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Abstract avoided in the applied sciences because of the dif-
ficulties to write them on a two-dimensional sheet
A graph-theoretical notation for array concatenatigft paper. The following symbolic notation makes
represents arrays as bubbles with arms sticking a#e structure of arrays explicit without writing them
each arm with a specified number of “fingers.” Bultown element by element. It is hoped that this makes
bles with one arm are vectors, with two arms marrays easier to understand, and that this notation
trices, etc. Arrays can only hold hands, i.e., “cofeads to simple high-level user interfaces for pro-

tract” along a given pair of arms, if the arms havgramming languages manipulating arrays.
the same number of fingers. There are three array
concatenations: outer product, contraction, and di-
rect sum. Special arrays are the unit vectors and @e Inf
diagonal array, which is the branching point of sev-
s ot o1 o clone ot i aray s symbolzed by . rectanulr e wi
e ) . arms sticking out, similar to a molecule. Tiles with
distributive with respect to the direct sum. Examples . .
) ) ) e . One arm are vectors, those with two arms matrices,
are given where this notation clarifies mathematlcﬁ'%lose with more arms are arrays of higher rank (or
proofs. “valence” as in[SS35][IMor73], and[MS86, p. 12]),
and those without arms are scalars. The arrays con-
1 Introduction sidered here are rectangular, not “ragged,” therefore
in addition to their rank we only need to know the
Besides scalars, vectors, and matrices, also highemdamension of each arm; it can be thought of as the
rays are necessary in statistics; for instance, the “caxmber of fingers associated with this arm. Arrays
variance matrix” of a random matrix is really an aran only hold hands (i.e., “contract” along two arms)

ray of rank 4, etc. Usually, such higher arrays aifethe hands have the same number of fingers.

ormal Survey of the Notation



Sometimes it is convenient to write the dimen- The trace of a square matrix—lgl— is the
sion of each arm at the end of the arm, i.eman _ o _
matrix A can be represented asn—] A n . concatenation @ , Which is a scalar since

Matrix products are represented by joining the oho arms are sticking out. In general, concatena-

vious arms: ifB is nx g, then the matrix prod-tion of two arms of the same tile represemtsn-

uctABis m—Iﬂ— n —IEI— q or, in short, traction, i.e., summation over equal values of the
A B indices associated with these two arms. This no-

o The hOtat'_On aIIows'the reader t?ation makes it obvious that XtY = trY X, be-
always tell which arm is which, even if the arms are, se by definition there is no difference be-

not marked. If m C r ismxr, then the
productC'Ais

X I iY or w etc. represent the
C'A=r —/L-I_IT-J/-IAI— n same array (here array of rank zero, i.e., scalar).
m Each of these tiles can be evaluated in essentially two
_ _I?I_ m IAI N different ways. One way is
1. Juxtapose the tiles fot andY, i.e., form their
In the second representation, the tile represering  outer product, which is an array of rank 4 with
is turned by 180 degrees. Since the white part of typical elemenimpyqn.
the frame ofC is at the bottom, not on the top, one
knows that the West arm &, not its East arm, is o . L
. of Y. This is a contraction, resulting in an array
concatenated with the West armAf The transpose of rank 2, the matrix productY, with typical
of -m—Iﬂ—. ris r —I?I—m e, itis not elements  XomgYpn
a different entity but the same entity in a different po-
sition. The order in which the elements are arrange®. Now connect the West arm of with the East
on the page (or in computer memory) is not a part of arm ofY. The result of this second contraction

the definition of the array itself. Likewise, thereisno  is a scalar, the traceXtY = ¥ ;, »XmpYpm-

distinction between row vectors and column vector&. . . . .
. . h alternative sequence of operations evaluating this
Vectors are usually, but not necessarily, written |

@me graph would be
such a way that their arm points West (column vector grap

convention). If_lil and—] b | are vectors, their 1. Juxtapose the tiles fot andy.

scalar product'b is the concatenatiol'l?l—lil 2. Connect the West arm &fwith the East arm of
which has no free arms, i.e., it is a scalar, and their Y to get the matrix product X.

outer productab’ is _lil m— which is a
matrix. Juxtaposition of tiles represents the outer
product, i.e., the array consisting of all the prod-
ucts of elements of the arrays represented by the tildse result is the same, the notation does not spec-
placed side by side. ify which of these alternative evaluation paths is

2. Connect the East arm of with the West arm

Now connect the East arm &f with the West
arm ofY to get trY X.



meant, and a computer receiving commands based the “Hadamard product” (element-by-element
on this notation can choose the most efficient evalyaoduct) of two vectors x y as
tion path. Probably the most efficient evaluation path
is given by [IB) below: take the element-by-element /—m
product ofX with the transpose of, and add all the X*y= A ) (5)
elements of the resulting matrix. y

If the user specifiesXY), the computer is locked
into one evaluation path: it first has to compute théhe graphical representation of all these different
matrix productXY, even ifX is a column vector andmatrix operations uses only a small number of
Y a row vector and it would be much more efficierdtomic operations, which will be enumerated in Sec-
to compute it as {iY X), and then form the trace, i.e.tion 3, and each such graph can be evaluated in a
throw away all off-diagonal elements. If the traceumber of different ways. In principle, each graph

_ . X Y can be evaluated as follows: form the outer prod-
Is specified as , the computer can choosg, .+ of ol arrays involved, and then contract along all

the most efficient of a number of different evaluatiotr!‘ﬂos? pairs of arms W_hif:h are conngcted. For prac-
paths transparently to the user. This advantage of ¢&! implementations it is more efficient to develop
graphical notation is of course even more importafithctions which connect two arrays along one or sev-

if the graphs are more complex. eral of their arms without first forming outer prod-
There is also the “diagonal” array, which in th&Cts, and to add the arrays one by one, performing
case of rank 3 can be written all contractions as early as possible.
n A n n— _ _
or _JAI— n (@ 3 Axiomatic Development of Array
n n Operations

or similar configurations. It has 1's down the maigiq fo)1owing sketch shows how this axiom system
diagonal and O's elsewhere. It can be used 10 Coght he built up. | apologize for presenting a half-
struct the diagonal matrix digg) of a vector (the fiished theory, and thank the conference organiz-
square matrix with the vector in the diagonal and zg;5 o referees for allowing me to do this. Since
ros elsewhere) as I am an economist | do not plan to develop the mate-
n—lAl—n rial presented here any further. Others are invited

diag(x) = 7 3 to take over. If you are interested in working on
this, 1 would be happy to hear from you; email me
atehrbar@econ.uran.edu
the diagonal vector of a square matrix (i.e., the vectorThere are two kinds of special arrays: unit vectors
containing its diagonal elements) as and diagonal arrays.

For every natural numban > 1, m unit vectors

N @ m—u (i=1,...,m) exist. Despite the fact that
’ the unit vectors are denoted here by numbers, there

is no intrinsic ordering among them; they might as

X
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well have the names “red, green, blue,” (From the direct sum uniquely:
(8) and other axioms below it will follow that each

unit vector can be represented asaector with 1

as one of the components and 0 elsewhere.)

m m
For every rank> 1 and dimensiom > 1 there is ; |

a uniquediagonal arraydenoted byA. Their main . n

properties are[[6) and](7). (This and the other ax- i=1

ioms must be formulated in such a way that it will q

be possible to show that the diagonal arrays of rank

1 are the “vectors of ones”which have 1 in every m m

component; diagonal arrays of rank 2 are the identit |

matrices; and for higher ranks, all arms of a diagond} i r Sl—n = LAl._I— n.
q

>

array have the same dimension, and thgir - - ele-
mentis 1ifi=j=k=--- and 0 otherwise.) Perhaps

it makes sense to define the diagonal array of rank 0
and dimensiom to be the scalan, and to declare

all arrays which are everywhere 0-dimensional to be
diagonal.

Itis impossible to tell which is the first summand and
which the second, direct sum is an operation defined
There are only three operations of arrays: thejh finite sets of arrays (where different elements of
outer product, represented by writing them side Byset may be equal to each other in every respect but
side, contraction, represented by the joining of armgill have different identities).
and the direct sum, which will be defined now:

There is a broad rule of associativity: the order in
which outer products and contractions are performed

The direct sum is the operation by which a vect§oes not matter, as '0’_19 as the at the end, the right
can be built up from scalars, a matrix from its ro@'ms are connected with each other. And there are

or column vectors, an array of rank 3 from its |a};jistributive rules involving (contracted) outer prod-

ers, etc. The direct sum of a setogimilar arrays UCts and direct sums.

(i.e., arrays which have the same number of arms,

and corresponding arms have the same dimensionshdditional rules apply for the special arrays. If
is an array which has one additional arm, called theo different diagonal arrays join arms, the result
reference arm of the direct sum. If one “saturate®’ again a diagonal array. For instance, the follow-
the reference arm with thigh unit vector, one getsing three concatenations of diagonal three-way ar-
theith original array back, and this property definasys are identical, and they all evaluate to the (for a
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given dimension) unigue diagonal array or rank 4: addition of arrays is not an axiom because it can be
derived: if one saturates the reference arm of a direct
sum with the vector of ones, one gets the element-by-
element sum of the arrays in this direct sum. Multi-

- plication of an array by a scalar is also contained in
the above system of axioms: it is simply the outer
product with an array of rank zero.

\ / Problem 1. Show that the saturation of an arm of a
\W A diagonal array with the vector of ones is the same as
- J - /IAK (6) dropping this arm.

Answer. Since the vector of ones is the diagonal array of rank
] ] 1, this is a special case of the general concantenation rule for
The diagonal array of rank 2 is neutral under coBrgonal arrays. 0

catenation, i.e., it can be written as

n _IAI_ n = — (7) Problem 2. Show that the diagonal matrix of the
vector of ones is the identity matrix, i.e.,
because attaching it to any array will not change this
array. [6) and[{7) make it possible to represent di- n A n
agonal arrays simply as the branching points of sev- = —. (10)
eral arms. This will make the array notation even l
simpler. However in the present introductory article,
all diagonal arrays will be shown explicitly, and thénswer. In view of (), this is a special case of Problem

vector of ones will be denotedn —II_I instead of ™ =

m —Iﬂ or perhaps m —Iil

. . Problem 3. A trivial array operation is the addition
Unit vectors concatenate as follows:

of an arm of dimension 1; for instance, this is how
a n-vector can be turned into ax1 matrix. Is this

: _ 1 ifi=j
[T —i] {0 otherwise. &) operation contained in the above system of axioms?

. . . . Answer. It is a special case of the direct sum: the direct sum of
and the direct sum of all unit vectors is the diagonghe array only, the only effect of which is the addition of the

array of rank 2: reference arm. O
n
I—I. B B From (9) and[(7) follows that every array of rank
iejl ! n=mn _IAI_ n = - 0 k can be represented as a direct sum of arrays of

rankk — 1, and recursively, as iterated direct sums of
| am sure there will be modifications if one workghose scalars which one gets by saturating all arms
it all out in detail, but if done right, the number ofwith unit vectors. Hence the following “extension-
axioms should be fairly small. Element-by-elemeatity property”: if the arraysA andB are such that
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for all possible conformable choices of unit vectoiaformed by category theory, it is an implication; it
K1---Kg follows comes at the end, not the beginning.
Instead of considering arrays as bags filled with
K3 Ky Ks elements, with the associated false problem of spec-
/l—l ifying the order in which the elements are packed
Ko A Kg — into the bag, this notation and system of axioms con-
sider each array as an abstract entity, associated with
K7 a certain finite graph. These entities can be operated
on as specified in the axioms, but the only time they
K3 g Ks lose their abstract character is when they are fully
saturated, i.e., concatenated with each other in such
Ko B Ke] (11) away that no free arms are left: in this case they be-
come scalars. An array of rank 1 is not the same as a
K1 Kg K7 vector, although it can beepresentedis a vector—
after an ordering of its elements has been specified.

thenA = B. This is why the saturation of an arrayl his ordering is not part of the definition of the array

with unit vectors can be considered one of its “el#self. (Some vectors, such as time series, have an
ments,” i.e., intrinsic ordering, but I am speaking here of the sim-

plest case where they do not.) Also the ordering of

K3 Q Ks the arms is not specified, and the order in which a set
/-I_I of arrays is packed into its direct sum is not specified

Ko A (12) either. These axioms therefore make a strict distinc-
tion between the abstract entities themselves (which

K7 the user is interested in) and their various represen-
tations (which the computer worries about).

From (8) and[(9) follows that the concatenation of Maybe the following examples may clarify these
two arrays by joining one or more pairs of arms cooInts. If you specify a set of colors as
sists in forming all possible products and summiniged greenblue}, then this representation has an or-

over those subscripts (arms) which are joined to ea@@fing built in: red comes first, then green, then
other. For instance, if blue. However this ordering is not part of the def-

inition of the set;{greenred blue} is the same set.
m—|ﬂ— n —E'— r — m—|£|— r , The two notations are two different representations

of the same set. Another example: mathematicians

usually distinguish between the outer produttsB
thenc,y = 31_;awbvp. This is one of the most ba-andB® A; there is a “natural isomorphism” between
sic facts if one thinks of arrays as collections of elhem but they are two different objects. In the system
ements. From this point of view, the proposed nof axioms proposed here these two notations are two
tation is simply a graphical elaboration of Einstein@ifferent representations of the same object, as in the
summation convention. But in the holistic approadet example. This object is represented by a graph
taken by the proposed system of axioms, whichugich hasA andB as nodes, but it is not apparent

K1 Ksg

K6 = aK1K2K3K4K5K6K7K8 .

K1 Ks
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from this graph which node comes first. Interestirthe reader, are white on the opposite side and vice
conceptual issues are involved here. The proposenlsa. If one flips a tile, the arms appear in a mirror-
axioms are quite different than e.g_[Mor73]. symmetric manner. For a matrix, flipping over is

equivalent to turning by 180 degrees i.e., there is
Problem 4. The trace of the product of two matrice, | qittarence between the matrbe A — and the
can be written agr(XY) =1"(X * YT)I. Use tile

notation to show that this gives indet(XY). matrix —m— Since sometimes one and some-
Answer. In analogy with [p), the Hadamard product of the twtimes the other notation seems more natural, both
matricesX andZ, g.ye their element by elemgnt multlpl|cat|on9w” be used. For higher arrays, flipping over ar-
is ranges the arms in a different fashion, which is some-
times convenient in order to keep the graphs unclut-
/_mj_l— tered. It will be especially useful for differentiation.
X+Z= A A If one allows turning in 90 degree increments and
Z flipping, each array can be represented in eight dif-
ferent positions, as shown here with a hypothetical

If Z=Y", one gets array of rank 3:
k m n
m
4—Cu|—D'F (o I o
L n—C]k L
k—HL}F-n
_|_|_ . /
TX YT n m m k
Therefore one gets, using]10): rl] m m l|<
X k—L—n L( ¥L k ) L
= I n—L— |
l A A l = m k m n
Y

The black-and-white pattern at the edge of the tile

indicates whether and how much the tile has been
=t(XY) (13) turned and/or flipped over, so that one can keep track
which arm is which. In the above example, the arm
with dimensiork will always be called the West arm,
whatever position the tile is in.

5

4 An Additional Notational Detail 5 Equality of Arrays and Extended

Besides turning a tile by 90, 180, or 270 degrees, Substitution

the notation proposed here also allows to flip the tile

over. The tile™ (here drawn without its arms) isGiven the flexibility of representing the same array in
simply the tile|_] laid on its face; i.e., those partvarious positions for concatenation, specific conven-
of the frame, which are black on the side visible tiions are necessary to determine when two such ar-
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rays in generalized positions are equal to each othisrsymmetric according to this definition, and so is

Expressions like every scalar. Also the notion of a nonnegative defi-
nite matrix, or of a matrix inverse or generalized in-
verse, or of a projection matrix, can be extended to

—Iﬂ— =|B or —I?I— = — K — arrays in this way.
/

are not allowed. The arms on both sides of the equal

sign must be parallel, in order to make it clear whidh ~ Vectorization and Kronecker
arm corresponds to which. A permissible way to Product

write the above expressions would therefore be

One conventional generally accepted method to deal
|_Ii|_| with arrays of rank> 2 is the Kronecker product. If

A andB are both matrices, then the outer product in
tile notation is

Map
K /—¥K— Ask

Since this is an array of rank 4, there is no natural

One additional benefit of this tile notation is th@vay to write its elements down on a sheet of pa-
ability to substitute arrays with different numbers Oger This is where the Kronecker product steps in
arms into an equatlo_n. This is "’_IISO a necessity S'nﬁ?e Kronecker product of two matrices is their outer
thel .nL:.m.ber of posIS|bIe arms 13 _ur:lbounded. T}BFOdUC'[ written again as a matrix. Its definition in-
mu t|.p 'C'ty_ can only be c_ope_d wit _because eaqnudes a protocol how to arrange the elements of an
arm in an identity written in this notation can be reérray of rank 4 as a matrix. Alongside the Kronecker
placed byabundle_ of'many arms. . i product, also the vectorization operator is useful,

Extendeq _s_ubstltunc_)r_] also makes_ it p035|_ble Which is a protocol how to arrange the elements of
extend definitions familiar from matrices to highey . ~+iv as a vector. and also the so-called “commu-
arrays.  For instance vye want to. b? able to Sttion matrices” may become necessary. Here are the
that the array—lgl— is symmetric if and only rejevant definitions:

if —Q — = —|£|— This notion of symme-
try is not limited to arrays of rank 2. The arms of

this array may symbolize not just a single arm, bgt1 \/ectorization of a Matrix

whole bundles of arms; for instance an array of the
-~ "

form s satisfying = _ 5 If Ais a_matrlx, then ve@) is the vector obtained
VRN by stacking the column vectors on top of each other,

Il
(o8]

and

(14)



ie., Answer. AssumeA is kx m, Bis mx n, andC is n x p. Write

aj
a A=|:|andB=[by --- bn]. Then(C" ® A)vecB=
if A=[a -~ aj then ve¢A) =|:|. 3y
an C1itA 1A - cmA b
(15) C12A oA - CpA .l
o o . UL
The vectorization of a matrix is merely a different CipA  GpA -+ CppAl
arrangement of the elements of the matrix on paper, [ [c118] by + 218 b+ +cnaaf by
just as the transpose of a matrix. c1184 b1 +Cp18) by + -+ -+ Cn1ay by
Problem 5. Show thatr(B'C) = (vecB) " vecC. Lc118, b1 +Co18] bp + - + Craa, bn |
'clzaI by + 022615_r by+---+ cngaI bnT
_ ) o _ C128y by +C208) by + - -+ + Cpad by
Answer. Both sides ar¢ bjicji. (28) is a proof in tile notation .
which does not have to look at the matrices involved element by = :
element. O LC128y) b1+ Co23 by + -+ + €@, b |
For al Ty Th.
. C1pdy b1 +Copag by + -+~ +Cnpay by
6.2 Kronecker Product of Matrices C1p8) b1+ C2pa D2 -+ + Cnpd b
Let A andB be two matrices, safismx nandB is . . .
r x g. Their Kronecker producA® B is themr x ng L LC1pBy b1+ Capdy bz -+ Cnpy b |
matrix which in partitioned form can be written One obtains the same result by vectorizing the ma&BC =
aIbl aI b2 s aI bn Ci1 Ci2 - C]_p
a;nB - a;nB a;b]_ a; by --- a;bn C1 Cx2 -+ Cp
A®B= : : (16) : R S .o
amB - anB akal a;bz a;(rbn Ci C2 - Cnp
aj bic11+a] bpCo1 + -+ +a] bncm
. . . T T T
This convention of how to write the elements of an ~ _ |3 P1e11+a baCort--+ 3 bnCm
array of rank 4 as a matrix is not symmetric, so that :
usually A® C # C® A. Both Kronecker products a, b1C11+ay] byCor+ -+ +a, bnCm
represent the same abstract array, but they arrange ... a/bjcio+a] bycoo+ -+ bncz
it differently on the page. However, in many other - agbiCiata; baCoa+ - +ay bnCro
respects, the Kronecker product maintains the prop- :
erties of outer products. o albicip+a) byCor+ -+ btz
aI b]_C]_p + aI b202p +-- 4 aIannp
Problem 6 [v]HG+88, p 965] ShOW that a;blclp‘i‘a;szZp‘i‘"'+a;annp



The main challenge in this automatic proof is to fit the margndB with members of a certain family of three-way
matrix rows, columns, and single elements involved on the saggraysf(-1):
sheet of paper. Among the shuffling of matrix entries, it is easy
to lose track of how the result comes about. Later, in equation
(21), a compact and intelligible proof will be given in tile nota- mr A®B nq =
tion.
O

= mr—Ilk N —nq
6.3 The Commutation Matrix r —|£|— q-

Besides the Kronecker product and the vectorization

operator, also the “commutation matrix”IMN88, pp.

. . . m.’r)
46/7], [Mag88, p. 35] is needed for certain operatior%(ﬂz;{b; sp(;aklng we ShOUId. have Wrgttﬂ{h and
involving arrays of higher rank. Assunfeis mxn, |1 . for the twofl-arrays in [2), but the super-

Then the commutation matrik(™ is themnx mn SCiPts can be inferred from the context: the first su-

matrix which transforms ve& into ve((AT): perscript is the dimension of the Northeast arm, and
the second that of the Southeast arm.

K(M" yecA =vegA') (18)  Vectorization uses a member of the same family

M(Mm" to convert the matrix n _lﬂ_ m into

The main property of the commutation matrix is thahe vector

it allows to commute the Kronecker product: For any

m x n matrix A andr x q matrix B follows

,—m
mn—vecAl = mn—Il Al (22)
Kt (A@B)KM™ =Bo A (19) —eca _I—k n ;:I

Problem 7. Use(I8)to compute K23 This equation is a little awkward because thas
here an x m matrix, while elsewhere it is axx n
Answer. matrix. It would have been more consistent with

the lexicographical ordering used in the Kronecker

10 00O
00100 product to define vectorization as the stacking of the
K3 _ (0 0 0 0 1 20) row vectors; then some of the formulas would have
g é 8 (1) 8 looked more natural.
000 0O ,—m

The arrayn(mn — mn—llL exists for
O
n

o everym > 1 andn > 1. The dimension of the West
6.4 Kronecker Product and Vectorization arm is always the product of the dimensions of the

in Tile Notation two East arms. The elements@f™" will be given

in (Z8) below; but first | will list three important
m— A n . : .
The Kronecker product of _I_I_ and properties of these arrays and give examples of their

r —IEI— g is the following concatenation & application.

10



First of all, eacH1(M" satisfies Here is the answer to Probldin 5 in tile notation:

8'c |- 8| €] é]“\Fr-1n| C]
m m m m tr = - —
\ / N— I_I L
n —mn—IlI\ = . = vecB —IvecCl (26)
/ / N =| (vecB)"vecC |

n n n n

(23) Equation [2B) was central for obtaining the result.

The answer to Problefi 6 also relies on equation (23):
Let us discuss the meaning @i (23) in detail. The

lefthand side of[{23) shows the concatenation of two — Cc" oA HvecB|=
copies of the three-way arr&y™" in a certain way
that yields a 4-way array. Now look at the righthand

—CH—_ G

side. The armm—m by itself (which was bent - _IlLlﬂ—/ n—n B
[cl
—1C}

only in order to remove any doubt about which arm
to the left of the equal sign corresponds to which

arm to the right) represents the neutral element un- _ N :IE';:I

der concatenation (i.e., tha x m identity matrix). _I—L N

Writing two arrays next to each other without join- 1

ing any arms represents their outer product, i.e., the = —| vecABC | 27)

array whose rank is the sum of the ranks of the arrays

involved, and whose elements are all possible prggi Looking Inside the Kronecker Arrays
ucts of elements of the first array with elements of

the second array. It is necessary to open up the arrays from @
The second identity satisfied BY™" is family and look at them “element by element,” in

order to verify [211), [(22),[(23)[(24), an@{25). The

L~ M= elements of1(M™" which can be written in tile nota-
mnﬂ M —mn = mn—mn. tion by saturating the array with unit vectors, are
n—"

(24) m’”)zlel—mn I'I/_m_lilz
W _I_I¥n_|l|

Finally, there is also associativity:

_J1 if86=(u-1)n+v 28)
/ m ,—m ~ )0 otherwise.
mn M ~n /-Ill¥
M T mn p—I M | n Note that for evenp there is exactly on@ and one
mn) ..
p p Vv suc):h tharléw =1, for all other values ofi andv,
mn)
(25) gy =0.
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Writing vHAHuU] = a, and N™ on its East side, while[{24) contairs™"
B twice. We will therefore use the following repre-
Iil_lﬂl = Co, (£2) reads sentation, mathematically equivalent {01(32), which
makes it easier to see the effectdof:

Co="Y T A (29)
TRy

, »,—m
K(mn) _ mn—llk @— mn .
which coincides with definition{15) of vet n _/

One also checks thdt{21) {s116). CalliAgwB = (33)
C, it follows from (21) that

Problem 8. Using the definition(83) show that

myr) n,q) . N .
Cgp= 3 T'vfrw aWbPK"t(avx : (830) kmmK®Om — | "the mnx mn identity matrix.
KV,P,K
Answer. You will need (ZB) and[{24). O

For1<@<ronegetsa nonzennfunfg) only forp=1

andp = @, and for 1< 8 < qone gets a nonzenng\‘,f) Problem 9. Prove([9)in tile notation.

onIy forv=1 andk = 6. Thereforet:(pe = allb(pe for Answer. Start with a tile representation frm) (A® B)KWU:
all elements of matrixc with ¢ < r and8 < q. Etc.

r
The proof of [ZB) uses the fact that for evelly 1, 4 Y_/xn_ m
there is exactly ong and onev such than'ré?\;”) £ 0: _I—k e

6= i _ _ nq
eZr‘l’lI’]TIgS\;n),_[g.(fx?):{l |fp._ooandV—0 (31) |_ : /_m_lil_n -
=1 nq—I_L

0 otherwise

r B -
Similarly, (Z4) and [25) can be shown by elemen- _I—I_ k
tary but tedious proofs. The best verification of these

nq
. .. . . n
rules is their implementation in a computer language, |_ 4 /_;
. ng n M =—ng
see Sectiofl 9 below. _I_I¥ 4
q

6.6 The Commutation Matrix in Tile Nota-
tion

A
The simplest way to represent the commutation ma- n /xn_
trix K™ in a tile is _I—L/ 5

—~m
K(mn) _ mn—Ilk W—mn. (32)
n—"

Now use [ZB) twice to get

This should not be confused with the lefthand side of
22): K™ is composed of1(™" on its West and O

12



7 Higher Moments of Random Vec- answer. (B8) is an immediate consequence [0 (35); this step is

now trivial due to linearity of the expected value:
tors y p

7.1 Identically Distributed, not Necessarily
Normal

Given a random vectog of independent variables
& with zero expected value[§] = 0 and identical %

A
A A
€ €
] =g +0o* +
second and fourth moments. Call fgr= ¢ and € £
Ee?] = o*(y2 + 3), wherey, is the kurtosis. Then B B
B

the following holds for the fourth moments:

04(y2+3) ifi=j=k=]

o* ifim=jAk=I

E[8i€j€k€|} = ori=k#j=1 (34)
ori=1l#j=k

0 otherwise.

fLah
+o* +y0t | a
=

It is not an accident thaC(B4) is given element b-V‘e first term is tAB. The second is %B', but sinceA andB
element and not in matrix notation. It is not possibPée symmetric, this is equal toAB. The third term is tAtrB.

. . hat is the fourth term? Diagonal arrays exist with any number
to do this, not even with the Kronecker product. Blé arms, and any connected concatenation of diagonal arrays is

it is easy in tile notation: again a diagonal array, se@ (6). For instance,

AR AR

+V204 A (35) From this together with[J4) one can see that the fourth term is
the scalar product of the diagonal vectors\aindB. O

4'% 'f]cg (2o Naf e —

+0*

Problem 10. [Seb/¥7, pp. 14-16 and 52] Show that

for any symmetric x n matrices A and B, whose S o

E[(e"Ae)(e"Be)] = | will give a brief overview in tile notation of the
o4 T higher moments of the multivariate standard normal
-9 (trAtrB+2tr(AB)+y2a b)' (36) z. All odd moments disappear, and the fourth mo-

13



ments are is ubiquitous only because the Kronecker-notation
blows up something as trivial as the crossing of two

arms into a mysterious-sounding special matrix.
Z / A4 The sixth moments of the standard normal, in
= ) (+ \ + analogy to the fourth, are the sum of all the differ-
/N

E [
? % ent possible outer products of unit matrices:
- Etﬁ

Compared with[(35), the last term, which depends
on the kurtosis, is missing. What remains is a sum
of outer products of unit matrices, with every pos-
sibility appearing exactly once. In the present case,
it happens to be possible to write down the four-way

arrays in [3B) in terms of Kronecker products and the
commutation matrix (™" introduced in [I9): It is

(41)

\ V4
+ +
E((27) (27)] = I + K™ 1 (vedo]) (vedo]) T l ™
(39)

Comparel[Gras3, 10.9.2 on p. 361]. Here is a proof K \

of (89) in tile notation: / j (\
n § \)

[I%ilf - : é) //l ) % K

r|+\/¥ N/
T | | /\\/——\/——\
N

\

(40)

The first term id,2 due to [21), the second IS (n,n) V \)
due to [3B), and the third iévedIy,))(vedl,])" be- A

cause of[(22). Graybill[Gra83, p. 312] considers it

a justification of the interest of the commutation madere is the principle how these were written down:
trix that it appears in the higher moments of the staRix one branch, here the Southwest branch. First
dard normal. In my view, the commutation matricombine the Southwest branch with the Northwest

14



one, and then you have three possibilities to pair up
the others as in[(B8). Next combine the Southwest
branch with the North branch, and you again have
three possibilities for the others. Etc. This gives 15
possibilities altogether.

This can no longer be written as a Kronecker prod-
uct, seel[Gra83, 10.9.4 (3) on p. 363]. HoweVer (41)
can be applied directly, for instance in order to show
(B2), which is [Grag3, 10.9.12 (1) on p. 368]:

E[(z'A2(z'B2)(z'C2)] =
=tr(A)tr(B)tr(C)+2tr(A) tr(BC)+2tr(B) tr(AC) +

+2tr(C)tr(AB) +8tr(ABC). (42)
_|_

Problem 11. Assuming that A, B, and C are symmet-
ric matrices, proved@2)in tile notation.

Answer.
A
Z yA zZ
T B | = @3
Z I zZ zZ
C
A A
N\
= B + B +
+
C C

15
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is that array which satisfies

—aH# - o] @

i.e

olslo T o - ] o
Extended substitutability applies here:n —m

and m x | are not necessarily vectors; the arms
with dimensionm andn can represent different bun-
dles of several arms.

The simplest matrix differentiation rule, for=
w'x, is

AYIAS
@ AN (B AN B

T\ (B

ow'x/ox" =w' (47)
Intilesitis

ofwHxJ/ox— = [wl- @9

Here is the most basic matrix differentiation rule:
if y = Axis a linear vector function, then its deriva-
tive is that same linear vector function:

2> E

0AX/Ox" = A, (49)
tr(B)tr(AC), tr(ABC) four times, t(A)tr(BC), tr(ABC) twice, Of intiles

t
tr(A) tr(BC), tr(C) tr(AB) twice, and tfA)tr(B)tr(C o9 IAI I N I/@T— _ IAI (50)

Problem 12. Show that

otrAX
Here is the tile notation for matrix differentiation: If oxXT

n —] v | depends onm—] x | then In tiles it reads

n—Iﬂ—m :a—M/aT— m y
a[{ }]/a x| - [A. 2
\
(44) n
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These 15 summands are, in ordefBirtr(AC), tr(ABC) twice,
).

8 Array Differentiation
(51)



Answer. tr(AX) = 3 j&jXji i.e., the coefficient ofx; is then
aj.

Here is a differentiation rule for a matrix with 9 /_I_I/a X — =
respect to a matrix, first written element by ele- _I_LI_I
ment, and then in tiles: I¥ = AXB i.e., ¥im =
Y j k&jXjkbkm, thens ay"“ = ajaxm, because for every

fixedi andm this sum contains only one term which —I | —I_LI_I (55)
X

hasxik in it, namely,aj; Xjkbkm. In tiles:

/ Proof. ¥ =3 «aijkXjX- For agiven, this has% in

A the terma;ppx%, and it hasxp in the termsa;pkXpXk

where p # k, and inajjpxjxp where j # p. The

alX /al derivatives of these terms aregpXp + 3 .2 p @ipkX +
B

P
I

(53) L
Y j+paijpXj, Which simplifies tdy . ipkX« + 3 j ijpX;-
This is thei, p-element of the matrix on the rhs of

(69). 0

But there are also other ways to have the ar-
Equations[(52) and{H3) can be obtained frgm (48)y X occur twice in a concatenatiovi. If Y =
and (5D) by extended substitution, since a bundleXf X thenyy = Y XjiXjk and therefor@yix/0xm =
several arms can always be considered as one a@nift m # i and m # k. Now assumem =i # k:
For instance,[{§2) can be written 0Yik /OXii = OXiiXik/9Xii = Xik. Now assumen=Kk #i:
OYik/0Xik = OXiXik/Oxk = Xi. And if m=k =i

0 H /9 )'(_I¥ I then one gets the sum of the two abodg; /dx; =
g — 0x2 /ax; = 2. In tiles this is

and this is a special case ¢748), since the two par-
allel arms can be treated as one arm. With a better
/ a| x

N\

development of the logic underlying this notation, it
will not be necessary to formulate them as separatea
theorems; all matrix differentiation rules given so far
are trivial applications of[{50).

Here is one of the basic differentiation rules for a

bilinear array concatenation: if /-I_I—/ \-I_I—/
. (56)

—x]
—|L| - _IALILI %) This rule is heIpfuI for differentiating the multivari-

ate Normal likelihood function.
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A computer implementation of this tile notation
should contain algorithms to automatically take the
derivatives of these array concatenations.

9 Internet Resources

The TeX-macros to typeset the tiles are available at
WWW.€econ.utah.edu/enriar/arca.sty

My Econometrics class notes
WWW.econ.utah.edu/enribar/ecmet.pdf

(5 Megabytes) contain more examples of this
notation. A pilot implementation of this type
of array concatenation inR is available as
R-package on my web site. It can be down-
loaded using the followingR-command: in-
stall.packages("arca”, contriburl

= "http://www.econ.utah.edu/ehrbar/R",

lib = "/usr/lib/R/library™) (you may
need a differeniib argument for your system).
Besides special functions building thtarrays for
Kronecker products, this package has one function
arca which takes as arguments several arrays,
together with a vector indicating which arms of
which arrays are to be joined together. Several
contractions can be specified in the same function
call. This is not a production version; | merely used
it to check the identities in Sectidn 6.

18
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