
ECONOMETRICS FIELD EXAM, SUMMER 2000, PART 1

ECONOMICS DEPARTMENT, UNIVERSITY OF UTAH

Part 1 of this exam (Hans Ehrbar) has three subparts a, b, and c. Part 2 will be
provided by Peter Philips.

• For part 1a answer either Problem 1 or Problem 2 or Problem 3 (simple
properties of conditional expectation).

• For part 1b you either have to answer Problem 4 or 5 (derivation of the Best
Linear Unbiased estimator in certain simple situations).

• For part 1c you have to do either Problem 6 or Problem 7 (derivation of the
formulas and properties of certain F -tests).

Date of exam August 2000.
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Problem 1. Let x and y be two jointly distributed variables. For every fixed value
x, var[y|x = x] is the variance of y under the conditional distribution, and var[y|x]
is this variance as a random variable, namely, as a function of x.

• a. 1 point Prove that

(1) var[y|x] = E[y2|x]− (E[y|x])2.

This is a very simple proof. Explain exactly what, if anything, needs to be done to
prove it.

Answer. For every fixed value x, it is an instance of the law

(2) var[y] = E[y2] − (E[y])2

applied to the conditional density given x = x. And since it is true for every fixed x, it is also true

after plugging in the random variable x. �

• b. 3 points Prove that

(3) var[y] = var
[
E[y|x]

]
+ E

[
var[y|x]

]
,

i.e., the variance consists of two components: the variance of the conditional mean
and the mean of the conditional variances. This decomposition of the variance is
given e.g. in [Rao73, p. 97] or [Ame94, theorem 4.4.2 on p. 78].
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Answer. The first term on the rhs is E[(E[y|x])2] − (E[E[y|x]])2, and the second term, due to (1),
becomes E[E[y2|x]] − E[(E[y|x])2]. If one adds, the two E[(E[y|x])2] cancel out, and the other two
terms can be simplified by the law of iterated expectations to give E[y2] − (E[y])2. �

• c. 2 points [Coo98, p. 23] The conditional expected value is sometimes called the
population regression function. In graphical data analysis, the sample equivalent of
the variance ratio

(4)
E

[
var[y|x]

]
var

[
E[y|x]

]
can be used to determine whether the regression function E[y|x] appears to be visu-
ally well-determined or not. Does a small or a big variance ratio indicate a well-
determined regression function?

Answer. For a well-determined regression function the variance ratio should be small. [Coo98, p. 23]
writes: “This ratio is reminiscent of a one-way analysis of variance, with the numerator representing
the average within group (slice) variance, and the denominator representing the varince between
group (slice) means.” �

Problem 2. The figure on page 17 shows 250 independent observations of the ran-
dom vector [ x

y ].

• a. 2 points Draw in by hand the approximate location of E [[ x
y ]] and the graph of

E[y|x]. Draw into the second diagram the approximate marginal density of x.
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• b. 2 points Is there a law that the graph of the conditional expectation E[y|x] always
goes through the point E [[ x

y ]]—for arbitrary probability distributions for which these
expectations exist, or perhaps for an important special case? Indicate how this could
be proved or otherwise give (maybe geometrically) a simple counterexample.

Answer. This is not the law of iterated expectations. It is true for jointly normal variables, not
in general. It is also true if x and y are independent; then the graph of E[y|x] is a horizontal line
at the height of the unconditional expectation E[y]. A distribution with U-shaped unconditional
distribution has the unconditional mean in the center of the U, i.e., here the unconditional mean
does not lie on the curve drawn out by the conditional mean. �

• c. 2 points Do you have any ideas how the strange-looking cluster of points in the
figure on page 17 was generated?

Problem 3. 5 points Let x and y be jointly distributed scalar random variables, and
assume conditional means exist. Define ε = y − E[y|x]. Demonstrate the following
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equations:

E[ε|x] = 0(5)

E[ε] = 0(6)

E[xε|x] = 0(7)

E[xε] = 0(8)

cov[x, ε] = 0.(9)

Say very explicitly which of the rules you are using in every step.

Answer. E[ε|x] = E[y|x] − E[E[y|x]|x] = 0 since E[y|x] is a function of x and therefore equal to its
own expectation conditionally on x. The second statement follows from the first (the first statement
is stronger than the second): if an expectation is zero conditionally on every possible outcome of
x then it is zero altogether. Or one can also do it in one swoop: E[ε] = E[y − E[y|x]] = 0 by

the law of iterated expectations. E[xε|x] = xE[ε|x] = 0; E[xε] = E[E[xε|x]] = E[0] = 0, and
cov[x, ε] = E[xε] − E[x] E[ε] = 0 − E[x] · 0 = 0. �

Problem 4. 5 points [Lar82, example 5.4.1 on p 266] Let y1 and y2 be two random
variables with same mean µ and variance σ2, but we do not assume that they are
uncorrelated; their correlation coefficient is ρ, which can take any value |ρ| ≤ 1.
Show that ȳ = (y1 + y2)/2 has lowest mean squared error among all linear unbiased
estimators of µ, and compute its MSE. (An estimator µ̃ of µ is linear iff it can be
written in the form µ̃ = α1y1 + α2y2 with some constant numbers α1 and α2.)
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Answer.

ỹ = α1y1 + α2y2(10)

var ỹ = α2
1 var[y1] + α2

2 var[y2] + 2α1α2 cov[y1, y2](11)

= σ2(α2
1 + α2

2 + 2α1α2ρ).(12)

Here we used (??). Unbiasedness means α2 = 1 − α1, therefore we call α1 = α and α2 = 1 − α:

var[ỹ]/σ2 = α2 + (1 − α)2 + 2α(1 − α)ρ(13)

Now sort by the powers of α:

= 2α2(1 − ρ) − 2α(1 − ρ) + 1(14)

= 2(α2 − α)(1 − ρ) + 1.(15)

This takes its minimum value where the derivative ∂
∂α

(α2 − α) = 2α − 1 = 0. For the MSE plug

α1 = α2 − 1/2 into (12) to get σ2

2

(
1 + ρ

)
. �

Problem 5. You have two unbiased measurements with errors of the same quantity
µ (which may or may not be random). The first measurement y1 has mean squared
error E[(y1 − µ)2] = σ2, the other measurement y2 has E[(y1 − µ)2] = τ2. The mea-
surement errors y1 − µ and y2 − µ have zero expected values (i.e., the measurements
are unbiased) and are independent of each other.
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• a. 2 points Show that the linear unbiased estimators of µ based on these two
measurements are simply the weighted averages of these measurements, i.e., they can
be written in the form µ̃ = αy1 + (1− α)y2, and that the MSE of such an estimator
is α2σ2 + (1 − α)2τ2. Note: we are using the word “estimator” here even if µ is
random. An estimator or predictor µ̃ is unbiased if E[µ̃ − µ] = 0. Since we allow µ
to be random, the proof in the class notes has to be modified.

Answer. The estimator µ̃ is linear (more precisely: affine) if it can written in the form

µ̃ = α1y1 + α2y2 + γ(16)

The measurements themselves are unbiased, i.e., E[yi − µ] = 0, therefore

E[µ̃ − µ] = (α1 + α2 − 1) E[µ] + γ = 0(17)

for all possible values of E[µ]; therefore γ = 0 and α2 = 1 − α1. To simplify notation, we will call

from now on α1 = α, α2 = 1 − α. Due to unbiasedness, the MSE is the variance of the estimation
error

var[µ̃ − µ] = α2σ2 + (1 − α)2τ2(18)

�

• b. 4 points Define ω2 by

1
ω2

=
1
σ2

+
1
τ2

which can be solved to give ω2 =
σ2τ2

σ2 + τ2
.(19)
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Show that the Best (i.e., minimum MSE) linear unbiased estimator (BLUE) of µ
based on these two measurements is

ŷ =
ω2

σ2
y1 +

ω2

τ2
y2(20)

i.e., it is the weighted average of y1 and y2 where the weights are proportional to the
inverses of the variances.

Answer. The variance (18) takes its minimum value where its derivative with respect of α is zero,
i.e., where

∂

∂α

(
α2σ2 + (1 − α)2τ2

)
= 2ασ2 − 2(1 − α)τ2 = 0(21)

ασ2 = τ2 − ατ2(22)

α =
τ2

σ2 + τ2
(23)

In terms of ω one can write

α =
τ2

σ2 + τ2
=

ω2

σ2
and 1 − α =

σ2

σ2 + τ2
=

ω2

τ2
.(24)

�

• c. 2 points Show: the MSE of the BLUE ω2 satisfies the following equation:

(25)
1
ω2

=
1
σ2

+
1
τ2
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Answer. We already have introduced the notation ω2 for the quantity defined by (25); therefore
all we have to show is that the MSE or, equivalently, the variance of the estimation error is equal
to this ω2:

(26) var[µ̃ − µ] =
(ω2

σ2

)2
σ2 +

(ω2

τ2

)2
τ2 = ω4

( 1

σ2
+

1

τ2

)
= ω4 1

ω2
= ω2

�

Problem 6. [Seb77, exercise 4d-3] Given n + 1 observations yj from a N(µ, σ2).
After the first n observations, it is suspected that a sudden change in the mean of the
distribution occurred, i.e., that yn+1 ∼ N(ν, σ2) with ν 6= µ. We will use here three
different approaches to derive the same test statistic for testing the hypothesis that the
n + 1st observation has the same population mean as the previous observations, i.e.,
that ν = µ, against the two-sided alternative. The formulas for this statistic should
be given in terms of the observations yi. It is recommended to use the notation
ȳ = 1

n

∑n
i=1 yi and ¯̄y = 1

n+1

∑n+1
j=1 yj.

• a. 3 points First you should derive this statistic by testing whether ν − µ = 0 (the
“Wald principle”). For this you must compute the BLUE of ν − µ and its standard
deviation and construct the t statistic from this.
Answer. BLUE of µ is ȳ = 1

n

∑n

i=1
yi, and that of ν is yn+1. BLUE of ν −µ is ȳ− yn+1. Because

of independence var[ȳ − yn+1] = var[ȳ] + var[yn+1] = σ2((1/n) + 1) = σ2(n + 1)/n. Standard

deviation is σ
√

(n + 1)/n.
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For the denominator in the t-statistic you need the s2 from the unconstrained regression, which
is

(27) s2 =
1

n − 1

n∑
j=1

(yj − ȳ)2

What happened to the (n + 1)st observation here? It always has a zero residual. And the factor
1/(n − 1) should really be written 1/(n + 1 − 2): there are n + 1 observations and 2 parameters.

Divide ȳ − yn+1 by its standard deviation and replace σ by s (the square root of s2) to get the

t statistic

(28)
ȳ − yn+1

s
√

1 + 1
n

�

• b. 2 points One can interpret this same formula also differently (and this is why
this test is sometimes called the “predictive” Chow test). Compute the Best Linear
Unbiased Predictor of yn+1 on the basis of the first n observations, call it ˆ̂y(n+1)n+1.
Show that the predictive residual yn+1 − ˆ̂y(n + 1)n+1, divided by the square root of
MSE[ˆ̂y(n+1)n+1; yn+1], with σ replaced by s (based on the first n observations only),
is equal to the above t statistic.

Answer. BLUP of yn+1 based on first n observations is ȳ again. Since it is unbiased, MSE[ȳ; yn+1] =

var[ȳ − yn+1] = σ2(n + 1)/n. From now on everything is as in part a. �
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• c. 6 points Next you should show that the above two formulas are identical to the
statistic based on comparing the SSEs of the constrained and unconstrained mod-
els (the likelihood ratio principle). Give a formula for the constrained SSEr, the
unconstrained SSEu, and the F -statistic.

Answer. According to the Likelihood Ratio principle, one has to compare the residual sums of
squares in the regressions under the assumption that the mean did not change with that under the
assumption that the mean changed. If the mean did not change (constrained model), then ¯̄y is the
OLS of µ. In order to make it easier to derive the difference between constrained and unconstrained
SSE, we will write the constrained SSE as follows:

SSEr =

n+1∑
j=1

(yj − ¯̄y)2 =

n+1∑
j=1

y2
j − (n + 1)¯̄y2 =

n+1∑
j=1

y2
j −

1

n + 1
(nȳ + yn+1)2

If one allows the mean to change (unconstrained model), then ȳ is the BLUE of µ, and yn+1 is the
BLUE of ν.

SSEu =

n∑
j=1

(yj − ȳ)2 + (yn+1 − yn+1)2 =

n∑
j=1

y2
j − nȳ2.
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Now subtract:

SSEr − SSEu = y2
n+1 + nȳ2 −

1

n + 1
(nȳ + yn+1)2

= y2
n+1 + nȳ2 −

1

n + 1
(n2ȳ2 + 2nȳyn+1 + y2

n+1)

= (1 −
1

n + 1
)y2

n+1 + (n −
n2

n + 1
)ȳ2 −

n

n + 1
2ȳyn+1

=
n

n + 1
(yn+1 − ȳ)2.

Interestingly, this depends on the first n observations only through ȳ.
Since the unconstrained model has n + 1 observations and 2 parameters, the test statistic is

(29)
SSEr − SSEu

SSEu/(n + 1 − 2)
=

n
n+1

(yn+1 − ȳ)2∑n

1
(yj − ȳ)2/(n − 1)

=
(yn+1 − ȳ)2 n(n − 1)∑n

1
(yj − ȳ)2 (n + 1)

∼ F1,n−1

This is the square of the t statistic (28). �

Problem 7. [Seb77, pp. 117–119] Given a regression model with k independent
variables. There are n observations of the vector of independent variables, and for
each of these n values there is not one but r > 1 different replicated observations of
the dependent variable. This model can be written

(30) ymq =
k∑

j=1

xmjβj + εmq or ymq = x>
mβ + εmq,
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where m = 1, . . . , n, j = 1, . . . , k, q = 1, . . . , r, and x>
m is the mth row of the X-

matrix. For simplicity we assume that r does not depend on m, each observation of
the independent variables has the same number of repetitions. We also assume that
the n× k matrix X has full column rank.

• a. 2 points In this model it is possible to test whether the regression line is in fact
a straight line. If it is not a straight line, then each observation of the dependent
variables xm has a different coefficient vector βm associated with it, i.e., the model
is

(31) ymq =
k∑

j=1

xmjβmj + εmq or ymq = x>
mβm + εmq.

This unconstrained model does not have enough information to estimate any of the
individual coefficients βmj. Explain how it is nevertheless still possible to compute
SSEu.
Answer. Even though the individual coefficients βmj are not identified, their linear combination

ηm = x>mβm =
∑k

j=1
xmjβmj is identified; one unbiased estimator, although by far not the best

one, is any individual observation ymq . This linear combination is all one needs to compute SSEu,
the sum of squared errors in the unconstrained model. �

• b. 2 points Writing your estimate of ηm = x>
mβm as η̃m, give the formula of the

sum of squared errors of this estimate, and by taking the first order conditions, show
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that the unconstrained least squares estimate of ηm is η̂m = ȳm· for m = 1, . . . , n,
where ȳm· = 1

r

∑r
q=1 ymq (i.e., the dot in the subscript indicates taking the mean).

Answer. If we know the η̃m the sum of squared errors no longer depents on the independent
observations xm but is simply

(32) SSEu =
∑
m,q

(ymq − η̃m)2

First order conditions are

(33)
∂

∂η̃h

∑
m,q

(ymq − η̃m)2 =
∂

∂η̃h

∑
q

(yhq − η̃h)2 = −2
∑

q

(yhq − η̃h) = 0

�

• c. 1 point The sum of squared errors associated with this least squares estimate is
the unconstrained sum of squared errors SSEu. How would you set up a regression
with dummy variables which would give you this SSEu?

Answer. The unconstrained model should be regressed in the form ymq = ηm + εmq . I.e., string
out the matrix Y as a vector and for each column of Y introduce a dummy variable which is = 1

if the given observation was originally in this colum. �

• d. 2 points Next turn to the constrained model (30). If X has full column rank,
then it is fully identified. Writing β̃j for your estimates of βj, give a formula for
the sum of squared errors of this estimate. By taking the first order conditions,
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show that the estimate β̂ is the same as the estimate in the model without replicated
observations

(34) zm =
k∑

j=1

xmjβj + εm,

where zm = ȳm· as defined above.

• e. 2 points If SSEc is the SSE in the constrained model (30) and SSEb the SSE
in (34), show that SSEc = r · SSEb + SSEu.

Answer. For every m we have
∑

q
(ymq − x>mβ̂)2 =

∑
q
(ymq − ȳm·)

2 + r(ym· − x>mβ̂)2; therefore

SSEc =
∑

m,q
(ymq − ȳm·)

2 + r
∑

m
(ym· − x>mβ̂)2; �

• f . 3 points Write down the formula of the F -test in terms of SSEu and SSEc with
a correct accounting of the degrees of freedom, and give this formula also in terms of
SSEu and SSEb.

Answer. Unconstrained model has n parameters, and constrained model has k parameters; the
number of additional “constraints” is therefore n − k. This gives the F -statistic

(35)
(SSEc − SSEu)/(n − k)

SSEu/n(r − 1)
=

rSSEb/(n − k)

SSEu/n(r − 1)

�
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-
Maximum number of points: 53.
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