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Abstract

A graph-theoretical notation for array concatenation
represents arrays as bubbles with arms sticking out,
each arm with a specified number of “fingers.” Bub-
bles with one arm are vectors, with two arms ma-
trices, etc. Arrays can only hold hands, i.e., “con-
tract” along a given pair of arms, if the arms have
the same number of fingers. There are three array
concatenations: outer product, contraction, and di-
rect sum. Special arrays are the unit vectors and the
diagonal array, which is the branching point of sev-
eral arms. Outer products and contractions are inde-
pendent of the order in which they are performed and
distributive with respect to the direct sum. Examples
are given where this notation clarifies mathematical
proofs.

1 Introduction

Besides scalars, vectors, and matrices, also higher ar-
rays are necessary in statistics; for instance, the “co-
variance matrix” of a random matrix is really an ar-
ray of rank 4, etc. Usually, such higher arrays are

avoided in the applied sciences because of the dif-
ficulties to write them on a two-dimensional sheet
of paper. The following symbolic notation makes
the structure of arrays explicit without writing them
down element by element. It is hoped that this makes
arrays easier to understand, and that this notation
leads to simple high-level user interfaces for pro-
gramming languages manipulating arrays.

2 Informal Survey of the Notation

Each array is symbolized by a rectangular tile with
arms sticking out, similar to a molecule. Tiles with
one arm are vectors, those with two arms matrices,
those with more arms are arrays of higher rank (or
“valence” as in [SS35], [Mor73], and [MS86, p. 12]),
and those without arms are scalars. The arrays con-
sidered here are rectangular, not “ragged,” therefore
in addition to their rank we only need to know the
dimension of each arm; it can be thought of as the
number of fingers associated with this arm. Arrays
can only hold hands (i.e., “contract” along two arms)
if the hands have the same number of fingers.
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Sometimes it is convenient to write the dimen-
sion of each arm at the end of the arm, i.e., am×n
matrix A can be represented asm A n .
Matrix products are represented by joining the ob-
vious arms: ifB is n× q, then the matrix prod-

uct AB is m A n B q or, in short,

A B . The notation allows the reader to
always tell which arm is which, even if the arms are

not marked. If m C r is m× r, then the

productC>A is

C>A = r C A n
m

= r C m A n . (1)

In the second representation, the tile representingC
is turned by 180 degrees. Since the white part of
the frame ofC is at the bottom, not on the top, one
knows that the West arm ofC, not its East arm, is
concatenated with the West arm ofA. The transpose

of m C r is r C m , i.e., it is not
a different entity but the same entity in a different po-
sition. The order in which the elements are arranged
on the page (or in computer memory) is not a part of
the definition of the array itself. Likewise, there is no
distinction between row vectors and column vectors.

Vectors are usually, but not necessarily, written in
such a way that their arm points West (column vector

convention). If a and b are vectors, their

scalar producta>b is the concatenationa b

which has no free arms, i.e., it is a scalar, and their
outer productab> is a b , which is a
matrix. Juxtaposition of tiles represents the outer
product, i.e., the array consisting of all the prod-
ucts of elements of the arrays represented by the tiles
placed side by side.

The trace of a square matrix Q is the

concatenation Q , which is a scalar since

no arms are sticking out. In general, concatena-
tion of two arms of the same tile representscon-
traction, i.e., summation over equal values of the
indices associated with these two arms. This no-
tation makes it obvious that trXY = trYX, be-
cause by definition there is no difference be-

tween X Y and Y X . Also

X Y or X Y etc. represent the

same array (here array of rank zero, i.e., scalar).
Each of these tiles can be evaluated in essentially two
different ways. One way is

1. Juxtapose the tiles forX andY, i.e., form their
outer product, which is an array of rank 4 with
typical elementxmpyqn.

2. Connect the East arm ofX with the West arm
of Y. This is a contraction, resulting in an array
of rank 2, the matrix productXY, with typical
element∑pxmpypn.

3. Now connect the West arm ofX with the East
arm ofY. The result of this second contraction
is a scalar, the trace trXY = ∑p,mxmpypm.

An alternative sequence of operations evaluating this
same graph would be

1. Juxtapose the tiles forX andY.

2. Connect the West arm ofX with the East arm of
Y to get the matrix productYX.

3. Now connect the East arm ofX with the West
arm ofY to get trYX.

The result is the same, the notation does not spec-
ify which of these alternative evaluation paths is
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meant, and a computer receiving commands based
on this notation can choose the most efficient evalua-
tion path. Probably the most efficient evaluation path
is given by (13) below: take the element-by-element
product ofX with the transpose ofY, and add all the
elements of the resulting matrix.

If the user specifies tr(XY), the computer is locked
into one evaluation path: it first has to compute the
matrix productXY, even ifX is a column vector and
Y a row vector and it would be much more efficient
to compute it as tr(YX), and then form the trace, i.e.,
throw away all off-diagonal elements. If the trace

is specified asX Y , the computer can choose

the most efficient of a number of different evaluation
paths transparently to the user. This advantage of the
graphical notation is of course even more important
if the graphs are more complex.

There is also the “diagonal” array, which in the
case of rank 3 can be written

n ∆ n

n
or

n
∆ n

n
(2)

or similar configurations. It has 1’s down the main
diagonal and 0’s elsewhere. It can be used to con-
struct the diagonal matrix diag(x) of a vector (the
square matrix with the vector in the diagonal and ze-
ros elsewhere) as

diag(x) =
n ∆ n

x
, (3)

the diagonal vector of a square matrix (i.e., the vector
containing its diagonal elements) as

∆ A , (4)

and the “Hadamard product” (element-by-element
product) of two vectorsx ∗ y as

x ∗ y =
x

∆
y
. (5)

The graphical representation of all these different
matrix operations uses only a small number of
atomic operations, which will be enumerated in Sec-
tion 3, and each such graph can be evaluated in a
number of different ways. In principle, each graph
can be evaluated as follows: form the outer prod-
uct of all arrays involved, and then contract along all
those pairs of arms which are connected. For prac-
tical implementations it is more efficient to develop
functions which connect two arrays along one or sev-
eral of their arms without first forming outer prod-
ucts, and to add the arrays one by one, performing
all contractions as early as possible.

3 Axiomatic Development of Array
Operations

The following sketch shows how this axiom system
might be built up. I apologize for presenting a half-
finished theory, and thank the conference organiz-
ers and referees for allowing me to do this. Since
I am an economist I do not plan to develop the mate-
rial presented here any further. Others are invited
to take over. If you are interested in working on
this, I would be happy to hear from you; email me
atehrbar@econ.utah.edu

There are two kinds of special arrays: unit vectors
and diagonal arrays.

For every natural numberm≥ 1, m unit vectors

m i (i = 1, . . . ,m) exist. Despite the fact that
the unit vectors are denoted here by numbers, there
is no intrinsic ordering among them; they might as
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well have the names “red, green, blue,. . . ” (From
(9) and other axioms below it will follow that each
unit vector can be represented as am-vector with 1
as one of the components and 0 elsewhere.)

For every rank≥ 1 and dimensionn≥ 1 there is
a uniquediagonal arraydenoted by∆. Their main
properties are (6) and (7). (This and the other ax-
ioms must be formulated in such a way that it will
be possible to show that the diagonal arrays of rank
1 are the “vectors of ones”ι which have 1 in every
component; diagonal arrays of rank 2 are the identity
matrices; and for higher ranks, all arms of a diagonal
array have the same dimension, and theiri jk · · · ele-
ment is 1 ifi = j = k = · · · and 0 otherwise.) Perhaps
it makes sense to define the diagonal array of rank 0
and dimensionn to be the scalarn, and to declare
all arrays which are everywhere 0-dimensional to be
diagonal.

There are only three operations of arrays: their
outer product, represented by writing them side by
side, contraction, represented by the joining of arms,
and the direct sum, which will be defined now:

The direct sum is the operation by which a vector
can be built up from scalars, a matrix from its row
or column vectors, an array of rank 3 from its lay-
ers, etc. The direct sum of a set ofr similar arrays
(i.e., arrays which have the same number of arms,
and corresponding arms have the same dimensions)
is an array which has one additional arm, called the
reference arm of the direct sum. If one “saturates”
the reference arm with theith unit vector, one gets
the ith original array back, and this property defines

the direct sum uniquely:

r⊕
i=1

m

Ai n

q

=

m

r S n

q

⇒

m

i r S n

q

=

m

Ai n

q

.

It is impossible to tell which is the first summand and
which the second, direct sum is an operation defined
on finite sets of arrays (where different elements of
a set may be equal to each other in every respect but
still have different identities).

There is a broad rule of associativity: the order in
which outer products and contractions are performed
does not matter, as long as the at the end, the right
arms are connected with each other. And there are
distributive rules involving (contracted) outer prod-
ucts and direct sums.

Additional rules apply for the special arrays. If
two different diagonal arrays join arms, the result
is again a diagonal array. For instance, the follow-
ing three concatenations of diagonal three-way ar-
rays are identical, and they all evaluate to the (for a
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given dimension) unique diagonal array or rank 4:

∆

∆
= ∆ ∆ =

=
∆ ∆

= ∆ (6)

The diagonal array of rank 2 is neutral under con-
catenation, i.e., it can be written as

n ∆ n = . (7)

because attaching it to any array will not change this
array. (6) and (7) make it possible to represent di-
agonal arrays simply as the branching points of sev-
eral arms. This will make the array notation even
simpler. However in the present introductory article,
all diagonal arrays will be shown explicitly, and the

vector of ones will be denotedm ι instead of

m ∆ or perhaps m δ .
Unit vectors concatenate as follows:

i m j =

{
1 if i = j

0 otherwise.
(8)

and the direct sum of all unit vectors is the diagonal
array of rank 2:

n⊕
i=1

i n = n ∆ n = . (9)

I am sure there will be modifications if one works
it all out in detail, but if done right, the number of
axioms should be fairly small. Element-by-element

addition of arrays is not an axiom because it can be
derived: if one saturates the reference arm of a direct
sum with the vector of ones, one gets the element-by-
element sum of the arrays in this direct sum. Multi-
plication of an array by a scalar is also contained in
the above system of axioms: it is simply the outer
product with an array of rank zero.

Problem 1. Show that the saturation of an arm of a
diagonal array with the vector of ones is the same as
dropping this arm.

Answer. Since the vector of ones is the diagonal array of rank
1, this is a special case of the general concantenation rule for
diagonal arrays.

Problem 2. Show that the diagonal matrix of the
vector of ones is the identity matrix, i.e.,

n ∆ n

ι
= . (10)

Answer. In view of (7), this is a special case of Problem
1.

Problem 3. A trivial array operation is the addition
of an arm of dimension 1; for instance, this is how
a n-vector can be turned into a n×1 matrix. Is this
operation contained in the above system of axioms?

Answer. It is a special case of the direct sum: the direct sum of
one array only, the only effect of which is the addition of the
reference arm.

From (9) and (7) follows that every array of rank
k can be represented as a direct sum of arrays of
rankk−1, and recursively, as iterated direct sums of
those scalars which one gets by saturating all arms
with unit vectors. Hence the following “extension-
ality property”: if the arraysA andB are such that
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for all possible conformable choices of unit vectors
κ1 · · ·κ8 follows

κ3 κ4 κ5

κ2 A κ6

κ1 κ8 κ7

=

=

κ3 κ4 κ5

κ2 B κ6

κ1 κ8 κ7

(11)

thenA = B. This is why the saturation of an array
with unit vectors can be considered one of its “ele-
ments,” i.e.,

κ3 κ4 κ5

κ2 A κ6

κ1 κ8 κ7

= aκ1κ2κ3κ4κ5κ6κ7κ8. (12)

From (8) and (9) follows that the concatenation of
two arrays by joining one or more pairs of arms con-
sists in forming all possible products and summing
over those subscripts (arms) which are joined to each
other. For instance, if

m A n B r = m C r ,

thencµρ = ∑n
ν=1aµνbνρ. This is one of the most ba-

sic facts if one thinks of arrays as collections of el-
ements. From this point of view, the proposed no-
tation is simply a graphical elaboration of Einstein’s
summation convention. But in the holistic approach
taken by the proposed system of axioms, which is

informed by category theory, it is an implication; it
comes at the end, not the beginning.

Instead of considering arrays as bags filled with
elements, with the associated false problem of spec-
ifying the order in which the elements are packed
into the bag, this notation and system of axioms con-
sider each array as an abstract entity, associated with
a certain finite graph. These entities can be operated
on as specified in the axioms, but the only time they
lose their abstract character is when they are fully
saturated, i.e., concatenated with each other in such
a way that no free arms are left: in this case they be-
come scalars. An array of rank 1 is not the same as a
vector, although it can berepresentedas a vector—
after an ordering of its elements has been specified.
This ordering is not part of the definition of the array
itself. (Some vectors, such as time series, have an
intrinsic ordering, but I am speaking here of the sim-
plest case where they do not.) Also the ordering of
the arms is not specified, and the order in which a set
of arrays is packed into its direct sum is not specified
either. These axioms therefore make a strict distinc-
tion between the abstract entities themselves (which
the user is interested in) and their various represen-
tations (which the computer worries about).

Maybe the following examples may clarify these
points. If you specify a set of colors as
{red,green,blue}, then this representation has an or-
dering built in: red comes first, then green, then
blue. However this ordering is not part of the def-
inition of the set;{green, red,blue} is the same set.
The two notations are two different representations
of the same set. Another example: mathematicians
usually distinguish between the outer productsA⊗B
andB⊗A; there is a “natural isomorphism” between
them but they are two different objects. In the system
of axioms proposed here these two notations are two
different representations of the same object, as in the
set example. This object is represented by a graph
which hasA andB as nodes, but it is not apparent
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from this graph which node comes first. Interesting
conceptual issues are involved here. The proposed
axioms are quite different than e.g. [Mor73].

Problem 4. The trace of the product of two matrices
can be written astr(XY) = ι>(X ∗ Y>)ι. Use tile
notation to show that this gives indeedtr(XY).

Answer. In analogy with (5), the Hadamard product of the two
matricesX andZ, i.e., their element by element multiplication,
is

X ∗ Z =

X

∆ ∆
Z

If Z = Y>, one gets

X ∗Y> =

X

∆ ∆
Y

.

ι>(X ∗Y>)ι

Therefore one gets, using (10):

X

ι ∆ ∆ ι
Y

=

=

X

Y

= tr(XY) (13)

4 An Additional Notational Detail

Besides turning a tile by 90, 180, or 270 degrees,
the notation proposed here also allows to flip the tile
over. The tile (here drawn without its arms) is
simply the tile laid on its face; i.e., those parts
of the frame, which are black on the side visible to

the reader, are white on the opposite side and vice
versa. If one flips a tile, the arms appear in a mirror-
symmetric manner. For a matrix, flipping over is
equivalent to turning by 180 degrees, i.e., there is

no difference between the matrix A and the

matrix A . Since sometimes one and some-
times the other notation seems more natural, both
will be used. For higher arrays, flipping over ar-
ranges the arms in a different fashion, which is some-
times convenient in order to keep the graphs unclut-
tered. It will be especially useful for differentiation.
If one allows turning in 90 degree increments and
flipping, each array can be represented in eight dif-
ferent positions, as shown here with a hypothetical
array of rank 3:

m

k L n

k

L

n m

n L k

m

m n

L

k

k L n

m

n m

L

k

m

n L k

k

L

m n

The black-and-white pattern at the edge of the tile
indicates whether and how much the tile has been
turned and/or flipped over, so that one can keep track
which arm is which. In the above example, the arm
with dimensionk will always be called the West arm,
whatever position the tile is in.

5 Equality of Arrays and Extended
Substitution

Given the flexibility of representing the same array in
various positions for concatenation, specific conven-
tions are necessary to determine when two such ar-
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rays in generalized positions are equal to each other.
Expressions like

A = B or K = K

are not allowed. The arms on both sides of the equal
sign must be parallel, in order to make it clear which
arm corresponds to which. A permissible way to
write the above expressions would therefore be

A = B

and

K = K

One additional benefit of this tile notation is the
ability to substitute arrays with different numbers of
arms into an equation. This is also a necessity since
the number of possible arms is unbounded. This
multiplicity can only be coped with because each
arm in an identity written in this notation can be re-
placed by a bundle of many arms.

Extended substitution also makes it possible to
extend definitions familiar from matrices to higher
arrays. For instance we want to be able to say

that the array ΩΩΩ is symmetric if and only

if ΩΩΩ = ΩΩΩ . This notion of symme-
try is not limited to arrays of rank 2. The arms of
this array may symbolize not just a single arm, but
whole bundles of arms; for instance an array of the

form ΣΣΣ satisfying ΣΣΣ = ΣΣΣ

is symmetric according to this definition, and so is
every scalar. Also the notion of a nonnegative defi-
nite matrix, or of a matrix inverse or generalized in-
verse, or of a projection matrix, can be extended to
arrays in this way.

6 Vectorization and Kronecker
Product

One conventional generally accepted method to deal
with arrays of rank> 2 is the Kronecker product. If
A andB are both matrices, then the outer product in
tile notation is

A

B
(14)

Since this is an array of rank 4, there is no natural
way to write its elements down on a sheet of pa-
per. This is where the Kronecker product steps in.
The Kronecker product of two matrices is their outer
product written again as a matrix. Its definition in-
cludes a protocol how to arrange the elements of an
array of rank 4 as a matrix. Alongside the Kronecker
product, also the vectorization operator is useful,
which is a protocol how to arrange the elements of
a matrix as a vector, and also the so-called “commu-
tation matrices” may become necessary. Here are the
relevant definitions:

6.1 Vectorization of a Matrix

If A is a matrix, then vec(A) is the vector obtained
by stacking the column vectors on top of each other,
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i.e.,

if A =
[
a1 · · · an

]
then vec(A) =

a1
...

an

 .
(15)

The vectorization of a matrix is merely a different
arrangement of the elements of the matrix on paper,
just as the transpose of a matrix.

Problem 5. Show thattr(B>C) = (vecB)> vecC.

Answer. Both sides are∑b ji c ji . (26) is a proof in tile notation
which does not have to look at the matrices involved element by
element.

6.2 Kronecker Product of Matrices

Let A andB be two matrices, sayA is m×n andB is
r×q. Their Kronecker productA⊗B is themr×nq
matrix which in partitioned form can be written

A⊗B =

a11B · · · a1nB
...

...
...

am1B · · · amnB

 (16)

This convention of how to write the elements of an
array of rank 4 as a matrix is not symmetric, so that
usually A⊗C 6= C⊗A. Both Kronecker products
represent the same abstract array, but they arrange
it differently on the page. However, in many other
respects, the Kronecker product maintains the prop-
erties of outer products.

Problem 6. [JHG+88, p. 965] Show that

vec(ABC) = (C>⊗A)vec(B). (17)

Answer. AssumeA is k×m, B is m×n, andC is n× p. Write

A =

a>1
...

a>k

 andB =
[
b1 · · · bn

]
. Then(C>⊗A)vecB =

=


c11A c21A · · · cn1A
c12A c22A · · · cn2A

...
...

...
...

c1pA c2pA · · · cnpA


b1

...
bn

=

=




c11a>1 b1 +c21a>1 b2 + · · ·+cn1a>1 bn

c11a>2 b1 +c21a>2 b2 + · · ·+cn1a>2 bn
...

c11a>k b1 +c21a>k b2 + · · ·+cn1a>k bn




c12a>1 b1 +c22a>1 b2 + · · ·+cn2a>1 bn

c12a>2 b1 +c22a>2 b2 + · · ·+cn2a>2 bn
...

c12a>k b1 +c22a>k b2 + · · ·+cn2a>k bn


...

c1pa>1 b1 +c2pa>1 b2 + · · ·+cnpa>1 bn

c1pa>2 b1 +c2pa>2 b2 + · · ·+cnpa>2 bn
...

c1pa>k b1 +c2pa>k b2 + · · ·+cnpa>k bn





.

One obtains the same result by vectorizing the matrixABC=
a>1 b1 a>1 b2 · · · a>1 bn

a>2 b1 a>2 b2 · · · a>2 bn
...

...
...

...
a>k b1 a>k b2 · · · a>k bn




c11 c12 · · · c1p
c21 c22 · · · c2p
...

...
...

...
cn1 cn2 · · · cnp



=


a>1 b1c11+a>1 b2c21+ · · ·+a>1 bncn1 · · ·
a>2 b1c11+a>2 b2c21+ · · ·+a>2 bncn1 · · ·

...
...

a>k b1c11+a>k b2c21+ · · ·+a>k bncn1 · · ·

· · · a>1 b1c12+a>1 b2c22+ · · ·+a>1 bncn2 · · ·
· · · a>2 b1c12+a>2 b2c22+ · · ·+a>2 bncn2 · · ·
...

...
...

· · · a>k b1c12+a>k b2c22+ · · ·+a>k bncn2 · · ·

· · · a>1 b1c1p +a>1 b2c2p + · · ·+a>1 bncnp

· · · a>2 b1c1p +a>2 b2c2p + · · ·+a>2 bncnp

...
...

· · · a>k b1c1p +a>k b2c2p + · · ·+a>k bncnp

 .
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The main challenge in this automatic proof is to fit the many
matrix rows, columns, and single elements involved on the same
sheet of paper. Among the shuffling of matrix entries, it is easy
to lose track of how the result comes about. Later, in equation
(27), a compact and intelligible proof will be given in tile nota-
tion.

6.3 The Commutation Matrix

Besides the Kronecker product and the vectorization
operator, also the “commutation matrix” [MN88, pp.
46/7], [Mag88, p. 35] is needed for certain operations
involving arrays of higher rank. AssumeA is m×n.
Then the commutation matrixK(m,n) is themn×mn
matrix which transforms vecA into vec(A>):

K(m,n) vecA = vec(A>) (18)

The main property of the commutation matrix is that
it allows to commute the Kronecker product: For any
m×n matrixA andr×q matrixB follows

K(r,m)(A⊗B)K(n,q) = B⊗A (19)

Problem 7. Use(18) to compute K(2,3).

Answer.

K(2,3) =


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

 (20)

6.4 Kronecker Product and Vectorization
in Tile Notation

The Kronecker product of m A n and

r B q is the following concatenation ofA

andB with members of a certain family of three-way
arraysΠ(i, j):

mr A⊗B nq =

=
m A n

mr Π Π nq
r B q

(21)

Strictly speaking we should have writtenΠ(m,r) and
Π(n,q) for the two Π-arrays in (21), but the super-
scripts can be inferred from the context: the first su-
perscript is the dimension of the Northeast arm, and
the second that of the Southeast arm.

Vectorization uses a member of the same family

Π(m,n) to convert the matrix n A m into
the vector

mn vecA =
m

mn Π A
n

(22)

This equation is a little awkward because theA is
here an×m matrix, while elsewhere it is am× n
matrix. It would have been more consistent with
the lexicographical ordering used in the Kronecker
product to define vectorization as the stacking of the
row vectors; then some of the formulas would have
looked more natural.

The arrayΠ(m,n) =
m

mn Π
n

exists for

everym≥ 1 andn≥ 1. The dimension of the West
arm is always the product of the dimensions of the
two East arms. The elements ofΠ(m,n) will be given
in (28) below; but first I will list three important
properties of these arrays and give examples of their
application.

10



First of all, eachΠ(m,n) satisfies

m m

Π mn Π

n n

=

m m

n n

.

(23)

Let us discuss the meaning of (23) in detail. The
lefthand side of (23) shows the concatenation of two
copies of the three-way arrayΠ(m,n) in a certain way
that yields a 4-way array. Now look at the righthand

side. The arm m m by itself (which was bent
only in order to remove any doubt about which arm
to the left of the equal sign corresponds to which
arm to the right) represents the neutral element un-
der concatenation (i.e., them×m identity matrix).
Writing two arrays next to each other without join-
ing any arms represents their outer product, i.e., the
array whose rank is the sum of the ranks of the arrays
involved, and whose elements are all possible prod-
ucts of elements of the first array with elements of
the second array.

The second identity satisfied byΠ(m,n) is

m
mn Π Π mn

n
= mn mn .

(24)

Finally, there is also associativity:

m
mnp Π n

Π
p

=

m
Π

mnp Π n
p

(25)

Here is the answer to Problem 5 in tile notation:

trB>C = B C = B Π Π C =

= vecB vecC (26)

= (vecB)> vecC

Equation (23) was central for obtaining the result.
The answer to Problem 6 also relies on equation (23):

C>⊗A vecB =

=
C

Π Π Π B
A

=
C

Π B
A

= vecABC (27)

6.5 Looking Inside the Kronecker Arrays

It is necessary to open up the arrays from theΠ -
family and look at them “element by element,” in
order to verify (21), (22), (23), (24), and (25). The
elements ofΠ(m,n), which can be written in tile nota-
tion by saturating the array with unit vectors, are

π(m,n)
θµν =

m µ
θ mn Π

n ν
=

=

{
1 if θ = (µ−1)n+ ν
0 otherwise.

(28)

Note that for everyθ there is exactly oneµ and one
ν such thatπ(m,n)

θµν = 1; for all other values ofµ andν,

π(m,n)
θµν = 0.

11



Writing ν A µ = aνµ and

θ vecA = cθ, (22) reads

cθ = ∑
µ,ν

π(m,n)
θµν aνµ, (29)

which coincides with definition (15) of vecA.
One also checks that (21) is (16). CallingA⊗B =

C, it follows from (21) that

cφθ = ∑
µ,ν,ρ,κ

π(m,r)
φµρ aµνbρκπ(n,q)

θνκ . (30)

For 1≤ φ≤ r one gets a nonzeroπ(m,r)
φµρ only for µ= 1

andρ = φ, and for 1≤ θ≤ q one gets a nonzeroπ(n,q)
θνκ

only for ν = 1 andκ = θ. Thereforecφθ = a11bφθ for
all elements of matrixC with φ≤ r andθ≤ q. Etc.

The proof of (23) uses the fact that for everyθ
there is exactly oneµ and oneν such thatπ(m,n)

θµν 6= 0:

θ=mn

∑
θ=1

π(m,n)
θµν π(m,n)

θωσ =

{
1 if µ = ω andν = σ
0 otherwise

(31)

Similarly, (24) and (25) can be shown by elemen-
tary but tedious proofs. The best verification of these
rules is their implementation in a computer language,
see Section 9 below.

6.6 The Commutation Matrix in Tile Nota-
tion

The simplest way to represent the commutation ma-
trix K(m,n) in a tile is

K(m,n) =
m

mn Π Π mn
n

. (32)

This should not be confused with the lefthand side of
(24): K(m,n) is composed ofΠ(m,n) on its West and

Π(n,m) on its East side, while (24) containsΠ(m,n)

twice. We will therefore use the following repre-
sentation, mathematically equivalent to (32), which
makes it easier to see the effects ofK(m,n):

K(m,n) =
m

mn Π Π mn
n

.

(33)

Problem 8. Using the definition(33) show that
K(m,n)K(n,m) = Imn, the mn×mn identity matrix.

Answer. You will need (23) and (24).

Problem 9. Prove(19) in tile notation.

Answer. Start with a tile representation ofK(r,m)(A⊗B)K(n,q):

r

rm Π Π rm

m

nq

m A n

nq Π Π
r B q

nq

n

nq Π Π nq

q

Now use (23) twice to get

=

A

Π Π
B

=

r B q

rm Π Π nq

m A n

.

12



7 Higher Moments of Random Vec-
tors

7.1 Identically Distributed, not Necessarily
Normal

Given a random vectorε of independent variables
εi with zero expected value E[εi ] = 0 and identical
second and fourth moments. Call var[εi ] = σ2 and
E[ε4

i ] = σ4(γ2 + 3), whereγ2 is the kurtosis. Then
the following holds for the fourth moments:

E[εiε jεkεl ] =



σ4(γ2 +3) if i = j = k = l

σ4 if i = j 6= k = l

or i = k 6= j = l

or i = l 6= j = k

0 otherwise.

(34)

It is not an accident that (34) is given element by
element and not in matrix notation. It is not possible
to do this, not even with the Kronecker product. But
it is easy in tile notation:

E

[ ε ε

ε ε

]
= σ4 + σ4 +

+ σ4 + γ2σ4 ∆ (35)

Problem 10. [Seb77, pp. 14–16 and 52] Show that
for any symmetric n× n matrices A and B, whose
vectors of diagonal elements are a and b,

E[(ε>Aε)(ε>Bε)] =

= σ4
(

trAtrB+2tr(AB)+ γ2a>b
)
. (36)

Answer. (36) is an immediate consequence of (35); this step is
now trivial due to linearity of the expected value:

E

[
A

ε ε

ε ε

B

]
= σ4

A

B

+ σ4

A

B

+

+ σ4

A

B

+ γ2σ4

A

∆

B

The first term is trAB. The second is trAB>, but sinceA andB
are symmetric, this is equal to trAB. The third term is trAtrB.
What is the fourth term? Diagonal arrays exist with any number
of arms, and any connected concatenation of diagonal arrays is
again a diagonal array, see (6). For instance,

∆ =

∆

∆
. (37)

From this together with (4) one can see that the fourth term is
the scalar product of the diagonal vectors ofA andB.

7.2 Multivariate Normal Distribution

I will give a brief overview in tile notation of the
higher moments of the multivariate standard normal
z. All odd moments disappear, and the fourth mo-
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ments are

E

[ z z

z z

]
= + +

(38)

Compared with (35), the last term, which depends
on the kurtosis, is missing. What remains is a sum
of outer products of unit matrices, with every pos-
sibility appearing exactly once. In the present case,
it happens to be possible to write down the four-way
arrays in (38) in terms of Kronecker products and the
commutation matrixK(n,n) introduced in (19): It is

E [(zz>)⊗ (zz>)] = In2 +K(n,n) +(vec[In])(vec[In])>

(39)

Compare [Gra83, 10.9.2 on p. 361]. Here is a proof
of (39) in tile notation:

E

[
Π

z z

z z

Π

]
=

Π

Π

+

Π

Π

+

Π

Π

(40)

The first term isIn2 due to (24), the second isK(n,n)

due to (33), and the third is(vec[In])(vec[In])> be-
cause of (22). Graybill [Gra83, p. 312] considers it
a justification of the interest of the commutation ma-
trix that it appears in the higher moments of the stan-
dard normal. In my view, the commutation matrix

is ubiquitous only because the Kronecker-notation
blows up something as trivial as the crossing of two
arms into a mysterious-sounding special matrix.

The sixth moments of the standard normal, in
analogy to the fourth, are the sum of all the differ-
ent possible outer products of unit matrices:

E

[ z z z

z z z

]
= (41)

= + +

+ + +

+ + +

+ + +

+ + + .

Here is the principle how these were written down:
Fix one branch, here the Southwest branch. First
combine the Southwest branch with the Northwest

14



one, and then you have three possibilities to pair up
the others as in (38). Next combine the Southwest
branch with the North branch, and you again have
three possibilities for the others. Etc. This gives 15
possibilities altogether.

This can no longer be written as a Kronecker prod-
uct, see [Gra83, 10.9.4 (3) on p. 363]. However (41)
can be applied directly, for instance in order to show
(42), which is [Gra83, 10.9.12 (1) on p. 368]:

E[(z>Az)(z>Bz)(z>Cz)] =
= tr(A) tr(B) tr(C)+2tr(A) tr(BC)+2tr(B) tr(AC)+

+2tr(C) tr(AB)+8tr(ABC). (42)

Problem 11. Assuming that A, B, and C are symmet-
ric matrices, prove(42) in tile notation.

Answer.

E

[
A

z z z

B

z z z

C

]
= (43)

=

A

B

C

+

A

B

C

+

+

A

B

C

+

A

B

C

+

+

A

B

C

+

A

B

C

+

+

A

B

C

+

A

B

C

+

+

A

B

C

+

A

B

C

+
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+

A

B

C

+

A

B

C

+

+

A

B

C

+

A

B

C

+

+

A

B

C

.

These 15 summands are, in order, tr(B) tr(AC), tr(ABC) twice,
tr(B) tr(AC), tr(ABC) four times, tr(A) tr(BC), tr(ABC) twice,
tr(A) tr(BC), tr(C) tr(AB) twice, and tr(A) tr(B) tr(C).

8 Array Differentiation

Here is the tile notation for matrix differentiation: If
n y depends onm x , then

n A m = ∂ y
/

∂ x

(44)

is that array which satisfies

A dx = dy , (45)

i.e.,(
∂ y

/
∂ x

)
dx = dy (46)

Extended substitutability applies here:n y

and m x are not necessarily vectors; the arms
with dimensionm andn can represent different bun-
dles of several arms.

The simplest matrix differentiation rule, fory =
w>x, is

∂w>x/∂x> = w> (47)

In tiles it is

∂ w x
/

∂ x = w (48)

Here is the most basic matrix differentiation rule:
if y = Ax is a linear vector function, then its deriva-
tive is that same linear vector function:

∂Ax/∂x> = A, (49)

or in tiles

∂ A x
/

∂ x = A (50)

Problem 12. Show that

∂ trAX
∂X>

= A. (51)

In tiles it reads

∂

m

A X

n

/
∂ X = A . (52)
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Answer. tr(AX) = ∑i, j ai j x ji i.e., the coefficient ofx ji is
ai j .

Here is a differentiation rule for a matrix with
respect to a matrix, first written element by ele-
ment, and then in tiles: IfY = AXB, i.e., yim =
∑ j,k ai j x jkbkm, then ∂yim

∂x jk
= ai j akm, because for every

fixed i andm this sum contains only one term which
hasx jk in it, namely,ai j x jkbkm. In tiles:

∂

A

X

B

/
∂ X =

A

B
(53)

Equations (52) and (53) can be obtained from (48)
and (50) by extended substitution, since a bundle of
several arms can always be considered as one arm.
For instance, (52) can be written

∂ A X
/

∂ X = A

and this is a special case of (48), since the two par-
allel arms can be treated as one arm. With a better
development of the logic underlying this notation, it
will not be necessary to formulate them as separate
theorems; all matrix differentiation rules given so far
are trivial applications of (50).

Here is one of the basic differentiation rules for a
bilinear array concatenation: if

y =
x

A
x

(54)

then

∂
x

A
x

/
∂ x =

=
x

A + A
x

(55)

Proof. yi = ∑ j,k ai jkx jxk. For a giveni, this hasx2
p in

the termaippx2
p, and it hasxp in the termsaipkxpxk

where p 6= k, and in ai jpx jxp where j 6= p. The
derivatives of these terms are 2aippxp+∑k6=paipkxk+
∑ j 6=pai jpx j , which simplifies to∑k aipkxk+∑ j ai jpx j .
This is thei, p-element of the matrix on the rhs of
(55).

But there are also other ways to have the ar-
ray X occur twice in a concatenationY. If Y =
X>X thenyik = ∑ j x ji x jk and therefore∂yik/∂xlm =
0 if m 6= i and m 6= k. Now assumem = i 6= k:
∂yik/∂xli = ∂xli xlk/∂xli = xlk. Now assumem= k 6= i:
∂yik/∂xlk = ∂xli xlk/∂xlk = xli . And if m = k = i
then one gets the sum of the two above:∂yii/∂xli =
∂x2

li/∂xli = 2xli . In tiles this is

∂X>X
∂X>

= ∂

i

X

X

k

/
∂

l

X

m

=

=
X

+
X

. (56)

This rule is helpful for differentiating the multivari-
ate Normal likelihood function.
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A computer implementation of this tile notation
should contain algorithms to automatically take the
derivatives of these array concatenations.

9 Internet Resources

The TEX-macros to typeset the tiles are available at

www.econ.utah.edu/ehrbar/arca.sty .

My Econometrics class notes

www.econ.utah.edu/ehrbar/ecmet.pdf

(5 Megabytes) contain more examples of this
notation. A pilot implementation of this type
of array concatenation inR is available as
R-package on my web site. It can be down-
loaded using the followingR-command: in-
stall.packages("arca", contriburl
= "http://www.econ.utah.edu/ehrbar/R",
lib = "/usr/lib/R/library") (you may
need a differentlib argument for your system).
Besides special functions building theΠ-arrays for
Kronecker products, this package has one function
arca which takes as arguments several arrays,
together with a vector indicating which arms of
which arrays are to be joined together. Several
contractions can be specified in the same function
call. This is not a production version; I merely used
it to check the identities in Section 6.
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