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The contents of Sections 1–6 below are required for basic consumer and
producer theory, which is usually taught at the very beginning of Econ. 7005.
The contents of Section 7 (“§7”) are not required until the topic of uncer-
tainty is reached, which is typically not until Econ. 7006. Sections 1–4
(“§§1–4”) are a shortened version of a more complete treatment described
in lecture notes I wrote for Econ. 7001; those notes are available on the web
site.

Among the terms and notation which I do not explain but which you
will need to know are the following.

General background:

• letters of the Greek alphabet commonly used in mathematics
(see Table 1);

• a “0” subscript, “naught”;
• 𝑥-prime 𝑥′ and 𝑥-hat 𝑥 and 𝑥-tilde 𝑥 ;
• strict inequality, weak inequality;
• the difference between “ 𝑓 (𝑥) = 2” and “ 𝑓 (𝑥) ≡ 2”;
• functional composition, 𝑓 (𝑔(𝑥)) = ( 𝑓 ◦ 𝑔)(𝑥);
• 𝑥 ∈ 𝐴 is equivalent to 𝐴 ∋ 𝑥 (“𝐴 owns 𝑥”);
• 𝐴 ⊂ 𝐵, 𝐴 ⊆ 𝐵, 𝐴 ∪ 𝐵, 𝐴 ∩ 𝐵;
• set difference, 𝐴 \ 𝐵 (“set minus”);
• the complement of a set; if Ω is the “universal set” or the “uni-

verse”and if 𝐴 ⊆ Ω, then the complement of 𝐴 is written Ω \ 𝐴

or 𝐴𝐶 or ∁Ω𝐴 or ∁𝐴 or �̄�;
• 𝐴 × 𝐵, the “Cartesian product” of two sets;
• 𝑅𝑛, 𝑅𝑛+, 𝑅𝑛++ or R𝑛, R𝑛+, R𝑛++ or ℜ𝑛, ℜ𝑛+, ℜ𝑛++ or R𝑛, R𝑛+,
R𝑛++ or R𝑛

+, R𝑛
++ etc.;

• open interval (of the real line R1), closed interval, half-open in-
terval (which is the same as a half-closed interval); notations
[𝑎, 𝑏], (𝑎, 𝑏), [𝑎, 𝑏), (𝑎, 𝑏], or the nonstandard [𝑎, 𝑏[ and ]𝑎, 𝑏];
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𝛼 alpha
𝛽 beta
𝛾 Γ gamma
𝛿 Δ delta

𝜖 , 𝜀 epsilon
𝜁 zeta
𝜂 eta

𝜃, 𝜗 Θ theta
𝜄 iota
𝜅 kappa
𝜆 Λ lambda
𝜇 mu
νν nu
𝜉 Ξ xi (pronounced ‘zi’)
𝑜 omicron (same as Roman ‘o’)
𝜋 Π pi

𝜌, 𝜚 rho (the ‘h’ is silent)
𝜎 Σ sigma
𝜏 tau
𝜐 Υ upsilon

𝜙, 𝜑 Φ phi
𝜒 chi (pronounced ‘ki’)
𝜓 Ψ psi (the ‘p’ is silent)
𝜔 Ω omega

Table 1. Upper-case Greek letters are not listed if they are the same as
the Roman upper-case form. Neither the lower-case omicron nor the low-
er-case upsilon is ever used in mathematical formulas; neither are variant
forms of the lower-case pi (“𝜛”) and sigma (“𝜍”). The lower-case epsilon
(“𝜖”) should not be confused with the set-inclusion sign (“∈”).
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• open subset of R𝑛 and closed subset of R𝑛;
• the following potentially confusing notations:

◦ a set having two elements {𝑎, 𝑏}
◦ the two-dimensional vector (𝑎, 𝑏) ∈ R2

◦ the open interval (𝑎, 𝑏) ∈ R1

◦ the closed interval [𝑎, 𝑏] ∈ R1.
• bounded set;
• vector inequalities x ≥ y, x > y, x ≫ y, x ≧ y, x ≫ y (usage

varies with authors; see p. 475 of Varian);
• “scalar product,” also known as “dot product”;
• monotonic function;
• empty sum:

∑𝑏
𝑖=𝑎 𝑠𝑖 = 0 if 𝑏 < 𝑎;

• empty product:
∏𝑏

𝑖=𝑎 𝑠𝑖 = 1 if 𝑏 < 𝑎;
• Taylor series representation of a function, 𝑓 (𝑥) ≈ ∑∞

𝑛=0(𝑥−𝑎)𝑛 𝑓 (𝑛)(𝑎)/𝑛!
(and the Maclaurin series, which is a Taylor Series expansion
around 𝑎 = 0);

• explicit definition of a function and implicit definition of a func-
tion;

• abbreviations for therefore ∴ and because ∵ and “for all” ∀ and
“there exists” ∃ and “such that” or “subject to” s.t. ;

• sufficient condition, =⇒, necessary condition, ⇐=, necessary
and sufficient condition, ⇐⇒, “iff” (“if and only if”; equiva-
lence);1

• ¬ or ∼ to denote logical negation (“not”) (though ∼ can also be
used as a synonym for ≈, “approximately equal to”)2;

• converse;
• contrapositive;
• the terms “or” and “and” in mathematics (“or” is always under-

stood to be the “inclusive or,” meaning that ‘𝐴 or 𝐵’ is false if
both 𝐴 and 𝐵 are false but it is true in all other cases, and in
particular it is true if both 𝐴 and 𝐵 are true; ‘𝐴 and 𝐵’ is false
unless both 𝐴 and 𝐵 are true; “exclusive or,” or “xor,” we will

1It is fine to write, for example, “2𝑥 = 17 =⇒ 𝑥 = 17/2.” Never instead write the
nonsensical “2𝑥 = 17 = 𝑥 = 17/2.” In other words, never confuse =⇒ and = .

2Do not use imprecise words such as “opposite” or “inverse” when you mean “negation.”
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not use in this course, but in case you are curious, it is false if
both 𝐴 and 𝐵 are true (unlike ‘𝐴 or 𝐵’), and it is false if both 𝐴

and 𝐵 are false; ‘𝐴 xor 𝐵’ is true if and only if exactly one of 𝐴

or 𝐵 is true);
• proof by contradiction (proving 𝐴 by showing that “not 𝐴” im-

plies a contradiction;
• proof by induction (prove a statement true for a small integer 𝑛0;

assume it true either for one larger integer 𝑛1 (“weak induction”)
or, equivalently, for all integers in [𝑛0, 𝑛1] (“strong induction”);
then prove the statement true for 𝑛1 + 1);

• Axiom, Assumption, Theorem, Proposition, Lemma, Corollary;
• “Q.E.D.” (Latin, “quod erat demonstrandum”), meaning “which

had to be demonstrated;” also signified by □ or by or by // or
by ////;

• the symbol ≈ (which is the most common symbol for “is ap-
proximately equal to” in the U.S.A.) and the symbol � (which
in the International Unicode standard means “is approximately
equal to” but which in the U.S.A. is usually used in geometry
to denote congruence (and in graph theory to denote isomorphic
groups));

• homogeneous functions of degree 𝑘 (namely, 𝑓 (𝜆x) = 𝜆𝑘 𝑓 (x));
• homothetic functions (though we will review these).

Section 1:

• matrix, symmetric matrix;
• matrix transposition (denoted A𝑇 or A′);
• matrix determinant, |A| (vs. absolute value of a scalar) (note that��� 𝑎5𝑎 2

6

��� = 𝑎

���15 2
6

��� and
��� 𝑎5𝑎 2𝑎

6𝑎

��� = 𝑎2
���15 2

6

��� whereas
[
𝑎

5𝑎
𝑎2
6𝑎

]
= 𝑎

[
1
5

2
6

]
);

• 𝐶 𝑛 function;
• 𝑓 : R𝑛 → R1 , domain, range, image of 𝑥 under 𝑓 , 𝑓 maps its

domain into its range, 𝑓 is a mapping from its domain into its
range (the ideas of a mapping being “one-to-one” or “onto” will
be explained if those ideas are needed);

• notation such as 𝑓 ′3 and 𝑓 ′′42;

• gradient vector ∇ 𝑓 (x), Hessian matrix ∇2 𝑓 (x);
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• Jacobian matrix (see (12) below; it is square, but Jacobian ma-
trices do not have to be square);

• linear combination of two vectors (e.g., 𝛼x + 𝛽y);
• convex combination of two vectors (e.g., 𝛼x + 𝛽y with 𝛼 ≥ 0,
𝛽 ≥ 0, and 𝛼 + 𝛽 = 1);

• convex set;
• convex function, strictly convex function (namely 𝑓 ′′(𝑥) > 0

except possibly on a set of measure zero, where 𝑓 ′′(𝑥) = 0, e.g.,
𝑓 (𝑥) = 𝑥4), concave function, strictly concave function;

• quadratic form (for example, 𝑓 (𝑥1, 𝑥2, 𝑥3) = 𝑥1𝑥2−3𝑥1𝑥3+4𝑥2𝑥2 =

[𝑥1 𝑥2 𝑥3]
[

0
1/2
−3/2

1/2
4
0

−3/2
0
0

] [
𝑥1
𝑥2
𝑥3

]
), positive definite, positive semidef-

inite, negative definite, negative semidefinite;
• contour line, upper level set (upper contour set), lower level set

(lower contour set), quasiconcavity, strict quasiconcavity, quasi-
convexity, strict quasiconvexity.
The usual definition of quasiconcavity of 𝑓 is that 𝑓 ’s upper
level sets are convex sets, but an equivalent definition is that
𝑢(𝛼𝑥 + (1−𝛼) 𝑦) ≥ min{𝑢(𝑥), 𝑢(𝑦)} ∀ 𝑥, 𝑦, and 𝛼 ∈ [0, 1]. This
enables one to define the strict quasiconcavity of 𝑓 as satisfy-
ing the conditions for quasiconcavity and also satisfying 𝑢(𝛼𝑥 +
(1−𝛼) 𝑦) > min{𝑢(𝑥), 𝑢(𝑦)} ∀ 𝑥 ≠ 𝑦 and 𝛼 ∈ (0, 1). The level
curve for a strictly quasiconcave function 𝑓 (x) is a strictly con-
vex function of any one of the 𝑥𝑖, holding the other components
of x fixed.

Section 2: admissible point, local minimum point, local maximum point,
local minimum value, local maximum value, extreme points, extreme
values; the ∗ notation as traditionally denoting optima.

Section 3: binding and nonbinding inequality constraints, strict local min-
imum (namely 𝑥∗ such that 𝑓 (𝑥) > 𝑓 (𝑥∗) (strictly) for all 𝑥 in a neigh-
borhood of 𝑥∗), strict local maximum.

Section 4: global minimum (namely 𝑥∗ such that 𝑓 (𝑥) ≥ 𝑓 (𝑥∗) for all 𝑥),
global maximum, unique global minimum (namely 𝑥∗ such that 𝑓 (𝑥) >
𝑓 (𝑥∗) for all 𝑥 ≠ 𝑥∗), unique global maximum.

Section 5: endogenous variables, exogenous variables, dependent variables,
independent variables, differential of a function of multiple variables,
matrix inverse, Cramer’s Rule.
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Section 6: no additional new terms or notation.

Section 7: probability of an event, “{𝑥 : 𝑓 (𝑥) = 6},” “
∑

𝑖 𝑥𝑖,” “
∫

𝑓 (𝑥) 𝑑𝑥,”
“fair” random process.

1. Convexity, Quadratic Forms, and Minors
Let A denote a matrix. It does not have to be square. A “minor of A of
order 𝑟” is obtained by deleting all but 𝑟 rows and 𝑟 columns of A, then
taking the determinant of the resulting 𝑟 × 𝑟 matrix.

Now let A denote a square matrix. A “principal minor of A of order 𝑟”
is obtained by deleting all but 𝑟 rows and the corresponding 𝑟 columns of A,
then taking the determinant of the resulting 𝑟 × 𝑟 matrix. (For example, if
you keep the first, third, and fourth rows, then you have to keep the first,
third, and fourth columns.) A principal minor of A of order 𝑟 is denoted by
Δ𝑟 of A.

Again let A denote a square matrix. A “leading principal minor of
A of order 𝑟” is obtained by deleting all but the first 𝑟 rows and the first
𝑟 columns of A, then taking the determinant of the resulting 𝑟 × 𝑟 matrix.
A leading principal minor of A of order 𝑟 is denoted by 𝐷𝑟 of A. A square
matrix of dimension 𝑛 × 𝑛 has only 1 leading principal minor of order 𝑟 for
𝑟 = 1, . . . , 𝑛.

Example. Suppose A =


1
5
9
13

2
6
10
14

3
7
11
15

4
8
12
16

 . This matrix is not symmetric.

Usually one is interested in the minors only of symmetric matrices, but
there is nothing wrong with finding the minors of this non-symmetric ma-
trix.

• The leading principal minor of order 1 of A is 𝐷1 = |1|.
There are four principal minors of order 1 of A; they are the Δ1’s:
|1| = 𝐷1, |6|, |11|, and |16|.
There are sixteen minors of A of order 1.

• The leading principal minor of order 2 of A is 𝐷2 =

���15 2
6

���.
There are six principal minors of order 2 of A; they are the Δ2’s:

���15 2
6

��� =
𝐷2 (from rows and columns 1 and 2),

���19 3
11

��� (from rows and columns 1

and 3),
��� 1
13

4
16

��� (from rows and columns 1 and 4),
��� 6
10

7
11

��� (from rows and
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columns 2 and 3),
��� 6
14

8
16

��� (from rows and columns 2 and 4), and
���11
15

12
16

���
(from rows and columns 3 and 4).
There are thirty-six minors of A of order 2.

• The leading principal minor of order 3 of A is 𝐷3 =

���� 1
5
9

2
6
10

3
7
11

����.
There are four principal minors of order 3 of A; they are the Δ3’s:���� 1

5
9

2
6
10

3
7
11

���� = 𝐷3 (from rows and columns 1, 2, and 3),
���� 1

5
13

2
6
14

4
8
16

���� (from

rows and columns 1, 2 and 4),
���� 1

9
13

3
11
15

4
12
16

���� (from rows and columns 1, 3

and 4), and
���� 6

10
14

7
11
15

8
12
16

���� (from rows and columns 2, 3 and 4).

There are sixteen minors of A of order 3.
• The leading principal minor of order 4 of A is 𝐷4 = |A|.

There is only one principal minor of order 4 of A; it is Δ4 and it is
equal to |A|.
There is only one minor of order 4 of A; it is |A|.

[End of Example]

Let 𝑓 be a 𝐶2 function mapping 𝑆 ⊂ 𝑅𝑛 into 𝑅1. Denote the Hessian
matrix of 𝑓 (x) by ∇2 𝑓 (x); this matrix has dimension 𝑛 × 𝑛. Let “𝐷𝑟 of
∇2 𝑓 (x)” denote the 𝑟th-order leading principal minor of the Hessian of 𝑓 .
Let “Δ𝑟 of ∇2 𝑓 (x)” denote all the 𝑟th-order principal minors of the Hessian
of 𝑓 .

Proposition 1. One has

𝐷𝑟 of ∇2 𝑓 (x) > 0 for 𝑟 = 1, . . . , 𝑛 and for all x ∈ 𝑆 (1)
⇐⇒ ∇2 𝑓 (x) is positive definite for all x ∈ 𝑆 (2)
=⇒ 𝑓 (x) is strictly convex on 𝑆 . (3)

Also,

All the Δ𝑟 of ∇2 𝑓 (x) ≥ 0 for 𝑟 = 1, . . . , 𝑛 and for all x ∈ 𝑆 (4)
⇐⇒ ∇2 𝑓 (x) is positive semidefinite for all x ∈ 𝑆 (5)
⇐⇒ 𝑓 (x) is convex on 𝑆 . (6)

If ∇2 𝑓 (x) is replaced by an arbitrary symmetric matrix, it is still true that
(1) ⇐⇒ (2) and (4) ⇐⇒ (5).
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As a simple example that (3) implies neither (2) nor (1) (the implication
only goes in the other direction), note that if 𝑓 (𝑥) = 𝑥4 and if 𝑆 is the entire
real line, then since one possible value of 𝑥 is zero (at which ∇2 𝑓 (𝑥) = 12𝑥2

equals zero), (1)–(6) are, respectively, False, False, True, True, True, and
True.

The typical procedure is to check (1) first. If (1) doesn’t apply because
one of the signs was strictly negative, then the contrapositive of “(4) iff (6)”
tells you that the function is not convex. (This is because each 𝐷𝑖 ∈ Δ𝑖.)
If (1) doesn’t apply because at least one of the signs was zero but none
were strictly negative, then one would have to check (4). The easiest part
of (4) to check is the Δ1’s, which are the elements on the main diagonal
of ∇2 𝑓 (x). If any of them are strictly negative, then (4) fails, so (5) and
(6) fail. (I may show you a direct proof in class that if a matrix is positive
semidefinite, all its diagonal terms are greater than or equal to zero, and if
a matrix is positive definite, all its diagonal terms are greater than zero.)
[Note that if 𝑓 is convex then − 𝑓 is concave. This leads to:
Proposition 1′: Similarly,

𝐷𝑟 of ∇2 𝑓 (x) alternate in sign beginning with < 0 for 𝑟 = 1, . . . , 𝑛
and ∀ x ∈ 𝑆 (1′)

⇐⇒ ∇2 𝑓 (x) is negative definite for all x ∈ 𝑆 (2′)
=⇒ 𝑓 (x) is strictly concave on 𝑆 . (3′)

Also,

All the Δ𝑟 of ∇2 𝑓 (x) alternate in sign beginning with ≤ 0 for 𝑟 = 1, . . . , 𝑛
and ∀ x ∈ 𝑆 (4′)

⇐⇒ ∇2 𝑓 (x) is negative semidefinite for all x ∈ 𝑆 (5′)
⇐⇒ 𝑓 (x) is concave on 𝑆 . (6′)

]

The following proposition is a test for “pseudoconvexity” and “pseudo-
concavity,” but for all practical purposes you should assume that pseudo-
convexity is the same as quasiconvexity and pseudoconcavity is the same
as quasiconcavity, so I will not even bother to define pseudoconvexity and
pseudoconcavity.

Proposition 2. [Test of Pseudoconvexity.] Let 𝑓 be a 𝐶2 function defined
in an open, convex set 𝑆 in 𝑅𝑛. Define the “bordered Hessian” determinants
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𝛿𝑟 (x), 𝑟 = 1, . . . , 𝑛 by

𝛿𝑟 (x) =

����������
0 𝑓 ′1(x) 𝑓 ′2(x) · · · 𝑓 ′𝑟 (x)

𝑓 ′1(x) 𝑓 ′′11(x) 𝑓 ′′12(x) · · · 𝑓 ′′1𝑟 (x)
𝑓 ′2(x) 𝑓 ′′21(x) 𝑓 ′′22(x) · · · 𝑓 ′′2𝑟 (x)
...

...
...

. . .
...

𝑓 ′𝑟 (x) 𝑓 ′′
𝑟1(x) 𝑓 ′′

𝑟2(x) · · · 𝑓 ′′𝑟𝑟 (x)

���������� .
A sufficient condition for 𝑓 to be pseudoconvex is that 𝛿𝑟 (x) < 0 for 𝑟 = 2,
. . . , 𝑛, and all x ∈ 𝑆.

[Proposition 2′: Similarly, a sufficient condition for 𝑓 to be pseudoconcave is that 𝛿𝑟 (x)
alternate in sign beginning with > 0 for 𝑟 = 2, . . . , 𝑛, and all x ∈ 𝑆.]

2. First-Order Conditions
Proposition 3. Suppose that 𝑓 , ℎ1, . . . , ℎ 𝑗 , and 𝑔1, . . . , 𝑔𝑘 are 𝐶1 functions
of 𝑛 variables. Suppose that x∗ ∈ 𝑅𝑛 is a local minimum of 𝑓 (x) on the
constraint set defined by the 𝑗 equalities and 𝑘 inequalities

ℎ1(x) = 0, . . . , ℎ 𝑗(x) = 0 , (7)
𝑔1(x) ≥ 0, . . . , 𝑔𝑘(x) ≥ 0 . (8)

If there are no equality constraints then 𝑗 = 0, and if there are no inequality
constraints then 𝑘 = 0. Form the Lagrangian

ℒ(x, 𝝀, 𝝁) = 𝑓 (x) −
𝑗∑︁

𝑖=1

𝜆𝑖 ℎ𝑖(x) −
𝑘∑︁
𝑖=1

𝜇𝑖 𝑔𝑖(x) . (9)

(If 𝑗 = 0 or 𝑘 = 0, recall the convention for empty sums. If both 𝑗 and 𝑘 are
zero, that convention implies that ℒ = 𝑓 .)

Then (under certain conditions I omit here) there exist multipliers 𝝀∗

and 𝝁∗ such that:

1. 𝜕ℒ(x∗, 𝝀∗, 𝝁∗)/𝜕𝜆𝑖 = 0 for all 𝑖 = 1, . . . , 𝑗 . This is equivalent to:
ℎ𝑖(x∗) = 0 for all 𝑖 = 1, . . . , 𝑗 .

2. 𝜕ℒ(x∗, 𝝀∗, 𝝁∗)/𝜕𝑥𝑖 = 0 for all 𝑖 = 1, . . . , 𝑛.

3. 𝜇∗
𝑖
≥ 0, 𝑔𝑖(x∗) ≥ 0, and 𝜇∗

𝑖
𝑔𝑖(x∗) = 0 for all 𝑖 = 1, . . . , 𝑘 .
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These three conditions are often called the Kuhn-Tucker conditions. The
last condition is sometimes called the “complementary slackness condi-
tion.”
[Proposition 3′: For a maximum, change (8) to:

𝑔1(x) ≤ 0, . . . , 𝑔𝑘(x) ≤ 0. (8′)

Then the Lagrangian is formed in the same way. Condition 1 is unchanged. Condition 2 is
unchanged. Condition 3 becomes: 𝜇∗

𝑖
≥ 0, 𝑔𝑖(x∗) ≤ 0, and 𝜇∗

𝑖
𝑔𝑖(x∗) = 0 for all 𝑖 = 1, . . . , 𝑘 .

]

In (7), if the first constraint of a problem is, for example, 𝑥1 + 𝑥2 = 17,
one could either take ℎ1(x) = 𝑥1 + 𝑥2 − 17 or take ℎ1(x) = 17− 𝑥1 − 𝑥2. Your
choice will not affect the optimal value of x. Your choice will affect the sign
of 𝝀∗, but that sign is almost always unimportant. In the one case when it
is important, equation (19) below, the discussion preceding equation (19)
requires that the constraint be written in the particular order specified by
equation (18).

3. Second-Order Conditions: Local
Let ℒ be the Lagrangian of the optimization problem. In Section 2, I
named the Lagrange multipliers “𝜆” if they were associated with one of
the 𝑗 equality constraints and “𝜇” if they were associated with one of the 𝑘

inequality constraints. In this section: (a) ignore all the nonbinding in-
equality constraints at (x∗, 𝝀∗, 𝝁∗); and (b) rename the Lagrange multipliers
of the binding inequality constraints 𝜆 𝑗+1, 𝜆 𝑗+2, . . . , 𝜆𝑚, where:

𝑚 is the number of equality constraints plus the number of bind-
ing inequality constraints.

(Do not confuse this use of 𝑚 with Varian’s textbook’s use of 𝑚 as standing
for income.) It is allowed to have 𝑚 = 0; if 𝑚 = 0 then there are no La-
grange multipliers. Denote the 𝑚 binding Lagrange multipliers collectively
by 𝝀. Let there be 𝑛 variables with respect to which the optimization is
occurring; denote these variables collectively by x.

A function’s Hessian is not unique. For example, one Hessian of 𝑓 (𝑥1, 𝑥2)
is

[
𝑓 ′′11
𝑓 ′′21

𝑓 ′′12
𝑓 ′′22

]
and another is

[
𝑓 ′′22
𝑓 ′′12

𝑓 ′′21
𝑓 ′′11

]
: the first one shows differentiation first

with respect to 𝑥1 and then with respect to 𝑥2, while the second shows dif-
ferentiation first with respect to 𝑥2 and then with respect to 𝑥1. Let ∇2

ℒ

be the following particular Hessian of the Lagrangian: first differentiate

10



ℒ with respect to all the Lagrange multipliers, then differentiate it with
respect to the original variables x.

∇2
ℒ =

©«

ℒ
′′
𝜆1𝜆1

ℒ
′′
𝜆1𝜆2

· · · ℒ
′′
𝜆1𝜆𝑚

| ℒ
′′
𝜆1𝑥1

ℒ
′′
𝜆1𝑥2

· · · ℒ
′′
𝜆1𝑥𝑛

ℒ
′′
𝜆2𝜆1

ℒ
′′
𝜆2𝜆2

· · · ℒ
′′
𝜆2𝜆𝑚

| ℒ
′′
𝜆2𝑥1

ℒ
′′
𝜆2𝑥2

· · · ℒ
′′
𝜆2𝑥𝑛

...
...

. . .
... | ...

...
. . .

...

ℒ
′′
𝜆𝑚𝜆1

ℒ
′′
𝜆𝑚𝜆2

· · · ℒ
′′
𝜆𝑚𝜆𝑚

| ℒ
′′
𝜆𝑚𝑥1

ℒ
′′
𝜆𝑚𝑥2

· · · ℒ
′′
𝜆𝑚𝑥𝑛

— — — — — — — — —
ℒ

′′
𝑥1𝜆1

ℒ
′′
𝑥1𝜆2

· · · ℒ
′′
𝑥1𝜆𝑚

| ℒ
′′
𝑥1𝑥1

ℒ
′′
𝑥1𝑥2

· · · ℒ
′′
𝑥1𝑥𝑛

ℒ
′′
𝑥2𝜆1

ℒ
′′
𝑥2𝜆2

· · · ℒ
′′
𝑥2𝜆𝑚

| ℒ
′′
𝑥2𝑥1

ℒ
′′
𝑥2𝑥2

· · · ℒ
′′
𝑥2𝑥𝑛

...
...

. . .
... | ...

...
. . .

...

ℒ
′′
𝑥𝑛𝜆1

ℒ
′′
𝑥𝑛𝜆2

· · · ℒ
′′
𝑥𝑛𝜆𝑚

| ℒ
′′
𝑥𝑛𝑥1

ℒ
′′
𝑥𝑛𝑥2

· · · ℒ
′′
𝑥𝑛𝑥𝑛

ª®®®®®®®®®®®®®®®¬
If you do this right, ∇2

ℒ𝑇 should have an 𝑚 × 𝑚 zero matrix in its upper
left-hand corner:

∇2
ℒ =

(
ℒ

′′
𝝀𝝀 ℒ

′′
𝝀𝒙

ℒ
′′
𝒙𝝀 ℒ

′′
𝒙𝒙

)
=

(
0 ℒ

′′
𝝀𝒙

ℒ
′′
𝝀𝒙

𝑇 ℒ
′′
𝒙𝒙

)
where ℒ

′′
𝝀𝒙 is an 𝑚 × 𝑛 matrix and where a ‘𝑇’ superscript denotes the

transpose.
One has the following result:

Proposition 4. A sufficient condition for the point (x∗, 𝝀∗) identified in
Proposition 3 to be a strict local minimum is that (−1)𝑚 has the same sign
as all of the following when they are evaluated at (x∗, 𝝀∗): 𝐷2𝑚+1 of ∇2

ℒ,
𝐷2𝑚+2 of ∇2

ℒ, . . . , 𝐷𝑚+𝑛 of ∇2
ℒ.

If 𝑚 = 0, this is equivalent to the condition that ∇2
ℒ (which in such a case

equals ∇2 𝑓 (x)) be positive definite, which occurs only if 𝑓 (x) is strictly
convex.

[Proposition 4′: Similarly, one will have a strict local maximum if, when they are evaluated
at (x∗, 𝝀∗), the following alternate in sign beginning with the sign of (−1)𝑚+1: 𝐷2𝑚+1 of
∇2

ℒ, 𝐷2𝑚+2 of ∇2
ℒ, . . . , 𝐷𝑚+𝑛 of ∇2

ℒ.]

There is a second-order necessary condition for a minimum, also:

Proposition 5. If 𝑚 > 0, define “Δ̂𝑖 of ∇2
ℒ” to be the subset of “Δ𝑖

of ∇2
ℒ” formed by only considering those “Δ𝑖 of ∇2

ℒ” which retain
(parts of) the first 𝑚 rows and first 𝑚 columns of ∇2

ℒ. (If 𝑚 = 0, there is
no difference between the Δ’s and the Δ̂’s.)

11



Then a necessary condition for the point (x∗, 𝝀∗) identified in Proposi-
tion 3 to be a local minimum is that “(−1)𝑚 or zero” have the same sign
as all of the following when they are evaluated at (x∗, 𝝀∗): Δ̂2𝑚+1 of ∇2

ℒ,
Δ̂2𝑚+2 of ∇2

ℒ, . . . , Δ̂𝑚+𝑛 of ∇2
ℒ.

The typical procedure is to check Proposition 4 first. If Proposition 4
doesn’t apply because one of the signs was strictly the same as (−1)𝑚+1,
then Proposition 5 tells you that (x∗, 𝝀∗) is not a local minimum point. (This
is because each 𝐷𝑖 ∈ Δ̂𝑖.)

[Proposition 5′: The version of Proposition 5 for a local maximum requires that the follow-
ing, if they are evaluated at (x∗, 𝝀∗), alternate in sign beginning with the sign of “(−1)𝑚+1

or zero” (then having the sign of “(−1)𝑚+2 or zero” and so forth): Δ̂2𝑚+1 of ∇2
ℒ, Δ̂2𝑚+2

of ∇2
ℒ, . . . , Δ̂𝑚+𝑛 of ∇2

ℒ.]

4. Second-Order Conditions: Global
Let (x∗, 𝝀∗) be a point identified in Proposition 3. Let 𝑗 be the number of
equality constraints and 𝑘 be the number of inequality constraints.

1. If 𝑗 = 𝑘 = 0 (an unconstrained problem) and 𝑓 (x) is convex for all 𝑥,
then x∗ is a global minimum point of 𝑓 in 𝑆. (The converse also
holds.) Furthermore, if 𝑗 = 𝑘 = 0 and 𝑓 (x) is strictly convex for all 𝑥,
then x∗ is the unique global minimum point of 𝑓 in 𝑆. (The converse
also holds.)

2. If 𝑘 = 0 (only equality constraints) and if ℒ(x, 𝝀) is “convex in x”
(that is, ℒ(x, 𝝀) is convex when considering all the components of 𝝀
to be constants instead of variables), then x∗ is a global constrained
minimum point of 𝑓 . Furthermore, if 𝑘 = 0 and ℒ(x) is strictly
convex in x, then x∗ is the unique global constrained minimum point
of 𝑓 .

[Aside: Similarly, using the problem defined in Proposition 3′ and (8′):

1′. If 𝑗 = 𝑘 = 0 (an unconstrained problem) and 𝑓 (x) is concave, then x∗ is a global
maximum point of 𝑓 in 𝑆. (The converse also holds.) Furthermore, if 𝑗 = 𝑘 = 0 and
𝑓 (x) is strictly concave, then x∗ is the unique global maximum point of 𝑓 in 𝑆. (The
converse also holds.)

2′. If 𝑘 = 0 (only equality constraints) and ℒ(x) is concave in x, then x∗ is a global
constrained maximum point of 𝑓 . Furthermore, if 𝑘 = 0 and ℒ(x) is strictly concave
in x, then x∗ is the unique global constrained maximum point of 𝑓 .

]
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5. Comparative Statics
Let x ∈ R𝑛 denote the endogenous (or “dependent”) variables in a model
and let y ∈ R𝑚 denote the exogenous (or “independent”) variables in that
model. Suppose the model is described by a general system of equations of
the form

𝑓1(x, y) = 0
𝑓2(x, y) = 0

...

𝑓𝑛(x, y) = 0.

(10)

This is called the “structural form” because it defines x as an implicit func-
tion of y; if one could solve the system for x as an explicit function of y,
one would obtain the “reduced form” of the system. Often it is impossible
to solve for the reduced form.

Taking the differential of both sides of each equation results in3

𝜕 𝑓1

𝜕𝑥1
𝑑𝑥1 + · · · + 𝜕 𝑓1

𝜕𝑥𝑛
𝑑𝑥𝑛 +

𝜕 𝑓1

𝜕𝑦1
𝑑𝑦1 + · · · + 𝜕 𝑓1

𝜕𝑦𝑚
𝑑𝑦𝑚 = 0

...
...

...
...

𝜕 𝑓𝑛

𝜕𝑥1
𝑑𝑥1 + · · · + 𝜕 𝑓𝑛

𝜕𝑥𝑛
𝑑𝑥𝑛 +

𝜕 𝑓𝑛

𝜕𝑦1
𝑑𝑦1 + · · · + 𝜕 𝑓𝑛

𝜕𝑦𝑚
𝑑𝑦𝑚 = 0.

(11)

Moving the last 𝑚 terms in each equation to the right (in order to isolate
the differentials of the endogenous variables, so those differentials can be
solved for), and rewriting in matrix form, results in

©«
𝜕 𝑓1
𝜕𝑥1

· · · 𝜕 𝑓1
𝜕𝑥𝑛

...
. . .

...
𝜕 𝑓𝑛
𝜕𝑥1

· · · 𝜕 𝑓𝑛
𝜕𝑥𝑛

ª®®®®¬
©«
𝑑𝑥1
...

𝑑𝑥𝑛

ª®®¬ = −
©«
𝜕 𝑓1
𝜕𝑦1
...

𝜕 𝑓𝑛
𝜕𝑦1

ª®®®®¬
𝑑𝑦1 − · · · −

©«
𝜕 𝑓1
𝜕𝑦𝑚
...

𝜕 𝑓𝑛
𝜕𝑦𝑚

ª®®®®¬
𝑑𝑦𝑚 . (12)

Let J denote the matrix on the left-hand side of (12). (This matrix is a
“Jacobian matrix.”) If J is invertible then we can solve for 𝑑𝑥1, 𝑑𝑥2, . . . ,

3Do not omit the “ = 0” parts of (11). If you omit them, you have only taken the
differential of one side of (10) instead of both sides of (10), and you would not be able to
make any further progress.
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𝑑𝑥𝑛 as a function of 𝑑𝑦1, 𝑑𝑦2, . . . , 𝑑𝑦𝑚 as follows:

©«
𝑑𝑥1
...

𝑑𝑥𝑛

ª®®¬ = −J−1
©«
𝜕 𝑓1
𝜕𝑦1
...

𝜕 𝑓𝑛
𝜕𝑦1

ª®®®®¬
𝑑𝑦1 − · · · − J−1

©«
𝜕 𝑓1
𝜕𝑦𝑚
...

𝜕 𝑓𝑛
𝜕𝑦𝑚

ª®®®®¬
𝑑𝑦𝑚 . (13)

Alternatively and more commonly, (12) is solved using Cramer’s Rule, es-
pecially in the many problems in which most of the 𝑑𝑦’s are zero.

Consider the common problem of determining the sign of 𝜕𝑥𝑖/𝜕𝑦 𝑗 from
(12). The easiest way to do this, if (10) are the first-order conditions of an
optimization problem (which in microeconomics is usually the case), is
usually to solve (12) using Cramer’s Rule. Then 𝜕𝑥𝑖/𝜕𝑦 𝑗 would have the
form

numerator
|J| . (14)

In such cases, the second-order conditions of the optimization problem usu-
ally determine the sign of |J|; then all that remains in order to determine
the sign of 𝑑𝑥𝑖/𝑑𝑦 𝑗 is to find the sign of the numerator of (14).

6. The Value Function and the Envelope Theorem
Consider the problem of maximizing a function 𝑓 over endogenous vari-
ables x given exogenous variables c and constraints ℎ1(x, c) = 0, ℎ2(x, c) =
0, . . . , ℎ 𝑗(x, c) = 0. The “(optimized) value function” for this problem is
defined as

𝑓 ∗(c) = max
𝒙

𝑓 (x, c) such that

ℎ1(x, c) = 0, ℎ2(x, c) = 0, . . . , ℎ 𝑗(x, c) = 0.
(15)

Equivalently, if x∗ is the solution to the maximization problem in (15), then

𝑓 ∗(c) = 𝑓 (x∗(c), c) . (16)

Let ℒ be the Lagrangian function (9) for the maximization problem in (15).
The “Envelope Theorem” states that

𝜕 𝑓 ∗

𝜕𝑐𝑖
=
𝜕ℒ∗

𝜕𝑐𝑖
(17)

where ℒ
∗ is ℒ evaluated at (x∗, c).
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Consider the special case of (15) in which 𝑓 (x, c) does not depend on c
and in which the constraints take the form

ℎ1(x) − 𝑐1 = 0, . . . , ℎ 𝑗(x) − 𝑐 𝑗 = 0 . (18)

Then (17) implies that
𝜕 𝑓 ∗

𝜕𝑐𝑖
=
𝜕ℒ∗

𝜕𝑐𝑖
= 𝜆∗𝑖 . (19)

This is often used to give an interpretation of 𝜆∗
𝑖

as a “shadow price” of 𝑐𝑖.

7. Probability Theory
All the probability theory that is required for this course is an understand-
ing of how to compute the expected value of a discrete or continuous ran-
dom variable. A superficial understanding will suffice, but some students
might be interested in a more careful treatment, which I give below. How-
ever, I still will not be giving a fully satisfactory treatment, because that
requires measure theory, Borel sets, and other advanced mathematics; such
a treatment is given for example in Chapter 1 of Malliaris and Brock’s 1982
textbook “Stochastic Methods in Economics and Finance.”

Let the set of possible outcomes of an uncertain event be called the
“sample space” and be denoted by Ω. We will first suppose that the number
of elements in Ω is finite or countably infinite.

With each element 𝜔 ∈ Ω associate a real number 𝑋(𝜔). For example,
if Ω is a deck of playing cards and each 𝜔 is one card, then 𝑋(𝜔) might be
1 when 𝜔 is the 2 of Hearts, 10 when 𝜔 is the Jack of Hearts, 14 when 𝜔 is
the 2 of Spades, and so forth. The function 𝑋 : Ω → R is called a “discrete
random variable.”

Let Pr(𝜔) denote the probability that 𝜔 occurs. Let the function 𝑓 (𝑥) :
R → [0, 1] be defined by

𝑓 (𝑥) = Pr{𝜔 : 𝑋(𝜔) = 𝑥} .

The function 𝑓 is called the “probability distribution” of the discrete ran-
dom variable 𝑋 . One has ∑︁

𝑥∈R
𝑓 (𝑥) = 1 .

The “expected value” of the random variable (also called the “mean” of the
random variable or the “average” of the random variable) is defined to be

𝐸(𝑋) =
∑︁
𝑥∈R

𝑥 𝑓 (𝑥) .
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For example, consider the outcome of a roll of a die. The set of outcomes,
in no particular order, is Ω = {3, 1, 5, 4, 6, 2}. Let the “first” outcome be
𝜔1 = 3, the “second” outcome be 𝜔2 = 1, and so forth, so the sixth outcome
is 𝜔6 = 2. Define the random variable 𝑋(𝜔) in the following way: 𝑋(𝜔1) =
32 = 𝑥1, 𝑋(𝜔2) = 12 = 𝑥2, . . . , 𝑋(𝜔6) = 22 = 𝑥6. If in addition the die is fair
(so all the outcomes occur with probability 1/6), then the expected value
of 𝑋 is

6∑︁
𝑖=1

𝑥𝑖 𝑓 (𝑥𝑖) = 32 · 1
6
+ 12 · 1

6
+ 52 · 1

6
+ 42 · 1

6
+ 62 · 1

6
+ 22 · 1

6

=
1
6
· (9 + 1 + 25 + 16 + 36 + 4) = 91/6 = 151

6 .

For another example, again consider the outcome of a roll of a die. This
time write the set of outcomes as Ω = {1, 2, 3, 4, 5, 6}. Let the “first” out-
come be 𝜔1 = 1, the “second” outcome be 𝜔2 = 2, and so forth, so the sixth
outcome is 𝜔6 = 6. Define the random variable 𝑌 (𝜔) in the following way:
𝑌 (𝜔1) = 1 = 𝑦1, 𝑌 (𝜔2) = 2 = 𝑦2, . . . , 𝑌 (𝜔6) = 6 = 𝑦6. If in addition the die
is fair (so all the outcomes occur with probability 1/6), then the expected
value of 𝑌 is

6∑︁
𝑖=1

𝑦𝑖 𝑓 (𝑦𝑖) = 1 · 1
6
+ 2 · 1

6
+ · · · + 6 · 1

6

=
1
6
· (1 + 2 + 3 + 4 + 5 + 6) = 21/6 = 3.5 .

This completes our treatment of the case when the number of elements
in Ω is finite or countably infinite. Now suppose instead that the number of
elements in Ω is uncountably infinite.

Furthermore, suppose that to each element 𝜔 ∈ Ω we can associate
a real number 𝑋(𝜔). For example, if 𝜔 is the color of paint in a paint
can which we find together with many other paint cans in an abandoned
building, then Ω is the set of all possible colors in the abandoned cans, and
if red is one’s favorite color, then 𝑋(𝜔) might be the grams of red pigment
contained in the first abandoned paint can. The function 𝑋 : Ω → R is
called a “continuous random variable.”

Let the function 𝐹(𝑥) : R → [0, 1] be defined by

𝐹(𝑥) = Pr{𝜔 : 𝑋(𝜔) ≤ 𝑥} .
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The function 𝐹 is called the “cumulative probability density function,” or
CDF, of the continuous random variable 𝑋 . (In the example, CDF(𝑥) is the
probability that the paint can will have less than or equal to 𝑥 grams of red
pigment.) One has 𝐹(∞) = 1.

The function
𝑓 (𝑥) =

𝑑𝐹(𝑥)
𝑑𝑥

is called the “probability density function,” or PDF, of the continuous ran-
dom variable 𝑋 . One has ∫ ∞

−∞
𝑓 (𝑥) 𝑑𝑥 = 1 .

The probability that the value of 𝑋 is between 𝑎 and 𝑏 (where 𝑎 ≠ 𝑏)
is

∫ 𝑏

𝑎
𝑓 (𝑥) 𝑑𝑥. The probability that the value of 𝑋 is exactly equal to 𝑎

is not given by
∫ 𝑎

𝑎
𝑓 (𝑥) 𝑑𝑥 = 0, because then 𝑋 could never take on any

value. Instead, frequency with which the value of 𝑋 is exactly equal to any
particular value “𝑎” goes to zero in the limit as the number of draws from
the distribution goes to infinity.

The “expected value” of the random variable (also called the “mean” of
the random variable or the “average” of the random variable) is defined to
be

𝐸(𝑋) =
∫ ∞

−∞
𝑥 𝑓 (𝑥) 𝑑𝑥 .

For example, if Ω = [0, 12] for the outcome of the spin of a fair arrow
centered on the face of a clock, if 𝜔 is defined be the number that the arrow
points to on the clock face, and if 𝑋(𝜔) is defined to equal 𝜔 (so 𝑋(3) = 3),
then the CDF of the arrow is 0.25 at 𝑥 = 3, 0.75 at 𝑥 = 9, and in general is
equal to 𝑥/12. The PDF in this example is

𝑓 (𝑥) = 1/12 ,

and the expected value is∫ 12

0
𝑥 · 1

12
𝑑𝑥 =

1
12

· 1
2
𝑥2
���12

0
= 6 .
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