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Preface

This pamphlet is for students who need enough probabil-
ity to get through an undergraduate course on such sub-
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jects as population genetics or ecology. It assumes that
readers are comfortable with algebra. There is a little cal-
culus too, but it does not appear until section 3.2, at the
very end.

Chapter 1. Probability

Probability theory is about things that cannot be predicted
with certainty. It contributes to science in two ways. First,
there is uncertainty in the phenomena we study. Even
when we know the genes of the parents, we cannot pre-
dict with certainty those of their offspring. Neither can
we predict with certainty the path of a molecule through
a gas, or how long anyone will live. All such phenomena
need theories with probabilistic components. Probabil-
ity also contributes to science in a second way. We often
study populations of things that are too large to examine
in their entirety. Instead we study incomplete samples,
which reflect only imperfectly the properties of the larger
whole. Thus, probability theory also underlies statistics,
the science of sampling.

There are two versions of probability theory. The first
studies statistical probability, the relative frequency with
which an event occurs in the long run. The second stud-
ies subjective (or Bayesian) probability, which measures
one’s degree of belief. Bayesian probability has recently
become important in statistics. The focus here is on sta-
tistical probability, which has long played a central role in
many disciplines.

This primer is short, but you should not expect to read it
quickly. Quantitative material takes time to digest. Read
it with pencil in hand and do the exercises as you go. But
do not spend too much time on any one exercise. If you
get stuck, consult the answers in the back. Read these
answers in any case, because they contain some of the
material I am trying to teach.

1.1. Probability

All of us have an intuitive understanding of statements
such as “the chances are three in five.” This is exactly
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Figure 1: Fraction of heads in 10,000 spins of a coin [2]

what is meant by the statement “the (statistical) proba-
bility is 3/5.” In a large number of repeated trials we
would expect the event in question to occur about 3/5
of the time. In other words, its relative frequency should
be about 3/5. The relative frequency of an event is sim-
ply the number of trials on which it occurs expressed as a
fraction of the total. It is a cumbersome term for a simple
idea, and people often shorten it to “frequency.” Unfortu-
nately, that word is also used for the raw count of events.
For example, if we spin a coin 100 times and observe 30
heads, then the relative frequency of heads is 0.3. This is
also referred to simply as the frequency of heads. In other
contexts, however, the “frequency of heads” might refer
to 30, the number of heads. You have to catch meaning
from context.

The larger the number of trials, the smaller will be the
difference between the relative frequency and the prob-
ability. My favorite illustration of this idea comes from
‘World War I1. Just before the war, the mathematician John
Kerrich [2] was visiting Denmark. Two days before his
scheduled departure, the German army overran Denmark,
and Kerrich was interned for the duration of the war. He
must have had a lot of spare time, for he undertook sev-
eral lengthy experiments on probability. In one of them,
he spun a coin 10,000 times and kept a record of the out-
comes.

The resulting data are shown in Figure 1. There, the
vertical axis shows the relative frequency of heads. Its
value bounced around at first but got closer and closer to
1/2 as the number of spins increased. When we say that
the probability of heads on a single spin is 1/2, this is
what we have in mind. There is nothing special about
the number 1/2. Had Kerrich’s coin been bent, it might
have tended to favor one side. Even so, in 10,000 tosses it
would have converged toward some particular value. This
value is called the probability of “heads.”

A coin that is equally likely to fall on either side is said
to be “fair,” but nothing guarantees that coins must be fair.
When we say that one is fair, we are stating a hypothesis,
not a fact. One can estimate a probability, as Kerrich did
by spinning his coin. But estimates always have error,
and the exact probability is never known. We often make
judgments about probabilities even without this sort of ev-
idence. I have never spun any of the coins in my pocket,
yet I am confident that all of them are very nearly fair.
Why? I’'m not sure. Perhaps because people have told me
so, and perhaps because coins are nearly (although not
quite) symmetrical. Neither of these prove that my coins
are exactly fair. When we assume that probabilities have
particular values, we are building a model. The fit of that
model to the real world is always a matter to be tested
against data.

If Kerrich were doing his experiment today, he might
have automated the process. Most computer languages
provide a way to generate “uniform random numbers,”
which we’ll discuss more fully on p. 12. The gist is
that these generators deliver numbers that are (in theory)
equally likely to fall anywhere in the interval from O to 1.
Hence, the value falls between 0 and 1/2 with probability
1/2. This makes it easy to simulate the spin of a fair coin.
Simply get one number from the random number gener-
ator. Interpret it as heads if less than 1/2 and as tails if
greater.

* EXERCISE 1-1 Describe a method for simulating the spin
of an unfair coin, for which heads has probability 0.3.

* EXERCISE 1-2 If you know how to write computer pro-
grams, write one that replicates Kerrich’s experiment.

1.2. An urn experiment

Texts on probability theory frequently discuss experi-
ments that involve drawing balls out of urns. During his
captivity, Kerrich did his own version of an urn experi-
ment. Instead of an urn, he used a box and four ping-pong
balls—two red and two green. The experiment consisted
of 5000 identical trials, each of which began with all four
balls in the box. Kerrich’s assistant then shook the box,
looked away, and drew out first one ball and then (without
replacing the first) another. They wrote down the colors of
the two balls. On each trial, there were four possible out-
comes. Kerrich counted the trials in which each occurred,
with results as shown in Table 1.

1.3. A model

There is a clear pattern in these data: the second ball was
usually red if the first was green and usually green if the



Table 1: The results of 5000 repetitions of Kerrich’s [2]
urn experiment

First Second ball

ball Red Green sum
Red 756 1689 2445
Green 1688 867 2555
sum 2444 2556 5000

first was red. What features of the experiment might ac-
count for this pattern?

To answer such a question, we need to build a model.
This involves making assumptions that seem plausible and
then using these to calculate the probabilities of the vari-
ous events in the data. Finally, we compare the predicted
values to those in the data.

I built my own model using the tree diagram in Fig. 2.
Each trial begins at the root and progresses through the
tree to one of the tips. For example, if two red balls are
drawn, we take the upper path at each node. There are
labels at the tips of the branches, which correspond to
events: RR for red-red, RG for red—green, and so forth.

The numbers in the figure are all probabilities. To ex-
plain them, I begin at the root of the tree, which corre-
sponds to the beginning of a trial. At that point, the box
contains two red balls and two green ones. If each ball
is equally likely to be chosen, then the first ball is equally
likely to be red or green. Thus, the two paths from the root
each have probability 1/2. So far, the model is consistent
with the data, since the first ball was red on 2445/5000—
very nearly 1/2—of the trials.

Suppose now that the first ball was red and you are
about to draw a second ball. Three balls are left: two
green and one red. If these are still equally likely to be

First Second
ball ball Event Prob
1/3 red RR 1/6
red
1/2 2/3 green RG  1/3
1/2 2/3 red GR 1/3
green
1/3 green GG 1/6

Figure 2: Tree showing the calculation of probabilities in
urn model.

Table 2: Theoretical probabilities and observed relative
frequencies of events in Kerrich’s urn experiment.

Rel.

Event Prob. freq.
RR 0.167 0.151
RG  0.333 0.338
GR 0333 0.338
GG 0.167 0.173

chosen, then the probability of drawing a second red ball
is 1/3 and that of drawing a green ball is 2/3. If the first
ball was green then the same argument applies, except that
now the red ball has probability 2/3 and the green ball
1/3. This accounts for the probabilities of the remaining
branches.

We can now use the tree to calculate the probabilities
of the events (RR, RG, GR, and GG) associated with the
branch tips. The trick is to start at the root and trace a path
through the tree, multiplying together the probabilities of
the branches in the path. Take for example event RR. Its
probability is 1/2 (the probability that the first ball is red)
times 1/3 (probability that the second is red given that
the first one was). The result, 1/6, is shown in the right
column of Fig. 2 along with the probabilities of the other
three events.

These probabilities also appear in Table 2, where they
are compared with the relative frequencies in Kerrich’s
data. I have re-expressed everything as a decimal frac-
tion. For example, the theoretical probability of RR
is 1/6 ~ 0.167 and its observed relative frequency is
756/5000 =~ 0.151. The relative frequencies do not quite
equal the probabilities, but the differences are small. A
careful statistical analysis would probably conclude that
this model is consistent with the data. (We can’t know
without doing such an analysis, and that is beyond my
scope here.)

1.4. Conditional and joint probability: the multiplica-
tion law

In the tree diagram, the probabilities involving the sec-
ond ball deserve comment. They are called conditional
probabilities because their values depend on (i.e. are con-
ditioned by) the color of the first ball. The conditional
probability of B given A is written Pr[B|A]. In multiply-
ing along paths within the tree, we were using something
called the law of multiplication of probabilities:

Pr[A & B] = Pr[A] Pr[B|A] (1)



We are interested in the probability of event “A & B.”
The relative frequency of this event is n(A & B)/N,
where n(A & B) is the number of trials on which this
event occurred and [V is the total number of trials. Multi-
ply by n(A)/n(A) = 1 (which changes nothing) to obtain

n(A& B)
N - N

n(4) n(A& B)
n(4)

As the number of trials grows large, relative frequencies
become closer and closer to the corresponding probabil-
ities. Thus, the left side approaches Pr[A & B, the
“joint probability” of “A & B.” Meanwhile, on the right
n(A)/N approaches Pr[A]. But what are we to make of
the remaining fraction, n(A & B)/n(A)? Itis the relative
frequency of B among trials in which A occurred. As N
grows large, this ratio converges to the conditional prob-
ability of B given A, or Pr(B|A). Thus, in the equation
above all three ratios converge to probabilities as N grows
large, and the equation itself converges to the multiplica-
tion law (Eqn. 1).

Box 1: Deriving the multiplication law

Here, “Pr[A & B]” is called the joint probability of
events A and B; it is the probability that A and B both
happened on the same trial. For example, suppose A is
the event that the first ball is red and B the event that
the second is green. Using the tree diagram, we cal-
culated Pr[A & B] by multiplying along the relevant
path. In terms of the multiplication law, Pr[A] = 1/2,
Pr[B|A] =2/3,and Pr[A & B] =1/2 x 2/3 =1/3.
The multiplication law is important because it explains
why we multiply along paths within the tree. To me, this
seems intuitive and obvious. But some things that are ob-
vious are also wrong, so Box 1 explains why it works.

1.5. The addition law

We turn now to events of form “A or B” (or both). The
probabilities of such events are especially easy when the
two events are mutually exclusive, i.e. when they could
not have happened on a single trial. Take for example the
event that the second ball is green. This happens in either
of two cases: RG and GG. The probability of this event
is the probability of “RG or GG,” which (according to
the tree diagram) equals 1/3 + 1/6 = 1/2. To get this
answer, we simply summed the probabilities of RG and
GG.

*EXERCISE 1-3 In Kerrich’s urn data, show that the rel-
ative frequency of “RG or GG” equals the sum of the

frequencies of RG and GG.

The calculation is a little harder when the two events are
not mutually exclusive. To see why, consider the event
that either the first ball is red or the second is green (or
both). This is also of form “A or B,” but if we try
summing Pr[Ist ball red] and Pr[2nd ball green] we get
1/2 +1/2 = 1. This can’t be right.

*EXERCISE 1-4 In Kerrich’s urn data, calculate the rela-
tive frequencies of events A, B, and “A or B.” Show that
the sum of the first two does not equal the third.

To see what went wrong, let us look under the hood.
The first ball is red in either of two cases: RR and RG.
Similarly, the second is green in cases RG and GG. Thus,
our incorrect calculation can be expanded as:

Pr[A4] Pr[B]

Pr[RR] + Pr[RG] + Pr[RG] + Pr[GG]

We have (incorrectly) summed Pr[RG] twice. To fix this,
we must subtract Pr[RG]. This illustrates the law of ad-
dition of probabilities:

Pr[Aor B] =Pr[A] +Pr[B] - Pr[A & B] (2

When the two events are mutually exclusive (as in the pre-
ceding example), the probability of “A & B” is zero, and
there is no need to subtract it off.

* EXERCISE 1-5 Use the addition law to calculate the prob-
ability that the first ball is red or the second green.

1.6. Statistical independence

If one event does not influence another, this fact should be
reflected in their probabilities. Two events A and B are
said to be statistically independent if Pr[B|A] = Pr[B].

For an example in which this condition is not met, we
return to Kerrich’s urn experiment. The probabilities of
red and green in the second ball depend on the color of
the first ball. Thus, intuition suggests that the balls are not
independent.

* EXERCISE 1-6 Define A as the event that the first ball is
is red and B as the event that the second is green. Use the
tree diagram in Fig. 2 to calculate Pr[B] and Pr[B|A] and
thus to decide whether the balls in the model are statisti-
cally independent.

*EXERCISE 1-7 Use Kerrich’s data to estimate the same
probabilities.



White

Red 1 2 3 4 5 6 sum
1 547 587 500 462 621 690 3407
2 609 655 497 535 651 684 3631
3 514 540 468 438 587 629 3176
4 462 507 414 413 509 611 2916
5 551 562 499 506 658 672 3448
6 563 598 519 487 609 646 3422
sum: 3246 3449 2897 2841 3635 3932 20000

Table 3: The results of 20,000 throws with two dice (Wolf
1850, cited in [1])

Dice give us the other sort of example. In 1850, the
astronomer Rudolf Wolf described the results of 20,000
throws of two dice, one red and one white. The results are
shown in Table 3. We can use these data to ask whether
the two dice were independent. Consider the event “red 4”
of a 4 on the red die. The unconditional frequency of this
event was 2916,/20000 ~ 0.15. Conditional on a 5 on the
white die, the frequency of “red 4” was 509/3635 =~ 0.14.
These two numbers are nearly the same, as they ought to
be if the red and white dice are independent.

+EXERCISE 1-8 Use Wolf’s data to estimate (a) the un-
conditional probability of “red 2,” and (b) the conditional
probability of “red 2” given “white 4.” Use the results to
comment on whether Wolf’s dice were statistically inde-
pendent.

If these dice were fair, each of the row and column sums
in Table 3 should be close to 20000/6, or 3333. Instead,
both dice show an excess of 2s and 5s and a deficit of 3s
and 4s. In addition, the white die shows an excess of 6s.
Michael Bulmer [1] discusses several plausible causes:
the dice may not be cubes, their corners may be rounded
unevenly, or the process of cutting pips (dots) into their
faces may have altered their centers of gravity. Whatever
the explanation, these data show that the model of a “fair
die” is only an approximation.

* EXERCISE 1-9 Suppose that Kerrich had placed the first
ball back into the box and then shaken it again before
drawing the second. Draw a decision tree to represent
this experiment and use it to calculate the probabilities of
RR, RG, GR, and GG. Use the tree to show that the
two balls are independent. (By the way, this new version
of the experiment involves what is called sampling with
replacement.)

999 - positive
healthy
99,900
98,901 negative
100,000
99 - positive
100 ]
sick
1 negative

Figure 3: Bayes’s rule example.

1.7. Bayes’s rule

Suppose your doctor orders a test to see whether you have
some hypothetical disease. Experiments have shown that
the test was positive in 99% of patients who have the dis-
ease. But it was also positive in 1% of patients who didn .
These, of course, are the wrong numbers. You want the
probability that you have the disease given that your test
was positive. To figure this out, you or your doctor will
need to use what is called Bayes’s rule.

It is easier to understand the principles involved if we
think in terms of counts rather than probabilities. Con-
sider the data in Fig. 3. This tells us that in 100,000 people
of your sex and age, 99,900 will be healthy and 100 will
be sick, with some hypothetical disease. We get positive
test results from nearly all (99/100, or 99%) of the sick
individuals, but also from a small fraction (999/99,900 or
1%) of the healthy ones. Of those who test positive, the

sick fraction is
99

99 + 999

Fewer than 1/10 of those who test positive are really sick!
Let us now rephrase this result in terms of probabilities.
According to the multiplication law (Eqn. 1)

~ 0.09

Pr[A&B] = Pr[B| Pr[A|B] = Pr[A] Pr[B|A]
Divide through by Pr[B] to get

Pr[A] Pr[B|A]

Pr[B] ®)

Pr[A|B] =
This is called Bayes’s Rule. In the context of our example,
B is the event that an individual got positive test, and A is
the event that the individual is really sick.

To illustrate Bayes’s Rule in action, let us revisit Fig. 3.
We use the figure to calculate relative frequencies and
then interpret these as probabilities. If A is the event that
you are sick and B the event that your test was positive,
then Pr[A] = 100/100,000 = 1/1000, Pr[B] = (999 +



99)/100,000 = 1098/100, 000, and Pr[B|A] = 99/100.
Eqn. 3 gives
1/1000 x 99/100
1098,/100, 000
99
= —— =~0.09
1098
This is the same answer we got above using counts.

Pr[A|B]

Chapter 2. Random Variables and
Expectations

It is time to introduce some vocabulary. For any exper-
iment, the set of possible outcomes is called the sam-
ple space. For example, there were four possible out-
comes (RR, RG, GR, and GG) in Kerrich’s urn exper-
iment. These constitute the sample space of that experi-
ment. There is nothing new here except the term itself.

We will also need the idea of a random variable. A vari-
able X is called a random variable if the values it takes are
numbers and it takes each value with a specified probabil-
ity. For example, we might define X as the result of one
roll of a die. The sample space of X is {1, 2, 3,4, 5, 6}. If
the die is fair, it takes each of these values with probability
1/6. Another random variable is Y = X2. The sample
space of Y is {1, 4, 9, 16, 25, 36} and again it takes each
value with probability 1/6. X and Y are distinct random
variables even though the underlying experiment—rolling
a die—is the same in both cases.

* EXERCISE 2-1 Consider the experiment of throwing two
dice, one red and one white. What is the sample space? If
the dice are fair, what are the associated probabilities? Do
not enumerate the entire sample space; just describe it.

* EXERCISE 2—-2 What is the sample space of X, the num-
ber of heads in two spins of a fair coin? (Hint: the events
HT and T H both yield the same number of heads.)

2.1. Averages and expectations

There are two ways to calculate an average, one using
relative frequencies and the other using the method you
learned in grade school. Take for example the following
toy data set: [0,0,0,1,1,2,2,2]. There are 8 numbers
here, and their sum is also 8, so their average is 1. Let us
now repeat this calculation using the relative frequencies
of these data, which are shown in Table 4.
In “sigma notation,” the average (or mean) is!

mean = Z T fy

T

“4)

'If you are unfamiliar with the “3” symbol, see appendix A.

Table 4: Frequency distribution of toy data. f; is the rela-
tive frequency of value 7.

Relative

Value frequency
0 fo=3/8

1 f1i=2/8

2 f2=3/8

where z is a sample value and f is the relative frequency
of that value. Using the relative frequencies from Table 4,
this gives (0 x 3/8) + (1 x 2/8) + (2 x 3/8) = 1, just as
we calculated using the grade-school method. If the data
set is large, relative frequencies often make the problem
easier.

* EXERCISE 2-3 Calculate the mean of the numbers 1, 1,
and 3 using both methods.

As the sample size grows large, the relative frequencies
in Eqn. 4 get closer and closer to the corresponding proba-
bilities. As this happens, the mean converges toward what
is called the expected value of the corresponding random
variable. The expected value of X is written “E[X]” and
is calculated just as you calculate a mean:

E[X] =) aPr[X = 1] (5)

Note the similarity between Eqns. 4 and 5. Relative
frequencies (f;) have been replaced by probabilities
(Pr[X = x]); the two formulas are otherwise the same.

Example If you spin a coin twice, the number X of
heads must equal either 0, 1, or 2. If the coin is fair, then
these events have probabilities 1/4, 1/2, and 1/4, respec-
tively. The expectation of X is

EX]=0x1/4)+(1x1/2)+(2x1/4)=1
* EXERCISE 2—4 What is the expected value of X 2?
* EXERCISE 2-5 What is the expected value of X + X?2?
Expected values have several properties that make them

easy to manipulate. If X and Y are random variables and
a is a constant, then

Ela] = a (6)
ElaX] = aE[X] 7
E[X +Y] E[X]+ E[Y] ®)



If X and Y are statistically independent, it is also true that

E[XY] = E[X]E[Y] ©)]
These are really properties of averages. They apply to
expectations because expectations are a kind of average.
Rather than proving them, I will illustrate them using av-
erages.

The average of a constant The average of 4, 4, and 4 is
4. This is why E[a] = a when « is a constant.

The average of aX Start with the numbers 1, 3, and
5. The sum of these numbers is 9, and their average is 3.
Now multiply each number by a constant a. The average
of the resulting numbers is

(a+3a+5a)/3=ax(1+3+5)/3=3a

which is a times the original average. This illustrates that
ElaX] = aE[X].

The average of X + Y Consider the following table

X Y X+Y
0 2 2
2 3 5
T T 14

sum 9 12 21
average 3 4 7

The average of X is 3 and that of Y is 4. The sum of these
is 7, which is also the average of X + Y. This illustrates
that E[X + Y] = E[X] + E[Y].

* EXERCISE 2—6 What is F[3]?
*EXERCISE 2-7 If E[X] = 5, then what is E[2X]?

*EXERCISE 2-8 If E[X] = 5 and E[Y] = 6, then what is
E[2X +3Y]?

*EXERCISE 2-9 What is F[aX + bY?], assuming that a
and b are constant and the values of E[X] and E[Y?] are
unknown?

* EXERCISE 2-10 Prove that E[(X + Y)?] = E[X?] +
2E[X|E[Y] + E[Y?] if X and Y are statistically in-
dependent. Hint: Begin by expanding (X + Y)? =
X? +2XY +Y?2 Then use Eqns. 8 and 9.

2.2. Variance

We are often interested in quantities that vary. There are
several ways to measure variation, of which the most im-
portant is the variance. We can measure variance either
in a data set or in a random variable. The procedures are
similar so let’s begin with data.

The variance is the average squared difference from the
mean. Take for example the numbers 10, 12, 10, and 8.
Their mean is 10, so their variance is V = ((10 — 10)% +
(12 — 10)2 + (10 — 10)% + (8 — 10)?) /4 = 2. There are
several ways to write the variance, including

Vo= N (2 - 2) (10)
= Y (@-1)°fs (11)
= > o fa- 1 (12)

Here, 7 is the average of the z; and N ~! means 1/N.

* EXERCISE 2-11 Verify that the formulas Eqn. 10-12 are
equivalent, using the numbers 10, 12, 10, and 8.

* EXERCISE 2-12 What are the mean and variance of the
numbers 3, 9, 15, and 8?

If X is arandom variable (rather than data), its variance
is

VIX] = B [(X - B[X])?] (13)

Note the similarity between this expression and Eqn. 11.
The variance can also be written in either of the following
ways:
VIX] = E[X?|-EX]?
= E[X(X - E[X])]

(14)
5)

* EXERCISE 2-13 Suppose that the random variable X
takes the values 0, 1, and 2 with probabilities 1/3, 1/2,
and 1/6. What are the mean and variance of X?

* EXERCISE 2-14 In a previous exercise, you verified that
Eqns. 11-12 were equivalent, using as data the numbers
8, 10, 10, and 12. This illustrates that Eqns. 13 and 14 are
equivalent, since they are the same formulas in a different
notation. Now use the same method and data to verify the
equivalence of Eqn. 15.

* EXERCISE 2-15 Prove that if a is a constant and X a
random variable, then V[aX] = a?V[X].
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2.3. Covariance

In addition to variation, we are often interested in the re-
lationship between variables. Fig. 4 illustrates this idea.
The scatterplot on the left illustrates a positive relation-
ship: one in which Y tends to increase when X increases.
On the right we see the opposite case: Y decreases as X
increases, so the relationship is negative. The two rela-
tionships differ not only in direction but also in strength.
The one on the right is the stronger of the two.

These two ideas—strength and direction of
relationships—come up all the time, and we need
ways to measure them. Several statistics have been
invented for this purpose, but most are based on the same
idea: if the relationship is positive, the X and Y will
often be on the same side of their respective means, so
(X — E[X])(Y — E[Y]) is positive for most (X,Y)
pairs. For a negative relationship, this product tends to be
negative. We can measure a relationship by

CIX.Y] = E[(X — EX)(Y —E[Y))]  (16)

which is called the covariance. 1t is positive for positive
relationships but negative for negative ones. It is far from
zero for strong relationships but near zero for weak ones.
Thus, it measures both the strength and direction of rela-
tionships.

The covariance, like the variance, can be written in sev-
eral different ways:

C[X,Y] = E[XY]- E[X]E[Y]
= EX(Y - E[Y])]

a7
(18)

In calculations, it is often most convenient to use (17).

To get familiar with covariances, consider the two ran-
dom variables in Table 5. The probabilities imply that we
should see lots of (X, Y") pairs like (0, 0) or (1, 1) but few
like (0, 1) or (1, 0). For the most part then, X and ¥ will
vary in the same direction, and their relationship should
be positive.

Table 5: A bivariate probability distribution

X Y Pxy (X-EX)Y-E[Y])
0 0 04 +0.25
0 1 0.1 -0.25
1 0 0.1 -0.25
1 1 04 +0.25

Here, Pxy is the probability of the pair (X,Y"), and
E[X] = E[Y] = 0.5.

The first step is to calculate F[X] and E[Y]. 1 leave
the details to you, but you should find that both equal 0.5.
Next, calculate (X — 0.5)(Y — 0.5) for each (X, Y") pair.
These values appear in the right column of the table. Fi-
nally, we take the expectation by multiplying column 3 by
column 4 and summing the results. (If this seems myste-
rious, consult Eqn. 5.) Here is the calculation in detail:

> Ppy(z —0.5)(y — 0.5)

z,y

— (0.4 x0.25) — (0.1 x 0.25)
— (0.1 % 0.25) + (0.4 x 0.25)
= 0.15

CIX,Y]

The covariance is positive, just as expected.

* EXERCISE 2-16 In Table 5, suppose that the Pxy values
were 0.3, 0.2, 0.2, and 0.3. First use your intuition to
figure out what this would do to the relationship between
X and Y. Is it still positive? Does it become stronger or
weaker? Then calculate C[X, Y] to check your intuition.

* EXERCISE 2-17 Construct a bivariate probability distri-
bution in which the relationship between X and Y is neg-
ative, and use it to calculate C[X, Y.

* EXERCISE 2-18 So far we have been dealing with the
covariance between random variables. To deal with data,
we need formulas analogous to Eqns, 10-12. Write these
formulas down and use them to estimate the covariance
of X and Y in the following collection of (X,Y") values:
(0,0), (0,0), (1,0), (0,1), (1,1), (1,1).

You may have been wondering what the magnitude of
the covariance really means. If the covariance is 0.25, is
the relationship a strong one or a weak one? It is impossi-
ble to say. The problem is that the magnitude of C'[X, Y]
depends not only on the strength of the relationship but
also on the units of measurement. For example, the value
of C[X, Y] would change if we decided to measure X and
Y in millimeters rather than centimeters. To avoid such



effects, data analysts often normalize their covariances to
obtain what is called a correlation coefficient. This topic
is not covered here.

Chapter 3. Probability distributions

By now you are familiar with distributions of relative fre-
quencies, and you know that as N grows large, relative
frequencies converge to probabilities. It is thus easy to
see that a frequency distribution will converge to a dis-
tribution of probabilities. Section 1.3 above described a
model of Kerrich’s urn experiment, which led to the prob-
abilities in the right column of Fig. 2. These constitute a
probability distribution.

In that case, it was easy to list the events in the sample
space and their probabilities. This is the simplest and most
obvious way to describe a probability distribution. There
is also another approach, which involves thinking of prob-
ability distributions as functions. A function, you may re-
member, is a translation rule. The function f(z) = z?
for example would translate 2 into 4, or 3 into 9. Sim-
ilarly, the probability distribution from the urn model in
Fig. 2 translates the event RR into the probability 1/4,
and RG into 1/2. Tt is thus a function too. Every proba-
bility distribution is a function that translates events into
probabilities.

* EXERCISE 3-1 What is the probability distribution of the
number X of heads in two spins of a fair coin? (You wrote
down the sample space in a previous exercise.)

In the case of random variables, we are translating
numbers into numbers, and the function can often be ex-
pressed in mathematical form. This chapter will cover
several probability functions that are widely used in sci-
ence. These fall into two categories: discrete and contin-
uous. The random variables that we have discussed thus
far are discrete, but it will be easier to define continuous
ones first.

A continuous random variable is one whose sample
space is a continuum, such as space or time. The re-
markable thing about a continuum is that between any two
points there is an infinity of other points. In biology, con-
tinuous random variables are used to model such things
as lifespan and body size. Section 3.2 will describe the
methods to describe them.

If a sample space is not continuous, it is discrete. This
does not make it finite. For example, there is an infinity of
integers, but they are not continuous. There is no integer,
for example, between 2 and 3. Discrete random variables
are used to describe things that you can count: the number
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Figure 5: Binomial distribution functions.

of heads in IV spins of a coin, and so forth. The methods
used to describe these random variables are described be-
low in section 3.1.

3.1. Discrete random variables

For discrete random variables, the probability distribution
function, P,, gives the probability associated with each
point x in the sample space. In genetics and many other
parts of biology, the discrete distributions used most often
are the binomial and the Poisson.

3.1.1. The binomial distribution

Kerrich’s coin experiment is a good example of a binomial
experiment. There are /N independent trials (in Kerrich’s
case, N = 10,000), and in each trial we observe some
event with probability p. (In Kerrich’s case, the event was
“heads” and p was apparently close to 1/2.) The number
x of events is a binomial random variable. Its distribution
function is

N
P, = <x>p$<1 —p)N* (19)

Here, (1;[ ) is pronounced “/N choose z” and represents the
number of ways of obtaining = heads and [NV — z tails. For
example, there are are two ways (HT" and T'H) of obtain-
ing one head in two spins, so @) = 2. The expression
p*(1 — p)V =% is the probability of obtaining any given
sequence of x heads and NV — «x tails. The binomial distri-
bution is illustrated in Fig. 5 for N = 20 and two values
of p. The mean and variance of the binomial distribution
are F[X] = Npand V[X] = Np(1 — p).

The form of the binomial distribution function is not
hard to understand. To see why, consider the probability



of the following outcome:

N tosses

x tosses N — x tosses

—f— ——
HH ..H TT..T

Here, the coin has been tossed N times, producing heads
on the first = tosses and tails on the remaining N — z.
Since each heads is an event of probability p and each
tails is an event of probability 1 — p, the probability of the
outcome observed on this sequence of tosses is p*(1 —
p)N =%, But this is not the only outcome that would yield
x heads in N tosses. No matter what order the heads and
tails appear in, if there are x heads in IV tosses we have
observed an event of probability p®(1 — p)NV ==, If we
don’t know the order in which the heads and tails appear,
we have to sum across all the ways in which x heads and
N — z tails can be re-ordered. This sum accounts for the
term (%) in equation 19.

Example Population geneticists use the binomial distri-
bution to model the random component of evolutionary
change—genetic drift. Suppose that in the parental gen-
eration there are N diploid individuals. At each diploid
locus, the population contains 2N genes, of which a frac-
tion p are copies of allele A; and 1 — p are copies of As.
The model assumes that each of the 2V genes in the off-
spring generation is (in effect) drawn at random with re-
placement from an urn with 2/Np copies of allele A; and
2N (1 — p) copies of As. The number of copies of A;
among the offspring is binomial with mean 2N p and vari-
ance 2Np(1 — p).

* EXERCISE 3-2 Suppose that a population contains 1000
diploid individuals and that the relative frequency of A; is
1/1000. If this population produces 1000 offspring, what
is the probability (under the binomial model) that allele
A; will not be represented among the offspring?

3.1.2. The Bernoulli distribution

The binomial distribution has an important special case:
that in which we observe just one trial. For example, sup-
pose we toss a coin a single time, and let x = 1 if the
result is “heads” or O if the result is “tails.” The distribu-
tion function has just two values:

r={

This is just a special case of Eqn. 19.

ifz=1
ifx=0

b
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Figure 6: Frequency of deaths caused by mule kicks in the
Prussian army. Bullets () show data, and bars show the
Poisson distribution function.

* EXERCISE 3-3 Prove Eqn. 20 by substituting N = 1 into
Eqn. 19.

It is also easy to derive the mean and variance of the
Bernoulli distribution, simply by setting N = 1 in the
corresponding formulas for the Binomial: E[X] = p, and
VI[X] =p(1-p).

* EXERCISE 3—4 Consider the experiment of tossing a fair
coin a single time, and recording X = 1 if the result is
“heads,” or X = 0 if “tails.” What are the mean and
variance of this random variable?

* EXERCISE 3-5 Consider the experiment of drawing a
copy of a single gene at random from some population,
and scoring X = 1 if the result is allele A;, or X = 0
otherwise. If allele A; has frequency p, then what are the
mean and variance of random variable X ?

3.1.3. The Poisson distribution

This distribution comes up a lot when we are interested
in counts. How many prey items will a forager encounter
during one hour? How many gamma rays will strike the
tube of a Geiger counter in one minute? How many rain
drops will strike your roof during one second, in the mid-
dle of a storm? How many mutations occurred along
the lineage that connects you to your mother’s mother’s
mother’s mother’s. . . mother, who lived 10,000 years ago?
In each case, if the events in question are independent and
occur at a constant rate, then the random variable is Pois-
son.

At the end of the 19th century, Ladislaus von
Bortkiewicz fit the Poisson to some peculiar data involv-
ing deaths in the Prussian Army. In those days, the army’s
supply train involved wagons pulled by mules. Mules
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Figure 7: Poisson distribution functions.

have tempers and are seldom eager to pull wagons. Ev-
ery now and then, a soldier was killed by the kick of a
mule. Military records list the number of soldiers killed
this way in each year within each army corps. These data,
as tabulated by von Bortkiewicz, are shown as bullets (e)
in Fig. 6. The histogram shows the corresponding Poisson
distribution function.

The distribution has one parameter, the mean (). The
probability that z events occur is

A=A

z!

P, (21)
Here, e ~ 2.718 is the base of natural logarithms; ! is
pronounced “x factorial” and represents the number of
ways of rearranging z items. (See appendix B for de-
tails.) The variance of the Poisson is the same as the mean:
EX]=V[X]=A\

The shape of the Poisson varies in response to the pa-
rameter A\, as shown in Fig. 7. When X is small (as
shown in the left-hand graph), the distribution function
is asymmetric, with a high left shoulder. When A\ is large
(as shown in the right-hand graph), the function becomes
symmetrical. For large A, the Poisson is very nearly iden-
tical to the normal distribution (discussed below).

Because P, depends in such a simple fashion on the
mean, )\, the Poisson is among the easiest distributions to
fit to data. For example, in von Bortkiewicz’s data there
are on average 0.61 mule-kick deaths per corps per year.
To fit these data to the Poisson, we simply set A = 0.61.
That is all there is to it. With A\ known we can calculate
numerical probabilities. For example, the probability of a
single death is P, = Ae™* = 0.331. In other words, we
expect a death in any given corp 1 year in 3. There were
200 corps-years in von Bortkiewicz’s data, so the number
of these with a single mule-kick death should have been
0.331 x 200 = 66.2. There were 65 in the real data.
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* EXERCISE 3-6 Use the same procedure to calculate the
expected number of corps-years with 2 mule-kick deaths.
Compare this expected value to the real value, 22.

Example Consider the lineage that connects me to an
ancestor who lived ¢ generations ago. The expected num-
ber of mutations along that lineage is A = ut, where u
is the mutation rate. The probability that = mutations oc-
curred is given by the Poisson distribution function. If
w = 1073 and t = 2000 generations, then A = 2. The
probability that 1 mutation occurred is Ae ™ = 0.271.

* EXERCISE 3-7 What is the probability that no mutation
occurred?

* EXERCISE 3-8 What is the probability that at least one
mutation occurred?

3.2. Continuous random variables

Board games often come with a device for generating ran-
dom numbers. One type consists of a flat piece of card-
board to which a needle is attached. You spin the nee-
dle, and it ends up pointing in a random direction. In the
real world, these devices probably have irregularities that
make the needle more likely to land in some positions than
others. But let’s ignore that. In our hypothetical world, the
needle is equally likely to point in any direction. What is
the probability that it stops exactly 87.729543328 degrees
clockwise of where it started?

This is a trick question. The problem is that there
is a continuum of possible outcomes, all equally proba-
ble. The probability of any particular outcome, such as
87.729543328, is zero. Why? With an infinity of equally
probable outcomes, the probability of each must be some-
thing like 1/00.

It makes more sense to talk about the probability that
the random variable will lie within some range of values.
Let us define a function f(z) such that?

/ab f(z)dx

is the probability that the random variable lies between a
and b. Here, f(x) is called the probability density function
(pdf). Loosely speaking, f(x)dx is the probability that
the random variable lies within the small range from x to
x + dx.

In biology, the most widely used continuous distribu-
tions are the uniform, the exponential, and the normal.

2The symbol “ f ” is from calculus, which you will need from here
on.
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Figure 8: Uniform density function

3.2.1. The uniform distribution

A uniform distribution (which we encountered above on
p. 2) is equally likely to take any value between two
constants ¢ and b but never takes values outside this
range. Thus, its density function is very simple: f(z) =
1/(b — a), as shown in Fig. 8. The mean and variance are
E[X] = (a+b)/2and V[X] = (b — a)?/12. An impor-
tant special case is the standard uniform distribution, for
whicha =0,b=1, and f(z) = 1.

* EXERCISE 3-9 Make a graph of the standard uniform dis-
tribution function, and shade the area that corresponds to
the range from 0.2 to 0.3. What is the area of this shaded
region? What is the probability that a standard uniform
r.v. will lie between these values?

* EXERCISE 3-10 Solve the same problem using calculus.

3.2.2. The exponential distribution

We are often interested in the waiting time until some
event. If these events happen at a constant rate (or hazard)
h, then the waiting time has an exponential distribution.
The density function is

f(x) = he " (22)

for values of = between 0 and co. As shown in Fig. 9, the
density is greatest at x = 0 and declines smoothly with
increasing z. The rate of decline increases with h. The
mean of the exponential is F[X] = 1/h and its variance is
V[x] = 1/h2. For this distribution, the standard deviation
(the square root of the variance) is equal to the mean.

* EXERCISE 3-11 What is the probability that X < 1?

* EXERCISE 3-12 In Europe, the crude death rate (includ-
ing individuals of all ages) is close to 0.01 deaths per indi-
vidual per year. If this rate were constant throughout life,
what would be the average lifespan?
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Figure 9: Exponential density functions with h = 1 (solid
line) and h = 2 (dashed).

Figure 10: Normal density functions with y = 0, 0 =1
(solid line) and p = 1, o = 1/2 (dashed).

* EXERCISE 3-13 The mutation rate in autosomal DNA is
roughly 10~ per nucleotide site per year. If we follow
a single copy of a single nucleotide forward across the
generations, how long must we wait on average until it
mutates? What is the variance of this number?

3.2.3. The normal distribution

The density function of the normal distribution is the

familiar bell-shaped curve, two examples of which are

shown in Fig. 10. The normal distribution has two pa-

rameters, the mean . and the variance o2. As Fig. 10 il-

lustrates, 1 controls the location of the center (peak) of the

distribution and o controls its width. The density function
1

o)

202

The normal distribution is widely used in statistics.
There are several reasons, but chief among them is this:
any variable that is the sum of many other random vari-
ables tends to look normal. The larger the number of vari-
ables, the more normal their sum will look. We have al-
ready passed over two special cases of this. A binomial
r.v. is a sum of NN smaller r.v.s, one for each toss of the
coin. If you look closely at the binomial distributions in

f(x)

(23)



Fig. 5, you will see that they closely resemble the normal.
The Poisson is also approximately normal if A is large, as
you can see from panel b of Fig. 7. To understand why,
recall that the Poisson describes the number of events that
occur in a fixed interval of time. But we can think of this
as the sum of the numbers of events that occur in a series
of sub-intervals. Thus, the Poisson is also a sum.

In addition to these technical concerns, there is a very
practical reason for wide interest in the normal distribu-
tion: many of the variables studied in biology, agriculture,
and medicine seem to be approximately normal. Why
should the same pattern appear so often and in so many
different contexts? The answer to this question is very
likely the same business about sums that we discussed
just above. Many of the variables we study are affected
by a multitude of causes. Many genetic loci, for exam-
ple, contribute to variation in human stature. To the extent
that these loci act additively, stature is a sum. Stature, of
course, is affected by environmental causes as well as ge-
netic ones. To the extent that these environmental factors
act additively, they contribute to the sum. In this sense,
many of the variables we study are sums of a sort, and it
makes sense that their distributions should look normal.

Appendix A. Sums and sigma notation

You learned in grade school to calculate sums such as 10+
12+ 10 4 8 = 40. To generalize this calculation, suppose
we have 4 arbitrary numbers, x1, z2, 3, and x4. Their
sum is

r1+ o+ T3+ X4

This sum can also be written using “sigma notation” as

4
D i
i=1

The “¥” symbol is a Greek sigma and indicates summa-
tion. The subscript “¢ = 1” indicates that the sum begins
with 1, and the superscript “4” indicates that the sum
ends with 4.

More generally, if the number of numbers is an un-
known value, IV, then their sum is

N

dowi=aitasttay
i=1

Sometimes sums are written without limits, as in

E ZT;.
i
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This means the sum over all terms, however many there
may be. When sums are written within the text of a para-
graph, the limits look like subscripts and superscripts, as

in Zfil Z;.

Appendix B. Factorials and binomial
coefficients

The factorial of x is written z! and equals
l=z-(z-1)-(z-1)---1

It is pronounced “z factorial.” For example, 3! = 3-2-1 =
6. As a special case, 0! is defined to equal 1. Factorials
arise in problems that involve rearrangements of the items
in a list. For example, the letters “ABC” can be arranged
in six different orders: (1) ABC, (2) ACB, (3) BAC,
(4) BCA, (5) CAB, and (6) CBA. These rearrangements
are called permutations. More generally, suppose we have
a string of z letters. How many permutations does it have?
There are x ways to choose the first letter. Having chosen
the first, there are then z — 1 ways to choose the second,
x — 2 ways to choose the third, and so on. There is only
one way to choose the last, for by then all the other letters
have been chosen. Thus, the number of permutations of x
items is xz!.

A binomial coefficient is written (
“N choose x.” It equals

(%)

and can be interpreted as the number of ways of choos-
ing x items out of a list of V. For example, consider the
number of pairs of letters in the string ABC. According to
the formula, there should be (3) = 3!/(2!- 1I) = 3 pairs.
We get the same answer by listing the pairs: AB, AC, and
BC.

N

~) and pronounced

N
x

N!
/(N — z)!

Appendix C. Answers to Exercises

* EXERCISE 1-1 There are many correct answers. Here are
two: (1) Interpret numbers as heads if less than 0.3 but as
tails if greater. (2) Interpret numbers as heads if between
0.2 and 0.5 but as tails otherwise.

* EXERCISE 1-2

# Python program that simulates 10000
# spins of a fair coin

from random import random



for i in xrange (10000) :
u random ()
if u < 0.5:
print ’heads’
else:
print ’"tails’

* EXERCISE 1-3 The relative frequency of “RG or GG”
is 2556,/5000, that of RG is 1689/5000, and that of GG
is 867/5000. The sum of the last two is 1689/5000 +
867/5000 = 2556/5000.

* EXERCISE 1-4 The relative frequency of the event (A)
that the first ball is red equals 2445/5000; that of the
event (B) that the second is green equals 2556,/5000;
that of event “A or B” is (756 + 1689 + 867)/5000 =
3312/5000. The sum of the first two relative frequencies
is 2445/5000+2556/5000 = 5001/5000, which is much
larger than the relative frequency of “A or B.”

*EXERCISE 1-5 The first ball is red with probability
Pr[A] = 1/2, and the second is green with probability
Pr[B] = 1/2. The probability that both events happened
is Pr[A & B] 1/3. All this is from Fig. 2. Us-
ing these values, the addition law gives Pr[A or B] =
1/2+1/2—1/3=2/3.

*EXERCISE 1-6 As shown on p. 4, the tree diagram im-
plies that the unconditional probability of B is Pr[B)]
1/2. On the other hand, the conditional probability is
Pr[B|A] = 2/3. These probabilities are not equal, so
A and B are not independent.

* EXERCISE 1-7 According to Table 1, Pr[B] is estimated
by 2556/5000 =~ 0.51, and Pr[B|A] by 1689/2445 =~
0.69. The two numbers are only estimates, so we can-
not conclude that the probabilities differ merely because
the estimates do. However, the difference between these
estimates is large, and so is the sample. Even without a
careful statistical analysis, these results suggest that the
two balls were not statistically independent.

*EXERCISE 1-8 The relative frequency of “red 2 is
3631/20,000 ~ 0.18. This estimates the unconditional
probability of rolling “2” with the red. If we restrict at-
tention to those trials on which the white die rolled “4,”
the relative frequency of “red 2” is 535/2841 ~ 0.19.
This estimates the conditional probability of “red 2” given
“white 4.” The numbers are pretty nearly equal, as they
should be if the dice are statistically independent.

* EXERCISE 1-9 Under sampling with replacement, the de-
cision tree is as shown below.
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First Second
ball ball Event Prob
1/2 red RR 1/4
red <
1/2 1/2 green RG  1/4
1/2 1/2 red GR 1/4
green<
1/2 green GG 1/4

Using this decision tree, we can test for statistical inde-
pendence as follows: the second ball is green with uncon-
ditional probability Pr[RG or GG] = 1/2. If the first
ball is red, the second is green with conditional probabil-
ity 1/2. These numbers are the same, so the two balls are
statistically independent.

* EXERCISE 2—1 The sample space consists of all possible
(X,Y) pairs, where X is the number on the red die and
Y the number on the white. X and Y are both integers
between 1 and 6, so there are 36 possible outcomes. If the
dice are fair, then each outcome has probability 1/36.

* EXERCISE 2-2 The sample space is {0, 1, 2}.

* EXERCISE 2-3 The mean is 5/3, since there are 3 num-
bers that sum to 5. Using relative frequencies, the problem
becomes 1 x (2/3) +3 x (1/3) =2/3+3/3 =5/3.

* EXERCISE 2—-4

EXY=0x1/4)+(1x1/2)+(4x1/4) =15
* EXERCISE 2-5

E[X + X?]

((040) x1/4)+((14+1)x1/2)
+((2+4) x1/4)
2.5

Compare this answer to that of the preceding exercise, and
you will see that B[ X + X?| = E[X] + E[X?].
*EXERCISE 2-6 F[3] = 3

*EXERCISE 2-7 E[2X] = 10

*EXERCISE2-8 E[2X +3Y] =10+ 18 = 28
*EXERCISE 2-9 E[aX + bY?] = aE[X] + bE[Y?]

* EXERCISE 2-10 First expand the squared term:

E[(X +Y)? = E[X? 4+ 2XY +Y?

Next, use Eqn. 8 to turn the expectation of a sum into a
sum of expectations:

E[X?+2XY +Y? = E[X? + E[2XY] + E[Y?]
Finally, re-express the middle term using Eqns. 7 and 9:

E[X?|+E[2XY]+E[Y? = E[X?)+2E[X|E[Y]+E[Y?]



* EXERCISE 2-11 The text used Eqn 10 to calculate that
m = 10 and V = 2. For the other versions, we need
relative frequencies: fs = 1/4, fio = 1/2, and f15 =
1/4. Eqn. 11 gives

1% (1/4)(8 — 10)% + (1/2)(10 — 10)?
+ (1/4)(12 — 10)?

1+0+1=2

For the Eqn. 12, we need

Y e

82/4 +10%/2 4 122 /4
16 + 50 + 36 = 102

We also need m? = 102 = 100. Subtracting gives V =
102 — 100 = 2.

* EXERCISE 2—-12 The mean and variance are 8.75 and
18.1875.

* EXERCISE 2—-13 The mean is

E[X]=0x1/34+1x1/24+2x1/6=0.833.
The variance is

V[X] (0—0.833)% x 1/3
+ (1 -0.833)% x 1/2
+(2-0.833)* x 1/6

0.472.

* EXERCISE 2-14 In the data, the relative frequencies are
fs = 1/4, fio = 2/4, and f12 = 1/4. The mean is 10.
According to Eqn. 15, the variance is

1% (1/4) x 8 x (8 — 10)
+(1/2) x 10 x (10 — 10)
+(1/4) x 12 x (12 — 10)
(1/4) x (—16)

+(1/2) % 0

+(1/4) x 24
—44+6=2

* EXERCISE 2-15 First, E[aX]| = aE[X] by equation 7.
Next,

ViaX] E[(aX — aFE[z])?]
E[a*(X — E[z])?]
a’E[(X — E[z])?]

a*V[X]

using (7) again
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* EXERCISE 2-16 With the new probabilities, we expect
fewer (0,0) and (1,1) pairs but more (0,1) and (1, 0).
There is still a tendency for X and Y to vary in the same
direction, but that tendency is weaker. In other words, the
relationship is weaker but still positive. The covariance
turns out to be C[X,Y] = 0.05.

* EXERCISE 2-17 One way is to replace the Pxy values in
Table 5 with 0.1, 0.4, 0.4, and 0.1. This yields C[X,Y] =
—0.15.

* EXERCISE 2-18 The corresponding formulas are

ClX,Y] = N_IZ(wi—f)(yi—ﬂ) (24)
= > (@—2)(y—9)fry (25)

x,Yy

z,Y

where f,, is the frequency of (X, Y") pairs in the data for
which X = z and Y = y. Using any of these formulas,
the given data imply that C[X,Y] = 0.0833.

* EXERCISE 3-1 The sample space is {0, 1, 2}; the corre-
sponding probabilities are 1/4, 1/2, and 1/4.

* EXERCISE 3-2 The allele disappears with probability

n=(
2000

In this calculation, there is no need to calculate (*}"); it
must equal 1 because there is only 1 way to choose 0 of
something. In addition, p® = 1 because anything raised
to the zeroth power equals 1. The only part that needs
calculating is (1 — p)2090,

* EXERCISE 3-3 For the Bernoulli distribution, there is
only one event. Consequently, N = 1 and Eqn. 19 be-
comes

2000

0 )p0(1 - p)**? = 0.135

1!
Pz _ (1 — 11—z
xor? =P

Recall that 0! = 1! = 1. (See appendix B for details.)
Consequently, 1!/(1! x 0!) = 1 and drops out of the equa-
tion. If z = 0, then p* = po = 1, and this term drops
out. Eqn. 19 becomes Py = 1 — p. On the other hand, if
x = 1, then (1 — p)}=% = (1 — p)° = 1 and drops out.
We are then left with P, = p.

*EXERCISE3—~4 E[X]| =1/2and V[X] = 1/4.

* EXERCISE 3-5 Since A; has frequency p, that is also the
probability that we have drawn a copy of this allele. It
follows that F[X]| = p and V[X] = p(1 — p).
*EXERCISE 3-6 For + = 2 and A\ = 0.61, the Poisson
formula gives P, = 0.101. We therefore expect to see
about 0.101 x 200 = 20.2 corps-years with 2 mule-kick
deaths. This is close to the real number of 22.



* EXERCISE 3-7 The probability of no mutation is Fy
e~2 ~ 0.135. Note that this answer is identical to that
of the preceding exercise. This illustrates the fact that,
when N is large and p is small, the Poisson is a good
approximation to the binomial.

* EXERCISE 3-8 The probability of “at least one mutation”
is Pr[X > 0]. There are two ways to think about this
problem. The hard way sums across all non-zero entries
of the Poisson distribution:

oo

PriX > 0] =)

r=1

ATe—A

z!

As I said, that is the hard way and is not recommended.
The easy solution proceeds from the observation that all
probability distributions sum to 1. For a non-negative
random variable such as the Poisson, this implies that
Pr[X = 0] + Pr[X > 0] = 1. Thus,

Pr[X >0]=1-Pr[X

0]21—67)\

In the current question, A = 2, so Pr[X > 0] &~ 0.865.
* EXERCISE 3-9 The graph is:

The area of the shaded rectangle is (0.3 —0.2) x 1 = 0.1.
This is also the probability that 0.2 < X < 0.3.

* EXERCISE 3-10 For any continuous r.v., the probability
that X lies between two values a and b is ff f(z)dz. In
this problem, a 0.2, b = 0.3, and f(z) = 1. The
integral is thus equal to 0.1.

*EXERCISE 3-11 An exponential variable is < 1 with
probability f01 he h*dy =1 —e "

* EXERCISE 3—-12 100 years, because the mean is 1/h, and
the problem says that h = 0.01.

* EXERCISE 3-13 The mean is 10° years; the variance is
10'8.

References

[1] Michael G. Bulmer. Principles of Statistics. Dover,
New York, 1967.

16

[2] John E. Kerrich. An Experimental Introduction to
the Theory of Probability. Munksgaard, Copenhagen,
1946.



