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Abstract. The entropy change of the solar system between now and its final heat
death is fixed. The time to the heat death is determined by the rate of entropy
increase between now and then. If this rate of entropy increase is itself increased
by economic activity, then economic activity is generating a negative externality.
By internalizing this, a social planner treats the fixed amount of entropy change
remaining until the heat death like the stock of an exhaustible resource. This leads
to an analysis along the same lines as Hotelling’s neoclassical economics of ex-
haustible resources, forming a partial synthesis between neoclassical economics
and Nicholas Georgescu-Roegen’s “ecological economics” work on the entropy
law.
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1. Introduction
Due to work such as Kåberger and Månsson (2001), Lozada (2004), Beard and Lozada
(1999), Ayres (1998 p. 197), Floyd (2007), and Martyushev (2013), it has become clear
that there is no elementary, intuitive interpretation of entropy. As Frank Lambert’s article
in the Journal of Chemical Education (2002) bluntly puts it, “Entropy is not disorder.
Entropy is not a measure of disorder or chaos.” For example, when metallurgical slag
and matte spontaneously separate, entropy becomes higher, disorder becomes lower,
and economic usefulness becomes higher.

Nevertheless, it is undoubtedly true that all spontaneous processes increase entropy.
It is also true that the entropic degradation of the Earth and the rest of the solar sys-
tem will eventually result in the solar system’s evolution to a “heat death” equilibrium,
in which entropy has been maximized and therefore no further macroscopic physical
processes are possible. If economic processes, by increasing the rate of entropic degra-
dation, are bringing forward the date of that forbidding equilibrium state, then a problem
of economic interest arises. Section 3 of this paper models that problem by formulating
it within the standard neoclassical exhaustible-resource economics framework due to
Hotelling (1931), though the definition of the limited resource is novel.

Glucina and Mayumi (2010 p. 22) warn that “delusions of grandeur” have char-
acterized some writing about economics and entropy. To avoid that, we do not stop
with Section 3’s successes in showing that the idea of a “long-run entropic problem”
is conceptually valid, but instead use Section 4 to ask a further question: is the long-
run entropic problem empirically important? After all, economic problems can have
constraints which are interesting in theory but which in a particular empirical setting
are not binding, and thus are not important in that setting. Section 4 concludes that the
long-run entropy problem’s constraint is probably not binding. If further investigation
supports that finding, then the long-run entropic problem, while potentially important,
would not be actually important in practice.

Section 2 supplies background information to help interdisciplinary audiences un-
derstand Section 3, and Section 5 asserts that using mathematical models such as in
Sections 3 and 4 is methodologically appropriate. Section 6 concludes.

The impetus for this paper came from the following passage written by Nicholas
Georgescu-Roegen in one of the cornerstones of Ecological Economics:

. . . let S denote the present stock of terrestrial low entropy and let r be some
average annual amount of depletion. If we abstract (as we can safely do
here) from the slow degradation of S, the theoretical maximum number
of years until the complete exhaustion of that stock is S/r. This is also
the number of years until the industrial phase in the evolution of mankind
will forcibly come to its end. Give the fantastic disproportion between S
and the flow of solar energy that reaches the globe annually, it is beyond
question that, even with a very parsimonious use of S, the industrial phase of
man’s evolution will end long before the sun will cease to shine. . . . the fact
remains that the higher the degree of economic development, the greater
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must be the annual depletion r and, hence, the shorter becomes the expected
life of the human species.

The upshot is clear. Every time we produce a Cadillac, we irrevocably
destroy an amount of low entropy that could otherwise be used for produc-
ing a plow or a spade. In other words, every time we produce a Cadillac,
we do it at the cost of decreasing the number of human lives in the future.
(Georgescu-Roegen 1980 pp. 57–58)

This excerpt has some flaws: its “beyond question” pessimism about solar energy actu-
ally is questionable. Also, its the notion of a “stock of. . . low entropy” is not quite right.
However, merely by switching that notion to “a stock of a limited amount of entropy
change,” Section 3 obtains a physically-correct model of a long-run entropic problem,
showing that Georgescu-Roegen’s theoretical insight was mostly correct. On the other
hand, Georgescu-Roegen also thought the long-run entropic problem was important in
practice, which Section 4 casts doubt on. This paper makes future debate about whether
Georgescu-Roegen was right or wrong on that point much easier, by showing that the
question comes down to whether the shadow value of a particular constraint is close to
zero.

Using the Söllner/Baumgärter classification system for papers incorporating ther-
modynamics into economics, this paper lies in Class 4c: “thermodynamic constraints
on economic action: models incorporating entropy and entropy generation.”1

2. Resolving Potential Interdisciplinary Misunderstandings
The first part of this preliminary Section addresses misconceptions which may otherwise
cause non-physicists to misunderstand the physics used in Section 3. The rest of this
section clears up misconceptions which have caused natural scientists to think the
mathematical framework used in Section 3 is wrong.

Georgescu-Roegen emphasizes the dialectical nature of the entropy law with turns of
phrase such as “entropic indeterminateness.” However, the entropy law can sometimes
be used to obtain precise arithmomorphic results. It is used that way in Section 3, but
since that is innovative, here is a non-innovative illustration. Consider a hypothetical
chemical reaction A + B −→ 2C where A, B, and C are perfect gases and where the
reaction occurs at “standard” pressure (one atmosphere). Most chemical reactions do
not go fully “to completion”; instead, some of the reactants remain in their initial form.
The entropy law can be used to determine the precise equilibrium percent of completion.
Lozada (1999 pp. 330–335) shows how. Briefly, if one supposes that the reaction starts

1The classification system is: (1) isomorphism of formal structure between thermodynamics and eco-
nomics; (2) analogies and metaphors between thermodynamics and economics; (3) energy, entropy, and
exergy theories of value; (4) thermodynamic constraints on economic action: (a) models incorporating
mass and the conservation of mass, either for one particular material or for a number of materials; (b) mod-
els incorporating energy and the conservation of energy, sometimes in variants such as embodied energy;
(c) models incorporating entropy and entropy generation; (d) models incorporating energy and entropy,
sometimes in the form of exergy; and (e) models incorporating mass, energy, and entropy. See Baumgärter
(2004 pp. 112–6), who relies partially on Söllner (1997).
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with 1 mole of A and 1 mole of B, and if one lets nA denote the number of moles of
A which are left when the reaction reaches chemical equilibrium, then if the reaction
occurs at constant temperature and pressure and the components freely mix, Lozada
shows that

1S = −R
[
2nA ln

nA

2
+ 2(1 − nA) ln(1 − nA)

]
− (nA − 1)(2S◦C − S◦A − S◦B)

− 1
T

[
−(nA − 1)(2H ◦C −H ◦A −H ◦B)

]
(1)

where 1S is the change in entropy, R is the universal gas constant, and where S◦A, S◦B,
S◦C, H ◦A, H ◦B, and H ◦C are other constants characteristic of the substances A, B, and C.
(The symbol S◦ denotes a substance’s “standard entropy” and H ◦ denotes its “standard
enthalpy of formation”; if A, B, and C were real substances, one could look up their
S◦ and H ◦ in tables derived from laboratory experiments.) Lozada (op. cit., p. 334)
continues (letting “J” stand for joules and ◦K for (degrees) Kelvin) (see also Beard and
Lozada 1999 p. 94):

Equilibrium occurs in the state of maximum entropy, since from there, any
deviation would decrease entropy and thus not be allowed by the Entropy
Law. The state of maximum entropy is found by maximizing 1S with re-
spect to nA. The value of R. . . [is approximately 8.314 J/(mole·◦K)]. If in ad-
dition we assume for illustration that T = 500◦K, H ◦A = 2500 J/mole, S◦A =

1 J/(mole ◦K), H ◦B = 2000 J/mole, S◦B = 2 J/(mole ◦K), H ◦C = 1000 J/mole,
and S◦C = 4 J/(mole ◦K), then 1S is maximized at nA = 0.5229. . . . The
reaction A + B→ 2C will therefore go to [(1 − 0.5529) ∗ 100 = ] 47.71 per
cent completion (cf. Gaskell 1981 p. 230).

Section 3 does not try to characterize a thermodynamic equilibrium, as this example
does, but it does take as given, arithmomorphically, that thermodynamic equilibrium is
the state of maximum entropy.

Chemists and metallurgists almost always conduct calculations like those of the
previous paragraph using Gibbs Free Energy instead of using entropy, but the entropy
calculation is the more fundamental one—there is, tellingly, an “Entropy Law” but no
“Gibbs Free Energy Law.” The two calculations give exactly the same answer at constant
temperature and pressure (Lozada op. cit. 346–7),2 but as Lambert (2009) says, “the
whole Gibbs relationship or function is about entropy change.”

The above discussion shows that one can use entropy arithmomorphically, but does
not address whether one should use entropy arithmomorphically. Section 5 addresses
that.

2The entropy calculation in Lozada (1999 p. 334) gives the same answer as the Gibbs Free Energy
calculation not only Gaskell (1981 p. 230 line 3) but also in Gaskell (1995 p. 319 line 7) and in Gaskell
(2008 p. 310 second line from the end).
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Turning now to stumbling blocks in understanding economics: if an economist
wishes to express the relationship between the amount of corn Q (in, say, liters) which
is produced on a farm and the inputs water W (in liters) and fertilizer F (in kilograms)
used to produce that corn, for almost a century a simple, popular choice has been the
Cobb-Douglas functional form Q = WW U F V where U, V, and W are constants and the
dimensions of W are not discussed. All physical scientists are trained in dimensional
analysis, from the perspective of which this expression for Q is incoherent: if W has no
dimensions then the left-hand side’s “liters” is obviously not equal to the right-hand
side’s “liters to the U” times “kilograms to the V.” When economists write equations
like Q = WW U F V, they know that what they really mean is

Q = WW U F V ∗ 1
units of Q

(units of W)U(units of F)V

(assuming W is dimensionless). It makes sense for economists to adopt the simplifying
convention of never writing the last term because constants such as U and V are estimated
from data and could be almost any real number (although a value between zero and
one would generally have the most credibility). When for a particular farm one could
obtain U = 0.2173 and V = .6894, whereas for another farm U could be 0.8283 and V

could be 0.1722, it is clear that dimensional analysis cannot be helpful in any practical
way. This is the case for all of economics, and so the rest of this paper will follow
economists’ universal practice of writing equations in ways which are dimensionally
incorrect (except by coincidence) or at least dimensionally under-specified. A reader
wishing to see only dimensionally-correct expressions below is invited to insert terms
of the form “one times the appropriate dimensions” in the obvious places.

In classical physics the term “Hamiltonian” typically refers to the total energy of a
system, and in quantum mechanics it refers to an operator which gives the total energy
of a system. However, in mathematics, the Optimal Control Theory of Lev Pontryagin,
which is concerned with the (mathematical not physical) problem of maximizing a func-
tional over a function space, uses the term “Hamiltonian” with a completely different
meaning. The model of this paper requires solving an optimal control problem and
therefore it only uses the term “Hamiltonian” in its second, newer, purely mathemat-
ical meaning, following standard practice in economics since the 1970’s (see e.g. the
economic work of mathematics professor Colin W. Clark (1976 p. 91)).

Finally, while the model in the next section is innovative in important ways, its
putting technological constraints into economics is not per se innovative: technologi-
cal constraints have been part of every school of economic thought coming after the
Mercantilists, if not earlier. For example, the Physiocrats of the 17th century, with their
emphasis on the productivity of nature; the Classicals, such as Adam Smith’s 18th cen-
tury writings on the division of labor in manufacturing and David Ricardo’s early 19th
century work on the law of diminishing returns, which took its modern, Neoclassical
form by the time of Alfred Marshall’s Principles of Economics in 1890, and which un-
derlies the very idea of “a supply curve”; and the neo-Ricardian work of Piero Sraffa’s
Production of Commodities by Means of Commodities (1960)—all these works deal
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with understanding the technological constraints within which the economic system
functions. Ecological Economics is not an attempt to add scientific or technological
constraints to economics, because all respectable economists have been doing that for
the last 300 years; instead Ecological Economics is an attempt to do that using more of
what we know about scientific laws and theories and making sure to include externali-
ties and the unpriced or under-priced services of nature, rather than relying mostly on
empirical observations of purchased physical inputs and outputs.

3. The Model
Let the initial time be “0,” the current time index be “t,” and the time of the solar system’s
heat death be “T .” The solar system’s “equilibrium,” “maximum-entropy,” “heat death”
state will occur when its temperature is uniform and is equal to the temperature of the
universe’s cosmic microwave background radiation (currently about 2.7 K). Calculate
the entropy difference between the solar system in its current state and in its equilibrium,
“heat death” state of maximum entropy (when the Sun has run out of fuel and the Earth’s
core becomes cold). Without loss of generality take its current entropy S0 to be zero
and choose its final entropy ST so that ST − S0 is equal to the entropy difference just
calculated.3 Denote the resulting ST by HDE for “heat death equilibrium.” The initial
and final conditions of the problem then are4

S0 = 0 and (2)

ST = HDE. (3)

The appropriate thermodynamic model to consider has the form of a “system,” on
the one hand, and a “heat reservoir” (also called a “thermal reservoir”), on the other
hand. A heat reservoir is defined as something whose heat capacity is so large that its
temperature is forever constant. It would be inappropriate to consider the system as the
Earth alone, because the Earth is strongly coupled to the Sun, which cannot play the
role of a heat reservoir because its temperature will change considerably over billions

3The current entropy level S0 is arbitrary not only in classical thermodynamics but also in Statistical
Mechanics (Dugdale 1996 p. 99). The mathematical shortcoming in Max Planck’s treatment of this issue is
discussed in Beard and Lozada (1999 p. 118 fn. 12). Entropy differences, such as ST − S0, are not arbitrary
and are cardinally measurable. (Georgescu-Roegen would say this cardinality of entropy differences makes
entropy itself a “weakly cardinal measure.”) Therefore the rate at which entropy changes, which will be a
key part of the model below, is also not arbitrary and is also cardinally measurable.

4Kåberger and Månsson (2001 pp. 171–2) nicely describe a mathematically equivalent procedure as
well as the reason for not using it: “For any system, there is an upper limit to the amount of entropy
it can contain under specific conditions. The difference between this maximum and the actual amount
of entropy in the system has been given the name ‘negentropy’. To determine the negentropy, one first
has to determine the entropy and calculate the maximum entropy. Since the determination of these two
entities provides most of the thermodynamic properties of the system, and since their difference adds
nothing to the knowledge about the system, we regard negentropy as a concept of very limited usefulness
for thermodynamics proper. Its use lies mainly in shortening the notation in some derivations—but the
effect is, in our view, not sufficiently large to motivate the introduction of an additional concept in the
thermodynamic theory.”
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of years. We will consider the system to be the solar system (or just the Earth and the
Sun), because then we can take the heat reservoir to be the cosmic background radiation,
which is what absorbs most of the Sun’s light. (It is true that the cosmic background radi-
ation’s temperature will fall over billions of years as the universe expands5, but it cannot
fall much because it is already below 3K, so we will consider the cosmic background
radiation to be a heat reservoir to a sufficiently close approximation.) Alternatively, we
may be able to define the system as the Earth together only with that portion of the Sun’s
surface which illuminates the Earth, plus the spherical sector of the Sun which powers
the Earth-illuminating surface part and which has a zero net energy flux with the rest
of the Sun. (The portion of the Sun illuminating the Earth changes every moment, but
if the Sun is sufficiently spherically symmetric that should not matter.) Which of these
two definitions of “the system” is chosen is irrelevant to the theoretical model which
follows, but it will influence the empirical magnitudes of the variables. Both choices
of systems are closed (with respect to matter) but open (with respect to energy), not
isolated, because it is thermodynamically important to take into account their outward
flow of energy—that is, their relationship with their heat reservoir, which defines their
final “heat death” temperature.

(The “heat death” of the solar system may not be its final equilibrium state: indeed
the Sun itself is not a “first generation” star, but it (and the Earth) are formed partially
from elements generated by the collapse of earlier stars. This paper takes the position
that such rebirths, made possible because no system in the universe is gravitationally
isolated, are not important for the future of the human economy.)

Let 1St denote the change in the system’s entropy at time t if there were no human
activity. Let 11St denote the human-caused change to 1St. Then the actual change in
the system’s entropy is

Ṡt = 1St +11St . (4)

In the SI (or MKS) system of units, S is measured in “joules per Kelvin,” and the terms
in (4) by “joules per Kelvin” per second, which is watts per Kelvin, W/K.6

Suppose the arguments of the social welfare function W (not to be confused with
the notation for watts, W) are T , the length of time before the heat death arrives, and
some measure of economic well-being before T . Assume both of these increase social
welfare. If c denotes consumption, u instantaneous social welfare (“utility”), and r the
social rate of discount, the simplest such social welfare function is probably

W
(

T ,

∫ T

0
u(ct) e−rt dt

)
. (5)

Since T < ∞ the reader could, if desired, set r = 0. The second argument is “simple”
because it, which represents the ethical viewpoint of utilitarianism across generations,

5See for example http://www.cv.nrao.edu/course/astr534/CMB.html.
6In Section 2, S◦ was measured in J/(mole ◦K); that was because standard entropies are intensive

quantities, and have to be multiplied by the number of particles (moles) in order to get the entropy of a
system, which is an extensive quantity. Also, in the late 1960’s, the Thirteenth Conférence Générale des
Poids et Mesures (CGPM) replaced “degrees Kelvin,” denoted ◦K, with “Kelvin,” denoted K.
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has been the standard way of representing intertemporal preferences in neoclassical eco-
nomics since a version of it appeared in the seminal paper of Ramsey (1928 p. 547), with
elaborations introduced by the 1975 Nobel Laureate in Economics, Tjalling C. Koop-
mans, first in (1963 p. 21). It not only underlies several subdisciplines of neoclassical
microeconomics, it also underlies the late-20th-century “real business cycle” theory
of macroeconomics. It does make utility cardinal rather than ordinal, but then so do
standard social welfare functions, the standard economics of uncertainty, and standard
game theory—as well as the new, not very standard field of happiness research.7 In
future work, (5) could be modified to account for different population sizes at different
times; for different types of intergenerational altruism (or jealousy); for consumption
being a vector of many goods instead of just one aggregate commodity; for the form
of u changing with time; for welfare depending on relative rather than absolute income
(James Duesenberry’s “relative income hypothesis,” which is related to the “positional
goods” idea of Fred Hirsh, and to the work of Thorstein Veblen (1899) and of Herman
Daly (1991, Ch. 8, “On Biophysical Equilibrium and Moral Growth”)); for technolog-
ical change; for explicit savings and investment behavior; for studying behavior by
profit-maximizing firms instead of by a social planner; and for other effects.

The social planner’s problem now is one of maximizing (5) subject to (2), (3), and
a slight modification of (4),

Ṡt = 1St +11St(ct) , (6)

indicating that 11St depends on society’s choice of consumption ct. The form that
11St(ct) takes is crucial to the nature of the solution. Clearly ct ≥ 0 for all t. Georgescu-
Roegen thought that 11St > 0; however, a negative value, at least for some values
of c and t, cannot be ruled out a priori. If the graph of 11S versus c has a negative
slope, representing an inverse relationship between 11S and c, then entropy does not
constrain c, because increasing c would simultaneously lessen the growth in S, thus
increasing T . If the graph of 11S versus c has a positive slope, then entropy does
constrain c, because increasing c would simultaneously increase the growth in S, thus
decreasing T . This second case is thus the one of interest, together with mixed cases
in which the slope of the graph of 11S versus c has a slope which does not have a
constant sign.

There seems to be no mathematical theory that would enable us to solve problems
as general as maximizing (5) subject to (2), (3), and (6). One solvable alternative would
be to use discrete instead of continuous time. A second solvable alternative, which is
pursued in this paper, is to assume that W is linear, and in particular that W (x, y) = Ux+Vy

7Hirschauer, Lehberger, and Musshoff (2015): “ ‘In the last 35 years, however, psychologists and econ-
omists in growing numbers have tried to overcome the problems of measuring happiness by the simple
device of asking people directly how pleasant or disagreeable they find particular activities throughout their
day or by inquiring how satisfied [. . . ] they are with the lives they are leading’ (Bok 2010: 5). Self-reported
well-being is either qualitatively assessed or—more commonly—quantitatively measured via Likert scales
(psychometric scales).” The citation to Bok is from D.C. Bok (2010), The politics of happiness: what
government can learn from the new research on well-being, Princeton: Princeton University Press.
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where U and V are the weights the social planner puts on the two objectives.8 Then from
(5) one has

W = UT + V
∫ T

0
u(ct)e−rt dt (7)

=

∫ T

0
U dt + V

∫ T

0
u(ct)e−rt dt (8)

=

∫ T

0

(
U + Vu(ct)e−rt) dt (9)

and the problem becomes one of maximizing (9) over T and the time path of c subject
to (2), (3), and (6). This is a standard problem of optimal control theory.

The solution to this problem is obtained by forming the Hamiltonian

H = U + Vu(ct) e−rt + `t(1St +11St(ct)) (10)

where `t is the adjoint, or costate, variable. The necessary conditions for optimality are
then

0 =
mH
mc

= Vu′e−rt + `t 11S ′t (11)

− ˙̀t =
mH
mS

= 0 (12)

0 = H (T ) (13)

where differentiation with respect to c is denoted by the prime symbol, ′, and differen-
tiation with respect to t is denoted by a raised dot. Using the standard interpretation
of costate variables (see Léonard and Long 1992 section 4.5.1), the variable ` is the
“shadow value” of the entropy constraint, and one would expect ` < 0 because increases
in S decrease rather than increase welfare. (In a model of profit-maximizing firms, −`
would be related to the socially-optimal “entropy tax” to be levied on firms so that they
appropriately internalize their entropy externality, because without government inter-
vention, profit-maximizing firms would treat ` as zero, since they do not care about
their effect on how long society lives.) From (11) and (12) one obtains

u′

11S ′
=
−`
V

ert . (14)

In other words, in contrast to the standard Hotelling Rule result that an extractive firm’s
marginal profit rises at the rate of interest, here what rises at the rate of interest is
marginal utility (or marginal instantaneous social welfare) divided by marginal 11S.

For example, suppose that u(c) =
√

c and 11S(c) = c2, so there is diminishing
marginal utility of consumption and an ever-increasing marginal entropy externality as

8Writing W (T , y) = q(T ) + Vy and interpreting q(T ) as a “scrap value” function will not work because
since the terminal value of S is fixed, q would not imply any new necessary condition for an optimum. See
p. 227 of Léonard and Long (1992).
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c rises—quite reasonable second-derivative conditions in the present context. From (11)
and (12) we find that

ct ∝ e−
2
3 rt

whereas if there were no entropy effect (11S ′ = 0),

ct ∝ e−2rt . (15)

So in this example the effect of the entropy constraint is to slow the rate at which
consumption falls (at every date including the present).

This model can be extended in interesting ways. In one extension, there are two
production processes available to produce the consumption good, and each of the pro-
duction processes has a different functional form for consumption’s effect on entropy.
For example, “production process one” produces output c1, “production process two”
produces output c2, and c1 and c2 are perfect substitutes in consumption, so the model
becomes

max
∫ T

0
[U + Vu(c1 + c2)e−rt] dt (16)

subject to (2), (3), and

Ṡt = 1St +11S1(c1) +11S2(c2) . (17)

The necessary conditions for a maximum become (12), (13), and 0 = mH /mc1 and
0 = mH /mc2 for the new H . Combining the last two of these conditions results in

11S ′1 = 11S ′2 (18)

so at the optimum, the marginal effect which increasing c1 has on increasing 1S must
be the same as the marginal effect which increasing c2 has on increasing 1S, a very
intuitively appealing result.

As a final extension of the original model, suppose the “stuff” consumed is an
exhaustible resource whose supply is fixed. Denote the stock of this resource at any
given time by xt and denote the resource flow by qt. The problem in full becomes

max
qt ,T

∫ T

0
[U + Vu(qt)e−rt] dt such that (19)

S0 = 0 (2)

ST = HDE (3)

Ṡt = 1St +11St(q) (20)

x0 = fixed (21)

ẋt = −qt (22)

xt ≥ 0 and qt ≥ 0 for all t . (23)
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The Hamiltonian becomes

H = U + Vu(qt)e−rt + `t(1St +11St(qt)) − _t qt (24)

with _t being the second adjoint variable. The first-order conditions are

0 =
mH
mq

= Vu′e−rt + `t11S ′t − _t (25)

− ˙̀ =
mH
mS

= 0 (26)

−_̇ =
mH
mx

= 0 (27)

0 = H (T ) . (28)

From (25), (26), and (27),
Vu′ = (_ − `11S ′) ert . (29)

The contrast with the standard Hotelling Rule result is that the latter lacks the 11S ′

term, representing the new entropy constraint. Since one expects ` < 0, the right-hand
side of (29) represents a larger wedge between u′ = 0 (which is the unconstrained opti-
mum) and the optimal u′ than would be the case without the entropy constraint. In other
words, adding the entropy constraint would have the same effect as decreasing the initial
stock of the exhaustible resource: at each date (including the present), consumption of
the resource will be less than it would otherwise have been.

4. How Important is this Entropy Constraint?
The previous section has proven that the question “how important is this entropy con-
straint suggested by Georgescu-Roegen?” is equivalent to the question “what is the
magnitude of the shadow value ` on the entropy constraint,” which in turn depends on
the answer to the question “what is the form and magnitude of 11S(c)?”

Some qualitative conclusions are easily reached: the more often 11St is positive,
the more likely it is for the entropy constraint to be binding. Also, the ratio of 11S(c)
to 1St will be much smaller if the system is defined to be the Earth and the entire Sun,
instead of being defined as the Earth and its coupled spherical sector of the Sun.

Quantitative estimates of 1St for a system including just the Earth go back at least
to Aoki (1983). Kåberger and Månsson (2001 p. 168, 175) write that the power output
of the Sun per unit area of its surface is fT 4

s where Ts is the temperature of the Sun
and f is the Stefan-Boltzmann constant; the area of the Sun’s surface is 4cR2

s where
Rs is the radius of the Sun; and “the fraction of that radiation impinging the Earth’s
atmosphere is given by cR2

e/(4cR2)” [using slightly different notation] where Re is the
radius of the Earth and R is the distance from the Sun to the Earth. Using m for meters,
f = 5.6710 × 10−8 W/(m2K4), Ts = 5760 K, Rs = 6.9 × 108 m, Re = 6.4 × 106 m, and
R = 1.5×1011 m, Kåberger and Månsson (op. cit. p. 175) continue in the following way,
where I correct the typographical error in the left-hand side of their equation (5):
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Approximating further, by assuming that the entropy flow is the energy
flow divided by the temperature, the flow of entropy impinging on the at-
mosphere is given by

fT 3
s

R2
s

R2 cR2
e = 0.03 PW/K , (KM-5)

that is, 3 × 1013 W/K. They continue (with the temperature of the Earth Te = 278 K):

Assuming also that the Earth radiates as a black body. . . , and assuming the
same relation between energy and entropy flow as above, we get the flow
of entropy from the Earth as

fT 3
e 4cR2

e = 0.63 PW/K [ = 6.3 × 1014 W/K] (KM-6)

. . . . Note that the temperature of the Earth used in this expression must be
compatible with the energy balance requirement for the model. . . . We see
that the Earth emits more entropy than it receives. The difference, 0.6 PW/K
[= 6×1014 W/K], corresponds to the rate of entropy production on the Earth.

Since our purposes are rough, for us, Kåberger and Månsson’s results are just as good
as those coming from more accurate models.9 They continue:

The rate of commercial energy use of the human society is ≈10 TW. If
we assume that the energy is converted to heat at Earth temperature, the
corresponding entropy production is 0.04 TW/K. The natural rate of entropy
production is 15 000 times larger. Even considering that only about half
the solar radiation avoids reflection and absorption in the atmosphere, the
natural entropy production at the surface of the planet is ≈7500 times the
production of entropy by the human society.

Limiting anthropogenic entropy production to that coming from “commercial energy
use” is restrictive; a more complete mathematical description of anthropogenic entropy
production would include more sources. However, a more inclusive analysis may not
change the numbers much.

9If E stands for energy per unit time then Aoki (1983), following the work of Planck (1959) on the
entropy of radiation (that is, of photons), calculates the entropy flow due to the sun shining on the earth
correctly as (4/3) E/T instead of Kåberger and Månsson’s E/T (for example, there is radiation pressure
to consider; see Appendices A1 and A1.1 of Wu and Liu (2010)). Aoki also imposes “the energy balance
requirement for the model” which Kåberger and Månsson do not impose; but since Aoki retains the
assumption that the Sun and the Earth are blackbodies, imposing the energy balance requirement forces
Aoki to use a less realistic Te = 254 K. Aoki obtains “the net amount of radiation entropy absorbed by
the Earth per unit time” as 6.055 × 1014 W/K. A much more complicated, modern calculation by Wu and
Liu (op. cit.), which among many other advances does not assume the Earth to be a blackbody, gives “the
overall Earth’s entropy production rate from 6.481 × 1014 to 6.547 × 1014 W/K” (ibid., abstract). Even Wu
and Liu’s calculations leave some things out, such as the entropy produced by processes in the Earth’s
molten core.
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In our model, 1St is the natural entropy change of the Earth plus the natural entropy
change of part of or all of the Sun, making our 11St/1St even smaller than Kåberger
and Månsson’s.10 This suggests that 11St/1St is so small as to be unimportant.

The model of Section 3 includes no constraints on the final time T besides 0 <

T < ∞, but astronomers tell us that changes in the Sun may make life on the Earth
impossible well before the Sun’s “heat death.” This may not happen (see Appell 2008),
and even if it does, life on other planets in the solar system may be possible, in which
case no additional constraints on T are needed as long as the system is extended to
include those other planets; but if evolutionary changes in the Sun do constrain T in
this additional way, it is possible that that constraint will be binding and therefore that
the shadow value ` of the entropy constraint will be zero.

Although the magnitude of ` can still be considered to be an open empirical ques-
tion, as of now, evidence points to `’s absolute value being so small that its practical
importance is negligible.

5. The Methodology
By approaching the question of entropy’s constraint on economic growth using a
Hotelling model I have adopted an approach scorned by Georgescu-Roegen (1979),
who wrote:

[concerning] the famous 1931 article of Harold Hotelling. Beautiful mathe-
matical piece though that article is, it set a fallacious pattern of approach to
the economics of exhaustible resources. (p. 101)

Georgescu-Roegen was right that Hotelling’s mechanistic approach is limited, and that
arithmomorphic models are incapable of capturing important aspects of reality.11 One
can only welcome broader ways of thinking about environmental problems, as pointed

10The difficulty with limiting an analysis to the Earth is that the heat death condition for the Earth might
be reached while the Sun was still far from its heat death; in other words, such a model would imply that
industrial civilization cannot exist on the flow of solar energy alone (together with materials on Earth that
will exist as long as the planet does). Georgescu-Roegen felt this was true. However, such a skeptical out-
look on the possibilities of technological progress, while it might be prudent, is not demanded by science.
Georgescu-Roegen’s (1971 pp. 299, 428–9) skeptical predictions about technological progress in bioengi-
neering have been largely refuted in the years since. For example, while we still have no “nanotweezers,”
we can do genetic engineering, and we do have “molecular motors” (see Astumian 2001)—so predictions
of any kind (skeptical or hopeful) about technological progress are hazardous. Since therefore industrial
civilization may be able to exist on the flow of solar energy alone (with whatever permanently-available
materials Earth will have), the Earth alone is not the appropriate system to analyze when investigating
entropic constraints definitely demanded by science.

11This realization has also been expressed in the popular press. Daniel Yankelovich coined the term
“the McNamara fallacy” (after US President Lyndon Johnson’s Secretary of Defense Robert McNamara)
to describe the following reasoning: “The first step is to measure what can be easily measured. This
is okay as far as it goes. The second step is to disregard that which cannot be measured, or give it an
arbitrary quantitative value. This is artificial and misleading. The third step is to presume that what cannot
be measured really isn’t important. This is blindness. The fourth step is to say that what can’t be easily
measured really doesn’t exist. This is suicide.” (Quotation from an interview quoted in “Adam Smith”
[pseudonym of George J. W. Goodman], Supermoney, New York: Random House, 1972, p. 290.)
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out by Norgaard (2010) and Kosoy and Corbera (2010). However, Georgescu-Roegen’s
insistence that the Entropy Law is a qualitative, not quantitative, statement is not cor-
rect, as shown by the example at the beginning of Section 2. Furthermore, Georgescu-
Roegen’s valid point about entropy which was quoted in the introduction can be cap-
tured, more or less in its entirety, in the mechanistic, Hotelling-type model of Section 3,
and Georgescu-Roegen quite rightly praised “the immense satisfaction which Under-
standing derives from arithmomorphic models” when they are appropriate (Georgescu-
Roegen 1971 p. 332). In addition, nonarithmomorphic models are imperfect as well,
being less precise and therefore often harder to interpret, as Georgescu-Roegen (1971
p. 331) himself readily admitted. Finally, constructing an arithmomorphic model of
Georgescu-Roegen’s ideas seems to be a fruitful path towards increasing interest in
his ideas by making them clearer to understand, particularly since one of Georgescu-
Roegen’s (1979 p. 101) primary objections to Hotelling’s model can be fixed in the
framework of this paper by taking the rate of discount to be zero.12

At first glance this paper may not seem to have much in common with the work of
Raine et al. (2006), Foster (2011), or Hermann-Pillath (2011, 2015). However, the key
variable of concern in Section 3, Ṡt, the change in entropy, could be called the rate of
entropy production.13 Thus, Section 3 is unequivocally a work of nonequilibrium ther-
modynamics, following in the tradition of Ilya Prigogine (see e.g. Prigogine and Stenger
(1984)), which was carried forward by Wicken (1987 p. 115) and Fry (1995), and in
which Raine et al., Foster, and Hermann-Pillath work. A recent treatment is given in
Martyushev (2013), in which the question is whether, in nonequilibrium systems, nature
might maximize Ṡt under certain constraints and minimize Ṡt under other constraints,
but in the context of “some small element of the system volume in a relatively small
time interval” (p. 1162), so that, whatever the result of this line of inquiry and however
useful it might be to understand not only simple physical systems but also biological
evolution, it does not contradict the freedom which Section 3 assumes humans might
have to influence Ṡt in a global context.

6. Conclusion
Nicholas Georgescu-Roegen thought that one of the ways in which the Second Law of
Thermodynamics was important for economics was that the economy has a “long-run
entropic problem,” namely that human activity hastens the pace at which the Earth
approaches the forbidding state of thermodynamic equilibrium. However, he thought
that it was not useful to express Entropy-Law constraints arithmomorphically, so he
never expressed the long-run entropic problem in a mathematical model. Since we have
fewer methodological compunctions, in Section 3 we did construct such a model. The

12For a somewhat skeptical view of Georgescu-Roegen’s methodological innovations see Samuelson
(1999, pp. xii, xv).

13I do not call it that in Section 3 to avoid criticisms such as that of Lucia and Grazzini (2015 p. 7788):
“Moreover, we must foreground how the thermodynamicists usually use the terms ‘entropy generation’
and ‘entropy production’. However, nothing is really produced or generated; entropy varies in relation to
energy and mass fluxes and to irreversibility, but it is not produced or generated.”
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model is physically correct and economically closely related to standard Hotelling-type
optimal control analyses. The economic cost of the long-run entropic constraint is the
constraint’s shadow value. By the end of Section 3, by rejecting Georgescu-Roegen’s
methodological compunctions, we had confirmed Georgescu-Roegen’s theoretical con-
ception of a long-run entropic problem.

While an issue may be interesting in theory, it is also important to ascertain if it
is important in practice. Section 4 took this next step, asking how large Section 3’s
shadow value of the long-run entropic constraint is likely to be. It concluded that
that shadow value is probably indistinguishable from zero. That clearly contradicts
Georgescu-Roegen’s feelings about the importance of the long-run entropic problem.

Georgescu-Roegen’s work is of foundational importance for Ecological Economics,
but it is not flawless. This paper covered his “entropy as a scarce stock” conception, and
even correcting that to “entropy change as a scarce stock,” this paper still only partially
validates Georgescu-Roegen’s thoughts on the matter. In the Introduction we mentioned
that framing “entropy as disorder,” which Georgescu-Roegen and many others did, is
an even less useful idea. However, there is more in Georgescu-Roegen’s work than just
these two ideas, and there are more connections between entropy and economics than
just these two ideas. The latter are being increasingly well understood14, but there is
more careful work to be done in ‘separating the wheat from the chaff’ in the former.
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