
1 Introduction
The hedonic housing price model is a powerful econometric tool for capturing
important determinants of prices/housing values regarding structural and locational
(neighborhood) attributes, and has been widely used in housing and urban studies.
Serving as a `̀ joint-envelope of a family of value equations (consumers' preferences)
and another family of offer functions (suppliers' technologies)'' (Rosen, 1974, page 44),
the hedonic model establishes a formal relationship between housing values/prices and
a set of housing attributes (the quantity and qualities embodied in housing). Usually,
housing attributes contain not only structural attributes such as floor size, but also
locational or neighborhood conditions, such as proximity to certain public facilities.
The model is appealing in that the implicit price of various housing attributes can be
estimated from the model. Traditionally, the regression is calibrated through the ordi-
nary least squares (OLS) estimator, under the general assumption of independent
observation. However, despite the mature OLS technology and its wide application in
examining the relationships between housing prices and attributes (for a review see
Can, 1992), the full potential of the hedonic model remains to be exploited (Ekeland
et al, 2004), and locational attributes in particular have drawn inadequate attention
(Orford, 2002).

During the late 1980s and early 1990s, largely due to the advancement in spatial
statistics and spatial econometrics (eg Anselin, 1988; Cliff and Ord, 1981; Griffith, 1988;
Upton and Fingleton, 1985), studies on the hedonic model explicitly took into account
the inherent spatial characteristics of housing dataönamely, spatial autocorrelation
and heterogeneity. Pioneered by Dubin (1988) and Can (1990; 1992), a large body of
literature has emerged to address the spatial effects or to apply spatial techniques in
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modeling housing prices (eg Basu and Thibodeau, 1998; Bowen et al, 2001; Dubin,
1998; Fotheringham et al, 2002; Kelejian and Prucha, 1998; Militino et al, 2004; Pace
et al, 1998). Can (1990, page 254; 1992) advances the concept that `̀ the influence of
various housing attributes on housing prices is characterized by spatial variability'', and
applies Cassetti's (1972; 1986) expansion method in her modeling scheme, trying to
capture possible spatially varying influences of various housing attributes on housing
prices. Through the construction of a neighborhood quality index based on nine sub-
stantive neighborhood characteristics and a principal component analysis technique, her
spatial expansion model produces quite attractive results when compared with the OLS
counterpart (Can, 1990; 1992).

In this study we intend to achieve three objectives, using the City of Milwaukee's
master property dataset. First, we examine the influences of spatial autocorrelation
on housing-market modeling by applying two types of spatial autoregressive models.
Second, we intend to advance the understanding of spatial variable relationships between
housing attributes and housing prices/values by applying a newly developed spatial data
analysis technique, the geographically weighted regression (Fotheringham et al, 2002).
Third, to assess the performance and predictability of the hedonic models incorporat-
ing spatial information, we investigate the prediction accuracy of the models using a
testing dataset that is different from the dataset used to construct the models. After
this introduction the next section reviews the research background of the hedonic
model and studies addressing spatial effects. The third section discusses the study area
and data. Section 4 presents specifications of the OLS model, spatial autoregressive
models, and the geographically weighted regression. Analytical results are discussed in
section 5, and the paper concludes with a summary and future research foci.

2 Theoretical background
2.1 The hedonic price model
The hedonic price model is based on the hedonic hypothesis that goods are valued for
their utility-bearing attributes or characteristics. In his classical text, Rosen (1974) states
that the hedonic price model is determined by a set of choices made by consumers and
producers under the market clearing conditions. Although a house is a special commod-
ity with bundles of attributes which cannot be traded separately, it has multiple qualities,
such as lot size, improvement, neighborhood, accessibility, proximity externalities, land
used, and time (eg Basu and Thibodeau, 1998). Housing attributes have traditionally
been divided into structural, and neighborhood or locational attributes (Can, 1992;
Orford, 2002). Housing structural attributes refer to the structure of the property,
such as lot size and improvement. Neighborhood or locational attributes include all
externalities associated with the geographic location of the house, such as accessibility,
proximity externalities, environmental amenities, and land-use information.

Under such generalization, and at market equilibrium, a hedonic model can be
formally expressed as:

P�H� � f�S, N� � e , (1)

where P(H) is a matrix containing housing prices/values, f(S, N) is a functional form
with structural (S) and neighborhood (N) attributes, and e is the residual term. In a
linear form the marginal prices of various housing attributes are hence identified as the
partial differentiation of corresponding attributes. This marginal price is usually
referred to as the hedonic or implicit price of the attributes (Rosen, 1974). This notion
also constitutes the theoretical background of the hedonic regression technique.

An extensive literature has emerged to test and to expand the hedonic model. The
research focuses mainly on identifying the variables to represent housing attributes
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and the correct functional forms (Can, 1992; Mulligan et al, 2002). However, the full
potential of the hedonic model remains to be exploited (Ekeland et al, 2004). Given the
traditional neglect of locational externalities by econometric models and the method-
ological constraints in incorporating spatial information, studies on locational effects
have drawn inadequate attention (Orford, 2002).

2.2 Spatial effects
It is well known that, when analyzing geographical phenomena and cross-sectional data,
geographic location plays an important role in the occurrence of spatial effectsöthat is,
spatial autocorrelation and heterogeneity. As defined in Anselin (2001), spatial autocor-
relation is referred to as the c̀oincidence of value similarity with locational similarity'.
In housing markets it means that houses at nearby locations tend to have similar prices.
This indeed describes how the metropolitan housing markets operate. First, with a
nearby location, homeowners tend to follow their neighbors' improvement activities,
which result in similar dwelling size, vintage, designs, and other structural character-
istics. Second, spatial autocorrelation arises from the shared locational amenities of
houses in the nearby location and neighborhood (Basu and Thibodeau, 1998; Militino
et al, 2004), such as school districts, police stations, green space, transportation nodes,
shopping centers, and other facilities. Last, realtors or property assessors tend to
evaluate the value of houses by referring to the neighborhood conditions, an activity
which also results in similar housing values in the nearby locations.

The existence of spatial autocorrelation in housing prices/values violates the stan-
dard assumptions of independence of observations in a traditional OLS regression
estimator. The OLS estimation becomes biased and/or inconsistent; hence the esti-
mated coefficients (the implicit or hedonic prices of the attributes) might be incorrect
or misleading (Anselin, 1988). Spatial statistical and econometric techniques such as
spatial autoregressive analysis and geostatistical models have been developed to address
this concern (Anselin, 1988; Bowen et al, 2001; Can, 1990; 1992; Dubin, 1998; Kelejian
and Prucha, 1998; Militino et al, 2004). By explicitly incorporating the spatial autocor-
relation information in model construction, these models tend to eliminate the spatial
effects on the coefficients. This research will focus on applying spatial autoregressive
techniques and incorporating the spatial autocorrelation in modeling housing hedonic
prices. In particular, we will consider both the spatial lag and error autoregressive
models, and examine their performance and predictive accuracy.

Spatial heterogeneity, on the other hand, refers to a nonstationary process over
space. Simply put, it describes a housing-market operational process in which the same
set of housing attributes may yield different housing prices in different parts of the
studied region (Bailey and Gatrell, 1995; Fik et al, 2003; Fotheringham et al, 2002;
Thëirault et al, 2003). As observed by many scholars (Adair et al, 1996; Can, 1990;
Goodman and Thibodeau, 1998; Maclennean and Tu, 1996; Orford, 2000; Watkins,
2001), the traditional hedonic price model is based upon the theory of a unitary housing
market functioning in instantaneous equilibrium. However, modern metropolitan hous-
ing markets are very likely composed of many submarkets, and can be characterized by
functional disequilibrium and segmentation (Case and Mayer, 1996; Goodman and
Thibodeau, 1998; Knox, 1995; Straszheim, 1975), as the supply and demand of the
housing bundle tend to be inelastic (Adair et al, 1996). Some of the housing attributes,
such as building areas, environmental amenities, and neighborhoods, may not be
substitutable. For instance, Schnare and Struyk (1976) argue that housing-market
segmentation occurs when demands for a particular structural or neighborhood char-
acteristic are shared by a relatively large number of households. In addition, as argued
by Can (1990), urban neighborhood structures are quite diversified, and such diversity
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has a significant impact on consumers' valuation of housing attributes on housing
prices, which also leads to market segmentation. A direct consequence of market
segmentation is a nonstationary housing market. As a result, a stationary model
ignores the operational processes and structures that can lead to the disequilibrium in
housing supply demand (Orford, 2000), which in turn can lead to biased or misleading
parameter estimates of the hedonic model.

Although researchers in general agree with the existence of urban housing sub-
markets, empirical studies differ regarding how submarkets are specified, and hence
how spatial heterogeneity is treated. On the methodological side, a multilevel (or
hierarchical) modeling technique is often employed (Goodman and Thibodeau, 1998;
Jones and Bullen, 1994; Orford, 2000; 2002). In such analyses, although the analysts
are aware of the spatial heterogeneity in the housing market, it is assumed that the
exact pattern of heterogeneity is known. Hence a discrete set of boundaries is implicitly
imposed to identify submarkets. These empirical analyses have yielded a large body of
insightful results, which are generally reported to perform better than the OLS estima-
tor in terms of both data fitting and prediction. However, from a methodological point
of view, the multilevel modeling scheme might seem to be too arbitrary in delineating
housing submarkets with distinct boundaries, since spatial heterogeneity in the housing
market more likely results from a continuous process (Fotheringham et al, 2002). To
address the spatial heterogeneity in the housing market, Can (1990) adopts an expan-
sion method in which regression parameters drift on a set of substantive variables that
are deemed to account for the extent of spatial variation. The expansion method,
though important in capturing spatial heterogeneity directly in the model, does have
some limitations. One is that the form of the expansion equations needs to be assumed
a priori. Though many forms are feasible, linear forms are often used in the literature.
However, since the underlying spatial process generating the spatial heterogeneity is
unknown, the assumption of a linear contextual drift seems arbitrary. A second limita-
tion results from the use of the substantive variables to account for spatial variation,
which might not be readily available, although Can (1990) uses nine variables and a
principal component analysis to generate a composite neighborhood quality index.
Furthermore, in practice, it is hard to tell whether those substantive variables well
represent the spatial variation.

In light of the above analysis, this research advances the conceptual idea of spatial
nonstationarity in the housing market through a geographically weighted regression
(GWR) analysis (Fotheringham et al, 2002). Instead of requiring a priori knowledge of
housing market segmentation structure or the exact form of the process that generates
spatial heterogeneity, GWR incorporates geographic locations in the analysis following
the general `first law of geography', which states that closer things are more related
with one another than things farther away (Tobler, 1970). In so doing, GWR accounts
for spatial variation in a more intuitive way.

3 The study area and data
This study uses data from the City of Milwaukee, Wisconsin, which is located on the
western shore of Lake Michigan (figure 1). The city grew rapidly during the early 20th
century, and formed its current urban shape in the late 1950s. After the completion of
the current highway network in the late 1960s and early 1970s, property development
in the city stepped into a relatively stable period.

Two types of data are elected for this study. The first is housing structural attribute
data that are extracted from the 2003 Master Property (MPROP) data file of the
city. The MPROP data file has around 160 000 entries of all real properties within
the city boundary. Each entry contains more than 80 various attributes, including a
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house's location, assessed value, and housing structural characteristics (Kim, 2003;
Luo and Wei, 2004; Yu and Wu, 2006). In this study we only focus our analyses on
the owner-occupied single-family houses, which have 68728 records.

Although it is very attractive to utilize all 68728 records in building the hedonic
price model, the computation costs for both spatial autoregressive regression and
GWR models are too prohibitive [actually, in an attempt to include 10% of the records
in our model, the GWR code written in R (http://www.r-project.org) failed to run on a
PC with double 3.0 GHz CPU, and 2 GB of RAM]. In addition, since this research
focuses on incorporating spatial effects in the hedonic price model and comparing the
performance of various modeling techniques, we adopt a random sampling procedure
with the selection of two sets of samples covering the entire geographic area of the city.
Balancing computational complexity and modeling accuracy, we select a set of 1821
random samples for model construction, and another nonoverlapping set of 1822 random
samples to evaluate the models' performance and predictive capability. This sampling
strategy allows us to have 99% confidence that the sample means will be within a 3%
marginal error from the population (Lenth, 2001). The subset operation is accom-
plished using the ArcGIS's Geostatistical Analyst (ESRI, Redlands, CA) extension to
ensure that the sample covers the entire study area.

In addition, we notice from the MPROP data file that only assessed housing values,
instead of sale prices, are recorded. Nonetheless, according to Wisconsin law, the
assessed value and the market value of a house cannot vary by more than 10%. Such
a difference might still pose a problem in estimating the hedonic models. However,
as pointed out by Case (1978), the assessment quality is highly related to assessing
frequency. In the City of Milwaukee the property valuation is conducted annually in
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Figure 1. Location of the City of Milwaukee, and spatial distribution of house values.
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order to reduce assessment errors. According to the City of Milwaukee's 2004 Plan
and Budget Summary (Soika and Czarnezki, 2004), the coefficient of dispersion, an
important measurement of assessment performance, is estimated to be at a 9% level for
2003 (Soika and Czarnezki, 2004, page 46), which is well within the excellent equity per
industrial standards. We hence deem it reasonable to approximate the housing market
values by the assessed values. A surface created from the logarithm-transformed
housing values is presented in figure 1, which indicates that the housing market in
Milwaukee has clear spatial patterns. Specifically, houses in the suburban areas and
the lakeside (central east side of the city) tend to be more expensive, whilst housing
values on the west side of the Milwaukee River are amongst the lowest (figure 1).

Aside from the assessed housing value, five housing structural attributes were iden-
tified and retrieved from the MPROP data file. In particular, we chose one dummy
variable, AirCd, which indicates whether central air conditioners are present; one
discrete variable, FirePlc, which indicates how many fireplaces are in the house; and three
continuous variablesöfloor size (FlSize), number of bathrooms (NofBath), and house age
(HsAge)öto construct the hedonic model. Other variables, including the number of
bedrooms, number of stories, lot area, and garage type are also considered in our prelim-
inary analysis. However, we discovered serious multicollinearity problems between the
number of bathrooms and the number of bedrooms, and among the building area, lot
area, and number of stories. The garage type, on the other hand, does not seem to have a
significant impact on housing value. Intuitively, and based on the literature (Kim, 2003; Yu
and Wu, 2006), AirCd, FirePlc, FlSize, and NofBath are hypothesized to be positively asso-
ciated with the housing value, whereas HsAge is hypothesized to be negatively associated.

Recent literature has expanded traditional neighborhood socioeconomic attributes
to include neighborhood environmental attributes in the hedonic model (Decker et al,
2005; Geoghegan et al, 1997; Kestens et al, 2004). The second type of data in this study
was generated from a Landsat ETM� image (see figure 1) acquired on 9 July 2001,
representing neighborhood environmental conditions. This image was downloaded
from the Wisconsin View project website (http://www.wisconsinview.com). It has a 30m
resolution in the visible and near-infrared bands. Three environmental characteristicsö
the fractions of vegetation, impervious surface, and soil for each pixelöwere generated
using the normalized spectral mixture analysis method (Wu, 2004). In the preliminary
data analysis it was found that all three remote-sensing-generated environmental char-
acteristics project significant impacts on housing values. However, the combined effect
of soil and impervious surface (SoilImp), which generally represents deteriorated
neighborhood environmental conditions, yields the best model performance and is
elected in the final model. It is termed the neighborhood environmental deterioration
index in this study, and is also hypothesized to be negatively associated with housing
value. Table 1 reports the summarization descriptive statistics of both the population
and the sample records.

4 Model specification, spatial regression, and geographically weighted regression
4.1 Model specification
There are a variety of model specifications of f(S, N) in equation (1) in the literature
according to various purposes and studying regions. The most often used specifications
in the literature include linear, semilogarithmic, and log ^ log specifications [for discus-
sion on various specifications of f(S, N) see Basu and Thibodeau (1998) and Kim
(2003)]. Empirically searching over alternative specifications using the Box ^Cox trans-
formation is also suggested from a statistical validation point of view (Halvorsen and
Pollakowski, 1981). Although linear specification of f(S, N) has the appealing char-
acteristics that the estimated coefficients can be interpreted as the corresponding
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housing attributes' marginal (implicit) prices, Rosen's (1974) theory suggests that, as
the house is an untied bundle of attributes, the price function is most likely nonlinear.

In addition, in case studies using similar datasets, Kim (2003) and Yu and Wu
(2006) suggest a log ^ log with dummy variable specification of f(S, N). According to
Kim (2003), such specification yields the best model performance. Since the major
objective of this research is to advance the conceptual framework that incorporating
spatial effects in the hedonic price model might improve model performance, a similar
log ^ log with dummy variable specification of f(S, N) is adopted here. In particular,
with the data extracted from the MPROP file and the remote sensing imagery, the
hedonic price model is specified as:

P�H�� � b0 � b1FlSize
� � b2NofBath

� � b3HsAge
�

� b4FirPlc� b5AirCd� b6SoilImp� e , (2)

where P(H)�, FlSize�, NofBath�, and HsAge� are the respective log-transformed values.

4.2 Spatial autoregressive regression
Two types of spatial autoregressive regression technique were employed to incorporate
spatial autocorrelation in model construction, namely, the lag [or substantive as sug-
gested in Anselin and Rey (1991)] and error (or nuisance) autoregressive specifications.
The substantive autoregressive model takes the form:

y � rWy� bX� e , (3)

Table 1. Descriptive statistics for the housing data.

Mean/mode Standard Minimum Maximum
deviation

Population (68 728 records)
House price 106 442 55 227.78 11 000 1 249 100
Floor size 1 260 428.28 413 9 154
House age 60.17 20.52 1 168
Fireplace 0 * 0.45 0 8
Air conditioner 1* 0.50 0 1
Number of bathrooms 1.32 0.46 1 7.5
Soil and impervious surface 0.61 0.12 0 1

Sample (modeling recordsÐ1 821)
House price 105 492 52 358.29 11 100 789 900
Floor size 1 261 404.84 444 5 977
House age 60 20.61 2 139
Fireplace 0 * 0.45 0 5
Air conditioner 1 * 0.50 0 1
Number of bathrooms 1.32 0.44 1 5.5
Soil and impervious surface 0.61 0.11 0.14 1

Sample (testing recordsÐ1 822)
House price 105 156 58 732.92 13 400 924 000
Floor size 1 254 425.64 600 5 419
House age 60 21.07 2 155
Fireplace 0 * 0.43 0 4
Air conditioner 1 * 0.50 0 1
Number of bathrooms 1.33 0.48 1 6
Soil and impervious surface 0.61 0.12 0 1

*These numbers are mode instead of mean of the variable.
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where y is a vector with elements being the observed housing values (in its log-transformed
form), b is a vector of parameters including the constant, X is a matrix with all the
housing attributes [as symbolized in equation (2)], W is a spatial weight matrix that
defines the spatial linkage among the houses, r is the coefficient of the spatial lag, and
e is an independent and identically distributed (iid) error term. From equation (3) the
substantive autoregressive specification resembles a regular regression equation with
an added neighborhood variable, Wy, which represents the influences of neighboring
houses on the observed house.

The nuisance autoregressive specification, on the other hand, deems the autocorrelation
to be in the error term, and takes the form:

y � bX� e , (4)

e � lWe� m , (5)

where m is an iid error, l is the coefficient of the error, and the other symbols are
defined above.

Since there exists the spatial autoregressive term rWy and lWe, the OLS estima-
tor is no longer applicable. The maximum likelihood estimator is usually suggested
as an effective asymptotic alternative (Anselin, 1988). Consequently, the conventional
OLS goodness-of-fit ^ adjusted R 2 will no longer be applicable; instead, likelihood-based
goodness-of-fit measures, mainly the Akaike information criterion (AIC, Akaike, 1974),
will be used to compare the models' goodness-of-fit for the data.

Also worth noting here is the importance of the weight matrix W in equations (3)
and (4). Although different Ws can be specified for the lag and error, respectively, we
use the same spatial weight matrix for both equations. The definition of the weight
matrix needs to be justified according to the contextual settings of the study region and
objectives under investigation (Anselin, 1988). In general, critical distances are widely
used to define the spatial neighboring relationships among point locations. In this
procedure points that fall within a certain critical distance are considered as neighbors
to one another. Geostatistical procedures using the empirical semivariogram are
adopted in the literature to define the critical distances (Bowen et al, 2001). However,
such procedures require a weak stationarity assumption that might not be met in urban
housing data. In this study we chose a few critical distances to generate the weight
matrix, namely, 2.5 km, 3.5 km, and 4.5 km. The choice of the critical distance is based
on the observation that, in our sample size, 2.5 km is roughly the smallest distance that
can guarantee each data point has at least one neighbor (it is to be noted, though, since
our sample size is only approximately 3% of the total records, that, in the City of
Milwaukee, even within a 2.5 km radius there might still exist significant heterogeneity;
owing both to the main purpose of the current project and the computation cost,
we intend to reserve the exploration of this possibility for our future endeavors). The
characteristics of each weight matrix generated by those critical distances, with both
the modeling sample (1821 records) and the testing sample (1822 records), are reported
in table 2. All the weight matrixes are row standardized. The one which performs the
best will be used to construct the final models.

4.3 Geographically weighted regression
The GWR technique is a newly developed GIS and spatial data analysis method
specifically dealing with spatial heterogeneity among regressed relationships. It has
recently received increased attention among scholars (eg Brunsdon et al, 1996; 1999;
Fortheringham and Brunsdon, 1999; Fortheringham et al, 1997; 1998; 2002; Huang and
Leung, 2002; Leung et al, 2000a; 2000b; Päez et al, 2002a; 2002b; Yu and Wu, 2004).
GWR develops the idea of Cassetti's (1972; 1986) expansion regression method in
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spatial terms. However, differing from Can's (1990; 1992) treatment of spatial terms,
GWR allows regression coefficients to vary across space without explicitly specifying a
determinant form on which the relationship drifts. Within the framework of GWR,
the traditional log ^ log specified hedonic model expressed in equation (2) can be
rewritten as:

Pi �H� � bi 0 � bi 1FlSize
�
i � bi 2NofBath

�
i � bi 3HsAge

�
i

� bi 4FirePlci � bi 5AirCdi � bi 6SoilImp� ei , (6)

where the subscript i represents specific geographical locations, and other symbols are
defined as in equation (2). Instead of being fixed, all the bi j ( j � 0, 1, . . . , 5) are now
spatially varying.

Calibration of the GWR model follows a local weighted least squares approach
(Fortheringham et al, 2002). When calibrating coefficients at location i, GWR assigns
weights through a weighting scheme (mechanism) to data at locations according to
their spatial proximity to location i. These weights ensure that near locations impose
more influence on the calibration than locations farther away. The weights are usually
obtained through a spatial kernel function. Two types of spatial kernels are often
usedöthat is, fixed and adaptive kernels. In a fixed kernel function an optimal spatial
kernel (bandwidth) will be obtained and applied over the study area. This approach is
usually less computationally intensive. However, as pointed out by Päez et al (2002a;
2002b) and Fortheringham et al (2002), the fixed kernel approach can produce large
local estimation variance in areas where data are sparse, and may mask subtle local
variations in areas where data are dense. On the other hand, the adaptive kernel
function seeks a certain number of nearest neighbors in order to adapt the spatial
kernel to ensure a constant size of local samples. This kernel might present a more
reasonable means in representing the degree of spatial heterogeneity in the study area.
In this study the adaptive kernel function was employed.

To obtain an optimal size of nearest neighbors for the adaptive kernel, a common
approach is to minimize the AIC (Akaike, 1974) of the GWR model (Fotheringham
et al, 2002). The AIC of a GWR model is defined following the works of Hurvich et al
(1998):

XAIC � 2n ln�bs� � n ln�2p� � n
n� tr�S�

nÿ 2ÿ tr�S�
� �

, (7)

where n is the total number of observations, bs is the maximum likelihood estimated
standard deviation of the error term, and tr(S) is the trace of the hat matrix S of the
GWR, which is defined through:

ŷ � Sy , (8)

Table 2. Characteristics of alternative spatial weight matrixes.

Characteristics 2.5 km 3.5 km 4.5 km

modeling testing modeling testing modeling testing

Number of points 1 821 1 822 1 821 1 822 1 821 1 822
Number of nonzero 284 958 282 212 486 822 485 012 719 734 717 966

links
Percentage of nonzero 8.59 8.50 14.68 14.61 21.70 21.63

weights
Average number of 156.48 154.89 267.37 266.20 395.24 394.05

links
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where y and ŷ are the vectors of the dependent variable and the GWR estimated
values. The AIC has a general appeal, in that it can be used to assess whether GWR
provides a better fit than a global model (be it the OLS or a spatial autoregressive
model), taking into account the reduced degrees of freedom.

4.4 Performance comparison and accuracy assessment
After constructing the models and fitting the modeling samples to the OLS, spatial
autoregressive, and GWR models, one major task of this work is to compare the
performance of the three models and assess their predicting accuracy using the testing
samples. In terms of model performance, as discussed above, the conventional OLS
goodness-of-fit criterion, adjusted R 2, will no longer be applicable in the spatial auto-
regressive models. Instead, the AIC is used as a goodness-of-fit performance indicator.
As a rule of thumb (Fotheringham et al, 2002), a decrease of AIC by 3 indicates a
significant improvement of the model performance.

To assess model prediction accuracy, we have first to make predictions. In our
current study, our predictions are ad hoc predictions to compare the spatial models
with OLS estimates. Prediction accuracy assessment on modeling samples is quite
straightforward. This is also the case when using testing samples in the OLS and
spatial substantive autoregressive models; we only need to apply the testing samples
using the estimated model coefficients to obtain the predicted housing values.
However, for the spatial nuisance autoregressive model and the GWR model, the use
of testing samples for prediction is worth some elaboration. Recall, in equations (4)
and (5), in the spatial nuisance autoregressive model, the spatial autocorrelation is
expressed in the error term. However, for the testing samples, the error terms are
unobservable during the prediction, hence the spatial influence incorporated in l is
not able to participate in the prediction (Bivand, 2005). For the GWR model, accord-
ing to Fotheringham et al (2002), it is possible to use the modeling samples to obtain
spatially varying coefficients on the testing samples' locations. However, quite unfor-
tunately, the codes we are using written in R (Bivand and Yu, 2005) have not
implemented such functionality. Neither is the function available in the latest GWR
3.0 software package (Fotheringham et al, 2002). The current scenario only allows us
to take an intermediate coefficient surface interpolation before the actual prediction
can take place. In the current study two interpolations were carried out using the
ArcGIS spatial analyst extension, namely, the inversed distance weighting (IDW)
and ordinary Kriging interpolation. After the coefficient surfaces were created, the
corresponding coefficients were projected back to the testing samples for prediction.

Two particular statistics are employed in this study when assessing the prediction
accuracy. They are the root mean squared error (RMSE) and the relative error (RE).
The RMSE takes the form:

XRMSE �
1

n

Xn
i� 1

� yi ÿ ŷi �2
" #1=2

, (9)

where n is the number of observations, yi is the dependent variable at observation i
and ŷi is the estimated/predicted value of yi at observation i. RMSE measures the
absolute prediction errors of the models. On the other hand, RE measures the relative
improvements of the model predictions over the global mean, and takes the form:

XRE �

Xn
i� 1

jyi ÿ ŷi jXn
i� 1

jyi ÿ �yj
, (10)
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where all the labels are as defined above, with �y representing the global mean of the
dependent variable.

5 Findings and interpretation
The computations were carried out in R (http://www.r-project.org). The SPDEP (Bivand,
2005) and SPGWR (Bivand and Yu, 2005) packages were used for the spatial auto-
regressive and GWR models, respectively. For the spatial autoregressive models, we
found that, when using 2.5 km as the critical distance to construct the weight matrix,
the substantive and nuisance models gave the best results (the lowest AICs). Hence
only results from these two models are reported. For the GWR model, the optimal
AIC score was reached with its ninety-two nearest neighbors. In addition, the coeffi-
cient nonstationarity test (Leung et al, 2000a) indicates that all the coefficients of the
GWR model significantly vary over space (at more than a 99% confidence level).
During the interpolation we found that the simple IDW and ordinary Kriging methods
generate very similar results in terms of the accuracy assessment statistics (RMSE and
RE); hence only results from the IDW procedure are reported.

The model results, model performance statistics (AIC), and prediction accuracy
statistics (RMSE and RE) for both modeling and testing samples are reported in
table 3, table 4, and figure 2. The OLS and spatial autoregressive models results are
reported in table 3, and the GWR results are reported in figure 2. The GWR coeffi-
cient surfaces were created using the IDW interpolation method with 30m resolution.
In addition, only the areas that are pseudosignificant are mapped. The pseudosignifi-
cance is determined using the pseudo-t test of the GWR coefficients (pseudo-t tests
need to be used with caution, as the tests are not independent of one another). [The
tests here only give a general indication of the possible local misspecifications of our
model. See Fotheringham et al (2002) for detailed technique discussion.]

From figure 2 and tables 3 and 4, a few interesting observations emerge. First,
apparently, from table 3, both the OLS and the spatial autoregressive models indicate
that all the housing and neighborhood attributes are significantly related to housing
values in the City of Milwaukee. Moreover, the signs of the attributes agree with the
hypotheses. Quite intuitively, the model results suggest that more recently built, larger
houses, with relatively amenable neighborhood environmental conditions, having
fireplaces, air conditioners, and more bathrooms, tend to be more expensive. In
addition, the tests for r and l in table 3 indicate that there exists significant spatial
autocorrelation among housing values and the error terms. The salient difference
between the nonspatial OLS and the spatial autoregressive models lies in the magni-
tude of the coefficients. A quick examination of table 3 suggests that the nonspatial
OLS model tends to overestimate most of the coefficients (the only exception is in the
nuisance spatial autoregressive model, where the coefficient of floor size is under-
estimated by the OLS). We contend that such overestimation is likely a result of the
existence of spatial autocorrelation among neighboring housing values. In particular,
except for the floor size, which remains relatively stable in all three models, the OLS
model overestimates the coefficients of the other five house attributes, from 8.6% to
70% compared with the two spatial autoregressive models (table 3). Note that such
autocorrelation of neighboring housing values is a result of similar housing attributes
in the neighborhood. When the spatial information has been explicitly included in the
spatial autoregressive models, it appears that the entangled spatial dependence among
the housing attributes is separated. As such, the estimates for the spatial autoregressive
model tend to be lower than for the OLS model and might better represent the real
value in the existence of spatial autocorrelation.
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Table 3. Modeling results for the ordinary least squares (OLS) and spatial autoregressive models
(on modeling samples).

Estimate a Standard t=z value Pr(> jtj=jzj)
error

Ordinary least squares
(Intercept) 8.668 0.243 35.580 0.000
Floor size 0.565 0.036 15.792 0.000
House age ÿ0.279 0.0212 ÿ13.167 0.000
Fireplace 0.149 0.1186 8.029 0.000
Air conditioner 0.170 0.016 10.877 0.000
Number of bathrooms 0.158 0.032 4.894 0.000
Soil and impervious surface ÿ0.367 0.066 ÿ5.558 0.003

F6; 1814 � 234:1, p-value � 0:000
Log likelihood � ÿ478:937
Substantive spatial autoregressive model (weight matrix constructed on critical distance � 2:5 km)
(Intercept) ÿ3.051 0.138 ÿ22.13 0.000
Floor size 0.554 (98.1) 0.019 28.500 0.000
House age ÿ0.163 (58.4) 0.012 ÿ13.820 0.000
Fireplace 0.074 (49.7) 0.010 7.412 0.000
Air conditioner 0.069 (40.6) 0.008 8.230 0.000
Number of bathrooms 0.086 (54.4) 0.017 4.968 0.000
Soil and impervious surface ÿ0.110 (30.0) 0.035 ÿ3.101 0.002

r � 0:980, LR test value � 2216:10, p-value � 0:000
Log likelihood � 629:136

Nuisance spatial autoregressive model (weight matrix constructed on critical distance � 2:5 km)
(Intercept) 8.977 1.359 6.605 0.000
Floor size 0.630 (111.5) 0.019 32.584 0.000
House age ÿ0.255 (91.4) 0.014 ÿ17.706 0.000
Fireplace 0.067 (45.0) 0.010 6.991 0.000
Air conditioner 0.059 (34.7) 0.008 7.155 0.000
Number of bathrooms 0.100 (63.3) 0.016 6.062 0.000
Soil and impervious surface ÿ0.119 (32.4) 0.035 ÿ3.364 0.001

l � 0:997, LR test value � 2395, p-value � 0:000
Log likelihood � 718:579

aNumbers in parentheses are the percentages of the corresponding autoregressive model estimated
coefficients when compared with those of the OLS.

Table 4. Modeling assessments for the three types of models; OLSöordinary least squares;
SA(lag)ölag, or substantive, spatial autoregressive model; SA(err)öerror, or nuisance, spatial
autoregressive model; GWRögeographically weighted regression.

OLS SA(lag) SA(err) GWR

Adjusted R 2 0.435 ± ± 0.923

Modeling samples
AIC 973.87 ÿ1240.30 ÿ1419.20 ÿ1869.31
RMSE 0.00738 0.00397 0.00377 0.00272
RE 0.774 0.383 0.358 0.250

Testing samples
RMSE 0.00734 0.00403 0.0233 0.00332
RE 0.766 0.375 2.932 0.296
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Second, from the AIC statistics in table 4, it is apparent that all the spatial models
(autoregressive and GWR) fit the data much better than the nonspatial OLS model.
Among the three spatial models, it seems that the GWR model fits the data the best,
whilst the nuisance model performs slightly better than the substantive model. In
addition, the adjusted R 2 of the OLS model is 0.435, indicating that only about

High: 1.88

Low: 0.19

High: 0.35

Low: ÿ2:21

High: 0.51

Low: ÿ0:06

High: 0.83

Low: ÿ0:20

High: 0.44

Low: ÿ0:65

High: 1.39

Low: ÿ1:66

0 5 10 20

km

(a) (b)

(c) (d)

(e) (f)

Figure 2. Surface of geographically weighted regression coefficients, only pseudosignificant areas
are shown. Surfaces for (a) floor size; (b) house age; (c) fire place; (d) air conditioner; (e) number
of bathrooms; (f ) soil and impervious surface.
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43.5% of the variation of housing values in the modeling samples is explained. This is
to be expected, since some housing attributes are not included in our model, such as
lot area, garage, number of rooms, and the like, due to the consideration of variable
vector orthogonality. In addition, as is apparent in our model specification, we did not
include any specific neighborhood characteristics, such as racial composition, median
income and so forth. This implies that the model is potentially misspecified. However,
these neighborhood characteristics are indeed related with locations, which can be
explicitly incorporated into the modeling structure in our GWR models. Such mis-
specification can be partially corrected. The adjusted R 2 of the GWR model, which is
about 92.3%, supports this argument.

Third, the GWR coefficient surfaces (figure 2) clearly support our postulation that
the influence of housing attributes on housing values is not spatially invariant. This
finding is also consistent with Can's (1990; 1992) argument. However, advancing Can's
work, the GWR pseudosignificant tests on local coefficients reveal more interesting
findings. As in figure 2, it is apparent that not all the housing attributes are signifi-
cantly related to housing values everywhere, as suggested by the OLS or spatial
autoregressive models. In fact, except for floor size and house age, the other four
structural and neighborhood attributes are only significant in specific areas. In partic-
ular, having fireplaces is significant for housing values only in the central parts of the
city [figure 2(c)]; air conditioners are the significant determinant for housing values
only in the central and north parts of the city [figure 2(d)]; the number of bathrooms
influences housing values only in the central west part, and quite anti-intuitivelyöthis
variable has a potentially negative influence on housing values on the west side of the
Milwaukee River in the central part of the city [figure 2(e)]; and the remote sensing
extracted neighborhood information matters mostly in the north suburban areas and
in the central part of the city [figure 2(f )]. Moreover, from the range of the coefficient
values, except for the floor size, we observe that the coefficients of all attributes have
both negative and positive values. This indicates that the real situation in the urban
housing market might be much more complicated than a global statement that
hypothesizes house attributes to be related to housing values in a unidirectional
fashion, though some of the anti-intuitive coefficient values are not necessarily
pseudosignificant (figure 2).

Fourth, in terms of prediction accuracy, the RMSE and RE statistics indicate that,
for the modeling samples, GWR performs the best, with the two spatial autoregressive
models closely following behind. Compared with the OLS model, the spatial models
improve the prediction accuracy by more than 50%. This result reinforces the argu-
ment that many of the unobservable or unincluded housing value/price determinants
are strongly related to location. Hence, although the spatial models do not explicitly
include more determinants other than the location information, these determinants are
implicitly built into the spatial models. GWR, with its recognition of spatial hetero-
geneity as a natural process underlying the urban housing market, stands out to be the
best predictive model for the modeling samples.

The testing samples show that the GWR model still stands out as the model which
performed the best, although its predictive accuracy drops faster than that of the
substantive spatial autoregressive model. For the testing samples the GWR model
now only improvesöin comparison with the OLS modelöby 54.8% and 61.4%,
according to RMSE and RE, respectively (in the modeling samples, the GWR model
improves by 63.2% and 67.7% in terms of RMSE and RE, respectively, relative to the
OLS model). The substantive spatial autoregressive is the model which performed
the second best. It now improvesöin comparison with the OLS modelöby 45.0%
and 51.0% by the standards of RMSE and RE, respectively (in the modeling samples,
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its improvement in terms of RMSE and RE is 46.2% and 50.5%, respectively). This
result suggests a very interesting fact regarding the data and the methodology. The
substantive autoregressive model, although it takes into account the neighborhood
interinfluential effects into the model construction, is essentially a global model that
assumes a stationary process in the urban housing market. The estimates for the
coefficients of the exogenous housing value determinants, as well as the spatial auto-
regressive term (the spatial lag), are assumed to be stationary across space. Under such
an assumption, replacement of the testing dataset in the estimated model would be
legitimate and straightforward; hence, the change from the modeling samples to the
testing samples results in relatively small changes in prediction accuracy. However, for
the GWR model, we already mentioned that a further surface interpolation had to be
carried out before the prediction could take place. This is because the GWR's estimates
for the coefficients are location specific. Theoretically, it is possible to obtain coeffi-
cients at locations different from the observations (Fotheringham et al, 2002). Owing
to availability of software functionality, our current study has to take an interpolation to
serve as the medium. Although various interpolation methods are applied for better
performance, they inevitably bring further unobservable errors into the prediction
process. This result also suggests that, in our current scenario, although the GWR
recognition of spatial heterogeneity is close to reality, the mechanism (the spatial kernel
function) it uses to represent the heterogeneity is tuned towards the dataset that
establishes the model. When a different dataset is applied, using the mechanism, the
local subtlety of spatial heterogeneity in the new dataset amounts to large errors.

In addition, from table 4, it is starkly evident that the nuisance spatial model
provides the worst prediction when the testing samples are applied. The RMSE and
RE statistics are more than three times those of the OLS model. This is unavoidable
since, when the testing samples are applied to the nuisance spatial autoregressive
model, the error term of the testing samples is simply unobservable (Bivand, 2005).
As the nuisance model assumes that spatial autocorrelation occurs in the error term,
in the application of the testing samples, the spatial effects are practically excluded
from the prediction process. Hence we observe the worst prediction.

6 Conclusions
The hedonic model is a powerful tool for understanding housing-market dynamics. The
geographic attributes of houses differentiate them from other commodities in typical
markets. The existence of spatial autocorrelation among housing values, due to their
geographic proximity, violates the independence assumption of the standard ordinary
least squares modeling technique. Establishing a model that describes the market
equilibrium of this commodity requires us to incorporate the inherent spatial informa-
tion. Fueled by the power of rapid development of GIS and spatial analysis techniques,
recent studies have advanced the traditional hedonic housing model by explicitly
including spatial information into model construction. Using the master property
dataset of the City of Milwaukee, this study examines two types of spatial modeling
schemes in housing hedonic studies in the grand framework of GIS and spatial
analysis. In particular, two alternatives of spatial autoregressive models and a geo-
graphically weighted regression model are established in order to investigate the effects
of spatial autocorrelation and heterogeneity on model performance and prediction
accuracy. In summary, three interesting findings are presented.

First, it is found that, when spatial information is ignored in establishing the
housing hedonic model, the model tends to overestimate the importance of structural
and neighborhood attributes on housing values. We argue that such overestimation
firstly points to the existence of spatial autocorrelation among the neighboring houses.
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When such spatial autocorrelation exists, the OLS's estimates of the coefficients might
actually take into account the spatial information that is entangled with the housing
attributes, hence exaggerating their importance. Moreover, such overestimation also
suggests that important locational attributes determining housing values might be missed.

Second, by using the GWR modeling scheme, we find that the relationships
between housing values and attributes are not invariant over space, which agrees
with Can's (1990; 1992) findings. This finding is also in accordance with the theoretical
argument that a stationary housing market is likely untenable. This suggests that urban
housing markets might consist of various local submarkets. More importantly, the
GWR further reveals that it is not necessary for all the housing attributes to be
significantly related to housing values everywhere in the study region. In addition,
according to the value ranges of the GWR model's coefficients, it is possible that the
same housing attribute can add to housing values in one region, but might negatively
impact housing values in a different area.

Third, in terms of predictive accuracy, in general the spatial models perform better
than the OLS model, except for the case when using the nuisance spatial autoregressive
model, which practically excludes spatial information in the prediction. However,
although the GWR model performs the best with the modeling samples, its prediction
accuracy drops relatively faster when the testing samples are fed in. Two factors might
contribute to such a drop in predicting accuracy of the GWR model in our current
scenario when we use an interpolation as the medium for prediction. On one hand,
when using the GWR model for prediction on testing samples, the interpolation
procedure inevitably introduces new errors, which the model itself cannot remove.
On the other hand, when calibrating the GWR model, although the mechanism (the
spatial kernel function) determining the spatial variation of the relationship is quite
flexible, it is tuned towards the best fit of the modeling samples. Different samples will
introduce different and unobservable varying mechanisms (spatial kernel functions),
which also bring new errors when the testing samples are used in prediction. One
possible improvement of the predicting performance of the GWR model might be to
calibrate the model using the modeling samples but at the locations of the testing
samples, hence avoiding the interpolation procedure. Another possible improvement
we can consider with an interpolation is to increase the size of the modeling samples,
which can potentially incorporate a more subtle spatial variation mechanism into the
model. However, since the computation cost increases fairly rapidly as the sample size
increases, we feel a future investigation might provide more detailed information,
which is beyond the scope of the current study.
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