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Abstract. Calculating, for a fixed asset allocation, completely-Safe
Withdrawal Rates over various historical periods of one fixed length
generates a “SWR” distribution. Combining its minimum, or mean
and standard deviation, with those of other allocations implies a
maximin portfolio, or a SWR Mean/Standard-Deviation Frontier.
Considering portfolios only of Treasurys of one constant matu-
rity, the lowest-withdrawal-variance asset was sometimes not the
shortest-maturity, and sometimes was the longest. Constructing
most subperiods, these anomalies were very rare for real SWRs and
occurred about one-fifth of the time for nominal SWRs, happening
when money-market yields changed greatly.



Cash and other money-market instruments are the lowest-risk fixed-income as-
sets for many purposes, such as for a short-term store of value or for rebalancing
a portfolio which includes stocks. However what is low-risk for those purposes
may not be so for a retiree spending down fixed-income assets over a period of
several years. Also, most analyses of retiree spending focus on portfolios includ-
ing stocks, but some people choose or endeavor to finance expenditures strictly
from fixed-income instruments, as was common prior to the mid-twentieth cen-
tury (Howell 1958 p. 267). For these reasons it is useful to conduct a “‘safe
withdrawal rate” type of analysis for a broad range of fixed-income maturi-
ties without including equities. The first section of this paper does this, finding
the minimum constant withdrawal rate, but then broadens the analysis to look
also at the mean constant withdrawal rate and its standard deviation. The fron-
tiers generated by this analysis show occasional counter-intuitive situations,
where longer-term instruments yielded lower-standard-deviation withdrawals
than shorter-term instruments. The second section of this paper explores how
to explain those anomalies.

Investigating in more detail the fixed-income portion of a retiree’s portfolio
is suggested in Guyton (2015), following Kitces and Pfau (2015), but this paper
goes further because it ignores stocks, as does the (quite different) asset-liability
matching framework. This paper also ignores bonds with credit risk or currency
risk in order to focus on the role of bond maturity.

1. The Base Case

The instruments we analyze in this paper are U.S. Treasury 13-week (“three
month’) and one-year bills, three-, five-, and ten-year notes, and 20-year bonds.
We may refer to any of these as a “bond” and we abbreviate them, respectively,
“3mo,” “lyr,” “3yr,” “Syr,” “10yr,” and “20yr,” dropping the last letter of each
when labeling figures. We obtain constant-maturity yields for these instruments
for each year from 1955 to 2017 from the Federal Reserve Bank of St. Louis’s
economic database FRED, https://fred.stlouisfed.org. Figure 1 shows
these yields converted to continuously-compounded (“logarithmic”) rates, and
Figure 2 shows those rates adjusted for inflation as measured by CPI-U. Consid-
ering data in annual segments as in the graph, nominal yields reached their max-
imum in (the start of) 1981 (3mo and 1lyr bills) or 1982 (the other instruments)
and their minimum in 2012 (3mo and 1yr bills) or 2013 (the other instruments).
The highest real yields were in 1982 and the lowest were in 1974.

This paper’s Appendix shows how to derive the total return of each in-
strument from its yields. The continuously-compounded total nominal returns
which result are shown in Figure 3, and real returns are shown in Figure 4. The


https://fred.stlouisfed.org
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Figure 1. Continuously-compounded nominal yields, 1955-2017. Along the solid ver-
tical line near 1993, from bottom to top: three-month bills, one-year bills, three-, five-,
and ten-year notes, and twenty-year bonds.
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Figure 2. Continuously-compounded real yields, 1955-2017. Along the solid vertical
line near 1993, from bottom to top: three-month bills, one-year bills, three-, five-, and
ten-year notes, and twenty-year bonds.

mean and standard deviation of each of the six nominal series is illustrated by an
open circle in Figure 5 and of each of the real series by an open circle in Figure 6.
Measuring risk by standard deviation (acknowledging that can be contested, cf.
footnote 6 later), the open circles of Figures 5 and 6 confirm the conventional
wisdom about the relative riskiness of different maturities of bonds: the small-
est standard deviations were from three-month bills, the largest were from the
20-year bond, and standard deviation was monotonically increasing in bond
maturity, although the gap between the three-month bills and the 1-year bills
was very small. (The lines joining the open circles in Figures 5 and 6 are not
efficient frontiers, which would require a mix of instruments, but simply straight
lines drawn to help visualize how withdrawal rate and its standard deviation
vary with maturity.)
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Figure 5. Standard deviation and mean based on the nominal returns of 1955-2017.
Open circles: bonds, from Figure 3. Solid circles: 7 = 10 withdrawals, starting dates
1955-2008, from Figure 7. X’s: T = 20 withdrawals, starting dates 1955-1998, from
Figure 9. Asterisks: T = 35 withdrawals, starting dates 1955-1983.
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Figure 6. Standard deviation and mean based on the real returns of 1955-2017. Open cir-
cles: bonds, from Figure 4. Solid circles: T = 10 withdrawals, starting dates 1955-2008,
from Figure 8. X’s: T = 20 withdrawals, starting dates 1955-1998, from Figure 10.
Asterisks: T = 35 withdrawals, starting dates 1955-1983, from Figure 11.



We wish to study the constant level “w” of end-of-year withdrawals each of
these instruments could have supported while depleting an initial $100 over each
10-, 20-, or 35-year period. A ten-year period would correspond to a rather short-
term need for income, such as “tiding over” between retirement and receiving
Social Security payments, or when the investor is at a very advanced age, while
a twenty-year period resembles how long one might wait for a deferred income
annuity to begin, or might be used by an investor of less advanced age. Bengen’s
original paper on safe withdrawal rates (1994 p. 173) implicitly used a 33-year
period, based roughly on life expectancy at age 65. While we include many
results for a 35-year period, there are only twenty-nine overlapping 35-year
periods in our data, and having so few observations limits our ability to say
much about how w varies over time (about “risk”). Bengen’s data started in
1926 so he would not have faced that problem, but his data source only had half
as many kinds of Treasury bonds.

To formally define the constant withdrawal amount w, let the balance at
date 7 be x; and let the continuously-compounded (“logarithmic”) rate of return
in the period leading up to date ¢ be r,_1. Choose w to satisfy:

x1 =100
xx=e"'x_1—w for2<r<T+1,and (1D
xr+1 =0 for T equal to 10, 20, or 35.

Given the returns r; a root-solving algorithm can solve (1) for w, or one can use
the analytical solution, which turns out to be’ w = 100 eXrm17 / (1451 | ¢Xiern 7).
Taking x; = 100 means that, for example, a withdrawal amount of w = $10 im-
plies a withdrawal rate of 10%, so we can use withdrawal “amounts” and “rates”
interchangeably. If all the returns were zero then w = x1/T, i.e.., $10 or 10%
for T =10, $5 or 5% for T = 20, and about $2.86 or 2.86% for T = 35. Each
time period generates a w, so different time periods generate a distribution of
w’s. Bengen assumed a withdrawal rate and found a distribution for how long
withdrawals could occur. In the notation of (1), this would be like choosing w
and for that w finding a distribution of 7’s. Closely related to Bengen’s ap-
proach is what is often done now: assuming a withdrawal rate w and finding
from the distribution of 7’s what percentage of them lie beyond a given horizon,
that percentage being the strategy’s “success rate” for that horizon. By contrast
we assume a fixed length of withdrawals and find a distribution on withdrawal
rates/returns. None of these methods is inherently superior to the others, but
having a distribution on returns rather than on years allows us to use a famil-
iar tool, the mean-vs.-standard-deviation graph with the mean of some return

‘Referee: For a
not-to-be-
published
derivation, see
the last page of
this document.



measure (in our case, w) on one axis and that measure’s variance or standard
deviation on the other axis.!

For ten-year withdrawals (7" = 10), the first observation represents with-
drawals at the end of years 1955, 1956, ..., 1964; the second observation rep-
resents withdrawals at the end of years 1956, 1975, ..., 1965; and so forth.?
These ex post feasible constant annual payments over ten years are shown in
Figure 7 using nominal returns and thus obtaining withdrawals that are constant
in nominal terms, and in Figure 8 for real returns thus obtaining withdrawals
that are constant in real terms (withdrawals which would have been increasing
in nominal terms at the rate of inflation). The withdrawal rates over twenty-year
periods (T = 20) are shown in Figure 9 for withdrawals constant in nominal
terms and Figure 10 for withdrawals constant in real terms. Figure 11 shows
withdrawals constant in real terms for thirty-five year periods (7" = 35).

It has been common since the pioneering work of Bengen (op. cit.) to focus
in this context on the minimum withdrawal rate. The minimum withdrawal rate
for each series in Figures 7, 8, 9, 10, and 11, as well as for the unillustrated
case of nominal withdrawals for thirty-five-year periods, is given in Table 1. As
explained earlier, in the case of the “real” columns this is only the amount of
the first withdrawal, and the subsequent ones rose at the rate of inflation. Sev-
eral values in the table reflect lows that happened quite recently. The highest
minimum real withdrawal rates were generated by one-year bills, which also
generated the highest minimum nominal withdrawal rates for thirty-five-year
periods; three-year notes generated the highest minimum nominal withdrawal
rates for ten- and twenty-year periods. These are the investments a maxi-min
investor would have done best choosing. The worst (lowest) minimum with-
drawal rates for all six categories were generated by twenty-year bonds, in a tie
with three-month bills in the 7 = 10 nominal case.

'In Bengen’s framework one could graph the mean and standard deviation of the “number of
years until funds ran out” for different withdrawal rates. Bengen had no need to do that because
he was only interested in the minimum of that distribution, not in its mean or standard deviation;
we study all those aspects of w’s distribution.

*Using such overlapping periods has the disadvantage of using observations which are sharing
much of the same data, but has the advantage (over using Monte Carlo simulations) of retaining
all the time-series properties of the return series. There is no assurance the fact that fixed-income
securities pay on a contractually-specified basis is captured either by the autoregressive moving
average process of order 1 used by Cooley et al. (2003, see p. 119) nor by the “vector autore-
gressive specification [“VAR”]. .. such that short-term first-order auto- and crosscovariances are
preserved” used by Brouwer and de Ruiter (1997, abstract and pp. 10—11, my emphasis). Sangv-
inatsos and Wachter (2005 p. 181) write that “estimating bond returns using a VAR gives up the
extra information resulting from the no-arbitrage restriction on bonds, namely that bonds have to
pay their (nominal) face value when they mature,” though following their alternative is beyond
the scope of this paper.
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1955 1965 1975 1983

Figure 11. Real withdrawals for thirty-five-year periods with starting dates of
1955-1983.
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T = 10 nominal | 7 = 20 nominal | 7 = 35 nominal
20yr || 10.2 ’55-’64 | 5.6 ’55-74 4.1 °55-’89
10yr || 10.8 ’55-°64 | 6.2 ’55-74 4.8 °55-’89
Syr 11.3 ’55-’64 | 6.7 °’55-74 5.3 ’55-’89
3yr 11.5% ’55-°64 | 7.0* ’55-74 5.6 ’55-’89
lyr 10.5 °08-17 | 6.9 ’98-17 5.7*% ’55-’89
3mo || 10.2 ’08-"17 | 6.6 ’98-"17 54 °’55-’89
T = 10real T = 20 real T = 35real
20yr || 7.0 °73-’82 | 3.6 ’65-’84 2.3 ’55-°89
10yr || 8.0 ’73-’82 | 4.2 ’65-'84 2.8 ’55-’89
Syr 8.6 73’82 | 48 ’65-'84 3.2 ’55-’89
3yr 89 ’73-°82 | 5.1 ’65-'84 3.5% ’55-89
lyr 9.3*% 7382 | 5.3* *68-"87 3.5% ’55-’89
3mo || 9.3* °73-’82 | 5.2 ’67-86 3.3 ’55-’89

Table 1. Minimum withdrawal rates, 1955-2017. The accompanying years show the
period when the minimum occurred. Asterisks denote the highest minimum withdrawal
rate in each column.

Some (quite risk-averse) investors may only care about the minimum with-
drawal rates of Table 1. For other investors, in particular those whose attitudes
towards risk can be captured by standard deviation, note that since each of the
series in Figures 7, 8, 9, 10, and 11 has a mean and standard deviation, one can
form for each one a “withdrawal” mean-standard-deviation frontier. These are
graphed in Figures 5 (nominal returns) and 6 (real returns), using solid circles
for T = 10, X’s for T = 20, and asterisks for 7 = 30. In these two figures
the gap between the standard deviation of withdrawals (w) from a portfolio
of 20-year bonds and a portfolio of 3-month bills was much less than the gap
between the standard deviation of returns from a portfolio of 20-year bonds
and a portfolio of 3-month bills.> Otherwise, for T = 10 and T = 20 there
is little surprising in these results: the mean return and standard deviation of
withdrawals was monotonically increasing in bond maturity, and the gain to
extending maturity beyond five years was quite modest but still positive.

Because the T = 35 case has relatively few observations, as illustrated in
Figure 11, it is unclear how much importance to put on the fact that return in
the T = 35 graphs of Figures 5 and 6 was increasing in maturity and in standard
deviation only until the five-year maturity, beyond which return was decreasing
in maturity and in standard deviation. Perhaps the more interesting observation

3This is not because bond returns are mean-reverting; Campbell and Viceira (2002 Fig. 4.2(a)
and p. 108) found that they were mean-averting.

16



from those results is the extent to which the initial withdrawal rate falls from
Figure 5 to Figure 6. Inflation from 1955 to 2017 averaged a continuously-
compounded 3.53%, which is the difference between the height of the open
circles in Figure 5 and in Figure 6. The difference between Figure 5 and 6’s
mean 7" = 35 withdrawal rate was, for three-month, one-year, three-year, five-
year, ten-year, and twenty-year instruments, respectively, approximately that
much: 3.6, 3.7,3.7,3.7, 3.5, and 3.3 percent. In other words, keeping real rather
than nominal withdrawals constant decreased initial withdrawals by roughly
one half.* Protection from inflation for shorter time periods was less expen-
sive. For T = 20, the difference between Figure 5 and 6’s mean withdrawal
rate was, in the order of instruments used above, 2.8, 2.9, 3.0, 3.0, 2.9, and 2.9
percent, and for T = 10 it was 2.4, 2.5, 2.5, 2.5, 2.5, and 2.5 percent.5 In the
market for single-premium immediate annuities, it is difficult to find providers
of inflation-indexed versions, presumably because of lack of customer demand,
which is turn is presumably driven by how much less inflation-indexed SPIAs
pay initially compared to non-inflation-indexed ones. On the other hand the U.S.
government’s Social Security retirement program, which is inflation-indexed, is
one of the government’s most popular programs, despite the fact that if it were
not inflation-indexed its initial payments could be quite a bit higher (keeping its
actuarial fairness constant). It could be that consumers generally do not know
how very much less money one could have afforded to spend in the last several
decades if one had wanted to protect one’s future self from inflation.

2. Anomalies and Endpoint-Dependence

Because even broad conclusions in finance are often endpoint-dependent, we re-
ran some of the analyses using less than the full data set. Figures 12 (nominal)
and 13 (real), on the one hand, and Figures 14 (nominal) and 15 (real), on the
other hand, show the results of dividing the data into two parts, pre-1982 and
post-1981: an initial era of mostly rising interest rates and inflation and a final
era of mostly declining interest rates and inflation.

These graphs have unsurprising results for mean withdrawal amounts: the
early period’s rising interest rates were bad for withdrawals from long bonds
and the later period’s falling interest rates were good for withdrawals from long
bonds; vice versa for short bonds.

In fact the results are so strong that we can say something even about in-
vestors who do not satisfy the rather restrictive assumptions needed to assume

“The ratios, in the order given above, were: 0.51, 0.52, 0.53, 0.54, 0.54, 0.55.
5The ratios were 0.67, 0.67, 0.68, 0.69, 0.69, and 0.70 for T = 20 and 0.82, 0.82, 0.82, 0.82,
0.82, and 0.83 for T = 10.

17



log return; withdrawal rate

14
3
13 7 1}"2]3m
5
/d rate
124 °10 s
. Y 13.5 3
_ 13.0 lye "¢ 3m
1o 20y 12.5 - AR *5y
10 12.0 - - 1oy
11.5 20y
9 — 11.0 4 [
stnd. dev.
10.5 T 1 T \
8 06 07 08 09 1.0
’7 —
6 —
ly
5 3m y
Sy
4 —
3 10y
27 20y
1 —
stnd. dev.
0 w w w w w w w w w w \

o 1 2 3 4 5 6 7 8 9 10 11
Figure 12. Standard deviation and mean based on the nominal returns of 1955-1981.

Open circles: pre-1982 bonds, from the early part of Figure 3. Solid circles: pre-1982,
T = 10 withdrawals, starting dates 1955—-1972, from the early part of Figure 7.
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Figure 13. Standard deviation and mean based on the real returns of 1955-1981.
Open circles: pre-1982 bonds, from the early part of Figure 4. Solid circles: pre-1982,
T = 10 withdrawals, starting dates 1955—-1972, from the early part of Figure 8.
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Figure 14. Standard deviation and mean based on the nominal returns of 1982-2017.

Open circles: post-1981 bonds, from the late part of Figure 3. Solid circles: post-1981,
T = 10 withdrawals, starting dates 1982-2008, from the late part of Figure 7.
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Figure 15. Standard deviation and mean based on the real returns of 1982-2017. Open
circles: post-1981 bonds, from the late part of Figure 4. Solid circles: post-1981,
T = 10 withdrawals, starting dates 19822008, from the late part of Figure 8.

21



that they care only about the mean and variance of outcomes.® All expected-
utility-maximizing investors, regardless of other characteristics of their utility
functions, will prefer a distribution F' over another distribution G if F' exhibits
“first degree stochastic dominance” (“FDSD”) over G, where “F exhibits FDSD
over G when for any fixed return 7, the probability that the realized return r
is greater than 7 is larger under F' than under G. In this case the cumulative
distribution function for F lies everywhere under (or, to the right—to larger
r’s) of G’s.” In the pre-1982 era, in both nominal and real analyses for T = 10,
twenty-year bonds were FDSDominated by all other instruments and ten-year
bonds would have been FDSDominated by all instruments (other than twenty-
year bonds) except for one data point. The other bonds could not be ranked by
FDSD. In the post-1981 era, in both nominal and real analyses for 7 = 10, all
of the instruments could be ranked by FDSD, with every maturity dominating
all shorter maturities. Since financial instruments usually cannot be ranked by
FDSD, that is a remarkably strong result. It is illustrated for the case of real
returns in Figure 16. The problem will all such results, even as strong as these,
is that they are so period-dependent that they may be useless in the future—as
indeed these post-1981 results would have been in the pre-1982 period.

As far as standard deviation of withdrawal amounts is concerned, Figures 13,
14, and 15 again have unsurprising results: standard deviation of withdrawal
rates was increasing in maturity. However, Figure 12 has a very surprising
ordering from smallest-to-largest standard deviation of withdrawals, as can be
read off of the inset within the graph: lyr, 3yr, 20yr, 3mo, Syr, and 10yr. Three-
month bills were “riskier” (or at least had a higher standard deviation) than
twenty-year bonds, when viewed as source of generating income (generating
withdrawals).

This raises a question of how common it was for three-month bills not to
be the “safest” (lowest standard deviation) source of withdrawals. Because of
the aforementioned sensitivity of results to endpoints, the most comprehensive
answer to that question involves investigating all possible choices of endpoints.

bSufficient conditions for “only caring about the mean and variance of outcomes” are having
quadratic utility, or facing outcomes which follow a multivariate normal distribution. The graphs
in this paper use standard deviation because it has the same units as return, and it is monotonically
related to variance, but any analysis requiring a more exact frontier should be graphed as a
function of variance instead of standard deviation.

"See e.g. https://en.wikipedia.org/wiki/Stochastic_dominance, which points out
that FDSD of F over G does not necessarily imply FDSD of “F mixed with another asset H” over
“G mixed with the same amount of H,” and that without assuming expected-utility-maximization,
“all investors preferring more return to less return,” regardless of other characteristics of their
utility functions, will prefer F' over G if F exhibits “statewise dominance” over G; “statewise
dominance” implies but is not implied by FDSD.
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Figure 16. Cumulative distribution of T = 10 withdrawals (1982-2008) for, from left
to right, three-month bills (dotted), one-year bills, three-year notes (dotted), five-year
notes, ten year-notes (dotted), and twenty-year bonds. Data 1982-2017.

The next five figures answer the question (for 7 = 10 and 7" = 20, nominal and
real, and T = 35 nominal) “which instrument generated the lowest-standard-
deviation withdrawals?” for every possible choice of endpoints in our data set
giving at least ten observations.® In the case of ten-year withdrawals (T = 10),
there are 1035 such periods, each shown in Figure 17 and 18. For example, in
Figure 17, in the very bottom left-hand corner, the first ten-year period begins in
1955 and ends in 1964 (where each of those dates represents the beginning of a
T-length-long series of years). In the case of twenty-year withdrawals (7" = 20)
there are 630 such periods, and in the case of thirty-five year withdrawals (T =
35) there are 210 such periods. The bond which generated the lowest-standard-
deviation withdrawals for each choice of endpoints is shown in Figure 17 for
the case of fixed nominal withdrawals and 7' = 10; in Figure 18 for the case of
fixed real withdrawals and 7 = 10; in Figure 19 for the case of fixed nominal
withdrawals and T = 20; in Figure 20 for the case of fixed real withdrawals
and 7 = 20; and in Figure 21 for the case of fixed nominal withdrawals and
T = 35. The unillustrated case of 7' = 35, real, gives a figure like Figure 21 but
filled everywhere with “C’s” except for two places, 1961-1973 and 1964-1973,
which both had a “1.” These five figures together with the unillustrated case are
summarized in Table 2.

For withdrawals fixed in real terms, in more than 97% of cases for 7 =
10, for T = 20, and for T = 35, three-month bills gave the smallest standard

8With fewer than ten observations it is difficult to conclude much about standard deviation,
which is also the reason the barely-twenty-one-years-old Treasury Inflation-Protected Securities
are not analyzed in this paper.
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CCcCcCccceceeececececececececececccececececcececcecececcecceccc
CCCcCcccceeecececcececcecececececceccececececceccececececcec
CCCCcCccCcccecceceececceccececcecececcecececceccececceccececcececcececcc
CCcCcccecceececececececcecececectii1ii1iiriecceccecceccec
CCcCccccecceececececceccececececececicecececececccecce
CCCcCcccecceececececcececcecececectit1ii1iriceccecceccec
CCCCccCccccecececececececeeecctrttrrrrccececcce
CCccccececeececececcececeececectii1iirracccc

1990 4 CCCCCCcCccCceececececeecececect1i1iriricecece
cccceccececcecececececcececceeeectit1ii1iritrice
CCCcccccececececececececcececeecrt1r11r1
CCCCcCccceccecececececececcececeecti1111
ccccecececceecececececceeceececti 11
Ccccceccececcecececececececcecececececti 1t
ccccecececcececcececcececceccecceccececcecct 1
cccceccecceccececcecceccecececcececcece
ccccececececcececececceccececececece
ccccecececcecececcecceccececcec .

1980 4 T 333C33 ccce C: cash/3 month T bills
TTTT 3333 1: 1-year T bills
TTT 333333 2 3venr T
TT333333333333 ot S-year 1 notes
3333333333333 : 5-year T notes
T333333CC333 - 10- T
TT333311111 - 10-year 1 notes
TT31111111 T: 20-year T bonds
[Ir1111111
1111111C

19704 111111C
TTTTT1
&IT T

3

1964 — 3 First Period Begins
T T T T T T
1955 1964 1970 1980 1990 1999

Figure 17. Instrument giving lowest standard deviation (among the choices listed)
for ten-year withdrawals fixed in nominal terms. Reading clockwise from the upper
left-hand corner, the date pairs with a box around them were or will be illustrated in:
Figure 5 (solid circles), starting dates 1955-2008; Figure 14, 1982-2008; Figure 22,
1996-2008; Figure 25, 1955-1967; Figure 12, 1955-1972.
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1955
|

1964 1970 1980 1990 1999
| | | | |

2008 —[Clcccccccecceccceccceccecccecccecccceccceccccecdckeccecccce d lccc

CCCCCCcCccCccCccceccecececececcecceccecceccececececceccececceccecccecceccececcc Cs5CC
CCCCCcCccCccceceecececececceccececcecececececcececcecceccececcecececcececceccecceccecceccecceccce

Lgst CCCCCcCccCccCcceccececececececcececcecceccecceccececceccececceccecceccecceccececcecececcccc
Period | cccccccccccccccccccccccccccccCcCcCcCcCcCccecececec

Begins

CCCCCCcCccCccCcceccececececececceccecceccececececcecceccececcecceccecceccecceccecececccc
CCCCcCcccccecececececcececcececcecceccecceccecceccecceccececcececceccececcececccc
CCCCCccCccccecececececcececcecececcecceccecceccececcecceccececcecceccecececececes

2000 1 CCCCLCcCcCcLceceececececcececceccecceccececcecceccececcecceccecceccccecceccce

CCCCCCcCccCccCccceccececececceceeccecececcecceccecceccecceccecceccececececcc
CCCCccCccceccecececececececcececcecceccecceccecececccececceccececececce
CCccccccececececececcececececcecceccecceccecececceccecceccececcececcc
CCCcCccCcccceccececececececcececceccececcececcecceccecceccececececceccecce
CCCCCccCccCccccececececececcecceccececececcecceccecceccecceccececcecce
CCcccccececececcecececceccececcececceccecceccecceccececceccecceccec
cccccceceececececcececceccecececceccecceccececcecceccececceccecce
CCcccccececececcececcecececcececceccecceccececcececcceccc
CCCCCccCccccecceccecececcecececceccecceccecceccecceccecccecce

1990 4 CCCCcCccCccecececececececcecececceccececcecececceccec

cccccecceecececcececcecececcecceccecceccecceccecceccececcecce
cccccecececececcececcececececcececcceccecceccecceccece
CCCCccCcccccecececececceccececceccecceccecccecce
cccccceceeececceccececceccecececceccecceccecc
ccccceceecececcececcececcececceccecceccececce
ccccceccececececceccecececceccececcececcce
cccceccececececececcecececcececececcc
cccccececeececcececcececceccecceccecc
cccceccececececceccececececcececcecec

1980 4 CCCCCCCCCCCCCCCCC C: cash/3 month T bills

cccceccecececcececceccecccec 1: 1-year T bills
ccceccecececceececececceccece
cccceccececcececececceccc
ccccececcecececcececece : 5-year T notes
cccceccecececcecececce
cccecceccececcecececcec
cccececceececcecece T: 20-year T bonds
[Clcceccececcc

cccccce

3: 3-year T notes

: 10-year T notes

1970 4 CCCCC3 3

1964 - C

cccceccece
ccccc
CcCCcCC
CCC

CcC

First Period Begins

T
1955

w w w w w
1964 1970 1980 1990 1999

Figure 18. Instrument giving lowest standard deviation (among the choices listed) for
ten-year withdrawals fixed in real terms. Reading clockwise from the upper left-hand
corner, the date pairs with a box around them were or will be illustrated in: Figure 6
(solid circles), starting dates 1955-2008; Figure 15, 1982-2008; Figure 23, 1996-2008;
Figure 13, 1955-1972.
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1955 1964 1970 1980 1989
| | | | |
1998 +[ClcccCcCcCcCcCccCccCcCcCCcCs 5CCCCCCCCCCCceceecce
CCCCCCCCCCCCCececececececececeecececececcececececcececce
CCCCCCCCCCCCCCCCcCececeeceececeececececececece
1@% CCCCCCCCCCCCCCCCC33CCCCCCCCCCCCC
gﬂ; CCCCCCCCCCCCCCcCececececececeecececececceccececece
&S | cccccceccecececcecececCce333cecececececeecee
CCCCCCCCCCCCCCC3333333CCCCCCC
CCCCCCCCCCCCCCCC3333333CCCCC
1990 { CCCCCCCCCCCCCCCCCC33333CCCC
CCCCCCCCCCCCCCCCCC333
CCCCCCCCCCCCCCCCCl1
CCCCCCCCCCCCCCCCCI11
CCCCCCCCCCCCCCCCC 1
CCCCCCCCCCCCCCCeCl 1
CCCCCCCCCCCCCcCeeecect
cccccecccececcecececceeccecececececi
cCccccccececcecececcecececceeccec
cccccccececceceeccececcececce ,
1980 { CCCCCCCCCCCCCCCCC C: cash/3 month T bills
cccccecccecececececcececece 1: 1-year T bills
33CCCCCCCCCCCCC
333CCCCCCCCCCC
l11CCcCcccccececcecece : 5-year T notes
1311CCCCCCCC
333311CCCCC
TTT3111111 T: 20-year T bonds
TT3111CCC
T11111CC
19704 TTT111C
TTTTTT
TTTTT
TTTT
TTT
TT
1964 4 T First Period Begins
[ [ [ [ [
1955 1964 1970 1980 1989

W W G
]
W
W
a
Q
a

— ek
k()
— 00 = D

3: 3-year T notes

: 10-year T notes

Figure 19. Instrument giving lowest standard deviation (among the choices listed) for
twenty-year withdrawals fixed in nominal terms. The date pair with the box around it
was illustrated in Figure 5 (X’s), starting dates 1955-1998.

26



1955 1964 1970 1980 1989
| | | | |
1998 +[ClccCcCCCCCcCcCcCcCcCCCCCCCCCCCCCCCCcececeecce
CCCCCCCCCCCCCCCCCCCCCceceeceececececeececece
CCCCCCCCCCCCCCCCCCcececeeceeceeceececececece
1@% CCCCCCCCCCCCCCCCCCCCCCCCCCCCCecece
gﬂ; CCCCCCCCCCCCCCcCecCcececececececececcececcecececcece
gis | ccccecececcecececceccecceccecececcececececcceecece
CCCCCCCCCCCCCCCCCCCCeeceeceececece
CCCCCCCCCCCCCCCCCCCCCCCCCCCC
1990 { CCCCCCCCCCCCCCCCcCcececececeeccece
CCCCCCCCCCCCCCCCCCCCCCCCCe
CCCCCCCCCCCCCCCCCCceeceeeece
CCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCcCccecececeeececceceeccececece
CCCCCCCCCCCCCCCCCCCCCC
CCcCcccccececceceecececcecececceeccece
CCCCCCCCCCCCCCCCCeee
Cccccccececceceeccecececceeccec
cccccccececceceeccececcececce ,
1980 { CCCCCCCCCCCCCCCCC C: cash/3 month T bills
cccccecccecececececececece 1: 1-year T bills
CCCCCCCCCCCCCCC
cccccecceccecccecceccececce
cccceccececcecececcecece : 5-year T notes
ccccecceccecceccecececce
ccccceccecceccecce
ccccceccl1111 T: 20-year T bonds
cccceciil
CCCCCCl11
1970 { CCCCCC 1
ccccecec
ccccece
cccce
ccc
CcC
1964 - C First Period Begins
[ [ [ [ [
1955 1964 1970 1980 1989

3: 3-year T notes

: 10-year T notes

Figure 20. Instrument giving lowest standard deviation (among the choices listed) for
twenty-year withdrawals fixed in real terms. The date pair with a box around it was
illustrated in Figure 6 (X’s), starting dates 1955-1998.
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1955 1964 1970 1974
| | | |

1983 H[Clccccccccecececceceececel111
ccccceccecececeeccececcececect i
ccccceccecececcecececceccecce
1980 4 CCCCCCCCCCCCcCeecee
ccccececcecececececceccecce

Uﬁ cccceccecceccececcececcececc
Efﬁscccccccccccccc

gs | ccccccececcccecc
cccceccecececececcecce
111Cccccecececce

l1cccccce C: cash/3 month T bills

11
l1111CCCCC _ '
l111CCCC 1: 1-year T bills
111
11

1970 — 1CCC 3: 3-year T notes

L1ec : 5-year T notes
TTTT : 10-year T notes
T: 20-year T bonds

1964 4 T First Period Begins

T T T
1955 1964 1970 1974

Figure 21. Instrument giving lowest standard deviation (among the choices listed) for
thirty-five withdrawals fixed in nominal terms. The date pair with a box around it was
illustrated in Figure 5 (asterisks), starting dates 1955—1983.
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T =10nom. | T =20nom. | 7T = 35 nom.
obs. % obs. % obs. %

3mo | 815 79 | 507 80 | 166 79
lyr | 89 9 |46 7 |29 14
3yr | 60 6 | 45 7 0 0
Syr || 31 3 2 0 0 0
10yr | 17 2 0 0 0 0
20yr | 23 2 |30 5 15 7

obs. || 1035 101 | 630 99 210 100
T = 10 real T =20 real T = 35 real
obs. % obs. % obs. %
3mo || 1018 98 620 98 208 99

lyr 0 0 10 2 2 1
3yr 3 0 0 0 0 0
Syr 14 1 0 0 0 0
10yr 0 0 0 0 0 0
20yr 0 0 0 0 0 0
obs. || 1035 99 | 630 100 | 210 100

Table 2. Number of subperiods in which each instrument gave the lowest standard
deviation (summary of Figures 17, 18, 19, 20, 21, and the unillustrated case of 7" = 35,
real). Percentages sometimes fail to total one hundred due to rounding.
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deviation, as they did in Figures 6, 13, and 15. For withdrawals fixed in nominal
terms, in only roughly 80% of cases (for 7 = 10, for T = 20, and for 7' = 35)
did three-month bills gave the smallest standard deviation, as they did in Figures
5 and 14 but as they did not do in Figure 12. In Figures 17-21, anomalies are
most likely to occur the further one is from the upper left-hand corner, which
means anomalies are most likely to occur with a smaller number of observations
(the number of observations increases going up and to the left).

In each one of Figures 7, 8, 9, 10, and 11, withdrawals from long-term bonds
appear more jagged than withdrawals from shorter-term bonds, so it is of interest
to investigate why riskiness as measured by standard deviation sometimes gives
the opposite conclusion.

Start by looking at cases using recent data, 1996 to 2017, corresponding
to the boxed entry near the upper-righthand corner of Figures 17 and 18. For
these years and 7' = 10, Figures 22 (nominal) and 23 (real) both show standard
deviations of withdrawals to be almost the same for all of the bond maturities.
Detailed analysis in Figure 22 shows three-month bills having a higher standard
deviation of withdrawals than five-year notes, ten-year notes, and (barely) even
twenty-year bonds. Figure 23 is not as extreme, with only five-year and ten-year
notes having lower withdrawal standard deviation than three-month notes, but
nevertheless this is not conventionally-anticipated behavior. The left-hand panel
of Figure 24 shows two of the time paths underlying Figure 22 and the middle
panel of Figure 24 shows two of the time paths underlying Figure 23. In those
panels one can see that although twenty-year withdrawals are intuitively more
jagged than the T Bills’ withdrawals, it is possible for them to have a smaller
standard deviation.

As these panels of Figure 24 show, this anomalous behavior was during a
time of strongly falling short-term yields (which is why the withdrawals based
on three-month bills fell sharply). To show that anomalous behavior can also
occur during a time of strongly rising short-term yields, consider 7 = 10 and
starting dates from 1955 to 1967 (the lowest “boxed” observation in Figure 17).
That time is illustrated in the right-hand panel of Figure 24 and in Figure 25.
The latter shows the anomalous behavior it generates: the withdrawals based on
three-month bills have a higher standard deviation than withdrawals based on
any of the other instruments. In this case, the high standard deviation of with-
drawals from three-month bills was due to a welcome rise in their yields, a rise
which kept down withdrawals from longer-term instruments (due to their capital
losses)—decreasing the longer-term’s standard deviation in an unwelcome way.
In the period with 19962008 starting dates shown in Figures 22 and 23, by
contrast, the high standard deviation of withdrawals from three-month bills was
due to the precipitous fall in their yields, a fall which kept up withdrawals from
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Figure 22. Standard deviation and mean based on the nominal returns of 1996-2017.
Open circles: bonds, from near the end of Figure 3. Solid circles: T = 10 withdrawals,
starting dates 1996—2008, from near the end of Figure 7. Standard deviations for 1y
and 3y withdrawals are 0.7001 and 0.7007, respectively.
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log return; withdrawal rate
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Figure 23. Standard deviation and mean based on the real returns of 1996-2017. Open
circles: bonds, from near the end of Figure 4. Solid circles: 7' = 10 withdrawals, starting
dates 1996-2008, from near the end of Figure 8.
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Figure 24. Examples of situations when withdrawals from twenty-year bonds had a
lower standard deviation than withdrawals from three-month bills. Left panel: Excerpt
of the 3m and 20y lines near the end of Figure 7, underlying Figure 22. Middle panel:
Excerpt of the 3m and 20y lines near the end of Figure 8, underlying Figure 23. Right
panel: Excerpt of the 3m and 20y lines near the beginning of Figure 7, underlying
Figure 25.

longer-term instruments (due to their capital gains)—decreasing the longer-
term’s standard deviation in a welcome way. The 19962008 period shows not
only in a mathematical sense but also in an intuitive sense that short-term bonds
can be a risky source of withdrawals. With the collapse of short-term yields
during the Great Recession, three-month and one-year bills during that time
gave a lower nominal withdrawal amount in Figure 7 (T = 10) than any other
instruments at any other time except roughly tying with twenty-year bonds at
the beginning of the data set. By contrast, short-term instruments at that time
did not do quite as badly, relatively speaking, when considering real returns
(Figure 8), or when considering 7' = 20 (Figures 9 and 10), but they still did
not do well. Living on the returns of short-term instruments during the Great
Recession was not easy and these results reflect that.

Conclusion

We have shown that a maxi-min investor spending from a portfolio of constant-
maturity Treasuries would have done best in real terms using one-year bills
based on 1955-2017 data. An investor who instead cared about the mean and
variance of potential income levels typically faced a tradeoff of a higher ex-
pected payoff with a greater standard deviation, although about 20% of the
time, this risk/return tradeoff was not present when analyzing nominal returns.
When analyzing real returns, the tradeoff was almost always present. When
the tradeoff was present, extending maturity from 10 to 20 years was usually
accompanied by a large increase in standard deviation and only a very small

33



log return; withdrawal rate

13 5
3y01y
12 -l5y**3m
* 10y w/d rate
13.0
11 4 €20
Y 1254 Sy ely
10 - 12.0 - *Sy 3m
11.5 4 *10y
9 - 11.0- 20y
10.5 +
_ stnd. dev.
8 10.0 w w w w \
7 0.40 045 050 0.55 0.60 0.65
6 —
57 3
ly 4 Sy
4 - 3m
10y
3 —
20y
2 —
1 —
stnd. dev.
0 w w w w w w w w w w \

0 1 2 3 4 5 6 7 8 9 10 11

Figure 25. Standard deviation and mean based on the nominal returns of 1955-1976.
Open circles: bonds, from near the beginning of Figure 3. Solid circles: T = 10 with-
drawals, starting dates 1955—-1967, from near the beginning of Figure 7.
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increase in average return. When the tradeoff was absent, it was usually a time
of great change in short-term interest rates, either a large increase, as in the
1960’s and 1970’s, or a large decrease, as during the Great Recession.

An important restriction of the strategies we have investigated is that they
keep fixed-income maturity constant. By contrast, if one thinks of retirement
spending as a sequence of liabilities, one could (if one has sufficient assets,
given current interest rates) ensure that each one is met by separately immuniz-
ing each with a zero-coupon Treasury created via the STRIPS program, or, in a
more complicated way, by using coupon bonds. (Immunization of real liabilities
using TIPS likely has to be done using coupon bonds because very few TIPS are
available stripped.) Such a portfolio is utilizing “cash-flow matching.” Moving
forward in time, the duration (or maturity) of the liabilities will shrink, and so
will the duration (or maturity) of the matched assets. The same shrinking of
duration will occur if the approach taken to immunization is to match investor’s
assets and liabilities in a less precise, easier-to-implement way, “duration match-
ing,” as in Brown and Jones (2011). These falling-maturity bond portfolios form
an important alternative to the fixed-maturity bond portfolios of this paper when
it comes to funding retirement spending, and they may put longer-term bonds
in a more positive light, as proposed by Campbell and Viceira (2001).

Appendix: Constructing Total Returns from Yields

To construct total returns we use the following constant-maturity series of annually-
compounded yields from the Federal Reserve Bank of St. Louis’s economic database
FRED mentioned at the start of Section 1: for 3-month bills, TB3MS (quarterly “end
of period,” 10/1/1954 to 10/1/2017); and for 1-year, 3-year, 5-year, 10-year, and 20-
year instruments, we use GS1, GS3, GS5, GS10, and GS20, respectively, all “annual
‘end of period’ 1/1/1954 to 1/1/2017.” (See the Board of Governors of the Federal
Reserve System (2018).) For all of these series, the “end of period” is not the last
day but the average of all the days in the last month. This is not ideal but series with
daily information do not start until 1962; for consistency we will not switch to them
for post-1962 results. This means our returns will differ from returns obtained using
“December 31 to December 31 or “January 1 to January 1 yields. Also note that the
constant-maturity yields are not directly observed in the market but are interpolated by
the Treasury from market data, which inevitably adds uncertainty to the figures.

The 20-year series is missing 1987—-1992, so for those years we interpolate the
20-year yield using the other maturities and FRED’s 30-year yield GS30. To avoid
oscillations in the interpolation we use the Steffen Interpolation method, which is a
cubic interpolation method guaranteed to be monotonic where the data are monotonic,
a property many other polynomial interpolation methods lack.’

°See https://mathematica.stackexchange.com/questions/14023/joining-and-in
terpolating-data-points/14040#14040; some alternatives are discussed in https://math
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From these yields, which are on an annually-compounded basis, we need to cal-
culate total returns. Treasuries other than Treasury bills pay semiannual coupons. For
those coupon Treasuries let y be the annually-compounded rate of return, ¢ be the semi-
annual coupon paid, M be the maturity of the bond in years, and 100 be the bond’s face
value. Present Value “PV” is identical to price. Although the theoretical explanation
for the initial price of a bond is

PV = c N c N c . c N c+ 100
T a2 (L2227 (1 +y3/2) (I +yom—1/2)?M=1 (1 + yop [2)?M
for zero-coupon yields yy, y2, ¥3, - .., Yaum, it is also true that if y, is instead defined as

the “yield to maturity” (an internal rate of return), which is what the Treasury reports,
then by that definition, PV; equals

c c c c+ 100
— + — + .+ : — + .
1+ )7“ (1+ ’7")2 1+ %")3 (1+ ’70)2’” I a+ %")21”

PV, =

We assume the bond is originally at par, so ¢ = 100 x (y/2). One year later,

C C

PV’:c(1+y7/)+c+ — + —
A+%)  (1+%) (1+ 5 y2m-3

c+ 100
(1+%)2M72
= +y2/)2{ cy’ + Cy’ >t CV’ 5t cy’ 4
1+5 (1+%) dT+5)y d+3%)

. c N c+ 100 }
(1+ %)2M—l (1+ %)ZM

2M
=(1+%) {cZ(l + )7+ 100(1 + -‘;)W}

t=1
= (1+%) {cj/ [1—(1+%) 7] +100(1 + grw}

and using ¢ = 100y/2,

PV PV’ o (o A .
Pv, ~100 - {y/[l—(”yz) J+ @+ )

Since y’ is the yield of a bond of maturity M —1, we do not have data on it, but we
do have data on the yields of bonds of maturities M and less than M at date ¢/, so
the yield of a bond of maturity M —1 at ¢’ can be interpolated. Again we use Steffen

ematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolatio
n-with-continuous-1st-order-derivative and in https://math.stackexchange.com
/questions/45218/implementation-of-monotone-cubic-interpolation/51412#51412.
There are other more advanced approaches used in finance to fit the term structure.

36


https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://mathematica.stackexchange.com/questions/14662/monotone-periodic-1d-interpolation-with-continuous-1st-order-derivative
https://math.stackexchange.com/questions/45218/implementation-of-monotone-cubic-interpolation/51412#51412
https://math.stackexchange.com/questions/45218/implementation-of-monotone-cubic-interpolation/51412#51412

interpolation. (A (positive) capital gain results from this “rolling down the yield curve”
from maturity M to M —1 whenever the yield curve is upward-sloping unless it has
shifted upwards considerably in the intervening year; an advantage of our method,
as opposed to approximating the yield of a bond of maturity M —1 with the yield of
a bond of maturity M, is that it captures that roll-down return.) Total return can be
expressed either using an annually compounded rate “r,” or continuously compounded
rate (“logarithmic returns™) “r.,” where equation (2)’s PV'/PVy =1 + r, = €'; we use
the continuously-compounded return from now on unless otherwise specified.

One-year and three-month Treasury bills are zero-coupon securities. The annual
return of one-year bills is simply the initial yield. The annual return of three-month
bills is the sum of the four initial continuously-compounded quarterly yields.

To calculate real continuously-compounded returns “r,”” from nominal continuously-
compounded returns “r,,” given the levels of a price index /, we have
_PV'/I" PV’ I
T PVolly PVy I
re =1, +In(lp/1).

Iy
r

Ir I'n

SO

The price index we use from FRED is CPIAUCSL, the “Consumer Price Index for All
Urban Consumers” (see Bureau of Labor Statistics (2018)).

Calculating real yields in this way means using the second of the two approaches
described by Girola (2005, page 8): “There are many different ways to convert a nomi-
nal interest rate to real. Perhaps the best-known approach is to subtract a distributed lag
on inflation from the nominal rate. The lag represents adaptive inflation expectations
and the resulting real rate represents the expected real rate.” He then describes the
second approach, which is “for each year the real interest rate is derived from. .. the
price indexes for that year and the following year.” He defends the second approach
because it “shows the actual real earnings that were realized from holding the bond,
while the use of lags is an estimate of the expected real earnings,” and notes that the
second approach is the one used in the 2005 Social Security Administration’s Trustees
Report.
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Not-to-be-published Appendix for Referee

The following Mathematica code gives the analytical solution for w when 7' = 10. The
analytical solution given in the paper generalizes this.

= x[1] :=100;
x[t_] :=Exp[r[t-1]] »x[t-1] -w;

3= YearsOfPayments = 10;

4= Solve[x[YearsOfPayments + 1] == 0, w]
outal- {{w» (looer[l]+r[2]+r[3]+r[4]+r[5]+r[6]+r[7]+r[8]+r[9]+r[10])/

(1 +er[10] +er[9]+r[10] +er[8]+r[9]+r[10] +er[7]+r[8]+r[9]+r[10] +(er[6]+r[7]+r[8]+r[9]+r[10] +

r[5]+r[6]+r[7]+xr[8]+r[9]+r[10] r[4]+r[5]+x[6]+x[7]+r[8]+r[9]+xr[10]

(] + e
er[3]+r[4]+r[5]+r[6]+r[7]+r[8]+r[9]+r[10]

+

+ er[2]+r[3]+r[4]+r[5]+r[6]+r[7]+r[8]+r[9]+r[10] ) }}
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