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Abstract. Following the lead of authors such as DeGroot (2004), Gigerenzer,
Krauss and Vitouch (2004), Leamer (1978), and McCloskey and Ziliak (2009),
this paper suggests a simple method for modifying standard parameter esti-
mates when the cost of using an estimate which is smaller than the true value
is different from the cost of using an estimate which is larger than the true
value. If standard methods suggest a parameter estimate of β̂ with a variance
of s2

β̂
, and if the cost of making one type of mistake is A times the cost of

making the other type of mistake, then assuming β̂ is normally distributed and
costs are quadratic, the decision-maker should set the value of the parameter
equal to β̂ + z(A) s2

β̂
where I define z(A) analytically and provide a table of

some of its values.

Keywords: (Put keywords here.)



When estimating an equation of the form y = βx, the standard approach in econom-
ics remains to formulate a null hypothesis “H0:β = 0” and an alternative hypothesis
”Ha:β 6= 0,” then testing to determine if H0 can be rejected at a conventional level
of significance such as 5% or 1%. The smaller the level of significance the smaller is
the chance of Type I error, which is mistakenly rejecting H0, small, but the larger is
the chance of Type II error, which is mistakenly accepting H0. Ideally, small levels
of significance would only be used if the cost (or “loss”) in utility or dollar terms
to the decision-maker of incorrectly concluding that β 6= 0 is much greater than
the cost of incorrectly concluding that β = 0. Unfortunately, they are often used
without considering the different costs. Past authors decrying this state of affairs or
recommending alternative techniques include DeGroot (2004), Gigerenzer, Krauss
and Vitouch (2004), Leamer (1978), and McCloskey and Ziliak (2009).

Consider as an example Baicker et al.’s (2013) analysis of the Oregon Medicare
experiment, in which H0 was essentially “giving poor people health care will not
make them better off.” It is not obvious that, as traditionally implied, the social
cost of incorrectly concluding that “Medicare helps poor people” is much greater
than the social cost of incorrectly concluding that “Medicare does not help poor
people.” The first mistake leads society to waste health care on the poor; the
second mistake causes the poor to suffer, and causes some of them to die. The
conventional position assumes that making the first mistake is to be much more
feared than making the second. There exist some members of society who disagree.
This makes the conventional position a problematic one for a neutral analyst to
take.1

There are many other examples of this situation; to name just one more, if x is
“air pollution” and y is “human health,” the conventional position is that it would
be much worse to waste money fruitlessly cleaning up the air than it would be
to suffer higher mortality from air pollution we mistakenly thought did not affect
mortality.2

One solution to this problem would be to flip H0 and Ha (so that H0:β 6= 0 and
Ha:β = 0);3 another would be to carefully choose a significance level from the full
range of [0, 1], based on a criterion such as maximizing

utility[cost of Type I error] ∗ (Probability of Type I error)

+ utility[cost of Type II error] ∗ (Probability of Type II error)

1This point is not the same as the important criticism by Frakt, Carroll and Richardson (2013)
(”FCR”) of Baicker et al. (2013). FCR’s criticism is that the medically-relevant sample size of
Baicker et al. was so small that their tests had less power than its authors realized. I am criticizing
lack of power due to choosing small levels of significance, not due to small sample sizes.

2If x is the size of an ocean fish stock and y is its maximum sustainable catch, the uncertainty
is not in the relationship between x and y but rather in the estimation of x, a different problem
than that posed in this paper. However, it does reflect asymmetric costs, since underestimating x
merely leads to poor profits for one year, whereas overestimating x could lead to extinction of the
fishery; see Clark (2010 p. 263 ff.) for an analysis.

3As Gigerenzer, Krauss, and Vitouch put it (2004 p. 15), “the null need not be a nil hypothesis.”
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if the decision-maker’s preferences obeyed the Expected Utility Hypothesis, or
some more general form of “utility[cost of Type I error, Probability of Type I error,
cost of Type II error, Probability of Type II error]” otherwise.

However, that leaves unanswered another objection to hypothesis testing, raised
by among others McCloskey and Ziliak (2009): how bad it is to make an error
usually depends on the magnitude of the error. Falsely believing that “air pollution
in Salt Lake City does not raise mortality” generates few social costs if the reality is
“air pollution in Salt Lake City raises mortality by 1 death per century”; it generates
huge social costs if the reality is “air pollution in Salt Lake City raises mortality by
1 death per hour.” Ascertaining the costs of erroneous conclusions requires taking
into account not just that a conclusion is not true, but how far from the truth it is.

1. Finding the Parameter Analytically

Denote the name of an unknown population parameter by “β ” and denote its true
value by “β true.” The decision-maker, not knowing β true, acts as if the value of β
is βa (“a” for “action”). The decision-maker will choose βa so as to4

min
βa

∫
β true

cost

(
acting as if β is βa when

β is really β true

)
df(β true) . (1)

The “cost” (or “loss”) is measured in utility terms.5 I wish to consider possibly-
asymmetric cost functions, and for simplicity choose

cost

(
acting as if β is βa when

β is really β true

)
=

{
A · (βa − β true)

2 if βa < β true and
(βa − β true)

2 otherwise
(2)

where A is a positive constant. If A > 1, the mistake of setting βa < β true is more
costly than the mistake of setting βa > β true; the reverse is true if A < 1.

Using this cost function, the problem becomes

min
βa

[∫ βa

−∞
(βa − β true)

2 df(β true) +

∫ ∞
βa

A · (βa − β true)
2 df(β true)

]
. (3)

The distribution function f(β true) is unknown; suppose in its place we use N(β̂, s2
β̂

)

where β̂ and s2
β̂

are arrived at by an appropriate standard method, for example

Ordinary Least Squares.6 If A = 1, the appropriate βa is simply β̂. If A > 1,
using a βa which is smaller than β true is more costly than using a βa which is larger

4This closely resembles the approach on p. 122 of DeGroot (2004).
5For graphs of loss functions—or equivalently of utility functions—in a context such as this, see

for example Fig. 4.4 of Leamer (1978).
6One could use either a frequentist or a Baysian approach to find an appropriate estimate for

f(β true); if that estimate is not normally distributed, changes would be required in the rest of this
paper but its basic idea is unaltered. A Baysian analysis would use expert knowledge, if it exists,
to inform estimation of f(β true). For example, in the Oregon Medicare experiment, economists

2



than β true, so the appropriate βa would be larger than β̂. The reverse is true if
A < 1; in other words, the sign of A− 1 should be the same as the sign of βa − β̂.

Let N(x; β̂, s2
β̂

) denote the value, at x, of the Normal Distribution density func-

tion whose mean is β̂ and whose variance is s2
β̂

. The optimization problem (3) then

becomes

min
βa

[∫ βa

−∞
(βa − x)2N(x; β̂, s2

β̂
) dx+

∫ ∞
βa

A · (βa − x)2N(x; β̂, s2
β̂

) dx

]
. (4)

Use the abbreviation CDF [f(x)] to denote the “cumulative density function” asso-
ciated with the probability distribution function f(x) at the point x.

Proposition 1. The solution to (4) is

βa − β̂ =
2 (A− 1) s2

β̂
N(βa; β̂, s

2
β̂

)

A+ (1−A)CDF
[
N(βa; β̂, s2

β̂
)
] . (5)

For the proof, see Section 3. Note that the denominator can be rewritten as A (1−
CDF ) + CDF ; since 0 ≤ CDF ≤ 1, this is always positive, so the sign of βa − β̂ is
the same as the sign of A− 1, which is the intuitive outcome.

2. Finding the Parameter Numerically

(5) is one equation in the one unknown βa, and can in principle be solved by root-
finding algorithms. It is more convenient to study its solution when rewritten in a
standard form:

Proposition 2. Define

z =
βa − β̂
sβ̂

(6)

have expert knowledge that giving people free commodities usually makes them better off, and
a Bayesian analysis would use this information to affect the estimation of the effect. Frequentist
analysis throws away this “other than the data” information.

In taking the position that one could use either a frequentist or a Baysian approach to finding
the estimate for f(β true), I am agreeing with Spanos (2012) that a decision-theoretic analysis can
be completely free of Baysian influences. In the words of Spanos (p. 9),

. . . decision-theoretic set up makes perfectly good sense. . . [when]. . . :

[a] The primary aim is to use statistical rules to guide actions astutely. . . , and

[b] The sagacity of actions is determined by applicable ‘losses’ based on “relevant
information other than the data (Cox and Hinkley, Theoretical Statistics, 1974,
p. 251).

These conditions are satisfied in the decision-making context of this paper, the first obviously, and
the second because, for example, the “social cost of someone dying” is not determined using the
data from a study on how air pollution or Medicare affects health.
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Figure 1. log10A versus z for z > 0 and A > 1, that is, for log10A > 0. (The value of

z corresponding to a log10A1 < 0 can be obtained by multiplying by negative one the z

corresponding to − log10A1. The value of log10A corresponding to a z1 < 0 can be obtained

by multiplying by negative one the log10A corresponding to −z1.)

and for a given A, locate the z which satisfies

0 = z ·
{
A+ (1−A) (12 + 1

2 erf( z√
2
))
}
−
√
2 (A−1)√

π
exp(−1

2z
2) . (7)

For example, (7) is satisfied by

A 2 3 4 5 6 7 8 9 10 100 1000

z 0.53 0.81 0.99 1.1 1.2 1.30 1.37 1.42 1.48 2.41 3.13

If for a particular value of A called A1 the associated z value from (7) is z1, then for
1/A1 the associated z value from (7) is −z1. (7) is equivalent to A = A(z) where

A(z) =

z
2 + z

2 erf( z√
2
) +

√
2
π exp(−1

2z
2)

− z
2 + z

2 erf( z√
2
) +

√
2
π exp(−1

2z
2)

(8)

and A(−z) = 1/A(z). A graph of log10(A) versus z is given in Figure 1.
Once the value of z has been obtained, the optimal βa is

βa = z sβ̂ + β̂ . (9)
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The proof is in Section 3. The z which satisfies (7) has, from (6), the same sign
as A− 1. The interpretation of (9) is that for the values of A given in the table of
Proposition 2, the decision-maker should use a parameter value which differs from
the traditional estimate by somewhere between a half and three standard deviations.

As an illustration of Proposition 2, suppose that A = 1/4, reflecting a judgment
that using a βa which is larger than β true by a certain distance is four times more
costly than using a βa which is smaller than β true by the same distance. The
sentence following the table implies that for A = 1/4, z = −0.99. Hence we would
simply set βa = −0.99sβ̂ + β̂.

Since A is probably not known with much precision, the table only gives a few
significant figures for z. Indeed, if the decision-maker has quite a bit of doubt about
the value of A—or doubt about “his” value of A, depending on whether one thinks
the value of A is objectively determined, as for instance through an opinion poll
taken by a decision-maker who is the agent for other people, or the value of A is
subjectively determined by the decision-maker who owes allegiance only to himself—
one conceivable way to use Proposition 2 would be to ask “how reasonable is the
value of A which makes βa equal to zero?” This is equivalent to the question, “how
reasonable is the value of A which corresponds to z = −β̂/sβ̂?” The answer to this
question is clearly not to be found in the data, and therefore this question is utterly
different from the conventional question “what is the probability of H0: β̂ = 0?”
The conventional question is easier to answer but is less important when an action
has to be decided upon.

3. Proofs

I first present two proofs of Proposition 1.

Proof of Proposition 1 (Method 1). The first-order condition is obtained by
differentiating (4) with respect to βa and setting the result equal to zero. Formally,
Leibnitz’ Rule leads to

0 =

∫ βa

−∞
2(βa − x)N(x; β̂, s2

β̂
) dx+ (βa − βa)N(βa; β̂, s

2
β̂

) (dβa/dβa)

− (βa − (−∞))N(−∞; β̂, s2
β̂

) (d(−∞)/dβa)

+

∫ ∞
βa

2A(βa − x)N(x; β̂, s2
β̂

) dx+ (βa −∞)N(∞; β̂, s2
β̂

) (d∞/dβa)

− (βa − βa)N(βa; β̂, s
2
β̂

) (dβa/dβa)

which actually means

0 =

∫ βa

−∞
2(βa − x)N(x; β̂, s2

β̂
) dx+

∫ ∞
βa

2A(βa − x)N(x; β̂, s2
β̂

) dx⇐⇒

0 =

∫ βa

−∞
(βa − x)N(x; β̂, s2

β̂
) dx+

∫ ∞
βa

A(βa − x)N(x; β̂, s2
β̂

) dx . (10)
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If A = 1 then as expected, βa = β̂.
To simplify (10), begin by writing A as 1 + (A− 1) and expand:

0 =

∫ βa

−∞
(βa − x)N(x; β̂, s2

β̂
) dx+

∫ ∞
βa

(1)(βa − x)N(x; β̂, s2
β̂

) dx

+

∫ ∞
βa

(A− 1)(βa − x)N(x; β̂, s2
β̂

) dx

=

∫ ∞
−∞

(βa − x)N(x; β̂, s2
β̂

) dx+

∫ ∞
βa

(A− 1)(βa − x)N(x; β̂, s2
β̂

) dx

= βa − β̂ +

∫ ∞
βa

(A− 1)(βa − x)N(x; β̂, s2
β̂

) dx ⇐⇒

β̂ − βa =

∫ ∞
βa

(A− 1)(βa − x)N(x; β̂, s2
β̂

) dx (11)

= (A−1)βa

∫ ∞
βa

N(x; β̂, s2
β̂

) dx− (A−1)

∫ ∞
βa

xN(x; β̂, s2
β̂

) dx

= (A−1)βa
{

1−CDF [N(βa; β̂, s
2
β̂

)]
}
− (A−1)

∫ ∞
βa

xN(x; β̂, s2
β̂

) dx . (12)

To simplify the last term on the right-hand side of (12), [?? appeal to a standard
result or??] let n(x;µ, σ) denote the value at x of the Normal Distribution function
whose mean is µ and whose standard deviation is σ. Then∫

x · n(x;µ, σ) dx =

∫
x · 1

σ
√

2π
e−

(x−µ)2

2σ2 dx

=
1

σ
√

2π

∫
(x− µ+ µ) e−

(x−µ)2

2σ2 dx ;

changing variables to w = (x−µ)2, so that dw = 2 (x−µ) dx and dx = dw/(2
√
w),

gives

=
1

σ
√

2π

[∫ √
w e−

w
2σ2

1

2
√
w
dw + µ

∫
e−

(x−µ)2

2σ2 dx

]
=

1

σ
√

2π

[
1

2

∫
e−

w
2σ2 dw + µ

∫
e−

(x−µ)2

2σ2 dx

]
.

Hence for an arbitrary constant R,∫ ∞
R

x · n(x;µ, σ) dx =
1

σ
√

2π

[
1

2

∫ ∞
(R−µ)2

e−
w

2σ2 dw + µ

∫ ∞
R

e−
(x−µ)2

2σ2 dx

]

=
1

σ
√

2π

[
(−2σ2) e−

w
2σ2

∣∣∣∞
(R−µ)2

+ µ

∫ ∞
R

e−
(x−µ)2

2σ2 dx

]
=
−2σ2

σ
√

2π

(
0− e−

(R−µ)2

2σ2

)
+ µ

∫ ∞
R

1

σ
√

2π
e−

(x−µ)2

2σ2 dx
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= 2σ2
1

σ
√

2π
e−

(R−µ)2

2σ2 + µ

∫ ∞
R

1

σ
√

2π
e−

(x−µ)2

2σ2 dx

= 2σ2n(R;µ, σ) + µ
{

1− CDF [n(R;µ, σ)]
}
. (13)

(12) thus becomes

β̂ − βa = (A−1)βa
{

1−CDF [N(βa; β̂, s
2
β̂

)]
}

− (A−1)

[
2s2
β̂
N(βa; β̂, s

2
β̂

) + β̂
{

1− CDF [N(βa; β̂, s
2
β̂

)]
}]

(14)

= (A−1)(βa − β̂)
{

1−CDF [N(βa; β̂, s
2
β̂

)]
}
− (A−1) · 2s2

β̂
N(βa; β̂, s

2
β̂

)

so

(β̂ − βa)
[
1 + (A−1)

{
1−CDF [N(βa; β̂, s

2
β̂

)]
}]

= −(A−1) · 2s2
β̂
N(βa; β̂, s

2
β̂

)

(β̂ − βa)
[
1 + (A−1)

{
1
}
− (A−1)

{
CDF [N(βa; β̂, s

2
β̂

)]
}]

= −(A−1) · 2s2
β̂
N(βa; β̂, s

2
β̂

)

(β̂ − βa)
[
A− (A−1)CDF [N(βa; β̂, s

2
β̂

)]
]

= −(A−1) · 2s2
β̂
N(βa; β̂, s

2
β̂

)

which leads to (5).

Proof of Proposition 1 (Method 2). This proof follows the proof via Method 1
until (10). That equation implies

0 = 2βa

∫ βa

−∞
N(x; β̂, s2

β̂
) dx+ 2Aβa

∫ ∞
βa

N(x; β̂, s2
β̂

) dx

− 2

∫ βa

−∞
xN(x; β̂, s2

β̂
) dx− 2A

∫ ∞
βa

xN(x; β̂, s2
β̂

) dx . (15)

= 2βaCDF [N(βa; β̂, s
2
β̂

)] + 2Aβa

(
1− CDF [N(βa; β̂, s

2
β̂

)]
)

− 2

∫ βa

−∞
xN(x; β̂, s2

β̂
) dx− 2A

∫ ∞
βa

xN(x; β̂, s2
β̂

) dx . (16)

To simplify the last two terms, [?? appeal to a standard result or??] let n(x;µ, σ)
denote the value at x of the Normal Distribution function whose mean is µ and
whose standard deviation is σ. Then∫

x · n(x;µ, σ) dx =

∫
x · 1

σ
√

2π
e−

(x−µ)2

2σ2 dx

=
1

σ
√

2π

∫
(x− µ+ µ) e−

(x−µ)2

2σ2 dx ;

changing variables to w = (x− µ)2, so that dw = 2(x− µ) dx and dx = dw/(2
√
w),

gives
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=
1

σ
√

2π

[∫ √
w e−

w
2σ2

1

2
√
w
dw + µ

∫
e−

(x−µ)2

2σ2 dx

]
=

1

σ
√

2π

[
1

2

∫
e−

w
2σ2 dw + µ

∫
e−

(x−µ)2

2σ2 dx

]
.

Hence for an arbitrary constant R,∫ R

−∞
x · n(x;µ, σ) dx =

1

σ
√

2π

[
1

2

∫ (R−µ)2

+∞
e−

w
2σ2 dw + µ

∫ R

−∞
e−

(x−µ)2

2σ2 dx

]

=
1

σ
√

2π

[
(−2σ2) e−

w
2σ2

∣∣∣(R−µ)2
+∞

+ µ

∫ R

−∞
e−

(x−µ)2

2σ2 dx

]
=
−2σ2

σ
√

2π

(
e−

(R−µ)2

2σ2 − 0

)
+ µ

∫ R

−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 dx

= −2σ2
1

σ
√

2π
e−

(R−µ)2

2σ2 + µ

∫ R

−∞

1

σ
√

2π
e−

(x−µ)2

2σ2 dx

= −2σ2n(R;µ, σ) + µCDF [n(R;µ, σ)] . (17)

Similarly,∫ ∞
R

x · n(x;µ, σ) dx =
1

σ
√

2π

[
1

2

∫ ∞
(R−µ)2

e−
w

2σ2 dw + µ

∫ ∞
R

e−
(x−µ)2

2σ2 dx

]

=
1

σ
√

2π

[
(−2σ2) e−

w
2σ2

∣∣∣∞
(R−µ)2

+ µ

∫ ∞
R

e−
(x−µ)2

2σ2 dx

]
=
−2σ2

σ
√

2π

(
0− e−

(R−µ)2

2σ2

)
+ µ

∫ ∞
R

1

σ
√

2π
e−

(x−µ)2

2σ2 dx

= 2σ2
1

σ
√

2π
e−

(R−µ)2

2σ2 + µ

∫ ∞
R

1

σ
√

2π
e−

(x−µ)2

2σ2 dx

= 2σ2n(R;µ, σ) + µ
(

1− CDF [n(R;µ, σ)]
)
. (18)

Substituting (17) and (18) into (16) yields

0 = 2βaCDF [N(βa; β̂, s
2
β̂

)] + 2Aβa

(
1− CDF [N(βa; β̂, s

2
β̂

)]
)

− 2
{
−2s2

β̂
N(βa; β̂, s

2
β̂

) + β̂ CDF [N(βa; β̂, s
2
β̂

)]
}

− 2A
{

2s2
β̂
N(βa; β̂, s

2
β̂

) + β̂
(

1− CDF [N(βa; β̂, s
2
β̂

)]
)}

= 2βaCDF [N(βa; β̂, s
2
β̂

)] + 2Aβa − 2AβaCDF [N(βa; β̂, s
2
β̂

)]

+ 4s2
β̂
N(βa; β̂, s

2
β̂

)− 2β̂ CDF [N(βa; β̂, s
2
β̂

)]

− 4As2
β̂
N(βa; β̂, s

2
β̂

)− 2Aβ̂ + 2Aβ̂ CDF [N(βa; β̂, s
2
β̂

)] . (19)

Some algebraic steps lead from (19) to (5).
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Proof of Proposition 2. From (5), the optimal βa solves

0 = (βa − β̂) ·
{
A+ (1−A)CDF [N(βa; β̂, s

2
β̂

)]
}
− 2 (A−1) s2

β̂
N(βa; β̂, s

2
β̂

)

= (βa − β̂) ·
{
A+ (1−A) (12 + 1

2 erf(βa−β̂√
2s2
β̂

))
}
−
√
2 (A−1) sβ̂√

π
exp(−1

2(βa−β̂sβ̂
)2) .

Using (6), this is

0 = z sβ̂ ·
{
A+ (1−A) (12 + 1

2 erf( z√
2
))
}
−
√
2 (A−1)sβ̂√

π
exp(−1

2z
2) .

(7) follows. The table following (7) was generated from (7) using Mathematica.
(7) implies

0 = z ·
{
A+ 1

2 + 1
2 erf( z√

2
)− 1

2A−
1
2A erf( z√

2
)
}
−
√

2
πA exp(−1

2z
2) +

√
2
π exp(−1

2z
2)

= Az + z
2 + z

2 erf( z√
2
)− z

2A−
z
2A erf( z√

2
)−

√
2
πA exp(−1

2z
2) +

√
2
π exp(−1

2z
2)

=
(
z − z

2 −
z
2 erf( z√

2
)−

√
2
π exp(−1

2z
2)
)
A+ z

2 + z
2 erf( z√

2
) +

√
2
π exp(−1

2z
2)⇐⇒(

− z
2 + z

2 erf( z√
2
) +

√
2
π exp(−1

2z
2)
)
A = z

2 + z
2 erf( z√

2
) +

√
2
π exp(−1

2z
2)

from which (8) follows.
To prove the sentence following the table, define the right-hand side of (7) by

g(A, z). The claim is that if g(A, z) = 0 then g(1/A,−z) = 0. This is equivalent
to the claim made after (8), namely that A(−z) = 1/A(z). Because erf is an “odd
function”—that is, erf(−x) = − erf(x) for all x—that claim is true from (8) by
inspection.
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