
and the matrix C satisfies Cf = o for all f ∈ P.

Proof of (i)⇒(iii). The prices and profit rates which coincide will be called pi and ri

(i = 1, . . . , s+1). First look at the case that all ri 6= −1. Define λi = (1+ri)−1 and
write Api = λi(pi−wi`) and Bpi = λi(pi−vim) for i = 1, . . . , s+1 and appropriate
vi and wi. Due to Fact 6, there exists a relationship α1p1 + · · · + αs+1ps+1 = o
which is up to a factor the only linear combination which annuls these vectors.
Premultiplication of this relationship by A and by B gives

s+1∑
i=1

αiλipi =
(s+1∑

i=1

αiλiwi

)
` =

(s+1∑
i=1

αiλivi

)
m. (22)

Since all λi are different, the leftmost sum cannot be zero. Therefore m is propor-
tional to `, say m = µ` with µ 6= 0, and therefore (B −A)pi = λi(µvi − wi)` for
all i (i.e., one has s+1 such identities). Now look at the case that there is a j with
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rj = −1; then identity m = µ` with µ 6= 0 follows from the equality of the jth
relative prices, and (B −A)pi = λi(µvi − wi)` holds for all i 6= j, i.e., still for the
prices associated with s different profit rates.

Since by Fact 6 the prices associated with s (and a fortiori those with s + 1)
different profit rates span P, it follows in either case that (B − A)P is the line
spanned by `. In other words, a d> exists so that for all x ∈ P, (B−A)x = `d>x.
Therefore B −A = `d> + C where CP = {o}. �

Proof of (iii)⇒(ii). Take any p with (1 + r)Ap = p − w` for some w, and define
v =

(
w − (1 + r)d>p

)
/µ. Then p satisfies (1 + r)Bp = p − vm. Therefore

any relative price vector associated with (A, `) is a relative price vector associated
(B,m), and vice versa. Hence the two curves coincide. �

Since (ii) clearly implies (i), this concludes the proof of Fact 13.

The correspondence between (A, `) and (B,m) is easily understood:
• The transformation ` 7→ m = µ` reduces prices in terms of wage by a

factor µ, but does not affect relative prices.
• If (A, `) is irregular, the price curve lies in subspace P of dimension s

and, even if the price-and-wage vectors were known (Schefold, 1976), the
observation of the curve leaves n(n − s) degrees of freedom on the input
matrix, which is only determined up to a matrix C satisfying CP = {o}.

• For the sake of simplicity, assume s = n, hence C = O, and d > o. Matrix
B = A + d>` can then be interpreted as a “socio-technical” matrix, ob-
tained by incorporating a minimal wage basket d> into the input coefficient
matrix. At any profit rate, the nominal wages paid by the two techniques
(A, `) and (B,m) will then differ by the value of basket d> and, since this
is the only difference, the relative prices are identical.

Intersection of Price Curves.

Fact 14. If the normalized price curves starting in l and m intersect in p, then l,
m, and p are collinear.

Proof. This is a special case of Fact 15 b for t = −1. �

Fact 15. Assume the economies (A, `) and (A,m) have the same input matrix, but
their labor vectors are not proportional to each other. If their virtual relative price
curves intersect at a point p which is not an eigenvector of A, then the following
holds:

(a) The profit rates which (A, `) and (A,m) associate with p are different.
(b) Given any t such that 1/(1 + t) is not an eigenvalue of A. Let p` and pm,

respectively, be the price vectors in economy (A, `) and (A,m) for profit rate t.
Then p`, pm, and p are linearly dependent, i.e., the normalized prices are collinear.

(c) If the normalized virtual price curves of (A, `) and (A,m) are not both
straight lines, then p is their only intersection point which is not an eigenvector of
A.

Proof. The vector p 6= o is an intersection point of the two virtual relative price
curves if and only if

p = (1 + r)Ap + w` (23)
p = (1 + s)Ap + vm (24)
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for some r, s, w and v. Both wages w and v are nonzero because p is not an
eigenvector. If r = s then it follows w` = vm, which was ruled out by assumption.
This proves part (a).

Now assume p` is the price vector for profit rate t under technology (A, `), and
pm is price vector for the same profit rate t under technology (A,m). From the
assumption that 1/(1+t) is not an eigenvalue of A follows that the wages associated
with p` and pm are both nonzero. Then we can assume, without loss of generality,
that these wages are again w and v; if they are not, a simple rescaling of p` and
pm will achieve this. In other words, from now on p` and pm are such that

p` = (1 + t)Ap` + w` (25)
pm = (1 + t)Apm + vm (26)

Subtract (23) from (25) and rearrange to get(
I − (1 + t)A

)
(p` − p) = (r − t)Ap, (27)

and since 1/(1 + t) is not an eigenvalue of A, one can solve

p` − p = (r − t)
(
I − (1 + t)A

)−1
Ap. (28)

If one subtracts (24) from (26), one gets by the same manipulations

pm − p = (s− t)
(
I − (1 + t)A

)−1
Ap. (29)

(28) and (29) say that p` − p is a scalar multiple of pm − p, therefore the three
vectors are linearly dependent.

To show uniqueness of p, i.e., to prove (c), let us work here with the normalized
versions of the price curves. Applied to the normalized vectors, part (b) means that
p lies on the straight line through ` and m. Since the curves themselves are not
straight, there must be a profit rate s such that 1/(1 + s) is not an eigenvalue and
at least one of the prices for profit rate s, which we call again p` and pm, are not
on this straight line—hence the line through p` and pm does not coincide with the
line through ` and m. Therefore, by part (b) again, p lies on the intersection of
these two different lines, which makes it unique. This completes the proof of Fact
15. �

Next we give a method to construct families of price curves which have no inter-
section points at all.

Fact 16. All normalized price curves which start at the edge of some convex set R
and stay entirely inside R have no intersections other than their common endpoint.

Proof. Take two trajectory segments, starting at points ` and m, respectively, on
the edge of the region R, and assume they intersect at point p, which is not their
common endpoint. At p, the first trajectory has profit rate r, and the second profit
rate s. By Fact 15 (b), p lies on the straight line going through ` and m, and since
it must be inside R, it must be between ` and m. This contradicts equations (28)
and (29) which imply in our case that

p =
s + 1
s− r

w`− r + 1
s− r

vm. (30)

Since the coefficients of ` and m have opposite signs, p cannot lie between ` and
m. �
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Examples of convex sets which the price curves never leave again are any Hilbert
disk around p∗, and the unit simplex itself.

Tangents. If organic composition is not uniform, the unnormalized price curve
belongs to a cone of dimension 2, whatever the number of commodities. At any
point p(r), this cone admits a tangent plane (of dimension 2), which is spanned by
vector p(r) and another vector which we now describe.

• at any profit rate r, −1 ≤ r < r∗, vector (I − (1 + r)A)−1Ap is tangent.
(This results from the expression of the derivative of vector p(r) with re-
spect to r.) In particular, vector A` is tangent at the beginning of the
curve.

• At r∗, a tangent vector also exists. Since I − (1 + r∗)A is singular, its
description first requires to isolate this singularity (Fact 17), before the
tangent vector can be characterized in Fact 18.

Fact 17. Let H be the hyperplane defined by H = {x : q∗>x = 0}. For any non-
eigenvalue λ, let Gλ be the matrix representative of the endomorphism gλ defined
by the two conditions: gλ(p∗) = o and gλ coincides on H with (λI −A)−1. The
following matrix identity holds:

(λI −A)−1 = (λ− λ∗)−1p∗q∗>/(q∗>p∗) + Gλ (31)

Proof. Since p∗ /∈ H, the whole space is decomposed as a direct sum {p∗} ⊕ H.
It is immediately checked that the two members of the above identity coincide on
{p∗} and on H. �

Fact 18. Let q∗ and p∗ be normalized by setting q∗>` = q∗>p∗ = 1. There exists
a unique vector c, solution to

(λ∗I −A)c = `− p∗ (32)

q∗>c = 0 (33)

This vector lies in the tangent plane. It is the tangent to the normalized price curve
in the normalization by the standard commodity.

Proof. H is, as always, the hyperplane orthogonal to q∗. The endomorphism rep-
resented by λ∗I −A sends H into H and, since p∗ /∈ H, its restriction to H is an
isomorphism of H. Let its inverse be denoted by f : H → H. Vector ` − p∗ ∈ H,
and the above equations define c as c = f(`−p∗). When identity (31) is applied to
vector `, it appears that the normalized price vector p(λ) is equal to cλ = Gλ(`),
whose limit as λ → λ∗ is c.

Here is a more explicit computation of the derivatives of the price curves in the
standard normalization: Differentiation of (16) gives(

I + (1 + r)A
)
ṗ(r) = A

(
p(r)− p∗

)
− 1

1 + r∗
(l− p∗). (34)

With the help of (5) this gives, for the case −1 ≤ r < r∗

ṗ(r) =
((

I − (1 + r)A
)−1

A− 1
r∗ − r

I
)(

p(r)− p∗
)
. (35)

For r = −1 this simplifies to

ṗ(−1) =
(
A− 1

1 + r∗
I
)
(l− p∗). (36)
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For r = r∗, (34) gives(
I − (1 + r∗)A

)
ṗ(r∗) = − 1

1 + r∗
(l− p∗). (37)

�

Since q∗>ṗ(r) = 0, the following equation is also valid, for any vector t:(
I − tp∗> − (1 + r∗)A

)
ṗ(r) = − 1

1 + r∗
(l− p∗), (38)

If t is chosen as in Fact 3, one can take the inverse to get

ṗ(r∗) = − 1
1 + r∗

(
I − tp∗> − (1 + r∗)A

)−1

(l− p∗). (39)

Decomposition of Price Curves. In Fact 19 we assume that A is diagonaliz-
able, i.e., its eigenvectors span all of Rn. This is the generic situation; those A
which are not diagonalizable are exceptional. If A is diagonalizable, then all price
curves of economies with higher degree of regularity (higher dimensions) can be con-
structed as the sums of price curves located in one- or two-dimensional A-invariant
subspaces:

Fact 19. Assume A is diagonalizable and has m different real and q different pairs
of conjugate complex eigenvalues. (Each eigenvalue is counted here only once, even
if its associated eigenspace has higher dimension). In the standard normalization,
with the origin of the coordinate system moved to p∗, any price curve can be de-
composed as the sum of m′ + q′ price curves, where m′ ≤ m and q′ ≤ q, with m′

price curves confined to one-dimensional lines and q′ confined to two-dimensional
planes.

Proof. To prove this, we will construct m′ + q′ idempotent matrices P i (i =
1, . . . ,m′+ q′), where m′ ≤ m and q′ ≤ q. They are “idempotent” in the sense that
P iP i = P i, but P i are not necessarily symmetric. In other words, they are projec-
tion matrices, but not necessarily orthogonal projection matrices. They have the
following properties. For 1 ≤ i ≤ m′, the P i project on 1-dimensional subspaces,
and for m′ +1 ≤ i ≤ m′ + q′, on 2-dimensional subspaces of Rn. Furthermore, each
P i satisfies

P iA = AP i (40)

and finally, the following holds:

l− p∗ =
m′+q′∑

i=1

P i(l− p∗) (41)

Remember that l is the normalized vector that is a scalar multiple of `, and we are
using the standard normalization.

Before constructing the P i, we will verify that the application of projection
matrices P i with the above properties to the price curve starting at l gives the
decomposition specified in Fact 19. Premultiplication of equation (16) by P i gives,
using (40): (

I − (1 + r)A
)
P i

(
p(r)− p∗

)
= P i(l− p∗)

(
1− 1 + r

1 + r∗

)
(42)
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Now call xi(r) the normalized price vector for profit rate r with normalized labor
vector P il + (I − P i)p∗. Its defining equation is(

I − (1 + r)A
)(

xi(r)− p∗
)

=
(
P il + (I − P i)p∗ − p∗

)(
1− 1 + r

1 + r∗

)
(43)

Since the righthand sides of (42) and (43) are equal, it follows xi(r)−p∗ = P i(p(r)−
p∗), i.e., xi(r)− p∗ remains in the subspace on which P i projects.

Now sum (42) over all i to get, using (41):

(
I − (1 + r)A

)m+q∑
i=1

(
xi(r)− p∗

)
= (l− p∗)

(
1− 1 + r

1 + r∗

)
(44)

From this follows
m+q∑
i=1

(xi(r)− p∗) = p(r)− p∗, (45)

i.e., the xi(r)− p∗ form indeed a decomposition of p(r)− p∗.
To conclude the proof, we have to construct the P i with the required properties.

Since A is diagonalizable, one can find n generally complex linear independent
left eigenvectors q1, . . . , qn, associated with (not necessarily distinct) eigenvalues
λ1, . . . , λn. In what follows, the subscripts j and k go from 1 to n, while the
subscript i goes from 1 to m′ + q′. λj or λk refers to a different indexing than
λi: in the former, the same eigenvalue can appear more than once, in the latter it
cannot; and if the eigenvalue is complex, then the latter indexing refers to pairs of
conjugate complex eigenvalues, while the former indexing lists each eigenvalue of
this pair separately.

Our complex basis of the n-dimensional complex space can be constructed in
such a way that the following holds:

• If λk is real, then qk is also real.
• If λk is complex, then both qk and its conjugate complex qk is in this basis.
• If λk = λj and q>k (l−p∗) 6= 0, then q>j (l−p∗) = 0. I.e., for each eigenvalue

there is at most one eigenvector in this basis which satisfies q>k (l−p∗) 6= 0.

This can be easily achieved; simply replace qj by qj −
q>j (l−p∗)

q>k (l−p∗)
qk.

If L is the matrix which has these left eigenvectors as rows, then the matrix
inverse R = L−1 has right eigenvectors as its columns. The column vectors of R
will be called p1, . . . ,pn. Since RL(l−p∗) = l−p∗ and RL =

∑
k pkq>k , it follows

that also ∑
k: q>k (l−p∗) 6=0

pkq>k (l− p∗) = l− p∗ (46)

Now let us go over to our subscripts i. For every real eigenvalue λi for which there
is a left eigenvector qk such that q>k (l − p∗) 6= 0 (there can be at most one k for
every λi), we define P i = pkq>k . For every pair of conjugate complex eigenvectors
(λi, λi for which there is an associated eigenvector qk such that q>k (l− p∗) 6= 0 we
define P i = pkq>k + pkqk

>. If qk = s + it and pk = u + iv, then one can also

write it as P i = 2
[
u v

] [s>
t>

]
. These projection matrices have all the required

properties. �
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Degrees of Regularity 2 and 3. Due to the decomposition discussed in Fact
19, a characterization of price curves in one- and two-dimensional subspaces of the
normalization hyperplane (which have degrees of regularity 2 and 3 respectively)
will also give information about higher-dimensional price curves. Fact 20 gives a
complete characterization of price curves of degrees 2 or 3, and a partial charac-
terization of price curves of higher degrees. The formulas for degrees 2 and 3 look
identical, but in the case of degree 2 they are to be interpreted in the field of real
numbers, and in the case of degree 3 in the complex numbers.

Fact 20. Let qj be a (possibly complex) left eigenvector of A with eigenvalue λj,
and let p(r) be the normalized price vector associated with the normalized labor
vector l (using the standard normalization). Then there is a function kj(r), which
depends on A only through r∗ and λj, with the following defining property:

q>j p(r) = kj(r)q>j l (47)

The modulus of this function, |kj(r)|, declines monotonically as r rises from −1
to r∗. If kj(r) is complex, then the derivative of its argument arg kj(r) does not
change sign, i.e., kj(r) moves monotonically either clockwise or counterclockwise
across the complex plane.

Proof. The decline of the modulus |kj(r)| was first established in (Bidard and Steed-
man, 1996, Theorem 1). To prove Fact 20, write λj = a + bi and λ∗ = (1 + r∗)−1

for the eigenvalues:

q>j p(r) =
q>j p(r)

q∗>p(r)
=

q>j (I − (1 + r)A)−1`

q∗>(I − (1 + r)A)−1`
=

(1− (1 + r)λj)−1

(1− (1 + r)λ∗)−1

q>j `

q∗>`
=

1− (1 + r)λ∗

1− (1 + r)λj
q>j l

(48)
Therefore

kj(r) =
1− (1 + r)λ∗

1− (1 + r)λj
=

λ− λ∗

λ− λj
where λ = (1 + r)−1 (49)

We have a < λ∗ < λ, because λ∗ is the dominant eigenvalue. Now take the
logarithmic derivative with respect to λ:

d

dλ
log

λ− λ∗

λ− λj
=

1
λ− λ∗

− 1
λ− λj

=
λ∗ − λj

(λ− λ∗)(λ− λj)
=

(λ∗ − λj)(λ− λ̄j)
(λ− λ∗)|λ− λj |2

(50)

The denominator is always positive, and the numerator has real part (λ− a)(λ∗ −
a)+ b2 > 0 and imaginary part b(λ∗−λ) (which has the same sign as b). Since, for
a complex number x, log x = log |x|+ i arg x, the statement follows. �

Euclidean Angle Between Price Vectors.

Fact 21. If the input matrix is normal, the Euclidean angle between p(r) and p∗

is a decreasing function of the profit rate. (Section 4.2).

This property is established in (Bidard and Steedman, 1996). If the matrix is
normal, it admits orthogonal critical lines, and the result follows from Pythagoras.

Hilbert Circles. The lemmas collected in Fact 22 will be used in the proofs below:

Fact 22. (a) The Hilbert distance only depends on relative prices.
(b) d(x, αx + βy) ≤ d(x,y) for any α, β ≥ 0.
(c) d(Hx,Hy) ≤ d(x,y) for any positive matrix H.
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Now define the matrix

H(r, s) =
(
I−(1+s)A

)−1(
I−(1+r)A

)
=
(
I−(s−r)

(
I−(1+r)A

)−1
)−1

. (51)

Then for −1 ≤ r < s < t ≤ r∗, H � O and
(d) H(s, r)p(r) = p(s) and H(t, r)p(r) = p(t).
(e) (t− r)H(t, r) = H(s, r)

(
(s− r)I + (t− s)H(t, r)

)
.

(f) H(s, r)p∗ ∝ p∗.

Fact 23. The successive Hilbert circles centered at p∗ are attractive: If r < s < r∗

then d(p(s),p∗) ≤ d(p(r),p∗).

Proof. This is a special case of Fact 25, but here is a direct proof: Using prop-
erties (d), (f), (a), and (c) in Fact 22 successively, one obtains d(p(s),p∗) =
d(H(s, r)p(r),H(s, r)p∗) ≤ d(p(r),p∗). �

Fact 24. Let r < t ≤ r∗. No point on the straight line segment p(r)p(t) has a
smaller Hilbert distance from p∗ than p(t).

Proof. Choose any s with r < s < t. Using properties (d), (a), (f), (e), (c), and (d)
successively, one obtains

d(p(t),p∗) = d(H(t, r)p(r),H(s, r)p∗) (52)

= d(H(s, r)
(s− r

t− r
I +

t− s

t− r
H(t, r)

)
p(r),H(s, r)p∗) (53)

≤ d(
s− r

t− r
p(r) +

t− s

t− r
H(t, r)p(r),p∗) (54)

= d(
s− r

t− r
p(r) +

t− s

t− r
p(t),p∗) (55)

By an appropriate choice of s, the first argument in the last expression can be
made to represent any point on the straight line segment p(r)p(t). This segment
is therefore outside or at most at the edge of the Hilbert circle passing through
p(t). �

Fact 25. The successive Hilbert circles centered at p(t) are attractive: whenever
r < s < t ≤ r∗, then d(p(s),p(t)) ≤ d(p(r),p(t)).

Proof. Using properties (d), (e), (a), (c), (b), and (d) in Fact 22 successively, one
obtains:

d(p(s),p(t)) = d(H(s, r)p(r),H(t, r)p(r)) (56)

= d
(
H(s, r)p(r),H(s, r)((s− r)I + (t− s)H(t, r))p(r)

)
(57)

≤ d
(
p(r), (s− r)p(r) + (t− s)H(t, r)p(r)

)
(58)

≤ d
(
p(r),H(t, r)p(r)

)
= d(p(r),p(t)). (59)

�

The symmetric property d(p(r),p(s)) < d(p(r),p(t)) holds if n = 3 but a coun-
terexample for n = 4 is, according to (Bidard and Krause, 1996):

A =
1

540

[
423 360 0 0
83 0 10 0
0 2629 0 1332
0 18 0 477

]
` =

[
1
1
1
1

]
p(0) =

[
20
5
50
10

]
p∗ =

[
5
1
8
1

]
(60)
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r∗ = 1/11; d(`,p(0)) = log 10 > log 8 = d(`,p∗). However computer simulations
(made by L. Pierre) show that such counterexamples are rare.

Fact 26. In a neighborhood of any positive vector x � o, the ratio between the
Euclidean angle (x,y) and the Hilbert distance d(x,y) is lower and upper bounded
by positive scalars.

Proof. Let us write
yi = xi + εixi (61)

with εi small. The cosine of the angle between x and y is

cos(x,y) =
(
n +

∑
i

εi

)(
n
∑

i

(1 + εi)2
)−1/2

(62)

Using a Taylor expansion, one obtains

cos(x,y) = 1− 1
2

(∑
i ε2

i

n
−
(∑

i εi

n

)2
)

+ o(ε2) (63)

= 1− 1
2

var(ε) + o(ε2). (64)

Hence the Euclidean angle between x and y is (x,y) = σ(ε) + o(ε) where σ is the
standard deviation of the εi.

A similar expansion of the Hilbert distance shows that

d(x,y) = log
(

max
i

(1 + εi)
/

min
i

(1 + εi)
)

= e(ε) + o(ε) (65)

where e(ε) = maxi εi −mini εi is the range of the εi. The result then follows from
the inequality

2 ≤ e/σ ≤
√

2n. (66)
�

By means of compactness arguments, this local relationship can be extended to
any compact set in the interior of the simplex.

Fact 27. Let p∗ be normalized by setting q∗>p∗ = q∗>`. Let c be the vector defined
in Fact 18. The first derivative d1 of d(p(r),p∗) with respect to λ = 1/(1 + r) at
λ = λ∗ is given by

d1 = ci/p∗i − cj/p∗j (67)
where ci/p∗i = maxk ck/p∗k and cj/p∗j = mink ck/p∗k.

Proof. Let p(r) = (λI−A)−1`, with a slight misuse of notation. Writing cλ = Gλ`
it follows from Fact 17 that cλ = c + o(1) when λ → λ∗.

d((λI −A)−1`,p∗) = d((λ− λ∗)−1p∗ + Gλ`,p∗) = d((λ− λ∗)−1p∗ + cλ,p∗) (68)

For every component k, we have(
(λ− λ∗)−1p∗k + cλk

)/
p∗k =

(
(λ− λ∗)−1p∗k + ck + o(1)

)/
p∗k

= (λ− λ∗)−1
(
1 + (λ− λ∗)ck/p∗k + o(λ− λ∗)

)
, (69)

hence

log
{(

(λ−λ∗)−1p∗k + cλk

)/
p∗k

}
= log(λ−λ∗)−1 +(λ−λ∗)ck/p∗k + o(λ−λ∗). (70)



RELATIVE PRICES: FACTS AND FIGURES 37

Therefore

d((λI −A)−1`,p∗) = (λ− λ∗)(max
k

ck/p∗k −min
k

ck/p∗k) + o(λ− λ∗). (71)

Hence the conclusion. �

Note that d1 is strictly positive, because vectors c and p∗ are not proportional
(except if c = o, i.e., if ` ∝ p∗). The derivative of d(p(r),p(r∗)) with respect to r
follows from the calculation of d1 and is strictly negative.

Fact 28. There exists a unique vector e, solution to

(λ∗I −A)e = c (72)

q∗>e = 0 (73)

Let d2 be the second derivative of d(p(r),p∗) with respect to λ, at λ = λ∗. Then

d2 = −(ci/p∗i )
2 − 2ei/p∗i + (cj/p∗j )

2 + 2ej/p∗j (74)

where i and j are defined as in Fact 27.

Proof. Since c ∈ H and λ∗I − A is an isomorphism in H, vector e is uniquely
defined. The calculation of the second derivative requires an expansion with one
more term than in the previous proof. According to equation (31) applied to vector
`, we have

p(λ) = (λ− λ∗)−1p∗ + Gλ(`− p∗)

= (λ− λ∗)−1p∗ + G(`− p∗)− (λ− λ∗)(G2(`− p∗) + o(λ− λ∗)

= (λ− λ∗)−1p∗ + c− (λ− λ∗)e + o(λ− λ∗);

(75)

hence

log(λ− λ∗)pk/p∗k = log
(
1 + (λ− λ∗)ck/p∗k − (λ− λ∗)2ek/p∗k + o(λ− λ∗)2

)
= (λ− λ∗)ck/p∗k − (λ− λ∗)2

(
(ck/p∗k)2/2 + ek/p∗k

)
+ o(λ− λ∗)2.

(76)

Hence the conclusion. �

Conics.

Fact 29. (in R3:) Normalized prices p(r) are located on a conic. This conic goes
through the normalized labor vector ` and through any (real or complex) eigenvectors
of A.

Proof. This was first proved in (Steedman, 1996). Here is a shorter proof: By
definition of the prices of production, the three vectors Ap, p, and ` are dependent.
Hence the unnormalized prices satisfy F (p) := det(Ap,p, `) = 0, which is the
equation of a quadratic cone. The normalized prices are located at the intersection
of this cone with a plane, which is a conic. Clearly, the equation of the cone is
satisfied by the vector ` and any eigenvector of A. �

One also already knows when this conic is degenerate: this happens if and only
if ` belongs to a critical line. In the following, we will leave this case apart.

Fact 30. The plane tangent in ` to the quadratic cone of the unnormalized prices
is the one containing ` and A`.
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Proof. The derivative of p(r, 1) at r = −1 is A`. It is the tangent of the price curve
starting at p, if one normalizes the price curve not by some numeraire but if one
keeps w constant. �

Fact 31. (in R3:) In the standard normalization, the conic defined in Fact 29 is
an ellipse, parabola, or hyperbola, according to the number 0, 1, or 2 of real Non-
Frobenius eigenvalues of A. In the case of a parabola, the line connecting p∗ with
the unique other eigenvector is parallel to the axis of the parabola, and in the case
of a hyperbola, the two lines connecting p∗ with the two other real eigenvectors are
parallel to the asymptotes of the hyperbola.

Proof. Consider the intersection of the quadratic cone with the plane {x : q∗>x =
1}. In order to recognize the type of the conic consider the values of function F on
a line of this plane going through p∗. I.e., we calculate F (p∗ + tu) for a vector u

such that q∗>u = 0, and t varying. One obtains F (p∗ + tu) = t2 det(Au,u, `) +
t det(Au−λ∗u,p∗, `) whose sign for t great enough is that of det(Au,u, `). Hence

• If det(Au,u, `) has the same sign whatever u, the conic is an ellipse.
• If det(Au,u, `) is positive for some values of u and negative for other

values, the conic is a hyperbola, and the asymptotic directions are those of
vectors u such that det(Au,u, `) = 0 and q∗>u = 0, i.e., they are the two
real distinct non-Frobenius eigenvectors of A.

• In the limit case where det(Au,u, `) vanishes in one direction, the conic is
a parabola.

�

Fact 32. If the conic is a hyperbola or ellipse, then its center of symmetry is a
vector c proportional to

c ∝ (λ∗−λu) det(p∗,u, `)v+(λu−λv) det(u,v, `)p∗+(λv−λ∗) det(v,p∗, `)u (77)

Proof. The center of symmetry of the conic is a point c = p∗ +αu+βv, where p∗,
u, and v are eigenvectors, such that if c+ x belongs to the conic, so does c−x for
any x ∈ H = {x : q∗>x = 0}.

0 = det
(
A(c + x), (c + x), `

)
= det(Ac, c, `) + det(Ax,x, `) +

(
det(Ac,x, `) + det(Ax, c, `)

) (78)

A sufficient condition is that the large parenthesis is identically 0 for all x ∈ H,
which is the case if it vanishes for x = u and x = v. For x = u one obtains

0 = det(Ap∗ + αAu + βAv,u, `) + det(Au,p∗ + αu + βv, `) (79)

hence, after simplifications

β = (λ∗ − λu) det(p∗,u, `)
/

(λv − λu) det(u,v, `). (80)

Similarly

α = (λ∗ − λv) det(p∗,v, `)
/

(λu − λv) det(v,u, `). (81)

These formulas are independent of any normalisation of u and v. Formula (77) is
a symmetric version of this. �
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Fact 33. Assume the economy has two critical lines, call them i and j. Consider the
tangents to the price curves at point ` when ` moves, in the standard normalization,
parallel to critical line i. These tangents are concurrent on a point which belongs
to the other critical line j.

Proof. According to Fact 30, vector x = (A` − λi`)/(λ∗ − λi) belongs to the
tangent plane. Consider vector p∗ + x: since q∗>x = 1, the tangent in ` to the
normalized prices is the straight line passing through the extremities of ` and x.
Since qj

>(x− p∗) = 0, the extremity of x belongs to the critical line j. Moreover,
x is invariant when ` is replaced by ` + tpi for any t. �

These properties can be extended to higher dimensions. Let us leave apart the
case of uniform organic composition.

• For a price of production vector p in (A, `), matrix [Ap,p, `] has rank 2.
Hence any 3 determinant extracted from it is zero. There are n − 2 inde-
pendent determinants of this type, and each of them provides the equation
of a quadratic cone of dimension n−1. The price curve is therefore located
at the intersection of n−2 quadratic cones, plus the affine hyperplane used
for the normalization.

• The price curve may be parametrized. The simplest way to proceed is
to write down explicitly equation (2). Using Cramer’s rule and setting
w = det(I − (1 + r)A), one obtains pi = pi(r), where pi(r) is a polynomial
of degree n− 1 in r.
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