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1 The connection between evolution and economics

In economics, equilibria are often found by equating two versions ofrtheginal rate of sub-
stitution (MRS). For example, my MRS in preferences (the ratio at which | am “just willing” to
exchange two goods) should equal the MRS in exchange (the ratio at which | can exchange them
in the market). Otherwise, | would have reason to sell one good and buy the other. At equilibrium
(as shown in figure 1) these two versions of the MRS must be equal.

This analysis is also familiar to evolutionary ecologists, as shown in figure 2. There, the indif-
ference curves are replacedfitpess isogramsvhich connect points of equal Darwinian fitnéss.

In place of a budget constraint, ecologists study a variety of other constraints. The principle, how-
ever, is the same: equilibrium occurs at the point where the two curves have equal slope.

These two forms of analysis are connected by something deeper than analogy. They are con-
nected by a third equilibrium principle, which was first described by Hansson and Stuart [12].
These authors define thdRS in fitnesas the ratio at which two goods can be exchanged without
affecting Darwinian fitness. Thus, the MRS in fithess measures the absolute slope of the dotted
lines in figure 2. The new equilibrium principle asserts that, at evolutionary equilibrium, the MRS
in fitness must equal that in preferences. A simple proof of this principle is shown in figure 3.

The new equilibrium principle adds an additional equation to the arsenal of economics. The
MRS in preferences must now equal that in fithness as well as those in exchange and production.
If the hypothesis of evolutionary equilibrium turns out to be useful, then this should allow a more
powerful theory of economics.
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“Malthusian parameter,” which measures the asymptotic rate of exponential increase in the numbers of one’s descen-
dants [2].



Figure 1: The Indifference Diagram of Economics
An individual consumes a quantity'!) of good 1, ands(?) of good 2. The dottedhdifference curves
connect consumption bundles to which he is indifferent. By buying or selling, the consumer moves left or
right along the solidbudget line Utility is maximized at the point where the two lines have equal slope, or
in other words, at the point wheMRS = MRSs.

2 Application to time preference

Suppose that, in figure 1, good 1 refers to food that is consumed today, and good 2 to food that
is consumed- time units later. With this interpretation, the figure describes preferences regarding
different paths of consumption over time, or in other worttlee preference In a recent paper
[15], | developed an evolutionary theory of time preference using the methods outlined above.
That paper simplified the problem by assuming that changes in consumption affect fithess solely
via their effect on survival. Here, | extend that analysis to incorporate effects on fertility as well.
The analysis proceeds by deriving an expression for the MRS in fitness, and setting this equal
to well-known expressions for the MRS in preferences and in exchange. | begin with a series of
definitions.

2.1 Definitions

The MRS in preferences between immediate and delayed consumption is defined by

dr?
dr®)

U constant

MRS = —

where the derivative is taken along a line of constant utility.e. an indifference curve. The MRS
in preferences is often measureddyyhemarginal rate of time preferend®RTP), which defined
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Figure 2: Constrained Optimization in Evolution
Darwinian fitness increases with increasing values of characterandx(?), and the dotteéfitness isograms
connect points of equal fitness. The two satohstraint linesillustrate two different hypotheses about
which combinations of:() andx(? are feasible. For any assumed constraint, the evolutionary problem is
to choose the point on the constraint line that maximizes fitness. This constrained optimum occurs where
the constraint line and fitness isogram have equal slope, i.e. Wik = MRS-.
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Figure 3: Why the MRS in fitness equals that in preferences at evolutionary equilibrium
Fitness and utility each depend on consumption of commoditiéandx?. If the MRS in fitness
did not equal that in preferences, then the isograms of the fitness furi¢tiayuld cross those of
the utility functionU, as shown in the figure. There would then exist consumption buntlesd
Y, such thatX is preferred taY” althoughY” confers the higher fitness. This preference ordering
cannot be evolutionarily stable because a mutation that reversed the preference bétaretn

would be favored by selection.



by
MRS = ¢’" (1)

where as before is the time that elapses betweert andx?. The MRS in exchange between
present and future consumption is the ratio at which present and future consumption can be ex-
changed by borrowing and lending. It is related to the interest taye

dr?)
wherelV is wealth and the derivative is taken along a line of constant wealth, that is, along the
solid market line in figure 1. The MRS in fitness is defined by

dr®
dr®) 3)

where the derivative is taken along a line of constant fitrési equilibrium, all these versions
of the MRS must be equal.

ei‘r (2)

W constant

MRS = —

F' constant

2.2 Finding the MRS in fithess

The evolutionary theory of time preference is complicated by the possibility that the returns from
an investment may increase the Darwinian fithess of the investor’'s daughter (or other relative)
rather than that of the investor herself. This makes it necessary to use the evolutionary theory of
“kin selection,” which deals with interactions between relatives [9, 10].

The particular model used here was developed in another context [14], and its application to the
economic problem of time preference is discussed elsewhere [15]. Rather than repeat that material
here, | shall simply state the relevant results.

2.2.1 Results from the evolutionary theory of kin selection

The theory supposes that one individual (the donor or investor) undertakes an investment that has
an immediate effect on himself, but a delayed effect on a second individual (the recipient). The
donor and recipient may or may not be the same individual. The donor undertakes his action at age
+(M, and the recipient is affected aftetime units, when the recipient’s aged$). This interaction
changes fronP®" to P + APM the donor’s probability of surviving from age") to (") + dx.

The donor’s fertility during this same interval is changed frorft) to m® + Am®. Similarly,

the interaction changes from® to P(?) + A P() the recipient’s probability of surviving from age

2 to 2® 4 dz. The recipient’s fertility during this interval is changed frem? to m® + Am®.

The effect of this interaction on Darwinian fithess are summarized in table 1, which is adapted
from table 1 of [14]. Unlike the table used in my earlier work on time preference [15], this one
includes effects on fertility as well as on mortality. In the tablelenotes theoefficient of rela-
tionshipbetween donor and recipiehthe subscript® and R indicate the sex of the donor and of

2Wright's coefficient of relationship [5, pp. 69, 137-138] can be interpreted as the fraction of their genes that two
individuals can expect to hold in common. It equals 1 if the donor and recipient are the same individual, 1/2 if the
recipient is an offspring, 1/4 if a grandchild, and so forth.



Table 1: How Changes in Fertility and Mortality Affect Fitness
Effect Additive Reproductive Discount Relationship

on change value factor to donor
Donor

A. fert. Am® 1 o—rr 1
B.mort. APW ™ o=V +dx) 1
Recipient

C. fert. Am® 1 o—p(e+7) .

D. mort. AP® @ o—p(@D+7+dz) ,

Notes: The altruist allele will increase (decrease) in frequency if the sum of
row products is positive (negative). The notation is defined in the text. For
simplicity, | assume that the sex ratio at birth is unity, that effects on fertility
are brief, that these effects are small enough that second-order tefns #amd

AP can be ignored, and that a single recipient is affected by each altruistic act.
Source:Rogers [14, Table 1]

the recipient, and denotes theeproductive valu€R. A. Fisher, 1958). It is defined by

ea € Ml (y)my(y)
e=rly(z)

v 4)
wherep is the rate of population growtli,(y) the probability of living to age;, m,(y) the ex-
pected number of offspring produced at that age, and the subganigicates the individual's sex.
The reproductive value can be interpreted as the expected present value of an individual’s future
contributions to the gene pool.

A gene that encourages the donor to undertake this action will be favored by natural selection
if the sum of the row-products in table 1 is positive, or disfavored if that sum is negative.

2.2.2 The MRS in fithess

An interaction is selectively neutral—having no effect on fithess—if the sum of row-products in
table 1 is zero, i.e. if

0= AmMe—rzV + AP D) g=pzt
+ Am@er@DH) A P22 gmp(@ 47, (5)
Here, | have assumed that effects on mortality are brief sodhatc 0. When this equation
holds, the interaction (or investment) described above moves us along a fithess isogram. Thus, the
equation holds the key to the slope of this isogram, the MRS in fitness. But before proceeding, it
will be useful to recast the equation in terms of changes in consumption.
| now assume that fertility and mortality are both differentiable functions of consumption.
P = P(z,k)

m = m(x,K)



wherex is consumption at age. Furthermore, | assume that the fertility and mortality effects in

the table were produced by changes in consumption. Specifically, the donor’s consumption at age
™ changed from:() to (M + Ax™), while that of the recipient changed frotf?) to x?) + Ax®).

If these changes are small, then the fertility and mortality effects are

AP ~ AkP.(x) (6)
Am =~ Arm,(z) (7)

whereP, = 0P(z, k)/0k is the marginal effect of consumption on survival, angd= 0m(z, x)/0k
the marginal effect on fertility. Substituting these into equation 5 and rearranging gives the MRS

in fitness,
Ar® pr (1) 4 p)y)
MRS:E—K,Z(B) My + Lx U (8)
Ar®) r m? 4+ pPy@)

This generalizes Eqn. 7 of my earlier paper [15], which excluded the marginal effect of consump-
tion on fertility.

2.2.3 The long-term real rate of interest

The long-term interest rate is found by setting setting
MRS = ™ (9)

wherei is the interest rate over delay This procedure equates tMRSin fitness (the left-hand

side of the equation) with that in exchange (the right-hand side), and is justified as follows. The
argument in figure 3 shows that, in evolutionary equilibrium, the MRS in fithess must equal that
in preferences. Furthermore, in market equilibrium the MRS in preferences must equal that in
exchange. In studying equation 9, we are examining the implications of the hypothesis that both
equilibrium assumptions hold true.

As in my previous paper on time preference, | concentrate on intergenerational investments in
which the investment benefits the investor’s daughter after exactly one generation. By assumption,
the mother and daughter are affected at the same age, so that the two reproductive WaRSs in
are equal. In stationary equilibrium, the mother and daughter will also have equal wealth at this
common age, so that the marginal effects of consumption on their fertility and survival are equal as
well. Consequently, the right-most fraction in equation 8 equals unityMR8- = ¢ /r, where
r = 1/2 (since the two individuals are mother and daughter), aeduals the generation length,

T. Equation 9 becomexrT = ¢T', or

i=(In2)/T +p (10)

The relevant rate of population growth is not the current one, but some sort of average rate over re-
cent evolutionary history. Since evolutionary changes are usually slow, the last couple of centuries
of rapid growth have probably had no large effect. Prior to thatust on average have been near
zero. Thus, equation 10 suggests that (In2)/7. The generation timé&’ is usually a little less



than 30 years in human populations. For exaniple; 28.9 in the 1906 population of Taiwan [11].
Thus, ifp = 0, selection should favor long-term interest rates that avefiagy /28.9 = 0.024 per
year, in reasonable agreement with observation.

These results are identical to those of my earlier paper on time preference [15, Eqn. 12], and
extend those results to the more general context in which selection acts via fertility as well as
mortality.

2.3 Diminishing marginal returns to consumption

| now introduce the standard assumptions of economic analysis: that consumption helps in some
sense and that each successive unit of consumption helps less than the last. In the present context,
this will mean both thain(z) and P(x) each increase with consumption, and also that marginal
effects decline as consumption increases.

Although these assumptions are unremarkable in economics, they may seem problematic here.
Eating too much can be bad for you, and animals on restricted diets often seem to live longer than
those with unrestricted access to food [7, Sec. 10.3.1]. Yet this is no real cause for skepticism:
food is just one of many consumer goods, and wealthy people do live longer than poor ones.

To capture the diminishing marginal effect of consumption, | will assume that

m(z,k) = m*(x)r*
P(z,r) = Px(z)s”

where0 < «a, § < 1, and attention must be restricted to to parameter values such gtays within
the interval [0,1]. Heren*(z) and P *( z) are, respectively, the fertility and survival probability of
a “standard” individual of age—one who consumes a single unit of resource.

To justify this particular formulation, | appeal to the data in figure 4. There, the vertical axis
measures the variation of age-specific fertility across populations, and the horizontal axis measures
mean age-specific fertility. The graph shows that fertility is most variable at age classes where
fertility is high. At least some of this variation must reflect variation in consumption. Thus, it is
sensible to build a model in which the effect of consumption is greatest on age classes with high
fertility.3

Marginal fertility and survival become

my = %m(x,ﬁ;) (11)
P, = fp(l’,ﬁ) (12)

and theMRSin fithess is

o r 'ym(Q) + (1 — 'y)P(Q)U(Q) k(1)

wherey = o/(« + () measures the importance of marginal fertility relative to marginal survival.

3] need to repeat this exercise with survival data.
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Figure 4. Mean and Standard Deviation of Age-specific Fertility
Based on the following sets of fertility data: 1906 Taiwan [11], Standard Natural Fertility [4], 1973 Libya
and 19th century Utah [6].

3 Uncertainty about recipients

Thus far, | have assumed that the recipient is known with certainty at the time the investment
is made. No allowance has yet been made for the possibility that the benefit may eventually go
to someone other than the intended recipient. As in my previous paper on time preference, |
will incorporate uncertainty by assuming that when the benefit arrives, it will be allocated among
potential recipients (including the donor herself) so as to maximize its discounted value to the
donor. As before, | rule out the possibility of distributing the benefit among several recipients.
The development below differs from that of my previous paper in two ways. First, it allows the
interaction to affect fertility as well as survival. Second, it will incorporate diminishing marginal
returns to consumption.

3.1 Model

We begin as before, with table 1. The difference is that, under uncertainty it is not the row-sum
itself that must equal zero, but the expected value of this sum. | assume changes in fertility and
survival are caused by changes in consumption, as discussed above in section 2.2.2. In addition, |
use the model of diminishing marginal returns defined above in section 2.3. Thus, equations 6—7
and 11-12 allow equation 5 to be re-expressed as

0 = Ak (am® + PV /5
+ Aﬁ(Q)e_"TE{(am(Q) + ﬂP(Q)U(Q))/K:(Q)} (14)

where E denotes the expectation. In taking this expectation, | defile= 0 when there is no
recipient at all.
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The MRS in fitness is obtained by rearranging this expression to obtain

Ax®? .
where
Z _ e_pT/r(fym(2) + (1 — ’}/)P(z)U(Q)) /{(1) (15)
o ('ym(l) —+ (1 — ’Y)P(I)U(l)) k2 |’

andy = a/(«a + () measures the relative importance of marginal fertility.

In what follows, | will takex™ = k) so that the final term i disappears. This restricts
attention to the MRS at points along th&® line in figure 1. In intergenerational transfers there
is good reason for interest in these values. At stationary equilibrium, the consumption of an in-
dividual at ager must equal that of her daughter one generation hence. Thus, intergenrational
investments are governed by the MRS in preferences alongtHame, which must also equal the
MRS in exchange and the marginal productivity of intergenerational investhiérgse quantities
could all be predicted from the MRS in fitness along 4heline. For transfers over shorter inter-
vals, there is less reason for concern with the MRS alongihdéine. For these cases, the present
approach will tell only part of the story.

3.1.1 The evolutionary discount function

To facilitate presentation of numerical results, | defineeaolutionary discount functioh, which
satisfies .
MRS = ele  A@wdw (16)

For example, when is a constant, future benefits are discounted exponentially at a constant rate.
A can accomodate nearly any form of discounting, and is closely related to the marginal rate of
time preference (MRTP): the average value@ver any age-interval predicts the MRTP over that
interval [15, Eqgn. 15]. | calculaté from age-specific fertility and survival data using the methods
described by Rogers [15].

3.1.2 Demographic statistics

Ideally, A should be estimated using demographic statistics that reflect some sort of long-term
average of human demographic history. This, of course, is impossible. | have instead relied on
demographic statistics from modern “natural-fertility” populations, whose vital rates are thought
to resemble those of pre-industrial populatiéniswould be unwise, however, to take any single
modern population as the examplar of our unknown ancestors. We do not know whether prehistoric
human demography was more similar to that of 19th century Taiwan, or that of 19th century Utah,
to name just two possibilities. Nonetheless, it seems likely that species-wide mean demographic

4See [13, p. 172] and [15, Footnote 12].

SA natural-fertility population is one in which birth-control is either absent, or else is applied independently of the
number of a woman’s existing children. In natural-fertility populations, women may use birth control to space births,
but they do not use it to achieve a target family size [1].
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parameters have for a very long time fallen within the range spanned by modern natural-fertility
populations. In my previous paper, | estimatedsing demographic statistics from a wide variety

of natural-fertility populations, and found that this variation had little effect on the answer. Con-
sequently, | will restrict attention here to a single set of demographic statistics. | use fertility and
paternity data of 19th century Utah [6] and the Model West life table with mortality level 12 [3,
p. 47]. This mortality level implies that the expectation of life at bughs approximately 45 years.

3.2 Results

Before presenting new results, | summarize some old ones. Figure 5 shows an evolutionary dis-
count function from my earlier paper on time preference. In the figure, “age at investment” refers
to the age at which a decision is made between an immediate and a delayed benefit. Ages beyond
the age at investment are “future ages.” Thus, the line marked by open circles shows the discount
function pertaining to some investment that might be undertaken by newborn infants, whereas the
line marked by stars pertains to investments by young adults.

To understand what these curves mean, consider a hypothetical 20-year old woman who has
been offered some survival benefit that will not arrive until she is 40. Since she is female and is
now of age 20, the starred curve in the upper panel of figure 5 applies. It indicates that the average
discount rates within the four 5-year intervals spanning ages 20-40 are 0.059, 0.050, 0.012, and
0.007 respectively. The average of these is 0.032, and this ifhgtiasthe future benefit should
be discounted by a factor ekp[—20 x 0.032] = 0.529. The 20-year old, therefore, should value
this delayed benefit at only about half of its nominal value. In general, one applies a MRTP that is
an average ok over the relevant interval.

The figure illustrates the major conclusions of the previous analysis:

¢ In the long run\ converges to a value of about 2%, very close to the value predicted by the
heuristic argument leading to equation 10. This lent support to my conclusion regarding the
interest rate.

e The curves for different ages of investment lie nearly atop one another. Rhaswell
approximated by a function of one argumehtz, y) ~ \*(y).

e The evolutionary discount is much higher among young adults than among their elders. This
predicts higher marginal rates of time preference among young adults, a prediction with
which we can all identify.

However, figure 5 describes an analysis on survival axes rather than consumption axes. The
evolutionary discount function there refers, in other words, to a trade-off between the survival
(not the consumption) of donor and recipient. The methods introduced here allow an analysis on
consumption axes, with varying levels of importance accorded to marginal fertility and marginal
survival.

5The average ok predictsy, the MRTP. This average is equalite= 0.032, and equation 1 implies that the future
benefit is discounted by a factor ef ", wherer = 20 is the time delay.
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Figure 5: Evolutionary Discount Function
A(z,y) is the average evolutionary discount rate within a five-year age interval. “Age at investment,”
refers to the age at which a decision is made between an immediate and a delayed benefit. “Future age,
y, refers to ages beyond the age at investment. The dotted lines show the rate of interest predicted by
equation 10, where the generation tim@js= 27.98 for females and;,, = 30.45 for males.
Based on male and female fertility of 19th century Utah Mormons [6], and on the Model West life table
(mortality level 12 e5 = 47.5 for females and 44.5 for males).
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Figure 6: Evolutionary Discount Function
Az, y) is the average evolutionary discount rate within a five-year age interval. All curves refer to 20-year-
old investors. “Future agey, refers to ages beyond the age at investment. The dotted lines show the rate of
interest predicted by equation 10, where the generation tiffig 48 27.98 for females and;,, = 30.45 for
males.
Based on male and female fertility of 19th century Utah Mormons [6], and on the Model West life table
(mortality level 12 e5 = 47.5 for females and 44.5 for males).
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The result of this analysis is shown in figure 6, along with the age-20 curve from figure 5. It
shows that

e The long-term tendency is toward a rate of roughly 2% in all cases. Thus, conclusions about
the interest rate are unaffected by the difference between these models.

e When consumption affects survival (i.e. wher= 0), the curve differs little from that of the
earlier analysis.

e When consumption affects fertility, the discount function peaks in the late thirties and early
forties.

I’m not sure what to make of this. Perhaps:

e young people are prone to risk their lives in return for immediate gratification (fast driving,
sky diving, high crime rates), but middle aged people are more prone to take risks affecting
fertility.
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