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CHAPTER 1

Syllabus Econ 7800 Fall 2003

The class meets Tuesdays and Thursdays 12:25 to 1:45pm in BUC 207. First
class Thursday, August 21, 2003; last class Thursday, December 4.

Instructor: Assoc. Prof. Dr. Dr. Hans G. Ehrbar. Hans’s office is at 319 BUO,
Tel. 5817797, email ehrbar@econ.utah.edu Office hours: Monday 10-10:45 am,
Thursday 5-5:45 pm or by appointment.

Textbook: There is no obligatory textbook in the Fall Quarter, but detailed
class notes are available at www.econ.utah.edu/ehrbar/ec7800.pdf, and you can
purchase a hardcopy containing the assigned chapters only at the University Copy
Center, 158 Union Bldg, tel. 581 8569 (ask for the class materials for Econ 7800).
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xiv 1. SYLLABUS ECON 7800 FALL 2003

Furthermore, the following optional texts will be available at the bookstore:
Peter Kennedy, A Guide to Econometrics (fourth edition), MIT Press, 1998 ISBN
0-262-61140-6.

The bookstore also has available William H. Greene’s Econometric Analysis, fifth
edition, Prentice Hall 2003, ISBN 0-13-066189-9. This is the assigned text for Econ
7801 in the Spring semester 2004, and some of the introductory chapters are already
useful for the Fall semester 2003.

The following chapters in the class notes are assigned: 2, 3 (but not section 3.2),
4,5, 6, 7 (but only until section 7.3), 8, 9, 10, 11, 12, 14, only section 15.1 in chapter
15, in chapter 16, we will perhaps do section 16.1 or 16.4, then in chapter 17 we do
section 17.1, then chapter 18 until and including 18.5, and in chapter 22 do sections
22.1, 22.3, 22.6, and 22.7. In chapter 29 only the first section 29.1, finally chapters
30, and section 31.2 in chapter 31.

Summary of the Class: This is the first semester in a two-semester Econometrics
field, but it should also be useful for students taking the first semester only as part
of their methodology requirement. The course description says: Probability, con-
ditional probability, distributions, transformation of probability densities, sufficient
statistics, limit theorems, estimation principles, maximum likelihood estimation, in-
terval estimation and hypothesis testing, least squares estimation, linear constraints.
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This class has two focal points: maximum likelihood estimation, and the funda-
mental concepts of the linear model (regression).

If advanced mathematical concepts are necessary in these theoretical explo-
rations, they will usually be reviewed very briefly before we use them. The class
is structured in such a way that, if you allocate enough time, it should be possible
to refresh your math skills as you go along.

Here is an overview of the topics to be covered in the Fall Semester. They may
not come exactly in the order in which they are listed here

1. Probability fields: Events as sets, set operations, probability axioms, sub-
jective vs. frequentist interpretation, finite sample spaces and counting rules (com-
binatorics), conditional probability, Bayes theorem, independence, conditional inde-
pendence.

2. Random Variables: Cumulative distribution function, density function;
location parameters (expected value, median) and dispersion parameters (variance).

3. Special Issues and Examples: Discussion of the “ecological fallacy”; en-
tropy; moment generating function; examples (Binomial, Poisson, Gamma, Normal,
Chisquare); sufficient statistics.

4. Limit Theorems: Chebyshev inequality; law of large numbers; central limit
theorems.
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The first Midterm will already be on Thursday, September 18, 2003. It will be
closed book, but you are allowed to prepare one sheet with formulas etc. Most of
the midterm questions will be similar or identical to the homework questions in the
class notes assigned up to that time.

5. Jointly Distributed Random Variables: Joint, marginal, and condi-
tional densities; conditional mean; transformations of random variables; covariance
and correlation; sums and linear combinations of random variables; jointly normal
variables.

6. Estimation Basics: Descriptive statistics; sample mean and variance; de-
grees of freedom; classification of estimators.

7. Estimation Methods: Method of moments estimators; least squares esti-
mators. Bayesian inference. Maximum likelihood estimators; large sample properties
of MLE; MLE and sufficient statistics; computational aspects of maximum likelihood.

8. Confidence Intervals and Hypothesis Testing: Power functions; Ney-
man Pearson Lemma; likelihood ratio tests. As example of tests: the run test,
goodness of fit test, contingency tables.

The second in-class Midterm will be on Thursday, October 16, 2003.
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9. Basics of the “Linear Model.” We will discuss the case with nonrandom
regressors and a spherical covariance matrix: OLS-BLUE duality, Maximum likeli-
hood estimation, linear constraints, hypothesis testing, interval estimation ((-test,
F-test, joint confidence intervals).

The third Midterm will be a takehome exam. You will receive the questions on
Tuesday, November 25, 2003, and they are due back at the beginning of class on
Tuesday, December 2nd, 12:25 pm. The questions will be similar to questions which
you might have to answer in the Econometrics Field exam.

The Final Exam will be given according to the campus-wide examination sched-
ule, which is Wednesday December 10, 10:30-12:30 in the usual classroom. Closed
book, but again you are allowed to prepare one sheet of notes with the most impor-
tant concepts and formulas. The exam will cover material after the second Midterm.

Grading: The three midterms and the final exams will be counted equally. Every
week certain homework questions from among the questions in the class notes will
be assigned. It is recommended that you work through these homework questions
conscientiously. The answers provided in the class notes should help you if you get
stuck. If you have problems with these homeworks despite the answers in the class
notes, please write you answer down as far as you get and submit your answer to
me; I will look at them and help you out. A majority of the questions in the two
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in-class midterms and the final exam will be identical to these assigned homework
questions, but some questions will be different.

Special circumstances: If there are special circumstances requiring an individ-
ualized course of study in your case, please see me about it in the first week of
classes.

Hans G. Ehrbar



CHAPTER 2

Probability Fields

2.1. The Concept of Probability

Probability theory and statistics are useful in dealing with the following types
of situations:

Games of chance: throwing dice, shuffling cards, drawing balls out of urns.
Quality control in production: you take a sample from a shipment, count
how many defectives.

Actuarial Problems: the length of life anticipated for a person who has just
applied for life insurance.

Scientific Eperiments: you count the number of mice which contract cancer
when a group of mice is exposed to cigarette smoke.

1
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Markets: the total personal income in New York State in a given month.

Meteorology: the rainfall in a given month.

Uncertainty: the exact date of Noah’s birth.

Indeterminacy: The closing of the Dow Jones industrial average or the

temperature in New York City at 4 pm. on February 28, 2014.

e Chaotic determinacy: the relative frequency of the digit 3 in the decimal
representation of .

e Quantum mechanics: the proportion of photons absorbed by a polarization
filter

e Statistical mechanics: the velocity distribution of molecules in a gas at a

given pressure and temperature.

In the probability theoretical literature the situations in which probability theory
applies are called “experiments,” see for instance [Rén70, p. 1]. We will not use this
terminology here, since probabilistic reasoning applies to several different types of
situations, and not all these can be considered “experiments.”

ProBrev 1. (This question will not be asked on any exams) Rényi says: “Ob-
serving how long one has to wait for the departure of an airplane is an experiment.”
Comment.
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ANSwWER. Rény commits the epistemic fallacy in order to justify his use of the word “exper-
iment.” Not the observation of the departure but the departure itself is the event which can be
theorized probabilistically, and the word “experiment” is not appropriate here. 0

What does the fact that probability theory is appropriate in the above situations
tell us about the world? Let us go through our list one by one:

e Games of chance: Games of chance are based on the sensitivity on initial
conditions: you tell someone to roll a pair of dice or shuffle a deck of cards,
and despite the fact that this person is doing exactly what he or she is asked
to do and produces an outcome which lies within a well-defined universe
known beforehand (a number between 1 and 6, or a permutation of the
deck of cards), the question which number or which permutation is beyond
their control. The precise location and speed of the die or the precise order
of the cards varies, and these small variations in initial conditions give rise,
by the “butterfly effect” of chaos theory, to unpredictable final outcomes.

A critical realist recognizes here the openness and stratification of the
world: If many different influences come together, each of which is gov-
erned by laws, then their sum total is not determinate, as a naive hyper-
determinist would think, but indeterminate. This is not only a condition
for the possibility of science (in a hyper-deterministic world, one could not
know anything before one knew everything, and science would also not be
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necessary because one could not do anything), but also for practical human
activity: the macro outcomes of human practice are largely independent of
micro detail (the postcard arrives whether the address is written in cursive
or in printed letters, etc.). Games of chance are situations which delib-
erately project this micro indeterminacy into the macro world: the micro
influences cancel each other out without one enduring influence taking over
(as would be the case if the die were not perfectly symmetric and balanced)
or deliberate human corrective activity stepping into the void (as a card
trickster might do if the cards being shuffled somehow were distinguishable
from the backside).

The experiment in which one draws balls from urns shows clearly an-
other aspect of this paradigm: the set of different possible outcomes is
fixed beforehand, and the probability enters in the choice of one of these
predetermined outcomes. This is not the only way probability can arise;
it is an extensionalist example, in which the connection between success
and failure is external. The world is not a collection of externally related
outcomes collected in an urn. Success and failure are not determined by a
choice between different spacially separated and individually inert balls (or
playing cards or faces on a die), but it is the outcome of development and
struggle that is internal to the individual unit.
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e Quality control in production: you take a sample from a shipment, count
how many defectives. Why is statistics and probability useful in produc-
tion? Because production is work, it is not spontaneous. Nature does not
voluntarily give us things in the form in which we need them. Production
is similar to a scientific experiment because it is the attempt to create local
closure. Such closure can never be complete, there are always leaks in it,
through which irregularity enters.

e Actuarial Problems: the length of life anticipated for a person who has
just applied for life insurance. Not only production, but also life itself is
a struggle with physical nature, it is emergence. And sometimes it fails:
sometimes the living organism is overwhelmed by the forces which it tries
to keep at bay and to subject to its own purposes.

e Scientific Eperiments: you count the number of mice which contract cancer
when a group of mice is exposed to cigarette smoke: There is local closure
regarding the conditions under which the mice live, but even if this clo-
sure were complete, individual mice would still react differently, because of
genetic differences. No two mice are exactly the same, and despite these
differences they are still mice. This is again the stratification of reality. Two
mice are two different individuals but they are both mice. Their reaction
to the smoke is not identical, since they are different individuals, but it is
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not completely capricious either, since both are mice. It can be predicted
probabilistically. Those mechanisms which make them mice react to the
smoke. The probabilistic regularity comes from the transfactual efficacy of
the mouse organisms.

Meteorology: the rainfall in a given month. It is very fortunate for the
development of life on our planet that we have the chaotic alternation be-
tween cloud cover and clear sky, instead of a continuous cloud cover as in
Venus or a continuous clear sky. Butterfly effect all over again, but it is
possible to make probabilistic predictions since the fundamentals remain
stable: the transfactual efficacy of the energy received from the sun and
radiated back out into space.

Markets: the total personal income in New York State in a given month.
Market economies are a very much like the weather; planned economies
would be more like production or life.

Uncertainty: the exact date of Noah’s birth. This is epistemic uncertainty:
assuming that Noah was a real person, the date exists and we know a time
range in which it must have been, but we do not know the details. Proba-
bilistic methods can be used to represent this kind of uncertain knowledge,
but other methods to represent this knowledge may be more appropriate.
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e Indeterminacy: The closing of the Dow Jones Industrial Average (DJIA)
or the temperature in New York City at 4 pm. on February 28, 2014: This
is ontological uncertainty, not only epistemological uncertainty. Not only
do we not know it, but it is objectively not yet decided what these data
will be. Probability theory has limited applicability for the DJIA since it
cannot be expected that the mechanisms determining the DJIA will be the
same at that time, therefore we cannot base ourselves on the transfactual
efficacy of some stable mechanisms. It is not known which stocks will be
included in the DJIA at that time, or whether the US dollar will still be
the world reserve currency and the New York stock exchange the pinnacle
of international capital markets. Perhaps a different stock market index
located somewhere else will at that time play the role the DJIA is playing
today. We would not even be able to ask questions about that alternative
index today.

Regarding the temperature, it is more defensible to assign a probability,
since the weather mechanisms have probably stayed the same, except for
changes in global warming (unless mankind has learned by that time to
manipulate the weather locally by cloud seeding etc.).

e Chaotic determinacy: the relative frequency of the digit 3 in the decimal
representation of 7: The laws by which the number 7 is defined have very
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little to do with the procedure by which numbers are expanded as decimals,
therefore the former has no systematic influence on the latter. (It has an
influence, but not a systematic one; it is the error of actualism to think that
every influence must be systematic.) But it is also known that laws can
have remote effects: one of the most amazing theorems in mathematics is
the formula § =1 — % + % — i + - -+ which estalishes a connection between
the geometry of the circle and some simple arithmetics.

Quantum mechanics: the proportion of photons absorbed by a polarization
filter: If these photons are already polarized (but in a different direction
than the filter) then this is not epistemic uncertainty but ontological inde-
terminacy, since the polarized photons form a pure state, which is atomic
in the algebra of events. In this case, the distinction between epistemic un-
certainty and ontological indeterminacy is operational: the two alternatives
follow different mathematics.

Statistical mechanics: the velocity distribution of molecules in a gas at a
given pressure and temperature. Thermodynamics cannot be reduced to
the mechanics of molecules, since mechanics is reversible in time, while
thermodynamics is not. An additional element is needed, which can be
modeled using probability.
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2. Not every kind of uncertainty can be formulated stochastically.
Which other methods are available if stochastic means are inappropriate?

Dialectics. O

3. How are the probabilities of rain in weather forecasts to be inter-
preted?

Renyi in [Rén70, pp. 33/4]: “By saying that the probability of rain tomorrow is
80% (or, what amounts to the same, 0.8) the meteorologist means that in a situation similar to that
observed on the given day, there is usually rain on the next day in about 8 out of 10 cases; thus,
while it is not certain that it will rain tomorrow, the degree of certainty of this event is 0.8.” |

Pure uncertainty is as hard to generate as pure certainty; it is needed for en-
cryption and numerical methods.

Here is an encryption scheme which leads to a random looking sequence of num-
bers (see [Ra097, p. 13]): First a string of binary random digits is generated which is
known only to the sender and receiver. The sender converts his message into a string
of binary digits. He then places the message string below the key string and obtains
a coded string by changing every message bit to its alternative at all places where
the key bit is 1 and leaving the others unchanged. The coded string which appears
to be a random binary sequence is transmitted. The received message is decoded by
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making the changes in the same way as in encrypting using the key string which is
known to the receiver.

4. Why is it important in the above encryption scheme that the key
string is purely random and does not have any reqularities?

5. ] , Dp. 7, 452] Suppose you wish to obtain a decimal digit at
random, not using a computer. Which of the following methods would be suitable?

a. Open a telephone directory to a random place (i.e., stick your finger in it
somewhere) and use the unit digit of the first number found on the selected page.

This will often fail, since users select “round” numbers if possible. In some areas,
telephone numbers are perhaps assigned randomly. But it is a mistake in any case to try to get
several successive random numbers from the same page, since many telephone numbers are listed
several times in a sequence. O

b. Same as a, but use the units digit of the page number.

But do you use the left-hand page or the right-hand page? Say, use the left-hand
page, divide by 2, and use the units digit. O

c. Roll a die which is in the shape of a regular icosahedron, whose twenty faces
have been labeled with the digits 0, 0, 1, 1,..., 9, 9. Use the digit which appears on
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top, when the die comes to rest. (A felt table with a hard surface is recommended for
rolling dice.)
The markings on the face will slightly bias the die, but for practical purposes this

method is quite satisfactory. See Math. Comp. 15 (1961), 94-95, for further discussion of these
dice. ]

d. Ezpose a geiger counter to a source of radioactivity for one minute (shielding
yourself) and use the unit digit of the resulting count. (Assume that the geiger
counter displays the number of counts in decimal notation, and that the count is
initially zero.)

This is a difficult question thrown in purposely as a surprise. The number is not
uniformly distributed! One sees this best if one imagines the source of radioactivity is very low
level, so that only a few emissions can be expected during this minute. If the average number of

emissions per minute is A, the probability that the counter registers k is e*)‘)\k/k! (the Poisson
distribution). So the digit 0 is selected with probability e~* Zzio MOk /(10K)!, etc. O

e. Glance at your wristwatch, and if the position of the second-hand is between
6n and 6(n + 1), choose the digit n.

Okay, provided that the time since the last digit selected in this way is random. A
bias may arise if borderline cases are not treated carefully. A better device seems to be to use a
stopwatch which has been started long ago, and which one stops arbitrarily, and then one has all
the time necessary to read the display. dJ
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f. Ask a friend to think of a random digit, and use the digit he names.

No, people usually think of certain digits (like 7) with higher probability. O

g. Assume 10 horses are entered in a race and you know nothing whatever about
their qualifications. Assign to these horses the digits 0 to 9, in arbitrary fashion, and
after the race use the winner’s digit.

Okay; your assignment of numbers to the horses had probability 1/10 of assigning a
given digit to a winning horse. 0

2.2. Events as Sets

With every situation with uncertain outcome we associate its sample space U,
which represents the set of all possible outcomes (described by the characteristics
which we are interested in).

FEvents are associated with subsets of the sample space, i.e., with bundles of
outcomes that are observable in the given experimental setup. The set of all events
we denote with F. (F is a set of subsets of U.)

Look at the example of rolling a die. U = {1,2,3,4,5,6}. The events of getting
an even number is associated with the subset {2,4,6}; getting a six with {6}; not
getting a six with {1,2,3,4,5}, etc. Now look at the example of rolling two indistin-
guishable dice. Observable events may be: getting two ones, getting a one and a two,
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etc. But we cannot distinguish between the first die getting a one and the second a
two, and vice versa. Le., if we define the sample set to be U = {1,...,6} x{1,...,6},
i.e., the set of all pairs of numbers between 1 and 6, then certain subsets are not
observable. {(1,5)} is not observable (unless the dice are marked or have different
colors etc.), only {(1,5),(5,1)} is observable.

If the experiment is measuring the height of a person in meters, and we make
the idealized assumption that the measuring instrument is infinitely accurate, then
all possible outcomes are numbers between 0 and 3, say. Sets of outcomes one is
usually interested in are whether the height falls within a given interval; therefore
all intervals within the given range represent observable events.

If the sample space is finite or countably infinite, very often all subsets are
observable events. If the sample set contains an uncountable continuum, it is not
desirable to consider all subsets as observable events. Mathematically one can define
quite crazy subsets which have no practical significance and which cannot be mean-
ingfully given probabilities. For the purposes of Econ 7800, it is enough to say that
all the subsets which we may reasonably define are candidates for observable events.

The “set of all possible outcomes” is well defined in the case of rolling a die
and other games; but in social sciences, situations arise in which the outcome is
open and the range of possible outcomes cannot be known beforehand. If one uses
a probability theory based on the concept of a “set of possible outcomes” in such
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a situation, one reduces a process which is open and evolutionary to an imaginary
predetermined and static “set.” Furthermore, in social theory, the mechanism by
which these uncertain outcomes are generated are often internal to the members of
the statistical population. The mathematical framework models these mechanisms
as an extraneous “picking an element out of a pre-existing set.”

From given observable events we can derive new observable events by set theo-
retical operations. (All the operations below involve subsets of the same U.)

Mathematical Note: Notation of sets: there are two ways to denote a set: either
by giving a rule, or by listing the elements. (The order in which the elements are
listed, or the fact whether some elements are listed twice or not, is irrelevant.)

Here are the formal definitions of set theoretic operations. The letters A, B, etc.
denote subsets of a given set U (events), and I is an arbitrary index set. w stands
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for an element, and w € A means that w is an element of A.

(2.2.1) ACB < (weA=weB) (A is contained in B)
(2.2.2) ANB={w:we Aand w € B} (intersection of A and B)
(2.2.3) ﬂ A ={w:we A foraliecl}
iel
(2.2.4) AUB={w:we€ Aorw € B} (union of A and B)
(2.2.5) U A; = {w: there exists an ¢ € I such that w € A;}
iel
(2.2.6) U Universal set: all w we talk about are € U.
(2.2.7) A ={w:w¢g Abut we U}
(2.2.8) () = the empty set: w ¢ () for all w.

These definitions can also be visualized by Venn diagrams; and for the purposes of
this class, demonstrations with the help of Venn diagrams will be admissible in lieu
of mathematical proofs.

6. For the following set-theoretical exercises it is sufficient that you
draw the corresponding Venn diagrams and convince yourself by just looking at them
that the statement is true. For those who are interested in a precise mathematical
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proof derived from the definitions of AU B etc. given above, should remember that a
proof of the set-theoretical identity A = B usually has the form: first you show that
w € A implies w € B, and then you show the converse.

a. Prove that AUB=B «<— ANB=A.

If one draws the Venn diagrams, one can see that either side is true if and only
if A C B. If one wants a more precise proof, the following proof by contradiction seems most
illuminating: Assume the lefthand side does not hold, i.e., there exists a w € A but w ¢ B. Then
w & AN B, ie, AN B # A. Now assume the righthand side does not hold, i.e., there is a w € A
with w ¢ B. This w lies in AU B but not in B, i.e., the lefthand side does not hold either.

O

b. Prove that AU(BNC)=(AUB)N(AUC)

If w € A then it is clearly always in the righthand side and in the lefthand side. If
there is therefore any difference between the righthand and the lefthand side, it must be for the
w¢ A: If w¢ A and it is still in the lefthand side then it must be in B N C, therefore it is also in
the righthand side. If w ¢ A and it is in the righthand side, then it must be both in B and in C,
therefore it is in the lefthand side.

O

¢. Prove that AN (BUC)=(ANB)U(ANC).

If w ¢ A then it is clearly neither in the righthand side nor in the lefthand side. If
there is therefore any difference between the righthand and the lefthand side, it must be for the
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w € A: If w € A and it is in the lefthand side then it must be in BUC, i.e., in B or in C or in both,
therefore it is also in the righthand side. If w € A and it is in the righthand side, then it must be
in either B or C or both, therefore it is in the lefthand side. O

d. Prove that AN (Ufil Bi) =Uz,(ANB)).

Proof: If w in lefthand side, then it is in A and in at least one of the B;, say it is
in Bg. Therefore it is in AN By, and therefore it is in the righthand side. Now assume, conversely,
that w is in the righthand side; then it is at least in one of the AN B;, say it is in AN Bg. Hence it
is in A and in By, i.e., in A and in UBiv i.e., it is in the lefthand side. O

7. 8 points Draw a Venn Diagram which shows the validity of de
Morgan’s laws: (AU B) = A'N B’ and (AN B) = A’ U B'. If done right, the same
Venn diagram can be used for both proofs.

There is a proof in [ , p- 12]. Draw A and B inside a box which represents U,
and shade A’ from the left (blue) and B’ from the right (yellow), so that A’ N B’ is cross shaded
(green); then one can see these laws. O

8. 3 points | , Exercise 1.2-13 on p. 14] FEwvaluate the following

unions and intersections of intervals. Use the notation (a,b) for open and [a,b] for
closed intervals, (a,b] or [a,b) for half open intervals, {a} for sets containing one
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element only, and () for the empty set.

2o O(Le)- Al

n=1
(2.2.10) nL_Jl[iQ] - Ql [0,1 + ﬂ =
N -
(2.2.11) nU1<n,2>_(0,2) ﬂ(o,n> 0
=g oo 1
(2.2.12) H[nj](o,m Dl{o,urn] [0,1]

Explanation of U:o:1 [%, 2]: for every a with 0 < o < 2 there is a n with % < a, but 0 itself is in
none of the intervals. d

The set operations become logical operations if applied to events. Every experi-
ment returns an element welU as outcome. Here w is rendered green in the electronic
version of these notes (and in an upright font in the version for black-and-white
printouts), because w does not denote a specific element of U, but it depends on
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chance which element is picked. Le., the green color (or the unusual font) indicate
that w is “alive.” We will also render the events themselves (as opposed to their
set-theoretical counterparts) in green (or in an upright font).

e We say that the event A has occurred when we A.
e If A C B then event A implies event B, and we will write this directly in

terms of events as A C B.

The set AN B is associated with the event that both A and B occur (e.g.
an even number smaller than six), and considered as an event, not a set,
the event that both A and B occur will be written AN B.

Likewise, A U B is the event that either A or B, or both, occur.

A’ is the event that A does not occur.

U the event that always occurs (as long as one performs the experiment).
The empty set () is associated with the impossible event (), because whatever
the value w of the chance outcome w of the experiment, it is always w ¢ 0.

If AN B = (), the set theoretician calls A and B “disjoint,” and the probability
theoretician calls the events A and B “mutually exclusive.” If AU B = U, then A
and B are called “collectively exhaustive.”
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The set F of all observable events must be a o-algebra, i.e., it must satisfy:

heF
AcF=AeF
Ay, Ag,...€ F= AiUAU--- € F which can also be written as U A, e F
i=1,2,...
A, Ag, ... € F= AiNAsN--- € F which can also be written as ﬂ A; € F.

i=1,2,...

2.3. The Axioms of Probability

A probability measure Pr : F — R is a mapping which assigns to every event a
number, the probability of this event. This assignment must be compatible with the
set-theoretic operations between events in the following way:

(2.3.1) Pr[U] =1
(2.3.2) Pr[A] >0 for all events A

(2.3.3) Tf A; 0 A; =0 for all 4, j with i # j then  Pr[{ ] Ai] = Pr[4;]
i=1

i=1
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Here an infinite sum is mathematically defined as the limit of partial sums. These
axioms make probability what mathematicians call a measure, like area or weight.
In a Venn diagram, one might therefore interpret the probability of the events as the
area of the bubble representing the event.

9. Prove that Pr[A’] =1 — Pr[A].

Follows from the fact that A and A’ are disjoint and their union U has probability
1. O

10. 2 points Prove that Pr[A U B] = Pr[A] + Pr[B] — Pr[AnN B].

For Econ 7800 it is sufficient to argue it out intuitively: if one adds Pr[A] + Pr[B]
then one counts Pr[A N B] twice and therefore has to subtract it again.
The brute force mathematical proof guided by this intuition is somewhat verbose: Define
D=ANB',E=ANB,and = A'"NB. D, E, and F satisfy

(2.3.4) DUE=(ANB)YU(ANB)=AN(B'UB)=ANU = A,
(2.3.5) EUF = B,
(2.3.6) DUEUF = AUB.
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You may need some of the properties of unions and intersections in Problem 6. Next step is to
prove that D, E, and I’ are mutually exclusive. Therefore it is easy to take probabilities

(2.3.7) Pr[A] = Pr[D] + Pr[E];
(2.3.8) Pr[B] = Pr[E] + Pr[F];
(2.3.9) Pr[A U B] = Pr[D] + Pr[E] + Pr[F].

Take the sum of (2.3.7) and (2.3.8), and subtract (2.3.9):
(2.3.10) Pr[A] + Pr[B] — Pr[AU B] = Pr[E] = Pr[A N BJ;

A shorter but trickier alternative proof is the following. First note that AUB = AU(A’NB) and
that this is a disjoint union, i.e., Pr[AUB] = Pr[A]+Pr[A’NB]. Then note that B = (ANB)U(A'NB),
and this is a disjoint union, therefore Pr[B] = Pr[ANB]+Pr[A'NB], or Pr[A'NB] = Pr[B]—Pr[ANB].

Putting this together gives the result.
O

11. 1 point Show that for arbitrary events A and B, Pr[A U B] <
Pr[A] + Pr[B].

From Problem 10 we know that Pr[A U B] = Pr[A] + Pr[B] — Pr[A N B], and from
axiom (2.3.2) follows Pr[A N B] > 0. O

12. 2 points (Bonferroni inequality) Let A and B be two events. Writ-
ing Pr[A] =1 — «a and Pr[B] = 1 — 8, show that Pr[ANB] > 1— (a+ B). You are
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allowed to use that Pr[A U B] = Pr[A] 4+ Pr[B] — Pr[A N B] (Problem 10), and that
all probabilities are < 1.

(2.3.11) Pr[AU B] = Pr[A] + Pr[B] - Pr[AnB] <1

(2.3.12) Pr[A] + Pr[B] < 1+ Pr[AN B]
(2.3.13) Pr[A] + Pr[B] — 1 < Pr[AN B
(2.3.14) l—-a+1-p—-1=1—a—B<Pr[ANB]

O

13. (Not eligible for in-class exams) Given a rising sequence of events

By C By C B+, define B =J;2, B;. Show that Pr[B] = lim; o Pr[B;].

Define C1 = By, Co —BgﬁB’l, Cs = Bz N B’y, etc. Then C; NC; =0 for i # j,
and B, = U:L: C; and B = U . In other words, now we have represented every B, and B
as a union of disjoint sets, and can therefore apply the third probability axiom (2.3.3): Pr[B] =
Zzl Pr[C;]. The infinite sum is merely a short way of writing Pr[B] = limn,— oo E?:l Pr[C}], ie.,
the infinite sum is the limit of the finite sums. But since these finite sums are exactly Z?:l Pr[C;] =
Pr[LJ?:1 C';] = Pr[Bn], the assertion follows. This proof, as it stands, is for our purposes entirely
acceptable. One can make some steps in this proof still more stringent. For instance, one might use
induction to prove B, = Un . And how does one show that B = U ;3?7 Well, one knows
that C; C Bj;, therefore U (' C U B; = B. Now take an w € B. Then it lies in at least one
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of the B;, but it can be in many of them. Let k be the smallest k for which w € By. If k = 1, then
w € C1 = By as well. Otherwise, w ¢ Bj_1, and therefore w € C. Ie., any element in B lies in
at least one of the C'y, therefore B C Uzl C;. dJ

14. (Not eligible for in-class exams) From problem 18 derive also
the following: if Ay D Ay D As--- is a declining sequence, and A = (), A;, then
Pr[A] = lim Pr[4,].

If the A; are declining, then their complements B; = A/ are rising: B1 C Bz C
Bg - - are rising; therefore I know the probability of B = U Bj;. Since by de Morgan’s laws, B = A/,
this gives me also the probability of A. |

The results regarding the probabilities of rising or declining sequences are equiv-
alent to the third probability axiom. This third axiom can therefore be considered a
continuity condition for probabilities.

If U is finite or countably infinite, then the probability measure is uniquely
determined if one knows the probability of every one-element set. We will call
Pr[{w}] = p(w) the probability mass function. Other terms used for it in the lit-
erature are probability function, or even probability density function (although it
is not a density, more about this below). If U has more than countably infinite
elements, the probabilities of one-element sets may not give enough information to
define the whole probability measure.
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Mathematical Note: Not all infinite sets are countable. Here is a proof, by
contradiction, that the real numbers between 0 and 1 are not countable: assume
there is an enumeration, i.e., a sequence aq, as, ... which contains them all. Write
them underneath each other in their (possibly infinite) decimal representation, where
0.dj1d;s2d;s . . . is the decimal representation of a;. Then any real number whose
decimal representation is such that the first digit is not equal to dy1, the second digit
is not equal dos, the third not equal dss, etc., is a real number which is not contained
in this enumeration. That means, an enumeration which contains all real numbers
cannot exist.

On the real numbers between 0 and 1, the length measure (which assigns to each
interval its length, and to sets composed of several invervals the sums of the lengths,
etc.) is a probability measure. In this probability field, every one-element subset of
the sample set has zero probability.

This shows that events other than () may have zero probability. In other words,
if an event has probability 0, this does not mean it is logically impossible. It may
well happen, but it happens so infrequently that in repeated experiments the average
number of occurrences converges toward zero.
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2.4. Objective and Subjective Interpretation of Probability

The mathematical probability axioms apply to both objective and subjective
interpretation of probability.

The objective interpretation considers probability a quasi physical property of the
experiment. One cannot simply say: Pr[A] is the relative frequency of the occurrence
of A, because we know intuitively that this frequency does not necessarily converge.
E.g., even with a fair coin it is physically possible that one always gets head, or that
one gets some other sequence which does not converge towards % The above axioms
resolve this dilemma, because they allow to derive the theorem that the relative
frequencies converges towards the probability with probability one.

Subjectivist interpretation (de Finetti: “probability does not exist”) defines prob-
ability in terms of people’s ignorance and willingness to take bets. Interesting for
economists because it uses money and utility, as in expected utility. Call “a lottery
on A” a lottery which pays $1 if A occurs, and which pays nothing if A does not
occur. If a person is willing to pay p dollars for a lottery on A and 1 — p dollars for
a lottery on A’, then, according to a subjectivist definition of probability, he assigns
subjective probability p to A.

There is the presumption that his willingness to bet does not depend on the size
of the payoff (i.e., the payoffs are considered to be small amounts).
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15. Assume A, B, and C are a complete disjunction of events, i.e.,
they are mutually exclusive and AU BUC = U, the universal set.

a. 1 point Arnold assigns subjective probability p to A, q to B, and r to C.
Ezxplain exactly what this means.

We know six different bets which Arnold is always willing to make, not only on A,
B, and C, but also on their complements. ]

b. 1 point Assume that p+q+1 > 1. Name three lotteries which Arnold would
be willing to buy, the net effect of which would be that he loses with certainty.

Among those six we have to pick subsets that make him a sure loser. If p4+qg+7r > 1,

then we sell him a bet on A, one on B, and one on C. The payoff is always 1, and the cost is
p+qg+r>1. g

c. 1 point Now assume that p+ q+r < 1. Name three lotteries which Arnold
would be willing to buy, the net effect of which would be that he loses with certainty.

If p+g+7r < 1, then we sell him a bet on A’, one on B’, and one on C’. The payoff
is 2, and the costis 1 —p+1—qg+1—7> 2. O

d. 1 point Arnold is therefore only coherent if Pr[A]+Pr[B]+Pr[C] = 1. Show
that the additivity of probability can be derived from coherence, i.e., show that any
subjective probability that satisfies the rule: whenever A, B, and C is a complete
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disjunction of events, then the sum of their probabilities is 1, is additive, i.e., Pr[AU
B] = Pr[A] + Pr[B].

Since r is his subjective probability of C, 1 —r must be his subjective probability of
C'"=AUB. Sincep+q+r =1, it follows 1 —r =p+gq. ]

This last problem indicates that the finite additivity axiom follows from the
requirement that the bets be consistent or, as subjectivists say, “coherent” with
each other. However, it is not possible to derive the additivity for countably infinite
sequences of events from such an argument.

2.5. Counting Rules

In this section we will be working in a finite probability space, in which all atomic
events have equal probabilities. The acts of rolling dice or drawing balls from urns
can be modeled by such spaces. In order to compute the probability of a given event,
one must count the elements of the set which this event represents. In other words,
we count how many different ways there are to achieve a certain outcome. This can
be tricky, and we will develop some general principles how to do it.

16. You throw two dice.

a. 1 point What is the probability that the sum of the numbers shown is five or
less?
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1
23 i.e., 10 out of 36 possibilities, gives the probability %. O

b. 1 point What is the probability that both of the numbers shown are five or
less?

315 23 34 25
3132333435, ie., 22. O
41 12 43 14 45
51 52 53 54 55

c. 2 points What is the probability that the maximum of the two numbers shown
is flve? (As a clarification: if the first die shows 4 and the second shows 3 then the
mazimum of the numbers shown is 4.)

%5

5, ie, L. 0
45
51 52 53 54 55

In this and in similar questions to follow, the answer should be given as a fully

shortened fraction.

The multiplication principle is a basic aid in counting: If the first operation can
be done n; ways, and the second operation ny ways, then the total can be done nino
ways.

Definition: A permutation of a set is its arrangement in a certain order. It was
mentioned earlier that for a set it does not matter in which order the elements are
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written down; the number of permutations is therefore the number of ways a given
set can be written down without repeating its elements. From the multiplication
principle follows: the number of permutations of a set of n elements is n(n — 1)(n —
2)---(2)(1) = n! (n factorial). By definition, 0! = 1.

If one does not arrange the whole set, but is interested in the number of k-
tuples made up of distinct elements of the set, then the number of possibilities is
nn—1Mn-2)(n—-k+2)(n—k+1) = 2. (Start with n and the number

(n—k)!"
of factors is k.) (k-tuples are sometimes called ordered k-tuples because the order in
which the elements are written down matters.) [ , - 8] uses the notation P’
for this.

This leads us to the next question: how many k-element subsets does a n-element
set have? We already know how many permutations into k elements it has; but always
k! of these permutations represent the same subset; therefore we have to divide by
k!. The number of k-element subsets of an n-element set is therefore

n! n(n—l)(n—2)~-(n—k+1)_<n)

(2:5.1) Bn— k) (D) (2)(3)- -k k

It is pronounced as m choose k, and is also called a “binomial coefficient.” It is
defined for all 0 < k <mn. | , p. 8] calls this number C}.
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17. 5 points Compute the probability of getting two of a kind and three
of a kind (a “full house”) when five dice are rolled. (It is not necessary to express it
as a decimal number; a fraction of integers is just fine. But please explain what you
are doing.)

See | , example 2.3.3 on p. 9]. Sample space is all ordered 5-tuples out of 6,
which has 6° elements. Number of full houses can be identified with number of all ordered pairs of
distinct elements out of 6, the first element in the pair denoting the number which appears twice
and the second element that which appears three times, i.e., Pg = 6-5. Number of arrangements
of a given full house over the five dice is 025 = % (we have to specify the two places taken by the
two-of-a-kind outcomes.) Solution is therefore PS - C5/65 = 50/6% = 0.03858. This approach uses
counting.

Alternative approach, using conditional probability: probability of getting 3 of one kind and
1.5 .1 5

then two of a different kind is 1 - é “%°%° 8 = gr- Then multiply by (g) = 10, since this is the

number of arrangements of the 3 and 2 over the five cards.

18. What is the probability of drawing the King of Hearts and the
Queen of Hearts if one draws two cards out of a 52 card game? Is it 522 ¢ Is it

W OT'ZSZtl/():%?

Of course the last; it is the probability of drawing one special subset. There are two
ways of drawing this subset: first the King and then the Queen, or first the Queen and then the
King. |
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2.6. Relationships Involving Binomial Coefficients

19. Show that (}) = (,,",). Give an intuitive argument why this must

be so.

Because (nfk) counts the complements of k-element sets. |

Assume U has n elements, one of which is v € U. How many k-element subsets
of U have v in them? There is a simple trick: Take all (k — 1)-element subsets of the
set you get by removing v from U, and add v to each of these sets. L.e., the number
is (Zj) Now how many k-element subsets of U do not have v in them? Simple; just
take the k-element subsets of the set which one gets by removing v from U; i.e., it is
(";1) Adding those two kinds of subsets together one gets all k-element subsets of

(2.6.1) () =G+ ()
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This important formula is the basis of the Pascal triangle:

(2.6.2)
1 ()
1 1 (o) (1)
1 2 1 _ (@) () (2)
1 3 3 1 () () (2) )
1 4 6 4 1 (©) () (2) (3)

1 5 10 10 5 1 (3

The binomial coefficients also occur in the Binomial Theorem

n
(2.6.3) (a+b)"=a"+ (})a" b+ 4 (" )ab" " +b" = Z (1)a"Fo
k=0
Why? When the n factors a+b are multiplied out, each of the resulting terms selects
from each of the n original factors either a or b. The term a™~*b* occurs therefore
(,22) = (7) times.

As an application: If you set a = 1, b = 1, you simply get a sum of binomial
coefficients, i.e., you get the number of subsets in a set with n elements: it is 2™
(always count the empty set as one of the subsets). The number of all subsets is
easily counted directly. You go through the set element by element and about every
element you ask: is it in the subset or not? I.e., for every element you have two
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possibilities, therefore by the multiplication principle the total number of possibilities
is 2™.

2.7. Conditional Probability

The concept of conditional probability is arguably more fundamental than prob-
ability itself. Every probability is conditional, since we must know that the “ex-
periment” has happened before we can speak of probabilities. | , p- 10] and
[ ] give axioms for conditional probability which take the place of the above
axioms (2.3.1), (2.3.2) and (2.3.3). However we will follow here the common proce-
dure of defining conditional probabilities in terms of the unconditional probabilities:

A Pr[B N A

Al = Pr[A4]

How can we motivate (2.7.1)? If we know that A has occurred, then of course the only
way that B occurs is when B N A occurs. But we want to multiply all probabilities
of subsets of A with an appropriate proportionality factor so that the probability of
the event A itself becomes = 1.

(2.7.1) Pr[B

20. 3 points Let A be an event with nonzero probability. Show that
the probability conditionally on A, i.e., the mapping B — Pr[B|A], satisfies all the
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axioms of a probability measure:
(2.7.2) Pr[U]|A] =1
(2.7.3) Pr[B|A] >0 for all events B

(2.7.4) Pr{| J BilA] =Y Pr[Bi|A] if Bin B; =0 for all i,j with i # j.
i=1 i=1
Pr[U|A] = Pr[UNA]/ Pr[A] = 1. Pr[B|A] = Pr[BNA]/ Pr[A] > 0 because Pr[BNA] >
0 and Pr[A] > 0. Finally,
(2.7.5)

oo Pr[(Uz Bl) n 44} Pr[UZ (Bz n 44)] 1 oo | o |
]E’JF[LJ1 B;|A] = Prl[A} = Plr[A} = Pr[A] ; Pr[B; N Al = Z; Pr[B;|A]

First equal sign is definition of conditional probability, second is distributivity of unions and inter-
sections (Problem 6 d), third because the B; are disjoint and therefore the B; N A are even more
disjoint: B;NANB;NA=B;NB;NA=0NA=0 for all ¢, j with ¢ # j, and the last equal sign
again by the definition of conditional probability. O

21. You draw two balls without replacement from an urn which has 7
white and 14 black balls.
If both balls are white, you roll a die, and your payoff is the number which the
die shows in dollars.
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If one ball is black and one is white, you flip a coin until you get your first head,
and your payoff will be the number of flips it takes you to get a head, in dollars again.

If both balls are black, you draw from a deck of 52 cards, and you get the number
shown on the card in dollars. (Ace counts as one, J, Q, and K as 11, 12, 13, i.e.,
basically the deck contains every number between 1 and 13 four times.)

Show that the probability that you receive exactly two dollars in this game is 1/6.

You know a complete disjunction of events: U = {ww}u{bb}u{wb}, with Pr[{ww}] =

7 6 1413 _ 13, 7 14 | 14 7
3726 = 10, Pr{{bb}] = 5755 = 55; Pr[{bw}] = 5755 + 3735 = 15 Furthermore you know the con-

ditional probabilities of getting 2 dollars conditonally on each of these events: Pr[{2}|{ww}] =
Pr[{2}|{bb}] = %; Pr{2}|{wb}] = %. Now Pr[{2} N{ww}] = Pr[{2}|{ww}] Pr[{ww}] etc., therefore

(2.7.6) Pr[{2}] = Pr[{2} N {ww}] + Pr[{2} N {bw}] + Pr[{2} N {bb}]
@17 = ot 1 (a1 T 2120) F 1330
(2.7.8) _11.17 118 1

610 415 1330 6
]

22. 2 points A and B are arbitrary events. Prove that the probability
of B can be written as:

(2.7.9) Pr[B] = Pr[B|A] Pr[A] + Pr[B|A'] Pr[4]
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This is the law of iterated expectations (6.6.2) in the case of discrete random vari-
ables: it might be written as Pr[B] = E[Pr[B|A]].

B=BNU=BN(AUA") =(BnNA)U(BNA") and this union is disjoint, i.e.,
(BNA)YNBNA)=BnNn(ANA") = BnN) = 0. Therefore Pr[B] = Pr[B N A] + Pr[B N A’].
Now apply definition of conditional probability to get Pr[B N A] = Pr[B|A]Pr[A] and Pr[BN A'] =
Pr[B|A’] Pr[A]. ]

23. 2 points Prove the following lemma: If Pr[B|A1] = Pr[B|As] (call
it c) and Ay N Ay =10 (i.e., Ay and Ay are disjoint), then also Pr[B|A; U As] = c.

Pr[BN(A1UAz)] _ Pr{(BnAi)U (BN Ay

Pr[B|A1 U Ag] =
f[BlAL U 4] Pr[A; U A3] Pr[A; U 4]
(2.7.10) _ Pr[BN Ay +Pr[BN Ag]  cPr[Ay] +cPr[As]
o - Pr[Aﬂ -+ Pr[AQ] - Pr[Al] + Pr[/—\z} -

24. Show by counterexample that the requirement A1 N Ay = () is
necessary for this result to hold. Hint: use the example in Problem 38 with Ay =
{HH,HT}, A, ={HH,TH}, B={HH,TT}.

Pr[B|A1] = 1/2 and Pr[B|A2] =1/2, but Pr[B|A; U A,] =1/3. O
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The conditional probability can be used for computing probabilities of intersec-
tions of events.

25. | , exercises 2.5.1 and 2.5.2 on p. 57, solutions on p. 597,
but no discussion]. Five white and three red balls are laid out in a row at random.

a. & points What is the probability that both end balls are white? What is the
probability that one end ball is red and the other white?

You can lay the first ball first and the last ball second: for white balls, the probability
for one white, one red it is g% + %% = %. O

4 _ 5.
7T 14

b. 4 points What is the probability that all red balls are together? What is the
probability that all white balls are together?

is 2
ISS

All red balls together is the same as 3 reds first, multiplied by 6, because you may
have between 0 and 5 white balls before the first red. %%% -6 = 2. For the white balls you get

28"
54321 4, _ 1
87654 14
BTW, 3 reds first is same probability as 3 reds last, ie., the 5 whites first: %%%%i = %%é.
O
26. The first three questions here are discussed in | , example

2.6.3 on p. 62]: There is an urn with 4 white and 8 black balls. You take two balls
out without replacement.
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a. 1 point What is the probability that the first ball is white?
1/3 o

b. 1 point What is the probability that both balls are white?

It is Pr[second ball white|first ball white] Pr[first ball white] = =1, O

3 4
318 1+8 11
c. 1 point What is the probability that the second ball is white?

Itis Pr[ﬁrst ball white and second ball white]—i—Pr[ﬁrst ball black and second ball whit

3 4 4 8 1

378448 7148+4 3
This is the same as the probability that the first ball is white. The probabilities are not dependent
on the order in which one takes the balls out. This property is called “exchangeability.” One can
see it also in this way: Assume you number the balls at random, from 1 to 12. Then the probability
for a white ball to have the number 2 assigned to it is obviously % |

(2.7.11)

d. 1 point What is the probability that both of them are black?

e. 1 point What is the probability that both of them have the same color?

The sum of the two above, % + 1—11 = % (or %). O
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Now you take three balls out without replacement.

f. 2 points Compute the probability that at least two of the three balls are white.

It is % The possibilities are wwb, wbw, bww, and www. Of the first three, each

has probability %%% Therefore the probability for exactly two being white is 1238280 = 12 . The
probability for www is %1210 =24 — L Add this to get 1331220 = 55 More systemamcally, the
: 4\ (8 4 12
answer is ((3) (1) + (3))/ (%) O
g. 1 point Compute the probability that at least two of the three are black.
i 42 . 672 _ 28 g B(ME6) _ 336 _ 14
It is £z. For exactly two: 555 = £2. For three it is {210y = 1320 = 55
08 _ 42 . Lo s
Together 1 1320 = zz. One can also get is as: it is the complement of the last, or as ((3) +
8\ (4 12
(2)@)/(): o

h. 1 point Compute the probability that two of the three are of the same and
the third of a different color.

wie = 8= o (0 + )/ ) ;
i. 1 point Compute the probability that at least two of the three are of the same
color.

This probability is 1. You have 5 black socks and 5 white socks in your drawer.

There is a fire at night and you must get out of your apartment in two minutes. There is no light
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You fumble in the dark for the drawer. How many socks do you have to take out so that you will
have at least 2 of the same color? The answer is 3 socks. |

27. If a poker hand of five cards is drawn from a deck, what is the prob-
ability that it will contain three aces? (How can the concept of conditional probability
help in answering this question?)

[ , example 2.3.3 on p. 9] and | , example 2.5.1 on p. 13] give two
alternative ways to do it. The second answer uses conditional probability: Probability to draw
three aces in a row first and then 2 nonaces is 54—2 5—31 % % % Then multiply this by (g) = %“g =10
This gives 0.0017, i.e., 0.17%. O

28. 2 points A friend tosses two coins. You ask: “did one of them
land heads?” Your friend answers, “yes.” What’s the probability that the other also
landed heads?

U ={HH,HT,TH,TT}; Probability is 1/3 = ]

wl—=

29. (Not eligible for in-class exams) | , p- 5] What is the prob-
ability that a person will win a game in tennis if the probability of his or her winning
a point is p?
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(2.7.12) p? (1 +4(1—p) +10(1 —p)2 + 20p(1 - p)* )

1—2p(1-p)

How to derive this: {ssss} has probability p?; {sssfs}, {ssfss}, {sfsss}, and {fssss} have prob-
ability 4p*(1 — p); {sssffs} etc. (2 f and 3 s in the first 5, and then an s, together (g) =10
possibilities) have probability 10p*(1 — p)?. Now {sssfff} and (g) = 20 other possibilities give
deuce at least once in the game, i.e., the probability of deuce is 20p3(1 — p)3. Now Pr[win|deuce] =
p? + 2p(1 — p)Pr[win|deuce], because you win either if you score twice in a row (p?) or if you get
deuce again (probablity 2p(1—p)) and then win. Solve this to get Pr[win|deuce] = p?/ (1 —2p(1 —p))
and then multiply this conditional probability with the probability of getting deuce at least once:
Pr[win after at least one deuce] = 20p3(1 — p)gpz/(l —2p(1 — p)) This gives the last term in
(2.7.12). O

30. (Not eligible for in-class exams) Andy, Bob, and Chris play the
following game: each of them draws a card without replacement from a deck of 52
cards. The one who has the highest card wins. If there is a tie (like: two kings and
no aces), then that person wins among those who drew this highest card whose name
comes first in the alphabet. What is the probability for Andy to be the winner? For
Bob? For Chris? Does this probability depend on the order in which they draw their
cards out of the stack?

Let A be the event that Andy wins, B that Bob, and C' that Chris wins.
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One way to approach this problem is to ask: what are the chances for Andy to win when he
draws a king?, etc., i.e., compute it for all 13 different cards. Then: what are the chances for Bob
to win when he draws a king, and also his chances for the other cards, and then for Chris.

It is computationally easier to make the following partitioning of all outcomes: Either all three
cards drawn are different (call this event D), or all three cards are equal (event £), or two of the
three cards are equal (7"). This third case will have to be split into 7' = H U L, according to whether
the card that is different is higher or lower.

If all three cards are different, then Andy, Bob, and Chris have equal chances of winning; if all
three cards are equal, then Andy wins. What about the case that two cards are the same and the
third is different? There are two possibilities. If the card that is different is higher than the two
that are the same, then the chances of winning are evenly distributed; but if the two equal cards
are higher, then Andy has a % chance of winning (when the distribution of the cards Y (lower)
and Z (higher) among ABC is is ZZY and ZY Z), and Bob has a % chance of winning (when
the distribution is YZZ). What we just did was computing the conditional probabilities Pr[A|D],
Pr[A|E], etc.

Now we need the probabilities of D, F, and 7. What is the probability that all three cards
drawn are the same? The probability that the second card is the same as the first is = ; and the

51 )
(3)(2) _ _6

probability that the third is the same too is %, therefore the total probability is

G1)(50) — 2550°
The probability that all three are unequal is % % = géég The probability that two are equal and

the third is different is 3531 gg = %. Now in half of these cases, the card that is different is higher,

and in half of the cases it is lower.
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Putting this together one gets:

Uncond. Prob. Cond. Prob. Prob. of intersection
A B C A B C
E all 3 equal 6/2550 1 0 0 6/2550 0 0
H 2 of 3 equal, 3rd higher 216/2550 L1 1 72/2550  72/2550  72/2550
L 2 of 3 equal, 3rd lower 216/2550 i 1 0 144/2550  72/2550 0
D all 3 unequal 2112/2550 % % % 704/2550 704/2550 704/2550

Sum 2550/2550 926/2550 848/2550 776/2550

L.e., the probability that A wins is 926/2550 = 463/1275 = .363, the probability that B wins is
848/2550 = 424/1275 = .3325, and the probability that C' wins is 776/2550 = 338/1275 = .304.
Here we are using Pr[A] = Pr[A|E] Pr[E] + Pr[A|H] Pr[H] + Pr[A|L] Pr[L] + Pr[A|D] Pr[D]. O

31. 4 points You are the contestant in a game show. There are three
closed doors at the back of the stage. Behind one of the doors is a sports car, behind
the other two doors are goats. The game master knows which door has the sports car
behind it, but you don’t. You have to choose one of the doors; if it is the door with
the sports car, the car is yours.

After you make your choice, say door A, the game master says: “I want to show
you something.” He opens one of the two other doors, let us assume it is door B,
and it has a goat behind it. Then the game master asks: “Do you still insist on door
A, or do you want to reconsider your choice?”
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Can you tmprove your odds of winning by abandoning your previous choice and
instead selecting the door which the game master did not open? If so, by how much?

If you switch, you will lose the car if you had initially picked the right door, but you
will get the car if you were wrong before! Therefore you improve your chances of winning from 1/3
to 2/3. This is simulated on the web, see www.stat.sc.edu/~west/javahtml/LetsMakeaDeal .html.
It is counterintuitive. You may think that one of the two other doors always has a goat behind
it, whatever your choice, therefore there is no reason to switch. But the game master not only shows
you that there is another door with a goat, he also shows you one of the other doors with a goat
behind it, i.e., he restricts your choice if you switch. This is valuable information. It is as if you
could bet on both other doors simultaneously, i.e., you get the car if it is behind one of the doors B
or C. lLe., if the quiz master had said: I give you the opportunity to switch to the following: you
get the car if it is behind B or C. Do you want to switch? The only doubt the contestant may have
about this is: had I not picked a door with the car behind it then I would not have been offered
this opportunity to switch.
O

2.8. Ratio of Probabilities as Strength of Evidence

Pr; and Pry are two probability measures defined on the same set F of events.
Hypothesis Hy says Pry is the true probability, and Hs says Prs is the true probability.
Then the observation of an event A for which Pri[A] > Pry[A] is evidence in favor of
H, as opposed to Ha. | ] argues that the ratio of the probabilities (also called
“likelihood ratio”) is the right way to measure the strength of this evidence. Among


http://www.stat.sc.edu/~west/javahtml/LetsMakeaDeal.html
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others, the following justification is given | , p. 7]: If Hy is true, it is usually
not impossible to find evidence favoring Hy, but it is unlikely; and its probability is
bounded by the (reverse of) the ratio of probabilities.

This can be formulated mathematically as follows: Let S be the union of all
events A for which Pry[A] > k Pra[A]. Then it can be shown that Pry[S] < 1/E, i.e.,
if Hs is true, the probability to find evidence favoring H; with strength k is never
greater than 1/k. Here is a proof in the case that there is only a finite number of pos-
sible outcomes U = {wy, . ..,wy,}: Renumber the outcomes such that fori =1,...,m,
Pri[{w;}] < kPra[{w;}], and for j = m+1,...,n, Pri[{w;}] > kPra[{w;}]. Then
S = {wm41,---,wn}, therefore Pry[S] = Z?:erl Prof{w;}] < Z?:erl w =
+Pr1[S] < 1 as claimed. The last inequality holds because Pri[S] < 1, and the
equal-sign before this is simply the definition of S.

With more mathematical effort, see | ], one can strengthen this simple in-
equality in a very satisfactory manner: Assume an unscrupulous researcher attempts
to find evidence supporting his favorite but erroneous hypothesis H; over his rival’s
H> by a factor of at least k. He proceeds as follows: he observes an outcome of the
above experiment once, say the outcome is w;y. If Pri[{w;)}] > kPra[{w;1)}] he
publishes his result; if not, he makes a second independent observation of the exper-
iment w;2y. If Pri[{w;) ] Pri[{wice)}] > k Pra[{w;a)}] Pra[{w;(2)}] he publishes his
result; if not he makes a third observation and incorporates that in his publication as
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well, etc. It can be shown that this strategy will not help: if his rival’s hypothesis is
true, then the probability that he will ever be able to publish results which seem to
show that his own hypothesis is true is still < 1/k. ILe., the sequence of independent
observations w;(z), wj(2), - - - is such that

(2.8.1) PI‘2|: H Pri[{wi;)}] > k H Pro[{w;n)}] forsomen =1,2,...| <
j=1 j=1

| =

It is not possible to take advantage of the indeterminacy of a random outcome by
carrying on until chance places one ahead, and then to quit. If one fully discloses
all the evidence one is accumulating, then the probability that this accumulated
evidence supports one’s hypothesis cannot rise above 1/k.

32. It is usually not possible to assign probabilities to the hypotheses
H, and Hs, but sometimes it is. Show that in this case, the likelihood ratio of event
A is the factor by which the ratio of the probabilities of Hy and Hy is changed by the
observation of A, i.e.,

Pr[[y|A]  Pr[Hy] Pr[A|H]

(282) Pr[[s|A] ~ Pr[Hs)] Pr[A[H)]

Apply Bayes’s theorem (2.9.1) twice, once for the numerator, once for the denomi-
nator. g
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A world in which probability theory applies is therefore a world in which the
transitive dimension must be distinguished from the intransitive dimension. Research
results are not determined by the goals of the researcher.

2.9. Bayes Theorem

In its simplest form Bayes’s theorem reads
Pr[B|A] Pr[A]
Pr[B|A] Pr[A] + Pr[B|A") Pr[4"]

33. Prove Bayes theorem!

(2.9.1) Pr[A|B] =

Obvious since numerator is Pr[B N A] and denominator Pr[B N A] + Pr[B N A'] =
Pr[B]. O

This theorem has its significance in cases in which A can be interpreted as a
cause of B, and B an effect of A. For instance, A is the event that a student who
was picked randomly from a class has learned for a certain exam, and B is the
event that he passed the exam. Then the righthand side expression contains that
information which you would know from the cause-effect relations: the unconditional
probability of the event which is the cause, and the conditional probabilities of the
effect conditioned on whether or not the cause happened. From this, the formula
computes the conditional probability of the cause given that the effect happened.
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Bayes’s theorem tells us therefore: if we know that the effect happened, how sure
can we be that the cause happened? Clearly, Bayes’s theorem has relevance for
statistical inference.

Let’s stay with the example with learning for the exam; assume Pr[A] = 60%,
Pr[B|A] = .8, and Pr[B|A’] = .5. Then the probability that a student who passed
the exam has learned for it is % = % = .706. Look at these numbers:
The numerator is the average percentage of students who learned and passed, and
the denominator average percentage of students who passed.

34. AIDS diagnostic tests are usually over 99.9% accurate on those
who do not have AIDS (i.e., only 0.1% false positives) and 100% accurate on those
who have AIDS (i.e., no false negatives at all). (A test is called positive if it indicates
that the subject has AIDS.)

a. 3 points Assuming that 0.5% of the population actually have AIDS, compute
the probability that a particular individual has AIDS, given that he or she has tested
positive.
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A is the event that he or she has AIDS, and 7" the event that the test is positive.

PLA[T] = Pr[T|A] Pr[A] _ 1-0.005 _
ST Pr[T|A] Pr][A] + Pr[T| A’ Pr[A’] — 1-0.0054 0.001-0.995
100 - 0.5 1000 - 5 5000 1000

— = = —— = —— =0.834028
100-0.540.1-99.5 1000-541-995 5995 1199

Even after testing positive there is still a 16.6% chance that this person does not have AIDS. ]

b. 1 point If one is young, healthy and not in one of the risk groups, then the
chances of having AIDS are not 0.5% but 0.1% (this is the proportion of the applicants
to the military who have AIDS). Re-compute the probability with this alternative
number.

1-0.001 100-0.1 1000 - 1 1000 ~ 1000

= = = = —— = 0.50025.
1-0.001 40.001-0.999 100-0.140.1-99.9 1000-141-999 10004999 1999

O

2.10. Independence of Events

2.10.1. Definition of Independence. Heuristically, we want to say: event B
is independent of event A if Pr[B|A] = Pr[B|A4’]. From this follows by Problem 23
that the conditional probability is equal to the unconditional probability Pr[B], i.e.,
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Pr[B] = Pr[BN A]/ Pr[A]. Therefore we will adopt as definition of independence the
so-called multiplication rule:

Definition: B and A are independent, notation B L A, if Pr[BNA] = Pr[B] Pr[A].

This is a symmetric condition, i.e., if B is independent of A, then A is also
independent of B. This symmetry is not immediately obvious given the above defi-
nition of independence, and it also has the following nontrivial practical implication
(this example from [ , Pp. 2/3]): A is the event that one is exposed to some
possibly carcinogenic agent, and B the event that one develops a certain kind of
cancer. In order to test whether B 1 A, i.e., whether the exposure to the agent does
not increase the incidence of cancer, one often collects two groups of subjects, one
group which has cancer and one control group which does not, and checks whether
the exposure in these two groups to the carcinogenic agent is the same. lL.e., the
experiment checks whether A B, although the purpose of the experiment was to
determine whether B 1 A.

35. 3 points Given that Pr[B N A] = Pr[B] - Pr[A] (i.e., B is inde-
pendent of A), show that Pr[B N A’'] = Pr[B] - Pr[A] (i.e., B is also independent of
A).

If one uses our heuristic definition of independence, i.e., B is independent of event
A if Pr[B|JA] = Pr[B|A’], then it is immediately obvious since definition is symmetric in A and
A’. However if we use the multiplication rule as the definition of independence, as the text of
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this Problem suggests, we have to do a little more work: Since B is the disjoint union of (B N A)
and (BN A’), it follows Pr[B] = Pr[B N A] + Pr[B N A’] or Pr[BN A’'] = Pr[B] — Pr[BN A] =
Pr[B] — Pr[B] Pr[A] = Pr[B](1 — Pr[A]) = Pr[B] Pr[A']. O

36. 2 points A and B are two independent events with Pr[A] = % and
Pr[B] = 1. Compute Pr[AU B].

Pr[AUB] = Pr[A]+Pr[B] — Pr[AN B] = Pr[A]+ Pr[B] - Pr[A] Pr[B] = : + 1 - L =

O

NI

37. 8 points You have an urn with five white and five red balls. You
take two balls out without replacement. A is the event that the first ball is white,
and B that the second ball is white. a. What is the probability that the first ball
is white? b. What is the probability that the second ball is white? c. What is the
probability that both have the same color? d. Are these two events independent, i.e.,
is Pr[B|A] = Pr[A]? e. Are these two events disjoint, i.e., is ANB=0?

Clearly, Pr[A] = 1/2. Pr[B] = Pr[B|A]Pr[A] + Pr[B|A’]Pr[A] = (4/9)(1/2) +
(5/9)(1/2) = 1/2. The events are not independent: Pr[B|A] = 4/9 # Pr[B], or Pr[AN B] = %% =
2/9 # 1/4. They would be independent if the first ball had been replaced. The events are also not
disjoint: it is possible that both balls are white. dJ
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2.10.2. Independence of More than Two Events. If there are more than
two events, we must require that all possible intersections of these events, not only
the pairwise intersections, follow the above multiplication rule. For instance,

Pr[A N B] = Pr[A] Pr[B];

2.10.1) A, B,C lly independ Pr[An C] = Pr{A] Pr(C];
( ) , b, mutually independent <— Pr[ mC] Pr[ ]PT[C];
Pr[A N BN C] = Pr[A] Pr[B] Pr[C].

This last condition is not implied by the other three. Here is an example. Draw a ball
at random from an urn containing four balls numbered 1, 2, 3, 4. Define A = {1,4},

B =1{2,4}, and C' = {3,4}. These events are pairwise independent but not mutually
independent.

38. 2 points Flip a coin two times independently and define the fol-
lowing three events:
A = Head in first flip
(2.10.2) B = Head in second flip
C' = Same face in both flips.

Are these three events pairwise independent? Are they mutually independent?
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U= {HJHHTL A ={HHHT}, B={HHTH}, C = {HHTT}. Pr[4] =1,
Pr[B] = %, Pr[C] = % They are pairwise independent, but PrfAN BN C| = Pr[{HH}]| = % #*
Pr[A] Pr[B] Pr[C], therefore the events cannot be mutually independent. O

39. 8 points A, B, and C are pairwise independent events whose
probabilities are greater than zero and smaller than one, and AN B C C. Can those
events be mutually independent?

No; from AN B C C follows ANBNC = AN B and therefore PrfA N BN C] #
Pr[A N B] Pr[C] since Pr[C] < 1 and Pr[AN B] > 0. O

If one takes unions, intersections, complements of different mutually independent
events, one will still end up with mutually independent events. E.g., if A, B, C
mutually independent, then A’, B, C' are mutually independent as well, and A N B
independent of C', and AU B independent of C', etc. This is not the case if the events
are only pairwise independent. In Problem 39, AN B is not independent of C'.

2.10.3. Conditional Independence. If A and B are independent in the prob-
ability measure conditionally on C, i.e., if Pr[AN B|C] = Pr[A|C] Pr[B|C], then they
are called conditionally independent given that C occurred, notation AL B|C. In
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formulas,

(2.10.3) PrANC]Pr[BNC] _ Pr{AnBNC]

Pr[C] Pr[C] Pr[C] ’
40. 5 points Show that AL B|C' is equivalent to Pr[A|BNC| = Pr[A|C].
In other words: independence of A and B conditionally on C' means: once we know

that C' occurred, the additional knowledge whether B occurred or not will not help us
to sharpen our knowledge about A.

Literature about conditional independence (of random variables, not of events)
includes [Daw79a], [Daw79b], [Daw8&0].

/S
[
N

FIGURE 1. Generic Venn Diagram for 3 Events
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2.10.4. Independent Repetition of an Experiment. If a given experiment
has sample space U, and we perform the experiment n times in a row, then this
repetition can be considered a single experiment with the sample space consisting of
n-tuples of elements of U/. This set is called the product set U" = U x U x -+ x U
(n terms).

If a probability measure Pr is given on F, then one can define in a unique way
a probability measure on the subsets of the product set so that events in different
repetitions are always independent of each other.

The Bernoulli experiment is the simplest example of such an independent rep-
etition. U = {s, f} (stands for success and failure). Assume Pr[{s}] = p, and that
the experimenter has several independent trials. For instance, U/® has, among others,
the following possible outcomes:

Ifw=(ff f,f,f) then Pr{{w}]=(1-p)"

(fofo [ frs) (1-p)"'p

(2.10.4) N EN)) (1-p)"'p
(f. f. f.5.5) (1 — p)"2p2
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One sees, this is very cumbersome, and usually unnecessarily so. If we toss a coin
5 times, the only thing we usually want to know is how many successes there were.
As long as the experiments are independent, the question how the successes were
distributed over the n different trials is far less important. This brings us to the
definition of a random variable, and to the concept of a sufficient statistic.

2.11. How to Plot Frequency Vectors and Probability Vectors

If there are only 3 possible outcomes, i.e., U = {w1,ws, w3}, then the set of all
probability measures is the set of nonnegative 3-vectors whose components sum up to
1. Graphically, such vectors can be represented as points inside a trilateral triangle
with height 1: the three components of the vector are the distances of the point
to each of the sides of the triangle. The R/Splus-function triplot in the ecmet
package, written by Jim Ramsay ramsay@ramsay2.psych.mcgill.ca, does this, with
optional rescaling if the rows of the data matrix do not have unit sums.

41. In an equilateral triangle, call a = the distance of the sides from
the center point, b = half the side length, and ¢ = the distance of the corners from
the center point (as in Figure 2). Show that b= av/3 and ¢ = 2a.

From (a + ¢)? + b? = 4b%, ie., (a + )2 = 3b%, follows a + ¢ = bv/3. But we
also have a? + b®> = ¢2. Therefore a? + 2ac + ¢ = 3b%> = 3c? — 3a?, or 4a® + 2ac —2¢? = 0
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FIGURE 2. Geometry of an equilateral triangle

or 2a% + ac — ¢ = (2a — ¢)(a + ¢) = 0. The positive solution is therefore ¢ = 2a. This gives
a+c:3a:b\/§,orb:a\/§. O

And the function quadplot, also written by Jim Ramsey, does quadrilinear plots,
meaning that proportions for four categories are plotted within a regular tetrahe-
dron. Quadplot displays the probability tetrahedron and its points using XGobi.
Each vertex of the triangle or tetrahedron corresponds to the degenerate probabil-
ity distribution in which one of the events has probability 1 and the others have
probability 0. The labels of these vertices indicate which event has probability 1.
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The script kai is an example visualizing data from [ ]; it can be run using
the command ecmet.script(kai).

Example: Statistical linguistics.

In the study of ancient literature, the authorship of texts is a perplexing problem.
When books were written and reproduced by hand, the rights of authorship were
limited and what would now be considered forgery was common. The names of
reputable authors were borrowed in order to sell books, get attention for books, or the
writings of disciples and collaborators were published under the name of the master,
or anonymous old manuscripts were optimistically attributed to famous authors. In
the absence of conclusive evidence of authorship, the attribution of ancient texts
must be based on the texts themselves, for instance, by statistical analysis of literary
style. Here it is necessary to find stylistic criteria which vary from author to author,
but are independent of the subject matter of the text. An early suggestion was to use
the probability distribution of word length, but this was never acted upon, because
it is too dependent on the subject matter. Sentence-length distributions, on the
other hand, have proved highly reliable. [ , D. 184] says that sentence-length
is “periodic rather than random,” therefore the sample should have at least about
100 sentences. “Sentence-length distributions are not suited to dialogue, they cannot
be used on commentaries written on one author by another, nor are they reliable on
such texts as the fragmentary books of the historian Diodorus Siculus.”
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42. According to | , D- 184], sentence-length is “periodic rather
than random.” What does this mean?

In a text, passages with long sentences alternate with passages with shorter sen-
tences. This is why one needs at least 100 sentences to get a representative distribution of sen-
tences, and this is why fragments and drafts and commentaries on others’ writings do not exhibit
an average sentence length distribution: they do not have the melody of the finished text. O

Besides the length of sentences, also the number of common words which express
a general relation (“and”, “in”, “but”, “I”, “to be”) is random with the same distri-
bution at least among the same genre. By contrast, the occurrence of the definite
article “the” cannot be modeled by simple probabilistic laws because the number of
nouns with definite article depends on the subject matter.

Table 1 has data about the epistles of St. Paul. Abbreviations: Rom Romans; Co1l
1st Corinthians; Co2 2nd Corinthians; Gal Galatians; Phi Philippians; Col Colos-
sians; Th1l 1st Thessalonians; Til 1st Timothy; Ti2 2nd Timothy; Heb Hebrews. 2nd
Thessalonians, Titus, and Philemon were excluded because they were too short to
give reliable samples. From an analysis of these and other data | , D- 224] the
first 4 epistles (Romans, 1st Corinthians, 2nd Corinthians, and Galatians) form a
consistent group, and all the other epistles lie more than 2 standard deviations from
the mean of this group (using y? statistics). If Paul is defined as being the author of
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Galatians, then he also wrote Romans and 1st and 2nd Corinthians. The remaining
epistles come from at least six hands.

TABLE 1. Number of Sentences in Paul’s Epistles with 0, 1, 2, and
> 3 occurrences of kai

Rom Col Co2 Gal Phi Col Thl Til Ti2 Heb

no kai 386 424 192 128 42 23 34 49 45 155
one 141 152 8 48 29 32 23 38 28 94
two 34 35 28 5 19 17 8 9 11 37

3 or more 17 16 13 6 12 9 16 10 4 24

43. Enter the data from Table 1 into xgobi and brush the four epistles
which are, according to Morton, written by Paul himself. 3 of those points are almost
on top of each other, and one is a little apart. Which one is this?

In R, issue the commands library (xgobi) then data(PaulKAI) then quadplot (PaulKAI
normalize = TRUE). If you have xgobi but not R, this dataset is one of the default datasets coming
with xgobi.

O






CHAPTER 3

Random Variables

3.1. Notation

Throughout these class notes, lower case bold letters will be used for vectors
and upper case bold letters for matrices, and letters that are not bold for scalars.
The (4,7) element of the matrix A is a,;, and the ith element of a vector b is b;;
the arithmetic mean of all elements is b. All vectors are column vectors; if a row
vector is needed, it will be written in the form b'. Furthermore, the on-line version
of these notes uses green symbols for random variables, and the corresponding black
symbols for the values taken by these variables. If a black-and-white printout of
the on-line version is made, then the symbols used for random variables and those
used for specific values taken by these random variables can only be distinguished

63



64 3. RANDOM VARIABLES

by their grey scale or cannot be distinguished at all; therefore a special monochrome
version is available which should be used for the black-and-white printouts. It uses
an upright math font, called “Euler,” for the random variables, and the same letter
in the usual slanted italic font for the values of these random variables.

Example: If y is a random vector, then y denotes a particular value, for instance
an observation, of the whole vector; vy, denotes the ith element of y (a random scalar),
and y; is a particular value taken by that element (a nonrandom scalar).

With real-valued random variables, the powerful tools of calculus become avail-
able to us. Therefore we will begin the chapter about random variables with a
digression about infinitesimals

3.2. Digression about Infinitesimals

In the following pages we will recapitulate some basic facts from calculus. But
it will differ in two respects from the usual calculus classes. (1) everything will be
given its probability-theoretic interpretation, and (2) we will make explicit use of
infinitesimals. This last point bears some explanation.

You may say infinitesimals do not exist. Do you know the story with Achilles and
the turtle? They are racing, the turtle starts 1 km ahead of Achilles, and Achilles
runs ten times as fast as the turtle. So when Achilles arrives at the place the turtle
started, the turtle has run 100 meters; and when Achilles has run those 100 meters,
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the turtle has run 10 meters, and when Achilles has run the 10 meters, then the turtle
has run 1 meter, etc. The Greeks were actually arguing whether Achilles would ever
reach the turtle.

This may sound like a joke, but in some respects, modern mathematics never
went beyond the level of the Greek philosophers. If a modern mathematicien sees
something like

1 = 1
(3.2.1) lim — =0, or lim Z - = 10

i—0o0 1 n—00 4

then he will probably say that the lefthand term in each equation never really reaches
the number written on the right, all he will say is that the term on the left comes
arbitrarily close to it.

This is like saying: I know that Achilles will get as close as 1 cm or 1 mm to the
turtle, he will get closer than any distance, however small, to the turtle, instead of
simply saying that Achilles reaches the turtle. Modern mathematical proofs are full
of races between Achilles and the turtle of the kind: give me an ¢, and I will prove to
you that the thing will come at least as close as ¢ to its goal (so-called epsilontism),
but never speaking about the moment when the thing will reach its goal.

Of course, it “works,” but it makes things terribly cumbersome, and it may have
prevented people from seeing connections.
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Abraham Robinson in | ] is one of the mathematicians who tried to remedy
it. He did it by adding more numbers, infinite numbers and infinitesimal numbers.
Robinson showed that one can use infinitesimals without getting into contradictions,
and he demonstrated that mathematics becomes much more intuitive this way, not
only its elementary proofs, but especially the deeper results. One of the elemrntary
books based on his calculus is | ]

The well-know logician Kurt Godel said about Robinson’s work: “I think, in
coming years it will be considered a great oddity in the history of mathematics that
the first exact theory of infinitesimals was developed 300 years after the invention of
the differential calculus.”

Godel called Robinson’s theory the first theory. I would like to add here the fol-
lowing speculation: perhaps Robinson shares the following error with the “standard”
mathematicians whom he criticizes: they consider numbers only in a static way, with-
out allowing them to move. It would be beneficial to expand on the intuition of the
inventors of differential calculus, who talked about “fluxions,” i.e., quantities in flux,
in motion. Modern mathematicians even use arrows in their symbol for limits, but
they are not calculating with moving quantities, only with static quantities.

This perspective makes the category-theoretical approach to infinitesimals taken
in | | especially promising. Category theory considers objects on the same
footing with their transformations (and uses lots of arrows).
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Maybe a few years from now mathematics will be done right. We should not let
this temporary backwardness of mathematics allow to hold us back in our intuition.
The equation % = 2z does not hold exactly on a parabola for any pair of given
(static) Az and Ay; but if you take a pair (Ax, Ay) which is moving towards zero
then this equation holds in the moment when they reach zero, i.e., when they vanish.
Writing dy and dr means therefore: we are looking at magnitudes which are in the
process of vanishing. If one applies a function to a moving quantity one again gets a
moving quantity, and the derivative of this function compares the speed with which
the transformed quantity moves with the speed of the original quantity. Likewise,
the equation ) ., 2n = 1 holds in the moment when n reaches infinity. From this
point of view, the axiom of o-additivity in probability theory (in its equivalent form
of rising or declining sequences of events) indicates that the probability of a vanishing
event vanishes.

Whenever we talk about infinitesimals, therefore, we really mean magnitudes
which are moving, and which are in the process of vanishing. dV , is therefore not,
as one might think from what will be said below, a static but small volume element
located close to the point (z,y), but it is a volume element which is vanishing into
the point (z,y). The probability density function therefore signifies the speed with
which the probability of a vanishing element vanishes.
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3.3. Definition of a Random Variable

The best intuition of a random variable would be to view it as a numerical
variable whose values are not determinate but follow a statistical pattern, and call
it x, while possible values of z are called =x.

In order to make this a mathematically sound definition, one says: A mapping x :
U — R of the set U of all possible outcomes into the real numbers R is called a random
variable. (Again, mathematicians are able to construct pathological mappings that
cannot be used as random variables, but we let that be their problem, not ours.) The
green r is then defined as » = z(w). Le., all the randomness is shunted off into the
process of selecting an element of U. Instead of being an indeterminate function, it
is defined as a determinate function of the random w. It is written here as z(w) and
not as z(w) because the function itself is determinate, only its argument is random.

Whenever one has a mapping « : U — R between sets, one can construct from it
in a natural way an “inverse image” mapping between subsets of these sets. Let F,
as usual, denote the set of subsets of U, and let B denote the set of subsets of R. We
will define a mapping z~! : B — F in the following way: For any B C R, we define
2 1(B) = {w € U: x(w) € B}. (This is not the usual inverse of a mapping, which
does not always exist. The inverse-image mapping always exists, but the inverse
image of a one-element set is no longer necessarily a one-element set; it may have
more than one element or may be the empty set.)
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This “inverse image” mapping is well behaved with respect to unions and inter-
sections, etc. In other words, we have identities = 1(AN B) = 27 1(A)Na~1(B) and
71 (AUB) =27 1(A)Uz~Y(B), etc.

44. Prove the above two identities.

These are a very subtle proofs. 27 1(ANB) = {w € U: z(w) € ANB} = {w €
U:z(w) € Aand z(w) e B={w e U: z(w) € A}N{w € U: z(w) € B} =2~ 1(A)Nz~1(B). The
other identity has a similar proof. O

45. Show, on the other hand, by a counterexample, that the “direct
image” mapping defined by x(E) = {r € R: there exists w € E with z(w) = r} no
longer satisfies x(ENF) = z(E) Nx(F).

By taking inverse images under a random variable x, the probability measure
on F is transplanted into a probability measure on the subsets of R by the simple
prescription Pr[B] = Pr[z~*(1)]. Here, B is a subset of R and ~*(13) one of U, the
Pr on the right side is the given probability measure on U, while the Pr on the left is
the new probability measure on R induced by x. This induced probability measure
is called the probability law or probability distribution of the random variable.

Every random variable induces therefore a probability measure on R, and this
probability measure, not the mapping itself, is the most important ingredient of
a random variable. That is why Amemiya’s first definition of a random variable
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(definition 3.1.1 on p. 18) is: “A random variable is a variable that takes values
acording to a certain distribution.” In other words, it is the outcome of an experiment
whose set of possible outcomes is R.

3.4. Characterization of Random Variables

We will begin our systematic investigation of random variables with an overview
over all possible probability measures on R.

The simplest way to get such an overview is to look at the cumulative distribution
functions. Every probability measure on R has a cumulative distribution function,
but we will follow the common usage of assigning the cumulative distribution not
to a probability measure but to the random variable which induces this probability
measure on R.

Given a random variable x : U 3 w — z(w) € R. Then the cumulative distribu-
tion function of x is the function F) : R — R defined by:

(3.4.1) F,(a) =Prj{w € U : 2(w) < a}] = Pr[z<a).

This function uniquely defines the probability measure which = induces on R.
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Properties of cumulative distribution functions: a function F: R — R is a cu-
mulative distribution function if and only if

(3.4.2) a<b= F(a) < F(b)

(3.4.3) lim F(a)=0
(3.4.4) lim F(a) =1
(3.4.5) 6_}617161>0 F(a+¢)=F(a)

Equation (3.4.5) is the definition of continuity from the right (because the limit
holds only for e > 0). Why is a cumulative distribution function continuous from
the right? For every nonnegative sequence €1,é9,... > 0 converging to zero which
also satisfies €1 > g9 > ... follows {z < a} = ,{z < a + &;}; for these sequences,
therefore, the statement follows from what Problem 14 above said about the proba-
bility of the intersection of a declining set sequence. And a converging sequence of
nonnegative €; which is not declining has a declining subsequence.

A cumulative distribution function need not be continuous from the left. If
lime o500 F(x —€) # F(x), then z is a jump point, and the height of the jump is
the probability that = = x.

It is a matter of convention whether we are working with right continuous or
left continuous functions here. If the distribution function were defined as Pr[z < a]
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(some authors do this, compare | , p. 43]), then it would be continuous from
the left but not from the right.

46. 6 points Assume F.,(x) is the cumulative distribution function of
the random variable x (whose distribution is not necessarily continuous). Which of
the following formulas are correct? Give proofs or verbal justifications.

(3.4.6) Priz =z] = >})1m F.(x+¢)— Fy(x)
(3.4.7) Pr[z =z| = F.(z) — b%}lm F.(x —0)
(3.4.8) Priz =z] = 6>})1r£1_> F.(x+¢e)— 6>%1;I£1_)0 F,(z—9)

(3.4.6) does not hold generally, since its rhs is always = 0; the other two equations
always hold. ]

47. 4 points Assume the distribution of z is symmetric about zero,

e., Prlz < —z] = Pr[z>2] for all z. Call its cumulative distribution function F.(z).

Show that the cumulative distribution function of the random wvariable ¢ = 22 is

F,(q) =2F.(\/q) — 1 for ¢ > 0, and 0 for q <O0.
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If ¢ > 0 then
(3.4.9) Fy(q) = Pr[z"<q] = Pr[-/q<z<.,/q]
(3.4.10) = Pr[z<\/q] — Pr[z < —/q]
(3.4.11) = Pr[2<./q] — Pr[z>./q]
(3.4.12) =F(og-01-F(/9)
(3.4.13) =2F:(vaq) — 1.

O

Instead of the cumulative distribution function Fj, one can also use the quan-
tile function F, I to characterize a probability measure. As the notation suggests,
the quantile function can be considered some kind of “inverse” of the cumulative

distribution function. The quantile function is the function (0,1) — R defined by

(3.4.14) F(p) = inf{u: F,(u) > p}
or, plugging the definition of F, into (3.4.14),
(3.4.15) Fy_l(p) = inf{u: Prly<u] > p}.

The quantile function is only defined on the open unit interval, not on the endpoints
0 and 1, because it would often assume the values —oo and 400 on these endpoints,
and the information given by these values is redundant. The quantile function is
continuous from the left, i.e., from the other side than the cumulative distribution
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function. If F' is continuous and strictly increasing, then the quantile function is
the inverse of the distribution function in the usual sense, i.e., F~1(F(t)) = t for
all t € R, and F(F~1((p)) = p for all p € (0,1). But even if F is flat on certain
intervals, and/or F has jump points, i.e., F' does not have an inverse function, the
following important identity holds for every y € R and p € (0, 1):

(3.4.16) p<F)(y) iff Fl(p)<y
48. 3 points Prove equation (3.4.16).

= is trivial: if F(y) > p then of course y > inf{u : F(u) > p}. <: y > inf{u :

F(u) > p} means that every z > y satisfies F(z) > p; therefore, since F' is continuous from the
right, also F(y) > p. This proof is from | , p. 318].

]

49. You throw a pair of dice and your random variable x is the sum
of the points shown.
a. Draw the cumulative distribution function of x.

This is Figure 1: the cdf is 0 in (—o0,2), 1/36 in [2,3), 3/36 in [3,4), 6/36 in [4,5),
10/36 in [5,6), 15/36 in [6,7), 21/36 in [7,8), 26/36 on [8,9), 30/36 in [9,10), 33/36 in [10,11), 35/36
on [11,12), and 1 in [12, 4+00). O

b. Draw the quantile function of x.



3.4. CHARACTERIZATION OF RANDOM VARIABLES 75

FIGURE 1. Cumulative Distribution Function of Discrete Variable

This is Figure 2: the quantile function is 2 in (0,1/36], 3 in (1/36,3/36], 4 in
(3/36,6/36], 5 in (6/36,10/36], 6 in (10/36,15/36], 7 in (15/36,21/36], 8 in (21/36,26/36], 9 in
(26/36,30/36], 10 in (30/36,33/36], 11 in (33/36,35/36], and 12 in (35/36,1]. O
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FIGURE 2. Quantile Function of Discrete Variable

50. 1 point Give the formula of the cumulative distribution function
of a random wvariable which is uniformly distributed between 0 and b.

0 for z <0, z/bfor 0 <z <b,and 1 for x > b. |

Empirical Cumulative Distribution Function:

Besides the cumulative distribution function of a random variable or of a proba-
bility measure, one can also define the empirical cumulative distribution function of
a sample. Empirical cumulative distribution functions are zero for all values below
the lowest observation, then 1/n for everything below the second lowest, etc. They
are step functions. If two observations assume the same value, then the step at
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that value is twice as high, etc. The empirical cumulative distribution function can
be considered an estimate of the cumulative distribution function of the probability

distribution underlying the sample. | , D- 12] writes it as a sum of indicator
functions:

1
(3.4.17) F=- D o 400)

i
3.5. Discrete and Absolutely Continuous Probability Measures

One can define two main classes of probability measures on R:
One kind is concentrated in countably many points. Its probability distribution
can be defined in terms of the probability mass function.

51. Show that a distribution function can only have countably many
jump points.

Proof: There are at most two with jump height > %, at most four with jump height

> 2, etc. O

W=

Among the other probability measures we are only interested in those which can
be represented by a density function (absolutely continuous). A density function is a
nonnegative integrable function which, integrated over the whole line, gives 1. Given
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such a density function, called f.(z), the probability Pr[z€(a, )] f fo(x)dx. The
density function is therefore an alternate way to characterize a probablhty measure.
But not all probability measures have density functions.

Those who are not familiar with integrals should read up on them at this point.
Start with derivatives, then: the indefinite integral of a function is a function whose
derivative is the given function. Then it is an important theorem that the area under
the curve is the difference of the values of the indefinite integral at the end points.
This is called the definite integral. (The area is considered negative when the curve
is below the z-axis.)

The intuition of a density function comes out more clearly in terms of infinitesi-
mals. If f, (z) is the value of the density function at the point x, then the probability
that the outcome of x lies in an interval of infinitesimal length located near the point
x is the length of this interval, multiplied by f.(z). In formulas, for an infinitesimal
dzx follows

(3.5.1) Przcz, x + dz]] = f.(2) |dz|.

The name “density function” is therefore appropriate: it indicates how densely the
probability is spread out over the line. It is, so to say, the quotient between the
probability measure induced by the variable, and the length measure on the real
numbers.
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If the cumulative distribution function has everywhere a derivative, this deriva-
tive is the density function.

3.6. Transformation of a Scalar Density Function

Assume x is a random variable with values in the region A C R, i.e., Pr[z¢ A] = 0,
and t is a one-to-one mapping A — R. One-to-one (as opposed to many-to-one)
means: if a,b € A and t(a) = ¢(b), then already a = b. We also assume that ¢ has a
continuous nonnegative first derivative ' > 0 everywhere in A. Define the random
variable y by y = t(z). We know the density function of v, and we want to get that of
x. (L.e., t expresses the old variable, that whose density function we know, in terms
of the new variable, whose density function we want to know.)

Since t is one-to-one, it follows for all a,b € A that a = b <= t(a) = t(b). And
recall the definition of a derivative in terms of infinitesimals dz: t/(z) = w.
In order to compute f,(x) we will use the following identities valid for all z € A:

6.1) fo(2) |dz| = Pr[z€lz, x4 dx]] = Prt(x)e[t(x), t(z + dz)]]
(3.6.2) = Pr[t(x)elt(z), t(z) + ' (z) da]] = f,(t(z)) |’ (x)dz|
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Absolute values are multiplicative, i.e., |t/(z)dz| = |[t'(x)| |dx|; divide by |dz| to get

(3.6.3) folz) = £, () |t' ()]

This is the transformation formula how to get the density of = from that of y. This
formula is valid for all z € A; the density of x is O for all = ¢ A.

Heuristically one can get this transformation as follows: write |t/ (z)| = Eﬂ )
one gets it from f,(z) |dz| = f,(t(z)) |dy| by just dividing both sides by |dz|.

In other words, this transformation rule consists of 4 steps: (1) Determine A,
the range of the new variable; (2) obtain the transformation ¢ which expresses the
old variable in terms of the new variable, and check that it is one-to-one on A; (3)
plug expression (2) into the old density; (4) multiply this plugged-in density by the
absolute value of the derivative of expression (2). This gives the density inside A; it
is 0 outside A.

An alternative proof is conceptually simpler but cannot be generalized to the
multivariate case: First assume ¢ is monotonically increasing. Then F,(z) = Pr[z <
z] = Pr[t(z) < t(i)] = F,(t(z)). Now differentiate and use the chain rule. Then
also do the monotonically decresing case. This is how [ , theorem 3.6.1 on
pp. 48] does it. | , PP. 52/3] has an extension of this formula to many-to-one
functions.

then
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52. 4 points | , example 3.5.4 on p. 148] Suppose y has density
function

1 forO<y<1

0 otherwise.

(3.6.4) foly) =

Obtain the density f.(x) of the random variable x = —logy.

(1) Since y takes values only between 0 and 1, its logarithm takes values between

—oo and 0, the negative logarithm therefore takes values between 0 and +oo, i.e., A ={z: 0 < z}.
(2) Express vy in terms of z: y = e~*. This is one-to-one on the whole line, therefore also on A.
(3) Plugging y = e~ % into the density function gives the number 1, since the density function does
not depend on the precise value of y, as long is we know that 0 < y < 1 (which we do). (4) The
derivative of y = e™% is —e~*. As a last step one has to multiply the number 1 by the absolute
value of the derivative to get the density inside A. Therefore f,(z) = e~ for x > 0 and 0 otherwise.
O

53. 6 points | , p. 1574] Assume the random variable z has
the exponential distribution with parameter X, i.e., its density function is f.(z) =
Aexp(—Az) for z > 0 and 0 for z < 0. Define u = —logz. Show that the density
function of u is f,(u) = exp(p — u — exp(p — u)) where p =log\. This density will
be used in Problem 1/0.
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(1) Since z only has values in (0, 00), its log is well defined, and A = R. (2) Express
old variable in terms of new: —u = log z therefore z = e~"; this is one-to-one everywhere. (3)
plugging in (since e™* > 0 for all u, we must plug it into XA exp(—Az)) gives .... (4) the derivative of
z =e "is —e ", taking absolute values gives the Jacobian factor e~%. Plugging in and multiplying
gives the density of u: f,(u) = Aexp(—Ae™%)e™% = Xe~%~*¢ " and using X exp(—u) = exp(u—1u)
this simplifies to the formula above.
Alternative without transformation rule for densities: F,(u) = Pr[u<u] = Pr[—logz<u| =
Pr[log z> —u] = Pr[z>e %] = eroo e M dz = fe’>‘z|:fi =g e "

—u , now differentiate. ]

54. 4 points Assume the random variable z has the exponential dis-
tribution with X = 1, i.e., its density function is f.(z) = exp(—z) for z > 0 and 0
for z < 0. Define u = +/z. Compute the density function of u.

(1) A= {u: u > 0} since ,/ always denotes the nonnegative square root; (2) Express
old variable in terms of new: z = w2, this is one-to-one on A (but not one-to-one on all of R);
(3) then the derivative is 2u, which is nonnegative as well, no absolute values are necessary; (4)
multiplying gives the density of u: f,(u) = 2uexp(—u?) if u > 0 and 0 elsewhere. O

3.7. Example: Binomial Variable

Go back to our Bernoulli trial with parameters p and n, and define a random
variable  which represents the number of successes. Then the probability mass
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function of x is
3.7.1 po(k) = Prle=k] = (" )pP(1 — )0 k=0,1,2,...,n
k

Proof is simple, every subset of k elements represents one possibility of spreading
out the k successes.

We will call any observed random variable a statistic. And we call a statistic ¢
sufficient for a parameter 6 if and only if for any event A and for any possible value
t of t, the conditional probability Pr[A|t<t] does not involve §. This means: after
observing ¢ no additional information can be obtained about € from the outcome of
the experiment.

55. Show that x, the number of successes in the Bernoulli trial with
parameters p and n, is a sufficient statistic for the parameter p (the probability of
success), with n, the number of trials, a known fized number.

Since the distribution of z is discrete, it is sufficient to show that for any given k,
Pr[A|z=Ek] does not involve p whatever the event A in the Bernoulli trial. Furthermore, since the
Bernoulli trial with n tries is finite, we only have to show it if A is an elementary event in F, i.e.,
an event consisting of one element. Such an elementary event would be that the outcome of the
trial has a certain given sequence of successes and failures. A general A is the finite disjoint union
of all elementary events contained in it, and if the probability of each of these elementary events
does not depend on p, then their sum does not either.
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Now start with the definition of conditional probability

Pr[A N {z=k}]

(3.7.2) Pr[A Prlr—H]

r=k] =

If A is an elementary event whose number of sucesses is not k, then A N {x=k} = (), therefore its
probability is 0, which does not involve p. If A is an elementary event which has k£ successes, then
AN {z=k} = A, which has probability p*(1 — p)»~*. Since Pr[{z=k}] = (Z)pk(l —p)" %, the
terms in formula (3.7.2) that depend on p cancel out, one gets Pr[A|z=k] = 1/(:) Again there is
no p in that formula. d

56. You perform a Bernoulli experiment, i.e., an experiment which
can only have two outcomes, success s and failure f. The probability of success is p.

a. & points You make 4 independent trials. Show that the probability that the
first trial is successful, given that the total number of successes in the 4 trials is 3,

is 3/4.

Let B = {sfff,sffs,sfsf,sfss,ssff,ssfs,sssf,ssss} be the event that the first
trial is successful, and let {z=3} = {fsss, sfss, ssfs,sssf} be the event that there are 3 successes,
it has (é) = 4 elements. Then

(3.7.3) Pr[Bl|z=3] = %
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Now B N{z=3} = {sfss,ssfs,sssf}, which has 3 elements. Therefore we get
3-p(1— 3

(3.7.4) Pr(Blo—g) = > P U =P) 3
4-p3(1-p) 4

b. 2 points Discuss this result.

It is significant that this probability is independent of p. Il.e., once we know how
many successes there were in the 4 trials, knowing the true p does not help us computing the
probability of the event. From this also follows that the outcome of the event has no information
about p. The value 3/4 is the same as the unconditional probability if p = 3/4. I.e., whether we
know that the true frequency, the one that holds in the long run, is 3/4, or whether we know that
the actual frequency in this sample is 3/4, both will lead us to the same predictions regarding the
first throw. But not all conditional probabilities are equal to their unconditional counterparts: the
conditional probability to get 3 successes in the first 4 trials is 1, but the unconditional probability
is of course not 1. O

3.8. Pitfalls of Data Reduction: The Ecological Fallacy

The nineteenth-century sociologist Emile Durkheim collected data on the fre-
quency of suicides and the religious makeup of many contiguous provinces in West-
ern Europe. He found that, on the average, provinces with greater proportions of
Protestants had higher suicide rates and those with greater proportions of Catholics
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lower suicide rates. Durkheim concluded from this that Protestants are more likely
to commit suicide than Catholics. But this is not a compelling conclusion. It may
have been that Catholics in predominantly Protestant provinces were taking their
own lives. The oversight of this logical possibility is called the “Ecological Fallacy”
[Sel58].

This seems like a far-fetched example, but arguments like this have been used to
discredit data establishing connections between alcoholism and unemployment etc.
as long as the unit of investigation is not the individual but some aggregate.

One study | | found a positive correlation between driver education and
the incidence of fatal automobile accidents involving teenagers. Closer analysis
showed that the net effect of driver education was to put more teenagers on the
road and therefore to increase rather than decrease the number of fatal crashes in-
volving teenagers.

57. 4 points Assume your data show that counties with high rates of
unemployment also have high rates of heart attacks. Can one conclude from this that
the unemployed have a higher risk of heart attack? Discuss, besides the “ecological
fallacy,” also other objections which one might make against such a conclusion.

Ecological fallacy says that such a conclusion is only legitimate if one has individual
data. Perhaps a rise in unemployment is associated with increased pressure and increased workloads
among the employed, therefore it is the employed, not the unemployed, who get the heart attacks.
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Even if one has individual data one can still raise the following objection: perhaps unemployment
and heart attacks are both consequences of a third variable (both unemployment and heart attacks
depend on age or education, or freezing weather in a farming community causes unemployment for
workers and heart attacks for the elderly).

O

But it is also possible to commit the opposite error and rely too much on indi-
vidual data and not enough on “neighborhood effects.” In a relationship between
health and income, it is much more detrimental for your health if you are poor in a
poor neighborhood, than if you are poor in a rich neighborhood; and even wealthy
people in a poor neighborhood do not escape some of the health and safety risks
associated with this neighborhood.

Another pitfall of data reduction is Simpson’s paradox. According to table 1,
the new drug was better than the standard drug both in urban and rural areas. But
if you aggregate over urban and rural areas, then it looks like the standard drug was
better than the new drug. This is an artificial example from | , D- 360].

3.9. Independence of Random Variables

The concept of independence can be extended to random variables: = and y are
independent if all events that can be defined in terms of x are independent of all
events that can be defined in terms of y, i.e., all events of the form {w € U: z(w) €
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Responses in Urban and Rural Areas to Each of Two Drugs
Standard Drug | New Drug
Urban Rural Urban Rural
No Effect 500 350 1050 120
Cure 100 350 359 180

TABLE 1. Disaggregated Results of a New Drug

Response to Two Drugs
Standard Drug New Drug
No Effect 850 1170
Cure 450 530
TABLE 2. Aggregated Version of Table 1

C'} are independent of all events of the form {w € U: y(w) € D} with arbitrary
(measurable) subsets C, D C R. Equivalent to this is that all events of the sort 2<a
are independent of all events of the sort y<b.

58. 8 points The simplest random variables are indicator functions,
i.e., functions which can only take the values 0 and 1. Assume x is indicator function
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of the event A and y indicator function of the event B, i.e., = takes the value 1 if A
occurs, and the value 0 otherwise, and similarly with y and B. Show that according
to the above definition of independence, x and 1y are independent if and only if the
events A and B are independent. (Hint: which are the only two events, other than
the certain event U and the null event (), that can be defined in terms of x)?

Only A and A’. Therefore we merely need the fact, shown in Problem 35, that if A
and B are independent, then also A and B’ are independent. By the same argument, also A’ and
B are independent, and A’ and B’ are independent. This is all one needs, except the observation
that every event is independent of the certain event and the null event. ]

3.10. Location Parameters and Dispersion Parameters of a Random
Variable

3.10.1. Measures of Location. A location parameter of random variables is
a parameter which increases by c if one adds the constant ¢ to the random variable.

The expected value is the most important location parameter. To motivate it,
assume r is a discrete random variable, i.e., it takes the values x1,...,x, with prob-
abilities p1,...,p, which sum up to one: Y ., p; = 1. = is observed n times inde-
pendently. What can we expect the average value of = to be? For this we first need
a formula for this average: if k; is the number of times that = assumed the value

x; (1 =1,...,r) then > k; = n, and the average is k—nlxl 4+ %"xn With an
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appropriate definition of convergence, the relative frequencies % converge towards
p;. Therefore the average converges towards pixi + - -+ + pp®y,. This limit is the
expected value of =, written as

(3.10.1) Elz] = prx1 + -+ + pnTn.
59. Why can one not use the usual concept of convergence here?

Because there is no guarantee that the sample frequencies converge. It is not phys-
ically impossible (although it is highly unlikely) that certain outcome will never be realized. d

Note the difference between the sample mean, i.e., the average measured in a
given sample, and the “population mean” or expected value. The former is a random
variable, the latter is a parameter. I.e., the former takes on a different value every
time the experiment is performed, the latter does not.

Note that the expected value of the number of dots on a die is 3.5, which is not
one of the possible outcomes when one rolls a die.

Expected value can be visualized as the center of gravity of the probability mass.
If one of the tails has its weight so far out that there is no finite balancing point then
the expected value is infinite of minus infinite. If both tails have their weights so far
out that neither one has a finite balancing point, then the expected value does not
exist.
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It is trivial to show that for a function g(z) (which only needs to be defined for
those values which z can assume with nonzero probability), E[g(z)] = p1g(z1)+- - -+
Png(xy).

Example of a countable probability mass distribution which has an infinite ex-
pected value: Pr[z = z] = % for x = 1,2,.... (a is the constant 1/2;’21 +.) The

expected value of x would be Zfil ¢, which is infinite. But if the random variable

is bounded, then its expected value exists.
The expected value of a continuous random variable is defined in terms of its
density function:

+oo
(3.10.2) E[z] = / xf.(z)dx

—0o0

It can be shown that for any function g(z) defined for all those « for which f,(x) # 0
follows:

(3.10.3) Elg(x)] = /f I ) de

Here the integral is taken over all the points which have nonzero density, instead of
the whole line, because we did not require that the function g is defined at the points
where the density is zero.
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60. Let the random wvariable = have the Cauchy distribution, i.e., its
density function is

1
3.10.4 () = ————
(3104 £.0) =~
Show that x does not have an expected value.
zde 1 2zdz _ 1 d(z?) 1 9
(3.10.5) /7r(1 +22)  2r / 1+22 27 | 1422 2rn In(1 +27)

Rules about how to calculate with expected values (as long as they exist):

(3.10.6) E[c] = cif ¢ is a constant
(3.10.7) E[ch] = cElh]
(3.10.8) E[h + j] = E[h] + E[j]

and if the random variables i and j are independent, then also

(3.10.9) E[hj] = E[h] E[j].
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61. 2 points You make two independent trials of a Bernoulli experi-
ment with success probability 6, and you observe t, the number of successes. Compute
the expected value of 3. (Compare also Problem 169.)

Pr[t = 0] = (1 — 6)2; Pr[t = 1] = 20(1 — 0); Pr[t = 2] = 6%. Therefore an application
of (3.10.1) gives E[t3] = 03 - (1 — 0)2 + 13- 20(1 — ) + 23 - 62 = 20 + 662. O

THEOREM 3.10.1. Jensen’s Inequality: Let g : R — R be a function which is
convex on an interval B C R, which means

(3.10.10) g(ha+ (1= \)b) < Ag(a) + (1 — A)g(b)

for all a,b € B. Furthermore let x : R — R be a random variable so that Pr[x €
B] =1. Then g(E[z]) < E[g(z)].

PROOF. The Jensen inequality holds with equality if h(x) is a linear func-
tion (with a constant term), i.e., in this case, E[h(z)] = h(E[z]). (2) Therefore
Jensen’s inequality is proved if we can find a linear function h with the two prop-
erties h(E[z]) = g(E[z]), and h(x) < g(z) for all other z—because with such a
h, E[g(z)] > E[h(z)] = h(E[z]). (3) The existence of such a h follows from con-
vexity. Since g is convex, for every point a € B there is a number 3 so that
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g(x) > g(a) + B(z — a). This 3 is the slope of g if g is differentiable, and other-
wise it is some number between the left and the right derivative (which both always
exist for a convex function). We need this for a = E[z].

This existence is the deepest part of this proof. We will not prove it here, for a
proof see | , pp. 57, 58]. One can view it as a special case of the separating
hyperplane theorem. |

62. Use Jensen’s inequality to show that (E[z])? < E[z2]. You are
allowed to use, without proof, the fact that a function is convex on B if the second
derivative exists on B and is nonnegative.

63. Show that the expected value of the empirical distribution of a
sample is the sample mean.

Other measures of locaction: The median is that number m for which there is
as much probability mass to the left of m as to the right, i.e.,

1 1
(3.10.11) Pr[z<m] = 3 or, equivalently, F,(m)= 3
It is much more robust with respect to outliers than the mean. If there is more than
one m satisfying (3.10.11), then some authors choose the smallest (in which case the
median is a special case of the quantile function m = F~1(1/2)), and others the

average between the biggest and smallest. If there is no m with property (3.10.11),
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i.e., if the cumulative distribution function jumps from a value that is less than % to

a value that is greater than %7 then the median is this jump point.

The mode is the point where the probability mass function or the probability
density function is highest.

3.10.2. Measures of Dispersion. Here we will discuss variance, standard de-
viation, and quantiles and percentiles: The variance is defined as

(3.10.12) var[r] = E[(x — E[z])?],
but the formula
(3.10.13) var[r] = E[2?] — (E[z])?

is usually more convenient.
How to calculate with variance?

(3.10.14) var[az] = a® var|z]
(3.10.15) var[z 4 ¢] = var[z] if ¢ is a constant
(3.10.16) var[z 4+ y] = var[x] + var[y] if 2 and y are independent.

Note that the variance is additive only when = and y are independent; the expected
value is always additive.
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64. Here we make the simple step from the definition of the variance
to the usually more convenient formula (3.10.13).

a. 2 points Derive the formula var[r] = E[2%] — (E[x])? from the definition of a
variance, which is var[z] = E[(z — E[x])?]. Hint: it is convenient to define p = E[z].
Write it down carefully, you will lose points for missing or unbalanced parentheses
or brackets.

Here it is side by side with and without the notation E[z] = u:

var[z] = E[(z — E[z])?] var[z] = E[(z — p)?]
= E[:1'2 —2z(E[z]) + (E[I])Q] = E[:1;2 — 2zu + ;1,2]
(310.17) = E[2?] — 2(E[z])? + (E[z])? = E[2?] — 2u® + p?
= E[2?] — (E[z])% = E[2?] — p2.
g
b. 1 point Assume var[z] = 3, var[y] = 2, x and y are independent. Compute
var[—z], var[3y + 5], and var[z — y].
3, 18, and 5. O

65. If all y; are independent with same variance o2, then show that 7
has variance o /n.
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The standard deviation is the square root of the variance. Often preferred be-
cause has same scale as x. The variance, on the other hand, has the advantage of a
simple addition rule.

Standardization: if the random variable = has expected value p and standard
deviation o, then z = “>F has expected value zero and variance one.

An ath quantile or a 100ath percentile of a random variable = was already
defined previously to be the smallest number z so that Prlz<z] > a.

3.10.3. Mean-Variance Calculations. If one knows mean and variance of a
random variable, one does not by any means know the whole distribution, but one
has already some information. For instance, one can compute E[y?] from it, too.

66. 4 points Consumer M has an expected utility function for money
income u(z) = 12z — 2. The meaning of an expected utility function is very simple:
if he owns an asset that generates some random income 1, then the utility he derives
from this asset is the expected value E[u(y)]. He is contemplating acquiring two
assets. One asset yields an income of 4 dollars with certainty. The other yields an
expected income of & dollars with standard deviation 2 dollars. Does he prefer the
certain or the uncertain asset?
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E[u(y)] = 12E[y] — E[y?] = 12E[y] — var[y] — (E[y])?>. Therefore the certain asset
gives him utility 48 — 0 — 16 = 32, and the uncertain one 60 — 4 — 25 = 31. He prefers the certain
asset. g

3.10.4. Moment Generating Function and Characteristic Function. Here
we will use the exponential function e”, also often written exp(z), which has the two
properties: e” = lim,, oo (1 + %)™ (Euler’s limit), and e = 1 + 2 + é—? + ?T? +oee

Many (but not all) random variables 2 have a moment generating function m.(t)
for certain values of ¢. If they do for ¢ in an open interval around zero, then their
distribution is uniquely determined by it. The definition is

(3.10.18) m,(t) = Ele"]

It is a powerful computational device.

The moment generating function is in many cases a more convenient charac-
terization of the random variable than the density function. It has the following
uses:

1. One obtains the moments of = by the simple formula

(3.10.19) E[2*] = ——
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Proof:
222 328

te __ . .
(3.10.20) e =1 tr o e

N t2 t3
(3.10.21) m,(t) = E[e"] =1+ tE[z] + B E[z?] + 37 E[z%] +---

d O A
(3.10.22) amw(t) =E[z] +tE[z°] + B E[z°]+---
d2

(3.10.23) ﬁmw(t) =B +tE[*] +---  etc.

2. The moment generating function is also good for determining the probability
distribution of linear combinations of independent random variables.
a. it is easy to get the m.g.f. of Az from the one of x:

(3.10.24) M. (t) = m.(At)
because both sides are E[e**].

b. If x, y independent, then
(31025) m:z:-‘,—y (t) =Mmy (t)m!/ (t)
The proof is simple:

(3.10.26) E[e!"*)] = E[e!"e’] = E[e**] E[e"Y] due to independence.



100 3. RANDOM VARIABLES

The characteristic function is defined as v,.(t) = E[e’*”], where i = /—1. It has
the disadvantage that it involves complex numbers, but it has the advantage that it
always exists, since exp(iz) = cosx + ¢sinz. Since cos and sin are both bounded,
they always have an expected value.

And, as its name says, the characteristic function characterizes the probability
distribution. Analytically, many of its properties are similar to those of the moment
generating function.

3.11. Entropy

3.11.1. Definition of Information. Entropy is the average information gained
by the performance of the experiment. The actual information yielded by an event
A with probabbility Pr[A] = p # 0 is defined as follows:

(3.11.1) 1[4] = log, %[A}

This is simply a transformation of the probability, and it has the dual interpretation
of either how unexpected the event was, or the informaton yielded by the occurrense
of event A. Tt is characterized by the following properties | , Pp. 3-5):

e I[A] only depends on the probability of A, in other words, the information
content of a message is independent of how the information is coded.
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e J[A] > 0 (nonnegativity), i.e., after knowing whether A occurred we are no
more ignorant than before.

e If A and B are independent then I[A N B] = I[A] 4+ I|B] (additivity for
independent events). This is the most important property.

e Finally the (inessential) normalization that if Pr[A] = 1/2 then I[A] = 1,
i.e., a yes-or-no decision with equal probability (coin flip) is one unit of
information.

Note that the information yielded by occurrence of the certain event is 0, and that
yielded by occurrence of the impossible event is oco.

But the important information-theoretic results refer to average, not actual,
information, therefore let us define now entropy:

3.11.2. Definition of Entropy. The entropy of a probability field (experi-
ment) is a measure of the uncertainty prevailing before the experiment is performed,
or of the average information yielded by the performance of this experiment. If the
set U of possible outcomes of the experiment has only a finite number of different el-
ements, say their number is n, and the probabilities of these outcomes are pq, ..., pn,
then the Shannon entropy H[F] of this experiment is defined as

(3.11.2) blts Z Di 1og2
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This formula uses log,, logarithm with base 2, which can easily be computed from the
natural logarithms, log, 2 = log 2/ log 2. The choice of base 2 is convenient because
in this way the most informative Bernoulli experiment, that with success probability
p = 1/2 (coin flip), has entropy 1. This is why one says: “the entropy is measured
in bits.” If one goes over to logarithms of a different base, this simply means that
one measures entropy in different units. In order to indicate this dependence on the
measuring unit, equation (3.11.2) was written as the definition % instead of H[F]
itself, i.e., this is the number one gets if one measures the entropy in bits. If one uses
natural logarithms, then the entropy is measured in “nats.”

Entropy can be characterized axiomatically by the following axioms [ |:

e The uncertainty associated with a finite complete scheme takes its largest
value if all events are equally likely, i.e., H(p1,...,pn) < H(1/n,...,1/n).

e The addition of an impossible event to a scheme does not change the amount
of uncertainty.

o Composition Law: If the possible outcomes are arbitrarily combined into
m groups W1 = X1 U--- U X1k17 Wog=Xo1U---U X2k27 ey Woy =
Xmi1U---UX g, , with corresponding probabilities w; = p11 + -+ + pigy,
W2 = P21+ + Pakys -y Wi = Pm1 + -+ + Pk, then
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H(p1,...,pn) = H(wy,...,w,) +
+wi H(p1i/wy + -+ + pig, /w1) +
+woH (p21/wa + -+ + pagy /wa) + -+ +
+ W H (Pt /Wi + -+ -+ Pk, /W)

Since p;;/w; = Pr[X;;|W;], the composition law means: if you first learn half the
outcome of the experiment, and then the other half, you will in the average get as
much information as if you had been told the total outcome all at once.

The entropy of a random wvariable x is simply the entropy of the probability
field induced by x on R. It does not depend on the values x takes but only on the
probabilities. For discretely distributed random variables it can be obtained by the
following “eerily self-referential” prescription: plug the random variable into its own
probability mass function and compute the expected value of the negative logarithm
of this, i.e.,

(3.11.3) pits — Bl loga ()]

One interpretation of the entropy is: it is the average number of yes-or-no ques-
tions necessary to describe the outcome of the experiment. For instance, consider an
experiment which has 32 different outcomes occurring with equal probabilities. The
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entropy is
H &1
(3.11.4) — = E —log,32=10g,32=5 i.e, H = 5bits
bits = 32

which agrees with the number of bits necessary to describe the outcome.

67. Design a questioning scheme to find out the value of an integer
between 1 and 32, and compute the expected number of questions in your scheme if
all numbers are equally likely.

In binary digits one needs a number of length 5 to describe a number between 0 and
31, therefore the 5 questions might be: write down the binary expansion of your number minus 1.
Is the first binary digit in this expansion a zero, then: is the second binary digit in this expansion a
zero, etc. Formulated without the use of binary digits these same questions would be: is the number
between 1 and 167, then: is it between 1 and 8 or 17 and 247, then, is it between 1 and 4 or 9 and
12 or 17 and 20 or 25 and 287, etc., the last question being whether it is odd. Of course, you can
formulate those questions conditionally: First: between 1 and 167 if no, then second: between 17
and 247 if yes, then second: between 1 and 87 Etc. Each of these questions gives you exactly the
entropy of 1 bit. |

68. | , example 1.1.2 on p. 5] Assume there is a horse race

with eight horses taking part. The probabilities for winning for the eight horses are
111 1 1 1 1 1

274787167647 647 647 64°
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a. 1 point Show that the entropy of the horse race is 2 bits.

log2 24 - log2 44 - log2 8 + log2 16 + log2 64 =

3 4+4+3+2+3
7+ +8+ te=—— 5 =

bits

O

b. 1 point Suppose you want to send a binary message to another person
indicating which horse won the race. One alternative is to assign the bit strings 000,
001, 010, 011, 100, 101, 110, 111 to the eight horses. This description requires 3 bits
for any of the horses. But since the win probabilities are not uniform, it makes sense
to use shorter descriptions for the horses more likely to win, so that we achieve
a lower expected value of the description length. For instance, we could use the
following set of bit strings for the eight horses: 0, 10, 110, 1110, 111100, 111101,
111110, 111111. Show that the the expected length of the message you send to your
friend is 2bits, as opposed to 3bits for the uniform code. Note that in this case the
expected value of the description length is equal to the entropy.

The math is the same as in the first part of the question:

1 1 3.1 3 444+3+2+3
Loaploilsi oy 4—6_7 4= TP
R B B T R 3 +8+4+8 8
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O

69. | , example 2.1.2 on pp. 14/15]: The experiment has four
possible outcomes; outcome r=a occurs with probability 1/2, x=b with probability
1/4, x=c with probability 1/8, and x=d with probability 1/8.

a. 2 points The entropy of this experiment (in bits) is one of the following
three numbers: 11/8, 7/4, 2. Which is it?

b. 2 points Suppose we wish to determine the outcome of this experiment with
the minimum number of questions. An efficient first question is “Is xr=a?” This
splits the probability in half. If the answer to the first question is no, then the second
question can be “Is x=b%" The third question, if it is necessary, can then be: “Is
r=c?” Compute the expected number of binary questions required.

c. 2 points Show that the entropy gained by each question is 1 bit.

d. 3 points Assume we know about the first outcome that v#a. What is the
entropy of the remaining experiment (i.e., under the conditional probability)?

e. b points Show in this example that the composition law for entropy holds.
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70. 2 points In terms of natural logarithms equation (3.11.4) defining
entropy reads

H 1 « 1
(3.11.5) o = m;pklnp—k.
Compute the entropy of (i.e., the average informaton gained by) a roll of an unbiased
die.
Same as the actual information gained, since each outcome is equally likely:
(3.11.6) H L <lln6+~-~+11n6) = 11176 = 2.585

bits 2 \6 6 " In2
0

a. 8 points How many questions does one need in the average to determine the
outcome of the roll of an unbiased die? In other words, pick a certain questioning
scheme (try to make it efficient) and compute the average number of questions if
this scheme is followed. Note that this average cannot be smaller than the entropy
H /bits, and if one chooses the questions optimally, it is smaller than H /bits+ 1.

First question: is it bigger than 3? Second question: is it even? Third question (if
necessary): is it a multiple of 3?7 In this scheme, the number of questions for the six faces of the
die are 3,2, 3,3, 2,3, therefore the average is % -3+ % -2 = 2%. Also optimal: (1) is it bigger than
27 (2) is it odd? (3) is it bigger than 47 Gives 2,2,3,3,3,3. Also optimal: 1st question: is it 1 or
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27 If anser is no, then second question is: is it 3 or 47; otherwise go directly to the third question:
is it odd or even? The steamroller approach: Is it 17 Is it 27 etc. gives 1,2,3,4,5,5 with expected
number 3%. Even this is here < 1 + H /bits. O

71.

a. 1 point Compute the entropy of a roll of two unbiased dice if they are
distinguishable.

Just twice the entropy from Problem 70.

H 1 1 1 In 36
(3.11.7) — = —(—ln36+-~-+—ln36> -2 =5.170
bits In2 \ 36 36 In2

O

b. Would you expect the entropy to be greater or less in the more usual case
that the dice are indistinguishable? Check your answer by computing it.
If the dice are indistinguishable, then one gets less information, therefore the exper-

iment has less entropy. One has six like pairs with probability 1/36 and 6 - 5/2 = 15 unlike pairs
with probability 2/36 = 1/18 each. Therefore the average information gained is

H 1 1 1 1 1 5
(3.11.8) — = —(6-—1In36+15-—1Inl8) = —(=In36+ —In18 | = 4.337
bits In2 36 18 In2\6 6
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c. 3 points Note that the difference between these two entropies is 5/6 = 0.833.
How can this be explained?

This is the composition law (??) in action. Assume you roll two dice which you first
consider indistinguishable and afterwards someone tells you which is which. How much information
do you gain? Well, if the numbers are the same, then telling you which die is which does not give
you any information, since the outcomes of the experiment are defined as: which number has the
first die, which number has the second die, regardless of where on the table the dice land. But if
the numbers are different, then telling you which is which allows you to discriminate between two
outcomes both of which have conditional probability 1/2 given the outcome you already know; in
this case the information you gain is therefore 1 bit. Since the probability of getting two different
numbers is 5/6, the expected value of the information gained explains the difference in entropy. 0O

All these definitions use the convention 0log % = 0, which can be justified by the
following continuity argument: Define the function, graphed in Figure 3:

wlog% ifw>0

(3.11.9) nw) =14, if w = 0.

7 is continuous for all w > 0, even at the boundary point w = 0. Differentiation gives
n'(w) = —(1+logw), and ' (w) = —w~!. The function starts out at the origin with
a vertical tangent, and since the second derivative is negative, it is strictly concave
for all w > 0. The definition of strict concavity is n(w) < n(v) + (w — v)n’(v) for
w # v, i.e., the function lies below all its tangents. Substituting n'(v) = —(1 + logv)
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and simplifying gives w — wlogw < v — wlogv for v,w > 0. One verifies that this
inequality also holds for v,w > 0.

72. Make a complete proof, discussing all possible cases, that for
v,w > 0 follows

(3.11.10) w—wlogw < v —wlogwv

We already know it for v,w > 0. Now if v = 0 and w = 0 then the equation reads
0 < 0;if v > 0 and w = 0 the equation reads 0 < v, and if w > 0 and v = 0 then the equation reads
w —wlogw < +oo0. ]

3.11.3. How to Keep Forecasters Honest. This mathematical result allows
an interesting alternative mathematical characterization of entropy. Assume Anita
performs a Bernoulli experiment whose success probability she does not know but
wants to know. Clarence knows this probability but is not on very good terms with
Anita; therefore Anita is unsure that he will tell the truth if she asks him.

Anita knows “how to keep forecasters honest.” She proposes the following deal
to Clarence: “you tell me the probability ¢, and after performing my experiment I
pay you the amount log,(q) if the experiment is a success, and log,(1 — ¢) if it is a
failure. If Clarence agrees to this deal, then telling Anita that value ¢ which is the
true success probability of the Bernoulli experiment maximizes the expected value of
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his payoff. And the maximum expected value of this payoff is exactly the negative
of the entropy of the experiment.

Proof: Assume the correct value of the probability is p, and the number Clarence
tells Tina is q. For every p,q between 0 and 1 we have to show:

(3.11.11) plogp + (1 — p)log(1l — p) > ploggq + (1 — p)log(1 — q).

For this, plug w = p and v = q as well as w = 1 — p and v = 1 — ¢ into equation
(3.11.10) and add.

3.11.4. The Inverse Problem. Now let us go over to the inverse problem:
computing those probability fields which have maximum entropy subject to the in-
formation you have.

If you know that the experiment has n different outcomes, and you do not know
the probabilities of these outcomes, then the maximum entropy approach amounts
to assigning equal probability 1/n to each outcome.

73. (Not eligible for in-class exams) You are playing a slot machine.
Feeding one dollar to this machine leads to one of four different outcomes: FEy:
machine returns nothing, i.e., you lose $1. Fo: machine returns $1, i.e., you lose
nothing and win nothing. Es: machine returns $2, i.e., you win $1. FE4: machine
returns $10, i.e., you win $9. Events E; occurs with probability p;, but these proba-
bilities are unknown. But due to a new “Truth-in-Gambling Act” you find a sticker
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wlog%

o=

o =

—_

FIGURE 3. n: w+— wlog % is continuous at 0, and concave everywhere
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on the side of the machine which says that in the long run the machine pays out only
$0.90 for every dollar put in. Show that those values of p1, p2, ps, and ps which
mazimize the entropy (and therefore make the machine most interesting) subject to
the constraint that the expected payoff per dollar put in is $0.90, are p; = 0.4473,
p2 = 0.3158, p3 = 0.2231, py = 0.0138.

Solution is derived in [ , pp. 68/9 and 74/5], and he refers to [ ]. You
have to maximize — Epn log prn, subject to Epn =1 and Z cnpn = d. In our case ¢c; =0, ca2 =1,

c3 = 2, and ¢4 = 10, and d = 0.9, but the treatment below goes through for arbitrary c¢; as long as
not all of them are equal. This case is discussed in detail in the answer to Problem 74. d

a. Difficult: Does the mazximum entropy approach also give us some guidelines
how to select these probabilities if all we know is that the expected value of the payout
rate is smaller than 19

As shown in [ , pp. 68/9 and 74/5], one can give the minimum value of the
entropy for all distributions with payoff smaller than 1: H < 1.6590, and one can also give some
bounds for the probabilities: p1 > 0.4272, po> < 0.3167, p3 < 0.2347, ps < 0.0214. d

b. What if you also know that the entropy of this experiment is 1.5%

This was the purpose of the paper [ ]. O

74. (Not eligible for in-class exams) Let p1,pa,...,pn (D> pi =1) be
the proportions of the population of a city living in n residential colonies. The cost of
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living in colony i, which includes cost of travel from the colony to the central business
district, the cost of the time this travel consumes, the rent or mortgage payments,
and other costs associated with living in colony i, is represented by the monetary
amount c;. Without loss of generality we will assume that the c¢; are numbered in
such a way that ¢ < cg < -+ < ¢,. We will also assume that the c; are not all
equal. We assume that the c; are known and that also the average expenditures on
travel etc. in the population is known; its value is d. One approach to modelling the
population distribution is to maximize the entropy subject to the average expenditures,
i.e., to choose p1,pa,...pn such that H =" p;log i s maximized subject to the two
constraints > p; =1 and Y p;c; = d. This would give the greatest uncertainty about
where someone lives.

a. 3 points Set up the Lagrange function and show that

o exp(—A¢)
pi= >exp(—A¢)

where the Lagrange multiplier A must be chosen such that y_ p;c; = d.

(3.11.12)

The Lagrange function is

(3.11.13) L=- an log pn — R(an -1) - /\(Z cnpn — d)
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Partial differentiation with respect to p; gives the first order conditions
(3.11.14) —logpi —1— Kk —Ac; =0.

Therefore p; = exp(—k — 1) exp(—Ac;). Plugging this into the first constraint gives 1 = Zpi =

exp(—k — 1) Zexp —Xci) or exp(—k — 1) = ﬁ This constraint therefore defines
exp c;

uniquely, and we can eliminate s from the formula for p;:
_exp(=Ac)
Z exp(—Ac;)

Now all the p; depend on the same unknown A, and this A must be chosen such that the second
constraint holds. This is the Maxwell-Boltzmann distribution if = kT where k is the Boltzmann
constant and T the temperature. d

(3.11.15) pi =

b. 2 points Here is a mathematical lemma needed for the next part: Prove that
for a; > 0 and ¢; arbitrary follows Y a; > a;c? > (3 a;c;)?, and if all a; > 0 and
not all ¢; equal, then this inequality is strict.

By choosing the same subscripts in the second sum as in the first we pair elements
of the first sum with elements of the second sum:

(3.11.16)

E a; E 2 jai — E cia; E cja; = E -—clcj a;a;
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but if we interchange ¢ and j on the rhs we get

(3.11.17) = Z(c? —cjc)aja; = Z(CZQ —cicj)aiag
4y ©,J
Now add the righthand sides to get
(3.11.18)
Q(Z a; Z c?aj - Z cia; Z Cjaj) = Z(c? + c? — 2¢icj)aa; = Z(c, —¢;j)%aa; >0
i j i j i, ij

O

c. 3 points It is not possible to solve equations (3.11.12) analytically for A, but

the following can be shown | , D. 310/11]): the function f defined by
> ciexp(—Ac)
1.1 N="F——"7—"-
(311.19) ) = e

s a strictly decreasing function which decreases from c, to ¢y as \ goes from —oo
to 0o, and f(0) = ¢ where ¢ = (1/n) > ¢;. We need that \ for which f(\) =d, and
this equation has no real root if d < c¢1 or d > ¢y, it has a unique positive root if
c1 < d < ¢ it has the unique root 0 for d = ¢, and it has a unique negative root for
c<d<c,. Fromthis follows: aslong as d lies between the lowest and highest cost,
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and as long as the cost numbers are not all equal, the p; are uniquely determined by
the above entropy maximization problem.

Here is the derivative; it is negative because of the mathematical lemma just shown:

(3811200 fy = ol Y exp(=Aei) 0 ¢ exp(=Aei) = (3 i exp(—Aei) ) <0

v? (S exp(—Aci))”
Since c1 < 2 < - -+ < cn, it follows
Serexp(-de) _ Y eiexp(-Aer) _ Y enexp(-Ac)
Stexp(—Aci) T Doexp(=Aa) T > exp(—Ac)

Now the statement about the limit can be shown if not all ¢; are equal, say c1 < cx41 but c1 = cj.

=cCn

(3.11.21) c1 =

The fraction can be written as

n—k n—k
kci exp(—Acr) + Zi:l Cr+ti €Xp(—ACk4i) _ ke + Zi:l Crti exp(—A(cp4i —c1))

(3.11.22) e — - 1
kexp(—Ac1) + > i=1 exp(—Ackti) kE+ Zi:l exp(—A(ckys — c1))

Since cpy; — c1 > 0, this converges towards c1 for A — oo. |
d. & points Show that the mazimum attained entropy is H = Ad + k(\) where

(3.11.23) k(\) =log(D_ exp(—Ac;)).
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Although \ depends on d, show that %—g = )\, i.e., it is the same as if A did not
depend on d. This is an example of the “envelope theorem,” and it also gives an
interpretation of \.

exp(—Ac;)

‘We have to plug the optimal p; = into the formula for H = — Zpi log p;.

exp(—Ac;
For this note that —logp; = Ac; + k(A) where k(X) = log(D_ exp(—Ac;)) does not depend on i.
Therefore H =" pi(Aci+k(X) = AD_ pici+k(A) D pi = Ad+k(X), and ZH = X\+d 23 +k'(N) 55
Now we need the derivative of k()), and we discover that k’(\) = — f()\) where f(\) was defined in

(3.11.19). Therefore ZH =X+ (d — f(\) %5 = A. O

e. 5 points Now assume d is not known (but the c¢; are still known), i.e., we
know that (3.11.12) holds for some X but we don’t know which. We want to estimate
this A (and therefore all p;) by taking a random sample of m people from that met-
ropolitan area and asking them what their regional living expenditures are and where
they live. Assume x; people in this sample live in colony i. One way to estimate this
A would be to use the average consumption expenditure of the sample, Y tc;, as an
estimate of the missing d in the above procedure, i.e., choose that A\ which satisfies
J(A) = > 7tc;. Another procedure, which seems to make a better use of the infor-
mation given by the sample, would be to compute the maximum likelihood estimator
of X based on all ;. Show that these two estimation procedures are identical.
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The z; have the multinomial distribution. Therefore, given that the proportion p;
of the population lives in colony i, and you are talking a random sample of size m from the whole
population, then the probability to get the outcome 1, ...,z is

(3.11.24) L = ﬁpﬂlﬁlpﬂf CpBn

This is what we have to maximize, subject to the condition that the p; are an entropy maximizing
population distribution. Let’s take logs for computational simplicity:

(3.11.25) log L = log m! *ZIOgl'j!JrZwi log p;

All we know about the p; is that they must be some entropy maximizing probabilities, but we don’t
know yet which ones, i.e., they depend on the unknown A. Therefore we need the formula again

—log pi = A¢; + k(X) where k(X) = log( Zexp (=Ac;)) does not depend on i. This gives
(3.11.26) log L = log m!—z log Ij!—z zi(Aci+k(N)) = log m!—z log z;!—A inci-i-k()\)m
J J

(for this last term remember that Z z; = m. Therefore the derivative is

1
(3.11.27) ——1ogL Z—cl

I.e., using the obvious estimate for d is the same as maximum likelihood under the assumption of
maximum entropy. O
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This is a powerful estimation strategy. An article with sensational image re-
constitutions using maximum entropy algorithms is | , pp. 111, 112, 115, 116].
And | | applies maximum entropy methods to ill-posed or underdetermined
problems in econometrics!



CHAPTER 4

Specific Random Variables

4.1. Binomial

We will begin with mean and variance of the binomial variable, i.e., the number
of successes in n independent repetitions of a Bernoulli trial (3.7.1). The binomial
variable has the two parameters n and p. Let us look first at the case n = 1, in which
the binomial variable is also called indicator variable: If the event A has probability
p, then its complement A’ has the probability ¢ = 1 — p. The indicator variable of
A, which assumes the value 1 if A occurs, and 0 if it doesn’t, has expected value p
and variance pg. For the binomial variable with n observations, which is the sum of
n independent indicator variables, the expected value (mean) is np and the variance

is npq.

121
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75. The random variable x assumes the value a with probability p and
the value b with probability ¢ = 1 — p. Show that var[z] = pg(a — b)?.

E[z] = pa + gb; var[z] = E[2?] — (E[z])* = pa® + qb® — (pa + qb)*> = (p — p*)a® —
2pqab + (¢ — ¢*)b? = pg(a — b)2. For this last equality we need p — p? = p(1 — p) = pq. o

The Negative Binomial Variable is, like the binomial variable, derived from the
Bernoulli experiment; but one reverses the question. Instead of asking how many
successes one gets in a given number of trials, one asks, how many trials one must
make to get a given number of successes, say, r successes.

First look at » = 1. Let ¢ denote the number of the trial at which the first success
occurs. Then

(4.1.1) Pr[t=n] = pg" ! (n=1,2,...).

This is called the geometric probability.
Is the probability derived in this way o-additive? The sum of a geometrically
declining sequence is easily computed:

(4.1.2) 1+qg+¢®+¢+---=s Now multiply by ¢:
(4.1.3) g+ ¢+ ¢ +---=¢s Now subtract and write 1 — ¢ = p:
(4.1.4) 1=ps
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Equation (4.1.4) means 1 = p + pg + pg® + - - -, i.e., the sum of all probabilities is
indeed 1.

Now what is the expected value of a geometric variable? Use definition of ex-
pected value of a discrete variable: E[t] = pY ;= k¢"~!. To evaluate the infinite
sum, solve (4.1.4) for s:

1 . 1
(4.1.5) s=_ o 1+q+q2+q3+q4...:2qk:17_q
k=0

and differentiate both sides with respect to g:

- 1 1
(4.1.6) 1+2q+3q2+4q3+...22qu_1:72:*,
P (I-q? »p

1

The expected value of the geometric variable is therefore E[f] = L = =.

76. Assume t is a geometric random variable with parameter p, i.e.,
it has the values k = 1,2,... with probabilities

(4.1.7) pi(k) = pg"t, where g =1 —p.

The geometric variable denotes the number of times one has to perform a Bernoulli
experiment with success probability p to get the first success.
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a. 1 point Given a positive integer n. What is Pr[t>n]? (Easy with a simple
trick!)

t>n means, the first n trials must result in failures, i.e., Pr[t>n] = ¢™. Since
{t>n}={t=n+1}U{t=n+2}U---, one can also get the same result in a more tedious way:
It is pg" + pg"tt 4+ pg"t2 4 ... = s, say. Therefore gs = pg" T + pg" T2+ ..., and (1—q)s =pg™;
since p = 1 — ¢, it follows s = ¢". |

b. 2 points Let m and n be two positive integers with m < n. Show that
Pr[t=n|t>m] = Pr[t=n — m].
n—1

Prlt=n|t>m] = FF,):[[:;;]] =M = pg"~™~! = Pr[t=n — m). ]

c. 1 point Why is this property called the memory-less property of the geometric
random variable?

If you have already waited for m periods without success, the probability that success
will come in the nth period is the same as the probability that it comes in n — m periods if you
start now. Obvious if you remember that geometric random variable is time you have to wait until
1st success in Bernoulli trial.

]

77. t is a geometric random variable as in the preceding problem. In
order to compute var[t] it is most convenient to make a detour via E[t(t — 1)]. Here
are the steps:



4.1. BINOMIAL 125

a. Express E[t(t — 1)] as an infinite sum.

Just write it down according to the definition of expected values: Z:io k(k —
Dpgb=t =377 k(k — pgh—1. O
b. Derive the formula

(4.1.8) i k(k—1)¢" 2 = 2
k=2

(1—¢q)?
by the same trick by which we derived a similar formula in class. Note that the sum

starts at k = 2.

This is just a second time differentiating the geometric series, i.e., first time differ-

entiating (4.1.6). O
c. Use a. and b. to derive
2q
(4.1.9) E[t(t—1)] = Z?
oo - %) - 9 2q
4.1.10 k(k — Dpgt—t = k(k—1)¢" 2 =pg——"% = =
( ) kz:; (k= 1)pg pq; ( )a PIT— g ~ 2
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d. Use c. and the fact that E[t] = 1/p to derive

(4.1.11) var[l] = .

(4.1.12) var[t] = E[t?] — (E[t])? = E[t(t — 1)] + E[t] — (E[t])? = ;273 +

q

11
p p> p>
O

Now let us look at the negative binomial with arbitrary r. What is the probability
that it takes n trials to get r successes? (That means, with n—1 trials we did not yet
have r successes.) The probability that the nth trial is a success is p. The probability

n—1

that there are 7 — 1 successes in the first n — 1 trials is (77;)p""1¢"~". Multiply
those to get:

(4.1.13) Prft=n] = (Z - i)pran.

This is the negative binomial, also called the Pascal probability distribution with
parameters r and p.
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One easily gets the mean and variance, because due to the memory-less property
it is the sum of r independent geometric variables:
r rq
(4.1.14) Elt] = - varlt] = —
p P’
Some authors define the negative binomial as the number of failures before the
rth success. Their formulas will look slightly different than ours.

78. & points A fair coin is flipped until heads appear 10 times, and x
is the number of times tails appear before the 10th appearance of heads. Show that
the expected value E[x] = 10.

Let ¢ be the number of the throw which gives the 10th head. ¢ is a negative binomial
with » = 10 and p = 1/2, therefore E[t] = 20. Since z =t — 10, it follows E[z] = 10. a

79. (Banach’s match-box problem) (Not eligible for in-class exams)
There are two restaurants in town serving hamburgers. In the morning each of them
obtains a shipment of n raw hamburgers. Every time someone in that town wants
to eat a hamburger, he or she selects one of the two restaurants at random. What is
the probability that the (n + k)th customer will have to be turned away because the
restaurant selected has run out of hamburgers?

For each restaurant it is the negative binomial probability distribution in disguise:
if a restaurant runs out of hamburgers this is like having n successes in n + k tries.
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But one can also reason it out: Assume one of the restaurantes must turn customers away
after the n + kth customer. Write down all the n + k decisions made: write a 1 if the customer
goes to the first restaurant, and a 2 if he goes to the second. I.e., write down n + k£ ones and twos.
Under what conditions will such a sequence result in the n+ kth move eating the last hamburgerthe
first restaurant? Exactly if it has n ones and k twos, a n 4+ kth move is a one. As in the reasoning
"if;l) possibilities, each of which
has probability 2=k, Emptying the second restaurant has the same probability. Together the

probability is therefore (nzle)T*"*k. O

for the negative binomial probability distribution, there are (

4.2. The Hypergeometric Probability Distribution

Until now we had independent events, such as, repeated throwing of coins or
dice, sampling with replacement from finite populations, ar sampling from infinite
populations. If we sample without replacement from a finite population, the prob-
ability of the second element of the sample depends on what the first element was.
Here the hypergeometric probability distribution applies.

Assume we have an urn with w white and n — w black balls in it, and we take a
sample of m balls. What is the probability that y of them are white?

We are not interested in the order in which these balls are taken out; we may
therefore assume that they are taken out simultaneously, therefore the set U of
outcomes is the set of subsets containing m of the n balls. The total number of such
subsets is (;:L) How many of them have y white balls in them? Imagine you first
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pick y white balls from the set of all white balls (there are (Zj) possibilities to do
that), and then you pick m — y black balls from the set of all black balls, which can
be done in (Z:Z) different ways. Every union of such a set of white balls with a set
of black balls gives a set of m elements with exactly y white balls, as desired. There

are therefore (Z’) (Z;_‘Z) different such sets, and the probability of picking such a set
is

Gle)

80. You have an urn with w white and n—w black balls in it, and you
take a sample of m balls with replacement, i.e., after pulling each ball out you put it
back in before you pull out the next ball. What is the probability that y of these balls

are white? I.e., we are asking here for the counterpart of formula (4.2.1) if sampling
is done with replacement.

(4.2.1) Pr[Sample of m elements has exactly y white balls] =

422 G (=)0
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Without proof we will state here that the expected value of y, the number of
white balls in the sample, is E[y] = m ¥, which is the same as if one would select the
balls with replacement.

Also without proof, the variance of vy is
w (n—w) (n—m)

4.2.3 Yyl=m———-7-—=.
( ) varly] =m n n (n—1)

This is smaller than the variance if one would choose with replacement, which is
represented by the above formula without the last term “—7. This last term is
called the finite population correction. More about all this is in | , p- 176-183].

4.3. The Poisson Distribution

The Poisson distribution counts the number of events in a given time interval.
This number has the Poisson distribution if each event is the cumulative result of a
large number of independent possibilities, each of which has only a small chance of
occurring (law of rare events). The expected number of occurrences is proportional
to time with a proportionality factor A, and in a short time span only zero or one
event can occur, i.e., for infinitesimal time intervals it becomes a Bernoulli trial.

Approximate it by dividing the time from 0 to ¢ into n intervals of length %; then
the occurrences are approximately n independent Bernoulli trials with probability of
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success % (This is an approximation since some of these intervals may have more
than one occurrence; but if the intervals become very short the probability of having
two occurrences in the same interval becomes negligible.)

In this discrete approximation, the probability to have k successes in time ¢ is

(431)  Prle=k] = (Z) (%)k(l B %)m—m

(4.3.2) = %n(n sk n,f" —EL Y (1- %) (1- %)_k

At
(4.3.3) — ( k') e~ for n — oo while k remains constant

(4.3.3) is the limit because the second and the last term in (4.3.2) — 1. The sum

of all probabilities is 1 since Y po ’\t,) = e*. The expected value is (note that we

can have the sum start at k = 1):

0o A o0 k-1
(4.3.4) Efz] = e~ > (/\kt;) = )\te”\t; ((ijtz o=

This is the same as the expected value of the discrete approximations.
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81. = follows a Poisson distribution, i.e.,

k
(4.3.5) Pr[z=k] = (Akt') e M fork=0,1,....
a. 2 points Show that E[x] = At.
See (4.3.4). O

b. 4 points Compute E[z(x — 1)] and show that var[z] = At.

For E[z(z — 1)] we can have the sum start at k = 2:

oo

(4.3.6) Ela(z — 1)] = e’”Zkz - 1)& (et Y 120 (At)k s (2.

k=2

From this follows
(4.3.7) var[z] = E[z?] — (E[z])? = E[z(z — 1)] + E[z] — (E[z])? = (A\t)% + At — (A)? = A¢.
]

The Poisson distribution can be used as an approximation to the Binomial dis-
tribution when n large, p small, and np moderate.

82. Which value of A would one need to approrimate a given Binomial
with n and p?
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That which gives the right expected value, i.e., A = np. O

83. Two researchers counted cars coming down a road, which obey a
Poisson distribution with unknown parameter \. In other words, in an interval of
length t one will have k cars with probability

(A)E

(4.3.8) 0 C AL

Their assignment was to count how many cars came in the first half hour, and how
many cars came in the second half hour. However they forgot to keep track of the
time when the first half hour was over, and therefore wound up only with one count,
namely, they knew that 213 cars had come down the road during this hour. They
were afraid they would get fired if they came back with one number only, so they
applied the following remedy: they threw a coin 213 times and counted the number of
heads. This number, they pretended, was the number of cars in the first half hour.

a. 0 points Did the probability distribution of the number gained in this way
differ from the distribution of actually counting the number of cars in the first half
hour?

First a few definitions: z is the total number of occurrences in the interval [0, 1]. v
is the number of occurrences in the interval [0, ¢] (for a fixed ¢; in the problem it was ¢t = %, but we
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will do it for general ¢, which will make the notation clearer and more compact. Then we want to
compute Prly=m|z=n]. By definition of conditional probability:

Prjy=m and z=n

(4.3.9) Prly=m|z=n] = Prly=m and z=n]
Pr{z=n)]

How can we compute the probability of the intersection Pr[y=m and z=n]? Use a trick: express
this intersection as the intersection of independent events. For this define z as the number of
events in the interval (¢,1]. Then {y=m and z=n} = {y=m and z=n — m}; therefore Pr[y=m and
z=n| = Prly=m] Pr[z=n — m]; use this to get

(4.3.10)

AT 3 AT ()M
Pr[y=m] Pr[z=n — m] e (n<—m))! e MY ny m n—m
- =()ema-nrom,

Pr[z=n)] )7\;: e m

Prly=m]|z=n] =

Here we use the fact that Pr[z=k] = tk—lje*t, Prly=k] = (’\k#!)ke’kt, Pr[z=k] = %6707}01&.
One sees that a. Pr[y=m|z=n] does not depend on A, and b. it is exactly the probability of having m
successes and n —m failures in a Bernoulli trial with success probability ¢t. Therefore the procedure
with the coins gave the two researchers a result which had the same probability distribution as if

they had counted the number of cars in each half hour separately.
O

b. 2 points Fxplain what it means that the probability distribution of the number
for the first half hour gained by throwing the coins does not differ from the one gained
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by actually counting the cars. Which condition is absolutely necessary for this to
hold?

The supervisor would never be able to find out through statistical analysis of the
data they delivered, even if they did it repeatedly. All estimation results based on the faked statistic
would be as accurate regarding A as the true statistics. All this is only true under the assumption
that the cars really obey a Poisson distribution and that the coin is fair.

The fact that the Poisson as well as the binomial distributions are memoryless has nothing to
do with them having a sufficient statistic.
O

84. 8 points x is the number of customers arriving at a service counter
in one hour. x follows a Poisson distribution with parameter A = 2, i.e.,
27
(4.3.11) Prlr=j] = ﬁe_Q.
a. Compute the probability that only one customer shows up at the service
counter during the hour, the probability that two show up, and the probability that no
one shows up.

b. Despite the small number of customers, two employees are assigned to the
service counter. They are hiding in the back, and whenever a customer steps up to
the counter and rings the bell, they toss a coin. If the coin shows head, Herbert serves
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the customer, and if it shows tails, Karl does. Compute the probability that Herbert

has to serve exactly one customer during the hour. Hint:
1 1 1
(4.3.12) e= 1+1+ Tt o 3 + e

c. For any integer k > 0, compute the probability that Herbert has to serve
exactly k customers during the hour.

85. 8 points Compute the moment generating function of a Poisson
k
variable observed over a unit time interval, i.e., x satisfies Prlz=k] = ’,\C, e ™ and
you want Ele'*] for all t.

I @ CCRT'D U o I €10 LU S VEL S S (5 .
E[e’]—zkzoe are _Zko o A= erelemA = eAle" 1) ]

4.4. The Exponential Distribution

Now we will discuss random variables which are related to the Poisson distri-
bution. At time ¢ = 0 you start observing a Poisson process, and the random
variable ¢ denotes the time you have to wait until the first occurrence. ¢ can have
any nonnegative real number as value. One can derive its cumulative distribution
as follows. ¢>t if and only if there are no occurrences in the interval [0,¢]. There-

0
fore Pr[t>t] = ()‘Ot!) e = e~ and hence the cumulative distribution function
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Fy(t) = Pr[t<t] = 1—e > when t > 0, and F;(¢) = 0 for t < 0. The density function
is therefore f;(t) = Ae™*! for t > 0, and 0 otherwise. This is called the exponential
density function (its discrete analog is the geometric random variable). It can also
be called a Gamma variable with parameters » = 1 and A.

86. 2 points An exponential random variable t with parameter X > 0
has the density f;(t) = Xe™* fort >0, and 0 for t < 0. Use this density to compute
the expected value of t.

E[t] = fo Ate~Mdt = f w'dt = uv’

oy u=t v'=Xe M
— u'vdt, where . One
0 fO ’ uw'=1 v=—e" At

oo [e%e] — r_ — At
can also use the more abbreviated notation = fo udv= m;’ —fo v du, where du'_tdt dv'=Xe _/\tdt .
u = v=—e€

Either way one obtains E[t] = —te™* |;o + fO e Mdt =0— fe M| = 1. O

87. 4 points An exponential random variable t with parameter A > 0
has the density f;(t) = Xe™ ™ fort >0, and 0 for t < 0. Use this density to compute
the expected value of 2.

One can use that I'(r f Atr—le= At dt for r = 3 to get: E[t?] = (1/A2)T'(3) =

2/X2. Or all from scratch E[t f M2e~AMdt = fo wv'dt = uv’ - fo u/vdt, where
u=1t2 v =X~
u =2t v=-—e"

0
. Therefore E[tQ] = th_M|0 + fo 2te~ M dt. The first term vanishes, for
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. . oo I oo o o u==t v = eiAt
the second do it again: fo 2te~Mdt = fo wv'dt = uv‘o —fO u/vdt, where W=1 v=—(1/A)eN

Therefore the second term becomes 2(t/)\)e*>‘t‘go +2 fooo(l/)\)e*”dt =2/)2. O

88. 2 points Does the exponential random variable with parameter
A > 0, whose cumulative distribution function is F;(t) = 1 — e fort > 0, and
0 otherwise, have a memory-less property? Compare Problem 76. Formulate this
memory-less property and then verify whether it holds or not.

Here is the formulation: for s<t follows Pr[t>¢|t>s] = Pr[t>t — s]. This does indeed

. _ Prlt>tand t>s] _ Prlt>t] _ e~ _\(t—
hold. Proof: lhs = el 5] = Brliss] = 27)\5 — e~ At—s), 0

89. The random variable t denotes the duration of an unemployment
spell. It has the exponential distribution, which can be defined by: Pr[t>t] = e~ for
t >0 (t cannot assume negative values).

a. 1 point Use this formula to compute the cumulative distribution function
Fi(t) and the density function f(t)

Fy(t) = Pr[t<t] = 1 — Pr[t>t] = 1 — e~ for t > 0, zero otherwise. Taking the
derivative gives fi(t) = Ae~*! for t > 0, zero otherwise. ]

b. 2 points What is the probability that an unemployment spell ends after time
t + h, given that it has not yet ended at time t? Show that this is the same as the
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unconditional probability that an unemployment spell ends after time h (memory-less
property).

Pr[t>t + h] e~ Mtth) VY
4.4.1 Prlt>t h|lt>t] = —8— - —
( ) rlt>t + hlt>1] Pr[t>t] e~ At ¢

O

c. 3 points Let h be a small number. What is the probability that an unemploy-
ment spell ends at or before t + h, given that it has not yet ended at time t? Hint:
for small h, one can write approximately

(4.4.2) Prlt < t<t+h] = hfi(t).

Pr[t<t +h and t>t]
Pr[t>t] N

_ hfit) hde= M

T 1-F(t) et

Pr(t<t + h|t>t] =

(4.4.3) =hA



140 4. SPECIFIC RANDOM VARIABLES

4.5. The Gamma Distribution

The time until the second occurrence of a Poisson event is a random variable
which we will call #(?). Tts cumulative distribution function is Fy) (t) = Pr[t(?) <t] =
1—Pr[t® >t]. But t(2) >t means: there are either zero or one occurrences in the time
between 0 and ¢; therefore Pr[t(?) >t] = Pr[z=0]+Pr[z=1] = e M+ te . Putting it
all together gives F) (t) = 1 —e~* — Ate~*. In order to differentiate the cumulative
distribution function we need the product rule of differentiation: (uv)’ = vw'v 4+ uv’.
This gives

(4.5.1) fro (1) = Ae™™ = Xe ™ 4 N2te™ M = \2te ™M,

90. 3 points Compute the density function of t3), the time of the third
occurrence of a Poisson variable.

(4.5.2) Pr[t(®) >t] = Pr[z=0] + Pr[z=1] + Pr[z=2]

(4.5.3) F(t) = Pr[z‘<3 <t =1-— (14 XM+ s t2)e**t

2

(4.5.4) fio () = (t) = (4(1 A+ %tz) O+ )\2t))e_kt _ X e

E Fi@ 2
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O

If one asks for the rth occurrence, again all but the last term cancel in the
differentiation, and one gets

(455) f,(r) (t) — (T )\Tl)!tr—le—kt.

This density is called the Gamma density with parameters A and 7.
The following definite integral, which is defined for all » > 0 and all A > 0 is
called the Gamma function:

oo
(4.5.6) I(r) = / Nt lemMat,
0

Although this integral cannot be expressed in a closed form, it is an important
function in mathematics. It is a well behaved function interpolating the factorials in
the sense that I'(r) = (r — 1)1

91. Show that T'(r) as defined in (4.5.6) is independent of A, i.e.,
instead of (4.5.6) one can also use the simpler equation

(4.5.7) I(r)= /OOO tr—tetat.
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92. 3 points Show by partial integration that the Gamma function
satisfies T(r + 1) = rI'(r).

Start with

oo
(4.5.8) F(r—l-l):/ A=A gy
0

and integrate by parts: f u'vdt = uv — f wv'dt with u’ = e~ and v = A\"t", therefore u = —e =M

and v/ = rA"¢t" L

(4.5.9) D(r+1) = -A"t"e M

0o oo
+ / PATE e A dE = 0 + rT(r).
0 0

93. Show that T'(r) = (r — 1)! for all natural numbers r =1,2,.. ..

Proof by induction. First verify that it holds for » = 1, i.e., that I'(1) = 1:
oo
(4.5.10) ra) = / Ae Mt = —e*kf|§° =1
0
and then, assuming that I'(r) = (r — 1)! Problem 92 says that I'(r+1) = rI'(r) =r(r— D! =7r!l. O

Without proof: I'(3) = y/x. This will be shown in Problem 141.
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Therefore the following defines a density function, called the Gamma density
with parameter r and A, for all » > 0 and A > 0:

)\7‘
(4.5.11) f(z) = T )x“le*)‘z for x>0, O otherwise.
r

The only application we have for it right now is: this is the distribution of the time
one has to wait until the rth occurrence of a Poisson distribution with intensity .
Later we will have other applications in which 7 is not an integer.

94. 4 points Compute the moment generating function of the Gamma

distribution.
(4.5.12) m(t) = E[e?*] = etzixrflef)‘zdx
o I'(r)
_ A" ©° (}\ _ t)rx'r—l (-t
(4.5.13) “ oo /O () e dx
A T
w510 ()

since the integrand in (4.5.12) is the density function of a Gamma distribution with parameters r
and A —t. O
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95. 2 points The density and moment generating functions of a Gamma
variable x with parameters r >0 and X > 0 are

AT‘
(4.5.15) folx) = mxT_le_’\I for x>0, 0 otherwise.
T

(4.5.16) mo (t) = (%)

Show the following: If © has a Gamma distribution with parametersr and 1, then v =

/X has a Gamma distribution with parameters r and X. You can prove this either
using the transformation theorem for densities, or the moment-generating function.

Solution using density function: The random variable whose density we know is z;
its density is ——a" e~ *. If z = v, then ‘;—i = A, and the absolute value is also A. Therefore the

F(r).
density of v is %vr_le_)‘”. Solution using the mgf:
1 \r
4.5.17 +(t) = Elet”] = (——
(4.5.17) m.(t) = Ble’] = (1)
(4518) m/u(t) E[etu} — E[e(t/k):z:] — ( 1 )7' _ ( A )T-
) 1—(t/N) A—t

but this last expression can be recognized to be the mgf of a Gamma with r» and A. dJ



4.5. THE GAMMA DISTRIBUTION 145

96. 2 points It © has a Gamma distribution with parameters r and
A, and y one with parameters p and X\, and both are independent, show that x + y
has a Gamma distribution with parameters r +p and A (reproductive property of the
Gamma distribution.) You may use equation (4.5.14) without proof

A r A A r
(4.5.19) (,\4) (,\,t)p:<>\7t) .

O

97. Show that a Gamma variable x with parameters r and A has
expected value B[r] = r/\ and variance var[z] = r/\2.

Proof with moment generating function:

d AN\ r/ oA\
(4.5.20) f(f) :7( ) :
dt\ X —t A\t

therefore E[z] = 1, and by differentiating twice (apply the same formula again), E[2?] = %

therefore var[z] = {5.

)

Proof using density function: For the expected value one gets E[t] = fooo te A gr—le=Atgs =

"T()
oo _ C(r41 . ; o0 9 AT po1 -
%ﬁ f() trATHle= Mt = §~F§:+1; = %. Using the same tricks E[t?] = fo t2~F(T)t’” Le=Adt =

r(rtl) oo a2 1o—At gy — r(r+1)
2 Jo 1"(r+2)tr+ e Mdt = =5
Therefore var[t] = E[t?] — (E[t])? = r/\2. O
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4.6. The Uniform Distribution

98. Let = be uniformly distributed in the interval [a,b], i.e., the density
function of x is a constant for a < x < b, and zero otherwise.

a. 1 point What is the value of this constant?
It is 1 O

b—a

b. 2 points Compute E[z]

E[z] = fab s dr = ﬁ ng‘ZZ = ‘%H? since b2 — a2 = (b+ a)(b — a). O

c. 2 points Show that E[2?%] = M-

E[z?] = fab % dr = ﬁ bsgas. Now use the identity b° — a3 = (b—a)(b? +ab+a?)

(check it by multiplying out). O

d. 2 points Show that var[z] = %

24 ab+b2 +b)? 4a2+4ab+4b2  3a246ab+3b2
A var[z] = Ez?] — (Elz])? = otabtd” _ (ath)” _ da”+dabidb” _ 3a7+6abidb’
(b—a)
o O
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4.7. The Beta Distribution

Assume you have two independent variables, both distributed uniformly over
the interval [0, 1], and you want to know the distribution of their maximum. Or of
their minimum. Or you have three and you want the distribution of the one in the
middle. Then the densities have their maximum to the right, or to the left, or in the
middle. The distribution of the rth highest out of n independent uniform variables
is an example of the Beta density function. Can also be done and is probability-
theoretically meaningful for arbitrary real r and n.

99. = and y are two independent random variables distributed uni-

formly over the interval [0,1]. Let u be their minimum v = min(z,y) (i.e., u
takes the value of © when x is smaller, and the value of y when y is smaller), and
v = max(z,y).

a. 2 points Given two numbers q and r between 0 and 1. Draw the events u<q
and v<r into the unit square and compute their probabilities.

b. 2 points Compute the density functions f,(u) and f,(v).

c. 2 points Compute the expected values of u and v.
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For u: Prju<q=1—-Prlu>q] =1-(1—q)? =2q—¢? fu(v) = 2v Therefore
fulu) =2—2u

' 23\ | 1
(4.7.1) E[u] = /0 (2 —2u)udu = <u2 - 3> =3

0

For v it is: Pr[v < 7] = r2; this is at the same time the cumulative distribution function. Therefore
the density function is f,(v) = 2v for 0 < v < 1 and 0 elsewhere.

1
2

1
2 3
(4.7.2) El] = [ v2vdo= 2 .
. 3

3

0

4.8. The Normal Distribution

By definition, y is normally distributed with mean p and variance o2, in symbols,
y ~ N(p,0?), if it has the density function

1 (y—m)?
4.8.1 f,l Yy) = e 202
( ) J( ) /727_(0_2

It will be shown a little later that this is indeed a density function. This distribution
has the highest entropy among all distributions with a given mean and variance
[ , p- 47
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If y ~ N(u,0?), then z = (y — u)/o ~ N(0,1), which is called the standard
Normal distribution.

100. 2 points Compare | , p. 68]: Assume x ~ N(3,4) (mean
is 3 and variance 4). Determine with the help of a table of the Standard Normal
Distribution function Pr[2<z<5].

Pr[2 < 2<5] =Pr[2-3<2-3<5-3]=Pr[352 < £33 < 33| = pr[-L < 228 <
J=3(1)-®(-1)=21) - (1-2(3) =(1) +®(3) - 1=0. 8413 +0. 6915 —-1=0. 5328. Some
tables (Greene) give the area between 0 and all positive values; in this case it is 0.341340.1915. O

The moment generating function of a standard normal 2z ~ N (0, 1) is the follow-
ing integral:

oo, 1 e
(4.8.2) m.(t) = Ele’] = el e 2 dz.
ous

To solve this integral, complete the square in the exponent:

(4.8.3) tz— === —(z—t)%



150 4. SPECIFIC RANDOM VARIABLES

2
Note that the first summand, 22 , no longer depends on z; therefore the factor eT
can be written in front of the integral:

t2 +oo 1 t2
(4.8.4) m.(t)=e™ / P S P

oo V2T

because now the integrand is simply the density function of a N (¢, 1).
A general univariate normal = ~ N(u,02) can be written as © = p + oz with
z ~ N(0,1), therefore

(485) m;,;(t) — E[e(#-‘rﬂz)t] — et E[ea-,zt] _ e(#t+02t2/2).

101. Given two independent normal variables © ~ N(p.,0?) and
y ~ N(uy, 03). Using the moment generating function, show that

(4.8.6) ax + Py ~ N(ap, + ﬁluy,a o2 432 2)

Because of independence, the moment generating function of ax + By is the product
of the m.g.f. of @z and the one of [y:

(4.8.7) Meet gy (t) = ohwattaa?t? /2 pyBtto] 876%/2 _ e(u,,,a+u,,6)t+(a%a2+aiﬁ2)t2/27
which is the moment generating function of a N(ap, + Buy, a2 + 5205). |

We will say more about the univariate normal later when we discuss the multi-
variate normal distribution.
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Sometimes it is also necessary to use the truncated normal distributions. If z is
standard normal, then

(4.8.8) E[z|z>z2] = %, var[z|z>z] = 1 — p(p — z), where p = E[z]|z>2].

This expected value is therefore the ordinate of the density function at point z divided
by the tail area of the tail over which = is known to vary. (This rule is only valid for
the normal density function, not in general!) These kinds of results can be found in
[ , pp. 81-83] or in the original paper | ]

102. Every customer entering a car dealership in a certain location
can be thought of as having a reservation price y in his or her mind: if the car will be
offered at or below this reservation price, then he or she will buy the car, otherwise
there will be no sale. (Assume for the sake of the argument all cars are equal.)
Assume this reservation price is Normally distributed with mean $6000 and standard
deviation $1000 (if you randomly pick a customer and ask his or her reservation
price). If a sale is made, a person’s consumer surplus is the difference between the
reservation price and the price actually paid, otherwise it is zero. For this question
you will need the table for the standard normal cumulative distribution function.
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a. 2 points A customer is offered a car at a price of $5800. The probability

that he or she will take the car is

We need Pr[y>5800. If y=5800 then z=472090 = —0.2; Pr[z>—0.2] = 1 — Pr[z< —

0.2] =1 —0.4207 = 0.5793. O

b. 3 points Since it is the 63rd birthday of the owner of the dealership, all
cars in the dealership are sold for the price of $6300. You pick at random one of
the people coming out of the dealership. The probability that this person bought a car

and his or her consumer surplus was more than $500 is

This is the unconditional probability that the reservation price was higher than
$6300 + $500 = $6800. i.e., Pr[y>6800. Define z = (y — $6000)/$1000. It is a standard normal, and
y<$6800 <= z<.8, Therefore p =1 — Pr[2<.8] = .2119. O

c. 4 points Here is an alternative scenario: Since it is the 63rd birthday of
the owner of the dealership, all cars in the dealership are sold for the “birthday
special” price of $6300. You pick at random one of the people who bought one of
these “birthday specials” priced $6300. The probability that this person’s consumer

surplus was more than $500 is
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The important part of this question is: it depends on the outcome of the experi-
ment whether or not someone is included in the sample sample selection bias.
Here we need the conditional probability:

Pr[y>$6800] 1 — Pr[y<$6800]
Pr[y>$6300] ~ 1 — Pr[y<$6300]

(4.8.9) p = Pr[y>$6800|y>$6300] =

Again use the standard normal z = (y — $6000)/$1000. As before, y<$6800 <= 2<.8, and
y<$6300 <= 2<.3. Therefore

_1-Pr[z<.8] 2119

48.10 - -
(4.8.10) PE T T3] T 3821

= .5546.

It depends on the layout of the normal distribution table how this should be looked up. O

d. 5 points We are still picking out customers that have bought the birthday
specials. Compute the median value m of such a customer’s consumer surplus. It is
defined by

(4.8.11) Pr[y>$6300 + m|y>$6300] = Pr[y<$6300 + m|y>$6300] = 1/2.
Obviously, m > $0. Therefore

Pr[y>$6300+m] 1
4.8.12 Prly>$6300 + ml|y>$6300] = ——0— o T _ 2
( ) tly mly ] Pr[y>$6300] 2



154 4. SPECIFIC RANDOM VARIABLES

or Pr[y>$6300 + m] = (1/2) Pr[y>$6300] = (1/2). 3821 = .1910. Le., Pr[43000 > 6300-6000-tm
300

1006 + 1005) = -1910. For this we find in the table m + 1555 = 0-875, therefore 300 + m = 875,
or m = $575. O

e. & points Is the expected value of the consumer surplus of all customers that
have bought a birthday special larger or smaller than the median? Fill in your answer

here: . Proof is not required, as long as the answer is correct.

The mean is larger because it is more heavily influenced by outliers.

(4.8.13) Ely — 6300]y>6300] = E[6000 + 1000z — 6300|6000 + 1000=>6300)

(4.8.14) = B[1000= — 30010002z >300]

(4.8.15) = B[1000z|2>0.3] — 300

(4.8.16) — 300

(4.8.17) — 1000103 _ 300 = 698 > 575.
1—0(0.3)

4.9. The Chi-Square Distribution

A y? with one degree of freedom is defined to be the distribution of the square
¢ = 22 of a univariate standard normal variable.
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Call the cumulative distribution function of a standard normal F.(z). Then the
cumulative distribution function of the x2 variable ¢ = 22 is, according to Problem
47, F,(q) = 2F.(\/q) — 1. To get the density of ¢ take the derivative of F,(q) with
respect to g. For this we need the chain rule, first taking the derivative with respect
to z = \/q and multiply by fl—Z:

(49.1) £10) = - REGD - 1) = L (2F.(2) - 1)
dF. dz 2 —22/2 1

— (z)— = e

dz ( )dq V2T 2,/q
1

(4.9.3) = ——e 92,

V2mq

Now remember the Gamma function. Since I'(1/2) = /7 (Proof in Problem 141),
one can rewrite (4.9.3) as

(4.9.2) =2

(1/2)1/2q—1/26—q/2

(494 S (T

i.e., it is a Gamma density with parameters r = 1/2, A = 1/2.
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A \? with p degrees of freedom is defined as the sum of p independent univariate
% variables. By the reproductive property of the Gamma distribution (Problem 96)
this gives a Gamma variable with parameters r = p/2 and A = 1/2.

(4.9.5) If g~ /\/127 then E[¢]=p and var[q] = 2p

We will say that a random variable ¢ is distributed as a o2 xf, iff /02 is a X;Q)- This
is the distribution of a sum of p independent N (0, ?) variables.

4.10. The Lognormal Distribution
This is a random variable whose log has a normal distribution. See | , P
71]. Parametrized by the p and o2 of its log. Density is
1
xV2ro?

[ , pp. 82-87] has an excellent discussion of the properties of the lognormal
for income distributions.

(4.10.1) e~ (ma—p/o%)/2

4.11. The Cauchy Distribution

103. 6 points | , pD- 155/6] An example of a distribution without
mean and variance is the Cauchy distribution, whose density looks much like the



4.11. THE CAUCHY DISTRIBUTION 157

normal density, but has much thicker tails. The density and characteristic functions
are (I am not asking you to compute the characteristic function)

(4.11.1) f.(x) !

= ) E[e"”] = exp(— |t]).

Here i = v/—1, but you should not be afraid of it, in most respects, i behaves like any
real number. The characteristic function has properties very similar to the moment
generating function, with the added advantage that it always exists. Using the char-
acteristic functions show that if © and y are independent Cauchy distributions, then
(x 4+ vy)/2 has the same distribution as x or y.

ANSWER.

(4.11.2) E {exp(itw ;r y)] =E |:exp (i%m) exp(i%y)} = exp(—‘g

Jexp(—| 3|) = exp(- 1.

O

It has taken a historical learning process to distinguish significant from insignif-
icant events. The order in which the birds sit down on a tree is insignificant, but
the constellation of stars on the night sky is highly significant for the seasons etc.
The confusion between significant and insignificant events can explain how astrol-
ogy arose: after it was discovered that the constellation of stars was significant, but
without knowledge of the mechanism through which the constellation of stars was
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significant, people experimented to find evidence of causality between those aspects
of the night sky that were changing, like the locations of the planets, and events on
earth, like the births of babies. Romans thought the constellation of birds in the sky
was significant.

Freud discovered that human error may be significant. Modern political con-
sciousness still underestimates the extent to which the actions of states are signifi-
cant: If a welfare recipient is faced with an intractable labyrinth of regulations and
a multitude of agencies, then this is not the unintended result of bureaucracy gone
wild, but it is deliberate: this bureaucratic nightmare deters people from using wel-
fare, but it creates the illusion that welfare exists and it does give relief in some
blatant cases.

Also “mistakes” like the bombing of the Chinese embassy are not mistakes but
are significant.

In statistics the common consensus is that the averages are significant and the
deviations from the averages are insignificant. By taking averages one distills the
significant, systematic part of the date from the insignificant part. Usually this is
justified by the “law of large numbers.” IL.e., people think that this is something
about reality which can be derived and proved mathematically. However this is an
irrealist position: how can math tell us which events are significant?
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Here the Cauchy distribution is an interesting counterexample: it is a probability
distribution for which it does not make sense to take averages. If one takes the
average of n observations, then this average does not have less randomness than
each individual observation, but it has exactly the same distribution as one single
observation. (The law of large numbers does not apply here because the Cauchy
distribution does not have an expected value.)

In a world in which random outcomes are Cauchy-distributed, taking averages
is not be a good way to learn from one’s experiences. People who try to keep track
of things by taking averages (or by running regressions, which is a natural extension
of taking averages) would have the same status in that world as astrologers have in
our world. Taking medians and other quantiles would be considered scientific, but
taking averages would be considered superstition.

The lesson of this is: even a scientific procedure as innocuous as that of taking
averages cannot be justified on purely epistemological grounds. Although it is widely
assumed that the law of large numbers is such a justification, it is not. The law of
large numbers does not always hold; it only holds if the random variable under
consideration has an expected value.

The transcendental realist can therefore say: since it apparently does make sense
to take averages in our world, we can deduce transcendentally that many random
variables which we are dealing with do have finite expected values.
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This is perhaps the simplest case of a transcendental conclusion. But this sim-
plest case also vindicates another one of Bhaskar’s assumptions: these transcendental
conclusions cannot be arrived at in a non-transcendental way, by staying in the sci-
ence itself. It is impossible to decide, using statistical means alone, whether one’s
data come from a distribution which has finite expected values or not. The reason
is that one always has only finite datasets, and the empirical distribution of a finite
sample always has finite expected values, even if the sample comes from a population
which does not have finite expected values.



CHAPTER 5

Chebyshev Inequality, Weak Law of Large
Numbers, and Central Limit Theorem

5.1. Chebyshev Inequality

If the random variable y has finite expected value p and standard deviation o,
and k is some positive number, then the Chebyshev Inequality says

1
(5.1.1) Prlly — p|>ko] < =

In words, the probability that a given random variable vy differs from its expected
value by more than k standard deviations is less than 1/k%. (Here “more than”
and “less than” are short forms for “more than or equal to” and “less than or equal

161
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t0.”) One does not need to know the full distribution of y for that, only its expected
value and standard deviation. We will give here a proof only if y has a discrete
distribution, but the inequality is valid in general. Going over to the standardized
variable z = =& we have to show Pr[|z|>k] < 5. Assuming = assumes the values
z1, Z2,... with probabilities p(z1), p(z2),..., then

= Y b,

i |z >k

(5.1.2) Pr]|z

Now multiply by k?:

(5.1.3) K> = > Kp(z)
i |z >k
(5.1.4) < > Zp(a)
i |z >k
(5.1.5) < Zz?p(zz) =var[z] = 1.

all i

The Chebyshev inequality is sharp for all £ > 1. Proof: the random variable
which takes the value —k with probability ﬁ and the value +k with probability
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51, and 0 with probability 1 — k%, has expected value 0 and variance 1 and the

2k
<-sign in (5.1.1) becomes an equal sign.

104. | , D- 316] Let y be the number of successes in n trials of a
Bernoulli experiment with success probability p. Show that
Y 1
5.1.6 P(—— ‘<)>1— .
( ) \p 7P¢) = 4ne?

Hint: first compute what Chebyshev will tell you about the lefthand side, and then
you will need still another inequality.

E[y/n] = p and var[y/n] = pq/n (where ¢ = 1 — p). Chebyshev says therefore

: 1
(5.1.7) Pr( 4 —p’ >k @) < —.
n n k2

Setting € = k+/pq/n, therefore 1/k? = pq/ne? one can rewerite (5.1.7) as
(5.1.8) Pr( k4 —p‘ 25) <2
n ne

Now note that pg < 1/4 whatever their values are. 0

105. 2 points For a standard normal variable, Pr[|z|>1] is approxi-
mately 1/3, please look up the precise value in a table. What does the Chebyshev

z
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inequality says about this probability? Also, Pr[|z|>2] is approximately 5%, again
look up the precise value. What does Chebyshev say?

z

Pr[|z|>1] = 0.3174, the Chebyshev inequality says that Pr[|z|>1] < 1. Also,
Pr[|z|>2] = 0.0456, while Chebyshev says it is < 0.25. a

5.2. The Probability Limit and the Law of Large Numbers

Let vyq,Y9,Ys,... be a sequence of independent random variables all of which
have the same expected value p and variance o. Then 7,, = % >oi, v, has expected

value p and variance %2 Le., its probability mass is clustered much more closely

around the value p than the individual y;. To make this statement more precise we
need a concept of convergence of random variables. It is not possible to define it in
the “obvious” way that the sequence of random variables y,, converges toward vy if
every realization of them converges, since it is possible, although extremely unlikely,
that e.g. all throws of a coin show heads ad infinitum, or follow another sequence
for which the average number of heads does not converge towards 1/2. Therefore we
will use the following definition:

The sequence of random variables y;, vy, ... converges in probability to another
random variable y if and only if for every § > 0

(5.2.1) lim Prl|y, —y|>d] =0.
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One can also say that the probability limit of v,, is v, in formulas

(5.2.2) plimy,, = .

n—oo
In many applications, the limiting variable y is a degenerate random variable, i.e., it
is a constant.

The Weak Law of Large Numbers says that, if the expected value exists, then the
probability limit of the sample means of an ever increasing sample is the expected
value, i.e., plim,_, . ¥, = 4.

106. 5 points Assuming that not only the expected value but also the
variance exists, derive the Weak Law of Large Numbers, which can be written as

(5.2.3) hm Pr[|yn — E[y]|=6] =0 for all § > 0,
from the Chebyshev inequality
1
2. r||lz — p|zko| < — where p = E|r| and 0 = var|z
5.2.4 p kol < h E do’

From nonnegativity of probability and the Chebyshev 1nequa11ty for x = 7y follows
0 < Pr[ly — ,u\> =] < 1 for all k. Set k = 6‘(:5 to get 0 < Pr[|y,, — p|>0] < <. For any fixed
6 > 0, the upper bound converges towards zero as n — oo, and the lower bound is zero, therefore
the probability iself also converges towards zero. |
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107. 4 points Let yq,...,y, be a sample from some unknown prob-
ability distribution, with sample mean y = %ZLI y; and sample variance s> =
LS ((yi — 1)% Show that the data satisfy the following “sample equivalent” of
the Chebyshev inequality: if k is any fized positive number, and m is the number of
observations y; which satisfy |g/j — ;17| >ks, then m < n/k?. In symbols,

n

ﬁ.

Hint: apply the usual Chebyshev inequality to the so-called empirical distribution of
the sample. The empirical distribution is a discrete probability distribution defined
by Pr[y=y,] = k/n, when the number y, appears k times in the sample. (If all y,; are
different, then all probabilities are 1/n). The empirical distribution corresponds to
the experiment of randomly picking one observation out of the given sample.

(5.2.5) #{vit |y, — Ul =ks}t <

The only thing to note is: the sample mean is the expected value in that empirical
distribution, the sample variance is the variance, and the relative number m/n is the probability.

(5.2.6) #{y;: v; € S} = nPr[9]
0

a. 3 points What happens to this result when the distribution from which the
y; are taken does not have an expected value or a variance?
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The result still holds but 7 and s2 do not converge as the number of observations
increases. ]

5.3. Central Limit Theorem

Assume all y, are independent and have the same distribution with mean pu,
variance o2, and also a moment generating function. Again, let 7,, be the sample
mean of the first n observations. The central limit theorem says that the probability
distribution for

@n — M
5.3.1
(5.3.1) o
converges to a N(0,1). This is a different concept of convergence than the probability
limit, it is convergence in distribution.

108. 1 point Construct a sequence of random variables vy, v, . .. with
the following property: their cumulative distribution functions converge to the cumu-
lative distribution function of a standard normal, but the random variables themselves
do not converge in probability. (This is easy!)

One example would be: all y, are independent standard normal variables.
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Why do we have the funny expression Z o \/%‘? Because this is the standardized

version of 7,,. We know from the law of large numbers that the distribution of
U, becomes more and more concentrated around p. If we standardize the sample
averages 7,,, we compensate for this concentration. The central limit theorem tells
us therefore what happens to the shape of the cumulative distribution function of 7,,.
If we disregard the fact that it becomes more and more concentrated (by multiplying
it by a factor which is chosen such that the variance remains constant), then we see
that its geometric shape comes closer and closer to a normal distribution.
Proof of the Central Limit Theorem: By Problem 109,

(5.3.2) — Y z; where z; = .
) 3 -

Let m3, my, etc., be the third, fourth, etc., moments of z;; then the m.g.f. of z; is

2 mgtd  mgt?
(5.3.3) me () =1+ 5+ =+

Therefore the m.g.f. of ﬁ Yoi, 7 is (multiply and substitute ¢//n for t):

t2 m3t3 m4t4 n Wy \ 7
3.4 (1 . ) - (1 —)
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where

2 mgt® N mat?

(5.3.5) T v

n
Now use Euler’s limit, this time in the form: if w,, — w for n — oo, then (1—1—%) —

e". Since our w,, — g, the m.g.f. of the standardized 7,, converges toward e%, which
is that of a standard normal distribution.

The Central Limit theorem is an example of emergence: independently of the
distributions of the individual summands, the distribution of the sum has a very
specific shape, the Gaussian bell curve. The signals turn into white noise. Here
emergence is the emergence of homogenity and indeterminacy. In capitalism, much
more specific outcomes emerge: whether one quits the job or not, whether one sells
the stock or not, whether one gets a divorce or not, the outcome for society is to
perpetuate the system. Not many activities don’t have this outcome.

Propren 109. Show in detail that L2—£ = S0 Lk,

s e (L)) =2 ((FTn)- (L) ) - £3(D

,u) = rhs. ]
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110. & points Explain verbally clearly what the law of large numbers
means, what the Central Limit Theorem means, and what their difference is.

111. (For this problem, a table is needed.) | , exercise 5.6.1,
p. 301] If you roll a pair of dice 180 times, what is the approrimate probability that
the sum seven appears 25 or more times? Hint: use the Central Limit Theorem (but
don’t worry about the continuity correction, which is beyond the scope of this class).

Let x; be the random variable that equals one if the i-th roll is a seven, and zero
otherwise. Since 7 can be obtained in six ways (146, 2+5, 3+4, 443, 5+2, 6+1), the probability
to get a 7 (which is at the same time the expected value of z;) is 6/36=1/6. Since 1’2 = x4,
var[z;] = Elz;] — (Blz])? = %f % = % Define = = 2118(1 ;. We need Pr[z>25]. Since =
is the sum of many independent identically distributed random variables, the CLT says that = is
asympotically normal. Which normal? That which has the same expected value and variance as
z. Elz] = 180 - (1/6) = 30 and var[z] = 180 - (5/36) = 25. Therefore define y ~ N(30,25). The
CLT says that Pr[z>25] ~ Pr[y>25]. Now y>25 <= y—30> -5 < y—30<+5 <—
(y — 30)/5<1. But z = (y — 30)/5 is a standard Normal, therefore Pr[(y — 30)/5<1] = F.(1), i.e.,
the cumulative distribution of the standard Normal evaluated at +1. One can look this up in a
table, the probability asked for is .8413. Larson uses the continuity correction: z is discrete, and
Pr[z>25] = Pr[x>24]. Therefore Pr[y>25] and Pr[y>24] are two alternative good approximations;
but the best is Pr[y>24.5] = .8643. This is the continuity correction. O



CHAPTER 6

Vector Random Variables

In this chapter we will look at two random variables = and y defined on the same
sample space U, i.e.,

(6.0.6) r: Usw—zw)eR and y: Uswr y(w)eR.

As we said before, 2 and y are called independent if all events of the form = < x
are independent of any event of the form y < y. But now let us assume they are
not independent. In this case, we do not have all the information about them if we
merely know the distribution of each.

The following example from | , example 5.1.7. on p. 233] illustrates the
issues involved. This example involves two random variables that have only two
possible outcomes each. Suppose you are told that a coin is to be flipped two times

171
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and that the probability of a head is .5 for each flip. This information is not enough
to determine the probability of the second flip giving a head conditionally on the
first flip giving a head.

For instance, the above two probabilities can be achieved by the following ex-
perimental setup: a person has one fair coin and flips it twice in a row. Then the
two flips are independent.

But the probabilities of 1/2 for heads and 1/2 for tails can also be achieved as
follows: The person has two coins in his or her pocket. One has two heads, and one
has two tails. If at random one of these two coins is picked and flipped twice, then
the second flip has the same outcome as the first flip.

What do we need to get the full picture? We must consider the two variables not
separately but jointly, as a totality. In order to do this, we combine x and y into one

entity, a vector [IIJ € R2%. Consequently we need to know the probability measure

z(w) 2
y(w) e R=.

It is not sufficient to look at random variables individually; one must look at
them as a totality.

Therefore let us first get an overview over all possible probability measures on the
plane R?. In strict analogy with the one-dimensional case, these probability measures

induced by the mapping U 3 w — [
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can be represented by the joint cumulative distribution function. It is defined as
x

(6.0.7) Foy(@,y) = Prl [IJ L/

For discrete random variables, for which the cumulative distribution function is
a step function, the joint probability mass function provides the same information:

(6.0.8) Py (T, y) = Pr[[lﬂ = [ﬂ] = Pr[z=xz and y=y].
112. Write down the joint probability mass functions for the two ver-
sions of the two coin flips discussed above.

}] =Prlz <z and y <yl

Here are the probability mass functions for these two cases:

Second Flip Second Flip
H T sum H T sum
(6.0.9) First H 25 .25 .50 First H .50 .00 .50
Flip T 25 .25 .50 Flip T .00 .50 .50
sum .50 .50  1.00 sum .50 .50  1.00

O

The most important case is that with a differentiable cumulative distribution
function. Then the joint density function f, ,(z,y) can be used to define the prob-
ability measure. One obtains it from the cumulative distribution function by taking
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derivatives:

82

(6010) f,w(x,y) = W

E,,(e.y).

Probabilities can be obtained back from the density function either by the in-
tegral condition, or by the infinitesimal condition. I.e., either one says for a subset
B C R?:

(6.0.11) Pr[['ﬂ € B] ://Bf(a:,y) dx dy,

)

or one says, for a infinitesimal two-dimensional volume element dV,, , located at [3 ],
which has the two-dimensional volume (i.e., area) |dV]|,

(6.0.12) Pr[m € dVyyl = f(x,y) dV].

The vertical bars here do not mean the absolute value but the volume of the argument
inside.
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6.1. Expected Value, Variances, Covariances

To get the expected value of a function of = and y, one simply has to put this
function together with the density function into the integral, i.e., the formula is

(6.1.1) Elg(z,y)] = //Rz 9(x,y) fry(x,y) do dy.

113. Assume there are two transportation choices available: bus and
car. 1If you pick at random a neoclassical individual w and ask which utility this
person derives from using bus or car, the answer will be two numbers that can be

written as a vector [gg:;] (u for bus and v for car).

a. 3 points Assuming [ﬂ has a uniform density in the rectangle with corners

66| 66| |71 71 . .
{68]’ {72], {68}’ and [72}, compute the probability that the bus will be preferred.

The probability is 9/40. u and v have a joint density function that is uniform in
the rectangle below and zero outside (u, the preference for buses, is on the horizontal, and v, the
preference for cars, on the vertical axis). The probability is the fraction of this rectangle below the
diagonal.
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72
71
70
69

68
66 67 68 69 70 T1

b. 2 points How would you criticize an econometric study which argued along
the above lines?

The preferences are not for a bus or a car, but for a whole transportation systems.
And these preferences are not formed independently and individualistically, but they depend on
which other infrastructures are in place, whether there is suburban sprawl or concentrated walkable

cities, etc. This is again the error of detotalization (which favors the status quo).
a

Jointly distributed random variables should be written as random wectors. In-
stead of U we will also write x (bold face). Vectors are always considered to be

column vectors. The expected value of a random vector is a vector of constants,
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notation

(6.1.2) Elx] =
E[z,,]

For two random variables = and v, their covariance is defined as
(6.1.3) cov[z,y] = E[(z — E[z])(y — E[y])]
Computation rules with covariances are

(6.1.4) cov[z, z] = cov|z,x] cov|x,z] = var[z] cov]z,a] =0

cov[z +y, z] = cov[z, z] + cov[y, z]  cov[ar,y] = acov|z,y]
114. 8 points Using definition (6.1.3) prove the following formula:
(6.1.6) cov[z,y] = E[zy] — E[z] E[y].

Write it down carefully, you will lose points for unbalanced or missing parantheses
and brackets.



178 6. VECTOR RANDOM VARIABLES

Here it is side by side with and without the notation E[z] = p and E[y] = v:

cov[z,y] = B[(z — Elz])(y — E[y))] covlz,y] = E[(z — p)(y — v)]
(6.1.7) = E[’J:y — 2 E[y] — E[z]y + E[z] E[y]] = El[zy — 2v — py + pv]
= E[zy] — E[z] E[y] — E[z] E[y] + E[z] E[y] = Elzy] — pv — v + pv
= E[zy] — E[z] E[y]. = E[zy] — pv.

115. 1 point Using (6.1.6) prove the five computation rules with co-
variances (6.1.4) and (6.1.5).

116. Using the computation rules with covariances, show that
(6.1.8) var[z + y] = var[z] + 2 cov[z, y] + var[y].

If one deals with random vectors, the expected value becomes a vector, and the
variance becomes a matrix, which is called dispersion matriz or variance-covariance
matriz or simply covariance matriz. We will write it V[z]. Its formal definition is

(6.1.9) Via] = £[(z - &lz])(x — £lx]) 7],
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but we can look at it simply as the matrix of all variances and covariances, for
example

x|, | var[z]  cov[z,y]
(6:.10) V)= [omy et )
An important computation rule for the covariance matrix is
(6.1.11) V[z] =¥ = V[Az] = ATA".
117. 4 points Let x = [q be a wvector consisting of two random
variables, with covariance matriz V(x| = ¥, and let A = {CCL Z] be an arbitrary

2 x 2 matriz. Prove that
(6.1.12) V[Az] = ATAT.

Hint: You need to multiply matrices, and to use the following computation rules for
covariances:

(6.1.13)
covlzr 4+ y, z] = cov]z, z] + cov|y, z] cov]ar,y] = acov[zr,y] cov|[z,x] = var[x].
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V[Az] =

v{([‘j Z} H)] =V

On the other hand, ATAT =
[a b] [ varly]  cov[y, Z]} {a C} _ {avar[y}-i-bcov[y,z] acov[z/,z]+bvar[z]:| |:a c:|

¢ d| |covly,z]  var[z] b d cvar[y] + dcovly,z] ccovly,z] +dvar[z]| |b d

ay + bz

cy +dz cov[ey + dz, ay + bz] var[cy + dz]

|= [ var[ay + bz] covlay + bz, cy + dz]

Multiply out and show that it is the same thing. O

Since the variances are nonnegative, one can see from equation (6.1.11) that
covariance matrices are nonnegative definite (which is in econometrics is often also
called positive semidefinite). By definition, a symmetric matrix ¥ is nonnegative def-
inite if for all vectors a follows a ' ¥a > 0. It is positive definite if it is nonnegativbe
definite, and a'Za = 0 holds only if @ = o.

118. 1 point A symmetric matriz Q is nonnegative definite if and only
ifa’Qa > 0 for every vector a. Using this criterion, show that if ¥ is symmetric and

nonnegative definite, and if R is an arbitrary matriz, then R'TR is also nonnegative
definite.

One can also define a covariance matrix between different vectors, C[x,y]; its
i,j element is cov(z;, y;].
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The correlation coefficient of two scalar random variables is defined as
cov[z, y)
The advantage of the correlation coeflicient over the covariance is that it is always
between —1 and +1. This follows from the Cauchy-Schwartz inequality
(6.1.15) (cov[z,y])? < var[z] var[y].

119. 4 points Given two random variables y and z with var[y] # 0,
compute that constant a for which varjay — z| is the minimum. Then derive the
Cauchy-Schwartz inequality from the fact that the minimum variance is nonnega-
tive.

(6.1.14) corr[z,y| =

(6.1.16) varlay — z] = a? var[y] — 2a cov[y, z] 4 var[z]
(6.1.17) First order condition: 0 = 2avar[y] — 2 covly, 2]
Therefore the minimum value is a* = cov[y, z]/ var[y|, for which the cross product term is —2 times
the first item:
(covly, z])* _ 2(cov[y, 2])?

(6.1.18) 0 <varla*y — z] = — — — + var[z]

(6.1.19) 0 < —(cov(y, 2])? + var[y] var[z].
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This proves (6.1.15) for the case var[y] # 0. If var[y] = 0, then v is a constant, therefore cov|y, z] =0
and (6.1.15) holds trivially.
O

6.2. Marginal Probability Laws

The marginal probability distribution of = (or y) is simply the probability dis-
tribution of x (or y). The word “marginal” merely indicates that it is derived from
the joint probability distribution of x and y.

If the probability distribution is characterized by a probability mass function,
we can compute the marginal probability mass functions by writing down the joint
probability mass function in a rectangular scheme and summing up the rows or
columns:

(6.2.1) po) = > paylay).

y:p(z,y)#0

For density functions, the following argument can be given:

(6.2.2) Pr[r € dV}] = Pr[H € dV, x R].

Y
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By the definition of a product set: [YIJ € Ax B xe Aand y € B. Split R into
many small disjoint intervals, R = UZ dVy,, then

€T
(6.2.3) [ € dV,] ZPr H € dV, x dVy,]

Therefore ), f. ,(x,y)|dV,,| is the density function we are looking for. Now the
|dVy,,| are usually written as dy, and the sum is usually written as an integral (i.e.,
an infinite sum each summand of which is infinitesimal), therefore we get

y=-—+oo
(6.2.6) fo(z) = / foy(z,y) dy.
yzfoo

In other words, one has to “integrate out” the variable which one is not interested
in.
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6.3. Conditional Probability Distribution and Conditional Mean

The conditional probability distribution of v given x=x is the probability distri-
bution of ¥ if we count only those experiments in which the outcome of x is . If the
distribution is defined by a probability mass function, then this is no problem:

o o Prly=yand x=z]  p.,(z,y)
(6.3.1) Pyl (Y, ) = Prly=ylr=a] = Prlr—a] =@

For a density function there is the problem that Pr[z=x] = 0, i.e., the conditional
probability is strictly speaking not defined. Therefore take an infinitesimal volume
element dV, located at x and condition on x € dV,:

Prly € dV, and = € dV,]

(6.3.2) Prly € dVy|x € dV,] = Pr[r € dV,]
_ fl,t/(xay)|de||dvy|

(6.3.3) =T L@V

(6.3.4) = L0y

fu(x)
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This no longer depends on dV, only on its location x. The conditional density is
therefore

(6.3.5) o) = Jey(2,y)

fo(x)
As y varies, the conditional density is proportional to the joint density function, but
for every given value of x the joint density is multiplied by an appropriate factor so
that its integral with respect to y is 1. From (6.3.5) follows also that the joint density
function is the product of the conditional times the marginal density functions.

120. 2 points The conditional density is the joint divided by the mar-
ginal:
e y (1'7 y)
6.3.6 folz(y, @) = —=———"=.
(0:30 ) = )

Show that this density integrates out to 1.

The conditional is a density in y with = as parameter. Therefore its integral with
respect to y must be = 1. Indeed,

e oo fz:,’t 5 d
(6.3.7) / fy:_m y(@,y) dy _
Yy

. f!/‘:l:zx(y’a:) dy = f:r:(x)
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because of the formula for the marginal:

“+oo
(6.3.8) fz(z) = / fey(z,y) dy
Yy

=—o0o0
You see that formula (6.3.6) divides the joint density exactly by the right number which makes the
integral equal to 1. |

121. [BD77, example 1.1.4 on p. 7]. x and y are two independent
random variables uniformly distributed over [0,1]. Define v = min(x,y) and v =
max(x,y).

a. Draw in the x,y plane the event {max(z,y) < 0.5 and min(z,y) > 0.4} and
compute its probability.

The event is the square between 0.4 and 0.5, and its probability is 0.01. O

b. Compute the probability of the event {max(z,y) < 0.5 and min(z,y) < 0.4}.

It is Pr[max(z,y) < 0.5] — Pr[max(z,y) < 0.5 and min(z,y) > 0.4], i.e., the area of
the square from 0 to 0.5 minus the square we just had, i.e., 0.24. d

c. Compute Primax(z,vy) < 0.5/ min(z,y) < 0.4].

(6.3.9) Pr[max(z,y) < 0.5 and min(z,y) <0.4] 024 024 3
e Pr[min(z,y) < 0.4] T 1-036 064 8
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d. Compute the joint cumulative distribution function of v and v.

One good way is to do it geometrically: for arbitrary 0 < u,v < 1 draw the area

{u < wand v < v} and then derive its size. If u < v then Prju < wand v < v] = Pr[v <v]—Prju <wu
and v > v] =02 — (v — u)? = 2uv — u?. If u > v then Pr{u < u and v < v] = Prlv <v] =02

]

e. Compute the joint density function of u and v. Note: this joint density is
discontinuous. The values at the breakpoints themselves do not matter, but it is very
important to give the limits within this is a nontrivial function and where it is zero.

One can see from the way the cumulative distribution function was constructed that
the density function must be

2 fo<u<wov<l1
(6.3.10) Fuyo(u,v) = omnsvs
0 otherwise

ILe., it is uniform in the above-diagonal part of the square. This is also what one gets from differ-

entiating 2vu — u? once with respect to u and once with respect to v. O

f. Compute the marginal density function of u.
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Integrate v out: the marginal density of u is

u

1 1
(6.3.11) fu(u) = / 2dv=2v| =2—-2u f0<u<l, and 0 otherwise.
v

=u

g. Compute the conditional density of v given u = u.

Conditional density is easy to get too; it is the joint divided by the marginal, i.e., it
is uniform:

1
—— for0<u<v<1
(6.3.12) Fojumu(v) =< 170 cU=usvs
0 otherwise.

6.4. The Multinomial Distribution

Assume you have an experiment with r different possible outcomes, with outcome
i having probability p; (i = 1,...,r). You are repeating the experiment n different
times, and you count how many times the ith outcome occurred. Therefore you get
a random vector with r different components x;, indicating how often the ith event
occurred. The probability to get the frequencies =1, ..., z, is
ml

Jrog— P — . L1122 | Tr
(6.4.1) Pr[zy =x1,..., 2, = 2,] = x1!~-~xT!p1 Ds Py
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This can be explained as follows: The probability that the first z; experiments
yield outcome 1, the next xs outcome 2, etc., is pi'p5*---p¥~. Now every other
sequence of experiments which yields the same number of outcomes of the different
categories is simply a permutation of this. But multiplying this probability by n!
may count certain sequences of outcomes more than once. Therefore we have to
divide by the number of permutations of the whole n element set which yield the
same original sequence. This is z1!- - - x,.!, because this must be a permutation which
permutes the first x; elements amongst themselves, etc. Therefore the relevant count
of permutations is —

zy!xn !t

122. You have an experiment with r different outcomes, the ith out-
come occurring with probability p;. You make n independent trials, and the ith out-
come occurred x; times. The joint distribution of the x1,...,x, is called a multino-
mial distribution with parameters n and p1,...,Pr.

a. & points Prove that their mean vector and covariance matriz are
(6.4.2)
P . p1— p% —pip2 -+ —P1DPr
P2 —pop1 P2 —P3 - —Dapy

Ty Ty g
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Hint: use the fact that the multinomial distribution with parameters n and py,. .., pr
is the independent sum of n multinomial distributions with parameters 1 and p1,...,p,.

In one trial, :1;12 = x4, from which follows the formula for the variance, and for i # j,
xzix; = 0, since only one of them can occur. Therefore cov[z;, ;] = 0 — E[z;] E[z;]. For several
independent trials, just add this. O

b. 1 point How can you show that this covariance matriz is singular?

Since x1 + - -+ 4+ z» = n with zero variance, we should expect

p1— p% —pip2 -+ —Ppipr 1 0
—p2p1 p2—Dp3 - —papr 1 0

(6.4.3) n . . . . =
—prp1 —prp2 - pr—p2| |1 0

6.5. Independent Random Vectors

The same definition of independence, which we already encountered with scalar
random variables, also applies to vector random variables: the vector random vari-
ables  : U — R™ and y : U — R" are called independent if all events that can be
defined in terms of x are independent of all events that can be defined in terms of
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y, i.e., all events of the form {x(w) € C'} are independent of all events of the form
{y(w) € D} with arbitrary (measurable) subsets C' C R™ and D C R".

For this it is sufficient that for all € R™ and y € R”, the event {z < x}
is independent of the event {y < y}, i.e., that the joint cumulative distribution
function is the product of the marginal ones.

Since the joint cumulative distribution function of independent variables is equal
to the product of the univariate cumulative distribution functions, the same is true
for the joint density function and the joint probability mass function.

Only under this strong definition of independence is it true that any functions
of independent random variables are independent.

123. 4 points Prove that, if x and y are independent, then E[xy] =
E[z] E[y] and therefore cov[x,y] = 0. (You may assume x and y have density func-
tions). Give a counterezample where the covariance is zero but the variables are
nevertheless dependent.

Just use that the joint density function is the product of the marginals. It can also be
done as follows: E[zy] = E[E[:Lu\t]] =E [1 E[u|1]] = now independence is needed = E [JE[I/]] =
E[z] E[y]. A counterexample is given in Problem 139. O

124. 3 points Prove the following: If the scalar random variables x
and y are indicator variables (i.e., if each of them can only assume the values 0 and
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1), and if cov[z,y] = 0, then = and y are independent. (Le., in this respect indicator
variables have similar properties as jointly normal random variables.)

Define the events A = {w € U: z(w) = 1} and B = {w € U: y(w) = 1}, ie,
z = iy (the indicator variable of the event A) and y = ip. Then zy = iang. If coviz,y] =
E[zy] — E[z] E[y] = Pr[AN B] — Pr[A] Pr[B] = 0, then A and B are independent. O

125. If the vector random wvariables x and y have the property that
z; is independent of every y; for all i and j, does that make x and y independent
random vectors? Interestingly, the answer is no. Give a counterexample that this
fact does not even hold for indicator variables. I.e., construct two random vectors x
and vy, consisting of indicator variables, with the property that each component of x
is independent of each component of y, but x and y are not independent as vector
random variables. Hint: Such an example can be constructed in the simplest possible
case that x has two components and y has one component; i.e., you merely have to
find three indicator variables x1, v2, and y with the property that x1 is independent

of y, and x4 is independent of v, but the vector ;1} is not independent of y. For
€To

these three variables, you should use three events which are pairwise independent but
not mutually independent.
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Go back to throwing a coin twice independently and define A = {HH,HT}; B =
{TH,HH}, and C = {HH,TT}, and x1 = I 4, ©2 = Ip, and y = I. They are pairwise indepen-
dent, but ANBNC = AN B, ie., z1x2y = x122, therefore E[z122y] # E[z122] E[y] therefore they
are not independent. O

126. 4 points Prove that, if © and y are independent, then var[ry] =

(B[e])? varly] + (E[y])? va[z] + va[z] vary).
Start with result and replace all occurrences of var[z] with E[22]—E[2]2, then multiply
out: E[z]*(E[y?] — E[y]?) + E[y]*(E[+?] — E[z]*) + (E[+?] — E[2]*)(E[y*] - E[y]*) = E[+*] E[y*] —
E[z]? E[y)* = E[(xy)?] - E[zy]*. o

6.6. Conditional Expectation and Variance

The conditional expectation of 1 is the expected value of y under the conditional

density. If joint densities exist, it follows
o Sy feymy)dy

(6.6.1) Ely|z=x] (@) g(x).
This is not a random variable but a constant which depends on =z, i.e., a function of
x, which is called here g(z). But often one uses the term E[y|z] without specifying
x. This is, by definition, the random variable g(x) which one gets by plugging = into
g; it assigns to every outcome w € U the conditional expectation of y given r=x(w).
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Since E[y|z] is a random variable, it is possible to take its expected value. The
law of iterated expectations is extremely important here. It says that you will get
the same result as if you had taken the expected value of y:

(6.6.2) E[Elyl+]] = E[y)-
Proof (for the case that the densities exist):

_ [ Lvla@y)dy, o,

fu(z)
= //yfa:,y(x,y) dy dx = E[y].

127. Let © and y be two jointly distributed variables. For every fized
value x, var[ylx = x| is the variance of y under the conditional distribution, and
varly|x] is this variance as a random variable, namely, as a function of x.

E[E[y|2]] = Elg(x)]
(6.6.3)

a. 1 point Prove that
(6.6.4) varfyla] = E[y2le] — (Elyla])®.

This is a very simple proof. FExplain exactly what, if anything, needs to be done to
prove it.
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For every fized value z, it is an instance of the law
(6.6.5) var[y] = E[y°] — (E[y])?
applied to the conditional density given x = x. And since it is true for every fixed z, it is also true

after plugging in the random variable x. ]

b. & points Prove that
(6.6.6) var[y] = var[E[y|«]] + E[var[y|z]],

i.e., the variance consists of two components: the variance of the conditional mean
and the mean of the conditional variances. This decomposition of the variance is
given e.g. in [Rao73, p. 97] or [Ame94, theorem 4.4.2 on p. 78].

The first term on the rhs is E[(E[y|z])?] — (E[E[y|#]])2, and the second term, due
to (6.6.4), becomes E[E[y?|z]] — E[(E[y|z])2]. If one adds, the two E[(E[y|z])?] cancel out, and the
other two terms can be simplified by the law of iterated expectations to give E[y?] — (E[y])2. O

c. 2 points [Coo98, p. 23] The conditional expected value is sometimes called
the population regression function. In graphical data analysis, the sample equivalent
of the variance ratio

E [var[y|;17”

(6.6.7) var [E[y|«]]
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can be used to determine whether the regression function E[y|x] appears to be visu-
ally well-determined or not. Does a small or a big variance ratio indicate a well-
determined regression function?

For a well-determined regression function the variance ratio should be small. | R
p. 23] writes: “This ratio is reminiscent of a one-way analysis of variance, with the numerator rep-
resenting the average within group (slice) variance, and the denominator representing the varince
between group (slice) means.” O

Now some general questions:

128. The figure on page 197 shows 250 independent observations of
the random vector [ ].

a. 2 points Draw in by hand the approzimate location of £[[]] and the graph
of Ely|z]. Draw into the second diagram the approzimate marginal density of x.

b. 2 points Is there a law that the graph of the conditional expectation Ely|z]
always goes through the point ||, ]]—for arbitrary probability distributions for which
these expectations exist, or perhaps for an important special case? Indicate how this
could be proved or otherwise give (maybe geometrically) a simple counterexample.

This is not the law of iterated expectations. It is true for jointly normal variables,

not in general. It is also true if « and y are independent; then the graph of E[y|z] is a horizontal line
at the height of the unconditional expectation E[y]. A distribution with U-shaped unconditional
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distribution has the unconditional mean in the center of the U, i.e., here the unconditional mean
does not lie on the curve drawn out by the conditional mean. dJ

c. 2 points Do you have any ideas how the strange-looking cluster of points in
the figure on page 197 was generated?
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129. 2 points Given two independent random variables x and vy with
density functions f.(z) and g,(y). Write down their joint, marginal, and conditional
densities.

Joint density: fo,, (@, (y) = fz(x)gy (y)-

Marginal density of z is ffooo fo(x)gy(y) dy = fo(x) fjooo g9y(y)dy = fo(x), and that of y is
gy(y). The text of the question should have been: “Given two independent random variables x
and y with marginal density functions f,(z) and g, (y)”; by just calling them “density functions”
without specifying “marginal” it committed the error of de-totalization, i.e., it treated elements of
a totality, i.e., of an ensemble in which each depends on everything else, as if they could be defined
independently of each other.

Conditional density functions: f,|,—,(z;y) = fz(x) (i.e., it does not depend on y); and
9ylz—a (Y5 T) = gy(y). You can see this by dividing the joint by the marginal. ]

6.7. Expected Values as Predictors

Expected values and conditional expected values have optimal properties as pre-
dictors.

130. 3 points What is the best predictor of a random variable y by a
constant a, if the loss function is the “mean squared error” (MSE) E[(y — a)?]?
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Write E[y] = p; then

w-a?=(=p - (a—w)’
(6.7.1) =W-m?-20-mwla—mu+(a—mw*
therefore  E[(y — a)*] = E[(y — p)?] = 0 + (a — p)?
This is minimized by a = pu. ]

The expected value of y is therefore that constant which, as predictor of v, has
smallest MSE.

What if we want to predict ¥ not by a constant but by a function of the random
vector x, call it h(x)?

131. 2 points Assume the vector © = [r1,...x;]" and the scalar y
are jointly distributed random wvariables, and assume conditional means exist. x is
observed, but y is not observed. The joint distribution of  and y is known. Show
that the conditional expectation Ely|x] is the minimum MSE predictor of y given x,
i.e., show that for any other function of x, call it h(x), the following inequality holds:

(6.7.2) E[(y - h())’] 2 El(y - Elylz])).

For this proof and the proofs required in Problems 132 and 133, you may use (1)
the theorem of iterated expectations E[E[z/|a:]] = Ely], (2) the additivity E[g(y) +
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h(y)lz] = Elg(v)|z]+E[h(y)|z], and (3) the fact that Elg(z)h(y)|x] = g(z)E[h(y)|z].
Be very specific about which rules you are applying at every step. You must show
that you understand what you are writing down.

(6.7.3)
El(y - h(2))"] = E[ (v - Elyl2] - (h(=) - Bly|1))”]
[(v — Blyl=])?] - 2El(y — Elvla]) (h(x) — Ely|z])] + El(h(z) — Ely]z])?].

Here the cross product term E[(y — E[y|z])(h(z) — E[y|z])] is zero. In order to see this, first use the
law of iterated expectations

(6.7.4) E((y — Ely|2])(h(z) — E[ylz])] = B[E[(y — E[y|2))(h(z) — Ely|a])|z]]
and then look at the inner term, not yet doing the outer expectation:

El(y — Elyla)) (h(x) — Elyl])le] = (h(x) - Blyla]) =
El(y — Elyla])|z] = (h(x) — Blyle]) (Ely|z] - Elylz]) == (h(x) — E[y]a]) -0 =0

Plugging this into (6.7.4) gives E[(y — E[y|z])(h(z) — E[y|=])] = E[O] =0.

=E
=E

O

This is one of the few clear cut results in probability theory where a best esti-
mator /predictor exists. In this case, however, all parameters of the distribution are
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known, the only uncertainty comes from the fact that some random variables are
unobserved.

132. Assume the vector © = [11, ... avj]T and the scalar y are jointly
distributed random variables, and assume conditional means exist. Define ¢ = y —
Ely|z].

a. & points Demonstrate the following identities:

(6.7.5) Elelz] =0
(6.7.6) Elz]=0
(6.7.7) Elzelx] =0 foralli, 1<i<j
(6.7.8) Elz;e] =0 foralli, 1<i<j
(6.7.9) covlrs, el =0 foralli, 1 <i<j.

Interpretation of (6.7.9): ¢ is the error in the best prediction of y based on x. If this
error were correlated with one of the components x;, then this correlation could be
used to construct a better prediction of 1.

(6.7.5): E[e|x] = E[y|z]-E [E[u@”w] = 0 since E[y|z] is a function of = and therefore
equal to its own expectation conditionally on @. (This is not the law of iterated expectations but
the law that the expected value of a constant is a constant.)
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(6.7.6) follows from (6.7.5) (i.e., (6.7.5) is stronger than (6.7.6)): if an expectation is zero con-
ditionally on every possible outcome of « then it is zero altogether. In formulas, E[c] = E [T[~:|1‘}] =
E[0] = 0. It is also easy to show it in one swoop, without using (6.7.5): E[¢] = E[y — E[y|z]] = 0.
Either way you need the law of iterated expectations for this.

(6.7.7): E[z;e|z] = z;Ele|z] = 0.

(6.7.8): E[z;c] = E[h[115|m}] = E[0] = 0; or in one swoop: E[z;e] = E[:L'iy — th[y|w]] =
E[wiyfh][:ziimxﬂ = E[z;y] —E[z;y] = 0. The following “proof” is not correct: E[z;c] = E[z;] E[e] =
E[z;] -0 = 0. z; and ¢ are generally not independent, therefore the multiplication rule E[z;c] =
E[z;] E[¢] cannot be used. Of course, the following “proof” does not work either: E[z;c] = z; E[] =
;-0 =0. z; is a random variable and E[z;¢] is a constant; therefore E[z;¢] = x; E[¢] cannot hold.

(6.7.9): cov[z;,e] = E[z;e] — E[z;] E[e] =0 — E[z;] - 0 =0. O

b. 2 points This part can only be done after discussing the multivariate normal
distribution:If x and y are jointly normal, show that x and = are independent, and
that the variance of ¢ does not depend on x. (This is why one can consider it an
error term.)

If  and y are jointly normal, then = and & are jointly normal as well, and indepen-
dence follows from the fact that their covariance is zero. The variance is constant because in the
Normal case, the conditional variance is constant, i.e., E[%] = E[E[EZ\w]] = constant (does not
depend on x). O
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133. 5 points Under the permanent income hypothesis, the assumption
is made that consumers’ lifetime utility is highest if the same amount is consumed
every year. The utility-maximizing level of consumption ¢ for a given consumer
depends on the actual state of the economy in each of the n years of the consumer’s
life c = f(yq,...,y,). Since ¢ depends on future states of the economy, which are
not known, it is impossible for the consumer to know this optimal ¢ in advance; but
it 1s assumed that the function [ and the joint distribution of y,...,y,, are known to
him. Therefore in period t, when he only knows the values of yq,...,y,, but not yet
the future values, the consumer decides to consume the amount ¢y = Elc|yq, ..., v,
which is the best possible prediction of ¢ given the information available to him. Show
that in this situation, ciy1 — ¢t 1s uncorrelated with all vy, ..., y,. This implication of
the permanent income hypothesis can be tested empirically, see | |. Hint: you
are allowed to use without proof the following extension of the theorem of iterated
expectations:

(6.7.10) E[E[z|y, z]|y] = Elz|y].

Here is an explanation of (6.7.10): E[z|y] is the best predictor of x based on infor-
mation set y. Elx|y, z| is the best predictor of x based on the extended information
set consisting of y and z. E[E[r|y, z] |y] is therefore my prediction, based on y only,
how I will refine my prediction when z becomes available as well. Its equality with
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E[z|y], i.e., (6.7.10) says therefore that I cannot predict how I will change my mind
after better information becomes available.

In (6.7.10) set = = ¢ = f(y1s-»YpsYsg1r- - Un)s U = W1+, y] T, and 2 =y, 1y
to get

(6.7.11) E [E[c|y1, N |1U17 AU yt] =Elc|yq,. ..yl
Writing ¢; for E[clyq,...,v], this becomes E[ciy1|yq,.-.,y:] = ct, i.e., ¢t is not only the best

predictor of ¢, but also that of c;41. The change in consumption c¢41 — ¢; is therefore the prediction
error, which is uncorrelated with the conditioning variables, as shown in Problem 132. d

134. 8 points Show that for any two random variables © and y whose
covariance exists, the following equation holds:

(6.7.12) cov[z, y] = cov [:lf, E[’y|;1ﬂ

Note: Since E[y|z] is the best predictor of y based on the observation of x, (6.7.12)
can also be written as

(6.7.13) cov|z, (y — E[y|z])] =0,

i.e., = is uncorrelated with the prediction error of the best prediction of y given .
(Nothing to prove for this Note.)
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Apply (6.1.6) to the righthand side of (6.7.12):
(6.7.14)
cov [.’I:, E[y|.’1)]] =E [1E[y|1]] —E[z]E [E[y|:1;]] =E [E[:I:y|:1:]] —E[z] E[y] = E[zy]—E[z] E[y] = cov[z,y].
The tricky part here is to see that zE[y|z] = E[zy|z].
g

135. Assume = and y have a joint density function f.,(x,y) which
is symmetric about the x-axis, i.e.,

f:lt,y(xa y) = fz,y(xv _y)
Also assume that variances and covariances exist. Show that cov]x,y] = 0. Hint:
one way to do it is to look at E[y|z].

We know that cov(z,y] = cov [1,E[y|1]] Furthermore, from symmetry follows
E[y|z] = 0. Therefore cov|z,y] = cov|z,0] = 0. Here is a detailed proof of E[y|z] = 0: Ely|z=z] =
foo Jo.y(xy)
7ooy fa(z)
are reversed:

(6.7.15) Ely|lz=z] = /_ zmdz: /_ ZMCZZ: — Ely|lz=x].

dy. Now substitute z = —y, then also dz = —dy, and the boundaries of integration

fu(2) fu()

One can also prove directly under this presupposition cov|z,y] = cov[z, —y|] and therefore it must
be zero.
O
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136. [Wit85, footnote on p. 241] Let p be the logarithm of the price
level, m the logarithm of the money supply, and = a variable representing real influ-
ences on the price level (for instance productivity). We will work in a model of the
economy in which p = m +~x, where v is a nonrandom parameter, and m and x are
independent normal with expected values ju,,, ji.., and variances o2, o%. According
to the rational expectations assumption, the economic agents know the probability
distribution of the economy they live in, i.e., they know the expected values and vari-
ances of m and x and the value of vv. But they are unable to observe m and x, they

can only observe p. Then the best predictor of x using p is the conditional expectation
E[z|p)].
a. Assume you are one of these agents and you observe p = p. How great
would you predict x to be, i.e., what is the value of E[z|p = p|?
It is, according to formula (7.3.18), E[z|p = p] = ps + COV("”) (p — E[p]). Now

var( p

E[p] = pm + Yita, cov]z,p] = cov[z,m] + v cov]r,z] = yo2, and var(p) = 02, +v202. Therefore

(6716) E[T|p = p] =l + ) (P Hm — 7”1)

o2
o2, +~2%02
O
b. Define the prediction error ¢ = x — E[z|p]. Compute expected value and
variance of €.
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2
VoL

2 252
0’7”, + ’Y O’{l,‘

m
I

(6717) €r— fr — (P — Km — 'Y/»Lut)~

This has zero expected value, and its variance is

2 2
yo2 N2 yo2
(6.7.18) vare] = var[z] + ( ———5— ) var[p] — 2( ——5— ) cov]z,p] =
() (G)
2(,212 2(,22
(6719) — O'% + 2l (U:l:) ) Y (0;1;)
BT e e B R Rl
(6.7.20) oL _ £

02, +7202  1+4202/02
0

c. In an attempt to fine tune the economy, the central bank increases o2,. Does
that increase or decrease var(e)?

From (6.7.20) follows that it increases the variance. O

6.8. Transformation of Vector Random Variables

In order to obtain the density or probability mass function of a one-to-one trans-
formation of random variables, we have to follow the same 4 steps described in
Section 3.6 for a scalar random variable. (1) Determine A, the range of the new
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variable, whose density we want to compute; (2) express the old variable, the one
whose density/mass function is known, in terms of the new variable, the one whose

density or mass function is needed. If that of [(ﬂ is known, set [lj = t(u,v). Here

q(u,v)
r(u,v)
use one symbol t for this whole transformation), and you have to check that it is
one-to-one on A, i.e., t(u,v) = t(uy,v1) implies © = vy and v = vy for all (u,v) and
u1,v1) in A. (A function for which two different arguments (u,v) and uq,v1) give
the same function value is called many-to-one.)

If the joint probability distribution of = and y is described by a probability mass
function, then the joint probability mass function of « and v can simply be obtained
by substituting ¢ into the joint probability mass function of # and y (and it is zero
for any values which are not in A):

(6.8.1)
Do (u,v) = Pr[[ﬂ = [Z}}:Pr [t(u, v) = t(u,v)] = Pr[[fl} = t(u,v)} =Duy (t(u, U))

Y

t is a vector-valued function, (i.e., it could be written ¢(u,v) = , but we will

The second equal sign is where the condition enters that ¢ : R? — R? is one-to-one.
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If one works with the density function instead of a mass function, one must
perform an additional step besides substituting ¢. Since t is one-to-one, it follows

(6.8.2) { ﬂ € AV} = {t(u,v) € t(dV)zy}.

Therefore

(6.8.3) i

Juw(u,0)|[dVy | = Pr[[l{l € dVyo] = Prit(u,v) € t(dV)z,y] = fo,y(t(u,0))|t(dV )z, =

[E(dV )|

(6.8.4) = fuy(t(u,v)) AV

A7

The term % is the local magnification factor of the transformation ¢;

analytically it is the absolute value |J| of the Jacobian determinant

[ EE (2w 2w)
8 = |8ig] = | .
(6:5.5) §§‘ Lluw) L)

Remember, u,v are the new and x,y the old variables. To compute J one
has to express the old in terms of the new variables. If one expresses the new in
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terms of the old, one has to take the inverse of the corresponding determinant! The
transformation rule for density functions can therefore be summarized as:

‘ Q)

Oz

g 1/ .
Ju Do
137. Let x and y be two random variables with joint density function

(r,y) =t(u,v) one-to-one = fu,(u,v) = fo,y (t(u, v)) |J| where

Q)Q)

u::

fow(@,y).
a. 3 points Define u = x 4+ y. Derive the joint density function of v and vy.

You have to express the “old” = and y as functions of the “new” u and y:
oz oz

rT=u—1Y x | -1 (7 _|ou Qy B R
Ve or |:y] = {0 1:| |:y:| therefore J = % %Z =1 1= 1.
Therefore
(6.8.6) Fuy(w,y) = foy(u—y,y).
O

b. 1 point Derive from this the following formula computing the density func-
tion f.(u) of the sum v = x4y from the joint density function f, ,(z,y) of x and
Y-

y=o00
(6.8.7) fu(u) = / foy(u—y,y)dy.
Yy

=—0C
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Write down the joint density of v and y and then integrate y out, i.e., take its integral
over y from —oo to +oo:

y=o00 y=o00
(6~8'8) fu (u) = / fu,y(uv y)dy = / fq;,y(u - Y, y)dy-
y=—00 y=—00
i.e., one integrates over all |:Z:| with = +y = u. d

138. 6 points Let x and 1y be independent and uniformly distributed
over the interval [0,1]. Compute the density function of v = x + y and draw its
graph. Hint: you may use formula (6.8.7) for the density of the sum of two jointly
distributed random variables. An alternative approach would be to first compute the
cumulative distribution function Pr[z + y < ] for all u.

Using equation (6.8.7):

oo U for0<u<1 i i
(6.8.9) foty(u) = / foyu—y,y)dy=¢2—u forl <u<?2

o 0 otherwise.

To help evaluate this integral, here is the area in u,y-plane (u = x + y on the horizontal and y on
the vertical axis) in which f. ,(u — v,v) has the value 1:
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.

This is the area between (0,0), (1,1), (2,1), and (1,0).
One can also show it this way: f. ,(z,y) =1iff 0 <2 <1 and 0 <y < 1. Now take any fixed
u. It must be between 0 and 2. First assume 0 < u < 1: then f, ,(u—y,y) =1if0<u—y<1
and 0 <y <1iff 0 <y <wu. Now assume 1 <u < 2: then f,  (u—y,y)=1if u—-1<y<1
O

139. Assume [}] is uniformly distributed on a round disk around the
origin with radius 10.

a. 4 points Derive the joint density, the marginal density of x, and the condi-
tional density of vy given r=zx.

b. & points Now let us go over to polar coordinates r and ¢, which satisfy

= 7 COoS @

(6.8.10) , 1t.e., the vector transformation t is t(['}) = [r €os O] .

y = rsin ¢ 0] 7 sin @

Which region in (g)-space 18 necessary to cover (ff,)-space? Compute the Jacobian
determinant of this transformation. Give an intuitive explanation in terms of local
magnification factor of the formula you get. Finally compute the transformed density
function.
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c. 1 point Compute cov[z,y].
d. 2 points Compute the conditional variance var[y|r=z].
e. 2 points Are x and vy independent?

140. | , PD- 296-7]  Assume three transportation choices are
available: bus, train, and car. If you pick at random a neoclassical individual w
and ask him or her which utility this person derives from using bus, train, and car,
the answer will be three numbers uy(w), us(w),us(w). Here uy, ug, and uz are as-
sumed to be independent random wvariables with the following cumulative distribution
functions:

(6.8.11) Prlu; < u] = F;(u) = exp(—exp(p; — u)), 1=1,2,3.

Le., the functional form is the same for all three transportation choices (exp in-
dicates the exponential function); the F; only differ by the parameters ;. These
probability distributions are called Type I extreme value distributions, or log Weibull
distributions.

Often these kinds of models are set up in such a way that these u; to depend on
the income etc. of the individual, but we assume for this exercise that this distribution
applies to the population as a whole.
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a. 1 point Show that the F; are indeed cumulative distribution functions, and
derive the density functions f;(u).

Individual w likes cars best if and only if his utilities satisfy us(w) > ui(w) and
ug(w) > ug(w). Let I be a function of three arguments such that I(uy,us,us) is the
indicator function of the event that one randomly chooses an individual w who likes
cars best, i.e.,

1 ifuy <wug and us < ug

6.8.12 I(uq,us, =
( ) (w1, 2, u3) {O otherwise.

Then Pr[car] = E[I(u1,u2,us)]. The following steps have the purpose to compute
this probability:

b. 2 points For any fived number u, define g(u) = E[I(uy,us,us)|us = u).
Show that

(6.8.13) g(u) = exp(—exp(u1 — u) — exp(uz — u)).
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c. 2 points This here is merely the evaluation of an integral. Show that

+oo
/ exp(—exp(p1 — u) — exp(pe — u) — exp(uz — u)) exp(ps — u) du =

—00
€xXp U3
exp i1 + exp g + exp 3’
Hint: use substitution rule with y = —exp(u1 —u) — exp(p2 — u) — exp(puz — u).

d. 1 point Use b and c to show that

(6.8.14) Prfcar] = i e

exp i1 + exp g + exp iz




CHAPTER 7

The Multivariate Normal Probability Distribution

7.1. More About the Univariate Case

By definition, z is a standard normal variable, in symbols, z ~ N(0,1), if it has
the density function

M)

(7.1.1) F2) = ——e 7

To verify that this is a density function we have to check two conditions. (1) It is

everywhere nonnegative. (2) Its integral from —oo to oo is 1. In order to evaluate this

integral, it is easier to work with the independent product of two standard normal
22442

variables = and y; their joint density function is f, ,(z,y) = Qie* = In order to

19 ™

217
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see that this joint density integrates to 1, go over to polar coordinates z = rcos ¢,
y = rsin ¢, i.e., compute the joint distribution of » and ¢ from that of x and y: the
absolute value of the Jacobian determinant is r, i.e., dz dy = r dr d¢, therefore

(7.1.2) /__OO /__OO e dxdy—/¢ / e~ rdrdg.

By substituting ¢ = 72 /2, therefore dt = r dr, the inner integral becomes fie’t |go =

%; therefore the whole integral is 1. Therefore the product of the integrals of the
marginal densities is 1, and since each such marginal integral is positive and they are
equal, each of the marginal integrals is 1 too.

141. 6 points The Gamma function can be defined as T'(r fo " lea
Show that T'(3) = \/m. (Hint: after substituting r = 1/2, apply the varzable transfor-
mation x = 2% /2 for nonnegative x and z only, and then reduce the resulting integral
to the integral over the normal density function.)

dx

Then dz = zdz, Ve = dz /2. Therefore one can reduce it to the integral over the
normal density:

S| o 2 1 * 2 V2T
7.1.3 —e Tdr =2 e ” pdz:—/ e 2dy =Y = \/n.
w5k / vl %
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A univariate normal variable with mean p and variance o is a variable = whose
standardized version » = “=# ~ N(0,1). In this transformation from z to z, the
Jacobian determinant is g—; = %; therefore the density function of » ~ N(u,0?) is

(two notations, the second is perhaps more modern:)

(7.1.4) fulz) =

1 _==w?

e 202 = (2m02) V2 exp(—(z — )% /202).
Nore (2m0?) p(—(x — p)?/207)

142. & points Given n independent observations of a Normally dis-
tributed variable y ~ N(u,1). Show that the sample mean 7 is a sufficient statis-
tic for p. Here is a formulation of the factorization theorem for sufficient statis-
tics, which you will need for this question: Given a family of probability densities
fy(y1s- .., Yn; 0) defined on R", which depend on a parameter § € ©. The statistic
T: R*" = R, y1,...,yn — T(y1,...,yn) is sufficient for parameter 0 if and only if
there ezists a function of two variables g: Rx © — R, t,0 — ¢(t;0), and a function
of n variables h: R™ = R, y1,...,yn — h(y1,...,yn) so that

(7.1.5) Fos-yni0) = g(T(yrs - yn); 0) - h(y1, - - Un)-

The joint density function can be written (factorization indicated by -):

(7.1.6)

n

(m) 2 exp (=3 Y wi-?) = @0 exp (3 Y wi0)?) exp (S 7-)?) = b, vn)-

i=1 i=1
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7.2. Definition of Multivariate Normal

The multivariate normal distribution is an important family of distributions with
very nice properties. But one must be a little careful how to define it. One might
naively think a multivariate Normal is a vector random variable each component
of which is univariate Normal. But this is not the right definition. Normality of
the components is a necessary but not sufficient condition for a multivariate normal

vector. If uw = B] with both & and y multivariate normal, w» is not necessarily

multivariate normal.

Here is a recursive definition from which one gets all multivariate normal distri-
butions:

(1) The univariate standard normal z, considered as a vector with one compo-
nent, is multivariate normal.

(2) If © and y are multivariate normal and they are independent, then u = B]

is multivariate normal.
(3) If y is multivariate normal, and A a matrix of constants (which need not
be square and is allowed to be singular), and b a vector of constants, then Ay + b
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is multivariate normal. In words: A vector consisting of linear combinations of the
same set of multivariate normal variables is again multivariate normal.
For simplicity we will go over now to the bivariate Normal distribution.

7.3. Special Case: Bivariate Normal

The following two simple rules allow to obtain all bivariate Normal random
variables:

(1) If z and y are independent and each of them has a (univariate) normal
distribution with mean 0 and the same variance o2, then they are bivariate normal.
(They would be bivariate normal even if their variances were different and their
means not zero, but for the calculations below we will use only this special case, which
together with principle (2) is sufficient to get all bivariate normal distributions.)

2) Ifx= ?/ is bivariate normal and P is a 2 X 2 nonrandom matrix and p

a nonrandom column vector with two elements, then Px + p is bivariate normal as
well.
All other properties of bivariate Normal variables can be derived from this.
First let us derive the density function of a bivariate Normal distribution. Write

T = {";J 2 and y are independent N (0,02). Therefore by principle (1) above the
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vector « is bivariate normal. Take any nonsingular 2 x 2 matrix P and a 2 vector
n= Bj] , and define [Zl} = u = Px + pu. We need nonsingularity because otherwise

the resulting variable would not have a bivariate density; its probability mass would
be concentrated on one straight line in the two-dimensional plane. What is the
joint density function of u? Since P is nonsingular, the transformation is on-to-one,
therefore we can apply the transformation theorem for densities. Let us first write
down the density function of « which we know:

(731) f:z:,y(%y) = ﬁ eXp(—QL(Jﬁ + y2)>

o2

For the next step, remember that we have to express the old variable in terms
of the new one: = = P~ '(u — pu). The Jacobian determinant is therefore J =
w—

det(P™1). Also notice that, after the substitution B] = P! [U _

I
1/]’ the expo

nent in the joint density function of = and y is — 5z (22 + %) = — 543 Lﬂ {ﬂ =

T
J— T —
*TiZ [Z B 'Z ] pt p! {Z B 5 } . Therefore the transformation theorem of density
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functions gives

T
_ 1 —1 L Ju—p 1T p—1 |U— [
(7.32)  fuo(u,v) = 5—3 |det(P )|exp<—ﬁ L} - y] PP )
This expression can be made nicer. Note that the covariance matrix of the

transformed variables is V[[ﬂ] = o2PP" = 52¥, say. Since pl pippT — 1,
it follows P~ P~1 = ¥~ and ‘det(P_l)‘ = 1/4/det(¥), therefore

1 1 1 Ju—p T U — [
- - I Lk )
2r0? | /det(P) exp( 20° [”—V} L"VD

This is the general formula for the density function of a bivariate normal with non-
singular covariance matrix o?®¥ and mean vector g. One can also use the following
notation which is valid for the multivariate Normal variable with n dimensions, with
mean vector p and nonsingular covariance matrix o2 W:

(7.3.3) fuo(u,v)

(7.34)  fulz) = (2r02)"2(det ®)~1/2 exp(—#(w )T (- u)).

143. 1 point Show that the matriz product of (P~)T P! and PP"
is the identity matrix.
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144. 8 points All vectors in this question are n x 1 column vectors.
Let y = a+€, where e is a vector of constants and € is jointly normal with E[e] = o.
Often, the covariance matriz V[e] is not given directly, but a nXn nonsingular matriz
T is known which has the property that the covariance matriz of Te is o2 times the
n X n unit matriz, t.e.,

(7.3.5) V[Te] = o*1,.
Show that in this case the density function of y is
n 1 T
(7.36)  fy(y) = (2r0%) /2 det(T) | exp(—5 5 (T(y — @) ' T(y - ).

Hint: define z = Te, write down the density function of z, and make a transforma-
tion between z and y.

Since £[z] = 0 and V[z] = 021, its density function is (2m02)~"/2 exp(—z T z/252).
Now express z, whose density we know, as a function of y, whose density function we want to know.
z=T(y — a) or

(7.3.7) z1 =t (y1 —a1) +tiz(y2 —a2) + - + tin(yn — an)
(7.3.8) :
(739) Zn = tnl (yl - 041) + tn2(y1 - aQ) +--+ tnn(yn - Oén)

therefore the Jacobian determinant is det(T"). This gives the result.
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7.3.1. Most Natural Form of Bivariate Normal Density.

145. In this exercise we will write the bivariate normal density in its
most natural form. For this we set the multiplicative “nuisance parameter” o2 =1,
i.e., write the covariance matriz as ¥ instead of o>W.

a. 1 point Write the covariance matriz ¥ = V| il | in terms of the standard

deviations o, and o, and the correlation coefficient p.

b. 1 point Show that the inverse of a 2 x 2 matriz has the following form:

—1
a b 1 d —b
(7.3.10) sl =l Y
c. 2 points Show that

2 _ [, _ o -1 |U—H

(7.3.11) F=lu—p v—v|¥® {U _ 1/}
1 (u— p)? u—pv—v (v—uv)?

(7.3.12) =15 ( TR )
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d. 2 points Show the following quadratic decomposition:

2 (u—p)? 1 , %, 2
(7.3.13) q° = = + 1= 90 (v —v— pa—“(u — ,u)) .
e. 1 point Show that (7.3.13) can also be written in the form

(71, — /,6)2 O'% Ouv 2

(7314) ([2 - 02 + 0',202, - (O—'ILT)2 (/U VT 0'72(“ B M)> ’

f. 1 point Show that d = v/det W can be split up, not additively but multiplica-
tively, as follows: d = o, - o,+/1 — p2.
g. 1 point Using these decompositions of d and ¢*, show that the density func-

tion fy .(u,v) reads
(7.3.15)

g, 2
1 exp(— (u—u)Q) . 1 exp(— (v =v) = pZ=(u—p)) )
\/2mo? 202 V2mo24/1 — p? 2(1 = p*)o? .
The second factor in (7.3.15) is the density of a N(pZ-u, (1 — p*)o?) evaluated
at v, and the first factor does not depend on v. Therefore if I integrate v out to

get the marginal density of u, this simply gives me the first factor. The conditional
density of v given u = u is the joint divided by the marginal, i.e., it is the second
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factor. In other words, by completing the square we wrote the joint density function
in its natural form as the product of a marginal and a conditional density function:
fu,'L'(uv ’U) = fu(u) : fu\'u,(v; U)

From this decomposition one can draw the following conclusions:

(7.3.16)

u ~ N(0,0?) is normal and, by symmetry, v is normal as well. Note that v
(or v) can be chosen to be any nonzero linear combination of z and y. Any
nonzero linear transformation of independent standard normal variables is
therefore univariate normal.

If p = 0 then the joint density function is the product of two independent
univariate normal density functions. In other words, if the variables are
normal, then they are independent whenever they are uncorrelated. For
general distributions only the reverse is true.

The conditional density of v conditionally on © = u is the second term on
the rhs of (7.3.15), i.e., it is normal too.

The conditional mean is

Elv|u = u] = p—u,

u
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i.e., it is a linear function of w. If the (unconditional) means are not zero,
then the conditional mean is

(7.3.17) E[v|u = u] = po + p22 (u — p).

Since p = %7 (7.3.17) can als be written as follows:
(7.3.18) Elv|u = u] = B[] + CZEEU]‘](u — E[u)

e The conditional variance is the same whatever value of u was chosen: its

value is
(7.3.19) var[vju = u] = o%(1 — p?),

which can also be written as

7)2
(7.3.20) var[v|u = u] = var[v] — M
var|u]

We did this in such detail because any bivariate normal with zero mean has this
form. A multivariate normal distribution is determined by its means and variances
and covariances (or correlations coefficients). If the means are not zero, then the
densities merely differ from the above by an additive constant in the arguments, i.e.,



7.3. BIVARIATE NORMAL 229

if one needs formulas for nonzero mean, one has to replace u and v in the above
equations by v — pu,, and v — p,. du and dv remain the same, because the Jacobian
of the translation v — u — p,, v — v — p,, is 1. While the univariate normal was
determined by mean and standard deviation, the bivariate normal is determined by
the two means p,, and p,, the two standard deviations o, and o,, and the correlation
coefficient p.

7.3.2. Level Lines of the Normal Density.

146. 8 points Define the angle 6 = arccos(p), i.e, p = cosd. In terms
of 0, the covariance matriz (??) has the form

o2 0y0w COS I
(7.3.21) v = [Uo s o2 ]
Show that for all ¢, the vector
_ T 0, COS @
(7.3.22) T = [r o cos(d + 5)}

satisfies &' W' = r2. The opposite holds too, all vectors = satisfying ' W'z =

r2 can be written in the form (7.3.22) for some ¢, but I am not asking to prove this.
This formula can be used to draw level lines of the bivariate Normal density and
confidence ellipses, more details in (7).
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147. The ellipse in Figure 1 contains all the points x,y for which

-1
05 —0.25]  [z-1
(7.3.23) [e=1 y-1] [0.25 1 ] {y - 1} ="
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a. 3 points Compute the probability that a random variable

(73:24) HERH )

falls into this ellipse. Hint: you should apply equation (7.4.9). Then you will have
to look up the values of a 2 distribution in a table, or use your statistics software
to get it.

b. 1 point Compute the standard deviations of x and y, and the correlation
coefficient corr(z,y)

c. 2 points The vertical tangents to the ellipse in Figure 1 are at the locations
x = 14+/3. What is the probability that ;] falls between these two vertical tangents?

d. 1 point The horizontal tangents are at the locations y = 1 &+ /6. What is
the probability that ] falls between the horizontal tangents?

e. 1 point Now take an arbitrary linear combination u = ax + by. Write down
its mean and its standard deviation.

f. 1 point Show that the set of realizations x,y for which u lies less than /6
standard deviation away from its mean is

(7.3.25) la(z — 1) + b(y — 1)| < V6 /a2 var[z] + 2ab cov(z, y] + b2 var[y].
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The set of all these points forms a band limited by two parallel lines. What is the
probability that 3] falls between these two lines?

g. 1 point It is our purpose to show that this band is again tangent to the
ellipse. This is easiest if we use matrix notation. Define

x 1 0.5 —0.25 a
N I
Equation (7.3.23) in matriz notation says: the ellipse contains all the points for
which

(7.3.27) (x—p) ¥ (z—p) <6.
Show that the band defined by inequality (7.3.25) contains all the points for which
(aT (@ — )’
7.3.28 — <6.
( ) a"Pa -
h. 2 points Inequality (7.3.28) can also be written as:
(7.3.29) (x—p)Ta(a"®a)la’ (x —p) <6

or alternatively

(7.3.30) [2—1 y—1] m ([a v @ m)_l B: ﬂ [a b] <6.
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Show that the matriz
(7.3.31) Q=9"'—a(a"¥a) la’

satisfies QWQ = Q. Derive from this that Q is nonnegative definite. Hint: you may
use, without proof, that any symmetric matriz is nonnegative definite if and only if
it can be written in the form RR' .

i. 1 point As an aside: Show that QWa = o and derive from this that €2 is not
positive definite but only nonnegative definite.

j- 1 point Show that the following inequality holds for all x — pu,
(7.3.32) (x—p) " Oz —p) > (x—p ala ¥a)la’ (z—p).

In other words, if x lies in the ellipse then it also lies in each band. IL.e., the ellipse
1s contained in the intersection of all the bands.

k. 1 point Show: If x — p = Yaa with some arbitrary scalar «, then (7.3.32)
is an equality, and if « = £+/6/aT Wa, then both sides in (7.3.32) have the value 6.
Le., the boundary of the ellipse and the boundary lines of the band intersect. Since
the ellipse is completely inside the band, this can only be the case if the boundary
lines of the band are tangent to the ellipse.
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1. 2 points The vertical lines in Figure 1 which are not tangent to the ellipse
delimit a band which, if extended to infinity, has as much probability mass as the
ellipse itself. Compute the x-coordinates of these two lines.

7.3.3. Miscellaneous Exercises.

148. Figure 2 shows the level line for a bivariate Normal density which
contains 95% of the probability mass.

a. & points One of the following matrices is the covariance matriz of ﬂ . vy =

0.62 —0.56 v, — 1.85 1.67 v — 0.62 0.56 v, — 1.85 —1.67
—0.56  1.04 |7 7% 7 |167 3127 "® 7 056 1.04]7 T* T [1.67 312 |
3.12  —-1.67 1.04 0.56 3.12  1.67 0.62 0.81
¥s = [—1.67 1.85 } Po = {0.56 0.62}’ ¥r = [1.67 1.85}’ Pa = [0.81 1.04]’
3.12 1.67 0.56  0.62
To = [2.67 185" Y10 = [o62 —1.04
variate Normal, 95% of the probability mass lie within +2 standard deviations from
the mean. If you are mot sure, cross out as many of these covariance matrices as
possible and write down why you think they should be crossed out.

]. Which is it? Remember that for a uni-

Covariance matrix must be symmetric, therefore we can cross out 4 and 9. It must
also be nonnegative definite (i.e., it must have nonnegative elements in the diagonal), therefore
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cross out 10, and a nonnegative determinant, therefore cross out 8. Covariance must be positive, so
cross out 1 and 5. Variance in x-direction is smaller than in y-direction, therefore cross out 6 and
7. Remains 2 and 3.

Of these it is number 3. By comparison with Figure 1 one can say that the vertical band
between 0.4 and 2.6 and the horizontal band between 3 and -1 roughly have the same probability
as the ellipse, namely 95%. Since a univariate Normal has 95% of its probability mass in an
interval centered around the mean which is 4 standard deviations long, standard deviations must
be approximately 0.8 in the horizontal and 1 in the vertical directions.

W, is negatively correlated; W2 has the right correlation but is scaled too big; ¥3 this is it; ¥y
not symmetric; W5 negatively correlated, and « has larger variance than y; Wg = has larger variance
than y; W7 too large, = has larger variance than y; ¥g not positive definite; ¥9 not symmetric;
W1 not positive definite.

|

The next Problem constructs a counterexample which shows that a bivariate dis-
tribution, which is not bivariate Normal, can nevertheless have two marginal densities
which are univariate Normal.

149. Let = and vy be two independent standard normal random vari-
ables, and let u and v be bivariate normal with mean zero, variances o2 = o2 = 1,

u

and correlation coefficient p # 0. Let f,, and f, . be the corresponding density
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functions, i.e.,
a® + b2)
2

Fol(a:b) = = exp(—

u,v 7b =
- fuw(asb)

1 9 19 b \
—————exp(—a® +b° — 2pa—
2w/ 1 — p? ( P 2(1—p?)
Assume the random variables a and b are defined by the following experiment: You
flip a fair coin; if it shows head, then you observe x and y and give a the value
observed on x, and b the value observed of y. If the coin shows tails, then you
observe u and v and give a the value of u, and b the value of v.

a. Prove that the joint density of a and b is

1 1
(7333) f(z,,b(aa b) = gfil«’,l/ (aa b) + if'u,,'u(aa b)
Hint: first show the corresponding equation for the cumulative distribution functions.

Following this hint:

(7.3.34) F,1(a,b) =Prla<aand b <b] =

(7.3.35) = Prla < a and b < blhead] Pr[head] + Pr[a < a and b < b|tail] Prtail]
1 1

(7.3.36) = Fry(a.b)5 + Fuo(a,b)5.

The density function is the function which, if integrated, gives the above cumulative distribution
function. g
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b. Show that the marginal distribution of a and b each is normal.

You can either argue it out: each of the above marginal distributions is standard

normal, but you can also say integrate b out; for this it is better to use form (7.3.15) for fu ., i.e.,
write

2

a (b — pa)?

Noraed Gy 71 5

V2 ,/ /1 — p2 - p?)
Then you can see that the marginal is standard normal. Therefore you get a mixture of two
distributions each of which is standard normal, therefore it is not really a mixture any more. O

(7.3.37) fu,v(a,b) =

c. Compute the density of b conditionally on a = 0. What are its mean and
variance? Is it a normal density?

Fyja(bja) = f”f:iéz)b) We don’t need it for every a, only for a = 0. Since f,(0) =

1/v/2m, therefore

—p2 2
(7338) fb\a:O( ) rfu })(0 b) 2 r 2b 2 \/—\/17 l_b 2)
—p

It is not normal, it is a mixture of normals with different variances. This has mean zero and variance
L1+ (1—p?) =1- 102 0

d. Are a and b jointly normal?

Since the conditional distribution is not normal, they cannot be jointly normal. O
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150. This is [HT&83, 4.8-6 on p. 263] with variance o? instead of 1:
Let = and y be independent normal with mean 0 and variance 0. Go over to polar
coordinates r and ¢, which satisfy

T =17 Cos ¢
(7.3.39)

y = rsin ¢.
a. 1 point Compute the Jacobian determinant.

Express the variables whose density you know in terms of those whose density you
want to know. The Jacobian determinant is

oz ox .
_|or d8 cos¢  —rsing| 2 soN2),
(7.3.40) J = % % =lsine  recoso | = ((cos ) + (sin @) )7 =r.

O

b. 2 points Find the joint probability density function of r and ¢. Also indicate
the area in (r,d) space in which it is nonzero.

2.2y /9,2 2 /0,2
foy(zy) = 2_;02 e~ (&7 +¥7) /207 therefore f,. (7, ¢) = 2ﬂ102 re " /29" for 0 < 7 <

oo and 0 < ¢ < 27. O

c. 3 points Find the marginal distributions of r and ¢. Hint: for one of the
integrals it is convenient to make the substitution q = r*/202.
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fr(r)= 01—27"6_""2/2"2 for 0 <r < oo, and f4(¢) = ﬁ for 0 < ¢ < 27. For the latter
we need ﬁ fooo re—r2/20% gp — %, set ¢ = r2/202, then dq = a%r dr, and the integral becomes

i fooo e~ %dq. O
d. 1 point Are r and ¢ independent?

Yes, because joint density function is the product of the marginals. ]

7.4. Multivariate Standard Normal in Higher Dimensions
Here is an important fact about the multivariate normal, which one cannot see in
two dimensions: if the partitioned vector [ﬂ is jointly normal, and every component

of x is independent of every component of y, then the vectors « and y are already
independent. Not surprised? You should be, see Problem 125.

Let’s go back to the construction scheme at the beginning of this chapter. First
we will introduce the multivariate standard normal, which one obtains by applying
only operations (1) and (2), i.e., it is a vector composed of independent univariate
standard normals, and give some properties of it. Then we will go over to the
multivariate normal with arbitrary covariance matrix, which is simply an arbitrary
linear transformation of the multivariate standard normal. We will always carry the
“nuisance parameter” o? along.
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DEFINITION 7.4.1. The random vector z is said to have a multivariate standard
normal distribution with variance o2, written as z ~ N (o, 0%I), if each element z; is
a standard normal with same variance o2, and all elements are mutually independent
of each other. (Note that this definition of the standard normal is a little broader
than the usual one; the usual one requires that o = 1.)

The density function of a multivariate standard normal z is therefore the product
of the univariate densities, which gives f,(z) = (2r0?)~"/? exp(—2z " z/20?).
The following property of the multivariate standard normal distributions is basic:

THEOREM 7.4.2. Let z be multivariate standard normal p-vector with variance
o2, and let P be a m X p matriz with PP" = 1. Then x = Pz is a multivariate

standard normal m-vector with the same variance o2, and z'z — x '@ ~ 02xi_m
independent of x.

PrROOF. PPT = I means all rows are orthonormal. If P is not square, it
must therefore have more columns than rows, and one can add more rows to get an

orthogonal square matrix, call it T = [ Define y = Tz, i.e., z = T"y. Then

al
2Tz =y TTT" "y =y "y, and the Jacobian of the transformation from ¥ to z has ab-
solute value one. Therefore the density function of v is (2r0?)~"/? exp(—y ' y/202),
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which means y is standard normal as well. In other words, every y, is univariate stan-
dard normal with same variance o and v, is independent of y; for i # j. Therefore
also any subvector of 1/, such as x, is standard normal. Since z " z—a Tz = yTy—a "=
is the sum of the squares of those elements of y which are not in «, it follows that it

is an independent 02')(12,7,“. O

151. Show that the moment generating function of a multivariate stan-
dard normal with variance o2 is m.(t) = Elexp(t’ 2)] = exp(a?t't/2).

Proof: The moment generating function is defined as

(7.4.1) m=(t) = Elexp(t " 2)]
(7.4.2) = (2n0?) "/2/ /exp(——z z) exp(t' z)dz1 -+ - dzn
(7.4.3) = (2ro?)/? / e /exp(—2—2(z —o?t) T (z — o%t) + %tTt) dz1 -+ -dzp
o
a? +
(7.4.4) = exp(7t t) since first part of integrand is density function.
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THEOREM 7.4.3. Let z ~ N(0,0%I), and P symmetric and of rank r. A neces-
sary and sufficient condition for ¢ = z1 Pz to have a 022 distribution is P*> = P.
In this case, the x2 has r degrees of freedom.

Proof of sufficiency: If P> = P with rank r, then a matrix T exists with P =
T'T and TT' = I. Define z = Tz; it is standard normal by theorem 7.4.2.
Therefore g = 2T Tz = Y_, 22

Proof of necessity by construction of the moment generating function of ¢ =
2T Pz for arbitrary symmetric P with rank 7. Since P is symmetric, there exists a
T with TT" = I, and P = T " AT where A is a nonsingular diagonal matrix, write
it A = diag(M1,...,\,). Therefore ¢ = 2" TTATz = 2" Az = I_, \;z? where
x =Tz ~ N(o,0%I,). Therefore the moment generating function

(7.4.5) Elexp(qt)] = E[exp( Z)\ x;

(7.4.6) = E[exp(t/\lml)] - Blexp(tA,22)]
(7.4.7) = (1—2\0%) Y2 (1= 2\,0%) " 1/2.
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By assumption this is equal to (1 — 20%t)"%/2 with some integer k& > 1. Taking
squares and inverses one obtains

(7.4.8) (1—2X0%t) - (1 — 2)\.0%t) = (1 — 20%t)".

Since the \; # 0, one obtains A; = 1 by uniqueness of the polynomial roots. Fur-
thermore, this also implies r = k.

From Theorem 7.4.3 one can derive a characterization of all the quadratic forms
of multivariate normal variables with arbitrary covariance matrices that are y?’s.
Assume vy is a multivariate normal vector random variable with mean vector p and
covariance matrix ¢2W¥, and Q is a symmetric nonnegative definite matrix. Then

(y— ) TQy — p) ~ o232 iff
(7.4.9) YOOV — VO,

and k is the rank of ¥Q.
Here are the three best known special cases (with examples):

e ¥ = I (the identity matrix) and Q% = Q, i.e., the case of theorem 7.4.3.
This is the reason why the minimum value of the SSE has a o2y? distri-
bution, see (27.0.10).

e ¥ nonsingular and @ = ¥~'. The quadratic form in the exponent of
the normal density function is therefore a \?; one needs therefore the y?
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to compute the probability that the realization of a Normal is in a given
equidensity-ellipse (Problem 147).

e W singular and Q = W™ | its g-inverse. The multinomial distribution has a
singular covariance matrix, and equation (?7?) gives a convenient g-inverse
which enters the equation for Pearson’s goodness of fit test.

Here are, without proof, two more useful theorems about the standard normal:

THEOREM 7.4.4. Let x a multivariate standard normal. Then 7 Px is inde-
pendent of T Qx if and only if PQ = O.

This is called Craig’s theorem, although Craig’s proof in [ | is incorrect.
Kshirsagar [ , D- 41] describes the correct proof; he and Seber | ] give
Lancaster’s book [ | as basic reference. Seber | ] gives a proof which is

only valid if the two quadratic forms are 2.

The next theorem is known as James’s theorem, it is a stronger version of
Cochrane’s theorem. It is from Kshirsagar | , D- 41].

THEOREM 7.4.5. Let x be p-variate standard normal with variance o2, and
x'x = Zle x " P;z. Then for the quadratic forms =" P;x to be independently
distributed as 02x?, any one of the following three equivalent conditions is necessary
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and sufficient:

(7.4.10)
(7.4.11)

(7.4.12)

7. MULTIVARIATE NORMAL

P} =P,
P,P;=0

k
Z rank(P;) =p
i=1

for all i
iFJ
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CHAPTER 8

The Regression Fallacy

Only for the sake of this exercise we will assume that “intelligence” is an innate
property of individuals and can be represented by a real number z. If one picks at
random a student entering the U of U, the intelligence of this student is a random
variable which we assume to be normally distributed with mean p and standard
deviation o. Also assume every student has to take two intelligence tests, the first
at the beginning of his or her studies, the other half a year later. The outcomes of
these tests are x and y. x and y measure the intelligence z (which is assumed to be
the same in both tests) plus a random error ¢ and 9, i.e.,

(8.0.13) r=z+¢
(8.0.14) y=z4+0

249
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Here z ~ N(pu,72), £ ~ N(0,02), and § ~ N(0,0?) (i.e., we assume that both errors
have the same variance). The three variables ¢, ¢, and =z are independent of each
other. Therefore z and y are jointly normal. var[z] = 72 + o2, var[y] = 7% + 02,
cov[r,y] = cov[z +¢,2+0] = 72 +0+0+0 = 72. Therefore p = '—.
lines of the joint density are ellipses with center (i, 1) whose main axes are the lines
y =z and y = —z in the z, y-plane.

Now what is the conditional mean? Since var[z] = var[y], (7.3.17) gives the
line Ely|lz=z] = p + p(x — p), i.e., it is a line which goes through the center of the
ellipses but which is flatter than the line x = y representing the real underlying linear
relationship if there are no errors. Geometrically one can get it as the line which
intersects each ellipse exactly where the ellipse is vertical.

Therefore, the parameters of the best prediction of i on the basis of = are not
the parameters of the underlying relationship. Why not? Because not only y but
also x is subject to errors. Assume you pick an individual by random, and it turns
out that his or her first test result is very much higher than the average. Then it is
more likely that this is an individual which was lucky in the first exam, and his or
her true IQ is lower than the one measured, than that the individual is an Einstein
who had a bad day. This is simply because z is normally distributed, i.e., among the
students entering a given University, there are more individuals with lower IQ’s than
Einsteins. In order to make a good prediction of the result of the second test one

The contour
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must make allowance for the fact that the individual’s IQ is most likely lower than
his first score indicated, therefore one will predict the second score to be lower than
the first score. The converse is true for individuals who scored lower than average,
i.e., in your prediction you will do as if a “regression towards the mean” had taken
place.

The next important point to note here is: the “true regression line,” i.e., the
prediction line, is uniquely determined by the joint distribution of z and y. However
the line representing the underlying relationship can only be determined if one has
information in addition to the joint density, i.e., in addition to the observations.
E.g., assume the two tests have different standard deviations, which may be the case
simply because the second test has more questions and is therefore more accurate.
Then the underlying 45° line is no longer one of the main axes of the ellipse! To be
more precise, the underlying line can only be identified if one knows the ratio of the
variances, or if one knows one of the two variances. Without any knowledge of the
variances, the only thing one can say about the underlying line is that it lies between
the line predicting y on the basis of = and the line predicting = on the basis of y.

The name “regression” stems from a confusion between the prediction line and
the real underlying relationship. Francis Galton, the cousin of the famous Darwin,
measured the height of fathers and sons, and concluded from his evidence that the
heights of sons tended to be closer to the average height than the height of the
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fathers, a purported law of “regression towards the mean.” Problem 152 illustrates
this:

152. The evaluation of two intelligence tests, one at the beginning
of the semester, one at the end, gives the following disturbing outcome: While the
underlying intelligence during the first test was z ~ N(100,20), it changed between
the first and second test due to the learning experience at the university. If w is the
intelligence of each student at the second test, it is connected to his intelligence z
at the first test by the formula w = 0.5z + 50, i.e., those students with intelligence
below 100 gained, but those students with intelligence above 100 lost. (The errors
of both intelligence tests are normally distributed with expected value zero, and the
variance of the first intelligence test was 5, and that of the second test, which had
more questions, was 4. As usual, the errors are independent of each other and of the
actual intelligence.)

a. 3 points If © and y are the outcomes of the first and second intelligence
test, compute E[z], E[y], var[z], var[y], and the correlation coefficient p = corr|x,y].
Figure 1 shows an equi-density line of their joint distribution; 95% of the probability

mass of the test results are inside this ellipse. Draw the line w = 0.5z + 50 into
Figure 1.

We know z ~ N(100,20); w = 0.5z +50; z = z+¢; ¢ ~ N(0,4); y = w + 0;
6 ~ N(0,5); therefore E[z] = 100; E[y] = 100; var[z] = 20 +5 = 25; var[y] = 5+ 4 = 9;
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cov|z, y] = 10; corr[z,y] = 10/15 = 2/3. In matrix notation

T 71100 25 10
(8.0.15) H ~ N [[100} , [10 9]]
The line y = 50 + 0.5z goes through the points (80, 90) and (120, 110). ]

b. 4 points Compute Ely|r=x] and E[x|y=y]. The first is a linear function of
x and the second a linear function of y. Draw the two lines representing these linear
functions into Figure 1. Use (7.3.18) for this.

10 2
(8.0.16) Elyle=a] =100 + = (z — 100) = 60 + =z
10 100 10

The line y = E[y|z=z] goes through the points (80,92) and (120, 108) at the edge of Figure 1; it
intersects the ellipse where it is vertical. The line x = E[z|y=y] goes through the points (80, 82) and
(120, 118), which are the corner points of Figure 1; it intersects the ellipse where it is horizontal.
The two lines intersect in the center of the ellipse, i.e., at the point (100, 100).

O

c. 2 points Another researcher says that w = %z + 40, z ~ N(100, %),
£~ N(0,%), 6 ~ N(0,3). Is this compatible with the data?
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Yes, it is compatible: E[z] = E[z]+E[¢] = 100; E[y] = E[w]+E[d] = £100+40 = 100;

100 | 50

var[z] = & = 25; var[y] = (1%)2var[z] + var[d] = 16030 120 +3=9; covlz,y] = var[ | =

10.

d. 4 points A third researcher asserts that the IQ of the students really did not
change. He says w = z, z ~ N(100,5), ¢ ~ N(0,20), 6 ~ N(0,4). Is this compatible
with the data? Is there unambiguous evidence in the data that the I1Q declined?

This is not compatible. This scenario gets everything right except the covariance:
E[z] = E[z] + E[e] = 100; E[y] = E[z] + E[0] = 100; var[z] = 5+ 20 = 25; var[y] = 5+4 = 9;
cov|z,y] = 5. A scenario in which both tests have same underlying intelligence cannot be found.
Since the two conditional expectations are on the same side of the diagonal, the hypothesis that
the intelligence did not change between the two tests is not consistent with the joint distribution
of x and y. The diagonal goes through the points (82,82) and (118,118), i.e., it intersects the two
horizontal boundaries of Figure 1. g

We just showed that the parameters of the true underlying relationship cannot
be inferred from the data alone if there are errors in both variables. We also showed
that this lack of identification is not complete, because one can specify an interval
which in the plim contains the true parameter value.

Chapter 7?7 has a much more detailed discussion of all this. There we will see
that this lack of identification can be removed if more information is available, i.e., if
one knows that the two error variances are equal, or if one knows that the regression
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has zero intercept, etc. Question 153 shows that in this latter case, the OLS estimate
is not consistent, but other estimates exist that are consistent.

153. | , chapter 3] According to Friedman’s permanent income
hypothesis, drawing at random families in a given country and asking them about
their income y and consumption ¢ can be modeled as the independent observations of
two random variables which satisfy

(8.0.18) y =y +1,
(8.0.19) c=cP+ct,
(8.0.20) P = ByP.

Here 4P and c? are the permanent and y* and c' the transitory components of income
and consumption. These components are not observed separately, only their sums y
and ¢ are observed. We assume that the permanent income y’ is random, with
E[y?] = u # 0 and var[y?] = 7',3. The transitory components y' and c' are assumed
to be independent of each other and of y”, and E[y'] = 0, var[y'] = 05, E[c'] = 0,
and var[c'] = 02. Finally, it is assumed that all variables are normally distributed.

a. 2 points Given the above information, write down the vector of expected val-

ues E[[ Y]] and the covariance matriz V([ Y]] in terms of the five unknown parameters

of the model i, B, T 1,: oy, and a2
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. . 2 2 2
o ]l A

O

b. & points Assume that you know the true parameter values and you observe a
family’s actual income y. Show that your best guess (minimum mean squared error)
of this family’s permanent income y” is

2 2

(8.0.22) V= iy,
Ty T 0oy Ty T 0y

Note: here we are guessing income, not yet consumption! Use (7.3.17) for this!

This answer also does the math for part ¢. The best guess is the conditional mean

P
By ly = 22,000] = Ey7] + < (99 000 — B[y))
var(y]
16,000,000
= 12,000 + (22,000 — 12,000) = 20,000

20,000,000
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or equivalently

2
7—’!
E[y"|y = 22,000] = p + ——2— (22,000 — p1)

i+ o]
2 2
o T,
y y
- Lt 22,000
2 2 2 2
Ty +og Ty + o5

= (0.2)(12,000) + (0.8)(22,000) = 20,000.

c. 8 points To make things more concrete, assume the parameters are

(8.0.23) B=0.7
(8.0.24) o, = 2,000
(8.0.25) o, = 1,000
(8.0.26) 1 = 12,000
(8.0.27) 7, = 4,000.

If a family’s income is y = 22,000, what is your best guess of this family’s permanent
income yP ? Give an intuitive explanation why this best guess is smaller than 22,000.

Since the observed income of 22,000 is above the average of 12,000, chances are
greater that it is someone with a positive transitory income than someone with a negative one. [
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d. 2 points If a family’s income is y, show that your best guess about this
family’s consumption is

0_2 7_2
8.0.28 * = ( v y )
( ) ‘ f 7_54_05#"'7_”2_'_0%}

Instead of an exact mathematical proof you may also reason out how it can be obtained
from (8.0.22). Give the numbers for a family whose actual income is 22,000.

This is 0.7 times the best guess about the family’s permanent income, since the
transitory consumption is uncorrelated with everything else and therefore must be predicted by 0.
This is an acceptable answer, but one can also derive it from scratch:

(8.0.29)

Blely = 22,000] = B[] + %([]”](22 000 — E[y])

2
72 16,000,000

8.0.30 = 5 (22,000 — ) = 8,400 + 0.7~ (22,000 — 12,000) = 14,000
( ) =Bu+ g ( 1) + 0.7 55,000,000 )
(8.0.31) ﬁ( % T g 000)

.0. or = - ,

T2 + 02 " T2 + o2

(8.0.32) = 0.7((0.2)(12,000) + (0.8)(22,000)) = (0.7)(20,000) = 14,000.
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The remainder of this Problem uses material that comes later in these Notes:

e. 4 points From now on we will assume that the true values of the parameters
are not known, but two vectors y and c of independent observations are available.
We will show that it is not correct in this situation to estimate 8 by regressing ¢ on
y with the intercept suppressed. This would give the estimator

_ Z CilYq
>y?

o

(8.0.33)

Show that the plim of this estimator is

(8.0.34) plim[3] =

Which theorems do you need for this proof? Show that 13 is an inconsistent estimator
of B, which yields too small values for 3.

First rewrite the formula for 3 in such a way that numerator and denominator each
has a plim: by the weak law of large numbers the plim of the average is the expected value, therefore
we have to divide both numerator and denominator by n. Then we can use the Slutsky theorem
that the plim of the fraction is the fraction of the plims.

_ E[ey] _ E[]E[y] +covlc,y]  pBp+ ,@7’5 _ u? + T;

B=n=_"". plim[j] = = = =4 .
=3 E[y?] (E[y])? + var[y] w2+ 72 + o2 p2+ 72+ o2
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f. 4 points Give the formulas of the method of moments estimators of the five
paramaters of this model: u, 3, 7',3, 05, and 0[2). (For this you have to express these
five parameters in terms of the five moments E[y], E[c], var[y], var[c], and cov[y, c],
and then simply replace the population moments by the sample moments.) Are these

consistent estimators?

From (8.0.21) follows E[c] = B E[y], therefore 8 = Bl This together with covly, ] =

E[y]
B2 gives 72 = COVgJ’C] = COV[%’E;J]E[Z/] . This together with var[y] = 72+ o2 gives 02 = var[y] — 72 =
var[y] — % And from the last equation var[c] = 3272 +0?2 one get 02 = var[c] — %
All these are consistent estimators, as long as E[y] # 0 and 8 # 0. dJ

g. 4 points Now assume you are not interested in estimating O itself, but in
addition to the two n-vectors y and ¢ you have an observation of yn+1 and you want
to predict the corresponding c,+1. One obvious way to do this would be to plug the
method-of moments estimators of the unknown parameters into formula (8.0.28) for
the best linear predictor. Show that this is equivalent to using the ordinary least
squares predictor c* = & +jf;)yn+1 where & and 3 are intercept and slope in the simple
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regression of ¢ on vy, i.e.,

A _ S (y; —9)(c; — )
(8.0.35) 5= G
(8.0.36) a=c—0y

Note that we are regressing ¢ on y with an intercept, although the original model
does not have an intercept.

Here I am writing population moments where I should be writing sample moments.
First substitute the method of moments estimators in the denominator in (8.0.28): 73 +0’§ = varly].
Therefore the first summand becomes

e LB (g el B Ly el dB) ool Bl

YUvarly]  Ely) E[d] var[y] var[y] E[c] var[y]
But since Cz:y{;i] = [ and & + BE[y] = E[¢] this expression is simply &. The second term is easier
to show:

2
T, 1 > ~
g T, v _ s
var(y] var[y]

O

h. 2 points What is the “Iron Law of Econometrics,” and how does the above
relate to it?
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The Iron Law says that all effects are underestimated because of errors in the inde-
pendent variable. Friedman says Keynesians obtain their low marginal propensity to consume due
to the “Iron Law of Econometrics”: they ignore that actual income is a measurement with error of

the true underlying variable, permanent income. O
154. This question follows the original article | | much more
closely than | | does. Sargent and Wallace first reproduce the usual argument

why “activist” policy rules, in which the Fed “looks at many things” and “leans
against the wind,” are superior to policy rules without feedback as promoted by the
monetarists.

They work with a very stylized model in which national income is represented by
the following time series:

(8.0.37) Yy =+ Ay, + B + uy

Herey, is GNP, measured as its deviation from “potential” GNP or as unemployment
rate, and my is the rate of growth of the money supply. The random disturbance uy
is assumed independent of y,_q, it has zero expected value, and its variance var|uy)
is constant over time, we will call it var[u] (no time subscript).

a. 4 points First assume that the Fed tries to maintain a constant money
supply, i.e., my = go + € where gy is a constant, and ¢ is a random disturbance
since the Fed does not have full control over the money supply. The 4 have zero
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expected value; they are serially uncorrelated, and they are independent of the uy.
This constant money supply rule does not necessarily make vy, a stationary time
series (i.e., a time series where mean, variance, and covariances do not depend on
t), but if |A| < 1 then y, converges towards a stationary time series, i.e., any initial
deviations from the “steady state” die out over time. You are mot required here to
prove that the time series converges towards a stationary time series, but you are
asked to compute Ely,| in this stationary time series.

b. 8 points Now assume the policy makers want to steer the economy towards
a desired steady state, call it y*, which they think makes the best tradeoff between
unemployment and inflation, by setting my according to a rule with feedback:

(8.0.38) me = go+ g1yp_1 + €t
Show that the following values of go and g1
(8.0.39) go=y" —a)/B g1=—X\/B

represent an optimal monetary policy, since they bring the expected value of the steady
state E[y,] to y* and minimize the steady state variance var[y,].

c. & points This is the conventional reasoning which comes to the result that a
policy rule with feedback, i.e., a policy rule in which g1 # 0, is better than a policy rule



264 8. THE REGRESSION FALLACY
without feedback. Sargent and Wallace argue that there is a flaw in this reasoning.
Which flaw?

d. 5 points A possible system of structural equations from which (8.0.37) can
be derived are equations (8.0.40)—(8.0.42) below. FEquation (8.0.40) indicates that
unanticipated increases in the growth rate of the money supply increase output, while
anticipated ones do not. This is a typical assumption of the rational expectations
school (Lucas supply curve).

(8.0.40) Yr = &0+ &1 (me — Beorme) +&aypq +ur
The Fed uses the policy rule

(8.0.41) me = go+ g1Yp_1 + €t

and the agents know this policy rule, therefore

(8.0.42) Ei—1me=go+ g1ys—1-

Show that in this system, the parameters go and g1 have no influence on the time
path of y.

e. 4 points On the other hand, the econometric estimations which the policy
makers are running seem to show that these coefficients have an impact. During a
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certain period during which a constant policy rule go, g1 is followed, the econome-
tricians regress y, on y,_, and my in order to estimate the coefficients in (8.0.37).
Which values of a, A, and 3 will such a regression yield?
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CHAPTER 9

A Simple Example of Estimation

We will discuss here a simple estimation problem, which can be considered the
prototype of all least squares estimation. Assume we have n independent observations
Y1,---,Yn of a Normally distributed random variable y ~ N(u,0?) with unknown
location parameter p and dispersion parameter o?. Our goal is to estimate the

location parameter and also estimate some measure of the precision of this estimator.

9.1. Sample Mean as Estimator of the Location Parameter

The obvious (and in many cases also the best) estimate of the location parameter
of a distribution is the sample mean y = %Z?:l y;- Why is this a reasonable
estimate?

2607
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1. The location parameter of the Normal distribution is its expected value, and
by the weak law of large numbers, the probability limit for n — oo of the sample
mean is the expected value.

2. The expected value p is sometimes called the “population mean,” while ¥ is
the sample mean. This terminology indicates that there is a correspondence between
population quantities and sample quantities, which is often used for estimation. This
is the principle of estimating the unknown distribution of the population by the
empirical distribution of the sample. Compare Problem 63.

3. This estimator is also unbiased. By definition, an estimator ¢ of the parameter
6 is unbiased if E[t] = 6. § is an unbiased estimator of u, since E[g] = p.

4. Given n observations 1, ..., Yn, the sample mean is the number a = § which
minimizes (y; —a)?+ (y2 —a)? +- -+ (yn — a)?. One can say it is the number whose
squared distance to the given sample numbers is smallest. This idea is generalized
in the least squares principle of estimation. It follows from the following frequently
used fact:

5. In the case of normality the sample mean is also the maximum likelihood
estimate.
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155. 4 points Let y1, ...,y be an arbitrary vector and o an arbitrary
number. As usual, § = %Z?:l yi. Show that

n n

(9.1.1) Y wi—a)? = (-9 +n{y-a)’

i=1 =1

n

(9.1.2) - = (wi-9+@-a)
i=1

i=1

(9.1.3) =D - 0?42 (w-DE- @)+ Y (G- a)?
=1 =1 =1

(9.1.4) =D W9 +20 - )Y (i —7) +n(F - )’
i=1

=1

Since the middle term is zero, (9.1.1) follows.
|

156. 2 points Let y be a n-vector. (It may be a vector of observations
of a random variable y, but it does not matter how the y; were obtained.) Prove that
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the scalar o« which minimizes the sum
(9.1.5) (1 — )+ (2= )+ + (g — ) = > (1 — )?
is the arithmetic mean o = §.

Use (9.1.1). O

157. Give an example of a distribution in which the sample mean is
not a good estimate of the location parameter. Which other estimate (or estimates)
would be preferable in that situation?

9.2. Intuition of the Maximum Likelihood Estimator

In order to make intuitively clear what is involved in maximum likelihood esti-
mation, look at the simplest case y = p+ ¢, ¢ ~ N(0,1), where p is an unknown
parameter. In other words: we know that one of the functions shown in Figure 1 is
the density function of y, but we do not know which:

Assume we have only one observation y. What is then the MLE of u? It is that
it for which the value of the likelihood function, evaluated at y, is greatest. L.e., you
look at all possible density functions and pick the one which is highest at point y,
and use the p which belongs this density as your estimate.
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\

I T ' ' T T I ! ' ' I
M1 H2

FIGURE 1. Possible Density Functions for y

2) Now assume two independent observations of y are given, y; and ys. The
family of density functions is still the same. Which of these density functions do we
choose now? The one for which the product of the ordinates over y; and y- gives
the highest value. For this the peak of the density function must be exactly in the
middle between the two observations.

3) Assume again that we made two independent observations y; and ys of y, but
this time not only the expected value but also the variance of y is unknown, call it
o2. This gives a larger family of density functions to choose from: they do not only
differ by location, but some are low and fat and others tall and skinny.

For which density function is the product of the ordinates over y; and ys the
largest again? Before even knowing our estimate of o2 we can already tell what i is:
it must again be (y; +y2)/2. Then among those density functions which are centered
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Ha He2
FIGURE 2. Two observations, 02 =1

FIGURE 3. Two observations, o unknown

over (y1 + y2)/2, there is one which is highest over y; and ys. Figure 4 shows the
densities for standard deviations , , 0.1, 0.5, 1, and 5. All curves, except
the last one, are truncated at the point where the resolution of TEX can no longer
distinguish between their level and zero. For the last curve this point would only be
reached at the coordinates +25.

4) If we have many observations, then the density pattern of the observations,
as indicated by the histogram below, approximates the actual density function of y
itself. That likelihood function must be chosen which has a high value where the
points are dense, and which has a low value where the points are not so dense.
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FI1GURE 4. Only those centered over the two observations need to be considered

FIGURE 5. Many Observations

9.2.1. Precision of the Estimator. How good is 7 as estimate of u? To an-
swer this question we need some criterion how to measure “goodness.” Assume your
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business depends on the precision of the estimate { of p. It incurs a penalty (extra
cost) amounting to (4 — p)?. You don’t know what this error will be beforehand,
but the expected value of this “loss function” may be an indication how good the
estimate is. Generally, the expected value of a loss function is called the “risk,” and
for the quadratic loss function E[(fi — p)?] it has the name “mean squared error of
fi as an estimate of yu,” write it MSE[/i; u]. What is the mean squared error of 7?

Since E[7] = p, it is E[(7 — B[7])?] = var[f] = .

Note that the MSE of 7 as an estimate of y does not depend on p. This is
convenient, since usually the MSE depends on unknown parameters, and therefore
one usually does not know how good the estimator is. But it has more important
advantages. For any estimator § of u follows MSE[7; ] = var[7] + (E[7] — p)?. If
7 is linear (perhaps with a constant term), then var[y] is a constant which does
not depend on p, therefore the MSE is a constant if 7 is unbiased and a quadratic
function of u (parabola) if 7 is biased. Since a parabola is an unbounded function,
a biased linear estimator has therefore the disadvantage that for certain values of u
its MSE may be very high. Some estimators are very good when p is in one area,
and very bad when p is in another area. Since our unbiased estimator y has bounded
MSE, it will not let us down, wherever nature has hidden the pu.

On the other hand, the MSE does depend on the unknown o2. So we have to
estimate o2,
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9.3. Variance Estimation and Degrees of Freedom

It is not so clear what the best estimator of o2 is. At least two possibilities are
in common use:

(9.3.1) s

LS -9

SL\D

or

(9.3.2) 52 = ! Z(!/i - 7)°.

n—1

Let us compute the expected value of our two estimators. Equation (9.1.1) with
a = E[y] allows us to simplify the sum of squared errors so that it becomes easy to
take expected values:

(933) B[S (s — %) = 3 Bl — ?] - nEl(G -

(9.3.4) = zn:(ﬁ - n%2 = (n—1)o%
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because E[(y; — u)?] = var[y;] = 02 and E[(y — p)?] = var[y] = %2 Therefore, if we
use as estimator of o2 the quantity

(9.3.5) 7/1

then this is an unbiased estimate.

158. 4 points Show that

1 n
(9.3.6) su=—7> (= 1)
=1

s an unbiased estimator of the variance. List the assumptions which have to be made
about y; so that this proof goes through. Do you need Normality of the individual
observations y, to prove this?

Use equation (9.1.1) with a = E[y]:

(93.7) E[Z(uz -9 = Z El(y —nE[F - w2

(9.3.8) = Zcr? - n%Q = (n—1)o>.

i=1
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You do not need Normality for this. ]

For testing, confidence intervals, etc., one also needs to know the probability
distribution of s2. For this look up once more Section 4.9 about the Chi-Square
distribution. There we introduced the terminology that a random variable ¢ is dis-
tributed as a 022 iff ¢/0? is a 2. In our model with n independent normal variables
y; with same mean and variance, the variable > (y; — 7)? is a 02x2_;. Problem 159
gives a proof of this in the simplest case n = 2, and Problem 160 looks at the case
n = 3. But it is valid for higher n too. Therefore s2 is a n"_Ql x2_,. This is re-
markable: the distribution of s2 does not depend on p. Now use (4.9.5) to get the

2(74

variance of s2: it is 2%
n—1

159. Let y; and yo be two independent Normally distributed variables
with mean p and variance o2, and let 7 be their arithmetic mean.

a. 2 points Show that
2

(9.3.9) SSE = (y; - 1)* ~ o>}

i—1

Hint: Find a Normally distributed random variable z with expected value 0 and vari-
ance 1 such that SSE = 0222,
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(9.3.10) g=itye
2
(9.3.11) n-U= %
(9.3.12) Yy — 7 = _%
Yy — 1 2 _ 2
(9.3.13) (1 —7)% + (ys — )% = (v 4112) n (y1 41/2)
(9.3.14) _ (v1 —v2)? — 2 (3/1 - 3/2)27
2 202

and since z = (y; — y3)/V202 ~ N(0,1), its square is a x3.
b. 4 points Write down the covariance matrix of the vector

(9.3.15) [?’1 - ?I_/]
Y2 — Y
and show that it is singular.

(9.3.11) and (9.3.12) give

7 1 1 2
(9.3.16) LTl 2| |1 = Dy
Yz — Y -5 3 Yo ’
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11
and V[Dy] = DV[y]DT = 2D because V[y] = ¢°I and D = [ 2 f} is symmetric and

idempotent. D is singular because its determinant is zero.

c. 1 point The joint distribution of vy, and y4 is bivariate normal, why did we
V2 ani ; 9
then get a = with one, instead of two, degrees of freedom

Because y; — 7 and y5 — 7 are not independent; one is exactly the negative of the
other; therefore summing their squares is really only the square of one univariate normal. O

160. Assume yy, ys, and y5 are independent N(p,0?). Define three
new variables z1, zo, and z3 as follows: z1 is that multiple of iy which has variance
02. 2o is that linear combination of z1 and Yo which has zero covariance with z;
and has variance o*. z3 is that linear combination of 21, z2, and y; which has zero
covariance with both z1 and zs and has again variance o2. These properties define
z1, 22, and z3 uniquely up factors £1, i.e., if z1 satisfies the above conditions, then
—z1 does too, and these are the only two solutions.

a. 2 points Write z1 and zo (not yet z3) as linear combinations of vy, Yo, and
Ys3-

b. 1 point To make the computation of z3 less tedious, first show the following:
if z3 has zero covariance with z1 and zs, it also has zero covariance with y,.
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c. 1 point Therefore z3 is a linear combination of y,; and ys only. Compute
its coefficients.

d. 1 point How does the joint distribution of z1, zo, and z3 differ from that of
Y1, Yo, and ys 2 Since they are jointly normal, you merely have to look at the expected
values, variances, and covariances.

e. 2 points Show that 22 + 23 + 23 =y + 43 + y3. Is this a surprise?

f. 1 point Show further that s = %Ziil(yi — )% =3(23+23). (There is a
simple trick!) Conclude from this that s2 ~ %Xg, independent of 7.

For a matrix-interpretation of what is happening, see equation (7.4.9) together
with Problem 161.

161. & points Verify that the matric D = I — %LLT is symmetric and
idempotent, and that the sample covariance of two vectors of observations x and y
can be written in matrix notation as

1 1
9.3.17 ! ' == i—8)(yi—y)=—x'D
( ) sample covariance(x,y) - Z(x )y —g) = - y

In general, one can always find n — 1 normal variables with variance o2, inde-
pendent of each other and of 7, whose sum of squares is equal to Y _(; —7)?. Simply
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start with 74/n and generate n — 1 linear combinations of the y, which are pairwise
uncorrelated and have variances o2. You are simply building an orthonormal co-
ordinate system with 7/n as its first vector; there are many different ways to do
this.

Next let us show that 7 and s2 are statistically independent. This is an ad-
vantage. Assume, hypothetically, 7 and s2 were negatively correlated. Then, if the
observed value of 7 is too high, chances are that the one of 52 is too low, and a look
at s2 will not reveal how far off the mark 7 may be. To prove independence, we will
first show that § and y; — ¥ are uncorrelated:

(9318) COV[Q, Yi — y] = COV[@? yi] - Var[y]

0.2

1
(9.3.19) =cov[-(yr+- -yt )] - — =0

By normality, 7 is therefore independent of y, — 7 for all i. Since all variables in-
volved are jointly normal, it follows from this that 7 is independent of the vector
[yl -y e Y, — 17} T; therefore it is also independent of any function of this vec-
tor, such as s2.

The above calculations explain why the parameter of the y? distribution has
the colorful name “degrees of freedom.” This term is sometimes used in a very
broad sense, referring to estimation in general, and sometimes in a narrower sense,
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in conjunction with the linear model. Here is first an interpretation of the general use
of the term. A “statistic” is defined to be a function of the observations and of other
known parameters of the problem, but not of the unknown parameters. Estimators
are statistics. If one has n observations, then one can find at most n mathematically
independent statistics; any other statistic is then a function of these n. If therefore
a model has k£ independent unknown parameters, then one must have at least k
observations to be able to estimate all parameters of the model. The number n — k,
i.e., the number of observations not “used up” for estimation, is called the number
of “degrees of freedom.”

There are at least three reasons why one does not want to make the model such
that it uses up too many degrees of freedom. (1) the estimators become too inaccurate
if one does; (2) if there are no degrees of freedom left, it is no longer possible to make
any “diagnostic” tests whether the model really fits the data, because it always gives
a perfect fit whatever the given set of data; (3) if there are no degrees of freedom left,
then one can usually also no longer make estimates of the precision of the estimates.

Specifically in our linear estimation problem, the number of degrees of freedom
is m — 1, since one observation has been used up for estimating the mean. If one
runs a regression, the number of degrees of freedom is n — k, where k is the number
of regression coefficients. In the linear model, the number of degrees of freedom
becomes immediately relevant for the estimation of o2. If k observations are used
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up for estimating the slope parameters, then the other n — k observations can be
combined into a n — k-variate Normal whose expected value does not depend on the
slope parameter at all but is zero, which allows one to estimate the variance.

If we assume that the original observations are normally distributed, i.e., y; ~

NID(u,0?), then we know that s2 ~ 2’2 Therefore E[s7] = 0® and var[s}] =

n—1An—1-
20%/(n — 1). This estimate of o2 therefore not only gives us an estimate of the
precision of 7, but it has an estimate of its own precision built in.

_=\2
Interebtlngly7 the MSE of the alternative estimator sfn = Z(U% is smaller

than that of s2, although s2, is a biased estimator and s2 an unbiased estimator of
o?. For every estimator ¢, MSE[t; 0] = var[(] + (E[t — 6])?, i.e., it is variance plus
squared bias. The MSE of s2 is therefore equal to its variance, which is %"41 The
4
alternative s2, = “=132 has bias 7%2 and variance W Its MSE is %
Comparing that with the formula for the MSE of s2 one sees that the numerator is

smaller and the denominator is bigger, therefore s2, has smaller MSE.

162. 4 points Assume y; ~ NID(u,0?). Show that the so-called Theil
Schweitzer estimator | ]

1
2 2 — )2
(9.3.20) e > (v, — 1)
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has even smaller MSE than s2 and s2, as an estimator of o2.

2 _ 4
s2 = Z—Hs%, therefore its bias is —311 and its variance is %, and the
MSE is 292 That this is smaller than the MSE of 52, means 2n—1 > _2_ which follows from
n+1 m n n+1
@2n—1n+1)=2n24+n—1>2n2forn > 1. O

163. 3 points Computer assignment: Given 20 independent observa-
tions of a random wvariable y ~ N(u,0?). Assume you know that o* = 2. Plot
the density function of s2. Hint: In R, the command dchisq(z,df=25) returns the
density of a Chi-square distribution with 25 degrees of freedom evaluated at z. But
the number 25 was only taken as an erample, this is not the number of degrees of
freedom you need here. You also do not need the density of a Chi-Square but that
of a certain multiple of a Chi-square. (Use the transformation theorem for density
functions!)

s% ~ 1%)(%9. To express the density of the variable whose density is known by that
whose density one wants to know, say %sa ~ X%g- Therefore

19 19
(9.3.21) fa@ =2 1a
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0 1 2 3 4
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FIGURE 6. Densities of and Theil Schweitzer Estimators

a. 2 points In the same plot, plot the density function of the Theil-Schweitzer
estimate s? defined in equation (9.3.20). This gives a plot as in Figure 6. Can one see
from the comparison of these density functions that the Theil-Schweitzer estimator
has a better MSE ?

Start with plotting the Theil-Schweitzer plot, because it is higher, and therefore it
will give the right dimensions of the plot. You can run this by giving the command ecmetscript (theil
The two areas between the densities have equal size, but the area where the Theil-Schweitzer density
is higher is overall closer to the true value than the area where the unbiased density is higher. |

164. 4 points The following problem illustrates the general fact that
if one starts with an unbiased estimator and “shrinks” it a little, one will end up
with a better MSE. Assume E[y] = u, var(y) = o2, and you make n independent
observations ;. The best linear unbiased estimator of p on the basis of these
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observations is the sample mean 3. Show that, whenever « satisfies
nu? —o?

9.3.22 R e
( ) nu? + o2

<a<l

then MSE[ay; u] < MSE[y; u]. Unfortunately, this condition depends on u and o
and can therefore not be used to improve the estimate.
Here is the mathematical relationship:
(9.3.23) MSE[a7; 4] = E[(a7 — 1)?] = E[(a7 — ap + ap — 1)?] < MSE[7; 4] = var[7]
(9.3.24) 2o /n+ (1 —a)?p? < o?/n
Now simplify it:

(9.3.25) 1-a)? < (1-a?)o?/n=>1-a)1+a)?/n

This cannot be true for a > 1, because for @ = 1 one has equality, and for a > 1, the righthand side
is negative. Therefore we are allowed to assume « < 1, and can divide by 1 — a without disturbing
the inequality:

(9.3.26) 1-a)p? < (1+a)?/n

(9.3.27) u? —o?/n < a(p? + a%/n)
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The answer is therefore

2 2
(9.3.28) W7 <a<l
nu* +o
This the range. Note that nu? — 02 < 0 may be negative. The best value is in the middle of this
range, see Problem 165. O
165. | , example 17.14 on p. 22] The mathematics in the following

problem is easier than it looks. If you can’t prove a., assume it and derive b. from
it, etc.

a. 2 points Let t be an estimator of the nonrandom scalar parameter 6. E[t — 6]
is called the bias of t, and E[(t — )] is called the mean squared error of t as an
estimator of 0, written MSE[t; 0]. Show that the MSE is the variance plus the squared
bias, i.e., that

(9.3.29) MSE[t; 6] = vart] + (E[t — 6])°.
The most elegant proof, which also indicates what to do when 6 is random, is:
(9.3.30) MSE[t; 6] = B[(t — 0)2] = var[t — 6] + (E[t — 6])* = var[t] + (E[t — 6])>.

|

b. 2 points For the rest of this problem assume that t is an unbiased estimator
of 0 with var[t] > 0. We will investigate whether one can get a better MSE if one
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estimates 0 by a constant multiple at instead of t. Show that
(9.3.31) MSE[at; 0] = a® var[t] + (a — 1)%6*.
var[at] = a2 var[t] and the bias of at is E[at — 6] = (a — 1)0. Now apply (9.3.30). O
c. 1 point Show that, whenever a > 1, then MSE[at; 0] > MSE[(;0]. If one
wants to decrease the MSE, one should therefore not choose a > 1.

MSE[at; ] —MSE[t; 0] = (a?—1) var[t]+(a—1)262 > 0 since a > 1 and var[t] > 0. O
d. 2 points Show that

d
(9.3.32) - MSE[at:6]] > 0.

a=1

From this follows that the MSE of at is smaller than the MSE of t, as long as a < 1
and close enough to 1.

The derivative of (9.3.31) is
d
(9.3.33) - MSE[at; 0] = 2a var[t] + 2(a — 1)6?
a

Plug a = 1 into this to get 2var[t] > 0. O
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e. 2 points By solving the first order condition show that the factor a which
gives smallest MSE is

92

Rewrite (9.3.33) as 2a(var[t] + 02) — 202 and set it zero. O

f. 1 point Assume t has an exponential distribution with parameter X > 0, i.e.,

(9.3.35) fi(t) = XAexp(—At), t>0 and fi(t)=0 otherwise.
Check that f;(t) is indeed a density function.

Since A > 0, fi(t) > 0 for all ¢ > 0. To evaluate fooo)\exp(—)\t) dt, substitute
s = —\t, therefore ds = —\dt, and the upper integration limit changes from 400 to —oo, therefore
the integral is — fo_oo exp(s) ds = 1. a

g. 4 points Using this density function (and no other knowledge about the
exponential distribution) prove that t is an unbiased estimator of 1/\, with var[t] =
1/2%.
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To evaluate fooc At exp(—At) dt, use partial integration fuv’ dt = uv — fu’v dt
with u = ¢, v/ = 1, v = —exp(—At), v/ = Aexp(—At). Therefore the integral is —t exp(f)\t)|go +
fooc exp(—At) dt = 1/, since we just saw that fooo Aexp(—At) dt = 1.

To evaluate fooo M2 exp(—At) dt, use partial integration with u = t2, v/ = 2t, v = — exp(—\t),
v’ = Aexp(—At). Therefore the integral is —t2 exp(f)\t)|go+2 fooo texp(—At) dt = % fooo At exp(—At)
2/A2. Therefore var[t] = E[12] — (E[t])2 = 2/A%2 — 1/22 = 1/)2. O
h. 2 points Which multiple of t has the lowest MSE as an estimator of 1/\?
It is ¢/2. Just plug @ = 1/X into (9.3.34).
1/X2 1/)2 1

9.3.36 - _ _ L
(9:3.36) T Sa+ 12 12 11/a2 2

O

i. 2 points Assume t1,...,t, are independently distributed, and each of them
has the exponential distribution with the same parameter \. Which multiple of the
sample mean © = L 3" | t; has best MSE as estimator of 1/\?

7 has expected value 1/) and variance 1/nA2. Therefore
_ 1/X22 B 1/X2 o n
(9:3.37) T A+ 12 Una2+1/3% gl

i.e., for the best estimator 7 = %H Z t; divide the sum by n + 1 instead of n. g
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j. 8 points Assume q ~ o?x2, (in other words, %q ~ 2., a Chi-square distri-
bution with m degrees of freedom). Using the fact that E[x2,] = m and var[x?2,] = 2m,
compute that multiple of q that has minimum MSE as estimator of o2.

2

)

This is a trick question since ¢ itself is not an unbiased estimator of o2. E[¢] = mo

therefore ¢/m is the unbiased estimator. Since var[q/m]| = 204/m it follows from (9.3.34) that
a =m/(m+2), therefore the minimum MSE multiple of ¢ is - mTj_Q = m+2 Le., divide ¢ by m+2
instead of m. a

k. 8 points Assume you have n independent observations of a Normally dis-
tributed random variable y with unknown mean i and standard deviation o%. The
best unbzased estimator of 0% is == 3" (y; —1)?, and the mazimum likelihood extima-
tor is = Z(yl —7)%. What are the implications of the above for the question whether
one should use the first or the second or still some other multiple of > (y; — 1) %

Taking that multiple of the sum of squared errors which makes the estimator un-
biased is not necessarily a good choice. In terms of MSE, the best multiple of Z(yl - 17)2 is

T Wi =)
O
1. & points We are still in the model defined in k. Which multiple of the sample

mean 7§ has smallest MSE as estimator of 1? How does this example differ from the
ones given above? Can this formula have practical significance?
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Here the optimal a = Unlike in the earlier examples, this a depends on

__wr
n2+(o?/n)’
the unknown parameters. One can “operationalize” it by estimating the parameters from the data,
but the noise introduced by this estimation can easily make the estimator worse than the simple 7.
Indeed, 7 is admissible, i.e., it cannot be uniformly improved upon. On the other hand, the Stein
rule, which can be considered an operationalization of a very similar formula (the only difference
being that one estimates the mean vector of a vector with at least 3 elements), by estimating u?

and p2 + %02 from the data, shows that such an operationalization is sometimes successful. 0

We will discuss here one more property of 7 and s2: They together form sufficient
statistics for x4 and o2. Le., any estimator of ;& and o2 which is not a function of 7
and s2 is less efficient than it could be. Since the factorization theorem for sufficient
statistics holds even if the parameter # and its estimate ¢ are vectors, we have to
write the joint density of the observation vector y as a product of two functions, one
depending on the parameters and the sufficient statistics, and the other depending
on the value taken by y, but not on the parameters. Indeed, it will turn out that
this second function can just be taken to be h(y) = 1, since the density function can
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be rearranged as

n

(9.3.38) Foyi, o Yns s 02) = (2m02) —n/2 exp( w)?/20 ) =
(9.3.39) — (203 exp(— (305 = 1) — (5 — 0)?)/20%) =
i=1

(9.3.40) — (2m02) /2 exp(_ (n — 1)532;27%(17 +p)? )






CHAPTER 10

Estimation Principles and Classification of
Estimators

10.1. Asymptotic or Large-Sample Properties of Estimators

We will discuss asymptotic properties first, because the idea of estimation is to
get more certainty by increasing the sample size.

Strictly speaking, asymptotic properties do not refer to individual estimators
but to sequences of estimators, one for each sample size n. And strictly speaking, if
one alters the first 10 estimators or the first million estimators and leaves the others
unchanged, one still gets a sequence with the same asymptotic properties. The results
that follow should therefore be used with caution. The asymptotic properties may
say very little about the concrete estimator at hand.

208
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The most basic asymptotic property is (weak) consistency. An estimator ¢,
(where n is the sample size) of the parameter 6 is consistent iff
(10.1.1) plim ¢, = 6.

n—oo

Roughly, a consistent estimation procedure is one which gives the correct parameter
values if the sample is large enough. There are only very few exceptional situations
in which an estimator is acceptable which is not consistent, i.e., which does not
converge in the plim to the true parameter value.

166. Can you think of a situation where an estimator which is not
consistent is acceptable?

If additional data no longer give information, like when estimating the initial state
of a timeseries, or in prediction. And if there is no identification but the value can be confined to
an interval. This is also inconsistency. O

The following is an important property of consistent estimators:

Slutsky theorem: If t is a consistent estimator for 6, and the function g is con-
tinuous at the true value of 6, then g(¢) is consistent for g(0).

For the proof of the Slutsky theorem remember the definition of a continuous
function. g is continuous at 6 iff for all € > 0 there exists a § > 0 with the property
that for all 6; with |6; — 0] < ¢ follows |g(61) — ¢g(#)| < e. To prove consistency of
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g(t) we have to show that for all € > 0, Pr[|g(t) — g(#)| > €] — 0. Choose for the
given € a 0 as above, then |g(t) — ¢g(#)| > ¢ implies |t — 6] > 0, because all those
values of ¢ for with |t — 0] < § lead to a g(¢) with |g(t) — ¢g(f)| < e. This logical
implication means that

(10.1.2) Pr{lg(t) — g(0)| > €] < Pr[|t — 6] > 3.

Since the probability on the righthand side converges to zero, the one on the lefthand
side converges too.

Different consistent estimators can have quite different speeds of convergence.
Are there estimators which have optimal asymptotic properties among all consistent
estimators? Yes, if one limits oneself to a fairly reasonable subclass of consistent
estimators.

Here are the details: Most consistent estimators we will encounter are asymp-
totically normal, i.e., the “shape” of their distribution function converges towards
the normal distribution, as we had it for the sample mean in the central limit the-
orem. In order to be able to use this asymptotic distribution for significance tests
and confidence intervals, however, one needs more than asymptotic normality (and
many textbooks are not aware of this): one needs the convergence to normality to
be uniform in compact intervals | , D- 346-351]. Such estimators are called
consistent uniformly asymptotically normal estimators (CUAN estimators)



298 10. ESTIMATION PRINCIPLES

If one limits oneself to CUAN estimators it can be shown that there are asymp-
totically “best” CUAN estimators. Since the distribution is asymptotically normal,
there is no problem to define what it means to be asymptotically best: those es-
timators are asymptotically best whose asymptotic MSE = asymptotic variance is
smallest. CUAN estimators whose MSE is asymptotically no larger than that of
any other CUAN estimator, are called asymptotically efficient. Rao has shown that
for CUAN estimators the lower bound for this asymptotic variance is the asymptotic
limit of the Cramer Rao lower bound (CRLB). (More about the CRLB below). Max-
imum likelihood estimators are therefore usually efficient CUAN estimators. In this
sense one can think of maximum likelihood estimators to be something like asymp-
totically best consistent estimators, compare a statement to this effect in | , p-
144]. And one can think of asymptotically efficient CUAN estimators as estimators
who are in large samples as good as maximum likelihood estimators.

All these are large sample properties. Among the asymptotically efficient estima-
tors there are still wide differences regarding the small sample properties. Asymptotic
efficiency should therefore again be considered a minimum requirement: there must
be very good reasons not to be working with an asymptotically efficient estimator.

167. Can you think of situations in which an estimator is acceptable
which is not asymptotically efficient?
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If robustness matters then the median may be preferable to the mean, although it
is less efficient. O

10.2. Small Sample Properties

In order to judge how good an estimator is for small samples, one has two
dilemmas: (1) there are many different criteria for an estimator to be “good”; (2)
even if one has decided on one criterion, a given estimator may be good for some
values of the unknown parameters and not so good for others.

If © and y are two estimators of the parameter 6, then each of the following
conditions can be interpreted to mean that x is better than y:

(10.2.1) Prljz — 0] <|y—6] =1
(10.2.2) Elg(x — 0)] < E[g(y — 0)]

for every continuous function g which is and nonincreasing for < 0 and nondecreas-
ing for x > 0

(10.2.3) Elg(lz = 0])] < Elg(|y — 0])]
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for every continuous and nondecreasing function g

(10.2.4) Pr[{|r — 0| > e}] < Pr[{|ly — 0] > ¢}] for every ¢
(10.25) Bl( — 6)°] < E[(y — 0)?

(10.2.6) Prllz — 0] < |y — 0]] > Prllz — 0] > |y — 0]]

This list is from | , pp. 118-122]. But we will simply use the MSE.

Therefore we are left with dilemma (2). There is no single estimator that has
uniformly the smallest MSE in the sense that its MSE is better than the MSE of
any other estimator whatever the value of the parameter value. To see this, simply
think of the following estimator ¢ of #: ¢ = 10; i.e., whatever the outcome of the
experiments, ¢ always takes the value 10. This estimator has zero MSE when 6
happens to be 10, but is a bad estimator when 6 is far away from 10. If an estimator
existed which had uniformly best MSE, then it had to be better than all the constant
estimators, i.e., have zero MSE whatever the value of the parameter, and this is only
possible if the parameter itself is observed.

Although the MSE criterion cannot be used to pick one best estimator, it can be
used to rule out estimators which are unnecessarily bad in the sense that other esti-
mators exist which are never worse but sometimes better in terms of MSE whatever
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the true parameter values. Estimators which are dominated in this sense are called
inadmissible.

But how can one choose between two admissible estimators? | , p- 124]
gives two reasonable strategies. One is to integrate the MSE out over a distribution
of the likely values of the parameter. This is in the spirit of the Bayesians, although
Bayesians would still do it differently. The other strategy is to choose a minimax
strategy. Amemiya seems to consider this an alright strategy, but it is really too
defensive. Here is a third strategy, which is often used but less well founded theoreti-
cally: Since there are no estimators which have minimum MSE among all estimators,
one often looks for estimators which have minimum MSE among all estimators with
a certain property. And the “certain property” which is most often used is unbiased-
ness. The MSE of an unbiased estimator is its variance; and an estimator which has
minimum variance in the class of all unbiased estimators is called “efficient.”

The class of unbiased estimators has a high-sounding name, and the results
related with Cramer-Rao and Least Squares seem to confirm that it is an important
class of estimators. However I will argue in these class notes that unbiasedness itself
is not a desirable property.



302 10. ESTIMATION PRINCIPLES

10.3. Comparison Unbiasedness Consistency

Let us compare consistency with unbiasedness. If the estimator is unbiased,
then its expected value for any sample size, whether large or small, is equal to the
true parameter value. By the law of large numbers this can be translated into a
statement about large samples: The mean of many independent replications of the
estimate, even if each replication only uses a small number of observations, gives
the true parameter value. Unbiasedness says therefore something about the small
sample properties of the estimator, while consistency does not.

The following thought experiment may clarify the difference between unbiased-
ness and consistency. Imagine you are conducting an experiment which gives you
every ten seconds an independent measurement, i.e., a measurement whose value is
not influenced by the outcome of previous measurements. Imagine further that the
experimental setup is connected to a computer which estimates certain parameters of
that experiment, re-calculating its estimate every time twenty new observation have
become available, and which displays the current values of the estimate on a screen.
And assume that the estimation procedure used by the computer is consistent, but
biased for any finite number of observations.

Consistency means: after a sufficiently long time, the digits of the parameter
estimate displayed by the computer will be correct. That the estimator is biased,
means: if the computer were to use every batch of 20 observations to form a new
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estimate of the parameter, without utilizing prior observations, and then would use
the average of all these independent estimates as its updated estimate, it would end
up displaying a wrong parameter value on the screen.

A biased extimator gives, even in the limit, an incorrect result as long as one’s
updating procedure is the simple taking the averages of all previous estimates. If
an estimator is biased but consistent, then a better updating method is available,
which will end up in the correct parameter value. A biased estimator therefore is not
necessarily one which gives incorrect information about the parameter value; but it
is one which one cannot update by simply taking averages. But there is no reason to
limit oneself to such a crude method of updating. Obviously the question whether
the estimate is biased is of little relevance, as long as it is consistent. The moral of
the story is: If one looks for desirable estimators, by no means should one restrict
one’s search to unbiased estimators! The high-sounding name “unbiased” for the
technical property E[t] = 6 has created a lot of confusion.

Besides having no advantages, the category of unbiasedness even has some in-
convenient properties: In some cases, in which consistent estimators exist, there are
no unbiased estimators. And if an estimator ¢ is an unbiased estimate for the pa-
rameter 6, then the estimator g(¢) is usually no longer an unbiased estimator for
g(0). It depends on the way a certain quantity is measured whether the estimator is
unbiased or not. However consistency carries over.
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Unbiasedness is not the only possible criterion which ensures that the values of
the estimator are centered over the value it estimates. Here is another plausible
definition:

DEFINITION 10.3.1. An estimator 6 of the scalar @ is called median unbiased for
all 0 € O iff

(10.3.1) Pr[f < 0] = Pr[d > 0] = %

This concept is always applicable, even for estimators whose expected value does
not exist.

168. 6 points (Not eligible for in-class exzams) The purpose of the fol-
lowing problem is to show how restrictive the requirement of unbiasedness is. Some-
times no unbiased estimators exist, and sometimes, as in the ezample here, unbiased-
ness leads to absurd estimators. Assume the random variable x has the geometric
distribution with parameter p, where 0 < p < 1. In other words, it can only assume
the integer values 1,2,3, ..., with probabilities

(10.3.2) Prlz =7r] = (1—p) " 'p.

Show that the unique unbiased estimator of p on the basis of one observation of = is
the random variable f(x) defined by f(x) =1 if x = 1 and 0 otherwise. Hint: Use
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the mathematical fact that a function ¢(q) that can be expressed as a power series
o(q) = Z;io ajq’, and which takes the values ¢(q) =1 for all q in some interval of
nonzero length, is the power series with ag =1 and a; =0 for j # 0. (You will need
the hint at the end of your answer, don’t try to start with the hint!)

o<}

Unbiasedness means that E[f(z)] = Zr:l f(r)(1 —p)"~1p = p for all p in the unit
interval, therefore E:il f(r)(1 = p)T~! = 1. This is a power series in ¢ = 1 — p, which must be
identically equal to 1 for all values of ¢ between 0 and 1. An application of the hint shows that
the constant term in this power series, corresponding to the value r — 1 = 0, must be = 1, and all
other f(r) = 0. Here older formulation: An application of the hint with g =1—p, j =r — 1, and
aj = f(j+1) gives f(1) = 1 and all other f(r) = 0. This estimator is absurd since it lies on the
boundary of the range of possible values for q. g

169. Asin Question 61, you make two independent trials of a Bernoulli
experiment with success probability 6, and you observe t, the number of successes.

a. Give an unbiased estimator of 6 based on t (i.e., which is a function of t).
b. Give an unbiased estimator of 6.
c. Show that there is no unbiased estimator of 3.

Hint: Since t can only take the three values 0, 1, and 2, any estimator u which
s a function of t is determined by the values it takes when t is 0, 1, or 2, call them
ug, u1, and ug. Express Elu] as a function of ug, u1, and us.
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E[u] = uo(1—0)2 4+2u10(1 —0) +u20? = ug + (2u1 —2u0)0 + (up — 2u1 +u2)02. This
is always a second degree polynomial in 0, therefore whatever is not a second degree polynomial in 0
cannot be the expected value of any function of t. For E[u] = 6 we need ug = 0, 2u1 —2up = 2u1 = 1,
therefore w1 = 0.5, and ug — 2u1 +u2 = —1+uz = 0, i.e. ug = 1. This is, in other words, u = t/2.
For E[u] = 62 we need up = 0, 2uj — 2ug = 2uj = 0, therefore u; = 0, and ug — 2u; +uz = ug = 1,
This is, in other words, u = (¢ — 1) /2. From this equation one also sees that 3 and higher powers,
or things like 1/6, cannot be the expected values of any estimators. |

d. Compute the moment generating function of t.

(10.3.3) EleM] = ¢® - (1-0)> 4+ ¢ - 20(1 — 0) + > - 6% = (1 -0+ 0c*)”
d
170. This is [KS79, Question 17.11 on p. 34], originally [F'is, p. 700].

a. 1 point Assume t and u are two unbiased estimators of the same unknown
scalar nonrandom parameter 0. t and u have finite variances and satisfy var[u —t] #
0. Show that a linear combination of t and u, i.e., an estimator of 6 which can be
written in the form at + Bu, is unbiased if and only if « = 1 — 3. In other words,

any unbiased estimator which is a linear combination of t and u can be written in
the form

(10.3.4) L+ Bu—t).
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b. 2 points By solving the first order condition show that the unbiased linear
combination of t and u which has lowest MSE is

cov[t,u — t]

(10.3.5) 0=t (u—1)

Hint: your arithmetic will be simplest if you start with (10.3.4).

var[u — t]

c. 1 point If p? is the squared correlation coefficient between t and v —t, i.e.,
(10.3.6) P2 = W
show that var[f] = var[t](1 — p?).

d. 1 point Show that cov[t,u — t] # 0 implies var[u — t] # 0.

e. 2 points Use (10.3.5) to show that if t is the minimum MSE unbiased
estimator of 8, and u another unbiased estimator of 0, then
(10.3.7) cov[t,u —t] = 0.

f. 1 point Use (10.3.5) to show also the opposite: if t is an unbiased estimator

of 6 with the property that cov[t,u — t] = 0 for every other unbiased estimator u of
0, then t has minimum MSE among all unbiased estimators of 6.
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There are estimators which are consistent but their bias does not converge to
Zero:
. 1. 1
(10.3.8) 0. — 0 W?th probab?l%ty 117 "
n  with probability
Then Pr(|én — 0] >¢) < 1, ie., the estimator is consistent, but E[f] = o=t +1—
0+1#0.

171. 4 points Is it possible to have a consistent estimator whose bias
becomes unbounded as the sample size increases? Either prove that it is not possible
or give an example.

Yes, this can be achieved by making the rare outliers even wilder than in (10.3.8),

say
A 0 ith probability 1 — L
(10.3.9) On = WL PrOOaOLIY L T
n?  with probability =
Here Pr(‘én — 0} >e) < %, i.e., the estimator is consistent, but E[f] = 9”771 +n—0+n. O

And of course there are estimators which are unbiased but not consistent: sim-
ply take the first observation z; as an estimator if E[z] and ignore all the other
observations.
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10.4. The Cramer-Rao Lower Bound

Take a scalar random variable y with density function f,. The entropy of y, if it
exists, is H[y] = — E[log(f,(v))]. This is the continuous equivalent of (3.11.2). The
entropy is the measure of the amount of randomness in this variable. If there is little
information and much noise in this variable, the entropy is high.

Now let y — g(y) be the density function of a different random variable x. In
other words, g is some function which satisfies g(y) > 0 for all y, and fjoo; g(y)dy = 1.
Equation (3.11.10) with v = g(y) and w = f,(y) gives

(10.4.1) f:u(y) - fy(y) log f:u(y) <gy) - f:u(y) log g(y)-

This holds for every value y, and integrating over y gives 1 — E[log f,(y)] < 1 —
Eflog g(y)] or

(10.4.2) E[log £, (y)] > E[log g(y)].

This is an important extremal value property which distinguishes the density function
fy(y) of y from all other density functions: That density function g which maximizes
Ellogg(y)] is g = f,, the true density function of y.

This optimality property lies at the basis of the Cramer-Rao inequality, and it
is also the reason why maximum likelihood estimation is so good. The difference
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between the left and right hand side in (10.4.2) is called the Kullback-Leibler dis-
crepancy between the random variables y and = (where x is a random variable whose
density is g).

The Cramer Rao inequality gives a lower bound for the MSE of an unbiased
estimator of the parameter of a probability distribution (which has to satisfy cer-
tain regularity conditions). This allows one to determine whether a given unbiased
estimator has a MSE as low as any other unbiased estimator (i.e., whether it is
“efficient.”)

172. Assume the density function of y depends on a parameter 6,
write it f,(y;0), and 0° is the true value of 0. In this problem we will compare the
expected value of y and of functions of y with what would be their expected value if the
true parameter value were not 0° but would take some other value 6. If the random
variable t is a function of y, we write Eg[t] for what would be the expected value of t
if the true value of the parameter were 6 instead of 6°. Occasionally, we will use the
subscript o as in Eo to indicate that we are dealing here with the usual case in which
the expected value is taken with respect to the true parameter value 6°. Instead of E,
one usually simply writes E, since it is usually self-understood that one has to plug
the right parameter values into the density function if one takes expected values. The
subscript o is necessary here only because in the present problem, we sometimes take



10.4. THE CRAMER-RAO LOWER BOUND 311

expected values with respect to the “wrong” parameter values. The same notational
convention also applies to variances, covariances, and the MSE.

Throughout this problem we assume that the following regularity conditions hold:
(a) the range of y is independent of 8, and (b) the derivative of the density function
with respect to 0 is a continuous differentiable function of 6. These reqularity condi-
tions ensure that one can differentiate under the integral sign, i.e., for all function
t(y) follows

w043 [ S =5 [ 50 dy = 5Bl
0o 2 2 oS} 2
044) [ T n w0y = s [ 10 dy = s Bl

a. 1 point The score is defined as the random variable

d
(10.4.5) a(y;0) = 55108 f, (v 0)-

In other words, we do three things to the density function: take its logarithm, then
take the derivative of this logarithm with respect to the parameter, and then plug the
random variable into it. This gives us a random variable which also depends on the
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nonrandom parameter 6. Show that the score can also be written as

1 9f,(y;6)
(10.4.6) a(y:8) = y !
O fuly:0) 00
This is the chain rule for differentiation: for any differentiable function g(8), % log g(6)
_1 _0g(9) ]
9(0) 06

b. 1 point If the density function is member of an exponential dispersion family
(?7), show that the score function has the form

y — ob(6)
10.4.7 q(y;0) = —20
(104.7) ()= 2
This is a simple substitution: if
6 — b(6
(10.4.8) Ty(y;0,9) = exp <yTw)() + c(y, w)),
then
(10.49) Olog £, (y:0.%) _ v~ "5
00 a(y)
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c. 3 points If f,(y;6°) is the true density function of y, then we know from
(10.4.2) that Es[log f,(y;0°)] > Esllog f(y;8)] for all 8. This explains why the score
18 so important: it is the deriwative of that function whose expected value is mazimized
if the true parameter is plugged into the density function. The first-order conditions
in this situation read: the expected value of this derivative must be zero for the true
parameter value. This is the next thing you are asked to show: If 6° is the true
parameter value, show that Eo[q(y;6°)] = 0.

First write for general 6

(10410)  Eola(s;0)] = 1 ay: O)F, (4 0°) dy = / o g 0°) .

a o0
dy = — (v 0) d
Ry [wf./(y ) dy

Ofy(y:6°)
20

For 6 = 0° this simplifies:

(10411)  Bolg(s;0%) = / 2(vi8) A,

=00 o0

, in order to emphasize

W instead of the simpler notation

Here I am writing

that one first has to take a derivative with respect to 6 and then one plugs 6° into that derivative. O

d. Show that, in the case of the exponential dispersion family,
0b(0)

10.4.12 E.ly] =
(104.12) W=7 .
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Follows from the fact that the score function of the exponential family (10.4.7) has
zero expected value. O

e. 5 points If we differentiate the score, we obtain the Hessian
2

(10.4.13) ) = (889) log f (v 0).

From now on we will write the score function as q(0) instead of q(y;0); i.e., we will
no longer make it explicit that q is a function of y but write it as a random variable
which depends on the parameter 8. We also suppress the dependence of h on y; our
notation h(@) is short for h(y;0). Since there is only one parameter in the density
function, score and Hessian are scalars; but in the general case, the score is a vector
and the Hessian a matriz. Show that, for the true parameter value 0°, the negative
of the expected value of the Hessian equals the variance of the score, i.e., the expected
value of the square of the score:

(10.4.14) Eo[h(0°)] = — Eo[¢%(6°)].

Start with the definition of the score

0 0
log £, (10) = —— 2 £,(130),

(10.4.15) a(y:0) = = T8 5
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and differentiate the rightmost expression one more time:

o] 1 9 2 1
(10410 (30) = Gai0) =~ r )(—fycu,e)) b )
Taking expectations we get
10.4.18 Eo[h(y;0)] = — Eolg?(y; 6 ™ o ;0 :0°)d
(10.4.18) oMo = ~Bla? 0+ | (G0 w0y

Again, for § = 6°, we can simplify the integrand and differentiate under the integral sign:

+oo 52 52 +oo 92
10.4.19 — f ;9 dy = — ) ;9 dy = 1=0.
( ) /_oo g2 [ ) dy = =03 /_Oo fy(y;0)dy = =05

f. Derive from (10.4.14) that, for the exponential dispersion family (?7),

92b(9) a()

(10.4.20) var,y] = 502 oo




316 10. ESTIMATION PRINCIPLES

2
Differentiation of (10.4.7) gives h(0) = — 8(;;(29) a(1¢)‘ This is constant and therefore

equal to its own expected value. (10.4.14) says therefore

9%b(0) 1 2 0 1
10.4.21  —Eo[q?(6°)] = o[l
( ) 902 9—go a(¢) [(1 ( )] (a(¢))2 var, [‘/]
from which (10.4.20) follows. O

173.

a. Use the results from question 172 to derive the following strange and in-
teresting result: for any random wariable t which is a function of y, i.e., t = t(y),

follows cov,[q(6°),t] = % Eq [t]|0:90.

The following equation holds for all 6:

1 8fu (y; 0)

10.4.22 Eolq
( ) la( fu y; 0 00

t(y) fy(y; 0°) dy
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If the 0 in ¢(0) is the right parameter value 6° one can simplify:

(10.429 soaoey) = [ 28] 90t<y> 4y
(10.4.24) / Fu(w;0 \
0=0°
(10.4.25) = % Eqlt] oo
This is at the same time the covariance: cove[q(6°),t] = Eo[q(6°)t] — Eo[q(6°)] Eo[t] = Eo[q(0°)t],

since Eo[¢(0°)] =0

Ezplanation, nothing to prove here: Now if t is an unbiased estimator of 0,
whatever the value of 0, then it follows cove[q(6°),t] = 6 20 = 1. From this fol-
lows by Cauchy-Schwartz var,|t] varo[q(ﬁo)] >1, or Varo[] > 1/ varo[q(6°)]. Since

Eo[q(0°)] = 0, we know var,[q(6°)] = Eolg (00)], and since t is unbiased, we know
var,[t] = MSE,[t; 6°]. Therefore the Cauchy-Schwartz inequality reads

(10.4.26) MSE,[t;0°] > 1/ Eo[¢%(6°)).

This is the Cramer-Rao inequality. The inverse of the variance of ¢(0°), 1/ var,[q(6°)] :
1/ Eo[q?(0°)], is called the Fisher information, written I1(0°). It is a lower bound for
the MSE of any unbiased estimator of 0. Because of (10.4.14), the Cramer Rao



318 10. ESTIMATION PRINCIPLES

inequality can also be written in the form
(10.4.27) MSE[t;0°] > —1/ Eo[h(6°)].

(10.4.26) and (10.4.27) are usually written in the following form: Assume y has
density function f,(y;6) which depends on the unknown parameter 6, and and let
t(y) be any unbiased estimator of . Then

1 -1
(10.4.28) var[t] > 5 5 =
E[(2log £,(1:0))°]  ElZplog f,(s:0)]

(Sometimes the first and sometimes the second expression is easier to evaluate.)
If one has a whole vector of observations then the Cramer-Rao inequality involves
the joint density function:

1 -1
E[(Z log f,(4:0))"]  Elgg log f,(y:0)]

This inequality also holds if v is discrete and one uses its probability mass function
instead of the density function. In small samples, this lower bound is not always
attainable; in some cases there is no unbiased estimator with a variance as low as
the Cramer Rao lower bound.

(10.4.29) var[t] >




10.4. THE CRAMER-RAO LOWER BOUND 319

174. 4 points Assume n independent observations of a variable i ~
N(u,0?) are available, where o is known. Show that the sample mean 7 attains the
Cramer-Rao lower bound for p.

The density function of each y; is

_ )2
(10.4.30) fu. () = (2mo?)~1/2 exp(—u)
vt 202
therefore the log likelihood function of the whole vector is
1 n
(10.4.31) Zlog fu, (W) = —= 10g(27r) - = loga ey Z(UZ — )2
i=1
(10.4.32) D by = i( )
4. —ly; p) = — Y; —
Wi = 3 Yi — 1
i=1

In order to apply (10.4.29) you can either square this and take the expected value

(10.4.33) Bl (fﬂ w; m) 2 S Bl - %) = n/o?

alternatively one may take one more derivative from (10.4.32) to get
2

10.4.34 —
( ) B2

n
Ly; p) = =
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This is constant, therefore equal to its expected value. Therefore the Cramer-Rao Lower Bound
says that var[g] > 2 /n. This holds with equality. ]

175. Assume y; ~ NID(0, 0?) (z e. normally independently distributed)

with unknown o2. The obvious estimate of o2 is s> = 1 = y2.

a. 2 points Show that s2 is an unbiased estimator of 02, is distributed ~ %x%,
and has variance 20* /n. You are allowed to use the fact that a x2 has variance 2n,
which is equation (4.9.5).



(10.4.35)
(10.4.36)

(10.4.37)
(10.4.38)

(10.4.39)

(10.4.40)

(10.4.41)
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E[y;]

varly;] + (E[y:])? = 02 + 0 = o

Yi L NID(0, 1)
ag

o0z
o222
n
a2 22 ~ a2
i=1
n
2
g 2 2
— ) 5~ —Xa
n
i=1
at 2 204
ﬁvar[xn] = n—22n = —

b. 4 points Show that this variance is at the same time the Cramer Rao lower

bound.
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1 1 2
(10.4.42) Ly, 0%) =log fy(y;0%) = —= log 27 — = logo? — =—
’ 2 2 202
dlog f 2 1 y? y2 —o?
10.4.43 L (y; = 4+ 2 -7 _ -
( ) o2 (i) 202 20% 204
y2 — o2
Since - has zero mean, it follows
204
dlo gfy )2 var[y?] 1
10.4.44 E )i o Sl A0
(10.4.44) (Fwen) 1= = 5
Alternatively, one can differentiate one more time:
?logfy, y 1
10.4.45 TSy g2y = Y
(10.4.45) er w0 = %5+ 5
8% log f, 2 o2 1 1
10.4.46 E[——=Z(y; T
(10.4.46) Faa o) = =75 + 505 = 5o
(10.4.47)
This makes the Cramer Rao lower bound 20%/n. O
176. 4 points Assume x1,...,2Ty, is a random sample of independent

observations of a Poisson distribution with parameter A, i.e

., each of the x; has
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probability mass function

(10.4.48) pe,(z) =Prlz; =a] = =e™> 2=0,1,2,....

A Poisson variable with parameter X has expected value A and variance X. (You
are not required to prove this here.) Is there an unbiased estimator of A with lower
variance than the sample mean 7 ¢

Here is a formulation of the Cramer Rao Inequality for probability mass func-
tions, as you need it for Question 176. Assume yq,...,y, are n independent ob-
servations of a random wvariable y whose probability mass function depends on the
unknown parameter 6 and satisfies certain reqularity conditions. Write the univari-
ate probability mass function of each of the y; as p,(y;6) and let t be any unbiased
estimator of 0. Then

1 -1
(10.4.49) var[t] > =

T nE[(Znp,(1;:0)°]  nElZEnp,(y:0)]
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The Cramer Rao lower bound says no.

(10.4.50) logps(z;\) = wlog A — log z! — A
dlogpa T T — A\
10.4.51 A= ——1=
(10.451) %8P (13 = .
dlog p. )2 (x—N)? var[r] 1
10.4.52 E[l ———(z; A =E———|= = —.
(10.4.5) (o) 1 =B = 5 =

Or alternatively, after (10.4.51) do

02 log p. T
(10.4.53) W(r, A) = V]
8% log ps E[z] 1
10.4.54 —B[( =220 ) = ==
(10.4.54) (@)= 57 =
Therefore the Cramer Rao lower bound is %, which is the variance of the sample mean. dJ

If the density function depends on more than one unknown parameter, i.e., if
it has the form f,(y;61,...,0k), the Cramer Rao Inequality involves the following
steps: (1) define £(y;61,--- ,0,) =log f,(y;01,...,0k), (2) form the following matrix
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which is called the information matriz:

(10.4.55)
%0 821 2 0
nElgEl o —nElgagl]  [nEIG) o nEl
I= . = : : : ,
2y ) 0\ 2
an[agiael] an[g—] nE[%%} nE[(%) ]

31
and (3) form the matrix inverse I ~1. If the vector random variable ¢ = :
ln
61
is an unbiased estimator of the parameter vector & = | : |, then the inverse of
On

the information matrix ™' is a lower bound for the covariance matrix V[t] in the
following sense: the difference matrix V[t] — I ~1 is always nonnegative definite.

From this follows in particular: if i is the ith diagonal element of I™!, then
var(t;] > i*.
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10.5. Best Linear Unbiased Without Distribution Assumptions

If the x; are Normal with unknown expected value and variance, their sample
mean has lowest MSE among all unbiased estimators of p. If one does not assume
Normality, then the sample mean has lowest MSE in the class of all linear unbiased
estimators of u. This is true not only for the sample mean but also for all least squares
estimates. This result needs remarkably weak assumptions: nothing is assumed about
the distribution of the x; other than the existence of mean and variance. Problem
177 shows that in some situations one can even dispense with the independence of
the observations.

177. 5 points | , example 5.4.1 on p 266] Let y; and y5 be two
random variables with same mean p and variance o2, but we do not assume that they
are uncorrelated; their correlation coefficient is p, which can take any value |p| < 1.
Show that § = (Y1 + y2)/2 has lowest mean squared error among all linear unbiased
estimators of p, and compute its MSE. (An estimator [i of p is linear iff it can be
written in the form i = a1y, + aayy with some constant numbers o and as.)
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(10.5.1) U =aiy; +azysy
(10.5.2) var = af var[y,] + a3 var[y,] + 2a1a2 covlyy, y]
(10.5.3) = 02(a? + a2 + 2a1a2p).

Here we used (6.1.14). Unbiasedness means az = 1 — a1, therefore we call 1 = aand ap =1 — a:
(10.5.4) var[j]/o? = a? + (1 — a)? 4+ 2a(1 — a)p
Now sort by the powers of a:

(10.5.5) =2a%(1—p)—2a(1—p)+1
(10.5.6) =2 —a)(1—p)+ 1.

This takes its minimum value where the derivative %(QQ — ) = 2o — 1 = 0. For the MSE plug
a1 = az — 1/2 into (10.5.3) to get %(1+p). O

178. You have two unbiased measurements with errors of the same

quantity p (which may or may not be random). The first measurement vy, has mean

squared error E[(y, — 1)?] = o2, the other measurement yy has E[(y; — 11)?] =

72, The measurement errors 1, — i1 and 1, — 11 have zero expected values (i.e., the

measurements are unbiased) and are independent of each other.
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a. 2 points Show that the linear unbiased estimators of |1 based on these two
measurements are simply the weighted averages of these measurements, i.e., they can
be written in the form i = ay; + (1 — a)y,, and that the MSE of such an estimator
is a?0? + (1 — a)?72. Note: we are using the word “estimator” here even if i is
random. An estimator or predictor [i is unbiased if E[i — ] = 0. Since we allow p
to be random, the proof in the class notes has to be modified.

The estimator [i is linear (more precisely: affine) if it can written in the form
(10.5.7) fi=1yy + a2ys +
The measurements themselves are unbiased, i.e., E[y; — ] = 0, therefore
(10.5.8) E[i — 4] = (a1 + a2 — ) E[u] +7 =0

for all possible values of E[u]; therefore v = 0 and ag = 1 — a;. To simplify notation, we will call
from now on a1 = a, as = 1 — a. Due to unbiasedness, the MSE is the variance of the estimation
error

(10.5.9) var[ii — i) = a?0? + (1 — a)?72

b. 4 points Define w? by

1 1 1 272
(10.5.10) 22 + = which can be solved to give w? = 0;77_:7_2.
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Show that the Best (i.e., minimum MSE) linear unbiased estimator (BLUE) of 1
based on these two measurements is
2 W2

L w
(10.5.11) Y= _3h T 5

-2
T
i.e., it is the weighted average of y; and y, where the weights are proportional to the
inverses of the variances.

The variance (10.5.9) takes its minimum value where its derivative with respect of
« is zero, i.e., where

0
(10.5.12) 9% (04202 +(1- a)2‘r2) =2a0? -2(1—a)r2 =0
o
(10.5.13) ac? =12 — a2
2
-
10.5.14 a= ——
(10.5.14) s
In terms of w one can write
T2 w? o2 w2
(10.5.15) o= m = po) and l—a= 7024_7_2 = =

|

c. 2 points Show: the MSE of the BLUE w? satisfies the following equation:

1 11
(10.5.16) -

w? o2 T2
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We already have introduced the notation w? for the quantity defined by (10.5.16);
therefore all we have to show is that the MSE or, equivalently, the variance of the estimation error
is equal to this w?:

_ wiiz o w2, 401 1 it 9
(10.5.17) var[ft — pu] = (;) o” + (7—2) T =w (0—2 + 7—2) =W =w

O

Examples of other classes of estimators for which a best estimator exists are: if
one requires the estimator to be translation invariant, then the least squares estima-
tors are best in the class of all translation invariant estimators. But there is no best
linear estimator in the linear model. (Theil)

10.6. Maximum Likelihood Estimation

This is an excellent and very widely applicable estimation principle. Its main
drawback is its computational complexity, but with modern computing power it
becomes more and more manageable. Another drawback is that it requires a full
specification of the distribution.

179. 2 points What are the two greatest disadvantages of Maximum
Likelihood Estimation?
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Its high information requirements (the functional form of the density function must
be known), and computational complexity. dJ

In our discussion of entropy in Section 3.11 we derived an extremal value property
which distinguishes the actual density function f,(y) of a given random variable y
from all other possible density functions of y, i.e., from all other functions g > 0
with f_+O°: 9(y)dy = 1. The true density function of y is the one which maximizes
E[logg(y)]. We showed that this principle can be used to design a payoff scheme
by which it is in the best interest of a forecaster to tell the truth. Now we will see
that this principle can also be used to design a good estimator. Say you have n
independent observations of y. You know the density of y belongs to a given family
F of density functions, but you don’t know which member of F it is. Then form
the arithmetic mean of log f(y;) for all f € F. It converges towards E[log f(y)]. For
the true density function, this expected value is higher than for all the other density
functions. If one does not know which the true density function is, then it is a good
strategy to select that density function f for which the sample mean of the log f(y;)
is largest. This is the maximum likelihood estimator.

Let us interject here a short note about the definitional difference between density
function and likelihood function. If we know pu = g, we can write down the density
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function as

1 w-we?
2 .

e
V2T

It is a function of y, the possible values assumed by vy, and the letter g symbolizes
a constant, the true parameter value. The same function considered as a function of
the variable p, representing all possible values assumable by the true mean, with y
being fized at the actually observed value, becomes the likelihood function.

In the same way one can also turn probability mass functions p, (z) into likelihood
functions.

Now let us compute some examples of the MLE. You make n independent
observations v, ...,y, from a N(u,0?) distribution. Write the likelihood function
as

(10.6.1) fuys o) =

)"efﬁ S wi=m?,

2no?

n

(10.6.2) L(p, 0%y, u,) = [ fo(w) = (
i=1

Its logarithm is more convenient to maximize:

_ 9. I n 9 1 / 9
(10.6.3) C=InL(g, 0%y, Yp) f—51n27rf§1n0 7?2(!/1'7.“) .
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To compute the maximum we need the partial derivatives:

o1
(10.6.4) an 2 Z(!/i — 1)
o n 1
(10.6.5) 902 = 952 T g4 Z(’!Ii - p)?

The maximum likelihood estimators are those values 2 and 62 which set these two
partials zero. IL.e., at the same time at which we set the partials zero we must put
the hats on y and o2. As long as 62 # 0 (which is the case with probability one),
the first equation determines fi: Yy, —ni =0, ie., i = L3y, = 7. (This would
be the MLE of p even if 02 were known). Now plug this /i into the second equation
to get § = 552 2.(y; — )% or 6% = £ Y (y; — )%

Here is another example: t4,...,t, are independent and follow an exponential
distribution, i.e.,
(10.6.6) fi(t; A) = Ae™ (t>0)
(10.6.7) L(t1, ...ty A) = A Mttt
(10.6.8) Lty .ty ) =nInd — Aty + -+ ty)
(10.6.9) % = ; (4 + ).
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Set this zero, and write A instead of \ to get A= ﬁ =1/t

Usually the MLE is asymptotically unbiased and asymptotically normal. There-
fore it is important to have an estimate of its asymptotic variance. Here we can use
the fact that asymptotically the Cramer Rao Lower Bound is not merely a lower
bound for this variance but is equal to its variance. (From this follows that the max-
imum likelihood estimator is asymptotically efficient.) The Cramer Rao lower bound
itself depends on unknown parameters. In order to get a consistent estimate of the
Cramer Rao lower bound, do the following: (1) Replace the unknown parameters
in the second derivative of the log likelihood function by their maximum likelihood
estimates. (2) Instead of taking expected values over the observed values x; you may
simply insert the sample values of the x; into these maximum likelihood estimates,
and (3) then invert this estimate of the information matrix.

MLE obeys an important functional invariance principle: if 6 is the MLE of a,
then g(é) is the MLE of ¢g(0). E.g., u = % is the expected value of the exponential
variable, and its MLE is Z.

180. #1,...,Zm is a sample from a N(ju,,02), and yy,...,y, from a
N (py, 02) with different mean but same o®. All observations are independent of each
other.



10.6. MAXIMUM LIKELIHOOD ESTIMATION 335

a. 2 points Show that the MLE of p.., based on the combined sample, is T. (By
symmetry it follows that the MLE of p, is 7.)

m

) m m 1

(10.6.10) oy 0%) = =5 In2m = Tlno® — = Z(Ti — u2)?

i=1

1 n
n n

-3 In27m — 3 lno? — by Z(l}j - /f«y)2

j=1

or 1
(10.6.11) Ee =—53 —2(w; — pa) =0 for p, =12

b. 2 points Derive the MLE of o2, based on the combined samples.

ol  m+n 1 . i 2 - ’ 2
(10612) ﬁ = — 952 + ﬁ (Z(lz - /—L:r,) + Z(.’/j - /’L’U) )
i=1 j=1
1 m n
~2 )2 . — 2
(10.6.13) 2= —— (NP + Y- 0?).
i=1 j=1
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10.7. Method of Moments Estimators

Method of moments estimators use the sample moments as estimates of the
population moments. ILe., the estimate of u is Z, the estimate of the variance o2 is
% S (2; —7)?, etc. If the parameters are a given function of the population moments,
use the same function of the sample moments (using the lowest moments which do
the job).

The advantage of method of moments estimators is their computational sim-
plicity. Many of the estimators discussed above are method of moments estimators.
However if the moments do not exist, then method of moments estimators are incon-
sistent, and in general method of moments estimators are not as good as maximum

likelihood estimators.

10.8. M-Estimators

The class of M-estimators maximizes something other than a likelihood func-
tion: it includes nonlinear least squares, generalized method of moments, minimum
distance and minimum chi-squared estimators. The purpose is to get a “robust”
estimator which is good for a wide variety of likelihood functions. Many of these are
asymptotically efficient; but their small-sample properties may vary greatly.
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10.9. Sufficient Statistics and Estimation

Weak Sufficiency Principle: If x has a p.d.f. f.(x;0) and if a sufficient statistic
s(x) exists for 0, then identical conclusions should be drawn from data x; and @
which have same value s(z1) = s(x2).

Why? Sufficiency means: after knowing s(x), the rest of the data  can be
regarded generated by a random mechanism not dependent on 6, and are therefore
uninformative about 6.

This principle can be used to improve on given estimators. Without proof we
will state here

Rao Blackwell Theorem: Let t(x) be an estimator of § and s(x) a sufficient
statistic for §. Then one can get an estimator (*(x) of 6 which has no worse a
MSE than ¢(x) by taking expectations conditionally on the sufficient statistic, i.e.,
(@) = E[t(@)]s()].

To recapitulate: t*(x) is obtained by the following two steps: (1) Compute the
conditional expectation t**(s) = E[t(x)|s(x) = s], and (2) plug s(z) into t**, i.e.,
t*(x) = t**(s(x)).

A statistic s is said to be complete, if the only real-valued function ¢ defined on
the range of s, which satisfies E[g(s)] = 0 whatever the value of 6, is the function
which is identically zero. If a statistic s is complete and sufficient, then every function
g(s) is the minimum MSE unbiased estimator of its expected value E[g(s)].
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If a complete and sufficient statistic exists, this gives a systematic approach to
minimum MSE unbiased estimators (Lehmann Scheffé Theorem): if ¢ is an unbiased
estimator of § and s is complete and sufficient, then t*(x) = E[t(x)|s(x)] has lowest
MSE in the class of all unbiased estimators of #. Problem 181 steps you through the
proof.

181. | , Problem 4.2.6 on p. 144] If a statistic s is complete
and sufficient, then every function g(s) is the minimum MSE unbiased estimator
of E[g(s)] (Lehmann-Scheffé theorem). This gives a systematic approach to finding
minimum MSE unbiased estimators. Here are the definitions: s is sufficient for 6
if for any event E and any value s, the conditional probability Pr[E|s < s] does not
involve 0. s is complete for 6 if the only function g(s) of s, which has zero expected
value whatever the value of 0, is the function which is identically zero, i.e., g(s) =0
for all s.

a. & points Given an unknown parameter 0, and a complete sufficient statistic
s, how can one find that function of s whose expected value is 0% There is an easy
trick: start with any statistic p with E[p] = 0, and use the conditional expectation
Elp|s]. Argue why this conditional expectation does not depend on the unknown
parameter 6, is an unbiased estimator of 0, and why this leads to the same estimate
regardless which p one starts with.
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You need sufficiency for the first part of the problem, the law of iterated expectations
for the second, and completeness for the third.

Set £ = {p < p} in the definition of sufficiency given at the beginning of the Problem to see
that the cdf of p conditionally on s being in any interval does not involve 6, therefore also E[p|s]
does not involve 6.

Unbiasedness follows from the theorem of iterated expectations E [E [p|sﬂ =E[p] =6.

The independence on the choice of p can be shown as follows: Since the conditional expectation

conditionally on s is a function of s, we can use the notation E[p|s] = g1(s) and E[g|s] = ga2(s).
From E[p] = E[¢] follows by the law of iterated expectations E[g1(s) — g2(s)] = 0, therefore by
completeness g1(s) — g2(s) = 0. O

b. 2 points Assume y, ~ NID(u,1) (i = 1,...,n), i.e., they are independent
and normally distributed with mean p and variance 1. Without proof you are allowed
to use the fact that in this case, the sample mean 7 is a complete sufficient statistic
for u. What is the minimum MSE unbiased estimate of 11, and what is that of u??

We have to find functions of 7 with the desired parameters as expected values.
Clearly, 7 is that of u, and 3% — 1/n is that of u2. O

c. 1 point For a given j, let ™ be the probability that the j** observation is
nonnegative, i.e., T = Pr[y; > 0]. Show that m = ®(u) where ® is the cumulative
distribution function of the standard normal. The purpose of the remainder of this
Problem is to find a minimum MSE unbiased estimator of m.
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(10.9.1) m = Prly; > 0] = Prly; — p > —p] = Prly; —p < p] = &(p)
because y; — u ~ N(0,1). We needed symmetry of the distribution to flip the sign. |

d. 1 point As a first step we have to find an unbiased estimator of w. It does
not have to be a good one, any ubiased estimator will do. And such an estimator is
indeed implicit in the definition of w. Let q be the “indicator function” for nonnegative
values, satisfying q(y) = 1 if y > 0 and 0 otherwise. We will be working with the
random variable which one obtains by inserting the j™ observation y; into gq, i.e.,
with ¢ = q(y;). Show that q is an unbiased estimator of .

q(y;) has a discrete distribution and Pr[g(y;) = 1] = Pr[y; > 0] = m by (10.9.1) and
therefore Prg(y;) =0l =1-n
The expected value is E[q(yj)} =1-m)-0+7-1=m. O

e. 2 points Given q we can apply the Lehmann-Scheffé theorem: E[q(y;)|y] is
the best unbiased estimator of m. We will compute E[q(y;)|y] in four steps which build
on each other. First step: since for every indicator function follows Elq(y;)|y] =
Prly; > 0[7], we need for every given value y, the conditional distribution of y;
conditionally on §j = §. (Not just the conditional mean but the whole conditional
distribution.) In order to construct this, we first have to specify exactly the joint
distribution of y; and y:
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They are jointly normal:

Yj Iz 1 1/n
(109.2) [J } ~( M ! {1/n 1/n])

f. 2 points Second step: From this joint distribution derive the conditional
distribution of y; conditionally on y = y. (Not just the conditional mean but the
whole conditional distribution.) For this you will need formula (7.3.18) and (7.3.20).

Here are these two formulas: if v and v are jointly normal, then the conditional
distribution of v conditionally on u = u is Normal with mean

(10.9.3) Elofu = u] = B[] + <% (0 _ g

var|u]
and variance

cov|u, v 2
(10.9.4) var[v|u = u] = var[v] — %
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Plugging v = 7 and v = y; into (7.3.18) and (7.3.20) gives: the conditional distribution of Yj
conditionally on 7 = ¢ has mean

COV[J, Y]

ar[y]

@G-w) =1

(10.9.5) Ely;|7 = 9] = Ely;] + (y— E[@])

1/n

(10.9.6) * m

and variance

(cov[7 ;)2

(10.9.7) varly; 17 = 7] = varly;] — !
va[7)
1/n)? 1
(10.9.8) PR CVLO LN
1/n n
Therefore the conditional distribution of y; conditional on 7 is N . How can this

be motivated? if we know the actual arithmetic mean of the variables, then our best estimate is
that each variable is equal to this arithmetic mean. And this additional knowledge cuts down the
variance by 1/n. O

g. 2 points The variance decomposition (6.6.6) gives a decomposition of var[y,]:
give it here:
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(10.9.9) varly;] = var [E[yj@]] +E [Var[yj |1j}]
(10.9.10) zvar[g]JrE[”;l} :%Jr ”;1

h. Compare the conditional with the unconditional distribution.

Conditional distribution does not depend on unknown parameters, and it has smaller
variance! |

i. 2 points Third step: Compute the probability, conditionally on y = ¥y, that
Yy > 0.

If 2 ~ N(g,(n —1)/n) (I call it = here instead of y; since we use it not with its
familiar unconditional distribution N(u,1) but with a conditional distribution), then Pr[z > 0] =
Priz — § > —g] = Prlz — § < §] = Pr[(z — §)\/n/(n — 1) < gy/n/(n—1)] = &(F\/n/(n - 1))
because (z — §)y/n/(n—1) ~ N(0,1) conditionally on §. Again we needed symmetry of the
distribution to flip the sign. ]

j- 1 point Finally, put all the pieces together and write down Elq(y;)|y], the
conditional expectation of q(g/j) conditionally on 7y, which by the Lehmann-Scheffé
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theorem is the minimum MSE unbiased estimator of m. The formula you should
come up with is

(10.9.11) T =0(7y/n/(n 1)),

where @ is the standard normal cumulative distribution function.

The conditional expectation of q(yj) conditionally on 7 = ¥ is, by part d, simply
the probability that y; > 0 under this conditional distribution. In part i this was computed as

®(gy4/n/(n —1)). Therefore all we have to do is replace § by ¥ to get the minimum MSE unbiased

estimator of m as ®(7+/n/(n — 1)). O

Remark: this particular example did not give any brand new estimators, but it can
rather be considered a proof that certain obvious estimators are unbiased and efficient.
But often this same procedure gives new estimators which one would not have been
able to guess. Already when the variance is unknown, the above erample becomes
quite a bit more complicated, see | , D- 322, example 2]. When the variables
have an exponential distribution then this example (probability of early failure) is
discussed in | , example 4.2.4 on pp. 124/5].
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10.10. The Likelihood Principle

Consider two experiments whose likelihood functions depend on the same pa-
rameter vector 8. Suppose that for particular realizations of the data y, and y,,
the respective likelihood functions are proportional to each other, i.e., £1(0;y,) =
als(0;y,) where o does not depend on 6 although it may depend on y; and y,.
Then the likelihood principle states that identical conclusions should be drawn from
these two experiments about 6.

The likelihood principle is equivalent to the combination of two simpler princi-
ples: the weak sufficiency principle, and the following principle, which seems very
plausible:

Weak Conditonality Principle: Given two possible experiments A and B. A
mixed experiment is one in which one throws a coin and performs A if the coin
shows head and B if it shows tails. The weak conditionality principle states: sup-
pose it is known that the coin shows tails. Then the evidence of the mixed experiment
is equivalent to the evidence gained had one not thrown the coin but performed B
without the possible alternative of A. This principle says therefore that an experi-
ment which one did not do but which one could have performed does not alter the
information gained from the experiment actually performed.

As an application of the likelihood principle look at the following situation:
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182. 3 points  You have a Bernoulli experiment with unknown pa-
rameter 0, 0 < 0 < 1. Person A was originally planning to perform this experiment
12 times, which she does. She obtains 9 successes and 3 failures. Person B was
originally planning to perform the experiment until he has reached 9 successes, and
it took him 12 trials to do this. Should both experimenters draw identical conclusions
from these two experiments or not?

The probability mass function in the first is by (3.7.1) (192) 6°(1 — 6)3, and in the

second it is by (4.1.13) (181) 6°(1 — 0)3. They are proportional, the stopping rule therefore does not
matter! d

10.11. Bayesian Inference

Real-life estimation usually implies the choice between competing estimation
methods all of which have their advantages and disadvantages. Bayesian inference
removes some of this arbitrariness.

Bayesians claim that “any inferential or decision process that does not follow from
some likelihood function and some set of priors has objectively verifiable deficiencies”
[ , p. 617]. The “prior information” used by Bayesians is a formalization of
the notion that the information about the parameter values never comes from the
experiment alone. The Bayesian approach to estimation forces the researcher to cast
his or her prior knowledge (and also the loss function for estimation errors) in a
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mathematical form, because in this way, unambiguous mathematical prescriptions
can be derived as to how the information of an experiment should be evaluated.

To the objection that these are large information requirements which are often
not satisfied, one might answer that it is less important whether these assumptions
are actually the right ones. The formulation of prior density merely ensures that the
researcher proceeds from a coherent set of beliefs.

The mathematics which the Bayesians do is based on a “final” instead of an “ini-
tial” criterion of precision. In other words, not an estimation procedure is evaluated
which will be good in hypothetical repetitions of the experiment in the average, but
one which is good for the given set of data and the given set of priors. Data which
could have been observed but were not observed are not taken into consideration.

Both Bayesians and non-Bayesians define the probabilistic properties of an ex-
periment by the density function (likelihood function) of the observations, which may
depend on one or several unknown parameters. The non-Bayesian considers these
parameters fixed but unknown, while the Bayesian considers the parameters random,
i.e., he symbolizes his prior information about the parameters by a prior probability
distribution.

An excellent example in which this prior probability distribution is discrete is
given in | , pp. 168-172]. In the more usual case that the prior distribution
has a density function, a Bayesian is working with the joint density function of the
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parameter values and the data. Like all joint density function, it can be written
as the product of a marginal and conditional density. The marginal density of the
parameter value represents the beliefs the experimenter holds about the parameters
before the experiment (prior density), and the likelihood function of the experiment
is the conditional density of the data given the parameters. After the experiment has
been conducted, the experimenter’s belief about the parameter values is represented
by their conditional density given the data, called the posterior density.

Let y denote the observations, 6 the unknown parameters, and f(y, @) their
joint density. Then

(10.11.1) f(y,0) = f(0)f(y|0)
(10.11.2) = f(y)f(Oly).
Therefore

_ [(0)/(yl0)
(10.11.3) f(Oly) = )

In this formula, the value of f(y) is irrelevant. It only depends on y but not on
0, but vy is fixed, i.e., it is a constant. If one knows the posterior density function
of @ up to a constant, one knows it altogether, since the constant is determined by
the requirement that the area under the density function is 1. Therefore (10.11.3) is
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usually written as (< means “proportional to”)

(10.11.4) f(Oly) o< £(6)f(y|0);

here the lefthand side contains the posterior density function of the parameter, the
righthand side the prior density function and the likelihood function representing the
probability distribution of the experimental data.

The Bayesian procedure does not yield a point estimate or an interval estimate,
but a whole probability distribution for the unknown parameters (which represents
our information about these parameters) containing the “prior” information “up-
dated” by the information yielded by the sample outcome.

Of course, such probability distributions can be summarized by various measures
of location (mean, median), which can then be considered Bayesian point estimates.
Such summary measures for a whole probability distribution are rather arbitrary.
But if a loss function is given, then this process of distilling point estimates from
the posterior distribution can once more be systematized. For a concrete decision it
tells us that parameter value which minimizes the expected loss function under the
posterior density function, the so-called “Bayes risk.” This can be considered the
Bayesian analog of a point estimate.

For instance, if the loss function is quadratic, then the posterior mean is the
parameter value which minimizes expected loss.
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There is a difference between Bayes risk and the notion of risk we applied previ-
ously. The frequentist minimizes expected loss in a large number of repetitions of the
trial. This risk is dependent on the unknown parameters, and therefore usually no
estimators exist which give minimum risk in all situations. The Bayesian conditions
on the data (final criterion!) and minimizes the expected loss where the expectation
is taken over the posterior density of the parameter vector.

The irreducibility of absence to presences: the absence of knowledge (or also
the absence of regularity itself) cannot be represented by a probability distribution.
Proof: if T give a certain random variable a neutral prior, then functions of this
random variable have non-neutral priors. This argument is made in [Roy97, p. 174].

Many good Bayesians drift away from the subjective point of view and talk about
a stratified world: their center of attention is no longer the world out there versus
our knowledge of it, but the empirical world versus the underlying systematic forces
that shape it.

Bayesians say that frequentists use subjective elements too; their outcomes de-
pend on what the experimenter planned to do, even if he never did it. This again
comes from [Roy97, p. 7?]. Nature does not know about the experimenter’s plans,
and any evidence should be evaluated in a way independent of this.



CHAPTER 11

Interval Estimation

Look at our simplest example of an estimator, the sample mean of an independent
sample from a normally distributed variable. Since the population mean of a normal
variable is at the same time its median, the sample mean will in 50 percent of the
cases be larger than the population mean, and in 50 percent of the cases it will be
smaller. This is a statement about the procedure how the sample mean was obtained,
not about any given observed value of the sample mean. Say in one particular sample
the observed sample mean was 3.5. This number 3.5 is either larger or smaller than
the true mean, there is no probability involved. But if one were to compute sample
means of many different independent samples, then these means would in 50% of the
cases lie above and in 50% of the cases below the population mean. This is why one
can, from knowing how this one given number was obtained, derive the “confidence”

251
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of 50% that the actual mean lies above 3.5, and the same with below. The sample
mean can therefore be considered a one-sided confidence bound, although one usually
wants higher confidence levels than 50%. (I am 95% confident that ¢ is greater or
equal than a certain value computed from the sample.) The concept of “confidence”
is nothing but the usual concept of probability if one uses an initial criterion of
precision.

The following thought experiment illustrates what is involved. Assume you
bought a widget and want to know whether it is defective or not. The obvious
way (which would correspond to a “final” criterion of precision) would be to open
it up and look if it is defective or not. Now assume we cannot do it: there is no
way telling by just looking at it whether it will work. Then another strategy would
be to go by an “initial” criterion of precision: we visit the widget factory and look
how they make them, how much quality control there is and such. And if we find
out that 95% of all widgets coming out of the same factory have no defects, then we
have the “confidence” of 95% that our particular widget is not defective either.

The matter becomes only slightly more mystified if one talks about intervals.
Again, one should not forget that confidence intervals are random intervals. Besides
confidence intervals and one-sided confidence bounds one can, if one regards several
parameters simultaneously, also construct confidence rectangles, ellipsoids and more
complicated shapes. Therefore we will define in all generality:



11. INTERVAL ESTIMATION 353

Let y be a random vector whose distribution depends on some vector of unknown
parameters ¢ € Q. A confidence region is a prescription which assigns to every
possible value y of y a subset R(y) C €2 of parameter space, so that the probability
that this subset covers the true value of ¢ is at least a given confidence level 1 — «,
ie.,

(11.0.5) Pr[R(y) 3 ¢l = ¢py] > 1 —a for all ¢ € Q.

The important thing to remember about this definition is that these regions R(y)
are random regions; every time one performs the experiment one obtains a different
region.

Now let us go to the specific case of constructing an interval estimate for the
parameter p when we have n independent observations from a normally distributed
population ~ N(u,o?) in which neither p nor o2 are known. The vector of ob-
servations is therefore distributed as y ~ N (tp,02I), where ¢y is the vector every
component of which is p.

I will give you now what I consider to be the cleanest argument deriving the
so-called t-interval. It generalizes directly to the F-test in linear regression. It is not
the same derivation which you will usually find, and I will bring the usual derivation
below for comparison. Recall the observation made earlier, based on (9.1.1), that the
sample mean § is that number ¥ = a which minimizes the sum of squared deviations
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> (y; —a)?. (In other words, ¥ is the “least squares estimate” in this situation.) This
least squares principle also naturally leads to interval estimates for u: we will say
that a lies in the interval for p if and only if

> (Y — Cl)2 c
(11.0.6) 72(% —)? <

for some number ¢ > 1. Of course, the value of ¢ depends on the confidence level,
but the beauty of this criterion here is that the value of ¢ can be determined by the
confidence level alone without knowledge of the true values of u or o2.

To show this, note first that (11.0.6) is equivalent to

<c—1

(11.0.7) > (i —a)? - Z)(Qy )7

and then apply the identity > (y; — a)? = >_(y; — ¥)? + n(jJ — a)? to the numerator
to get the following equivalent formulation of (11.0.6):

n(y —a)*
5 <c-—1

(11.0.8) S o7
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The confidence level of this interval is the probability that the true p lies in an
interval randomly generated using this principle. In other words, it is

nm-w* _ .

(11.09) o i —9)?% ~
Although for every known a, the probability that a lies in the confidence interval
depends on the unknown g and o2, we will show now that the probability that the
unknown p lies in the confidence interval does not depend on any unknown parame-
ters. First look at the distribution of the numerator: Since 7 ~ N (u, 02 /n), it follows
(7 — p)? ~ (02/n)x3. We also know the distribution of the denominator. Earlier we
have shown that the variable > (y, — 7)? is a 0%x2_;. It is not enough to know the
distribution of numerator and denominator separately, we also need their joint distri-
bution. For this go back to our earlier discussion of variance estimation again; there
we also showed that 7 is independent of the vector [yl -y e Y, — ;zj]T; there-
fore any function of 7 is also independent of any function of this vector, from which
follows that numerator and denominator in our fraction are independent. Therefore
this fraction is distributed as an o2\? over an independent o?Y2_,, and since the
o%’s cancel out, this is the same as a 7 over an independent y2_;. In other words,
this distribution does not depend on any unknown parameters!
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The definition of a F-distribution with & and m degrees of freedom is the dis-
tribution of a ratio of a Xﬁ /k divided by a \2, /m; therefore if we divide the sum of
squares in the numerator by n — 1 we get a F' distribution with 1 and n — 1 d.f.:

(7 — p)?
1 1

(11.0.10) -
nn—1 (yi - :l/)2

~Fy 1

If one does not take the square in the numerator, i.e., works with 7 — p instead of
(7 — p)?, and takes square root in the denominator, one obtains a ¢-distribution:

y—p
\/% ﬁZ(lh *’!—/)2

The left hand side of this last formula has a suggestive form. It can be written as
(g — )/ sy, where sy is an estimate of the standard deviation of 7 (it is the square
root of the unbiased estimate of the variance of 7). In other words, this ¢-statistic
can be considered an estimate of the number of standard deviations the observed
value of 7 is away from u.

Now we will give, as promised, the usual derivation of the ¢-confidence intervals,
which is based on this interpretation. This usual derivation involves the following
two steps:

(11.0.11)

~ tp-1
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(1) First assume that o2 is known. Then it is obvious what to do; for every
observation y of y construct the following interval:

(11.0.12) R(y) = {u eR: |u - :I]| < N(a/g)ag}.

What do these symbols mean? The interval R (as in region) has y as an argument,
i.e.. it is denoted R(y), because it depends on the observed value y. R is the set of real
numbers. N(,/2) is the upper a/2-quantile of the Normal distribution, i.e., it is that
number ¢ for which a standard Normal random variable z satisfies Pr[z > ¢] = a/2.
Since by the symmetry of the Normal distribution, Pr[z < —c] = a/2 as well, one
obtains for a two-sided test:

From this follows the coverage probability:
(11.0.14)  Pr[R(y) > ] = Prllpe — 7] < Niayayor)
(11.0.15) = Pr[|(u — [_/)/0'17‘ < N(a/Q)] = Pr[|—z| < N(a/z)] =1—«
since z = (y — p) /oy is a standard Normal. Le., R(y) is a confidence interval for u
with confidence level 1 — a.

(2) Second part: what if o2 is not known? Here a seemingly ad-hoc way out

would be to replace 02 by its unbiased estimate s2. Of course, then the Normal
distribution no longer applies. However if one replaces the normal critical values by
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those of the t,,_; distribution, one still gets, by miraculous coincidence, a confidence
level which is independent of any unknown parameters.

183. If y; ~ NID(u,0?) (normally independently distributed) with u
and o unknown, then the confidence interval for y has the form

(11.0.16) R(y) ={ueR: [u—9| < tn1,a/2)57}

Here t(,_g,a/2) 15 the upper a/2-quantile of the t distribution with n — 1 degrees
of freedom, i.e., it is that number ¢ for which a random variable t which has a
distribution with n — 1 degrees of freedom satisfies Pr[t > ¢] = «/2. And s is
obtained as follows: write down the standard deviation of y and replace o by s. One
can also say sy = oy = where oy is an abbreviated notation for std. dev[y] = /var[y].

a. 1 point Write down the formula for sy.

2
Start with o2 = var[y] = Z-, therefore o = o/v/n, and

(11.0.17) sy =s/vVn=

b. 2 points Compute the coverage probability of the interval (11.0.16).
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The coverage probability is

(11.0.18) Pr[R(y) > pu] = Pr[|u - z7| < tn—1;0/2)57]
(11.0.19) < tn—150/2)]
(11.0.20) = Pr| (M )/Ou‘ < tn—13a/2)]
sy/oy
y—w)/o;
(11.0.21) r TJ‘ < tn-1;0/2)]
(11.0.22) =1-oq,

because the expression in the numerator is a standard normal, and the expression in the denominator
is the square root of an independent X%_l divided by n — 1. The random variable between the
absolute signs has therefore a ¢-distribution, and (11.0.22) follows from (30.4.8).

O

c. 2 points Four independent observations are available of a normal random
variable with unknown mean p and variance o: the values are —2, —/2, +v/2, and
+2. (These are not the kind of numbers you are usually reading off a measurement
instrument, but they make the calculation easy). Give a 95% confidence interval for
w. Table 1 gives the percentiles of the t-distribution.
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TABLE 1. Percentiles of Student’s ¢ Distribution.

11. INTERVAL ESTIMATION

satisfies Pr[t,, < z] = p.

Table entry =

p =
n| 750 .900  .950 975 .990 .995
11 1.000 3.078 6.314 12.706 31.821 63.657
21 0.817 1.886 2.920 4.303 6.965  9.925
31 0.765 1.638 2.354 3.182  4}.541 5.841
41 0.741 1.533 2.132  2.776  3.747  4.604
51 0.727 1.476 2.015 2.571 3.365 4.032
In our situation
T— W )

(11.0.23) N

According to table 1, for b = 3.182 follows

(11.0.24) Pr[ts < b] = 0.975

therefore

(11.0.25) Prtz > b] = 0.025
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and by symmetry of the ¢-distribution
(11.0.26) Pr[ts < —b] = 0.025

Now subtract (11.0.26) from (11.0.24) to get

(11.0.27) Pr[—b < t3 < b] = 0.95
or
(11.0.28) Pr[|t3] < b] = 0.95

or, plugging in the formula for t3,

I — W _
(11.0.29) Pr| s/\/ﬁ‘ <b|]=.95
(11.0.30) Pr[|Z — p| < bs/+/n] = .95
(11.0.31) Pr[—bs/vn < p—2 < bs/+/n] = .95
(11.0.32) Pr[z —bs/v/n < p <7+ bs/v/n] = .95

the confidence interval is therefore [? —bs/\v/n,T + bs/\/ﬁ]. In our sample, z = 0, s = % = 4,

n = 4, therefore s2/n = 1, therefore also s/y/n = 1. So the sample value of the confidence interval

is [—3.182, 43.182].
0
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184. Using R, construct 20 samples of 12 observation each from a

N(0,1) distribution, construct the 95% confidence t-intervals for the mean based on
these 20 samples, plot these intervals, and count how many intervals contain the true
mean.

Here are the commands: stdnorms<-matriz(rnorm(240),nrow=12,ncol=20 give:
a 12 x 20 matriz containing 240 independent random mnormals. You get the vector
containing the midpoints of the confidence intervals by the assignment midpts <-
apply (stdnorms,2,mean). About apply see | , p- 130]. The vector contain-
ing the half width of each confidence interval can be obtained by another use of apply:
halfwidth <- (qt(0.975,11)/sqrt(12)) * sqrt(apply(stdnorms,2,var)); To
print the values on the screen you may simply issue the command cbind (midpts-hal fw
But it is much better to plot them. Since such a plot does not have one of the usual
formats, we have to put it together with some low-level commands. See | ,
page 325]. At the very minimum we need the following: frame() starts a new plot.
par(usr = ¢(1,20, range(c(midpts-halfwidth,midpts+hal fwidth)) sets a co-
ordinate system which accommodates all intervals. The 20 confidence intervals are
constructed by segments(1:20, midpts-halfwidth, 1:20, midpts+halfwidth).
Finally, abline(0,0) adds a horizontal line, so that you can see how many intervals
contain the true mean.
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The ecmet package has a function confint.segments which draws such plots
automatically. Choose how many observations in each experiment (the argument
n), and how many confidence intervals (the argument rep), and the confidence level
level (the default is here 95%), and then issue, e.g. the command confint.segments (

Here is the transcript of the function:

confint.segments <- function(n, rep, level = 95/100)
{
stdnormals <- matrix(rnorm(n * rep), nrow = n, ncol = rep)
midpts <- apply(stdnormals, 2, mean)
halfwidth <- qt(p=(1 + level)/2, df=n - 1) * sqrt(1/n)* sqrt(apply(s
frame()
x <= c(l:rep, 1l:rep)
y <- c(midpts + halfwidth, midpts - halfwidth)
par(usr = c(1, rep, range(y)))
segments(l:rep, midpts - halfwidth, l:rep, midpts + halfwidth)
abline(0, 0)
invisible(cbind(x,y))
}

This function draws the plot as a “side effect,” but it also returns a matriz with
the coordinates of the endpoints of the plots (without printing them on the screen).
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This matriz can be used as input for the identify function. If you do for instance
iddata<-confint.segments (12,20) and then identify(iddata, labels=iddatal,2
then the following happens: if you move the mouse cursor on the graph near one of
the endpoints of one of the intervals, and click the left button, then it will print on
the graph the coordinate of the bounday of this interval. Clicking any other button of
the mouse gets you out of the ident<fy function.



CHAPTER 12

Hypothesis Testing

Imagine you are a business person considering a major investment in order to
launch a new product. The sales prospects of this product are not known with
certainty. You have to rely on the outcome of n marketing surveys that measure
the demand for the product once it is offered. If y is the actual (unknown) rate of
return on the investment, each of these surveys here will be modeled as a random
variable, which has a Normal distribution with this mean p and known variance 1.
Let y1,92, - .., yn be the observed survey results. How would you decide whether to
build the plant?

The intuitively reasonable thing to do is to go ahead with the investment if
the sample mean of the observations is greater than a given value ¢, and not to do

265
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it otherwise. This is indeed an optimal decision rule, and we will discuss in what
respect it is, and how ¢ should be picked.

Your decision can be the wrong decision in two different ways: either you decide
to go ahead with the investment although there will be no demand for the product,
or you fail to invest although there would have been demand. There is no decision
rule which eliminates both errors at once; the first error would be minimized by the
rule never to produce, and the second by the rule always to produce. In order to
determine the right tradeoff between these errors, it is important to be aware of their
asymmetry. The error to go ahead with production although there is no demand has
potentially disastrous consequences (loss of a lot of money), while the other error
may cause you to miss a profit opportunity, but there is no actual loss involved, and
presumably you can find other opportunities to invest your money.

To express this asymmetry, the error with the potentially disastrous consequences
is called “error of type one,” and the other “error of type two.” The distinction
between type one and type two errors can also be made in other cases. Locking up
an innocent person is an error of type one, while letting a criminal go unpunished
is an error of type two; publishing a paper with false results is an error of type one,
while foregoing an opportunity to publish is an error of type two (at least this is
what it ought to be).
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Such an asymmetric situation calls for an asymmetric decision rule. One needs
strict safeguards against committing an error of type one, and if there are several
decision rules which are equally safe with respect to errors of type one, then one will
select among those that decision rule which minimizes the error of type two.

Let us look here at decision rules of the form: make the investment if 7 > c.
An error of type one occurs if the decision rule advises you to make the investment
while there is no demand for the product. This will be the case if 7 > ¢ but p < 0.
The probability of this error depends on the unknown parameter u, but it is at most
a = Pr[y > ¢| = 0]. This maximum value of the type one error probability is called
the significance level, and you, as the director of the firm, will have to decide on «
depending on how tolerable it is to lose money on this venture, which presumably
depends on the chances to lose money on alternative investments. It is a serious
shortcoming of the classical theory of hypothesis testing that it does not provide
good guidelines how « should be chosen, and how it should change with sample size.
Instead, there is the tradition to choose a to be either 5% or 1% or 0.1%. Given «,
a table of the cumulative standard normal distribution function allows you to find
that ¢ for which Pr[y > ¢|p = 0] = a.

185. 2 points Assume each y; ~ N(p,1), n =400 and o = 0.05, and
different y,; are independent. Compute the value ¢ which satisfies Pr[y > c¢|p=0] =
a. You shoule either look it up in a table and include a zerox copy of the table with
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the entry circled and the complete bibliographic reference written on the zerox copy,
or do it on a computer, writing exactly which commands you used. In R, the function
gnorm does what you need, find out about it by typing help (qgnorm).

In the case n = 400, 7 has variance 1/400 and therefore standard deviation 1/20 =
0.05. Therefore 207 is a standard normal: from Pr[y > c¢|p = 0] = 0.05 follows Pr[207 > 20c|p =
0] = 0.05. Therefore 20c = 1.645 can be looked up in a table, perhaps use [ , p. 986], the
row for oo d.f.

Let us do this in R. The p-“quantile” of the distribution of the random variable y is defined
as that value ¢ for which Prly < ¢] = p. If vy is normally distributed, this quantile is computed
by the R-function gnorm(p, mean=0, sd=1, lower.tail=TRUE). In the present case we need either
gnorm(p=1-0.05, mean=0, sd=0.05) or gnorm(p=0.05, mean=0, sd=0.05, lower.tail=FALSE) which
gives the value 0.08224268.

O

Choosing a decision which makes a loss unlikely is not enough; your decision
must also give you a chance of success. E.g., the decision rule to build the plant if
—0.06 < g < —0.05 and not to build it otherwise is completely perverse, although
the significance level of this decision rule is approximately 4% (if n = 100). In other
words, the significance level is not enough information for evaluating the performance
of the test. You also need the “power function,” which gives you the probability
with which the test advises you to make the “critical” decision, as a function of
the true parameter values. (Here the “critical” decision is that decision which might
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FIGURE 1. Eventually this Figure will show the Power function of
a one-sided normal test, i.e., the probability of error of type one as
a function of u; right now this is simply the cdf of a Standard Normal

potentially lead to an error of type one.) By the definition of the significance level, the
power function does not exceed the significance level for those parameter values for
which going ahead would lead to a type 1 error. But only those tests are “powerful”
whose power function is high for those parameter values for which it would be correct
to go ahead. In our case, the power function must be below 0.05 when p < 0, and
we want it as high as possible when p > 0. Figure 1 shows the power function for
the decision rule to go ahead whenever 77 > ¢, where c is chosen in such a way that
the significance level is 5%, for n = 100.

The hypothesis whose rejection, although it is true, constitutes an error of type
one, is called the null hypothesis, and its alternative the alternative hypothesis. (In the
examples the null hypotheses were: the return on the investment is zero or negative,
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the defendant is innocent, or the results about which one wants to publish a research
paper are wrong.) The null hypothesis is therefore the hypothesis that nothing is
the case. The test tests whether this hypothesis should be rejected, will safeguard
against the hypothesis one wants to reject but one is afraid to reject erroneously. If
you reject the null hypothesis, you don’t want to regret it.

Mathematically, every test can be identified with its null hypothesis, which is
a region in parameter space (often consisting of one point only), and its “critical
region,” which is the event that the test comes out in favor of the “critical decision,”
i.e., rejects the null hypothesis. The critical region is usually an event of the form
that the value of a certain random variable, the “test statistic,” is within a given
range, usually that it is too high. The power function of the test is the probability
of the critical region as a function of the unknown parameters, and the significance
level is the maximum (or, if this maximum depends on unknown parameters, any
upper bound) of the power function over the null hypothesis.

186. Mr. Jones is on trial for counterfeiting Picasso paintings, and
you are an expert witness who has developed fool-proof statistical significance tests
for identifying the painter of a given painting.

a. 2 points There are two ways you can set up your test.
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a: You can either say: The null hypothesis is that the painting was done by
Picasso, and the alternative hypothesis that it was done by Mr. Jones.

b: Alternatively, you might say: The null hypothesis is that the painting was
done by Mr. Jones, and the alternative hypothesis that it was done by Pi-
casso.

Does it matter which way you do the test, and if so, which way is the correct one.
Give a reason to your answer, i.e., say what would be the consequences of testing in
the incorrect way.

The determination of what the null and what the alternative hypothesis is depends
on what is considered to be the catastrophic error which is to be guarded against. On a trial, Mr.
Jones is considered innocent until proven guilty. Mr. Jones should not be convicted unless he can be
proven guilty beyond “reasonable doubt.” Therefore the test must be set up in such a way that the
hypothesis that the painting is by Picasso will only be rejected if the chance that it is actually by
Picasso is very small. The error of type one is that the painting is considered counterfeited although
it is really by Picasso. Since the error of type one is always the error to reject the null hypothesis
although it is true, solution a. is the correct one. You are not proving, you are testing. |

b. 2 points After the trial a customer calls you who is in the process of acquiring
a very expensive alleged Picasso painting, and who wants to be sure that this painting
is not one of Jones’s falsifications. Would you now set up your test in the same way
as in the trial or in the opposite way?
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It is worse to spend money on a counterfeit painting than to forego purchasing a
true Picasso. Therefore the null hypothesis would be that the painting was done by Mr. Jones, i.e.,
it is the opposite way. g

12.1. Duality between Significance Tests and Confidence Regions

There is a duality between confidence regions with confidence level 1 — a and
certain significance tests. Let us look at a family of significance tests, which all have
a significance level < «, and which define for every possible value of the parameter
¢y € Q a critical region C(¢y) for rejecting the simple null hypothesis that the true
parameter is equal to ¢,. The condition that all significance levels are < « means
mathematically

(12.1.1) Pr[C(¢)|d = o] < for all ¢, € Q.

Mathematically, confidence regions and such families of tests are one and the
same thing: if one has a confidence region R(y), one can define a test of the null
hypothesis ¢ = ¢, as follows: for an observed outcome y reject the null hypothesis
if and only if ¢ is not contained in R(y). On the other hand, given a family of tests,
one can build a confidence region by the prescription: R(y) is the set of all those
parameter values which would not be rejected by a test based on observation y.
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187. Show that with these definitions, equations (11.0.5) and (12.1.1)
are equivalent.

Since ¢ € R(y) iff y € C’(¢) (the complement of the critical region rejecting that
the parameter value is ¢), it follows Pr[R(y) € ¢l = ¢g] =1 — Pr[C(¢g)|p = ¢pp] > 1 —a. O

This duality is discussed in [ , pp- 177-182].

12.2. The Neyman Pearson Lemma and Likelihood Ratio Tests

Look one more time at the example with the fertilizer. Why are we considering
only regions of the form 7 > pg, why not one of the form p; <7 < ps, or maybe not
use the mean but decide to build if y; > us? Here the uq, 2, and pg can be chosen
such that the probability of committing an error of type one is still a.

It seems intuitively clear that these alternative decision rules are not reasonable.
The Neyman Pearson lemma proves this intuition right. It says that the critical
regions of the form § > pg are uniformly most powerful, in the sense that every
other critical region with same probability of type one error has equal or higher
probability of committing error of type two, regardless of the true value of .

Here are formulation and proof of the Neyman Pearson lemma, first for the
case that both null hypothesis and alternative hypothesis are simple: Hy : 6 = 6,
Hy : 0 = 0. In other words, we want to determine on the basis of the observations of
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the random variables 4, ..., y,, whether the true 8 was 6y or 61, and a determination
0 = 0, when in fact 8 = 6y is an error of type one. The critical region C' is the set of
all outcomes that lead us to conclude that the parameter has value 6.

The Neyman Pearson lemma says that a uniformly most powerful test exists in
this situation. It is a so-called likelihood-ratio test, which has the following critical
region:

(1221) C= {yh sy Ynt L(y1> s Yns 91) > kL(yh s Yn;g 90)}
C' consists of those outcomes for which 6, is at least k times as likely as 6y (where k&
is chosen such that Pr[C0y] = ).

To prove that this decision rule is uniformly most powerful, assume D is the crit-
ical region of a different test with same significance level a, i.e., if the null hypothesis
is correct, then C' and D reject (and therefore commit an error of type one) with
equally low probabilities a. In formulas, Pr[C|0g] = Pr[D|6p] = . Look at figure 2
with C =U UV and D =V UW. Since C' and D have the same significance level,
it follows

(12.2.2) Pr[U]6] = Pr[IW|6].
Also
(12.2.3) Pr[U]61] > kPr[U|00],
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since U C C' and C were chosen such that the likelihood (density) function of the
alternative hypothesis is high relatively to that of the null hypothesis. Since IV lies
outside (', the same argument gives

(12.2.4) Pr[IV/

61] < k Pr[IV]6,)].

Linking those two inequalities and the equality gives

(12.2.5) Pr[IV|61] < kPr[IV|0o] = k Pr[U|8o] < Pr[U/]61],

hence Pr[D|#;] < Pr[C6;]. In other words, if 6, is the correct parameter value, then
C will discover this and reject at least as often as D. Therefore C is at least as
powerful as D, or the type two error probability of C' is at least as small as that of
D.

Back to our fertilizer example. To make both null and alternative hypotheses
simple, assume that either y = 0 (fertilizer is ineffective) or p = t for some fixed
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FIGURE 2. Venn Diagram for Proof of Neyman Pearson Lemma ec660.1005

t > 0. Then the likelihood ratio critical region has the form

(12.2.6)
1 no_a 2 2 1 1,2 2
— . 3=+ F(yn—1t)7) > —5(yi++yn)
C = {ynseeesams (=) e 2 (o) e o
(12.2.7)

1 1
={vitns = (=07 (= 1)) 2k = ST+ )}
(12.2.8)

t2n
=dy1. .oyt + -4+ y,) — — > Ink}
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i.e., C' has the form § > some constant. The dependence of this constant on k is not
relevant, since this constant is usually chosen such that the maximum probability of
error of type one is equal to the given significance level.

188. 8 points You have four independent observations vy, . ..,ys from
an N(p,1), and you are testing the null hypothesis p = 0 against the alternative
hypothesis p = 1. For your test you are using the likelihood ratio test with critical
TegION

(12.2.10)  C=A{y1,..-,vya: L(y1,...,ya; 0 =1) >3.633- L(y1,...,ya; 4 =0)}.

Compute the significance level of this test. (According to the Neyman-Pearson
lemma, this is the uniformly most powerful test for this significance level.) Hints:
In order to show this you need to know that In3.633 = 1.29, everything else can be
done without a calculator. Along the way you may want to show that C can also be
written in the form C = {y1,...,ya: y1 + -+ + ya > 3.290}.

Here is the equation which determines when y1,...,y4 lie in C:
1 1
(12.2.11) (2m)~2 exp—3 ((y1 1%+ (g — 1)2> > 3.633 - (2mr) 2 exp—o (y% +o 4 yi)

(12.2.12) f% ((y1 — 1?4 (ya - 1)2) > In(3.633) — % (y% et yi)

(12.2.13) Y1+ 4 ya — 2> 1.290
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Since Pr[y; + -+ +yy > 3.290] = Pr[z = (y; + - - +vy4)/2 > 1.645] and = is a standard normal, one
obtains the significance level of 5% from the standard normal table or the ¢-table. ]

Note that due to the properties of the Normal distribution, this critical region,
for a given significance level, does not depend at all on the value of ¢t. Therefore this
test is uniformly most powerful against the composite hypothesis p > 0.

One can als write the null hypothesis as the composite hypothesis p < 0, because
the highest probability of type one error will still be attained when p = 0. This
completes the proof that the test given in the original fertilizer example is uniformly
most powerful.

Most other distributions discussed here are equally well behaved, therefore uni-
formly most powerful one-sided tests exist not only for the mean of a normal with
known variance, but also the variance of a normal with known mean, or the param-
eters of a Bernoulli and Poisson distribution.

However the given one-sided hypothesis is the only situation in which a uniformly
most powerful test exists. In other situations, the generalized likelihood ratio test has
good properties even though it is no longer uniformly most powerful. Many known
tests (e.g., the F' test) are generalized likelihood ratio tests.

Assume you want to test the composite null hypothesis Hy : 8 € w, where w is
a subset of the parameter space, against the alternative Hy : 6 € , where 2 D w
is a more comprehensive subset of the parameter space. w and 2 are defined by
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functions with continuous first-order derivatives. The generalized likelihood ratio
critical region has the form

Supgeq L(Z1,...,2n;0)

12.2.14 C = R o
( ) o SUpgey, L(@1, ..., 20;0)

> k)

where k is chosen such that the probability of the critical region when the null
hypothesis is true has as its maximum the desired significance level. It can be shown
that twice the log of this quotient is asymptotically distributed as a ngs, where ¢
is the dimension of © and s the dimension of w. (Sometimes the likelihood ratio
is defined as the inverse of this ratio, but whenever possible we will define our test
statistics so that the null hypothjesis is rejected if the value of the test statistic is
too large.)

In order to perform a likelihood ratio test, the following steps are necessary:
First construct the MLE’s for § € Q and 6 € w, then take twice the difference of the
attained levels of the log likelihoodfunctions, and compare with the y? tables.

12.3. The Wald, Likelihood Ratio, and Lagrange Multiplier Tests

Let us start with the generalized Wald test. Assume @ is an asymptotically
normal estimator of 8, whose asymptotic distribution is N (6, ¥). Assume further-
more that ¥ is a consistent estimate of . Then the following statistic is called the
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generalized Wald statistic. It can be used for an asymtotic test of the hypothesis
h(0) = o, where h is a g-vector-valued differentiable function:

T
Oh ‘ilah

(12.3.1) GW. = h(é)T{BT ; a—e‘é}flh(é)

Under the null hypothesis, this test statistic is asymptotically distributed as a ><§. To
understand this, note that for all @ close to 8, h(6) =< h(8) + (%—@r é(@ — 0). Taking

covariances

+
(12.3.2) a—hT‘xpai‘
o00'la 00 1o
is an estimate of the covariance matrix of h(8). Le., one takes h(0) twice and
“divides” it by its covariance matrix.

Now let us make more stringent assumptions. Assume the density f.(x;6) of
x depends on the parameter vector 8. We are assuming that the conditions are
satisfied which ensure asymptotic normality of the maximum likelihood estimator 8

and also of 8, the constrained maximum likelihood estimator subject to the constraint
h(0) = o.
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There are three famous tests to test this hypothesis, which asymptotically are
all distributed like 'Xg. The likehihood-ratio test is
maxp,(g)—o [y (¥; 6) A ~
12.3.3 LRT = —21o =2(lo ,0) —lo ,0
( ) & " maxe [, (v: 0) (log fy (v, 0) —log fy(y, 0))
It rejects if imposing the constraint reduces the attained level of the likelihood func-
tion too much.
The Wald test has the form

oh ‘é(aﬂogf(y;e)‘e)13hT‘é}1h(é)

12.3.4 Wald = —h(0)"
( ) ©) {aeT 0000 00

a2 . —1
To understand this formula, note that —(5 {%fo@#mb is the Cramer Rao

lower bound, and since all maximum likelihood estimators asymptotically attain the
CRLB, it is the asymptotic covariance matrix of 6. If one does not take the expected
value but plugs 6 into these partial derivatives of the log likelihood function, one
gets a consistent estimate of the asymtotic covariance matrix. Therefore the Wald
test is a special case of the generalized Wald test.

Finally the score test has the form

810gf(y;9)’ (3210gf(y;9)’ )—15'10gf(y;9)T
00" ] 00007 |8 00 8

(12.3.5) Score = —
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This test tests whether the score, i.e., the gradient of the unconstrained log likelihood
function, evaluated at the constrained maximum likelihood estimator, is too far away
from zero. To understand this formula, remember that we showed in the proof of

the Cramer-Rao lower bound that the negative of the expected value of the Hessian

e 9% log f(y36)
90001

twice and divide it by its estimated covariance matrix.

} is the covariance matrix of the score, i.e., here we take the score



CHAPTER 13

General Principles of Econometric Modelling

[ , 6.1 on p. 220] says: “An econometric study begins with a set of propo-
sitions about some aspect of the economy. The theory specifies a set of precise,
deterministic relationships among variables. Familiar examples are demand equa-
tions, production functions, and macroeconomic models. The empirical investigation
provides estimates of unknown parameters in the model, such as elasticities or the
marginal propensity to consume, and usually attempts to measure the validity of the
theory against the behavior of the observable data.”

[ , p. 6] distinguishes between two extremes: ““Theory-driven’ approaches,
in which the model is derived from a priori theory and calibrated from data evidence.
They suffer from theory dependence in that their credibility depends on the credi-
bility of the theory from which they arose—when that theory is discarded, so is the

292
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associated evidence.” The other extreme is ““‘Data-driven’ approaches, where models
are developed to closely describe the data ... These suffer from sample dependence in
that accidental and transient data features are embodied as tightly in the model as
permanent aspects, so that extension of the data set often reveal predictive failure.”

Hendry proposes the following useful distinction of 4 levels of knowledge:

A Consider the situation where we know the complete structure of the process
which gernerates economic data and the values of all its parameters. This is the
equivalent of a probability theory course (example: rolling a perfect die), but involves
economic theory and econometric concepts.

B consider a known economic structure with unknown values of the parameters.
Equivalent to an estimation and inference course in statistics (example: independent
rolls of an imperfect die and estimating the probabilities of the different faces) but
focusing on econometrically relevant aspects.

C is “the empirically relevant situation where neither the form of the data-
generating process nor its parameter values are known. (Here one does not know
whether the rolls of the die are independent, or whether the probabilities of the
different faces remain constant.) Model discovery, evaluation, data mining, model-
search procedures, and associated methodological issues.

D Forecasting the future when the data outcomes are unknown. (Model of money
demand under financial innovation).
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The example of Keynes’s consumption function in | , Pp- 221/22] sounds at
the beginning as if it was close to B, but in the further discussion Greene goes more
and more over to C. It is remarkable here that economic theory usually does not yield
functional forms. Greene then says: the most common functional form is the linear
one ¢ = o+ fr with @ > 0 and 0 < 8 < 1. He does not mention the aggregation
problem hidden in this. Then he says: “But the linear function is only approximate;
in fact, it is unlikely that consumption and income can be connected by any simple
relationship. The deterministic relationship is clearly inadequate.” Here Greene
uses a random relationship to model a relationship which is quantitatively “fuzzy.”
This is an interesting and relevant application of randomness.

A sentence later Green backtracks from this insight and says: “We are not so
ambitious as to attempt to capture every influence in the relationship, but only those
that are substantial enough to model directly.” The “fuzziness” is not due to a lack
of ambition of the researcher, but the world is inherently quantiatively fuzzy. It is
not that we don’t know the law, but there is no law; not everything that happens in
an economy is driven by economic laws. Greene’s own example, in Figure 6.2, that
during the war years consumption was below the trend line, shows this.

Greene’s next example is the relationship between income and education. This
illustrates multiple instead of simple regression: one must also include age, and then
also the square of age, even if one is not interested in the effect which age has, but
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in order to “control” for this effect, so that the effects of education and age will not
be confounded.

189. Why should a regression of income on education include not only
age but also the square of age?

Because the effect of age becomes smaller with increases in age. ]

Critical Realist approaches are [Ron02] and [Mor02].



CHAPTER 14

Mean-Variance Analysis in the Linear Model

In the present chapter, the only distributional assumptions are that means and
variances exist. (From this follows that also the covariances exist).

14.1. Three Versions of the Linear Model

As background reading please read [ , Chapter 1].

Following | , Chapter 5], we will start with three different linear statisti-
cal models. Model 1 is the simplest estimation problem already familiar from chapter
9, with n independent observations from the same distribution, call them v, ..., v,.
The only thing known about the distribution is that mean and variance exist, call
them p and o2. In order to write this as a special case of the “linear model,” define

27
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€; = y;— I, and define the vectors y = [yl Yy - yn} T, €= [51 g e an] T7
and ¢ = [1 1 - 1] T. Then one can write the model in the form
(14.1.1) y=tu+e e~ (0,0°I)

The notation & ~ (0, 02I) is shorthand for £[€] = o (the null vector) and V[e] = %I
(0% times the identity matrix, which has 1’s in the diagonal and 0s elsewhere). p is
the deterministic part of all the y,, and ¢; is the random part.

Model 2 is “simple regression” in which the deterministic part p is not constant
but is a function of the nonrandom variable z. The assumption here is that this
function is differentiable and can, in the range of the variation of the data, be ap-

proximated by a linear function | , pp- 19-20]. Le., each element of y is a
constant « plus a constant multiple of the corresponding element of the nonrandom
vector x plus a random error term: y, = o+ x4 + ¢, t = 1,...,n. This can be
written as

Up 1 1 €1 1z €1

@

(14.1.2) l=lilar B =] MJr

Yn 1 Tp n 1z, En
or

(14.1.3) y=XpB+e &~ (0,00
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190. 1 point Compute the matriz product

{125}3?
03 1]|3 ¢

o = O

1-4+2-2+5-3 1-0+2-1+5-8| |23 42
0-443-2+1-3 0-0+3-1+1-8 |9 11

]:

If the systematic part of y depends on more than one variable, then one needs
multiple regression, model 3. Mathematically, multiple regression has the same form
(14.1.3), but this time X is arbitrary (except for the restriction that all its columns
are linearly independent). Model 3 has Models 1 and 2 as special cases.

Multiple regression is also used to “correct for” disturbing influences. Let me
explain. A functional relationship, which makes the systematic part of y dependent
on some other variable x will usually only hold if other relevant influences are kept
constant. If those other influences vary, then they may affect the form of this func-
tional relation. For instance, the marginal propensity to consume may be affected
by the interest rate, or the unemployment rate. This is why some econometricians

O
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(Hendry) advocate that one should start with an “encompassing” model with many
explanatory variables and then narrow the specification down by hypothesis tests.
Milton Friedman, by contrast, is very suspicious about multiple regressions, and
argues in | , Dp. 48/9] against the encompassing approach.

Friedman does not give a theoretical argument but argues by an example from
Chemistry. Perhaps one can say that the variations in the other influences may have
more serious implications than just modifying the form of the functional relation:
they may destroy this functional relation altogether, i.e., prevent any systematic or
predictable behavior.

observed | unobserved
random Yy €
nonrandom X 3, o2

14.2. Ordinary Least Squares

In the model y = X3+ &, where &€ ~ (0,0°I), the OLS-estimate 3 is defined to
be that value 8 = 3 which minimizes

(14.2.1) SSE=(y—-XB) (y—XB) =y y—2y"XB+B' X XB.

Problem 156 shows that in model 1, this principle yields the arithmetic mean.



14.2. ORDINARY LEAST SQUARES 391

191. 2 points Prove that, if one predicts a random wvariable y by a
constant a, the constant which gives the best MSE is a = E[y|, and the best MSE one
can get is var[y].

El(y — a)?] = E[y?] — 2aE[y] + a?. Differentiate with respect to a and set zero to
get a = E[y]. One can also differentiate first and then take expected value: E[2(y — a)] = 0. a

We will solve this minimization problem using the first-order conditions in vector
notation. As a preparation, you should read the beginning of Appendix C about
matrix differentiation and the connection between matrix differentiation and the
Jacobian matrix of a vector function. All you need at this point is the two equations
(C.1.6) and (C.1.7). The chain rule (C.1.23) is enlightening but not strictly necessary
for the present derivation.

The matrix differentiation rules (C.1.6) and (C.1.7) allow us to differentiate
(14.2.1) to get

(14.2.2) dSSE/OBT = —2y"X +28T X T X.

Transpose it (because it is notationally simpler to have a relationship between column
vectors), set it zero while at the same time replacing 3 by 3, and divide by 2, to get
the “normal equation”

(14.2.3) XTy=X"X3.
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Due to our assumption that all columns of X are linearly independent, X TX has
an inverse and one can premultiply both sides of (14.2.3) by (X " X))~

(14.2.4) B=(X"X)"'XTy.

If the columns of X are not linearly independent, then (14.2.3) has more than one
solution, and the normal equation is also in this case a necessary and sufficient
condition for 3 to minimize the SSFE (proof in Problem 194).

192. 4 points Using the matriz differentiation rules
(14.2.5) ow'z/0x" =w'
(14.2.6) ox"Max/0x" =2x" M
for symmetric M, compute the least-squares estimate B which minimizes
(14.2.7) SSE=(y—XB)"(y—XpB)
You are allowed to assume that X ' X has an inverse.

First you have to multiply out
(14.2.8) (w—XB) (y—XB) =y y—20"XB+8 X XB.
The matrix differentiation rules (14.2.5) and (14.2.6) allow us to differentiate (14.2.8) to get
(14.2.9) 8SSE/BT = -2y X +28TXTX.
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Transpose it (because it is notationally simpler to have a relationship between column vectors), set
it zero while at the same time replacing 8 by @, and divide by 2, to get the “normal equation”

(14.2.10) XTy=XTX85.
Since X T X has an inverse, one can premultiply both sides of (14.2.10) by (X T X)~':
(14.2.11) B=(XTX)"1XTy.

O

193. 2 points Show the following: if the columns of X are linearly
independent, then X " X has an inverse. (X itself is not necessarily square.) In your
proof you may use the following criteria: the columns of X are linearly independent
(this is also called: X has full column rank) if and only if Xa = o implies a = o.
And a square matriz has an inverse if and only if its columns are linearly independent.

We have to show that any a which satisfies X " Xa = o is itself the null vector.
From X Xa = o follows a” X " Xa = 0 which can also be written || Xal|? = 0. Therefore Xa = o,
and since the columns of X are linearly independent, this implies a = o. |

194. 3 points In this Problem we do not assume that X has full column
rank, it may be arbitrary.

a. The normal equation (14.2.3) has always at least one solution. Hint: you
are allowed to use, without proof, equation (A.3.3) in the mathematical appendiz.
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With this hint it is easy: 8= (X" X)~ X "y is a solution. O

b. If@ satisfies the normal equation and B is an arbitrary vector, then
(142.12) (y—XB) (y— XB) = (y— XB) (v - XB)+(B-B) X" X(B-P).
This is true even if X has deficient rank, and it will be shown here in this general
case. To prove (14.2.12), write (14.2.1) as SSE = ((y— X ) - X (8- 7)) T (w—XB)-X(B-8));
since 3 satisfies (14.2.3), the cross product terms disappear. 0

c. Conclude from this that the normal equation is a necessary and sufficient
condition characterizing the values 3 minimizing the sum of squared errors (14.2.12).

(14.2.12) shows that the normal equations are sufficient. For necessity of the normal
equations let B be an arbitrary solution of the normal equation, we have seen that there is always
at least one. Given B, it follows from (14.2.12) that for any solution 3* of the minimization,
XTX(B8* — 3) = 0. Use (14.2.3) to replace (X' X)3 by X Ty to get X ' X3* = X . O

It is customary to use the notation X ,é = qj for the so-called fitted values, which
are the estimates of the vector of means n = X 3. Geometrically, 7 is the orthogonal
projection of y on the space spanned by the columns of X. See Theorem A.6.1 about
projection matrices.

The vector of differences between the actual and the fitted values is called the
vector of “residuals” é = y — §. The residuals are “predictors” of the actual (but
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unobserved) values of the disturbance vector €. An estimator of a random magnitude
is usually called a “predictor,” but in the linear model estimation and prediction are
treated on the same footing, therefore it is not necessary to distinguish between the
two.

You should understand the difference between disturbances and residuals, and
between the two decompositions

(14.2.13) y=XB+e=XpB+¢
195. 2 points Assume that X has full column rank. Show that é = My
where M =T — X (X" X)"'X". Show that M is symmetric and idempotent.

By definition, ¢ =y — X3 =y - X(X ' X)"'Xy = (I - X(XTX)"1X)y. Idem-
potent, i.e. MM = M:
(14.2.14)
MM=(IT-X(X"X)'Xx")(IT-x(xX"x)7'x") =I1-Xx(X"X)7'x" - x(x"x)"'x"

|
196. Assume X has full column rank. Define M = I-X (X" X)"1X T

a. 1 point Show that the space M projects on is the space orthogonal to all
columns in X, i.e., Mq = q if and only if XTq =o.
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X T q = o clearly implies Mq = q. Conversely, Mq = q implies X(X T X)"1XTq =
o. Premultiply this by X to get X "¢ = o. |

b. 1 point Show that a vector q lies in the range space of X, i.e., the space
spanned by the columns of X, if and only if Mq = o. In other words, {q: ¢ = Xa
for some a} = {q: Mq = o}.

First assume Mq = o. This means ¢ = X(X'X) 'XTq = Xa with a =
(XTX)"1XTq. Conversely, if ¢ = Xa then Mq= MXa = Oa = o. ]

197. In 2-dimensional space, write down the projection matrix on the
diagonal line y = x (call it E), and compute Ez for the three vectors a = [?],
b= (2], and ¢ = [3]. Draw these vectors and their projections.

Assume we have a dependent variable y and two regressors @1 and x2, each with
15 observations. Then one can visualize the data either as 15 points in 3-dimensional
space (a 3-dimensional scatter plot), or 3 points in 15-dimensional space. In the
first case, each point corresponds to an observation, in the second case, each point
corresponds to a variable. In this latter case the points are usually represented
as vectors. You only have 3 vectors, but each of these vectors is a vector in 15-
dimensional space. But you do not have to draw a 15-dimensional space to draw
these vectors; these 3 vectors span a 3-dimensional subspace, and ¢ is the projection
of the vector y on the space spanned by the two regressors not only in the original
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15-dimensional space, but already in this 3-dimensional subspace. In other words,
[ , Figure 1.3] is valid in all dimensions! In the 15-dimensional space, each
dimension represents one observation. In the 3-dimensional subspace, this is no
longer true.

198. “Simple regression” is regression with an intercept and one ex-
planatory variable only, i.e.,

(14.2.15) Y, = o+ By + &

Here X = [L :L'] and 3 = [a ﬁ]T. Evaluate (14.2.4) to get the following formulas
for B = [d §]T
TP Y = T Ty,
ny ai — (L)
nY LYy — 3 LYYy
ny i — (L)

(14.2.16)

>

S

QD
Il

(14.2.17)

LT Je T
(14.2.18) X'X= |:$T] v 2] = [wn wTw} - {ant gié}
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1 z2 fot
i R R

.
14.2.20 XTy=|"2Y| = Yt
( ) Y {wTy Ty,

Therefore (X T X)~' X Ty gives equations (14.2.16) and (14.2.17).

199. Show that

n

(14.2.21) Z(mt —Z)(y; — 7) thljt — NIy

t=1

(Note, as explained in [DMI3, pp. 27/8] or [Gref)’?, Section 5.4.1], that the left

hand side is computationally much more stable than the right.)

Simply multiply out.

200. Show that (14.2.17) and (14.2.16) can also be written as follows:

o 2@ —2)(y, —7)
(14.2.22) A= S,
(14.2.23) =7 (7
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Using Z x; = nZ and Zi‘/i =ny in (14.2.17), it can be written as

L Doy, —nEj
(14.2.24) B = W
t

Now apply Problem 199 to the numerator of (14.2.24), and Problem 199 with y = x to the denom-
inator, to get (14.2.22).

To prove equation (14.2.23) for &, let us work backwards and plug (14.2.24) into the righthand
side of (14.2.23):

Uy @l —yna® — Ty wry, + NIy
Zm? — nx?

The second and the fourth term in the numerator cancel out, and what remains can be shown to
be equal to (14.2.16). O

(14.2.25) j— 0=

<

201. 8 points Show that in the simple regression model, the fitted
regression line can be written in the form

(14.2.26) 0, = 7+ Bxy — ).

From this follows in particular that the fitted regression line always goes through the
point T,7.
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Follows immediately if one plugs (14.2.23) into the defining equation ¢, = & +
éxt O

Formulas (14.2.22) and (14.2.23) are interesting because they express the regres-
sion coefficients in terms of the sample means and covariances. Problem 202 derives
the properties of the population equivalents of these formulas:

202. Given two random variables x and y with finite variances, and
var[z] > 0. You know the expected values, variances and covariance of x and y, and
you observe x, but y is unobserved. This question explores the properties of the Best
Linear Unbiased Predictor (BLUP) of y in this situation.

a. 4 points Give a direct proof of the following, which is a special case of theorem
20.1.1: If you want to predict y by an affine expression of the form a+bx, you will get
the lowest mean squared error MSE with b = cov[z,y]/ var[z] and a = E[y] — bE[z].

The MSE is variance plus squared bias (see e.g. problem 165), therefore
(14.2.27) MSE[a + bz; y] = var[a + bz — y] + (E[a + bz — y])? = var[bz — y] + (a — E[y] + bE[z])2.

Therefore we choose a so that the second term is zero, and then you only have to minimize the first
term with respect to b. Since

(14.2.28) var[bz — y] = b2 var[z] — 2bcov(z, y] + var[y]
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the first order condition is
(14.2.29) 2bvar|z] — 2 cov[z,y] =0

O

b. 2 points For the first-order conditions you needed the partial derivatives
2 E[(y—a—bx)? and & E[(y—a—>bx)?]. It is also possible, and probably shorter, to

interchange taking expected value and partial derivative, i.e., to compute E[%(y —

a — ba:)2} and E{%(y —a— b:l?)2:| and set those zero. Do the above proof in this
alternative fashion.

E[{—)%(U_a_b-’")ﬂ = —2E[y—a—bz] = —2(E[y] —a—bE]z]). Setting this zero gives

the formula for a. Now E [%(y —a— b;l})2:| = —2E[z(y — a — bz)] = —2(E[zy] — aE[z] — bE[22]).
Setting this zero gives E[zy] — a E[z] — bE[22] = 0. Plug in formula for a and solve for b:

_ Elwy] ~ ER]E[y] _ covlz,y]
E[z2] — (E[z])2 var[z]

(14.2.30)

c. 2 points Compute the MSE of this predictor.
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If one plugs the optimal a into (14.2.27), this just annulls the last term of (14.2.27)
so that the MSE is given by (14.2.28). If one plugs the optimal b = cov[z, y]/ var[z] into (14.2.28),
one gets

(14.2.31) MSE = (%ﬁ?]y])? var[z] — 2% cov[z, y| + var[z]
(14.2.32) = var[y] — %

O

d. 2 points Show that the prediction error is uncorrelated with the observed .

(14.2.33) cov[z,y — a — bx] = cov[z,y] — acov[z,z] =0
d
e. 4 points If var[z] = 0, the quotient cov|x,y]/ var[z] can no longer be formed,
but if you replace the inverse by the g-inverse, so that the above formula becomes
(14.2.34) b = cov|z, y](var[z])”

then it always gives the minimum MSE predictor, whether or not var[z] = 0, and
regardless of which g-inverse you use (in case there are more than one). To prove this,
you need to answer the following four questions: (a) what is the BLUP if var[z] = 0%
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(b) what is the g-inverse of a nonzero scalar? (c) what is the g-inverse of the scalar
number 07 (d) if var[z] = 0, what do we know about cov[z,y]?

(a) If var[z] = 0 then = = p almost surely, therefore the observation of « does not
give us any new information. The BLUP of y is v in this case, i.e., the above formula holds with
b=0.

(b) The g-inverse of a nonzero scalar is simply its inverse.

(c) Every scalar is a g-inverse of the scalar 0.

(d) if var[z] = 0, then cov|z,y] = 0.

Therefore pick a g-inverse 0, an arbitrary number will do, call it ¢. Then formula (14.2.34)
saysb=0-c=0. 0

203. 3 points Carefully state the specifications of the random variables
involved in the linear regression model. How does the model in Problem 202 differ
from the linear regression model? What do they have in common?

In the regression model, you have several observations, in the other model only one.
In the regression model, the x; are nonrandom, only the y; are random, in the other model both
= and y are random. In the regression model, the expected value of the y, are not fully known,
in the other model the expected values of both = and y are fully known. Both models have in
common that the second moments are known only up to an unknown factor. Both models have in
common that only first and second moments need to be known, and that they restrict themselves
to linear estimators, and that the criterion function is the MSE (the regression model minimaxes
it, but the other model minimizes it since there is no unknown parameter whose value one has to
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minimax over. But this I cannot say right now, for this we need the Gauss-Markov theorem. Also
the Gauss-Markov is valid in both cases!)
O

204. 2 points We are in the multiple regression model y = X3 + €
with intercept, i.e., X is such that there is a vector a with ¢+ = Xa. Define the
row vector &' = %LTX, i.e., it has as its jth component the sample mean of the
Jth independent variable. Using the normal equations XTy = XTX,@, show that
y=a'3 (i.e., the regression plane goes through the center of gravity of all data
points).

Premultiply the normal equation by a' to get Ty — T X 8 =o0. Premultiply by
1/n to get the result. O

205. The fitted values § and the residuals € are “orthogonal” in two
different ways.

a. 2 points Show that the inner product QTé = 0. Why should you expect this
from the geometric intuition of Least Squares?

Useé = Myand§=(I-M)y: §'é=1y' (I-—M)My = 0 because M(I-M) = O.
This is a consequence of the more general result given in problem 77.
O
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b. 2 points Sometimes two random variables are called “orthogonal” if their
covariance is zero. Show that §y and € are orthogonal also in this sense, i.e., show
that for every i and j, cov[y,;,¢;] = 0. In matriz notation this can also be written
Cly, €] =0.

Cli,é] =clI-M)y,My] = (I-M)V[y]M " = (I-M)(c’I)M = o*(I-M)M =
O. This is a consequence of the more general result given in question 246. ]

14.3. The Coefficient of Determination

Among the criteria which are often used to judge whether the model is appro-
priate, we will look at the “coefficient of determination” R2, the “adjusted” R?, and
later also at Mallow’s C), statistic. Mallow’s (), comes later because it is not a final
but an initial criterion, i.e., it does not measure the fit of the model to the given
data, but it estimates its MSE. Let us first look at R2.

A value of R? always is based (explicitly or implicitly) on a comparison of two
models, usually nested in the sense that the model with fewer parameters can be
viewed as a specialization of the model with more parameters. The value of R? is
then 1 minus the ratio of the smaller to the larger sum of squared residuals.

Thus, there is no such thing as the R? from a single fitted model—one must
always think about what model (perhaps an implicit “null” model) is held out as a
standard of comparison. Once that is determined, the calculation is straightforward,
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based on the sums of squared residuals from the two models. This is particularly
appropriate for nls(), which minimizes a sum of squares.
The treatment which follows here is a little more complete than most. Some

textbooks, such as | ], never even give the leftmost term in formula (14.3.6)
according to which R? is the sample correlation coefficient. Other textbooks, such
that [ ] and [ ], do give this formula, but it remains a surprise: there

is no explanation why the same quantity R? can be expressed mathematically in
two quite different ways, each of which has a different interpretation. The present
treatment explains this.

If the regression has a constant term, then the OLS estimate ,5’ has a third
optimality property (in addition to minimizing the SSE and being the BLUE): no
other linear combination of the explanatory variables has a higher squared sample
correlation with y than § = X ,5'

In the proof of this optimality property we will use the symmetric and idempotent
projection matrix D = I — %LLT. Applied to any vector z, D gives Dz = z — Z,
which is z with the mean taken out. Taking out the mean is therefore a projection,
on the space orthogonal to ¢. See Problem 161.

206. In the reggeom visualization, see Problem 293, in which x1 is
the vector of ones, which are the vectors Dxo and Dy?
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Dxo is og, the dark blue line starting at the origin, and Dy is cy, the red line
starting on x1 and going up to the peak. dJ

As an additional mathematical tool we will need the Cauchy-Schwartz inequality
for the vector product:

(14.3.1) (u'v)? < (u'u)(v'v)
207. If Q is any nonnegative definite matriz, show that also
(14.3.2) (v Qv)* < (u'Qu)(v' Qu).
This follows from the fact that any nnd matrix @ can be written in the form Q =
R'R. O

In order to prove that ¢ has the highest squared sample correlation, take any
vector ¢ and look at y = Xc. We will show that the sample correlation of y with
9y cannot be higher than that of y with §. For this let us first compute the sample
covariance. By (9.3.17), n times the sample covariance between ¢ and y is

(14.3.3) n times sample covariance(y,y) = ' Dy = ¢' X " D(§ + &).

By Problem 208, Dé = &, hence X ' Dé = X 'é = o (this last equality is
equivalent to the Normal Equation (14.2.3)), therefore (14.3.3) becomes §' Dy =
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9" Djj. Together with (14.3.2) this gives
(14.3.4) (n times sample covauriance(gly))2 = (§ ' D9)* < (" Dy)(§" DP)

In order to get from n? times the squared sample covariance to the squared
sample correlation coefficient we have to divide it by n? times the sample variances
of g and of y:

(14.3.5)

D)

@' Dy? 9Dy Y@ -9 _ Y7
(' Dy)(y"Dy) ~y' Dy Y(y;—9)? Xy —¥
For the rightmost equal sign in (14.3.5) we need Problem 209.

If g = ¢, inequality (14.3.4) becomes an equality, and therefore also (14.3.5)
becomes an equality throughout. This completes the proof that ¢ has the highest

possible squared sample correlation with y, and gives at the same time two different
formulas for the same entity

A= = 2 . \2
(14.3.6) R = (20— .7;/)(1/; 9) . 2 (U5 3{)2.
20 -0 -9 X —Y)
208. 1 point Show that, if X contains a constant term, then Dé = €.

You are allowed to use the fact that X "é = o, which is equivalent to the normal
equation (14.2.3).

(sample correlation(y, y))2 =
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Since X has a constant term, a vector a exists such that Xa = ¢, therefore ¢ &

aTXTé=a"0=0. From +T& = 0 follows Dé = &. O
209. 1 point Show that, if X has a constant term, then § =
T

Follows from 0 = ¢Té =+ Ty — ¢ T 4. In the visualization, this is equivalent with the
fact that both ocb and ocy are right angles. ]

210. Instead of (14.3.6) one often sees the formula
(@ -0 —-9) _ S -9
YW -9 Xy —9)?

Prove that they are equivalent. Which equation is better?

(14.3.7)

The denominator in the righthand side expression of (14.3.6), >"(y; — )2, is
usually called “SST,” the total (corrected) sum of squares. The numerator » (g, —
7)? is usually called “SSR,” the sum of squares “explained” by the regression. In
order to understand 5SS R better, we will show next the famous “Analysis of Variance”
identity SST = SSR+ SSE.

211. In the reggeom visualization, again with x, representing the
vector of ones, show that SST = SSR + SSE, and show that R? = cos? o where a
is the angle between two lines in this visualization. Which lines?
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€ is the by, the green line going up to the peak, and SSFE is the squared length of
it. SST is the squared length of y — ¢7. Sincer ¢ is the projection of y on x1, i.e., it is oc, the part
of x1 that is red, one sees that SS7T is the squared length of cy. SSR is the squared length of cb.
The analysis of variance identity follows because cby is a right angle. R2? = cos? a where a is the

angle between bcy in this same triangle.
O

Since the regression has a constant term, the decomposition

(14.3.8) y=Wy-9)+@—-w+w

is an orthogonal decomposition (all three vectors on the righthand side are orthogonal
to each other), therefore in particular

(14.3.9) (y—9)" (5 5) = 0.

Geometrically this follows from the fact that y — ¢ is orthogonal to the column space
of X, while ¢ — ¢y lies in that column space.

212. Show the decomposition 1/.3.8 in the reggeom-visualization.

From y take the green line down to b, then the light blue line to ¢, then the red line
to the origin. 0
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This orthogonality can also be explained in terms of sequential projections: in-
stead of projecting y on @y directly I can first project it on the plane spanned by x;
and x2, and then project this projection on x;.

From (14.3.9) follows (now the same identity written in three different notations):

(14.3.10) =) (y—))=w—9)"y—9)+@—y) " (§— i)
(14.3.11) S =07 => (=9 +> (i — 1)
(14.3.12) SST = SSE + SSR

213. 5 points Show that the “analysis of variance” identity SST =
SSE 4+ SSR holds in a regression with intercept, i.e., prove one of the two following
equations:

(14.3.13) (=) W—eh) =(y—9)" (y—9)+ @ —h) (9 — i)
(14.3.14) Z(Z/t -9’ = Z(yt — ) + Z(Z}t -9)°
Start with

(14.3.15) SST =3 (e =0 = (ye — e+ — 9)°
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and then show that the cross product term Z(yt G¢) (G — Z Ec(ge—y) =€ (XB—L%LTZ/) =0

T

since 6" X = o' and in particular, since a constant term is 1ncluded éTu=0.

O

From the so-called “analysis of variance” identity (14.3.12), together with (14.3.6),
one obtains the following three alternative expressions for the maximum possible cor-
relation, which is called R? and which is routinely used as a measure of the “fit” of
the regression:

(X -9y —9)°  SSR SST—SSE

20 =92y -y SST SS8T

The first of these three expressions is the squared sample correlation coefficient be-
tween ¢ and y, hence the notation R2. The usual interpretation of the middle
expression is the following: SST can be decomposed into a part SSR which is “ex-
plained” by the regression, and a part SSE which remains “unexplained,” and R?
measures that fraction of SST which can be “explained” by the regression. [ ,
pp. 250-253] and also | , Pp- 211/212] try to make this notion plausible.
Instead of using the vague notions “explained” and “unexplained,” I prefer the fol-
lowing reading, which is based on the third expression for R? in (14.3.16): ¢y is the
vector of fitted values if one regresses y on a constant term only, and SST is the SSFE
in this “restricted” regression. R? measures therefore the proportionate reduction in

(14.3.16) R* =
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the SSE if one adds the nonconstant regressors to the regression. From this latter
formula one can also see that 22 = cos? a where « is the angle between 7 — ¢7 and

g — Ly.
214. Ghiven two data series  and y. Show that the regression of y

on x has the same R? as the regression of © on y. (Both regressions are assumed to
include a constant term.) Fasy, but you have to think!

The symmetry comes from the fact that, in this particular case, R? is the squared
sample correlation coefficient between @ and y. Proof: ¢ is an affine transformation of x, and
correlation coefficients are invariant under affine transformations (compare Problem 216). O

215. This Problem derives some relationships which are valid in simple
regression Yy = « + Bxy + &¢ but their generalization to multiple regression is not
obvious.

a. 2 points Show that

2 _ ,?22(3% - )
(14.3.17) B =S

Hint: show first that g, — § = [(xy — T).
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From §j; = & + fz; and § = & + (3 follows §; — § = 3(x¢ — Z). Therefore
gt —9)? zy — 7)?
(14.3.18) g2 20 =0 2 ) (@ —

> e —9)? >y —

O

b. 2 points Furthermore show that R? is the sample correlation coefficient
between y and x, i.e.,

(S -2 —9)
YEARED S (X

Hint: you are allowed to use (14.2.22).

(14.3.19) R? =

2
(14.3.20) R @@ (Z(It C P ?)) 2o
o S (e —9)? _
(Z Ty — ) ) Sy —

which simplifies to (14.3.19). O

c. 1 point Finally show that R? = Bxyﬁyaw i.e., it is the product of the two
slope coefficients one gets if one regresses y on x and x on y.
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If the regression does not have a constant term, but a vector a exists with
t = Xa, then the above mathematics remains valid. If a does not exist, then
the identity SST = SSR + SSE no longer holds, and (14.3.16) is no longer valid.
The fraction % can assume negative values. Also the sample correlation
coefficient between § and y loses its motivation, since there will usually be other
linear combinations of the columns of X that have higher sample correlation with y
than the fitted values g.

Equation (14.3.16) is still puzzling at this point: why do two quite different simple
concepts, the sample correlation and the proportionate reduction of the SSFE, give
the same numerical result? To explain this, we will take a short digression about
correlation coefficients, in which it will be shown that correlation coefficients always
denote proportionate reductions in the MSE. Since the SSFE is (up to a constant
factor) the sample equivalent of the MSE of the prediction of y by ¢, this shows
that (14.3.16) is simply the sample equivalent of a general fact about correlation
coefficients.

But first let us take a brief look at the Adjusted R2.

14.4. The Adjusted R-Square

The coefficient of determination R? is often used as a criterion for the selection
of regressors. There are several drawbacks to this. | , Chapter 8] shows that
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the distribution function of 22 depends on both the unknown error variance and the
values taken by the explanatory variables; therefore the R? belonging to different
regressions cannot be compared.

A further drawback is that inclusion of more regressors always increases the
R?. The adjusted R? is designed to remedy this. Starting from the formula R? =
1—SSE/SST, the “adjustment” consists in dividing both SSE and SST by their
degrees of freedom:

SSE/(n - k)
SST/(n—1)

n—1
n—=k

(14.4.1) R*=1- =1-(1-R?%

For given SST, i.e., when one looks at alternative regressions with the same depen-
dent variable, R? is therefore a declining function of s2, the unbiased estimator of
o?. Choosing the regression with the highest R? amounts therefore to selecting that
regression which yields the lowest value for s2.

R? has the following interesting property: (which we note here only for reference,
because we have not yet discussed the F-test:) Assume one adds 7 more regressors:
then R? increases only if the [ statistic for these additional regressors has a value
greater than one. One can also say: s? decreases only if /' > 1. To see this, write
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this /' statistic as

(SSEk—SSEk+Z)/Z n—k—1 SSEk
14.4.2 F= _ 1
_ _ _ 2
(14.4.3) _n k z( (n k)st _1>
7 (n—k z)skﬂ
EAVCI
(14.4.4) _ ks n—k
Z'Sk—‘ri 1
_ 2
(14.4.5) ) (;—’C - 1) +1
¢ Ski

From this the statement follows.

Minimizing the adjusted R? is equivalent to minimizing the unbiased variance

estimator s2; it still does not penalize the loss of degrees of freedom heavily enough,
e., it still admits too many variables into the model.

Alternatives minimize Amemiya’s prediction criterion or Akaike’s information
criterion, which minimize functions of the estimated variances and n and k. Akaike’s
information criterion minimizes an estimate of the Kullback-Leibler discrepancy,
which was discussed on p. 310.






CHAPTER 15

Digression about Correlation Coefficients

15.1. A Unified Definition of Correlation Coefficients

Correlation coeflicients measure linear association. The usual definition of the
simple correlation coefficient between two variables p,, (sometimes we also use the
notation corr[x,y]) is their standardized covariance

(15.1.1) P OV
' var[z]/var[y]

Because of Cauchy-Schwartz, its value lies between —1 and 1.
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216. Given the constant scalars a # 0 and c # 0 and b and d arbitrary.
Show that corr[x,y] = % corr[ax + b, cy + d], with the + sign being valid if a and ¢
have the same sign, and the — sign otherwise.

Start with cov]az + b, cy + d] = accov|z,y] and go from there. O

Besides the simple correlation coefficient p,, between two scalar variables y and
x, one can also define the squared multiple correlation coefficient pi(m) between one
scalar variable y and a whole vector of variables x, and the partial ‘correlation coef-
ficient pi2.. between two scalar variables y; and y,, with a vector of other variables
x “partialled out.” The multiple correlation coefficient measures the strength of
a linear association between y and all components of x together, and the partial
correlation coefficient measures the strength of that part of the linear association
between y; and y, which cannot be attributed to their joint association with . One
can also define partial multiple correlation coefficients. If one wants to measure the
linear association between two wectors, then one number is no longer enough, but
one needs several numbers, the “canonical correlations.”

The multiple or partial correlation coefficients are usually defined as simple cor-
relation coefficients involving the best linear predictor or its residual. But all these
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correlation coefficients share the property that they indicate a proportionate reduc-
tion in the MSE. See e.g. [ , pp. 268-70]. Problem 217 makes this point for
the simple correlation coefficient:

217. 4 points Show that the proportionate reduction in the MSE of
the best predictor of vy, if one goes from predictors of the form y* = a to predictors
of the form y* = a + bx, is equal to the squared correlation coefficient between y and
x. You are allowed to use the results of Problems 191 and 202. To set notation, call
the minimum MSE in the first prediction (Problem 191) MSE[constant term;y], and
the minimum MSE in the second prediction (Problem 202) MSE[constant term and
x;y]. Show that
(15.1.2)

MSE[constant term;y] — MSE[constant term and x; y] (cov]y, z])? 5

MSE|[constant term;y| var[y| var[z] V"

The minimum MSE with only a constant is var[y] and (14.2.32) says that MSE[constant
term and x;y] = var[y] — (cov|[z, y])?/ var[z]. Therefore the difference in MSE’s is (cov[z, y])?/ var|[z],
and if one divides by var[y] to get the relative difference, one gets exactly the squared correlation
coefficient. |
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Multiple Correlation Coefficients. Now assume x is a vector while y remains a
scalar. Their joint mean vector and dispersion matrix are

(15.1.3) m ~ m o [Q?rw “’“”’] .
Y v wmy w'.l/’.l/
By theorem 7?7, the best linear predictor of y based on « has the formula

y* has the following additional extremal value property: no linear combination b’z
has a higher squared correlation with y than y*. This maximal value of the squared
correlation is called the squared multiple correlation coefficient

2 w;yQ;wwm’U
(15.1.5) Py(z) = o0
The multiple correlation coefficient itself is the positive square root, i.e., it is always
nonnegative, while some other correlation coefficients may take on negative values.
The squared multiple correlation coefficient can also defined in terms of propor-
tionate reduction in MSE. It is equal to the proportionate reduction in the MSE of
the best predictor of vy if one goes from predictors of the form y* = a to predictors
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« T
of the form y* =a+ b z, i.e.,

9 MSE[constant term;y] — MSE[constant term and x; y]

MSE[constant term; y]

There are therefore two natural definitions of the multiple correlation coefficient.
These two definitions correspond to the two formulas for R? in (14.3.6).

. . . T, .
Partial Correlation Coefficients. Now assume y = [yl ;112] is a vector with
two elements and write

€T 12 Qmm Wyl Wy2
(1517) Y| ~ |1 ,0'2 le w11 w12
Ya V2 Wyo W21 W22

Let y* be the best linear predictor of y based on . The partial correlation coefficient
p12.2 is defined to be the simple correlation between the residuals corr[(y; —y7), (Yo —
y3)]- This measures the correlation between y; and y, which is “local,” i.e., which
does not follow from their association with . Assume for instance that both y; and
Yo are highly correlated with . Then they will also have a high correlation with
each other. Subtracting y; from y, eliminates this dependency on «x, therefore any
remaining correlation is “local.” Compare | , p. 475].
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The partial correlation coefficient can be defined as the relative reduction in the
MSE if one adds y, to @ as a predictor of y;:
(15.1.8)

9 MSE|constant term and x; y5] — MSE[constant term, =, and y;; y]

P12.z =

MSE|constant term and ;v

218. Using the definitions in terms of MSE’s, show that the following
relationship holds between the squares of multiple and partial correlation coefficients:

2 _ 2 2
(15.1.9) L= Py = (1—p21.2)(1— Pz(m))
In terms of the MSE, (15.1.9) reads
(15.1.10)
MSE[constant term, x, and y1;95]  MSE[constant term, x, and yy;y,] MSE[constant term and z;
MSE[constant term; y,] ~ MSEJconstant term and z:; 5] MSE|[constant term; ys)

O

From (15.1.9) follows the following weighted average formula:

(15.1.11) Pg(;m) = Pg(m) +(1- P%(m))l)§1.m
An alternative proof of (15.1.11) is given in | , pp. 116/17].
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Mized cases: One can also form multiple correlations coefficients with some of
the variables partialled out. The dot notation used here is due to Yule, | ]. The
notation, definition, and formula for the squared correlation coefficient is
(15.1.12)

9 MSE[constant term and z;y] — MSE[constant term, z, and x; y]
Py(z).z =

MSE|constant term and z;y]

w—;vrz/ zQa_sm zwmy.z
(15.1.13) = == =

Wyy.z







CHAPTER 16

Specific Datasets

16.1. Cobb Douglas Aggregate Production Function

219. 2 points The Cobb-Douglas production function postulates the

following relationship between annual output q; and the inputs of labor £; and capital
kt N

(16.1.1) g = Pk exp(zy).

qt, Ls, and k; are observed, and u, B3, v, and the ¢ are to be estimated. By the
variable transformation xy = logqs, y; = logly, z; = logks, and o = logpu, one
obtains the linear regression

(16.1.2) Ty = o+ By + 2+ e

497
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Sometimes the following alternative variable transformation is made: uy = log(q:/4:),
vy = log(ki/Ly), and the regression

(16.1.3) U = a4 yur + &y

is estimated. How are the regressions (16.1.2) and (16.1.3) related to each other?

Answek. Write (16.1.3) as
(16.1.4) e —yr =a+vy(ze —yr) + et
and collect terms to get

(16.1.5) 2t =+ (1 — )yt +vze + ¢

From this follows that running the regression (16.1.3) is equivalent to running the regression (16.1.2)
with the constraint 3 4« = 1 imposed. d

The assumption here is that output is the only random variable. The regression
model is based on the assumption that the dependent variables have more noise in
them than the independent variables. One can justify this by the argument that
any noise in the independent variables will be transferred to the dependent variable,
and also that variables which affect other variables have more steadiness in them
than variables which depend on others. This justification often has merit, but in the
specific case, there is much more measurement error in the labor and capital inputs
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than in the outputs. Therefore the assumption that only the output has an error
term is clearly wrong, and problem 221 below will look for possible alternatives.

220. Table 1 shows the data used by Cobb and Douglas in their original
article [CD28] introducing the production function which would bear their name.
output is “Day’s index of the physical volume of production (1899 = 100)” described
in [DP20], capital is the capital stock in manufacturing in millions of 1880 dollars
[CD28, p. 145], labor is the “probable average number of wage earners employed in
manufacturing” [CD28, p. 148], and wage is an index of the real wage (1899-1908
= 100).

a. A text file with the data is available on the web at www.econ.utah.edu/
ehrbar/data/cobbdoug.tzt, and a SDML file (XML for statistical data which can be
read by R, Matlab, and perhaps also SPSS) is available at www.econ.utah.edu/ehrbar/
data/cobbdoug.sdml. Load these data into your favorite statistics package.

In R, you can simply issue the command cobbdoug <- read.table("http://www.
econ.utah.edu/ehrbar/data/cobbdoug.txt", header=TRUE). If you run R on unix, you can also
do the following: download cobbdoug.sdml from the www, and then first issue the command
library(StatDataML) and then readSDML("cobbdoug.sdml"). When I tried this last, the XML pack-
age necessary for StatDataML was not available on windows, but chances are it will be when you
read this.

In SAS, you must issue the commands


http://www.econ.utah.edu/ehrbar/data/cobbdoug.txt
http://www.econ.utah.edu/ehrbar/data/cobbdoug.txt
http://www.econ.utah.edu/ehrbar/data/cobbdoug.sdml
http://www.econ.utah.edu/ehrbar/data/cobbdoug.sdml
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year 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910
output 100 101 112 122 124 122 143 152 151 126 155 159

capital 4449 4746 5061 5444 5806 6132 6626 7234 7832 8229 8820 9240

labor 4713 4968 5184 5554 5784 5468 5906 6251 6483 5714 6615 6807
wage 99 98 101 102 100 99 103 101 99 94 102 104
year 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922
output 153 177 184 169 189 225 227 223 218 231 179 240

capital 9624 10067 10520 10873 11840 13242 14915 16265 17234 18118 18542 19192

labor 6855 7167 7277 7026 7269 8601 9218 9446 9096 9110 6947 7602

wage 97 99 100 99 99 104 103 107 111 114 115 119

TABLE 1. Cobb Douglas Original Data

data cobbdoug;

infile ’cobbdoug.txt’;

input year output capital labor;
run;

But for this to work you must delete the first line in the file cobbdoug.txt which contains the
variable names. (Is it possible to tell SAS to skip the first line?) And you may have to tell SAS
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the full pathname of the text file with the data. If you want a permanent instead of a temporary
dataset, give it a two-part name, such as ecmet.cobbdoug.

Here are the instructions for SPSS: 1) Begin SPSS with a blank spreadsheet. 2) Open up a file
with the following commands and run:

SET

BLANKS=SYSMIS

UNDEFINED=WARN.

DATA LIST

FILE=’A:\Cbbunst.dat’ FIXED RECORDS=1 TABLE /1 year 1-4 output 5-9 capital
10-16 labor 17-22 wage 23-27 .

EXECUTE.

This files assume the data file to be on the same directory, and again the first line in the data file
with the variable names must be deleted. Once the data are entered into SPSS the procedures
(regression, etc.) are best run from the point and click environment.

O

b. The next step is to look at the data. On | , p- 150], Cobb and Douglas
plot capital, labor, and output on a logarithmic scale against time, all 3 series
normalized such that they start in 1899 at the same level =100. Reproduce this graph
using a modern statistics package.
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c. Run both regressions (16.1.2) and (16.1.3) on Cobb and Douglas’s original
dataset. Compute 95% confidence intervals for the coefficients of capital and labor
in the unconstrained and the cconstrained models.

SAS does not allow you to transform the data on the fly, it insists that you first
go through a data step creating the transformed data, before you can run a regression on them.
Therefore the next set of commands creates a temporary dataset cdtmp. The data step data cdtmp
includes all the data from cobbdoug into cdtemp and then creates some transformed data as well.
Then one can run the regressions. Here are the commands; they are in the file cbbrgrss.sas in
your data disk:

data cdtmp;
set cobbdoug;
logcap = log(capital);
loglab = log(labor);
logout = log(output);
logcl = logcap-loglab;
logol = logout-loglab;

run;
proc reg data = cdtmp;

model logout = logcap loglab;
run;
proc reg data = cdtmp;

model logol = logcl;
run;
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Careful! In R, the command 1m(log(output)-log(labor) ~ log(capital)-log(labor), data=c
does not give the right results. It does not complain but the result is wrong nevertheless. The right
way to write this command is 1m(I(log(output)-log(labor)) ~ I(log(capital)-log(labor)), date

O

d. The regression results are graphically represented in Figure 1. The big
ellipse is a joint 95% confidence region for 8 and . This ellipse is a level line of the
SSE. The vertical and horizontal bands represent univariate 95% confidence regions
for B and v separately. The diagonal line is the set of all B and ~v with §+ v =1,
representing the constraint of constant returns to scale. The small ellipse is that level
line of the SSE which is tangent to the constraint. The point of tangency represents
the constrained estimator. Reproduce this graph (or as much of this graph as you
can) using your statistics package.

Remark: In order to make the hand computations easier, Cobb and Douglass
reduced the data for capital and labor to index numbers (1899=100) which were
rounded to integers, before running the regressions, and Figure 1 was constructed
using these rounded data. Since you are using the nonstandardized data, you may
get slightly different results.

lines(ellipse.lm(cbbfit, which=c(2, 3))) O
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1.0
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FIGURE 1. Coefficients of capital (vertical) and labor (horizon-
tal), dependent variable output, unconstrained and constrained,
1899-1922
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221. In this problem we will treat the Cobb-Douglas data as a dataset
with errors in all three variables. See chapter 7?7 and problem 7?7 about that.

a. Run the three elementary regressions for the whole period, then choose at
least two subperiods and run it for those. Plot all regression coefficients as points
in a plane, using different colors for the different subperiods (you have to normalize
them in a special way that they all fit on the same plot).

Here are the results in R:

outputlm<-1lm(log(output) “log(capital)+log(labor) ,data=cobbdoug)
capitallm<-1m(log(capital) “log(labor)+log(output) ,data=cobbdoug)
laborlm<-1m(log(labor) “log(output)+log(capital) ,data=cobbdoug)
coefficients(outputlm)
(Intercept) log(capital) log(labor)

-0.1773097 0.2330535 0.8072782
> coefficients(capitallm)

(Intercept) log(labor) log(output)

-2.72052726 -0.08695944 1.67579357
> coefficients(laborlm)
(Intercept) log(output) log(capital)

1.27424214 0.73812541 -0.01105754

vV V V VvV

#Here is the information for the confidence ellipse:
> summary (outputlm,correlation=T)
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Call:
Im(formula = log(output) ~ log(capital) + log(labor), data = cobbdoug)

Residuals:
Min 1Q Median 3Q Max
-0.075282 -0.035234 -0.006439 0.038782 0.142114

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) -0.17731 0.43429 -0.408 0.68721
log(capital) 0.23305 0.06353 3.668 0.00143 *x
log(labor) 0.80728 0.14508 5.565 1.6e-05 **x

Signif. codes: 0 ‘**x> 0.001 ‘**x’ 0.01 ‘x> 0.05 ‘.° 0.1 °°~?

Residual standard error: 0.05814 on 21 degrees of freedom
Multiple R-Squared: 0.9574,Adjusted R-squared: 0.9534
F-statistic: 236.1 on 2 and 21 degrees of freedom,p-value: 3.997e-15

Correlation of Coefficients:
(Intercept) log(capital)

log(capital) 0.7243

log(labor) -0.9451 -0.9096
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#Quantile of the F-distribution:
> qf (p=0.95, df1=2, df2=21)

[1] 3.4668

O

b. The elementary regressions will give you three fitted equations of the form

(16.1.6) output = &y + Bialabor+ B3 capital + residual;
(16.1.7) labor = G + B21 output + ng capital + residualy
(16.1.8) capital = &3 + B3 output + B35 Labor + residuals.

In order to compare the slope parameters in these regressions, first rearrange them
in the form

(16.1.9) —output + Blg labor+ Blg capital + Gy + residual; =0
(16.1.10) Bgl output — labor+ ,323 capital + &g + restdualy =0
(16.1.11) /3’31 output + [332 labor — capital + &3 + residuals =0

This gives the following table of coefficients:
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output labor capital intercept

-1 0.8072782 0.2330535 | —0.1773097
0.73812541 —1 | —0.01105754 | 1.27424214
1.67579357 | —0.08695944 —1 | —2.72052726

Now divide the second and third rows by the negative of their first coefficient, so that
the coefficient of output becomes —1:

out labor capital intercept
-1 0.8072782 0.2330535 —0.1773097
-1 1/0.73812541 | 0.01105754,/0.73812541 | —1.27424214/0.73812541
—110.08695944/1.67579357 1/1.67579357 |  2.72052726/1.67579357

After performing the divisions the following numbers are obtained:

output labor capital intercept
—1| 0.8072782 0.2330535 | —0.1773097
—1 | 1.3547833 | 0.014980570 | —1.726322
—110.05189149 | 0.59673221 1.6234262

These results can also be re-written in the form given by Table 2.
Fill in the values for the whole period and also for several sample subperiods.
Make a scatter plot of the contents of this table, i.e., represent each regression result
as a point in a plane, using different colors for different sample periods.
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Intercept

Slope of output
wrt labor

Slope of output
wrt capital

Regression of output
on labor and capital

Regression of labor on
output and capital

Regression of capital
on output and labor

TABLE 2. Comparison of coefficients in elementary regressions

439

222. Given a univariate problem with three variables all of which have
zero mean, and a linear constraint that the coefficients of all variables sum to 0. (This
is the model apparently appropriate to the Cobb-Douglas data, with the assumption
of constant returns to scale, after taking out the means.) Call the observed variables
x, vy, and z, with underlying systematic variables x*, y*, and z*, and errors u, v,

and w.

a. Write this model in the form (77).
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¥ = By* + (1 —B)*

-1
(16.1.12) [:I:* v Z*] B =0 z=z"4u
B 7 o y=y"+v
[;U Y Z] = ["L* y* Z*] + [u v ’LU] z=2z*+w.

O

b. The moment matriz of the systematic variables can be written fully in terms
of 03*, o2, Oy+ -+, and the unknown parameter 8. Write out the moment matriz and
therefore the Frisch decomposition.

The moment matrix is the middle matrix in the following Frisch decomposition:

U% Ozy Ouxz
(16.1.13) Oy 0’3 Oyz | =
Orz Oyz UE
(16.1.14)
/820-2* + 2/8(1 - /6)0'1/*:* +(1- 5)20'3* 60'3* + (1 - /6)0'1/*:* Bo'gt/*:* + (1 - 6)0'.2_/* 0'3
= /80'5* + (1 - [B)U'y*z* L 05* O y* z* +1 0
Boys.x + (1 - B)a2. o2, o2, 0
Yy z Yy z
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c. Show that the unknown parameters are not yet identified. However, if one
makes the additional assumption that one of the three error variances o2, a2, or o2,
is zero, then the equations are identified. Since the quantity of output presumably
has less error than the other two variables, assume o2 = 0. Under this assumption,
show that

2
0, — Oyz
(16.1.15) g= L
037_1/ —Ogxz
and this can be estimated by replacing the variances and covariances by their sample
counterparts. In a similar way, derive estimates of all other parameters of the model.

Solving (16.1.14) one gets from the yz element of the covariance matrix
(16.1.16) Oyron = Oyz
and from the zz element

Orz — Bo'yz

16.1.17 2, =

(16.0.17) o2 = b
Similarly, one gets from the 2y element:
(16.1.18) o2, = Try = (L= Boy:

y* ]
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Now plug (16.1.16), (16.1.17), and (16.1.18) into the equation for the zz element:

(16.1.19) U;% =B(ozy = (1 = B)oyz) +28(1 = B)oy= + (1 = B)(0z= — Boy:) + ‘73
(16120) = ,60—,1:’;/ + (1 - ﬁ)o—.'l,‘l + 0’%

Since we are assuming o2 = 0 this last equation can be solved for 3:

2 _ .
(16.1.21) g=Jz"0zz

Ory — Oxz

If we replace the variances and covariances by the sample variances and covariances, this gives an
estimate of g.
|

d. Ewvaluate these formulas numerically. In order to get the sample means and
the sample covariance matrix of the data, you may issue the SAS commands

proc corr cov nocorr data=cdtmp;
var logout loglab logcap;
run;

These commands are in the file cbbcouma. sas on the disk.

Mean vector and covariance matrix are

LOGOUT 5.07734 0.0724870714 0.0522115563 0.1169330807
(16.1.22) LOGLAB| ~ < 4.96272| , 10.0522115563  0.0404318579  0.0839798588 )
LOGCAP 5.35648 0.1169330807 0.0839798588  0.2108441826
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Therefore equation (16.1.15) gives

~ 0.0724870714 — 0.1169330807
(16.1.23) 6= = 0.686726861149148
0.0522115563 — 0.1169330807

In Figure 3, the point (B, 1—3) is exactly the intersection of the long dotted line with the constraint
O

e. The fact that all 3 points lie almost on the same line indicates that there may
be 2 linear relations: log labor is a certain coefficient times log output, and log capital

is a different coefficient times log output. Le., y* = §1 + y12* and z* = 3 + ya2™*.
In other words, there is no substitution. What would be the two coefficients v1 and

Yo if this were the case?

Now the Frisch decomposition is

G’% Ozxy Oxz 1 Y1 Y2 O_E 0 0
(16.1.24) owy 0F oyl =0l |m  AF me|+|0 o2 0
- o2 Y2 mY2  vE 0 0 o2

Oz Oy
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Solving this gives (obtain «; by dividing the 32-element by the 31-element, v2 by dividing the
32-element by the 12-element, 03* by dividing the 21-element by 71, etc.

(16.1.25)
oy 0.0839798588 —
= = T = (.7181873452513939 2 _ 2 _ OyaOzz _
T, T 01169330807 of = o =TT = 0.07248707
~ 0.0839798588 CryOy-
o = T2 = 2T 608453467992104 o2 =02 - L
oz-  0.0522115563 < P
20x2 .052211 -0.11 2 2 Oxz0z
o2, = Tyraz _ 0.0522115563 - 0.1169330807 _ oo o 02 = o2 — y
* oy= 0.0839798588 Oy

This model is just barely rejected by the data since it leads to a slightly negative variance for U. O

f. The assumption that there are two linear relations is represented as the
light-blue line in Figure 3. What is the equation of this line?
If y = v12 and z = 722 then the equation z = 1y + B2z holds whenever B1v1 +

B2v2 = 1. This is a straight line in the B, 82-plane, going through the points and (0,1/v2) =

(0, 5:0522115563 — ().6217152189353289) and (1/v1,0) = (9:5109330507 — 3 3993943475361023, 0).

This line is in the figure, and it is just a tiny bit on the wrong side of the dotted line connecting
the two estimates. O

16.2. Houthakker’s Data

For this example we will use Berndt’s textbook | ], which discusses some
of the classic studies in the econometric literature.
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One example described there is the estimation of a demand function for electric-
ity | |, which is the first multiple regression with several variables run on a
computer. In this exercise you are asked to do all steps in exercise 1 and 3 in chapter
7 of Berndt, and use the additional facilities of R to perform other steps of data
analysis which Berndt did not ask for, such as, for instance, explore the best subset
of regressors using leaps and the best nonlinear transformation using avas, do some
diagnostics, search for outliers or influential observations, and check the normality
of residuals by a probability plot.

223. 4 points The electricity demand date from | | are avail-
able on the web at www.econ.utah.edu/ehrbar/data/ukelec.tzt. Import these
data into your favorite statistics package. For R you need the command ukelec <-
read.table("http://www. econ.utah. edu/ehrbar/data/ukelec. tzt"). Make a
scatterplot matriz of these data using e.g. pairs(ukelec) and describe what you
see.

inc and cap are negatively correlated. cap is capacity of rented equipment and not
equipment owned. Apparently customers with higher income buy their equipment instead of renting
it.
gas6 and gas8 are very highly correlated. mc4, mc6, and mc8 are less hightly correlated, the
corrlation between mc6 and mc8 is higher than that between mc4 and mc6. It seem electicity prices
have been coming down.


http://www.econ.utah.edu/ehrbar/data/ukelec.txt
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kwh, inc, and exp are strongly positively correlated.

the stripes in all the plots which have mc4, mc6, or mc8 in them come from the fact that the
marginal cost of electricity is a round number.

electricity prices and kwh are negatively correlated.

There is no obvious positive correlation between kwh and cap or expen and cap.

Prices of electricity and gas are somewhat positively correlated, but not much.

When looking at the correlations of inc with the other variables, there are several outliers which
could have a strong “leverage” effect.

in 1934, those with high income had lower electricity prices than those with low income. This
effect dissipated by 1938.

No strong negative correlations anywhere.

cust negatively correlated with inc, because rich people live in smaller cities?

If you simply type ukelec in R, it will print the data on the screen. The variables
have the following meanings:

cust Average number of consumers with two-part tariffs for electricity in 1937—
38, in thousands. Two-part tariff means: they pay a fixed monthly sum plus a certain
“running charge” times the number of kilowatt hours they use.

inc Average income of two-part consumers, in pounds per year. (Note that one
pound had 240 pence at that time.)



16.2. HOUTHAKKER’S DATA 447

mc4 The running charge (marginal cost) on domestic two-part tariffs in 1933-34,
in pence per KWH. (The marginal costs are the costs that depend on the number of
kilowatt hours only, it is the cost of one additional kilowatt hour.

mc6 The running charge (marginal cost) on domestic two-part tariffs in 1935-36,
in pence per KWH

mc8 The running charge (marginal cost) on domestic two-part tariffs in 1937-38,
in pence per KWH

gas6 The marginal price of gas in 1935-36, in pence per therm

gas8 The marginal price of gas in 1937-38, in pence per therm

kwh Consumption on domestic two-part tariffs per consumer in 1937-38, in kilo-
watt hours

cap The average holdings (capacity) of heavy electric equipment bought on hire
purchase (leased) by domestic two-part consumers in 193738, in kilowatts

expen The average total expenditure on electricity by two-part consumers in
1937-38, in pounds

The function summary(ukelec) displays summary statistics about every vari-
able.

Since every data frame in R is a list, it is possible to access the variables in ukelec
by typing ukelec$mc4 etc. Try this; if you type this and then a return, you will get
a listing of mc4. In order to have all variables available as separate objects and save
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typing ukelec$ all the time, one has to “mount” the data frame by the command
attach(ukelec). After this, the individual data series can simply be printed on the
screen by typing the name of the variable, for instance mc4, and then the return key.

224. 2 points Make boxplots of mc4, mc6, and mc6 in the same graph
next to each other, and the same with gas6 and gas8.

225. 2 points How would you answer the question whether marginal
prices of gas vary more or less than those of electricity (say in the year 1936)7

Marginal gas prices vary a little more than electricity prices, although electricity
was the newer technology, and although gas prices are much more stable over time than the elec-
tricity prices. Compare sqrt(var(mc6))/mean(mc6) with sqrt(var(gas6))/mean(gas6). You get
0.176 versus 0.203. Another way would be to compute max(mc6)/min(mc6) and compare with
max(gas6) /min(gas6): you get 2.27 versus 2.62. In any case this is a lot of variation. O

226. 2 points Make a plot of the (empirical) density function of mc6
and gas6 and interpret the results.

227. 2 points Is electricity a big share of total income? Which com-
mand is better: mean (expen/inc) or mean(expen)/mean (inc)? What other options
are there? Actually, there is a command which is clearly better than at least one of
the above, can you figure out what it is?
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The proportion is small, less than 1 percent. The two above commands give 0.89%
and 0.84%. The command sum(cust*expen) / sum(cust#*inc) is better than mean(expen) / mean(in
because each component in expen and inc is the mean over many households, the number of house-
holds given by cust. mean(expen) is therefore an average over averages over different popula-
tion sizes, not a good idea. sum(cust*expen) is total expenditure in all households involved, and
sum(cust*inc) is total income in all households involved. sum(cust*expen) / sum(cust*inc) gives
the value 0.92%. Another option is median(expen/inc) which gives 0.91%. A good way to answer
this question is to plot it: plot(expen,inc). You get the line where expenditure is 1 percent of
income by abline(0,0.01). For higher incomes expenditure for electricity levels off and becomes a
lower share of income. ]

228. Have your computer compute the sample correlation matriz of
the data. The R-command is cor(ukelec)

a. 4 points Are there surprises if one looks at the correlation matrix?

Electricity consumption kwh is slightly negatively correlated with gas prices and
with the capacity. If one takes the correlation matrix of the logarithmic data, one gets the expected
positive signs.

marginal prices of gas and electricity are positively correlated in the order of 0.3 to 0.45.

higher correlation between mc6 and mc8 than between mc4 and mc6.

Correlation between expen and cap is negative and low in both matrices, while one should
expect positive correlation. But in the logarithmic matrix, mc6 has negative correlation with expen,
i.e., elasticity of electricity demand is less than 1.
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In the logarithmic data, cust has higher correlations than in the non-logarithmic data, and it
is also more nearly normally distributed.

inc has negative correlation with mc4 but positive correlation with mc6 and mc8. (If one looks
at the scatterplot matrix this seems just random variations in an essentially zero correlation).

mc6 and expen are positively correlated, and so are mc8 and expen. This is due to the one
outlier with high expen and high income and also high electricity prices.

The marginal prices of electricity are not strongly correlated with expen, and in 1934, they are
negatively correlated with income.

From the scatter plot of kwh versus cap it seems there are two datapoints whose removal
might turn the sign around. To find out which they are do plot (kwh, cap) and then use the identify
function: identify (kwh,cap,labels=row.names (ukelec)). The two outlying datapoints are Halifax
and Wallase. Wallase has the highest income of all towns, namely, 1422, while Halifax’s income of
352 is close to the minimum, which is 279. High income customers do not lease their equipment
but buy it. O

b. & points The correlation matriz says that kwh is negatively related with cap,
but the correlation of the logarithm gives the expected positive sign. Can you explain
this behavior?

If one plots the date using plot(cap,kwh) one sees that the negative correlation

comes from the two outliers. In a logarithmic scale, these two are no longer so strong outliers.
O
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229. Berndt on p. 338 defines the intramarginal expenditure f <-
ezpen-mc8*kwh/240. What is this, and what do you find out looking at it?

After this preliminary look at the data, let us run the regressions.

230. 6 points Write up the main results from the regressions which in
R are run by the commands

houth.olsfit <- lm(formula = kwh ~ inc+I(1/mc6)+gas6+cap)
houth.glsfit <- Im(kwh ~ inc+I(1/mc6)+gas6+cap, weight=cust)
houth.olsloglogfit <- lm(log(kwh) ~
log(inc)+log(mc6)+log(gas6)+log(cap))

Instead of 1/mc6 you had to type I(1/mc6) because the slash has a special meaning
in formulas, creating a nested design, therefore it had to be “protected” by applying
the function I() to it.

If you then type houth.olsfit, a short summary of the regression results will be
displayed on the screen. There is also the command summary (houth.olsfit), which
gives you a more detailed summary. If you type plot (houth.olsfit) you will get a
series of graphics relevant for this regressiomn.

All the expected signs.
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Gas prices do not play a great role in determining electricity consumption, despite the “cook-
ers” Berndt talks about on p. 337. Especially the logarithmic regression makes gas prices highly
insignificant!

The weighted estimation has a higher R2. O

231. 2 points The output of the OLS regression gives as standard
error of inc the value of 0.18, while in the GLS regression it is 0.20. For the other
variables, the standard error as given in the GLS regression is lower than that in the
OLS regression. Does this mean that one should use for inc the OLS estimate and
for the other variables the GLS estimates?

232. 5 points Show, using the leaps procedure om R or some other
selection of regressors, that the variables Houthakker used in his GLS-regression are
the “best” among the following: inc, mc4, mc6, mc8, gas6, gas8, cap using ei-
ther the C,, statistic or the adjusted R?. (At this stage, do not transform the variables
but just enter them into the regression untransformed, but do use the weights, which
are theoretically well justified).

To download the leaps package, use install.packages("leaps”, 1ib="C:/Docu
and Settings/420lab.420LAB/My Documents") and to call it up, use Library(leaps
14b.loc="C:/Documents and Settings/4201lab.420LAB/My Documents"). If the
library ecmet is available, the command ecmet.script (houthsel) runs the follow-
ing script:
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library(leaps)
data(ukelec)
attach(ukelec)
houth.glsleaps<-leaps(x=cbind(inc,mc4,mc6,mc8,gas6,gas8,cap),
y=kwh, wt=cust, method="Cp",
nbest=5, strictly.compatible=F)
ecmet.prompt ("Plot Mallow’s Cp against number of regressors:")
plot(houth.glsleaps$size, houth.glsleaps$Cp)
ecmet.prompt ("Throw out all regressions with a Cp > 50 (big gap)")
plot (houth.glsleaps$size [houth.glsleaps$Cp<50],
houth.glsleaps$Cphouth.glsleaps$Cp<50])
ecmet.prompt ("Cp should be roughly equal the number of regressors")
abline(0,1)
cat("Does this mean the best regression is overfitted?")
ecmet.prompt ("Click at the points to identify them, left click to quit"
## First construct the labels
lngth <- dim(houth.glsleaps$which) [1]
included <- as.list(1:1lngth)
for (ii in 1:1ngth)
included[[ii]] <- paste(
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colnames (houth.glsleaps$which) [houth.glsleaps$which[ii,]],
collapse=",")

identify(x=houth.glsleaps$size, y=houth.glsleaps$Cp, labels=included)

ecmet.prompt ("Now use regsubsets instead of leaps")

houth.glsrss<- regsubsets.default(x=cbind(inc,mc4,mc6,mc8,gas6,gas8,cap

y=kwh, weights=cust, method="exhaustive")

print (summary.regsubsets (houth.glsrss))

plot.regsubsets(houth.glsrss, scale="Cp")

ecmet.prompt ("Now order the variables")

houth.glsrsord<- regsubsets.default(x=cbind(inc,mc6,cap,gas6,gas8,mc8,m

y=kwh, weights=cust, method="exhaustive")
print (summary.regsubsets (houth.glsrsord))
plot.regsubsets (houth.glsrsord, scale="Cp")

233. Use avas to determine the “best” monlinear transformations of
the explanatory and the response variable. Since the weights are theoretically well
justified, one should do it for the weighted regression. Which functions do you think
one should use for the different regressors?

234. 8 points Then, as a check whether the transformation interferred
with data selection, redo leaps, but now with the transformed variables. Show that
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the GLS-regression Houthakker actually ran is the “best” regression among the fol-
lowing variables: inc, 1/mc4, 1/mc6, 1/mc8, gas6, gas8, cap using either the
C, statistic or the adjusted RR?.

235. Diagnostics, the identification of outliers or influential observa-
tions is something which we can do easily with R, although Berndt did not ask for it.
The command houth.glsinf<-im.influence (houth.glsfit) gives you the build-
ing blocks for many of the regression disgnostics statistics. Its output is a list if three
objects: A matrix whose rows are all the the least squares estimates ,@(2) when the
ith observation is dropped, a vector with all the s(i), and a vector with all the hg;.
A more extensive function is influence.measures (houth.glsfit), it has Cook’s
distance and others.

In order to look at the residuals, use the command plot (resid(houth.glsfit),
type="h") or plot (rstandard(houth.glsfit), type="h") or plot(rstudent (hout
type="h"). To add the axis do abline(0,0). If you wanted to check the residuals
for normality, you would use qqnorm(rstandard (houth.glsfit)).

236. Which commands do you need to plot the predictive residuals?

237. 4 points Although there is good theoretical justification for using
cust as weights, one might wonder if the data bear this out. How can you check this?
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Do plot(cust, rstandard(houth.olsfit)) and plot(cust, rstandard(houth.glsfit
In the first plot, smaller numbers of customers have larger residuals, in the second plot this is miti-
gated. Also the OLS plot has two terrible outliers, which are brought more into range with GLS. 0O

238. The variable cap does not measure the capacity of all electrical
equipment owned by the households, but only those appliances which were leased from
the FElectric Utility company. A plot shows that people with higher income do not
lease as much but presumably purchase their appliances outright. Does this mean the
variable should not be in the regression?

16.3. Long Term Data about US Economy

The dataset uslt is described in | ]. Home page of the authors is www . ceprema
uslt has the variables kn, kg (net and gross capital stock in current $), kn2, kg2 (the
same in 1982%), hours (hours worked), wage (hourly wage in current dollars), gnp,
gnp2, nnp, inv2 (investment in 1982 dollars), r (profit rate (nnp—wage x hours)/kn),
u (capacity utilization), kne, kge, kne2, kge2, inve2 (capital stock and investment
data for equipment), kns, kgs, kns2, kgs2, invs2 (the same for structures).

Capital stock data were estimated separately for structures and equipment and
then added up, i.e., kn2 = kne2 + kns2 etc. Capital stock since 1925 has been
constructed from annual investment data, and prior to 1925 the authors of the series
apparently went the other direction: they took someone’s published capital stock
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estimates and constructed investment from it. In the 1800s, only a few observations
were available, which were then interpolated. The capacity utilization ratio is equal
to the ratio of gnp2 to its trend, i.e., it may be negative.

Here are some possible commands for your R-session: data(uslt) makes the data
available; uslt.clean<-na.omit(uslt) removes missing values; this dataset starts
in 1869 (instead of 1805). attach(uslt.clean) makes the variables in this dataset
available. Now you can plot various series, for instance plot ( (nnp-hours*wage) /nnp,
type="1") plots the profit share, or plot (gnp/gnp2, kg/kg2, type="1") gives you
a scatter plot of the price level for capital goods versus that for gnp. The command
plot(r, kn2/hours, type="b") gives both points and dots; type = "o" will have
the dots overlaid the line. After the plot you may issue the command identify(r,
kn2/hours, label=1869:1989) and then click with the left mouse button on the
plot those data points for which you want to have the years printed.

If you want more than one timeseries on the same plot, you may do matplot (1869::
cbind (kn2,kns2), type="1"). If you want the y-axis logarithmic, say matplot (1869
cbind (gnp/gnp2,kns/kns2,kne/kne2), type="1", log="y").

239. Computer assignment: Make a number of such plots on the
screen, and import the most interesting ones into your wordprocessor. FEach class
participant should write a short paper which shows the three most insteresting plots,
together with a written explanation why these plots seem interesting.
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To use pairs or xgobi, you should carefully select the variables you want to in-
clude, and then you need the following preparations: usltsplom <- cbind(gnp2=gnp2
kn2=kn2, inv2=inv2, hours=hours, year=1869:1989) dimnames (usltsplom) [[1]
<- paste(1869:1989) The dimnames function adds the row labels to the matrix, so
that you can see which year it is. pairs(usltsplom) or library(xgobi) and then
xgobi (usltsplom)

You can also run regressions with commands of the following sort: 1lm.fit <-
Im(formula = gnp2 ~ hours + kne2 + kns2). You can also fit a “generalized ad-
ditive model” with the formula gam.fit <- gam(formula = gnp2 ~ s(hours) +
s(kne2) + s(kns2)). This is related to the avas command we talked about in
class. It is discussed in [ ]

16.4. Dougherty Data

We have a new dataset, in both SAS and Splus, namely the data described in
[Dous?].

There are more data than in the tables at the end of the book; prelcosm for
instance is the relative price of cosmetics, it is 100*pcosm/ptpe, but apparently
truncated at 5 digits.
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16.5. Wage Data

The two datasets used in | , pp. 191-209] are available in R as the data
frames cps78 and cps85. In R on unix, the data can be downloaded by cps78
<- readSDML("http://www.econ.utah.edu/ehrbar/data/cps78.sdml"), and the
corresponding for cps85. The original data provided by Berndt contain many dummy
variables. The data frames in R have the same data coded as “factor” variables
instead of dummies. These “factor” variables automatically generate dummies when
included in the model statement.

cps78 consists of 550 randomly selected employed workers from the May 1978
current population survey, and cps85 consists of 534 randomly selected employed
workers from the May 1985 current population survey. These are surveys of 50,000
households conducted monthly by the U.S. Department of Commerce. They serve
as the basis for the national employment and unemployment statistics. Data are
collected on a number of individual characteristics as well as employment status.
The present extracts were performed by Leslie Sundt of the University of Arizona.

ed = years of education

ex = years of labor market experience (= age — ed — 6, or 0 if this is a negative
number).

lnwage = natural logarithm of average hourly earnings

age = age in years



460 16. SPECIFIC DATASETS

ndep = number of dependent children under 18 in household (only in cps78).
region has levels North, South
race has levels Other, Nonwhite, Hispanic. Nonwhite is mainly the Blacks, and

Other is mainly the Non-Hispanic Whites.

vV V V Vv V

gender has levels Male, Female

marr has levels Single, Married

union has levels Nonunion, Union

industry has levels Other, Manuf, and Constr

occupation has levels Other, Manag, Sales, Cler, Serv, and Prof

Here is a log of my commands for exercises 1 and 2 in | , pp. 194-197].

cps78 <- readSDML("http://www.econ.utah.edu/ehrbar/data/cps78.sdml")
attach(cps78)

###Exercise la (2 points) in chapter V of Berndt, p. 194

#Here is the arithmetic mean of hourly wages:

mean (exp (1nwage))

[1] 6.062766

>
>
>

#Here is the geometric mean of hourly wages:
#(Berndt’s instructions are apparently mis-formulated):
exp (mean(lnwage))

[1] 5.370935
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> #Geometric mean is lower than arithmetic, due to Jensen’s inequality
> #if the year has 2000 hours, this gives an annual wage of
> 2000*exp (mean(lnwage))
[1] 10741.87
> #What are arithmetic mean and standard deviation of years of schoolin
> #and years of potential experience?
> mean(ed)
[1] 12.53636
> sqrt(var(ed))
[1] 2.772087
> mean (ex)
[1] 18.71818
> sqrt(var(ex))
[1] 13.34653
> #experience has much higher standard deviation than education, not su
> ##Exercise 1b (1 point) can be answered with the two commands
> table(race)
Hisp Nonwh Other
36 57 457
> table(race, gender)
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gender
race Female Male
Hisp 12 24
Nonwh 28 29

V V V VvV V

Other 167 290

#Berndt also asked for the sample means of certain dummy variables;
#This has no interest in its own right but was an intermediate
#step in order to compute the numbers of cases as above.

##Exercise 1c (2 points) can be answered using tapply
tapply(ed, gender ,mean)

Female Male

12.76329 12.39942

>
>

VvV V.V VN

#now the standard deviation:
sqrt (tapply(ed,gender,var))
Female Male

.220165 3.0562312

#Women do not have less education than men; it is about equal,
#but their standard deviation is smaller

#Now the geometric mean of the wage rate:

exp (tapply(lnwage,gender,mean))
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Female Male

.316358 6.128320

#Now do the same with race

##Exercise 1d (4 points)

detach()

##This used to be my old command:

cps85 <- read.table("~/dpkg/ecmet/usr/share/ecmet/usr/lib/R/library/e
#But this should work for everyone (perhaps only on linux):

cps85 <- readSDML("http://www.econ.utah.edu/ehrbar/data/cps85.sdml")
attach(cps85)

mean (exp (lnwage) )

[1] 9.023947

> sqrt(var (lnwage))

[1] 0.5277335

> exp(mean(lnwage))

[1] 7.83955

> 2000*exp (mean(lnwage))

[1] 15679.1

> 2000*exp (mean(lnwage))/1.649

[1] 9508.248

V VV V V V V V V.,
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> #real wage has fallen
> tapply(exp(lnwage), gender, mean)
Female Male
7.878743 9.994794
tapply (exp(lnwage) , gender, mean)/1.649
Female Male
4.777891 6.061125
> #Compare that with 4.791237 6.830132 in 1979:
> #Male real wages dropped much more than female wages
>
>
>

\4

##Exercise le (3 points)
#using cps85
w <- mean(lnwage); w
[1] 2.059181
> s <- sqrt(var(lnwage)); s
[1] 0.5277335
> lnwagef <- factor(cut(lnwage, breaks = w+sxc(-4,-2,-1,0,1,2,4)))
> table(lnwagef)
Inwagef
(-0.0518,1] (1,1.53] (1.53,2.06] (2.06,2.59] (2.59,3.11] (3.11,4.17]
3 93 174 180 72 12
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> ks.test(lnwage, "pnorm")
One-sample Kolmogorov-Smirnov test
data: Ilnwage
D = 0.8754, p-value = < 2.2e-16
alternative hypothesis: two.sided
> ks.test(lnwage, "pnorm", mean=w, sd =s)
One-sample Kolmogorov-Smirnov test
data: Ilnwage
D = 0.0426, p-value = 0.2879
alternative hypothesis: two.sided

#Normal distribution not rejected

#If we do the same thing with
wage <- exp(lnwage)

vV V V V
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> ks.test(wage, "pnorm", mean=mean(wage), sd =sqrt(var(wage)))
One-sample Kolmogorov-Smirnov test

data: wage
D = 0.1235, p-value = 1.668e-07
alternative hypothesis: two.sided

> #This is highly significant, therefore normality rejected
>

#An alternative, simpler way to answer question le is by using qgnorm
qgnorm(lnwage)

qqnorm(exp(lnwage))

#Note that the SAS proc univariate rejects that wage is normally dist
#but does not reject that lnwage is normally distributed.

###Exercise 2a (3 points), p. 196

summary (lm(lnwage ~ ed, data = cps78))

V V V V V V VvV

Call:
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Im(formula = lnwage ~ ed, data = cps78)

Residuals:
Min 1Q Median 3Q Max
-2.123168 -0.331368 -0.007296 0.319713 1.594445

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 1.030445 0.092704 11.115 < 2e-16 *x*x*
ed 0.051894 0.007221 7.187 2.18e-12 **x%

Signif. codes: 0 ‘**x’ 0.001 ‘*x> 0.01 ‘x> 0.06 ‘.”> 0.1 ¢

Residual standard error: 0.469 on 548 degrees of freedom
Multiple R-Squared: 0.08613,Adjusted R-squared: 0.08447
F-statistic: 51.65 on 1 and 548 degrees of freedom,p-value: 2.181e-12

> #0ne year of education increases wages by 5 percent, but low R"2.
> #Mincer (5.18) had 7 percent for 1959
> #Now we need a 95 percent confidence interval for this coefficient
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> 0.051894 + 0.007221*qt(0.975, 548)

[1] 0.06607823

> 0.051894 - 0.007221*qt(0.975, 548)

[1] 0.03770977

> ##Exercise 2b (3 points): Include union participation
> summary(1m(lnwage ~ union + ed, data=cps78))

Call:
Im(formula = lnwage ~ union + ed, data = cps78)

Residuals:
Min 1Q Median 3Q Max
-2.331754 -0.294114 0.001475 0.263843 1.678532

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 0.859166 0.091630 9.376 < 2e-16 **x
unionUnion 0.305129 0.041800 7.300 1.02e-12 **x
ed 0.058122 0.006952 8.361 4.44e-16 **x



16.5. WAGE DATA 469
Signif. codes: 0 ‘*x*x’> 0.001 ‘*x’> 0.01 ‘*x’ 0.06 ‘. 0.1 7

Residual standard error: 0.4481 on 547 degrees of freedom
Multiple R-Squared: 0.1673,Adjusted R-squared: 0.1642
F-statistic: 54.93 on 2 and 547 degrees of freedom,p-value: 0

> exp(0.058)

[1] 1.059715

> exp(0.305129)

[1] 1.3568

> # Union members have 36 percent higher wages

# The test whether union and nonunion members have the same intercept
# is the same as the test whether the union dummy is O.

# t-value = 7.300 which is highly significant,

# i.e., they are different.

vV V V V

\4

#The union variable is labeled unionUnion, because

#it is labeled 1 for Union and O for Nonun. Check with the command
> contrasts(cps78$union)

Union

\4
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Nonun 0

Union 1

> #0ne sees it also if one runs

> model .matrix(lnwage ~ union + ed, data=cps78)
(Intercept) union ed

1 1 0 12
2 1 112
3 1 1 6
4 1 112
5 1 0 12

> #etc, rest of output flushed

> #and compares this with

> cps78$union[1:5]

[1] Nonun Union Union Union Nonun

Levels: Nonun Union

> #Consequently, the intercept for nonunion is 0.8592

#and the intercept for union is 0.8592+0.3051=1.1643.

#Can I have a different set of dummies constructed from this factor?
#We will first do

##Exercise 2e (2 points)

vV V V V
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contrasts(union)<-matrix(c(1,0) ,nrow=2,ncol=1)
#This generates a new contrast matrix
#which covers up that in cps78

V V V VvV V

summary (Im(lnwage ~ union + ed))
Call:
Im(formula = lnwage ~ union + ed)

Residuals:
Min 1Q Median 3Q Max
-2.331754 -0.294114 0.001475 0.263843 1.678532

Coefficients:

Estimate Std. Error t value Pr(>ltl)
(Intercept) 1.164295 0.090453 12.872 < 2e-16 **x
unionl -0.305129 0.041800 -7.300 1.02e-12 **x
ed 0.058122 0.006952 8.361 4.44e-16 **x

Signif. codes: 0 ‘*x*x’ 0.001 ‘*x> 0.01 ‘*x> 0.05 °.

#Note that I do not say "data=cps78" in the next command:

)

0.
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Residual standard error: 0.4481 on 547 degrees of freedom
Multiple R-Squared: 0.1673,Adjusted R-squared: 0.1642

F-statistic: 54.93 on 2 and 547 degrees of freedom,p-value: 0

> #Here the coefficients are different,

> #but it is consistent with the above result.

> ##Ecercise 2c (2 points): If I want to have two contrasts from this
> contrasts(union,2)<-matrix(c(1,0,0,1) ,nrow=2,ncol=2)

> #The additional argument 2

> #specifies different number of contrasts than it expects

> #Now I have to supress the intercept in the regression

> summary(lm(lnwage ~ union + ed - 1))

Call:
Im(formula = lnwage ~ union + ed - 1)

Residuals:
Min 1Q Median 3Q Max
-2.331754 -0.294114 0.001475 0.263843 1.678532
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Coefficients:

Estimate Std. Error t value Pr(>|t])
unionl 0.859166 0.091630 9.376 < 2e-16 x**x
union2 1.164295 0.090453 12.872 < 2e-16 *x*
ed 0.058122 0.006952 8.361 4.44e-16 *xx

Signif. codes: O ‘**x’> 0.001 ‘*x’> 0.01 ‘x> 0.056 “.” 0.1

Residual standard error: 0.4481 on 547 degrees of freedom
Multiple R-Squared: 0.9349,Adjusted R-squared: 0.9345

F-statistic: 2617 on 3 and 547 degrees of freedom,p-value: 0

> #actually it was unnecessary to construct the contrast matrix.
> #If we regress with a categorical variable without

> #an intercept, R will automatically use dummies for all levels:
> 1lm(lnwage ~ union + ed - 1, data=cps85)

Call:
Im(formula = lnwage

union + ed - 1, data = cps85)
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Coefficients:
unionNonunion unionUnion ed
0.9926 1.2909 0.0778
> ##Exercise 2d (1 point) Why is it not possible to include two dummies

\4

V VV V V V V V.YV

# an intercept? Because the two dummies add to 1,
# you have perfect collinearity

###Exercise 3a (2 points):

summary (Im(lnwage ~ ed + ex + I(ex"2), data=cps78))

#A11l coefficients are highly significant, but the R"2 is only 0.2402
#Returns to experience are positive and decline with increase in expe:
##Exercise 3b (2 points):

summary (Im(lnwage ~ gender + ed + ex + I(ex"2), data=cps78))
contrasts (cps78$gender)

#We see here that gender is coded O for female and 1 for male;

#by default, the levels in a factor variable occur in alphabetical or
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#Intercept in our regression = 0.1909203 (this is for female),
#genderMale has coefficient = 0.3351771,

#i.e., the intercept for women is 0.5260974

#Gender is highly significant

##Exercise 3c (2 points):

summary (Im(lnwage ~ gender + marr + ed + ex + I(ex"2), data=cps78))
#Coefficient of marr in this is insignificant

##Exercise 3d (1 point) asks to construct a variable which we do
#not need when we use factor variables

##Exercise 3e (3 points): For interaction term do

summary (Im(lnwage ~ gender * marr + ed + ex + I(ex"2), data=cps78))

V VV V V V VYV VVYV

Call:
Im(formula = lnwage ~ gender * marr + ed + ex + I(ex"2), data = cps78)

Residuals:
Min 1Q Median 3Q Max
-2.45524 -0.24566 0.01969 0.23102 1.42437

Coefficients:
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Estimate Std. Error t value Pr(>|tl)

(Intercept) 0.1893919 0.1042613 1.817 0.06984 .
genderMale 0.3908782 0.0467018 8.370 4.44e-16 **x*
marrSingle 0.0507811 0.0557198 0.911 0.36251

ed 0.0738640 0.0066154 11.165 < 2e-16 **x
ex 0.0265297 0.0049741 5.334 1.42e-07 **x*
I(ex~2) -0.0003161 0.0001057 -2.990 0.00291 x*x*
genderMale:marrSingle -0.1586452 0.0750830 -2.113 0.03506 *

Signif. codes: 0 ‘*x*x’ 0.001 ‘*x’> 0.01 ‘*x’ 0.06 ‘. 0.1

Residual standard error: 0.3959 on 543 degrees of freedom
Multiple R-Squared: 0.3547,Adjusted R-squared: 0.3476
F-statistic: 49.75 on 6 and 543 degrees of freedom,p-value: 0

> #Being married raises the wage for men by 13% but lowers it for women
> #i#t#Exercise 4a (5 points):

> summary(lm(lnwage ~ union + gender + race + ed + ex + I(ex"2), data=c

Call:
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Im(formula = lnwage ~ union + gender + race + ed + ex + I(ex"2),
data = cps78)

Residuals:
Min 1Q Median 3Q Max
-2.41914 -0.23674 0.01682 0.21821 1.31584

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.1549723 0.1068589 1.450 0.14757

unionUnion 0.2071429 0.0368503 5.621 3.04e-08 **x*
genderMale 0.3060477 0.0344415 8.886 < 2e-16 **x*
raceNonwh  -0.1301175 0.0830156 -1.567 0.11761

raceOther 0.0271477 0.0688277 0.394 0.69342

ed 0.0746097 0.0066521 11.216 < 2e-16 **x*
ex 0.0261914 0.0047174 5.552 4.43e-08 **x*
I(ex"2) -0.0003082 0.0001015 -3.035 0.00252 **

Signif. codes: O ‘**x’> 0.001 ‘*x’> 0.01 ‘x> 0.056 “.” 0.1
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Residual standard error: 0.3845 on 542 degrees of freedom
Multiple R-Squared: 0.3924,Adjusted R-squared: 0.3846
F-statistic: 50.01 on 7 and 542 degrees of freedom,p-value: 0

> exp(-0.1301175)
[1] 0.8779923

> #Being Hispanic lowers wages by 2.7%, byut being black lowers them
> #by 12.2 7

#At what level of ex is lnwage maximized?
#exeffect = 0.0261914 * ex -0.0003082 * ex"2
#derivative = 0.0261914 - 2 * 0.0003082 * ex
#derivative = 0 for ex=0.0261914/(2%0.0003082)

vV V V V

\4

0.0261914/(2%0.0003082)
[1] 42.49091

> # age - ed - 6 = 42.49091
> # age = ed + 48.49091



V V V VvV V

16.5. WAGE DATA 479

# for 8, 12, and 16 years of schooling the max earnings
# are at ages 56.5, 60.5, and 64.5 years

##Exercise 4b (4 points) is a graph, not done here
##Exercise 4c (5 points)

summary (1m(lnwage

Call:
Im(formula = lnwage

I(ed * ex), data

Residuals:

Min 1Q

gender + union + race + ed + ex + I(ex"2) + I(ed*

~ gender + union + race + ed + ex + I(ex"2) +
= cps78)

Median 3Q Max

-2.41207 -0.23922 0.01463 0.21645 1.32051

Coefficients:

(Intercept)
genderMale
unionUnion

Estimate Std. Error t value Pr(>|tl)

0.0396495 0.1789073  0.222 0.824693
0.3042639 0.0345241 8.813 < 2e-16 *xx
0.2074045 0.0368638 5.626 2.96e-08 ***
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raceNonwh -0.
raceOther 0.
ed 0.
ex 0.
I(ex"2) -0.

I(ed * ex) -0.

Signif. codes:

1323898
0319829
0824154
0328854
0003574
0003813

0 “kx
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0.0830908 -1.593 0.111673
0.0691124  0.463 0.643718
0.0117716  7.001 7.55e-12 x*x*x*
0.0095716  3.436 0.000636 **x*
0.0001186 -3.013 0.002704 *x*
0.0004744 -0.804 0.421835
x?> 0.001 ‘*x> 0.01 ‘*x’ 0.06 ‘. 0.1 °°

Residual standard error: 0.3846 on 541 degrees of freedom
Multiple R-Squared: 0.3932,Adjusted R-squared: 0.3842
F-statistic: 43.81 on 8 and 541 degrees of freedom,p-value: 0
> #Maximum earnings ages must be computed as before

V V V VvV V

##Exercise 4d (4 points) not done here

##Exercise 4e (6 points) not done here

###Exercise ba (3 points):

#Naive approach to estimate impact of unionization on wages:
summary (1m(lnwage ~

gender + union + race + ed + ex + I(ex"2), data=c
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Call:
Im(formula = lnwage ~ gender + union + race + ed + ex + I(ex"2),
data = cps78)

Residuals:
Min 1Q Median 3Q Max
-2.41914 -0.23674 0.01682 0.21821 1.31584

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 0.1549723 0.1068589 1.450 0.14757

genderMale 0.3060477 0.0344415 8.886 < 2e-16 xxx
unionUnion  0.2071429 0.0368503 5.621 3.04e-08 **x*
raceNonwh  -0.1301175 0.0830156 -1.567 0.11761

raceOther 0.0271477 0.0688277 0.394 0.69342

ed 0.0746097 0.0066521 11.216 < 2e-16 ***
ex 0.0261914 0.0047174  5.552 4.43e-08 **x
I(ex~2) -0.0003082 0.0001015 -3.035 0.00252 *x*

Signif. codes: 0 ‘*x*x’ 0.001 ‘*x’> 0.01 ‘x> 0.06 ‘.’ 0.1 ¢
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Residual standard error: 0.3845 on 542 degrees of freedom
Multiple R-Squared: 0.3924,Adjusted R-squared: 0.3846
F-statistic: 50.01 on 7 and 542 degrees of freedom,p-value:

> # What is wrong with the above? It assumes that unions
# only affect the intercept, everything else is the same
> ##Exercise 5b (2 points)

\4

\4

tapply(lnwage, union, mean)
Nonun Union

.600901 1.863137
tapply(ed, union, mean)
Nonun Union

12.76178 12.02381

> table(gender, union)

union

gender Nonun Union

Female 159 48

Male 223 120

vV =
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> table(race, union)

union
race Nonun Union
Hisp 29 7

Nonwh 35 22
Other 318 139
> 7/(7+29)
[1] 0.1944444
> 22/(22+35)
[1] 0.3859649
> 139/(318+139)
[1] 0.3041575
> #19% of Hispanic, 39% of Nonwhite, and 30% of other (white) workers
> #in the sample are in unions
> ##Exercise 5¢c (3 points)
> summary(Im(lnwage ~ gender + race + ed + ex + I(ex"2), data=cps78, su

Call:
Im(formula = lnwage ~ gender + race + ed + ex + I(ex"2), data = cps78,
subset = union == "Union")
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Residuals:
Min 1Q Median 3Q Max
-2.3307 -0.1853 0.0160 0.2199 1.1992

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 0.9261456 0.2321964  3.989 0.000101 *x**

genderMale 0.2239370 0.0684894  3.270 0.001317 *x*

raceNonwh  -0.3066717 0.1742287 -1.760 0.080278 .

raceOther -0.0741660 0.1562131 -0.475 0.635591

ed 0.0399500 0.0138311 2.888 0.004405 *x

ex 0.0313820 0.0098938 3.172 0.001814 x*x*

I(ex"2) -0.0004526 0.0002022 -2.239 0.026535 *

Signif. codes: 0 ‘*x*x’ 0.001 ‘%%’ 0.01 ‘x> 0.05 ‘.’ 0.1 7

Residual standard error: 0.3928 on 161 degrees of freedom
Multiple R-Squared: 0.2019,Adjusted R-squared: 0.1721
F-statistic: 6.787 on 6 and 161 degrees of freedom,p-value: 1.975e-06
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> summary(lm(lnwage ~ gender + race + ed + ex + I(ex"2), data=cps78, su

Call:

In(formula = lnwage ~ gender + race + ed + ex + I(ex"2), data = cpsT78,
subset = union == "Nonun")

Residuals:
Min 1Q Median 3Q Max

-1.39107 -0.23775 0.01040 0.23337 1.29073

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -0.0095668 0.1193399 -0.080 0.9361

genderMale 0.3257661 0.0397961 8.186 4.22e-15 *x*x*
raceNonwh -0.0652018 0.0960570 -0.679  0.4977
raceOther 0.0444133 0.0761628 0.583 0.5602

ed 0.0852212 0.00755564 11.279 < 2e-16 **x*
ex 0.0253813 0.0053710 4.726 3.25e-06 **x*
I(ex~2) -0.0002841 0.0001187 -2.392 0.0172 =*
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Signif. codes: 0 ‘**x’ 0.001 ‘*x> 0.01 ‘x> 0.06 ‘.’ 0.1

Residual standard error: 0.3778 on 375 degrees of freedom
Multiple R-Squared: 0.4229,Adjusted R-squared: 0.4137
F-statistic: 45.8 on 6 and 375 degrees of freedom,p-value:

#Are union-nonunion differences larger for females than males?
#For this look at the intercepts for males and females in
#the two regressions. Say for white males and females:
0.9261456-0.0741660+0.2239370

[1] 1.075917

> 0.9261456-0.0741660

[1] 0.8519796

> -0.0095668+0.0444133+0.3257661

[1] 0.3606126

> -0.0095668+0.0444133

[1] 0.0348465

> 1.075917-0.3606126

[1] 0.7153044

V V V V
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> 0.8519796-0.0348465
[1] 0.8171331

>

> #White Males White Females

> #Union 1.075917 0.8519796

> #Nonunion 0.3606126 0.0348465

> #Difference 0.7153044 0.8171331

> #Difference is greater for women

> ###tExercise 6a (5 points)

> summary(lm(lnwage ~ gender + union + race + ed + ex + I(ex"2)))

Call:
Im(formula = lnwage ~ gender + union + race + ed + ex + I(ex"2))

Residuals:
Min 1Q Median 3Q Max
-2.41914 -0.23674 0.01682 0.21821 1.31584

Coefficients:
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Estimate Std. Error t value Pr(>|tl)
(Intercept) 0.1549723 0.1068589 1.450 0.14757

genderMale 0.3060477 0.0344415 8.886 < 2e-16 **x*
unionUnion  0.2071429 0.0368503 5.621 3.04e-08 *x*x
raceNonwh  -0.1301175 0.0830156 -1.567 0.11761

raceOther 0.0271477 0.0688277 0.394 0.69342

ed 0.0746097 0.0066521 11.216 < 2e-16 ***

ex 0.0261914 0.0047174  5.552 4.43e-08 ***

I(ex"2) -0.0003082 0.0001015 -3.035 0.00252 =*x*

Signif. codes: 0 ‘*x*x’ 0.001 ‘*x’ 0.01 ‘x> 0.05 ‘.’ 0.1

Residual standard error: 0.3845 on 542 degrees of freedom
Multiple R-Squared: 0.3924,Adjusted R-squared: 0.3846
F-statistic: 50.01 on 7 and 542 degrees of freedom,p-value:

#To test whether Nonwh and Hisp have same intercept

#one might generate a contrast matrix which collapses those
#two and then run it and make an F-test

#or make a contrast matrix which has this difference as one of

vV V V V
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> #the dummies and use the t-test for that dummy
> ##Exercise 6b (2 points)
> table(race)
race
Hisp Nonwh Other

36 57 457
> tapply(lnwage, race, mean)

Hisp Nonwh Other
1.529647 1.513404 1.713829
> tapply(lnwage, race, ed)
Error in get(x, envir, mode, inherits) : variable "ed" was not found
> tapply(ed, race, mean)

Hisp Nonwh Other
10.30556 11.71930 12.81400
> table(gender, race)

race
gender Hisp Nonwh Other
Female 12 28 167
Male 24 29 290

> #Blacks, almost as many women than men, hispanic twice as many men,
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>

VV VVVV VYV VVVYVYVYV

#Whites in between

#Additional stuff:

#There are two outliers in cps78 with wages of less than $1 per hour,
#Both service workers, perhaps waitresses who did not report her tips
#What are the commands for extracting certain observations

#by certain criteria and just print them? The split command.

#Interesting to do

loess(lnwage ~ ed + ex, data=cps78)

#loess is appropriate here because there are strong interation terms
#How can one do loess after taking out the effects of gender for inst
#Try the following, but I did not try it out yet:

gam(lnwage ~ lo(ed,ex) + gender, data=cps78)

#I should put more plotting commands in!
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capital
B

output no error, crs

B .
C%l%ﬁp%guglas s original result

labor

FIGURE 2. Coeflicients of capital (vertical) and labor (horizon-
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1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0

capital all erors

output no error, crs

output all errors

labor all errors

0.00.10.20.30.40.50.60.70.8091.01.11.21.31.41.5

FIGURE 3. Coeflicient of capital (vertical) and labor (horizontal)
in the elementary regressions, dependent variable output, 1899-1922



CHAPTER 17

The Mean Squared Error as an Initial Criterion of
Precision

The question how “close” two random variables are to each other is a central
concern in statistics. The goal of statistics is to find observed random variables which
are “close” to the unobserved parameters or random outcomes of interest. These ob-
served random variables are usually called “estimators” if the unobserved magnitude
is nonrandom, and “predictors” if it is random. For scalar random variables we will
use the mean squared error as a criterion for closeness. Its definition is MSE[(%; @]
(read it: mean squared error of & as an estimator or predictor, whatever the case
may be, of ¢):

(17.0.1) MSE[0; ¢] = E[(¢ — ¢)?]

4993
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For our purposes, therefore, the estimator (or predictor) E) of the unknown parameter
(or unobserved random variable) ¢ is no worse than the alternative ¢ if MSE[¢; 6] <
MSE[&, ¢]. This is a criterion which can be applied before any observations are
collected and actual estimations are made; it is an “initial” criterion regarding the
expected average performance in a series of future trials (even though, in economics,
usually only one trial is made).

17.1. Comparison of Two Vector Estimators

If one wants to compare two vector estimators, say dA) and ({)7 it is often impossible
to say which of two estimators is better. It may be the case that 01 is better than
¢, (in terms of MSE or some other crlterlon) but oo is worse than ¢,. And even if
every component ¢, is estimated better by ¢, than by o , certain linear combinations
t" ¢ of the components of ¢» may be estimated better by tT¢~) than by tTdA).

240. 2 points Construct an example of two vector estimators qAS and
¢ of the same random vector ¢ = [¢1 @2]1—, so that MSE|[0;; ¢;] < MSE[0;; &;] for
i = 1,2 but MSE[0; + dq; b1 + by] > MSE[d, + do; & + g, Hint: it is easiest to use
an example in which all random variables are constants. Another hint: the geometric
analog would be to find two vectors in a plane ¢ and ¢. In each component (i.e.,
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projection on the azes), gﬁ is closer to the origin than gg But in the projection on
the diagonal, ¢ is closer to the origin than ¢.

In the simplest counterexample, all variables involved are constants: ¢ = [8],
(/A): [}], and (E: [32]
]

One can only then say unambiguously that the vector (;3 is a no worse estimator
than ¢ if its MSE is smaller or equal for every linear combination. Theorem 17.1.1
will show that this is the case if and only if the MSE-matriz of ¢ is smaller, by a
nonnegative definite matrix, than that of 95 If this is so, then theorem 17.1.1 says
that not only the MSE of all linear transformations, but also all other nonnegative
definite quadratic loss functions involving these vectors (such as the trace of the
MGSE-matrix, which is an often-used criterion) are minimized. In order to formulate
and prove this, we first need a formal definition of the MSE-matrix. We write MSE
for the matrix and MSE for the scalar mean squared error. The MSE-matrix of ¢
as an estimator of ¢ is defined as

(17.1.1) MSE[d; ] = E[(d — ) (b — @) T].
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241. 2 points Let 0 be a vector of possibly random parameters, and 0
an estimator of 0. Show that

(17.1.2) MSE[B; 0] =[O — 0]+ ([6—0))(c[6—8) .
Don’t assume the scalar result but make a proof that is good for vectors and scalars.

For any random vector « follows
ElzaT] = €[(z — glz] + Ez]) (= — E[z] + £2]) ]
=¢[(@— el (@ — el)T] — £[(z — gla)) £la] 7] — e[ela)(x — €l T] + £ [ela] ] ]
=V[z] -0 -0 +¢lz]€l2] .

Setting = = 6 — 6 the statement follows. g

If 8 is nonrandom, formula (17.1.2) simplifies slightly, since in this case V[0 —8] =
V[0]. In this case, the MSE matrix is the covariance matrix plus the squared bias
matrix. If @ is nonrandom and in addition 6 is unbiased, then the MSE-matrix

coincides with the covariance matrix.

THEOREM 17.1.1. Assume c{) and (ig are two estimators of the parameter ¢ (which
is allowed to be random itself). Then conditions (17.1.3), (17.1.4), and (17.1.5) are
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equivalent:
(17.1.3) For every constant vector t, MSE[tT(i; tTg) < MSE[tT(E; t7 ¢
(17.1.4) MSE[p; p] — MSE[D; @ is a nonnegative definite matriz

(17.1.5)  For every nnd ®, E[(¢—¢)"O(¢ - ¢)] <E[(¢ - ¢)"O(¢ — ¢)].

PROOF. Call MSE[¢; ¢] = 028 and MSE[P; ¢] = Q. To show that (17.1.3)
implies (17.1.4), simply note that MSE[tTQB; t"T ¢] = 0?t"Qt and likewise MSE[t " ¢; ¢ "
o?tTZt. Therefore (17.1.3) is equivalent to ¢ (E — Q) > 0 for all ¢, which is the
defining property making E — 2 nonnegative definite.

Here is the proof that (17.1.4) implies (17.1.5):

E[($ - ¢)"O(¢ - 9)] = Eltx((¢ — #)"O(¢ - 9))] =
=E[tr(8( = d)(& — ¢) )] = tr(O£[(d — d)(& — ¢)T]) = 0” tr(6Q)

and in the same way

E[(¢ — ¢)"O(¢ — ¢)] = o” tr(OF).
The difference in the expected quadratic forms is therefore o2 tr(@(2 — Q)). By
assumption, E — Q is nonnegative definite. Therefore, by theorem A.5.6 in the
Mathematical Appendix, or by Problem 242 below, this trace is nonnegative.
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To complete the proof, (17.1.5) has (17.1.3) as a special case if one sets @ =
tt'. 0

242. Show that if ® and ¥ are symmetric and nonnegative definite,
then tr(®X) > 0. You are allowed to use that tr(AB) = tr(BA), that the trace of a
nonnegative definite matriz is > 0, and Problem 118 (which is trivial).

Write ® = RRT; then tr(©%) = tr(RR' %) = tr(RTER) > 0. O

243. Consider two very simple-minded estimators of the unknown
nonrandom parameter vector ¢ = {ii ] . Neither of these estimators depends on any

observations, they are constants. The first estimator is qg =[], and the second is

¢:[182]-

a. 2 points Compute the MSE-matrices of these two estimators if the true

value of the parameter vector is ¢ = [18]. For which estimator is the trace of the

MSE matriz smaller?
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¢ has smaller trace of the MSE-matrix.

o

MSE[; P = E[(d— D) — @) ]

MSE[G: 6] = [44 ‘44}

Note that both MSE-matrices are singular, i.e., both estimators allow an error-free look at certain
linear combinations of the parameter vector. dJ

b. {point Give two vectors g = [ 93] and h = LZ;] satisfying MSE[gT ¢; g7 ¢ <
MSE[g" ¢;9" ¢] and MSE[h' ¢;h" ¢] > MSE[h' ¢:h' @] (g and h are not unique;
there are many possibilities).

With g = [31] and h = [H for instance we get gqu —g'¢ =0, gTq; —
9'¢=4,hTd;hT¢p =2 hTd;hT¢ =0, therefore MSE[g" $;g" ¢] = 0, MSE[g" ;9" ¢] = 16,
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MSE[thf); hT ] = 4, MSE[th;; hT¢] = 0. An alternative way to compute this is e.g.

MSERT ;R g =1 —1] {44 _44] [11} =16

O

c. 1 point Show that neither MSE|p; p] — MSE|p; P nor MSE[d; ¢| —
MSE[p; @] is a nonnegative definite matriz. Hint: you are allowed to use the

mathematical fact that if a matriz is nonnegative definite, then its determinant is
nonnegative.

(17.1.6) MSE[F; @] — MSE[d; ] = [35 ‘35}

Its determinant is negative, and the determinant of its negative is also negative. d



CHAPTER 18

Sampling Properties of the Least Squares
Estimator

The estimator 3 was derived from a geometric argument, and everything which
we showed so far are what | , p. 3] calls its numerical as opposed to its statistical
properties. But 3 has also nice statistical or sampling properties. We are assuming
right now the specification given in (14.1.3), in which X is an arbitrary matrix of full
column rank, and we are not assuming that the errors must be Normally distributed.
The assumption that X is nonrandom means that repeated samples are taken with
the same X -matrix. This is often true for experimental data, but not in econometrics.
The sampling properties which we are really interested in are those where also the X-
matrix is random; we will derive those later. For this later derivation, the properties

501



502 18. SAMPLING PROPERTIES OF THE LEAST SQUARES ESTIMATOR

with fixed X -matrix, which we are going to discuss presently, will be needed as an
intermediate step. The assumption of fixed X is therefore a preliminary technical
assumption, to be dropped later.

In order to know how good the estimator B is, one needs the statistical properties
of its “sampling error” 3 — B. This sampling error has the following formula:

B-B=(XTX)"'XTy—(X"X)"'XTXB=

(18.0.7) (XTX) ' XT(y-XB8)=(X"X)"'X e

From (18.0.7) follows immediately that 3 is unbiased, since £[(X X)X "e] = o.
Unbiasedness does not make an estimator better, but many good estimators are
unbiased, and it simplifies the math.
We will use the MSE-matrix as a criterion for how good an estimator of a vector
of unobserved parameters is. Chapter 17 gave some reasons why this is a sensible
criterion (compare | , Chapter 5.5]).
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18.1. The Gauss Markov Theorem
Returning to the least squares estimator B, one obtains, using (18.0.7), that
MSEB; Bl = E[B-B)(B-B)]=(XTX)'X T glee"|X(XTX) " =
(18.1.1) =o?(XTX)™.

This is a very simple formula. Its most interesting aspect is that this MSE matrix
does not depend on the value of the true 3. In particular this means that it is
bounded with respect to B, which is important for someone who wants to be assured
of a certain accuracy even in the worst possible situation.

244. 2 points Compute the MSE-matric MSE[é;e] = E[(€ — ) (€ —
)] of the residuals as predictors of the disturbances.

Write ¢ —e = Me —e = (M — I)e = —X(X " X)X T¢; therefore MSE[¢;e] =
EIX(XTX) ' XTeeTX(XTX)'X =02X(XTX) 1 XT. Alternatively, start with € —& =y —
J—e = XB—17 = X(B—0). This allows to use MSE[&;e] = X MSEF; 81X T =2 X(XTX)"1XT.

]

245. 2 points Let v be a random vector that is a linear transformation
of y, i.e., v = Ty for some constant matrix T'. Furthermore v satisfies £[v] = o.
Show that from this follows v = TE. (In other words, no other transformation of y
with zero expected value is more “comprehensive” than €. However there are many
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other transformation of y with zero expected value which are as “comprehensive” as

€).

E[v] = TXB must be o whatever the value of 3. Therefore TX = O, from which
follows TM = T'. Since € = My, this gives immediately v = T'€. (This is the statistical implication
of the mathematical fact that M is a deficiency matrix of X.) O

246. 2 points Show that 3 and é are uncorrelated, i.e., cov([(;, ;] =
0 for all i,j. Defining the covariance matrix C[B,é] as that matriz whose (i,j)
element is cov[3;,£;], this can also be written as C[3,€] = O. Hint: The covariance
matriz satisfies the rules C[Ay, Bz] = AC[y, z]B " and C[y,vy] = V[y]. (Other rules
for the covariance matriz, which will not be needed here, are Clz,y] = (Cly,z])T,
Clz +vy, 2] =Clz, 2] + Cly, 2], Clz,y + 2] = Clz,y] + C[x, 2], and Cy,c] = O if c is
a vector of constants.)

A=(XTX)"'XT and B=I-X(X"X)" !XT therefore C[3,&] = c2(X T X)"1XT
X(XTx)"'1xT)=o0. O

247. 4 points Let y = X B+ € be a regression model with intercept, in
which the first column of X is the vector v, and let 3 the least squares estimator of
B. Show that the covariance matriz between § and 3, which is defined as the matrix
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(here consisting of one row only) that contains all the covariances
(18.1.2) Cly, B8] = [cov[y, 01] cov[y, Bo] -+ cov[y, 3]

has the following form: C[g‘/,B] = %2 [1 0o --- O] where n is the number of ob-
servations. Hint: That the regression has an intercept term as first column of the
X -matriz means that Xe") = ¢, where eV is the unit vector having 1 in the first
place and zeros elsewhere, and ¢ is the vector which has ones everywhere.

Write both 7 and 3 in terms of y, i.e., J = %LTy and 3 = (XTX)"'XTy. Therefore

2 2 2
el Al =~ T VXX TX) " = LT x(XTX) T = T e X Tx(XTx) = Te
n n n n
]
THEOREM 18.1.1. Gauss-Markov Theorem: 3 is the BLUE (Best Linear Unbi-
ased Estimator) of B in the following vector sense: for every nonrandom coefficient
vector t, t' 3 is the scalar BLUE of t" B, i.e., every other linear unbiased estimator
o=a'y of p=t"B has a bigger MSE than tT,B
PROOF. Write the alternative linear estimator ¢ = a'y in the form

(18.1.4) o=(t"(XTX)' X +c")y
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then the sampling error is
p—¢=t"(X"X)' X"+ (XB+e)-t' B
(18.1.5) =t X' X)X T+ e+ XP.

By assumption, the alternative estimator is unbiased, i.e., the expected value of this
sampling error is zero regardless of the value of 3. This is only possibleif ¢’ X =o' .

But then it follows
MSE[¢;¢] = E[(0 — ¢)*] =E[t" (X " X)'X T +cMee (X(XTX) 't +¢)] =
=2tT(XTX)T' X +e")(X(XTX) "t +e) =0t (XTX) 't +o%e,
Here vTveA needed again ¢" X = o'. Clearly, this is minimized if ¢ = o, in which case
p=t'pg. O

248. 4 points Show: If,é is a linear unbiased estimator of B and B 18
the OLS estimator, then the difference of the MSE-matrices MSE[B; B]—MSE|SB; B
is monnegative definite.

(Compare | , p- 159].) Any other linear estimator 3 of 3 can be written
as 3 = ((XTX)_IXT + C)y. Its expected value is £[3] = (X" X)"!1XTXB8 + CXB. For
ﬁ to be unbiased, regardless of the value of 3, C must satisfy CX = O. But then it follows
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MSE[B; Bl =V[Bl = (XTX) 71X T +C) (X(XTX) 1+ CT) =o?(X"X)" 1 +02CCT i,

it exceeds the MSE-matrix of 3 by a nonnegative definite matrix. |

18.2. Digression about Minimax Estimators

Theorem 18.1.1 is a somewhat puzzling property of the least squares estimator,
since there is no reason in the world to restrict one’s search for good estimators
to unbiased estimators. An alternative and more enlightening characterization of
B does not use the concept of unbiasedness but that of a minimax estimator with
respect to the MSE. For this I am proposing the following definition:

DEFINITION 18.2.1. 6 is the linear minimax estimator of the scalar parameter ¢
with respect to the MSE if and only if for every other linear estimator ¢ there exists
a value of the parameter vector 3 such that for all 8,

(18.2.1) MSE[0; 6|8 = 3] > MSE[¢; 6|8 = 3]

In other words, the worst that can happen if one uses any other ¢ is worse than
the worst that can happen if one uses ¢. Using this concept one can prove the
following:

THEOREM 18.2.2. (3 is a linear minimaz estimator of the parameter vector (3
in the following sense: for every nonrandom coefficient vector t, t' 3 is the linear
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minimaz estimator of the scalar ¢ = t' B with respect to the MSE. Le. , for every
other linear estimator ¢ = a'y of ¢ one can find a value 3 = B, for whzch ¢ has a
larger MSE than the largest possible MSE of t' 3.

Proof: as in the proof of Theorem 18.1.1, write the alternative linear estimator
& in the form ¢ = (tT(XTX)_lXT + cT)y, so that the sampling error is given by
(18.1.5). Then it follows
(18.2.2)

MSE[}; ¢] = E[(0—¢)?] = E[((tT(XTX)_lXT-i—cT)e—i—cTXﬁ) (sT (X(XTX) e+

(1823) =t (X" X)X T+ (X(XTX)t+e)+c'XBB X e

Now there are two cases: if ¢" X = o', then MSE[¢; ¢] = 0%t (X ' X) 't +02c ¢
This does not depend on 3 and if ¢ # o then this MSE is larger than that for ¢ = o.
If "X # o', then MSE[&, @] is unbounded, i.e., for any finite number w one one
can always find a 8, for which MSE[;), ¢] > w. Since MSE[(,%; ¢] is bounded, a 3,
can be found that satisfies (18.2.1).



18.3. MISCELLANEOUS PROPERTIES OF THE BLUE 509

If we characterize the BLUE as a minimax estimator, we are using a consistent
and unified principle. It is based on the concept of the MSE alone, not on a mix-
ture between the concepts of unbiasedness and the MSE. This explains why the
mathematical theory of the least squares estimator is so rich.

On the other hand, a minimax strategy is not a good estimation strategy. Nature
is not the adversary of the researcher; it does not maliciously choose 3 in such a way
that the researcher will be misled. This explains why the least squares principle,
despite the beauty of its mathematical theory, does not give terribly good estimators
(in fact, they are inadmissible, see the Section about the Stein rule below).

3 is therefore simultaneously the solution to two very different minimization
problems. We will refer to it as the OLS estimate if we refer to its property of
minimizing the sum of squared errors, and as the BLUE estimator if we think of it
as the best linear unbiased estimator.

Note that even if o2 were known, one could not get a better linear unbiased
estimator of 3.

18.3. Miscellaneous Properties of the BLUE
249.
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a. 1 point Instead of (14.2.22) one sometimes sees the formula

- X —2)?
for the slope parameter in the simple regression. Show that these formulas are math-
ematically equivalent.

Equivalence of (18.3.1) and (14.2.22) follows from Z(xt —Z) = 0 and therefore also
7 Z(zt — Z) = 0. Alternative proof, using matrix notation and the matrix D defined in Problem

TpHT T
161: (14.2.22) is % and (18.3.1) is % They are equal because D is symmetric and
idempotent.

O

b. 1 point Show that

0.2

(18.3.2) var[] = S0, 2

Write (18.3.1) as
1

(18.3.3) (= m Z(:Ct — )y, = varld] = w Z(It - 1)%0?
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c. 2 points Show that cov[;'}, 7] = 0.
This is a special case of problem 247, but it can be easily shown here separately:

cov[, 7] = cov [m, % Z y]} = m cov {Z(xs - Z)y,, Z y]} =
J s

J

1 _
= W Z(a:s —T)o? =0.

s

O
d. 2 points Using (14.2.23) show that
1 z2
A1 2

(1834) V&I‘[(l’] =0 (ﬁ + m)

250. You have two data vectors x; and y; (i =1,...,n), and the true
model is
(18.3.5) Yi = Pri+ &

where x; and ¢; satisfy the basic assumptions of the linear regression model. The
least squares estimator for this model is

(18.3.6) G=(x'x) ey = %ﬁ;z




18. SAMPLING PROPERTIES OF THE LEAST SQUARES ESTIMATOR

a. 1 point Is [} an unbiased estimator of B¢ (Proof is required.)

First derive a nice expression for § — 3:

C Domy; B
S a2 Ya?
Do wi(y; — i)
X
_ infi
>

E[f—f]=E [223;2}
_ ZE[Q}lSl]
e

_ Z%E[SJ
X

g-p

since

=0

b. 2 points Derive the variance of 8. (Show your work.)
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var § = E[§ — g]?
=(¥%)
> a?
:WE[ZMQF
- 5 S B @2 4+2B) (@i (@)

i<j

1 .
3 E Blzei]? since the ¢;’s are uncorrelated, i.e., covle;, e;] = 0 for i # j

1 . .
= ﬁtﬂ E x? since all ¢; have equal variance o2
T

s
S S
BN
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251. We still assume (18.3.5) is the true model. Consider an alter-
native estimator:

A 2 (@i —2)(y; —7)
(18.3.7) R o

i.e., the estimator which would be the best linear unbiased estimator if the true model
were (14.2.15).

a. 2 points Is 3 still an unbiased estimator of B if (18.3.5) is the true model?
(A short but rigorous argument may save you a lot of algebra here).
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One can argue it: /3 is unbiased for model (14.2.15) whatever the value of a or 3,
therefore also when a = 0, i.e., when the model is (18.3.5). But here is the pedestrian way:

S - (B + =)
> (zi —7)?
Swi— D)z Y (2 — T)ey
2(331 — )2 E(Cﬂz — )2

=p+ % since Z(mZ — Tz = Z(azI —z)?

. Z(x1 — ey

Ef=E EE———

B8+ S @ —7)?

Z(Il —CTE)ESZ'
D (@i —1)?

since y; = Bz; + ¢4

=8 +

=0+ =4 since E¢; = 0 for all 4, i.e., (3 is unbiased.

b. 2 points Derive the variance of 3 if (18.3.5) is the true model.
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One can again argue it: since the formula for var 3 does not depend on what the
true value of « is, it is the same formula.

(18.3.8) var 3 = var ( é((m;_—:c i )

(18.3.9) ~ var (W>

Z(% —Z)2vare; .
(18.3.10) == since cov(gie;] =0

O _(zi —x)?)?
(18.3.11) =

O

c. 1 point Still assuming (18.3.5) is the true model, would you prefer 9 or the
3 from Problem 250 as an estimator of 32

Since /3 and 3 are both unbiased estimators, if (18.3.5) is the true model, the pre-
ferred estimator is the one with the smaller variance. As I will show, var 3 < var 3 and, therefore,
3 is preferred to 3. To show
N 2 0'2 ~
(18.3.12) var 3 = > = var 3

2wi—a)? T Y}
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one must show

(18.3.13) D @i-0)?<y a?

which is a simple consequence of (9.1.1). Thus var 3 > var 3; the variances are equal only if Z = 0,
ie., if 3=/. O

252. Suppose the true model is (14.2.15) and the basic assumptions
are satisfied.

5y my,

a. 2 points In this situation, [ = N is generally a biased estimator of (3.
Show that its bias is

(18.3.14) E[f -] =«
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In situations like this it is always worth while to get a nice simple expression for the
sampling error:

(18.3.15) G_p= Z;?_ﬁ
(18.3.16) :zkﬂégim+a)*ﬂ ince gs — o+ o 4 -1
(18.3.17) %»’C; N % 2 zzj:a:z; s
sz lecl
(18.3.18)
S et Y
3 Z sztz
(18.3.19) E[B-8=E
(5 — 8] o Zw
(18.3.20) Yz yoziBe

B SEEAND SF*

(18.3.21) —a=" 40=qa

This is # 0 unless Z =0 or a = 0. ]
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b. 2 points Compute var[j3]. Is it greater or smaller than

(18.3.22)

o2

> (i —x)?

which is the variance of the OLS estimator in this model?

(18.3.23)

(18.3.24)

(18.3.25)

(18.3.26)

(18.3.27)

var [ = var |:

1

(Xt

1

o2

2

T
S

(Xt
(X

]

7)2 var[z TiY;]

)2 Z @2 var[y;]

)2 E x2  since all y; are uncorrelated and have equal variance o

This variance is smaller or equal because Z z2 > Z(a}z — )2,

2
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c. 5 points Show that the MSE of /3 is smaller than that of the OLS estimator

if and only if the unknown true parameters o and o2 satisfy the equation

O52

(18.3.28) - — <1
(i + yer)

T > (wi—)2

This implies some tedious algebra. Here it is important to set it up right.

2 .2 5
Mselidl = s+ (5757) < <o
(imi )2 - o2 o2 _ o2 (me — (s _5)2)

. o2nz?
a Z(x, 7i)22x2
a’n a? < o2