SEQUENTIAL AUCTIONS WITH ENDOGENOUSLY DETERMINED RESERVE PRICES
Rasim ÖZCAN (Boston College)
I model an auction game in which two identical licenses to participate in an
oligopolistic market are sold sequentially. There is no incumbent. The first
auction is a standard first-price, sealed-bid one with an exogenously set reserve
price, while in the second one the reserve price is the price of the first license.
Because of this rule, bidding strategies are different than any other commonly
used auction formats. In this paper, I solve the bidders' behavior under such
an auction setup. I drive the bid functions. I also compute the expected auction
revenue for the seller. Then I compare the revenue for this auction with the
revenue for the first-price, sealed-bid auction for the monopoly right because
in this setup it seems that only one license can be sold. The results show that
this auction format can perform better than the other one for some parameter
values although sometimes it produces less revenue for the seller. There is
a possibility that the second license is unsold. The auction setup analyzed
here mimics the license auction for the Turkish Global Mobile Telecommunications
in 2000 for two licenses.