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Synopsis 

 
We analyze social dynamics in a continuous population where randomly matched individuals have to choose 

between two pure strategies only ('cooperate' (C) and 'not cooperate' (NC)). Individual payoffs associated to the 

possible outcomes of each interaction may differ across groups, depending on the specific social and cultural context 

to which each agent belongs. In particular, it is assumed that three sub-populations are initially present, ‘framing’ 

the game according to the Prisoner’s Dilemma (PD), Assurance Game (AG) and Other Regarding (OR) payoff 

configurations respectively. In this context, we examine both the adoption process of strategies C and NC within 

each sub-population and the diffusion process of ‘types’ (PD, AG and OR) within the overall community. On the 

basis of an evolutionary game-theoretic approach, the paper focuses on the problem of coexistence of PD, AG and 

OR groups as well as of  “nice” (C) and “mean” (NC) strategies. In particular, we show that coexistence between C 

and NC is possible in the heterogeneous community under examination, even if it is ruled out in homogeneous 

communities where only one of the three types is present. 
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Introduction  

 

Though the Prisoner's Dilemma has been extensively studied under a wide variety of 

conditions and perspectives (see e.g. Kandori 1982, Rubinstein 1986, Binmore & Samuelson 1992, 

Ellison 1994), coexistence of strategies has rarely been obtained as a theoretical result. Eshel et al. 

(1999) have considered a large population with a local interaction structure, where unrelated 

individuals often meet with their neighbors and are allowed to occasionally change their own 

strategy, by imitating the most successful agents belonging to the interaction neighborhood. In this 

framework, they define as 'unbeatable' a strategy which turns out to be robust against the invasion 

of a finite group of identical mutants and find that, whenever agents play either Prisoner's Dilemma 

or Chicken game, cooperation is the unique unbeatable strategy insofar as the learning 

neighborhood is far larger than the interaction neighborhood.  

Under very different conditions, Karandikar et al. (1998) obtain a somewhat similar 

conclusion in a model where two agents play the Prisoner's Dilemma over time and follow an 

aspiration-based adjustment rule: such a process leads to the eventual emergence of the mutual 

cooperation outcome (i.e. even in this framework, coexistence is ruled out). However, Palomino & 

Vega-Redondo (1999) correctly point out that such a result crucially depends on the presence of 

inter-agent ‘feedback effects’ due to the small number of players involved in the game. On the 

contrary, in their paper they set up an aspiration-based dynamic model of bounded rationality where 

a continuum of agents are randomly matched and play the Prisoner's Dilemma: under certain 

conditions, their analysis brings about an interesting coexistence result, as long-run partial 

cooperation (never exceeding half of the population) emerges as the unique limit outcome of social 

adjustment paths. Hirshleifer & Martinez Coll (1991) analyse the dynamics related to the adoption 

process of four pure strategies (‘cooperate’, ‘tit for tat’, ‘defect’ and ‘bully’) within a large 

population of utility-maximising agents. The subjects have to choose which strategy to adopt in a 

series of random pairwise matchings with other individuals belonging to the same population. The 

four strategies are played both with payoff configurations of Prisoner’s Dilemma (PD) type and of 

Chicken game (CG) type.  

However, it is assumed that the two games are played separately: they first consider the 

adoption process in a population where all the agents believe they are playing a PD game (whose 

payoff levels are known to all) and are all rationally maximising their own payoff; subsequently, the 

same process takes place within a population where agents play a CG and they believe this 

information is common knowledge.  
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In such a context, the adoption process of the above behavioral options leads to the 

coexistence of ‘nice’ strategies (such as ‘cooperate’ and ‘tit for tat’) and ‘mean’ strategies (such as 

‘defect’ and ‘bully’). As a consequence, their predictions are consistent with the following, well-

known experimental1 and empirical result: despite (normally relevant) cultural and economic 

differences, in many large social environments, a mixture of ‘nice’ and ‘mean’ behaviors is often 

observed, as almost everywhere some people are honest and, say, tend to return valuable lost items, 

to tip in restaurants and to queue in the markets, whereas some other people belonging to the same 

population do not2.  

The same holds even for more proactive and morally demanding behaviors such as 

volunteering, contributing to charities, donating blood without monetary reward, voting and saving 

unknown people at the risk of one's own life, which are normally displayed by a positive fraction of 

the overall community under examination. Fehr and Gächter (1999), by referring to sixteen 

different experimental studies, show that reciprocally and selfishly motivated people turn out to 

systematically coexist: in particular, they argue that in all scenarios3 both types are present in non-

negligible fractions, though the former seems to prevail. In the light of these observations, 

Hirshleifer & Martinez Coll’s coexistence result as well as Palomino & Vega-Redondo’s conclusion 

are quite interesting, especially if we think of the PD environment, as in such a large population 

framework, if we focused our attention on the adoption process of the ‘classical’ two pure strategies 

only (namely, ‘cooperate’ and ‘defect’), coexistence between ‘nice’ and ‘mean’ strategies would be 

ruled out.  

                                                 
 

1 Andreoni & Miller (1993) and Cooper et al. (1996) set up experiments where people play the Prisoner's Dilemma 
game sequentially with randomly changing opponents and find that while a minority of players act selfishly, the 
majority adopt non-selfish behaviors. 
2 Such an observation seems to be valid across countries and social contexts; on the contrary, in the light of 
empirical and experimental evidence, what appears to be strongly culturally-specific is the relative frequency with 
which the two types of behavior are observed. 
3 The experimental settings quoted by Fehr & Gächter (1999) include Prisoner’s Dilemma,  Investment Game, 
Public Goods Game and Trust Game. Fehr & Fischbacher (2002) argue that “during the last decade experimental 
economists have gathered overwhelming evidence that systematically refutes the self-interest hypothesis and 
suggests that a substantial fraction of the people exhibit social preferences, in particular, preferences for reciprocal 
fairness”. 
4 Binmore (1994) points out that ‘A society's pool of common knowledge - its culture, provides the informational 
input that individual citizens need to coordinate on equilibria in the games that people play. (…) An analyst ignorant 
of this data would not necessarily be able to predict the equilibrium on which members of the society would 
coordinate in a specific game. He might therefore categorize the equilibrium selection criteria that the society uses 
as arbitrary. However, the criteria will not seem arbitrary to those within the society under study’. 
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However, unlike these important contributions implicitly assume, it is far from obvious that 

individuals always interact with each other on the basis of a clear and shared perception of the 

overall social structure they are ‘embedded’ in. Such an assumption would require the presence of 

both a very rich information set on the part of the players and of a very high degree of cultural 

proximity among them, as it refers to a) agents’ preferences, b) agents’ ability to consistently and 

efficiently pursue their goals (i.e. their degree of ‘rationality’) and c) the outcomes associated to 

each couple of possible strategic choices. In other terms, the notion of ‘common knowledge’ turns 

out to be often a highly controversial and context-dependent one, as each individual’s ability to 

‘frame’ the social situation he is embedded in seems to be the effect of complex factors, active at 

both natural (e.g. cognitive and biological) and cultural (e.g. in terms of morality and social 

customs) level. For these reasons, individuals are likely to differ in the way they conceptualise the 

game they are about to play and such differences are likely to be specific to each sub-population. In 

other terms, we may say that in our framework ‘common knowledge’ about the payoff matrix has a 

sort of 'salience' (see Schelling 1960, Sahlins 1972) crucially dependent on the value-system 

characterizing the different types of players composing the overall community. In fact, it is 

reasonable to believe that the idea of salience not only regards focal points (sometimes described in 

terms of common knowledge about non-rational impulses; see e.g. Sugden 1991)4 but, at a deeper 

level, the perception of the whole payoff structure of the game, depending on the locally prevailing 

social norms and cultural patterns.  

On the basis of this approach, however, the relationship between rationality and salience 

should be somehow reversed, with respect to traditional game-theoretical frameworks where 

salience is a sort of ‘second-best resource’ agents rely on insofar as they fail to fruitfully coordinate 

their (individually rational) actions. To the contrary, in this paper we claim that agents, in the first 

place, tend to conceptualise the game they are about to play in a strongly culturally-dependent 

manner; then, at a second stage, rationality comes into the picture, inducing agents to choose the 

best strategies available on the basis of their information set. Clearly, insofar as salience regards the 

framing problem, a fortiori it can be claimed it concerns the more specific and conventional 

problem of focal points emergence. In the light of this, it is worth investigating the possibility of 

coexistence between ‘nice’ and ‘mean’ strategies in a different strategic context. In particular, we 

decide to focus on the following scenario: players have to choose one out of two strategies only 

(either ‘cooperate’ or ‘not cooperate’); however, the possible outcomes of random pairwise 

                                                 
 
 
 
 
 



 5

matchings are differently evaluated by single agents, i.e. individuals are heterogeneous in terms of 

their perception of the payoff matrix of the game they are involved in. As we pointed out above, 

agents are homogeneous only within specific sub-populations characterised by common 

socialisation patterns and salient social norms5: as far as the ‘framing’ problem of the initial multi-

population community is concerned, then, inter-group heterogeneity corresponds to intra-group 

homogeneity. In other terms, we are still assuming common knowledge about the structure of the 

game to be played, but such a common knowledge is ‘culturally-specific’: each player’s 

expectations about his opponent’s behavior are systematically biased by his own reference culture 

and, therefore, confirmed only insofar as he happens to be matched with players of the same ‘type’6.  

The idea of common knowledge we refer to recalls Lewis’ definition (see Lewis 1969), 

concerned with justification and not with truth: what each person has reason to believe may be 

dependent on ‘background information’, which, we claim, is likely to depend in turn on his/her 

reference culture and social norms. This implies that agents’ ‘inductive standards’ will be shared 

within each sub-population but will differ across them. Several experimental researches focusing on 

the effects of cultural background on game-theoretic behavior (see e.g. Smith & Bond 1993) 

confirm that a variable such as culture crucially affects the set of reference behavioral options 

individuals have in mind when playing standard games like PD. In particular, let us assume that the 

whole community consists of three sub-populations (types) of payoff-maximising individuals: in 

the first, everybody perceives the game matrix as the classical PD payoff configuration; in the 

second, agents believe an Assurance Game (AG) will have to be played, whereas in the third the 

payoff matrix is given by the Other Regarding game structure (OR). The purpose of our analysis is 

to consider the social dynamics taking place within such a complex environment. However, before 

introducing the evolutionary model, we want to suggest a motivationally-grounded interpretation of 

the differences in terms of ‘framing’ among the three sub-populations introduced above. In order to 

do this, let us consider the following Prisoner's Dilemma payoff matrix: 

                                                 
5 It seems reasonable to assume that agents belonging to the same group have passed through similar socialization 
processes and therefore share common values and tend to conform to the same (population-specific) social norms: 
the majority of human customs and behaviors appears to be the consequence of complex processes of cultural 
evolution. Binmore (1994) remarks that ‘A society's culture consists of more than the shared knowledge that we all 
belong to the same species. Vast amounts of historical data are enshrined in its customs and traditions’. 
6‘A community of rational individuals is held together by the pool of common knowledge that I shall call its culture. 
The gossamer threads of shared knowledge and experience may seem flimsy bonds with which to hold a society 
together when compared with the iron shackles of duty and obligation postulated by traditional ethical theories. 
However, one must remember that the iron shackles of the traditionalists exist only in their imaginations, and even 
the most gossamer of real threads is more substantial than an iron shackle that is only imagined. Moreover, like 
Gulliver in Lilliput, we are bound by so many threads that even real shackles could fulfill their function with no 
greater efficiency’ (Binmore 1994). 
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 Cooperate Not cooperate 

Cooperate α, α γ, δ 

Not cooperate δ, γ β, β 

 

 

where δ > α > β > γ > 0; (δ - α) < (β - γ) and two rational players (A and B) are involved. We  

define agent A as 'altruist' when his utility is given by a weighted average of his own and agent B's 

payoff: U A  = (1 - w) ΠA + w ΠB, where Πi (i = A, B) indicates i's payoff and w (0 < w < 1) 

represents A's (as well as B's) ‘degree of altruism’ toward her opponent. If both players are 

characterized by such a utility function, the utility matrix of the (symmetric) game becomes: 

 

 

 Cooperate Not cooperate 

Cooperate α,  α (1 – w) γ  + w δ, (1 - w) δ + w γ 

Not cooperate (1 - w) δ + w γ, (1 – w) γ  + w δ β, β 

 

 

When 0 < w < w1 = (δ - α) / (δ  - γ), we fall into the classic PD game, whereas when w1 = (δ - α) / 

(δ  - γ) < w < w2 = (β - γ) / (δ  - γ), the AG structure emerges; finally, when w > w2 = (β - γ) / (δ  - 

γ), we obtain the OR game. In other terms, the presence of three types of agents can be justified in 

terms of the perceived degree of altruism within one's reference sub-population: agents believe they 

are actually playing a PD, an AG, an OR game according to the level of w being low (equal to zero 

in the limit), intermediate or high (equal to one in the limit), respectively. The idea is that in a group 

where, say, pro-social values are traditionally rooted and widespread, it is reasonable to assume that 

each agent will both act on the basis of a personal pro-social attitude and expect his ‘neighbors’ to 

be driven by the same other-regarding motivational force: formally, this implies a symmetric game 

with w > w2 will be played by such altruistically-driven agents. The same kind of considerations 

holds for less socially concerned individuals7: as Goldschmidt (1993) remarks, selective interaction 

                                                 
7 For empirical evidence, see Ayres & Siegelman (1995) and Rapaport (1995) showing that market outcomes appear 
to systematically depend on the races of the parties involved;  at experimental level, Weimann (1994) observes that 
in a repeated public good game framework American students turn out to be less cooperative than Germans, while 
Ockenfels & Weimann (1999) find that eastern Germans are far more selfish than western subjects. 
8 Regarding the interpretation in terms of culturally-specific motivational systems, it is important to clarify that we 
do not need to assume that OR players are actually driven by genuinely altruistic concerns: we can equivalently 
interpret their conceptualisation of the game as the effect of a sophisticated ‘as if’ calculating morality, letting them 
to implement the cooperative outcome and so to efficiently pursue their original selfish goals (see Sen 1974 for this 
intuition and Mueller 1986).  On this view, people are assumed to choose the most efficient among alternative 
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tends to bring about common evaluations, as repeated social contact induces people to internalise 

others’ positions and goals. Alternatively, the salience of  utility matrices with low, intermediate or 

high values of w can be justified not in terms of individual motivational systems but as a 

consequence of properly enforced social norms: according to this explanation, players are still 

assumed to act on the basis of classic selfish preferences, but, at the same time, to be constrained by 

a culturally-specific set of pro-social norms prescribing how to behave in every feasible situation8. 

In particular, with reference to the above matrix, when w < w1 , it is ‘as if’ no pro-social norms 

were present or properly enforced in the group (D is the dominant strategy); when  w1 < w < w2 , 

then it is as if a norm of reciprocity or conditional cooperation were enforced and, finally, w > w2  

would imply a norm of unconditional cooperation (C is now the dominant strategy) is effectively at 

work.  

The reason for choosing the specific payoff configurations under study (PD, AG and OR) is 

three-fold. First, they recall well-known and socially relevant scenarios (see Sen 1974). Second, 

they lend themselves to an analysis of social interaction taking place between individuals endowed 

with different degrees of altruism or, equivalently, between individuals conforming to different 

social norms (as we showed above). Third, neither of them favours coexistence - if taken separately 

from the others - between the two strategies under study. At methodological level, this means that if 

coexistence were to emerge in our scenario, such a result would provide a strong argument in 

favour of the main thesis defended here: by allowing for heterogeneity not simply in terms of 

individual strategies or motivational structures but in terms of group-specific ‘game framing’, we 

are able to provide a plausible explanation about why in many real social environments ‘mean’ and 

‘nice’ strategies turn out to systematically coexist (though in different proportions) in the medium-

long run. The plan of the remainder of the paper is as follows: Section 2 introduces the basic model; 

Section 3 develops the social dynamics; Section 4 concludes. 

 

 

 

 

 

 

                                                                                                                                                                  
motivational structures, perceived as competing 'happiness technologies' (see Menicucci & Sacco 1997). An 
analogous explanation may be provided for AG players as well. 
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The model 

 

The general framework is as follows: let us suppose that a continuum of agents belonging to a 

given community have to choose one out of H pure strategies { }H,......,1  every time they interact 

with other individuals of the same community. Time is continuous. Individuals are distributed 

within M sub-populations { }M,......,1 , on the basis of their personal evaluation of the possible 

outcomes (in terms of pure strategies) of the random pairwise interactions. The M payoff 

configurations are assumed as exogenously given; more precisely, types that are initially present 

in the community may become extinct, but new types cannot be created. In this context, the 

outcome of an encounter between two individuals, let us call them I and II, is described by the 

pair (j,k), where the first and the second entry represent the pure strategies chosen by I and II 

respectively.  

The adoption process of choices within the overall community is modeled by means of the so-

called ‘replicator equations’ (see Taylor & Jonker 1978 and also Schlag (1994) and Björnerstedt & 

Weibull (1994) for some tentative micro-founded justifications of replicator dynamics): according 

to such equations, the most rewarding strategies survive and spread over within the community at 

the expense of the other. Such a selection mechanism affects both the width of each sub-population 

and the distribution of pure strategies within each sub-population. More precisely, we assume that 

social evolution not only operates at strategic level, but also at a deeper, meta-behavioral level, by 

selecting the most rewarding ‘game framing’ among PD, AG and OR. In other words, as far as each 

agent is concerned, ‘game framing’ is not to be interpreted here as an exogenous psychological or 

cultural feature or as an irreversible, one-shot decision (as if, for some reasons, agents had to stick 

forever to a given value-system and/or set of social norms), but as an ongoing, endogenous process, 

affected by both the sub-population type he/she belongs to and the reward he/she gets by his/her 

choice. The idea is then to test how the three different sub-populations (types) initially present 

within the community are evolutionarily robust in the sense of being able to attract an increasing 

number of adherents at the expense of the alternative ones. We further assume that the payoffs 

corresponding to each pair (j,k) depend on the population to which individuals belong. In particular, 

we will focus on two very different cases: 

(a) In the first, the payoff of player I (II) related to the event (j,k) depends on the population 

he belongs to and not on the population of the opponent player II (I). In this case, the payoff of 

player I, belonging to population i and related to the event (j,k), is expressed by the symbol ijka  , 

where i=1,...,M and j,k=1,...,H. Notice that if, given two populations ∗i  and ∗∗i , 
jkijki

aa ∗∗∗ >  

holds whatever (j,k) is, then “to belong to type ∗i ” is always more rewarding than “to belong to 
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type ∗∗i ”. In such a case, social dynamics turns out to be very simple: type ∗∗i  becomes extinct. 

However, we shall mainly deal with the more general (and interesting) case in which such a strict 

payoff dominance does not hold; 

(b) In the second case, which includes the first as a particular case, we assume that the payoff 

of I (II) related to the result (j,k) also depends on the population to which the opponent player II 

(I) belongs9. I’s payoffs are expressed by the symbol ijkla , where the index l=l,....,M represents 

the population of the opponent player. The specific meaning of this assumption will be 

subsequently clarified. 

The dynamics under study can be interpreted as follows: the structure of the community 

outlines a preference ordering which is not based on outcomes (j,k), but on more complex 

outcomes (i,j,k,l): “to be an individual of type i, playing the pure strategy j on the occasion of an 

encounter with an individual of type l, playing the pure strategy k”. In the following sections we 

will analyze these two cases separately. A rapidly growing literature considers payoffs as not 

univocally determined by the “material” outcomes of the strategic interaction taking place 

between players. Payoffs are more and more considered as the result of the interaction between 

“material” and “immaterial” components10, related to the social and cultural environment in 

which individuals act; see, e.g. Wildavsky (1992) and Fehr & Fischbacher (2002); see also 

Antoci et al. (1998), which contains a wide review of such literature. In particular, this study 

builds on the work of Sacco & Zamagni (1996) and has various connections with it. Both 

contributions analyse heterogeneous communities and social dynamics based on the selection of 

the most rewarding strategies. 

Nevertheless, there are some substantial differences between the two papers. While Sacco & 

Zamagni assume that individuals have payoffs of the above described case (a), they do not 

consider case (b). Here we assume that each individual can only recognize ex post the sub-

population type his opponent belongs to and the pure strategy played by him. In contrast, Sacco 

& Zamagni postulate that individuals are able to recognize ex ante the opponent player type and 

thus Nash equilibria are played in each matching. Consequently, social dynamics runs over the 

proportions of types only. Finally, their paper does not highlight phenomena of coexistence 

among the different types of players with which they deal. In this work, we shall indicate with 
                                                 
9 Referring to Granovetter's (1985) fundamental work, Sacco & Zamagni (1996) remind us that ‘Individual 
behaviours are embedded in a preexisting network of social relations which cannot be thought as a mere constraint; 
rather, they are one of the driving forces that prompt individual goals and motivations’. 
10The plausibility of this payoff structure, whose exact meaning will be better explained subsequently, is supported 
by several contributions. Smith-Lovin (1993) claims that ‘all people are emotional in predictable ways; what 
emotions they feel after a given transaction depends on the culture in which they are embedded, the character of the 
relationship between partners, and the type of exchange that occurs between them’. 
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the term “action” the pair (i,j) where Mi ,......,1=  and Hj ,......,1=  respectively indicate the 

population and the pure strategy chosen by an individual. In this context, ijka  represents the 

payoff of an individual of population i, choosing pure strategy j when the opponent player 

chooses pure strategy k, Hk ,......,1= .  

 

 

Independence of the opponent's type 

Let us examine, in the first place, the ‘conventional’ case in which each player's payoff does not 

depend on the population of the opponent player but only on the pure strategy followed by the 

latter. We assume a community with a very large number of individuals. Let jix  be the 

proportion (w.r.t. the whole community) of individuals belonging to population i and following 

pure strategy j; thus: 

 

∑
=

≡
M

i
jij xx

1

 

 

represents the proportion of the community playing pure strategy j. Each individual knows the 

opponent player's type ex post only, i.e. after both players have played their pure strategies. 

Therefore, individuals are not able to play best responses. The expected payoff jiY  of the action 

(i,j) is: 

 

ijk

H

k

M

l
lkji axY ∑∑

= =

≡
1 1

                                             (1) 

 

where Mi ,......,1=  and Hj ,......,1= . Notice that the proportions jix  and jx  can also be 

interpreted as the probabilities that the opponent player respectively follows action (i,j) and pure 

strategy j. The mean payoff Y  of the community is: 

 

ji

H

j

M

i
jiYxY ∑∑

= =

≡
1 1

                                              (2) 
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Dependence on the opponent's type 

In this context, the payoffs of individuals of sub-population i depend not only on the pure 

strategy played by the opponent player, but also on the sub-population to which the opponent 

player belongs, i.e. on the action he chooses11. The rationale of this methodological choice is as 

follows: we assume that a given outcome (i.e. pair of strategies) can bring about different values 

in terms of overall individual payoff (i.e. ‘utility’) according to how each agent evaluates his 

opponent's ‘game framing’, which in turn, as we previously clarified, crucially depends on the 

specific social norms and cultural patterns characterizing each sub-population. In particular, it 

seems reasonable to assume that for an AG player cooperating when the opponent defects 

determines a lower payoff if the opponent is a PD agent rather than an AG agent or an OR agent, 

as the AG player knows that PD players are presumably selfish (or, equivalently, act as if they 

were driven by basically self-interested social norms) and, unlike OR agents, tend to exploit their 

opponents12. More precisely, we now consider the payoff of player of type i playing pure 

strategy j when matched with a player of type s playing pure strategy k: ijksa . As above, jix  

represents the proportion of individuals belonging to population i playing pure strategy j, and the 

expected payoff of playing j by an individual of the type i is: 

 

ijkl

H

k

M

l
lkji axY ∑∑

= =

≡
1 1

                                           (3) 

 

where Mi ,......,1=  and Hj ,......,1= ; and the mean payoff of the community is: 

 

ji

H

j

M

i
jiYxY ∑∑

= =

≡
1 1

                                             (4) 

 

 

 

 

 

                                                 
11 Such interaction could, even radically, modify the ‘purely material’ payoff structure and, consequently, the 
choices determined by them, as we showed in section 1 by illustrating how different levels of the ‘degree of 
altruism’ w can lead to different payoff configurations, such as PD, AG and OR (see Taylor 1987 for a rigorous 
analysis). 
12Similarly, Banerjee & Weibull (1995) set up a ‘discriminating players’ model where agents are able to 
identify their opponents’ type and to consequently act on the basis of an ‘opponent-sensitive’ logic of play. 
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The analysis of this simple strategic and social context will allow us to show that: 

(1) Even though these specific payoff configurations (if taken separately) do not generate 

coexistence-favouring social dynamics, coexistence may take place in the heterogeneous 

community under examination. 

(2) Even in the simplest strategic context (two pure strategies), social dynamics may turn out 

to be quite complex, unlike the case of a homogeneous community where individuals have to 

choose between two pure strategies only. 

(3) By taking into consideration only initial aggregate proportions of agents choosing between 

'cooperate' and 'not cooperate' (i.e. leaving out of consideration the types of individuals initially 

adopting each strategy), rather misleading predictions may be obtained; that is, final results of 

social dynamics may be radically different for very similar initial aggregate proportions.  

 

 

Social dynamics 

As we anticipated above, the selection mechanism of actions is modelled by means of the so-

called ‘replicator equations’ (Taylor & Jonker 1978): 

 

( )YYxx jijiji −=
⋅

                                            (5) 

 

where Mi ,......,1=  and Hj ,......,1= . Following Weibull (1995), we can obtain (5) as follows. 

Assume that the number of individuals in the community is very large; let 0)( ≥tp ji  be the 

number of individuals choosing action (j,i) and let ∑≡
ji

ji tptp )()(  be the total number of 

individuals in the community; thus )(/)()( tptptx jiji = . Let us assume that all individuals have a 

background fitness, measured as the number of offsprings per time unit 0≥β  and a death rate 

0≥δ  that are independent of their performance in the game under study. Augmenting this 

“biological” replicator process by the corrective factor jiY , population dynamics can be 

represented as follows: 

 

)( δβ −+= jijiji Ypp&                                         (5’) 

 

 



 13

It is easy to show (see Weibull 1995, pp. 72-73) that dynamics (5’) imply dynamics (5) for 

population shares. Dynamics (5) are defined on the invariant simplex: 

 









≥=ℜ∈=∆ ∑∑
= =

H

j

M

i
jiji

MH xx
1 1

0,1,x . 

 

Notice that the states of the community in which all individuals choose the same action are fixed 

points under dynamics (5). The other fixed points are the states of the community in which the 

actions representing a positive proportion of the community yield the same expected payoffs, i.e. 

there exists a constant ∗Y  such that: 

 
∗= YY ji                                                       (6) 

 

for every action (j,i) such that 0>jix . 

Notice also that if payoffs do not depend on the opponent player type, condition (6) can be 

written: 

 

∗

=

==∑ YaxY ijk

H

k
kji

1

                                             (7) 

 

where kx  is the proportion in the community of players playing pure strategy k. 

System (7) is a linear system where the number of equations is equal to the number of 

actions (j,i) by which 0>jix  and the number of unknowns is equal to the number of pure 

strategies k such that 0>kx . Therefore, such a system does not generically admit solution if the 

number of actions is greater than the number of pure strategies that are played in the community. 

This implies that the fixed points we may generically observe are those with H actions at most, 

where H is the number of pure strategies that are initially present in the community. It also 

follows that the maximum number of sub-populations that may coexist at a fixed point is equal to 

the number of available pure strategies. This means that the degree of complexity of the social 

structure is closely related to the number of pure strategies available.  

Through this analytical framework, we will analyse the process of cultural evolution taking 

place within a large community in which there are two pure strategies only (‘cooperate’ (C) and 

‘not cooperate’ (NC)), and three sub-populations in total. In population 1 individuals have 
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Prisoner’s Dilemma (PD) payoffs. Let us recall that if we have two players, I and II, the four 

possible outcomes of the PD game (from the point of view of player I) follow the order: 

 

),(),(),(),( NCCNCNCCCCNC fff  

 

where the first entry of each pair represents the strategy chosen by I and f  indicates strict 

preference. If we assign indexes 1 and 2 to strategies NC and C respectively, PD payoffs satisfy 

the following inequalities: 

 

121111122112 aaaa >>> . 

 

In population 2, individuals have Assurance Game (AG) payoffs (see Sen 1967), i.e.: 

 

),(),(),(),( NCCNCNCCNCCC fff  

 

and consequently: 

 

221211212222 aaaa >>> . 

 

In this game, players show both positive reciprocity (being kind to those who have been kind to 

them) and negative reciprocity (by retaliating if they have been hurt), that is their propensity to 

cooperate is conditional on their opponent's behavior. Fehr & Gächter (1999) and Fehr & 

Fischbacher (2002) show that there is strong experimental and empirical evidence that agents 

exhibit both types of reciprocation and that this behavior occurs even in one-shot encounters 

between strangers and when retaliation is costly and yields neither present nor future material 

rewards. For surveys of experimental results documenting the frequency of reciprocity in 

Ultimatum Bargaining Games, Gift-Exchange Games and Trust Games, see e.g. Güth et al. 

(1982), Camerer & Thaler (1995), Fehr et al. (1993) and Roth (1995). 

Finally, in population 3 individuals have Other Regarding (OR) payoffs, i.e.: 

 

),(),(),(),( NCNCCNCNCCCC fff  

 

and consequently: 

311312321322 aaaa >>> . 



 15

 

In PD and OR populations, the strategies NC and C respectively (strictly) dominate the 

alternative strategy. Therefore, without loss of generality (see e.g. Weibull 1995), we can analyse 

dynamics (5) by assuming that no player in these populations chooses the dominated strategies. 

We shall indicate by PDNC  and AGNC  the actions “to be a PD individual playing strategy NC” 

and “to be an AG individual playing strategy NC”, respectively; and by ORC  and AGC  the actions 

“to be an OR individual playing strategy C” and “ to be an AG individual playing strategy C”, 

respectively. 

 

 

Bistable dynamics 

Let us first analyse a case in which payoffs do not depend on the opponent's type and coexistence 

is ruled out. Let us consider the payoff structure given by the following matrix (from the point of 

view of the row player): 

 

INSERT TABLE 1 ABOUT HERE 

 

Dynamics (5) run over four variables, 222111 ,, xxx  and 32x , representing the proportions of 

individuals following the actions PDNC , AGNC , ORC  and AGC  respectively: 

 

( )[ ]
( )[ ]
( )[ ]
( )[ ]AxxAx

AxxAx

AxxAx

AxxAx

43232

32222

22121

11111

⋅−=

⋅−=

⋅−=

⋅−=

⋅

⋅

⋅

⋅

t

t

t

t

xx

xx

xx

xx

                                         (8) 

 

where ),,,(x 32222111
t xxxx≡ , A is the above payoff matrix 

 


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
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7755
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 16

and ( )rAx  is the r-th component of the vector xA . In this specific case, the state space of 

dynamics (8) is the (3-dimensional) simplex { }1 and 0x:x 322221111
4 =+++≥ℜ∈=∆ xxxx . By 

the illustrative device adopted in Hirshleifer & Martinez Coll (1991), we can represent the edges 

of ∆  (i.e. the boundary of the simplex in which at least one action is extinct) in the plane (see 

figure 1). Thus the simplex ∆  can be imagined as based on the triangle AGAGPD CNCNC −− , 

while ORC  is the upper vertex, that in which all actions are extinct except for ORC  (by drawing 

the edges in the 3-dimensional euclidean space, all the ORC   vertices in figure 1 will come 

together). 

 

INSERT FIGURE 1 ABOUT HERE 

 

In figure 1, the dynamics on the edges are obtained by means of Bomze’s (1983) 

classification technology for 2-dimensional replicator equations. Following Bomze’s symbology, 

a dotted line represents a line of fixed points (pointwise fixed), a full dot •  represents a fixed 

point which is locally attractive, whereas saddle points are indicated by their insets and outsets 

(stable and unstable manifolds, respectively). Only some representative trajectories are sketched. 

From figure 1, we can see that social dynamics bring about a “bistable dynamics”, i.e. the only 

attractive fixed points are the vertices ORC  and AGNC  and their attraction basins are separated by 

a 2-dimensional (repulsive) pointwise fixed set in the interior of ∆ , whose intersection with the 

edges is given by the pointwise fixed lines shown in figure 1. If large enough proportions of 

individuals choosing action ORC  ( AGNC ) are initially present, then all actions except for ORC  

(respectively, AGNC ) become extinct. The social structure that eventually emerges is very 

simple: a single population playing only one pure strategy is present13. In the following example, 

we consider dynamics starting from a payoff structure which strongly favours coexistence. 

 

 

 

 

                                                 
13 Sahlins (1972) refers to a similar selective attitude describing human societies where the same agent consistently 
displays a cooperative attitude toward people he feels ‘close’ to as well as a payoff-maximizing or even hostile 
attitude towards people he perceives as ‘strangers’. 
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Coexistence-favouring payoffs 

Let us consider the following payoff matrix, where we still assume that players' payoffs do not 

depend on the opponent's type: 

 

INSERT TABLE 2 ABOUT HERE 

 

In this example, the highest payoff level is reached by a PD individual when matched with an 

individual playing the pure strategy C. On the other hand, the payoff of a PD individual is very 

low when he is matched with an individual playing NC. This rules out the emergence of a 

homogeneous community where only the PD sub-population exists. On the contrary, OR 

individuals assign a relatively high payoff to the outcome (C, NC), while their payoff associated 

to the outcome (C,C) is relatively low. In this case, as in the previous one, we cannot expect a 

homogenous OR-type community to emerge, as such a community would turn out to be 

extremely vulnerable with respect to a population of PD players. The other entries of this 

coexistence-favouring payoff matrix can be interpreted in a totally analogous way. The phase 

portrait at the edges of the simplex ∆  is represented in figure 2. 

 

INSERT FIGURE 2 ABOUT HERE 

 

It is easy to verify that there are no fixed points in which more than three actions coexist. 

Thus, by a well-known result (see Weibull 1995), under dynamics (8) trajectories always 

approach the edges represented in figure 2. In this figure, we can notice that, starting from 

“almost all” the initial distributions of actions in the community, the social dynamics reach a 

fixed point in which AG and OR-type sub-populations coexist playing AGNC  and ORC  

respectively. In the last example of this section, we focus on a mixed case where a configuration 

of bistable dynamics is merged with a different one where coexistence emerges. Let us examine 

the following payoff matrix: 

 

INSERT TABLE 3 ABOUT HERE 

 

This payoff structure is characterized by the fact that both ORC  and AGNC  individuals perform 

very well with opponent players of the same type. Therefore, the vertices ORC  and AGNC  are 

both locally attractive (see figure 3). However, if the proportions of PDNC  and AGC  individuals 

are large enough, a two-population community in which only these two types coexist may 
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emerge. As above, it is easy to verify that no fixed points exist with more than two actions. Thus, 

figure 3 represents the “limit” dynamics of (8). We shall discuss this case further in the last 

section, when some features of aggregate dynamics will be analysed. 

 

INSERT FIGURE 3 ABOUT HERE 

 

 

Let us now turn our attention to the following payoff matrix, where payoffs depend not only on 

the strategic choices of the two players but also on the opponent player's type: 

 

INSERT TABLE 4 ABOUT HERE 

 

Notice that we have introduced here two parameters, α  and β , where 10 <<α  and 0>β , 

through which it is possible to account for the qualitative modifications of social dynamics. Such 

a matrix shows that whereas PD player’s payoffs are completely independent of the population 

his opponent belongs to, both AG and OR players’ payoffs crucially depend on their opponent’s 

type. In particular, an AG player gets a lower payoff when cooperating with a defecting PD 

rather than with a defecting AG, given his awareness of the deeply selfish nature of PD agents 

(or, at least, of their unambiguously anti-cooperative behavior). Analogously, AG players can be 

expected to be ‘happier’ when defecting with a defecting PD rather than with a defecting AG. 

Further, AG-type agents get a higher payoff when cooperating with a cooperating OR rather than 

with a cooperating AG. The rationale behind these payoff differences can be explained as 

follows: OR players are perceived as more trustworthy agents as they tend to cooperate 

unconditionally, that is to never defect regardless of their opponent’s behavior. In other terms, 

we can plausibly imagine a sort of ‘moral ranking’ among the three types, according to which – 

as far as the opponent’s choices are concerned - OR behavior is preferable to AG behavior which 

in turn can be considered as morally superior to PD behavior. Therefore, as it is immediate to 

observe from the above matrix, OR players prefer to cooperate with a defecting AG agent rather 

than with a defecting PD-type agent and with a cooperating OR agent rather than with a 

cooperating AG-type. As anticipated above, when payoffs depend on the opponent player's type, 

far more complex social structures are likely to emerge; in particular, fixed points with more 

than two actions are not ruled out in generic cases.  
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In our example, it is easy to verify that a fixed point P, in which all the actions are present, exists 

if and only if 2/1<β ; further, it is always locally attractive (see the mathematical appendix) 

and its coordinates are: 

 

( )αβαβαβαβ
βαβ

−−−+−−
−−

=∗∗∗∗ 4,245,21,36
4716

1),,,( 32222111 xxxx  

 

Thus, a social configuration with three sub-populations playing four actions can be locally 

attractive under dynamics (8). Notice that, in such a configuration, both AGC  and AGNC  

individuals coexist, whereas such a coexistence pattern is ruled out in a community where only 

an AG population is initially present. The dynamics driven by the above payoff matrix is 

interesting also because, by changing parameter values,  a relatively wide “zoology” of cases can 

emerge. In the following figures, we only sketch the “representative” ones. Since fixed points 

with more than two actions may exist under such a payoff matrix, their stability cannot be 

checked by reference to Bomze’s classification only; it is also necessary to use the standard 

procedure of local analyses (see the mathematical appendix). We consider four cases: 

 

Case (a): For 4/1=α  and 4≥β , the fixed point P does not exist; thus trajectories always 

approach the edges of ∆ . The dynamics on the edges is given in figure 4. 

 

INSERT FIGURE 4 ABOUT HERE 

 

We can observe that “almost all” the trajectories approach the vertex ORC . Notice that, in this 

case, the action ORC  performs better against itself than the action PDNC  against ORC . Notice also 

that, if the OR population is extinct (see triangle AGAGPD CNCNC −− ) we have a fixed point 

surrounded by closed trajectories. However, it is easy to see that such trajectories become 

repulsive when the OR population is introduced into the community (see the mathematical 

appendix). 

Case (b): For 4/1>α  and 43 << β , the fixed point P does not exist and the dynamics on 

the edges is shown in figure 5. 

 

INSERT FIGURE 5 ABOUT HERE 
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In this case, “almost all” trajectories approach a fixed point in which both ORC  and PDNC  

coexist. In the mathematical appendix we show that the fixed point in the interior of the triangle 

AGAGPD CNCNC −−  (which is attractive on the edges) is a saddle point, i.e. it is unstable. 

Case (c): For 4/1=α  and 2/31 <≤ β , the fixed point P does not exist and the dynamics 

on the edges are shown in figure 6. 

 

INSERT FIGURE 6 ABOUT HERE 

 

In this case, the fixed point in which both ORC  and PDNC  coexist becomes unstable; the fixed 

point in the interior of the triangle AGAGPD CNCNC −−  remains repulsive, while almost all the 

trajectories are attracted by the fixed point in the interior of the triangle ORAGPD CCNC −− . All 

the sub-populations coexist in this fixed point and, as above, social dynamics reach a fixed point 

in which both strategies C and NC coexist. 

Case (d): For 4/1=α  and 2/14/1 <≤ β , the locally attractive fixed point P exists; at 

such a point, no population becomes extinct and AG individuals play both C and NC. The 

dynamics on the edges (shown in figure 7) is analogous to that of figure 6; however, in this case, 

the fixed point in the interior of the triangle ORAGPD CCNC −−  becomes a saddle point (see the 

mathematical appendix). 

The local attractivity of the fixed point P does not imply its global attractivity. In fact, in the 

interior of the state space ∆ , other attractors may exist. However, even if in this case P may be a 

global attractor, it is surely possible to construct ad hoc payoff matrices according to which 

dynamics (8) have a strange attractor in the interior of the state space ∆ . In such a case, OR, AG 

and PD sub-populations in this community coexist, all playing pure strategies C and NC, 

although the dynamics never reach a fixed point. Furthermore, the outcome of social dynamics 

can be critically dependent on initial distributions of actions in the community; in such a case, 

social dynamics is unpredictable, at least from a deterministic point of view. To build these ad 

hoc matrices, see Schnabl et al. (1991); in particular, see matrices (7)-(9) of their paper. 

 

INSERT FIGURE 7 ABOUT HERE 
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Concluding remarks 

 

In order to stress the importance of our results, let us recall that for symmetric two-player games 

with two pure strategies (e.g. NC and C) played in a homogeneous community: 

 

2221

1211

aaC
aaNC
CNC

 

 

we can only have four (generic) dynamic regimes under replicator dynamics (see Weibull 1995, 

pp.74-76): 

(i) For 22122111 , aaaa >>  the pure strategy NC (strictly) dominates C; in this case, the 

share of individuals choosing NC approaches the value 1 when time goes to infinity. 

(ii) For 22122111 , aaaa <<  the opposite case holds. 

(iii) For 22122111 , aaaa <>  both the pure population states, in which all the individuals 

respectively play NC or C, are locally attractive fixed points; their attraction basins are separated 

by a repulsive fixed point in which both strategies are played. 

(iv) For 22122111 , aaaa ><  there is a globally attractive fixed point where both strategies 

coexist. 

In such a context (two pure strategies and a homogeneous community), payoff configuration 

(iv) only admits coexistence between NC and C. According to the others, we expect to see 

individuals playing only one strategy after transient dynamics. Therefore, the coexistence of 

strategies can be explained only through very restrictive assumptions over individual payoffs. 

This prediction is rather unrealistic in a world where we generally observe coexistence between 

“nice” and “mean” strategies. Hirshleifer & Martinez Coll (1991) assume homogeneous 

interactions but add to the set of pure strategies related to the games PD and CG two “reactive” 

strategies, such as 'tit for tat' (a “nice” strategy) and 'bully' (a “mean” strategy). The games PD 

and CG are played separately; i.e. they first consider replicator dynamics under a Prisoner's 

Dilemma environment and then study dynamics for the Chicken game. They show that, in this 

context, dynamics exhibit very interesting features. More specifically, they show that dynamics 

can be substantially more complex than the dynamics of regimes (i)-(iv) and that we can expect, 

under both payoff environments, coexistence between “nice” and “mean” strategies. The 

complexity of dynamics studied by Hirshleifer & Martinez Coll is a direct consequence of  the 

assumption that players are able to play reactive strategies. Unlike that important contribution, 
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let us recall that in our paper we proceed by postulating that all individuals in the community 

play two (non-reactive) pure strategies only but, at the same time, they are heterogeneous w.r.t. 

their way of framing the game, which is culturally-specific (i.e. specific to each sub-population). 

Furthermore, we obtain coexistence results even when each individual has payoffs that do not 

favour coexistence, i.e. a type (i), a type (ii) or a type (iii) individual payoffs configuration.  

 

 

 

 

APPENDIX 

The dynamics under system (8) for payoffs which do not depend on the opponent player, can be 

analysed by Bomze’s results (see Bomze 1983). When payoffs depend on the opponent player, 

we obtain fixed points in which more than two actions coexist. In these cases, to analyse local 

stability, it is necessary to linearize system (8) around these fixed points. To this end, we use the 

well-known correspondence between replicator equations and Lotka-Volterra systems (see 

Hofbauer & Sigmund 1988). In particular, in this case, we have that the transformation 
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maps the trajectories under Lotka-Volterra equations: 
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onto those of replicator equations (8). 

The inverse transformation of T is: 
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System (9) has a unique fixed point at which y, z and w are strictly positive if and only if 

2/1<β . In this case, the fixed point has coordinates: 

 

( ) ( )4,524,12
)2(3

1,, −−−+−
−

=∗∗∗ ααβαββ
αβ

wzy  

 

Otherwise, it has no fixed points where all the actions are simultaneously present in the 

community. In the original coordinates, the above fixed point becomes: 

 

( )αβαβαβαβ
βαβ

−−−+−−
−−

=∗∗∗∗ 4,245,21,36
4716

1),,,( 32222111 xxxx  

 

The Jacobian matrix J of (9), evaluated at ( )∗∗∗ wzy ,, , has entries ijJ : 

 
∗∗∗ −−=−== yJyJyJ 3,3,3 131211  

 
∗∗∗ −=−=+= zJzJzJ 232221 ,2,)2( α  

 
∗∗∗ −=−== wJwJwJ )4(,4,6 333231 β  

 

By Routh-Hurwitz criterion (see e.g. Beavis & Dobbs 1989, p. 134), a necessary and sufficient 

condition for local asymptotic stability of ( )∗∗∗ wzy ,,  is that 0<TrJ , 0<DetJ  and 0~ <JDet  

where: 
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It is easy to see that this system meets these conditions. 

A fixed point with 0=y  and 0, >wz , i.e. a fixed point in which only 021 =x , exists if and 

only if 2/3<β . In this case, it has the following coordinates: 
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The Jacobian matrix evaluated at ),,( wzy  is: 
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Notice that the eigenvalue in the direction of the interior of the simplex ∆ : 
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is strictly positive if and only if 2/1<β , i.e. when the interior fixed point exists in the simplex. 

We have a fixed point with 0=z  and 0, >wy , corresponding to the fixed point in which only 

022 =x , if and only if 4/1<β . In this case, it has coordinates: 
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and the relative Jacobian matrix: 
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has the following strictly positive eigenvalue in the direction of the interior of the simplex: 

)2(3
425ˆˆ)2(2

β
αββαα

+
−−+=−++ wy . 

 

We always have a fixed point with 0=w  and 0, >zy  (i.e. with only 032 =x ) and it has the 

following coordinates: 
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with the Jacobian matrix 
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We can see that it has the following strictly positive eigenvalue in the direction of the interior 

of the simplex: 
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TABLE 1 

 

 PDNC  AGNC  AGC  ORC  

PDNC  4 4 8 8 

AGNC  5 5 7 7 

AGC  3 3 9 9 

ORC  2 2 10 10 

 

 

 

 

 

 

 

 

 

TABLE 2 

 

 

 PDNC  AGNC  AGC  ORC  

PDNC  1 1 12 12 

AGNC  5 5 9 9 

AGC  3 3 10 10 

ORC  6 6 7 7 
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TABLE 3 

 

 

 PDNC  AGNC  AGC  ORC  

PDNC  4 4 13 13 

AGNC  6 6 7 7 

AGC  5 5 12 12 

ORC  3 3 13.5 13.5 

 

 

 

 

 

 

 

TABLE 4 

 

 

 PDNC  AGNC  AGC  ORC  

PDNC  1 1 12 12 

AGNC  5 4 9 9 

AGC  3 α+3  10 11 

ORC  6 7 8 β+8  

 

 

 

 

 


