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Abstract. Leibowitz and co-authors showed that if yield paths are linear in
time, a constant-duration bond portfolio’s initial yield forecasts its mean return
near twice duration. We show that continuously/periodically-compounded re-
turns match arithmetic/geometric mean returns and derive results similar to
Leibowitz’s for both cases. We also link positive/negative forecast error (re-
alized returns minus initial yields) to the yield path’s concavity/convexity.
Sixty-two years of data on short, intermediate, and long bonds over various
horizons reveal forecast errors at twice duration which are modest and well-
explained by convexity and return formulas’ nonlinearities.
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It is well-known that when default-free bonds are bought and held for their du-
ration, they will earn to a first-order approximation their initial yield-to-maturity,
and thus they constitute over that horizon a negligible source of risk despite their
short-run volatility. Some authors have asserted that even if bonds are not bought
and held, but rather are regularly rolled over to maintain an approximately constant
maturity or constant duration, they are still less risky than their short-run volatility
suggests, and in fact that their return over a relatively long period will be close to
their initial yield.

One group of authors takes this “relatively long period” to be the bonds’ dura-
tion or maturity. Potts and Reichenstein (2004) show that cumulative return of a
constant-maturity portfolio gets close to that predicted by initial yield at roughly
the bonds’ maturity; a similar assertion is made by John C. Bogle and others in Gay
(2014). William McNabb, current CEO of the Vanguard Group, uses duration:

There is a silver lining to rising [interest] rates. If your time horizon
is longer than the duration of the bond funds you are invested in, you
actually want interest rates to rise. [McNabb 2014]

By contrast, the important early paper of Langeteig, Leibowitz and Kogelman
(1990) (henceforth LLLK) uses simulation to suggest that cumulative return of a
constant-duration portfolio gets closest to that predicted by initial yield at roughly
twice the bonds’ duration. This idea of a very long period seems to have been ig-
nored until it was picked up again, and furnished with a theoretical explanation, in
Leibowitz and Bova (2012) and especially in “Part I: Duration Targeting: A New
Look at Bond Portfolios” in Leibowitz, Bova, Kogelman, and Homer (2013, hence-
forth LBKH); see Leibowitz, Bova, and Kogelman (2014) for a summary of both
the theoretical and empirical arguments, and Bova (2013, pp. 4-8) and Leibowitz
and Bova (2013) for empirical support.!

I will refer to the body of work developed by Leibowitz and his collaborators
as “Leibowitz et al.” Among the results of Section 1 are an extension of their
theoretical framework to coupon bonds and the provision of a simple graphical
interpretation of the main result. Section 1 implies that empirical work should in-
vestigate whether initial yield equals mean return near twice duration. Section 2
shows that Section 1’s interpretation of “mean” return as the “arithmetic mean” is
appropriate for continuous compounding, then develops initial-yield-versus-mean-
return results for periodic compounding using its appropriate mean, the geometric.
Section 2 also explains why mean return minus initial yield will tend to be negative
if the path of yield through time is convex and positive if it is concave. Sections
3-5 report empirical results using US bond yields over six or more decades, using
continuously-compounded yields and arithmetic mean returns because Section 2
shows that is the best way to find a close match between initial yield and mean

!Fridson and Xu (2014) point out that junk bonds’ long-term return will fall short of their initial
yield.



return. Section 3 treats many different horizons, while Section 4 focuses on Sec-
tion 1’s theoretically-important horizon of twice duration, illustrates the main em-
pirical findings in Figures 4 and 6, and uses Section 2’s convexity results to explain
historical gaps between initial yields and mean returns. Section 5 explains those
gaps more systematically. Overall, we confirm the basic conclusion of Leibowitz
et al.: initial yield is a good forecast of constant-maturity or constant-duration
bond return at twice duration, and not as good a forecast at much shorter or longer
periods.

1. The Constant-Duration Framework and Results of Leibowitz et al.,
and Extensions

Supposing that at dates 1, 2, 3, ... a bond generates payments (‘“coupons”) Cy, Ca,
Cs3, ..., denote by PV (Y) the present value of the bond’s future income flows dis-
counted at rate ¥, namely > 72, Cre™ ¥ or 3°7°, C,/(1 + Y)' depending on whether
discounting is, respectively, continuous or periodic. The bond’s “modified dura-
tion” D is defined by (—1/PV(Y)) -d PV(Y)/dY. Duration has units of time, and
after the passage of D (respectively, (1 + Y) D) periods, the future value of the
bond is, to a first order approximation, the same irrespective of any change in its
initial yield:

_ 0 ¥ =1 oPV(Y) _
0=y [Pvine] == PV(Y) oY
and 0 1+Y oPV(Y)
t - + —
0=+ PV(Y)(1+Y)]| =1t = V) o - (1+Y)D

(the latter can easily be shown? to equal the “Macauley Duration of the periodically-
compounded bond”). So if one holds on to the bond until date D (respectively,
(1 + Y)D), the return will be approximately the same as the initial yield. This
paper addresses the question of whether, if one periodically sells one’s bond hold-
ings before date D, each time buying a new bond with duration D, one can expect
the return of this “rolled bond” portfolio over some period of time to equal (or
approximately equal) the initial yield of the first bond.

In this framework, an initial investment is made in a bond with duration D and
initial yield Y;, and at the end of each period, the bond is sold and the proceeds
reinvested (“rolled”) into a new bond with duration D, where D > 1, i.e., D is
longer than the length of one period. (If D were less than one period the previous
paragraph’s result applies.) Without loss of generality, assume yield in period t >
1, denoted Y;, evolves as Y; = Y,—; + AY,_;. Make the following approximation.

2http ://en.wikipedia.org/wiki/Bond_duration



Proposition 1. [“The Return Approximation”] An approximation of the one-
period return R for a bond which is originally priced at yield Y but whose yield
permanently changes to Y* at the end of period is

R[ I Yt_(Dt_ I)AYt
where D is the Modified Duration.

Proof. For the periodically-compounded case, the one-period return is Y +
PV(Y*)/PV(Y) — 1. Expanding PV(Y™) in a first-order Taylor Series around Y
and using the definition of D gives PV(Y*)/PV(Y) = 1 — D AY for small AY,
which leads to R = Y — D AY. However, the yield changes at the end of the pe-
riod, when the duration of the bond becomes approximately D — 1. This is because
the “Macauley duration for periodic compounding” at the beginning of the period,
which is defined to be
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will be approximately equal to “one plus the Macauley duration for periodic com-
pounding” at the end of the period,
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as long as, writing the above in shorthand, % ~ %. If C; =0, as for a zero-

coupon bond, this approximation is exact because x = C;/(1 +Y). To determine
when this approximation is good for a coupon bond, assume C; is equal to the
initial yield Y times the initial value PV (Y). Note that A > B since all the C’s are
positive. Define f(x+A,x+ B) = (x+A)/(x + B); then expand
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The approximation is good when 1 — x/B <« 1, which is equivalent to x < B, and

when A/B > x/B, which is equivalent to x << A. Since A > B, only x < B needs
to be satisfied. One has

fx+A,x+B)=~ f(A,B)+
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so (x+A)/(x+B) =~ A/B is true to zeroth order when Y (1—Y) <« 1, thatis, when Y
is small. Given that the “Macauley Duration for periodic compounding” changes
by approximately one, the Modified Duration for this periodically-compounded
bond will change by approximately 1/(1 + Y), which is 1 — Y to first order but
simply 1 to zeroth order, which again is applicable for small Y.

If all yields and returns are continuously compounded,

exp(R) — 1 =(exp(Y) — 1) + (exp(% capital gains) — 1) =
PV (Y™)
PV(Y) } '
Using the first-order Taylor Series expansion e’ ~ 1+ Y for small Y,
PV(Y™)

PV(Y) ] '
Expanding the continuous-time PV(Y*) in a first-order Taylor Series around Y
for small AY, and as before using the definition of D, gives PV(Y*)/PV(Y) =
1 — D AY for small AY, which leads to

R~In[Y+1-D({Y*-Y).
Using the first-order Taylor Series expansion In(1 + x) & x for small “x” (small
Y —DAY),

R=ln{ey—1+ 3)

R%ln[Y+

R~Y —-DAY.

Duration should then be adjusted to its end-of-period value, which is approx-
imately D — 1. This can be shown similarly to the periodically-compounded
case, but it is easier than that because replacing 1/(1 + Y) with =Y in (1) gives
not only by definition the “Macauley Duration for continuous compounding” but
also—for a proof see footnote 2’s reference again—the Modified Duration for this
continuously-compounded bond, so there is no need in the continuous-compounding
case to use the 1/(1 + Y) = 1 approximation. |

To summarize, for periodic compounding this reflects one first-order approxima-
tion (small AY) and two zeroth-order approximations (small Y), whereas for con-
tinuous compounding this reflects three first-order approximations (small ¥, AY,
and Y — DAY) and one zeroth-order approximation (small Y).> The rest of this
paper uses the Return Approximation with a constant duration, so from now on

Rt:Yt_(D—l)AY;. (4)

3Leibowitz et al. (using somewhat different notation) use zero-coupon bonds, which simplifies
the derivation of “D — 1” because as noted above, with zero-coupon bonds or any bonds that have
C, = 0, the passage of one period reduces Macauley Duration by exactly one period. That means
there is no need to make the first zeroth-order approximation of small Y. They do not consider the
continuously-compounded case.



Figure 1. A fictional actual yield path (black dots), and its linear approximation ((1, 1%),
(2,2%), (3, 3%)).

Any arbitrary path of yield through time can be decomposed into a linear com-
ponent and a nonlinear component in various ways. The purpose of this section
is to show that the linear component of this decomposition gives rise to a return
which is predictable (over a particular horizon). Accordingly, from now on discard
the nonlinear component of the yield path, and in particular, assume that yields
follow linear paths through time, starting and ending at the actual yield. For ex-
ample, if the actual path of yields for a bond is given by the solid dots in Figure 1,
the linear approximation used in this paper begins and ends at the same points as
the actual path and goes through the open circle. Such a linear path is in general
not a first-order Taylor Series approximation to the original, nonlinear path (that
is, not a best-fit trendline). Using the linear yield path, AY; is the same “AY” for
all 7. Yields cannot actually follow linear paths in the long run because that would
imply that they linearly rise or fall forever, or never change; nor can they follow
linear paths in the short run because having such linear forward curves for multiple
maturities would typically generate arbitrage opportunities. Once we establish that
the linear component of the yield path gives rise to a predictable return, empiri-
cal deviations from that predicted return will have to be attributed to the nonlinear
component of the yield path (or to Return Approximation errors), and the empir-
ical sections of this paper will give examples of how large those deviations have
been.

Using the Return Approximation and assuming linear time paths of yields, one
has

Y, =Y, +(—1) AY and therefore )
R, =Y +(t—1)AY —(D—-1)AY =Y;+(t— D) AY . (6)

As shown by the solid lines with bullets in Figure 2, if D is an integer then for
an arbitrary positive AY, the returns R, Ry, ..., Rp_ are all less than Y;; Rp is
equal to Y;; and Rp+1, Rp+2, ... are all greater than Y|, whereas for an arbitrary
negative AY, the returns R, Ry, ..., Rp_ are all greater than Y;; Rp is equal
to Yy; and Rp41, Rp+a, ... are all less than Y;. The task is to determine how
many terms beyond D have to be taken in order for the cumulative mean return
to be equal to Y. Understanding “cumulative mean return” as the “cumulative
arithmetic mean return,” Figure 2 suggests that for an arbitrary AY, the answer
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AY >0 AY <0

(l—D)AY{
Y,
(1—D)AY{

Figure 2. The solid lines with bullets are the instantaneous return paths R; resulting from
the linear paths of instantaneous yield Y; with D =5and AY > 0 (left) and AY < O (right).
As derived by Proposition 3 and its first corollary, the figure also shows, by a gap between
the horizontal dashed line and the horizontal Y] line, the average (not instantaneous) capital
gains up to time 7, CG (on the left, average capital gains are negative, so they are negative
one times the length of the vertical brace); and by a sloped dashed line, average interest
income up to time ¢, inc. Arithmetically-averaged return of the R;’s up to time ¢, R,, is the
sum of the inc line and the CG gap, and is equal to Y; at r = 2D — 1. Section 2 derives the
geometrically-averaged return of the R,’s, R, which lies below R, and thus equals Y later
than 2D — 1 when AY > 0 and earlier than 2D — 1 when AY < 0.



is 2D — 1. Proposition 2 below proves that this is correct: regardless of the size
of AY, initial yield will equal arithmetic mean return at date 2D — 1. A slightly
smaller value of AY in the left-hand graph would flatten the line marked Y;, shrink
the size of the gaps “(1 — D)AY” shown by the two vertical braces, and so flatten
all the other rising lines, in a way that causes the line marked R; (instantaneous
return) to pivot around the point (D, Y), therefore making the line marked R,
(arithmetically-averaged return) pivot around the point (2D —1, Y;). So regardless
of AY, R, at time 2D — 1 will be equal to Y.

Proposition 2. If yields are linear in time, returns are approximated by (4), and
twice duration is an integer, then the number of periods “N,”” which will make the
arithmetic mean return equal to the initial yield is

N, =2D —1. (N
This yield path satisties R, > —1 for all t € [1, N,] if
(D—-1)-1AY| =Y < 1. (8)
This yield path satisties Y; > O for all t € [1, N,] if

Yy >0 when AY > 0 and 9)
Y1+2(D —1)AY >0 when AY < 0. (10)

We construct a proof using Figure 2. Leibowitz et al., who prove the crux of the
first sentence of Proposition 2, do not have that figure so they cannot appeal to its
symmetry and they construct a very different proof.*

Proof of Proposition 2. The arithmetic mean return is

Na

N . 1
R, = Na;R, :N—Z<Y1 +(t—D)AY> (13)

|

4The gist of their method (LBKH (2013) p. 97; Leibowitz, Bova, and Kogelman (2014) p. 47
Column 2) is to set R, = Y; in (13), divide both sides by Y}, and calculate

Na

1 AY
1=— 1+(t—D)— (11
2 )
| S b AY 1 AY Qe
a;( Yl ) NuTl =1
AY 1 AY N,
=1-D e T SN (12)

Y,
B <N+1

so (N, +1)/2 = D and (7) follows.

°) 5



from (6). To confirm the intuition from Figure 2 that if N, = 2D — 1 then R, will
equal Y7, note that if one starts from D in Figure 2 and works outward, pairing
t =4andt = 6,thent = 3 and ¢ = 7, and so on, the R; of each of these pairs
will arithmetically average out to Y71, so that the arithmetic average of all the pairs
is just Y;. Formally, if D is an integer then thle—l f () for an arbitrary function f
can be reordered as (D) + Zﬁ,):_ll [f(D—s) + f(D+s)]; applying this reordering to
the right-hand side of (13) (after substituting 2D — 1 for N,) turns it into

[Y1 +(D—D)AY1+ X P7H[¥) + (D—s—D)AY1+[Y; + (D+s—D)AY]}
2D — 1

" + Py ) _1eyh'2 y, _ 201

2D — 1 2D — 1 2D — 1

confirming the conjecture when D is an integer. If D is not an integer but 2D is an

integer then S-?2! £(r) can be reordered as Z?;ll/ 2 f(D+1/h—s) + f(D—+s)];

applying this reordering to the right-hand side of (13) (after substituting 2D — 1
for N,) turns it into

Yi =11,

SPVAY + (D+L—s—D)AY]+ [V, + (D—L+s—D)AY]}

s=1

2D —1
Yoa P{nen} w0522 2D — 1
= = Y= —-1 =T,
2D —1 2D —1 2D —1

confirming the conjecture and completing this proof of (7).

From (6), if AY > O then R, is increasing in ¢, so R, > —1 forall t if Ry > —1;
imposing that leads to (D — 1)AY —Y; < 1. If AY < 0, R, is decreasing in f;
insisting that Ry, = Rop_; be greater than —1 leads to (D — 1)(—AY) —Y; < 1,
proving (8). Similarly, if AY > 0 the smallest Y; is Y}, proving the first part of (10);
and if AY < O the smallest Y; in [1, N,] occurs at t = 2D — 1, which, substituted
into (5), proves the second part of (10). |

(8) and (9) are easily satisfied when using plausible parameter values, and are
satisfied for all the examples in this paper. (10) can be violated with seemingly-
plausible parameter values. “2D — 1” in (7) means “twice duration minus one
rollover period,” so that if bonds of duration 2 years (730 days) are rolled over
annually, (7) gives N, =2 -2 — 1 =3 years, but if the same bonds are rolled over
daily, (7) gives N, =2-730—1 = 1459 days = 3.997 years: the higher the rollover
frequency, the closer “2D — 17 is to 2D.

Although the Return Approximation is relatively innocuous period-by-period,
Proposition 3 below shows that its errors unfortunately reinforce each other over
time. The first term on the right-hand side of (14) and (15) represents average cap-
ital gains CG between Y; and Yy, using the Return Approximation, and the last
term on the right-hand side of those equations represents average interest income
inc. Proposition 3 shows that the Return Approximation involves Y| — Yy, which



is likely to be large because those dates are so far apart; such large yield changes
would undermine the applicability of the Return Approximation over long time
periods, because when yield changes are large it is inappropriate to ignore the con-
vexity of bond price’s sensitivity to yield, especially for bonds of long duration.
On the other hand, this effect is muted by division by N in (14); we will return to
this point in Section 5. Proposition 3’s Corollary 1 is used to construct Figure 2’s
R, line as the sum of its CG line and its inc line. A third proof of Proposition 2
could be constructed by showing that 2D — 1 is the date at which the inc line’s
distance from Y| equals the CG line’s distance from Y, so that income’s positive
(or negative) deviation from Y7 just offsets the negative (or positive) capital gains.
Corollary 2, which gives conditions under which in the long run return is just equal
to average yield, so capital gains become negligible, is used in Section 3.

Proposition 3. Assuming returns are approximated by (4),

N
RaN) = 1= YN+}V) LoD, jb > Y (14)

t=1

at date N .

Corollary 1. Assuming returns are approximated by (4) and yields are linear in
time,

_ N —1
R,N)=AY(1 —-D)+ <Y1 + > AY) (15)
at date N .

Corollary 2. Assuming returns are approximated by (4),

Z?il Yt YN+1
N

lim R,(N) = lim if and only if lim 0.  (16)
N—oo N—oo N—o0

Proof of Proposition 3. From (13),

N -R,

N
> ¥, — (D—-1)AY]]
t=1

N N
=D =1) Yu+D -1 Y

t=1 t=1

N N N
=—D) Y+ Yu+D> Y
r=1 r=1 t=1

expanding the first and third terms and cancelling,

M-

1l
—_

t

N
=D (Y1 = Yns)+ ) Yo
r=1
Add and subtract Y| and expand the last term, then divide by N. |]

9



Proof of Corollary 1. First term: from the first term of (14), use Yy =
Y1 + NAY. Second term: from the second term of (14),

1Y 1 Y
N1, = N[V +(t—=DAY]

t=1
N
AY
=Yy — AY)+ — t
(Y ) N;

N+1
Y — AY + AY T

and simplify. ||

Proof of Corollary 2. Take the limit of (14) as N — oo. |}

2. Quadratic Paths, Non-integral Durations, and the Geometric Mean

For yield paths which are not linear but quadratic, return at 2D — 1 will not equal
initial yield. Intuitively, since if yields follow a linear path then after 2D — 1 periods
positive (or negative) different-from-Y; yields just balance negative (or positive)
capital gains, resulting in an average return of Y, if yield falls below this linear
path before it catches up—that is, if yield follows a convex path—then these lower
yields cause overall return to be lower, below Y;. Similarly, if yield rises above
the linear path before it slows down to meet it—that is, if yield follows a concave
path—then these higher yields cause overall return to be higher, above Y. This
intuition is correct:

Proposition 4. If yields follow the quadratic function 2112 + 7ot + 73 where ¢ is
time, if returns are approximated by (4), and if twice duration is an integer, then
over a time period of length N, = 2D — 1 the “forecast error”

_ 2
R, — Y =§(1 _D)D. (17)

Corollary. Under the conditions of Proposition 4, forecast error R, — Y at
period 2D — 1 is negative if the yield path is convex and positive if the yield path
is concave.

Proof of Proposition 4. R, = (1/N,) Zf’:”][Y, — (D—1)AY,]. Writing Y, as
2112+ 20t +23, one has: Y; is convex if z; > 0 and concave ifz; < 0; Y; = z1+22+23;
and AY, = Y, —Y, =2z1t+71+22, 50 R, = (1/N,) ZI,VZ“I [z12+22t+23—(D—1) 2z 1 1+
Z1 + 22)]. It can then be shown, either by tedious calculations using at one point
S 2 =T3/3+T2%/2+T/6and, as in (12), S/_, t = T (T +1)/2, or by using a
computer algebra system, thatif N, = 2D —1 then R, —(z1+22+23) = %zl (1-D)D.

10



A G
1. AY > 0 and 2D an integer N, =2D —1 2D -1 <NJ <00

2. AY > 0 and 2D not an integer | N =[2D — 1] | 2|D] — 1 <Ng+ < 00

3. AY < 0 and 2D an integer N, =2D — 1 D<N&,+§2D—1

4. AY < 0 and 2D not an integer | N = [2D — 1] D <N; <2[D]—1

Table 1: Theoretical Results for Linear Yield Paths

Proof of Corollary. Since D > 1, the right-hand side of (17) has the opposite
sign of c;. ||

(A fourth method of proving Proposition 2 is to set ¢; =0 in (17).)

The rest of this section reverts to assuming linear yield paths.

Proposition 2 proved Column A Rows 1 and 3 of Table 1; the next extension is
to prove its 2A and 4A. Leibowitz et al. do not discuss the complication that if 2D is
not an integer then (7) cannot describe the integer N,. In discussing it, it is helpful
to use the standard mathematical notation for “the largest integer smaller than x,”
namely the “floor function” |x], and for “the smallest integer larger than x,” which
is the “ceiling function” [x]. In case 2A, AY > 0, so R, will be less than Y; if N,
is setto |2D — 1] and larger than Y, if N, is setto 1+ 2D — 1], whichis [2D —17.
Therefore R, will never be exactly equal to initial yield, but R, will be slightly less
than initial yield in period |2D — 1] and slightly more than initial yield in period
[2D — 17. Defining N, as the largest date when R, lies on the same side of ¥; as
itdid at# = 1, and N as the smallest date when R, does not lie on the same side
of Yy asitdidats = 1, we have N = |2D — 1] and N} = [2D — 1], proving
2A. In case 4A, AY < 0, so R, will similarly never be exactly equal to initial
yield, but it will be slightly more than initial yield in period |2D — 1] and slightly
less than initial yield in period [2D — 17]. Therefore in case 4A, as in case 2A,
N, = [2D — 1] and N = [2D — 1]. This completes the proof of Table 1’s
column A.

If a sequence of “returns” { Rt}tT:1 makes $1 of wealth grow to ef1ef2 ... ¢
then replacing each R, by the arithmetic mean of the R’s would lead to the same
final value of wealth, making Section 1’s use of the arithmetic mean appropriate
if returns are continuously compounded. If {R;}7_; makes $1 of wealth grow to
(1 +R)(1 +Ry)--- (1 + Rr) then replacing each 1 + R; by one plus the geometric

mean of the R’s—which is Fg = [Hf’jl (1 + R)1YNe — 1 (not to be confused with
the geometric mean [Hi\/j1 R;:]'/Ns used in mathematics)—would lead to the same

value of wealth, so studying periodically-compounded returns requires results for
the geometric mean.

Rt

Proposition S. Assuming yields are linear in time and returns are approximated
by (4), the number of periods “N,” which will make the geometric mean return

11



equal to the initial yield satisfies

Ne AY ) (18)

1:1—[(1+(r—1))1+y1

t=1

L5 _pan,+1)

r(Sp o)

= (19)

1+Y]
F27+2) Ay <o
I(

( AY )Ng

AL ifAY >0

— N,
( 1+AY)|/) ¢ 1+Y,

T AY

+D—Ng)

(where I means the gamma function of mathematics, not to be confused with the
Gamma of option price theory).

Proof. The geometric mean return is

Ng ]/Ng Ng l/Ng
Re=|[Ja+R)| ~—1-= [H<1+Y1+(t—D)AY> —1.  (0)
t=1 t=1
Setting Fg = Y; and adding one to both sides of the equation means that N, satisfies
N, 1/Ng
1+Y1:[H(1+Y1+(t—D)AY> or
t=1
NS’
(a+y% =[(1+v1+@—D)AY) 1)

=1
which leads to (18).
Define A = 1 — DAY/(1+Y))and B = AY/(1 +Yj), so that (18) becomes

1= Hf’jl (A+ Br). Since A+ Bt = (1 +R;)/(1 +7Y;), we know that 0 < A + Bt for
all z. The latter implies0 <A+ Bt =B - (% + 1), so either

2+t>0forallfand B > 0,i.e., AY > 0, or

4+t <Oforallzand B <0,ie., AY <O0.
For the AY > O case,
N!S' Ng ]vg
exp In H(A + Bt) = exp Z In(A + Bt) = exp Z(lnB +1In(4+1)) ;

t=1 t=1 t=1
using the identity ZtT=1 f+C) = ZJT-:lc+C f(j) and setting its C equal to % and its
f equal to In,

12



A

& +N,

= exp{N,InB + :fjéi] Injj: (22)
- B

from the Lemma given after this proof,

=exp{ Ny InB + InT(5+N,+1) — InT'(4+1) } (23)
= exp In[BMsT(5+N,+1) /T(5+1)]
= BNsT(4+N,+1) /T (4+1), (24)

as was to be shown. For the AY < 0 case, using the identity Zthl f(—t+C) =
;:lt(r]:+c £(j) one has

Ng N, N,
expln H(A + Br) =exp Z In(A + Bt) =exp Z (ln(—B) + ln(—% —t))

t=1 t=1 t=1
A_
= exp{Ng In(—B) + ZfB ! v Inj}
J g
=exp{ Ny In(—B) +In['(—4) — In['(—4 —N,) }
=expIn[(—B)YMT'(—4)/T(—4 —N,)]
= (—=BYMT(=%)/T(—4 —N,).

—_4_
=B

|
Lemma. Ifa and b are positive real numbers and b — a is a positive integer then' !Referee: |
include the
b sum’s defini-
Z Inj =lna+In(a+1)+---+1Inb) =InT'(b+1) —InT(a). tion because
j=a some peo-

ple interpret

Proof. Since I'(n) = (n—1)! when n is a positive integer, if ¢ and b are both Such 2 sum
e hen this i Iv the clai thtzb Inj =In[b!] —In[(a—1)!] instead  as
positive integers then this is merely the claim that > ; _, Inj =In[b!]—In[(a=D!,  yn5ing over
which can be proven by writing out b!. To construct a proof for non-integer @ and b, all integers

recall that a basic property of the gamma function is I'(x+1) = xI'(x). Letting A between a

denote the difference operator in this paragraph only, AInT'(x) = InT'(x+1) — ;:S l_"//see
InT(x) =In(xT'(x)) —InT(x) =Inx. If Af(x) = gx) then® na tE:S tackexchange.
com/questions/
b b b 35080 /upper-
D g =D Afx) =) [f@+D) — f@)] limit-of-
x=a x=a x=a summation-

index-lower-
>This method is called “additive telescoping” on p. 5 of Naik (no date), who writes: “This is just than-lower-

like the fundamental theorem of calculus. Here, f is the discrete analogue of an antiderivative for g, 1imit.
and to add the g-values over an interval, we evaluate f at the endpoints and take the difference. How-

ever, the discrete nature of the situation makes things slightly different: instead of f(b)— f(a), we get

f(b+1) — f(a).” Gleich (2005, pp. 7-8) refers to this as the definition of the discrete antiderivative,

the definition of the discrete definite integral, and the Fundamental Theorem of Finite Calculus.
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= + fla+]) — f(a)
+ f(a+2) — f(a+1)
+ f(a+3) — f(a+2)
+ ...
+ f(b+1) — f(b)
fb+H+ 0 +---+ 0o + 0o + 0 —f(a).

Identify In I'(x) with f and Inx with g. |}

(18) has some resemblance to (11), but unlike (11), it is not possible to solve (18)
or (19) for N, as a function of D, AY, and Y, even though one can write (18) in
closed form using the gamma function. Furthermore, although N, did not depend
on Y| or AY, N, does depend on them, which means it is time-varying and it is not
possible to calculate in advance.®

There may be no integer N, making the right-hand side of (18) exactly equal
to one, but if not, there will exist some integer Ng+ such that the right-hand side
of (18) switches from being less than one to being more than one (or vice versa)
when the upper limit of the product switches from being Ng',* — 1 to being N ; . We
denote N — 1 by N, . In numerical examples, N and N, are easily found by trial
and error, calculating the right-hand side of (18) or (19) with N, =2, 3, ... until it
Crosses one.

R, equals R, to first order, so N, will be close to N, in most cases.” Leibowitz,
Bova and Kogelman (2014, Table 1) work an example with duration D =5 years,
AY = 0.5%, and Y| = 3%, giving N, = 9. Substituting these values into (18)
gives a right-hand side which is less than one for N, < 9 and greater than one for
Ng > 10, leading to the N,~ and N, reported in the first row of Table 2. Keeping D
and Y the same and changing the sign of AY results in an example which violates
(10). The next six lines show cases for various positive and negative values of AY
in which (10) is not violated; the ones with AY > 0 have N, =N, and the ones
with AY < O have N; = N,. Attempting to enlarge the difference between N,
and N, by increasing D from 5 to 20 requires decreasing AY to meet (10) in the
AY < 0 case; doing so still gives Ny =Ny for AY > 0 and Ng+ =N, for AY < 0.
The last line of Table 2 shows that the arithmetic and geometric means can give
exactly the same results when duration is not an integer. Figure 3 uses exaggerated

SIf, for fixed N, N-period periodically-compounded returns exactly equalled initial yields period
after period, an implausible periodicity occurs. Assuming an arbitrary (not necessarily linear) time
path of yields, if 1 + R, = [[,(1+R)"N and 1 + R, = [["5'(1 + R)VN then (1 + R))/(1 +R,) =
((1+R)/(1 +Ry )N, ie., Ry, is completely determined by R, and R,. Similarly R,y.; would be
completely determined by Ry,; and Ry, which in turn would be determined by R;, R, and R3; and
Ry .3 would be completely determined by R;, R,, R; and Ry; and so on ad infinitum.

T +R)N =[[L,(1+R) & In(1+R,)" =N In(1+R,). Applying the first-order Taylor
Series approximation In(1 + x) & x to both sides and dividing by N, R, ~ (1/N) >~ R, = R,. For
higher-order approximations of R, see Mindlin (2011) and Yogaranpan (2005).
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AY | 1 | D || Ng | Na | Ne | Ny
+0.5% | 3% | 5 9 9 9 10
+03% | 3% | 5 9 9 9 10
+0.2% | 3% | 5 9 9 9 10
+0.07% | 3% | 20 || 39 | 39 | 39 | 40
—03% | 3% | 5 9 9 8 9
—02% | 3% | 5 9 9 8 9
—0.07% | 3% | 20 || 39 | 39 | 38 | 39
+0.5% | 3% | 54 || 9 10| 9 10

Table 2: Results for selected linear yield paths. All satisfy (10).

Ny, N;
61 ; ++
60 N K
Ny =N; =59 4 +++++++++ ooccceeee .
58 +ooooooooo§
57 o
T T T T T T T T T 1
—.5% 0 +.5%

AY

Figure 3. For D = 30, Y; = 30%, and linear yield paths with different values of AY, the
plus signs denote N; and the bullets denote N,

values of Y and D to show that it is theoretically possible for N, to be completely
different from N, while obeying (10).

In Table 2 and Figure 3, when D is an integer and AY > O, Ng+ > 2D — 1,
whereas when AY < 0, N; < 2D — 1. We need to prove the claims in Table 1
Column G Rows 1 and 3 that this is a general asymmetry: that it would take longer
to get the geometric mean return up to Y; after suffering a capital loss resulting
from AY = +x% than it would take to bring the geometric mean return down
to Y, after enjoying a capital gain resulting from AY = —x%. This is because
the geometric mean is less than or equal to the arithmetic mean, as depicted in
Figure 2.

Proposition 6. Assuming yields are linear in time and returns are approximated
by (4), N; satisfies 1G, 2G, 3G, and 4G of Table 1.

Proof. Denote the geometric mean return up to time N as Eg(N ) = [Hﬁ\;l( 1+
R)IYN — 1 and define “one plus R” OPR(N) = Ry(N) + 1.

Case 1G’s first inequality: From Proposition 2, N, = 2D — 1; that is, as shown
in the left-hand panel of Figure 2, R, = Y; when t = 2D — 1. Since the geometric
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mean is less than or equal to the arithmetic mean,® as long as we can show that
the geometric mean is increasing in N, it is clear that the geometric mean will take
longer than 2D — 1 periods to reach Y.

According to (6), R; is strictly increasing in ¢. Hence

N N
OPR(N) = [Ja +R)'N < JJ(A+RW'N =1+Ry. (25)

=1 =1

To prove that R,(N) is increasing in N, it suffices to show that the following is
positive:

N+1 N
1 1
InOPR(N +1) = InOPR(N) = ; In(1+Ry) = Zl In(1 +R,)

N
1 1 1
= In(1+R + - — In(1 +R
N1 Ry [N+1 N}thl n(+Ro)

1 -1 ¥
= In(1 +RN+1)+N(N+1)§1n(1 +R))

N +1
- ' [maer ! N1 1+R
—m[n( + NH)_N; n(l + t):|
= [m(l +Rys1) —In OPR(N)} (26)
1
> [m(l +Ry)—1n OPR(N)} .

This is positive by (25).

Case 1G’s second inequality: When AY > 0, ﬁg(l) is less than (1 + Yy); if
we can show that Fg(N ) becomes larger than Y| as N — oo, this will prove that
Ny < oo.

To prove that Fg(N ) becomes larger than Y| as N — oo, recall that Rp = Y
and R, is increasing. Pick a date 7 such that 7 > D, and let Y, = R;. We know that
Y, > Yy; let their difference be K. The left-hand side of the following inequality
is the OPR of R, up to time N > 7; the right-hand side is the OPR of a return path
which equals R; up to time z, then becomes Y, forever (the “kinked path”):

N T N
[[a+r)'™ > TJa+r)"™ ] a+r)'". (27)

t=1 =1 t=1+1

8 A quick way to show that the famous “arithmetic mean-geometric mean inequality”” of mathe-
matics, [[T_, x:]'/" < >°7_, x;/n, applies also to the geometric mean of finance, [Hfljl(l +x)]Ne —1,
is to rewrite the latters’ “— 17 term as — ) ;_, 1/n and add its opposite to both sides of the inequality.
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The ratio of the OPR of the kinked path to the OPR an R; = Y, path is

“1er Y
i)

t=1

The fraction in (28) is less than one. The limit of (28) as N — oo is one. Hence
for sufficiently large N, the geometric mean of the kinked path can be made ar-
bitrarily close to the geometric mean of the “always Y,” path—and in particular,
for sufficiently large N the geometric mean of the kinked path can be made closer
than K to the geometric mean of the “always Y, path, which is Y,. For such N, the
geometric mean of the kinked path must be larger than Y;; and hence from (27),
the geometric mean of the original path must be larger than Y;.

Case 3G’s second inequality: From Proposition 2, N, = 2D — 1; that is, as
shown in the left-hand panel of Figure 2, R, = Y; when t = 2D — 1. Since the
geometric mean is less than or equal to the arithmetic mean, as long as we can show
that the geometric mean is decreasing in A, it is clear that the geometric mean will
be equal to Y| at an earlier date than 2D — 1.

According to (6), R, is strictly decreasing in t. Hence

N N
OPR(N) = [ +R)'™N > T4+ R =1+Ry . (29)

=1 t=1

To prove that R (N) is decreasing in N, it suffices to show that the following is
negative (using (26)):

In OPR(N + 1) — In OPR(N) = [ln(l +Ry.1) —In OPR(N)}

N +1
1

<

s [1n(1 +Ry) —In OPR(N)} .

This is negative by (29).
(N(;r = 2D — 1 is possible in the latter case because although R,(2D—1) is too
small, R,(2D —2) may be too large, making Ng+ < 2D — 1 and Ng_ =2D —2)
Case 3G’s first inequality: When AY < 0, R, (D) is greater than Y;:

D D
OPR(D) = (1+R)P > > (1+Rp)"/? =1+Rp =1+7;.

=1 =1

Since R,(N) is decreasing in N, more time must pass before R, is equal to Y.
Case 2G’s first inequality: To prove 2@G, note that D cannot be an integer when
2D is not an integer. Thus

2|D|-1 2|D|-1
I[[ H+ri+¢—D)AY1 < [ 1+Yi+¢—[DDAY] <1 +Y)* P!

=1 =1
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using Case 1G. Similarly for 4G:

2[D1-1 2[D1-1
I[[ +ri+¢—D)AYI < [ 1+Yi+¢—[DDAY] <A +¥)*PI7T,

t=1 =1

Since Ng > 2D — 1 for 2D an integer and positive AY, while Ng'* < 2D — 1 for
negative AY, when AY is very small in absolute value, N; will be close to 2D — 1,
which is N,, as illustrated in Figure 3. For realistic parameter values, there is
little or no difference between the arithmetic mean and the geometric mean in this
analysis. Nevertheless, it is still better to use continuously-compounded returns,
because then the relevant mean is the arithmetic, so Propositions 2 and 4 and its
corollary and the results of Column A of Table 1 govern, and the date at which
mean return will be equal to initial yield, being N, = 2D — 1, can, unlike Ng, be
calculated in advance (because it does not depend on AY) and is not, unlike N,,
time-varying (because it does not depend on Y7).

3. Empirical Results for Various Horizons

Under the assumptions of Proposition 2, historical returns would equal initial yields
after the passage of an amount of time equal to twice duration minus one rollover
period. However, the assumptions of Proposition 2 do not hold historically, and
therefore historical evidence on performance of different horizons is helpful in de-
ciding how useful Proposition 2’s horizon actually is. In this section we study
fifteen different horizons and six types of bonds to see how well initial yield pre-
dicted realized return over those horizons. For the reasons explained in Section 2,
in this section all computed yields and returns will be continuously compounded.

While Section 1 and 2’s theoretical results were for constant-duration portfo-
lios, it is of interest to see if they have relevance for constant-maturity portfolios,
which are more widely discussed among retail investors® and which sometimes do
not differ much from constant-duration portfolios. Constant-maturity bond yield
data in Excel spreadsheet format is easily downloaded from the ‘“Federal Reserve
Economic Data” (“FRED”) web site of the St. Louis branch of the Federal Reserve
System (https://research.stlouisfed.org/). The series used and their FRED
designations were:

e 3-Year Treasury Constant Maturity Rate (GS3)
e 5-Year Treasury Constant Maturity Rate (GS5)
e 10-Year Treasury Constant Maturity Rate (GS10)

For example, the phrase "constant maturity" bond gets three times more hits on a Google
web search than "constant duration" bond, and a search for “constant duration” on the web site
of Fidelity Investments returns no hits (either using "constant duration" site:fidelity.com on
Google or going to that site and using its search box).
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e 20-Year Treasury Constant Maturity Rate (GS20)'°

e Moody’s Seasoned Baa Corporate Bond Yield (BAA). This series does not
have a completely constant maturity; its average maturity is approximately
25 years (Hall (2001 p. 1200); Ivaschenko (2003 p. 17)). The calculations
below assume this series has a constant maturity of 25 years, unavoidably
introducing some error.

All these are monthly series, not seasonally adjusted, and for all of them we will
assume that their bonds are rolled over monthly. The first four series have data
starting in April 1953; we used data for all five from April 1953 until April 2014, a
period of 62 years 1 month. Since for each month and each Treasury series we can
calculate duration, it is possible to synthesize constant-duration yield time series.
We synthesized a 75-month constant-duration Treasury yield series by linear inter-
polation using the duration and yield data for the 5-year and 10-year series when
75 months fell between their durations, and for the 10-year and 20-year series
during the much less frequent times when 75 months fell between their durations.
Seventy-five months was almost the longest-duration series we could synthesize by
interpolation because the minimum duration of the 20-year series was 78.4 months.
We did not synthesize other, shorter-duration yield series because the difference
between “constant maturity” and “constant duration” is most evident with longer-
term bonds (see for example how the range of the durations varies with maturity
in the fifth row of Table 4 below), and because even using the largest duration pos-
sible, the results for the constant-duration series did not differ very much from the
results of the 10-year constant-maturity series.'!

Table 3 summarizes returns and yield changes for the full data set, and sepa-
rately for the “early period” before the September 1981 peak of decades of gener-
ally rising interest rates, and for the “late period” of generally falling interest rates
after September 1981. The early period is 28 years 6 months long and the late
period is 32 years 7 months long. In the early period, with rising yields, average
(nominal) returns were lower than average yields, while the opposite was true in
the late period; over the full period, average returns were quite close to average
yields. This may not be unexpected over a sufficiently long time period because of

10The 20-year series has 81 months of missing data, from January 1987 until September 1993. The
average 20-year yield for the previous 40 months and succeeding 40 months was 8.801%; the average
30-year yield for the previous 40 months and succeeding 40 months was, from another FRED data
set, almost the same, at 8.691%, reflecting a yield curve that was just barely inverted at the long
end. We approximated the 20-year yield for the missing months as 8.801/8.691 = 1.013 times the
corresponding 30-year yield. (Otherwise we did not use FRED’s 30-year constant-maturity Treasury
data because it only starts in February 1977 and 2003-2006 is missing.)

T eibowitz et al. also investigate the empirical fit of their theory. They use shorter data sets than
ours, which is appropriate because in their models, “For clarity of illustration, all returns are in a
simple-interest format that ignores the price effects of compounding and multi-year compounding”
(Leibowitz, Bova and Kogelman 2014 pp. 34-35). The only use of compound returns in LBKH
(2013) is in its Chapter 4, in an empirical context. Chapter 5 of that book has an interesting investi-
gation of the convergence of mean return to initial yield for laddered portfolios.
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75 month
3 year 5 year duration 10year 20year Long-Term
Treasury Treasury Treasury Treasury Treasury Corporate

Full Period (3.59% avg. inflation)

Change in —1.6% —0.9% —0.6% —0.1% +0.2% +1.2%
yields

Avg. annual 5.5% 5.7% 5.8% 6.0% 6.2% 7.8%
yield

Nominal Avg. 5.4% 5.6% 5.9% 5.8% 6.0% 7.3%
annual return

Real Avg. 1.8% 2.1% 2.3% 2.3% 2.4% 3.7%

annual return

Early Period, April 1953 to September 1981 (4.41% avg. inflation)

Change in +13.1% +12.7% +11.9% +12.0% +11.5% +12.6%
yields

Avg. annual 5.5% 5.6% 5.7% 5.7% 5.7% 7.0%
yield

Nominal Avg. 4.3% 3.8% 3.0% 2.7% 1.5% 2.4%
annual return

Real Avg. —0.1% —0.6% —1.4% —1.7% —2.9% —2.0%

annual return

Late Period, October 1981 to April 2014 (2.87% avg. inflation)

Change in —14.1% —132% —125% —119% —113% —11.6%
yields

Avg. annual 5.4% 5.7% 6.0% 6.2% 6.7% 8.5%
yield

Nominal Avg. 6.4% 7.3% 8.4% 8.6% 9.9% 11.6%
annual return

Real Avg. 3.6% 4.4% 5.5% 5.7% 7.0% 8.7%

annual return

Table 3: All rates, including inflation, are continuously-compounded annual percentages.
Inflation is calculated from the FRED database “Consumer Price Index for All Urban
Consumers: All Items, Index 1982-84 = 100, Monthly, Not Seasonally Adjusted” (CPI-
AUCNS). Inflation and real returns play no formal role in the analysis but inform its his-
torical perspective.
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Corollary 2 of Proposition 3, which says (accepting (4)) that the limit of R, is av-
erage yield (and capital gains approach zero) if and only if limy_ o Yy+1/N = AY
is equal to zero, which is close to what happened over the full period. Similarly,
over the early and late periods, AY was not close to zero, and returns were not
similar to average yields.

The linear yield model predicts that average return will come closest to equal-
ing initial yield over a horizon of length 2D — 1. To examine a wide variety of
horizons on both sides of that prediction, we used horizons of length “F” times
duration, with F varying from 0.75 to 2.5. A horizon of 2D — 1 implies an F of
2 —1/D. Using the smallest and largest values of D observed in the data (Table 4),
2.5 years and 16.9 years, converted to months since that is our rollover period,
leads to an F for the linear yield model of between 2 — 1/(2.5 - 12) = 1.964 and
2—-1/(16.9-12) = 1.995, a small range; comparing F for the average durations
of the 3-year and 20-year or long-term corporate would generate an even smaller
range. Rounding to one decimal place, the linear yield model thus predicts that the
best horizon over which initial yield forecasts return will be at F = 2 for all of our
bond series.

For the rest of this Section, the “early period” data will only include bonds
whose “purchase date plus 2.5 times their initial duration” occurred on or before
the September 1981 (2.5 being the maximum F). Since bonds whose purchase
dates are before 9/1/81 but whose “purchase date plus 2.5 * initial duration” are
after 9/1/81 are excluded from the early and late periods but are included in the full
period, the full period has more purchase dates, and thus has more observations,
than the union of the early period and the late period, as shown in the last line of
Table 4. Similarly, data for the “late period” and the “full period” will only include
bonds whose “purchase date plus 2.5 times their initial duration” occurred on or
before the April 2014. This ensures that comparisons are only made using the same
bonds with different values of F'. The consequences of this choice are illustrated
in Table 5. For example, the 10-year bond purchased on 6/1/95 has a rounded
initial duration of 91 months. With F' = 2, its rounded “purchase date plus F' times
initial duration” is 8/1/10, which is in the data set. Hence this bond’s experience
could have been included in the analysis. It was not, because the outcome of this
same bond with ' = 2.5 is not known: its rounded “2.5 times initial duration”
corresponds to 5/1/14, which is outside the data set. This is why the “last date
of purchase” in the 10-year Treasury column of Table 4 is before 6/1/95. The
10-year bond purchased one month earlier, on 5/1/95, has a rounded “2.5 times
initial duration” corresponding to 12/1/13, and so it is included in the analysis.
This explains why in Table 4 the “last date of purchase,” and therefore the number
of observations, both fall at roughly 2.5 times the rate of increasing duration.!?

12First example: For the full period and the late period, there are roughly 41/, years fewer obser-
vations for the 5-year Treasury than for the 3-year Treasury: the 55 months fewer observations is
exactly 2.5 times the difference between the 8/1/02 5-year’s 56 month duration and the 3/1/07 3-
year’s 34 months duration. Second example: For the full period and the late period, there are almost
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75 month

3 year 5 year duration 10year 20year  Long-Term
Treasury Treasury Treasury Treasury Treasury Corporate
FULL PERIOD
First Date of 4/1/53 4/1/53 4/1/53 4/1/53 4/1/53 4/1/53
purchase
Last Date of 2.5 x | 4/1/14 3/1/14 4/1/14 12/1/13  3/1/14 10/1/13
initial duration
Last Date of 3/1/07 8/1/02 8/1/98 5/1/95 6/1/89 1/1/91
purchase
No. of 648 593 545 506 435 454
Observations
Range of initial 2.5- 3.6— 6.3 5.2- 6.5— 6.0—
duration (years) 2.9 4.8 9.0 15.8 16.9
EARLY PERIOD
First Date of 4/1/53 4/1/53 4/1/53 4/1/53
purchase
Last Date of 2.5 « | 9/1/81 9/1/81 9/1/81 9/1/81
initial duration
Last Date of 1/1/74 11/1/70  1/1/66 10/1/60
purchase
No. of 260 212 154 91
Observations
Range of initial 2.7— 4.2— 6.3 8.1-
duration (years) 2.9 4.8 9.0
LATE PERIOD
First Date of 10/1/81 10/1/81 10/1/81 10/1/81 10/1/81 10/1/81
purchase
Last Date of 2.5 = | 4/1/14 3/1/14 4/1/14 12/1/13  3/1/14 10/1/13
initial duration
Last Date of 3/1/07 8/1/02 8/1/98 5/1/95 6/1/89 1/1/91
purchase
No. of 306 251 203 164 93 112
Observations
Range of initial 2.5- 3.6— 6.3 5.3- 6.5— 6.0—
duration (years) 2.9 4.7 7.8 10.8 9.7
EARLY PERIOD plus LATE PERIOD
No. of 566 463 357 255 93 112
Observations

Table 4: Details for the different time periods. The number of observations and the range
of initial duration only span the time between the first date of purchase and the last date of

purchase.
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4/ 10/ 7/ 9/ 10/ 5/ 3/ 12/ 4/
Period 53 60 77 81 81 95 10 13 14
Purchases X
Early Dataused, F =2 X | X
Dataused, F =2.5 X | X | X
Purchases X[ X[ X|X|X
Full Dataused, F =2 X[ X XXX |X
Dataused, F =2.5 X[ XXX X|X]|X
Purchases X
Late Dataused, F =2 X | X
Dataused, F =2.5 X | XX

Table 5: Time periods for the example of the 10-year Constant-Maturity Treasury series,
F =2,and F =2.5. All dates refer to the first of the month.

The fall in the number of observations with increasing maturity causes there to be
no observations at all of the two longest-maturity bonds during the early period,
which is the shortest period. Finally, the fact that bonds purchased just one month
apart (March versus June 1995) can have “2.5 times initial duration™ quite a bit
apart (December 2013 versus May 2014) explains why the last column of Table 5
is blank and why not all of the “last date of 2.5 * initial duration” entries in Table 4
are 4/1/14.

For each month, the capital gain was the difference between 100 and the price
of coupon bond with par value of 100, coupon interest rate equal to the semiannually-
compounded constant-maturity yield at the beginning of the month, maturity of one
month less than it had at the beginning of the month, and current yield equal to that
of the first day of the next month, as calculated by Excel’s “price” function. (This
assumes that the yield curve is flat between 35 and 36 months for 3-year bonds;
flat between 59 and 60 months for 5-year bonds; and so on.) This capital gain
was converted to a monthly percent, then to a monthly continuously-compounded
percent; the start-of-period yield was also converted to a monthly continuously-
compounded percent; then the capital gain was combined with the yield as in (3))
to obtain the monthly continuously-compounded total return. From this a monthly
“growth of $10,000” series was generated. The initial Modified Duration of each
month’s bond was next calculated using Excel, multiplied by the factor F, rounded
to the nearest integer; then the annual continuously-compounded return was cal-
culated for that forward time span.'> “Forecast Error” was defined as this value

6 years fewer observations for the 20-year Treasury than for the 10-year Treasury: 71 months fewer
observations is 4 months less than 2.5 times the difference between the 6/1/89 20-year’s 119 month
duration and the 5/1/95 10-year’s 89 months duration, with 3 months of the difference due to their
differences in “last date of 2.5 * initial duration.”

13Excel is not designed to calculate duration for continuous compounding, but it can be manip-
ulated into doing so by using its Macauley Duration function for periodic compounding, (1), with
yields that are equal to exp(continuous-compounding Y) — 1.
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minus the annual continuously-compounded initial yield. Formally, if R, r de-
notes the arithmetic mean realized annual continuously-compounded return for “a
bond purchased at date ¢ with constant maturity (or duration) m then rolled over
monthly” over the forward period of length “F = initial duration,” then since its
initial yield Y,,, is its predicted annual return, its forecast error is Rz — Yur.

With fifteen values of F' and sixteen series of bonds (six each for the full and
late periods and four for the early period) there were 240 time series of forecast
errors. Section 4 presents a fairly complete empirical analysis, including graphs,
of the F =2 — 1/D = 2 horizon, but space prohibits a similarly complete analysis
of all the values of F here. Instead, each time series here will be described by no
graphs and just a few of the numbers of interest:

Centered R? with slope 1 and intercept 0: This is the R?> measure of goodness of
fit for the equation R,,r; = 1 * Y,;, + 0. Many software packages, such
as Excel,!* report “centered R?” as their goodness-of-fit measurement for
regressions with a constant term, and “uncentered R?” as their goodness-of-fit
measurement for regressions without a constant term. We fit no regressions
because we are not interested in what line has historically best related Y
to R: we are only interested in the line which has a slope of one and an
intercept of zero. Nevertheless, both R? measures can be calculated. I agree
with Wooldridge (2012 p. 237) that it is better to use centered R?, which
is the scale in most people’s minds when thinking about R? because most
regressions have constant terms. For an opposite opinion and survey of this
“long dispute” in statistics, see Eisenhauer (2003). Unfortunately, centered
R? can be negative if there is no constant term and the fit is poor, and this
occurs several times in the second part of Table 6 below; when it is negative it
is admittedly not “the scale in most people’s minds,” and it is hard to think of
it as something “squared.” Uncentered R? is always positive, always greater
than centered R2, and could make the reader think the fit is better than it
actually is.

Root mean square (‘RMS”) forecast error: Given n purchase dates for bonds of a
fixed maturity or duration, and a fixed choice of F, this is O.,(Rumrr —
Y,n1)?/n)'/? over the relevant purchase dates.!>

Average forecast error: Zt(ﬁam Ft — Yim)/n. While all our other measures of good-
ness of fit would rank forecast errors of { —2, +2, —2, 42} worse than {+1/,
+1h, +1/h, +15}, this one will rank the latter worse than the former, and it
is possible investors would have such a preference (for example, that they
would care about some moving average of the errors).

14http ://office.microsoft.com/en-us/excel-help/linest-HPOO5209155.aspx
ISLBKH (2013, p. 4-13) call this the “tracking error” (“TE”); so do Leibowitz, Bova, and Kogel-
man (2014 p. 49).
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Frequency of Absolute Value of Forecast Error (“FFE”) less than x%: This is the value
of the cumulative distribution function of the absolute value of forecast errors
for various arbitrary values of x.

Initial yield predicts future return better the smaller the RMS forecast error; the
smaller the absolute value of the average forecast error; the larger the centered
R?; and the larger “frequency of absolute value of forecast error < x%" is for any
given x. Of these criteria, RMS error is probably the best, since R? is controversial,
average forecast error treats negative and positive errors unconventionally, and the
cumulative distribution function of forecast errors requires an arbitrary specifica-
tion of x.

Table 6 reports the 2160 results for these criteria. The remainder of this section
gives one interpretation of this table.

A star in Table 6 denotes a value within a factor of 1.03 of the best value for that
row. Stars were not assigned to “FFE < x%” rows having x > 2% because those
rows would have had almost all columns being awarded stars. The number of stars
in each column is summed in the last row of the table’s last part, and can be used
to summarize which F was best for forecasting in this data set. The boldface “G”
(for “good”) and “B” (for “bad”) in the left-hand column designate rows whose
best values satisfy:

Good Bad

RMSFE <0.50% > 1%
CentR> >090 <0.80
FFE < 5% >70% < 50%
FFE < 1% >90% < 70%

The sum of the number of stars shows that overall, while bond returns are
somewhat predictable at all of the F' values used, the predictions are better for F
values near the middle of the given range. Strictly speaking, conventional wisdom
is not wrong in saying that initial yield is an approximation of realized return over
the bonds’ initial duration, but that is a poorer approximation than using a longer
period. On the other hand, Section 1 and 2’s theoretical model’s F =~ 2, while
certainly better than F = 1, did more poorly overall than F’s closer to 13/4s. The
only bonds for which F > 2 did well, the early period’s 75-month and 10-year,
had among the smallest number of observations; and among the series with the
largest number of observations were the 20-year and Long-term Corporate for the
full period, for which F’s as low as 1.7 or even 1.6 did better than F' = 2.

We know from the theoretical model of Sections 1 and 2 that the reason F' =
2 did not perform the best is because of the nonlinear component of the yield
paths or from Return Approximation errors, and we will quantify these sources of
errors empirically in Section 5. Those two error sources contribute unpredictably
to return. The predictable part of return derives from the linear component of the
yield path and the Return Approximation, and reveals itself at ' = 2, so Section 4
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F 0.75 1 1.25 1.5 1.6 1.7 1.75 1.8 1.9 2 2.1 22 23 24 2.5
3 YEAR
Full
RMS FE 1.74% 1.30% 1.05% 0.92%*  0.90%%  0.92%*% 089%* 0.92%*  0.94% 0.96% 0.98% 0.99% 1.01% 1.02% 1.05%
Avg FE -0.10% -0.09% -0.05% -0.05% -0.03%% -0.04% -0.04% -0.04% -0.04% -0.03%* -0.04% -0.04% -0.04% -0.04% -0.05%
Cent R? 0.77 0.84 0.88% 0.90% 0.90% 0.89% 0.89% 0.89% 0.88% 0.87% 0.86 0.85 0.85 0.84 0.83
FFE < 5% B 25% 32% 37% 41% 41% 43%% 42%% 42%% 40% 40% 38% 38% 42%% 42%% 40%
FFE < 1% 45% 57% 68% 73%% 73%% T2%% T4%% T2%%* T2%% 70% 70% 71% 67% 66% 68%
FFE < 2% 77% 87% 94% 98% 98% 97% 98% 97% 96% 96% 95% 95% 95% 94% 93%
FFE < 3% 92% 98% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 4% 96% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
5 YEAR
Full
RMS FE 1.83% 1.32% 1.08% 0.98% 0.97% 0.93%%x  091%% 093%% 0.94%* 0.94%%x 0.97% 0.96% 0.97% 0.98% 1.00%
Avg FE -0.17% -0.17% -0.12% -0.08% -0.06% -0.07% -0.07% -0.05% -0.04% -0.03% -0.01%* -0.02% -0.02% -0.01%%  -0.01%%
Cent R? 0.75 0.84 0.88% 0.89% 0.89% 0.89% 0.89% 0.89% 0.88% 0.88% 0.86% 0.86% 0.85 0.84 0.84
FFE < .5% 28% 38% 42% 49% 50% 53%% 54%% 52% 50% 50% 49% 47% 44% 44% 44%
FFE < 1% 50% 63% 69% 76% 78%% 79%%* 80%%* 80%%* 80%%* T8%% 76% 75% 74% 75% 74%
FFE < 2% 79% 89% 94% 94% 94% 94% 94% 93% 94% 94% 95% 95% 95% 93% 92%
FFE < 3% 90% 96% 98% 99% 99% 99% 100% 99% 99% 99% 97% 98% 99% 100% 100%
FFE < 4% 95% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
75 MONTH
Full
RMSFE B 2.14% 1.60% 1.28% 1.13% 1.10% 1.06% 0.94%*  1.03% 1.02% 1.03% 1.05% 1.07% 1.13% 1.17% 1.21%
Avg FE -0.21% -0.12% -0.07% -0.04% -0.03% 0.00%* -0.13% 0.01% 0.03% 0.05% 0.07% 0.09% 0.11% 0.13% 0.14%
Cent R? 0.74 0.81 0.86 0.87% 0.88% 0.88% 0.89% 0.88% 0.88% 0.87% 0.86 0.85 0.82 0.80 0.78
FFE < 5% 32% 32% 43% 47% 51% 51% 51% 49% 51% 54%% 52%% 48% 44% 45% 42%
FFE < 1% 47% 55% 66% 74% 72% 74% 77 %% T7%% T3% 70% 70% 69% 67% 68% 66%
FFE < 2% 76% 84% 90% 91% 89% 91% 94% 91% 92% 92% 91% 91% 88% 86% 86%
FFE < 3% 88% 92% 94% 97% 97% 99% 99% 99% 99% 100% 100% 100% 100% 100% 99%
FFE < 4% 92% 95% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 94% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
10 YEAR
Full
RMS FE 2.04% 1.74% 1.29% 1.00% 1.07% 1.02% 0.96% 0.93%*  0.92%*  0.92%%  0.96% 1.03% 1.10% 1.17% 1.27%
Avg FE -0.44% -0.23% -0.13% -0.06% -0.07% -0.04%* -0.04%%  0.03%*% 0.11% 0.18% 0.24% 0.30% 0.32% 0.37% 0.42%
CentR? G 0.76 0.81 0.87 0.91x 0.89% 0.90% 0.90% 0.91x 0.91% 0.90% 0.89% 0.87 0.83 0.78 0.74
FFE < 5% 18% 27% 29% 36% 41% 42% 47% 50%% 50%% 50%% 52%% 42% 35% 28% 26%
FFE < 1% 43% 52% 60% 76%% 2% 2% 71% T3% 2% 71% 72% 68% 62% 58% 55%
FFE < 2% 77% 82% 89% 94% 92% 92% 95% 96% 97% 97% 95% 94% 93% 92% 88%
FFE < 3% 90% 89% 95% 99% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 4% 93% 95% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 95% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
20 YEAR
Full
RMSFE B 2.98% 1.91% 1.43% 1.29% 1.23%%  1.21%%  1.24%% 1.29% 1.31% 1.53% 1.63% 1.66% 1.77% 1.85% 1.98%
Avg FE -0.77% -0.66% -0.10%%  0.49% 0.53% 0.63% 0.75% 0.87% 0.95% 1.19% 1.25% 1.26% 1.34% 1.38% 1.45%
Cent R? 0.70 0.82 0.88% 0.88% 0.88% 0.87% 0.85 0.82 0.79 0.61 0.51 0.41 0.28 0.10 -0.22
FFE < .5% B 6% 3% 8% 14% 20% 23% 20% 29% 32%% 20% 16% 15% 13% 10% 10%
FFE < 1% B 9% 11% 30% 48%* 48%% 43% 43% 45% 43% 30% 26% 27% 25% 23% 19%
FFE < 2% 48% 74% 87% 90% 93% 95% 96% 92% 93% 83% 74% 75% 63% 57% 52%
FFE < 3% 76% 92% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 99%
FFE < 4% 83% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 90% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LT CORP
Full
RMSFE B 3.13% 2.10% 1.39%%  141%*% 1.42% 1.37%%  1.40%* 1.53% 1.77% 1.89% 1.99% 2.04% 2.18% 2.21% 2.19%
Avg FE -0.76% -0.66% 0.10%%  0.57% 0.71% 0.94% 1.04% 1.20% 1.44% 1.43% 1.47% 1.43% 1.49% 1.45% 1.44%
CentR? G 0.72 0.82 0.91x 0.87 0.87 0.85 0.83 0.78 0.64 0.51 0.34 0.21 -0.06 -0.22 -0.25
FFE < 5% B 7% 4% 12% 26% 17% 34%% 29% 27% 18% 16% 15% 14% 10% 10% 10%
FFE < 1% B 14% 10% 37% 46% 39% 49%% 46% 44% 30% 25% 25% 23% 22% 19% 22%
FFE < 2% 39% 60% 87% 86% 88% 82% 81% T4% 70% 60% 55% 55% 50% 50% 52%
FFE < 3% 68% 89% 100% 100% 100% 100% 100% 100% 95% 93% 91% 89% 83% 79% 81%
FFE < 4% 83% 97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 87% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 6, first part: Measures of goodness-of-fit for the full period. The abbreviations are:
“RMS FE,” root mean square forecast error; “Avg FE,” average forecast error; “Cent R%)”
centered R? of Rynrs = 1Y, + 0; “FFE < x%,” frequency of absolute value of forecast
error less than the given percent. The multiple of initial duration over which errors are
computed is F. See the text for explanations of the stars and boldface “G” and “B.” This
table continues in two more parts.

26



F 0.75 1 1.25 1.5 1.6 1.7 1.75 1.8 1.9 2 2.1 22 2.3 2.4 2.5
3 YEAR
Early
RMS FE 1.13% 0.83% 0.68% 0.64% 0.61%%  0.61%% 0.59%% 0.60%*% 0.61%* 0.65% 0.65% 0.63% 0.65% 0.65% 0.65%
Avg FE -0.46% -0.34% -0.24% -0.20% -0.17% -0.15% -0.15% -0.14% -0.12% -0.10% -0.08% -0.05% -0.03% -0.01% 0.00%%
Cent R2 0.74 0.83% 0.85% 0.84% 0.85% 0.85% 0.85% 0.85% 0.84% 0.80 0.80 0.81 0.78 0.77 0.76
FFE < 5% 31% 42% 49% 55% 61% 61% 63%%* 62%%* 56% 57% 55% 58% 61% 63%% 61%
FFE < 1% G 58% 77% 88% 90%* 90%* 91%% 91%* 91%* 92%* 92%* 92%* 91%* 88% 90%* 92%%
FFE < 2% 92% 99% 100% 100% 100% 100% 100% 100% 99% 99% 99% 100% 99% 98% 98%
FFE < 3% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
%FFE < 4% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
%FFE < 5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
5 YEAR
Early
RMSFE G 1.11% 0.87% 0.71% 0.56% 0.51% 048%*  0.50%% 0.51% 0.53% 0.55% 0.58% 0.64% 0.65% 0.66% 0.70%
Avg FE -0.64% -0.54% -0.44% -0.28% -0.22% -0.16% -0.16% -0.12% -0.10% -0.07% -0.04% -0.03% -0.02% 0.01%%  0.01%%*
Cent R? 0.64 0.68 0.73 0.82 0.85% 0.87% 0.85% 0.85% 0.82 0.81 0.77 0.70 0.69 0.67 0.59
FFE < 5% G 38% 53% 54% 59% 70%* T1%% T2%* 67% 62% 61% 64% 64% 59% 60% 60%
FFE < 1% G 62% 74% 81% 93%* 95%* 95%% 95%* 94%* 93%* 92% 89% 88% 89% 89% 89%
FFE < 2% 94% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 100% 100% 98%
FFE < 3% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
%FFE < 4% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
%FFE < 5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
75 MONTH
Early
RMSFE G 1.41% 1.06% 0.80% 0.69% 0.66% 0.60% 0.52% 0.52% 0.46% 0.45% 0.43% 0.41% 0.40%*  0.39%% 0.44%
Avg FE -1.02% -0.78% -0.55% -0.45% -0.42% -0.36% -0.39% -0.28% -0.20% -0.15% -0.09% -0.04% -0.01%*  0.02% 0.03%
CentR? B -0.51 -0.45 -0.34 -0.40 -0.45 -0.01 0.35 0.48 0.68 0.69 0.70% 0.72% 0.72% 0.72% 0.60
FFE < 5% G 45% 50% 62% 62% 67% 1% 68% 69% 73% T8%* 75% 75% 75% T7%* 75%
FFE < 1% G 52% 64% 79% 85% 88% 89% 93% 92% 95% 95% 96% 100%* 99%* 100%* 99%*
FFE < 2% 86% 92% 97% 100% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 3% 95% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 4% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
10 YEAR
Early
RMSFE G 0.75% 0.72% 1.04% 0.79% 0.71% 0.62% 0.57% 0.51% 0.48% 0.38% 0.25%*  0.26%% 0.28% 0.41% 0.59%
Avg FE -0.64% -0.62% -0.87% -0.69% -0.61% -0.54% -0.51% -0.38% -0.28% -0.16% -0.04%*  0.03%%  0.08% 0.15% 0.08%
CentR? B 0.26 -1.32 -11.27 -0.37 0.07 0.28 0.31 0.35 0.12 0.35 0.78 0.80% 0.70 0.07 -2.51
FFE < 5% G 41% 60% 38% 35% 38% 44% 46% 60% 67% 76% 97%% 91% 92% 71% 51%
FFE < 1% G 88% 79% 59% 81% 84% 93% 99%* 99%* 96% 100%* 100%* 100%* 100%* 100%* 96%
FFE < 2% 100% 100% 97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 3% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
%FFE < 4% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
%FFE < 5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 6, second part: the early period.
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F 0.75 1 1.25 1.5 1.6 1.7 1.75 1.8 1.9 2 2.1 2.2 2.3 24 2.5
3 YEAR
Late
RMS FE 1.74% 1.31% 1.06% 0.96%* 0.96%%  0.96%%  0.95%%  0.99% 1.00% 1.01% 1.03% 1.04% 1.04% 1.06% 1.08%
Avg FE 0.50% 0.40% 0.32% 0.18% 0.13% 0.07% 0.07% 0.01% -0.06%* -0.11% -0.18% -0.24% -0.29% -0.33% -0.38%
Cent R2 0.78 0.84 0.88% 0.88% 0.87% 0.86% 0.85% 0.84 0.83 0.82 0.80 0.79 0.78 0.77 0.76
FFE < 5% B 24% 29% 34%% 31% 29% 31% 30% 28% 29% 30% 30% 28% 34%% 33%% 29%
FFE < 1% B 40% 49% 61% 65%% 66%* 65%* 66%* 64%* 62% 60% 61% 64%% 61% 59% 61%
FFE < 2% 73% 86% 94% 99% 99% 98% 99% 98% 98% 98% 96% 96% 96% 96% 94%
FFE < 3% 93% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 4% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
5 YEAR
Late
RMS FE 1.79% 1.25% 0.98% 0.76% 0.74% 0.68% 0.64%*  0.67% 0.65%%  0.68% 0.77% 0.80% 0.84% 0.84% 0.88%
Avg FE 0.89% 0.58% 0.32% 0.08% 0.01%% -0.08% -0.07% -0.15% -0.17% -0.19% -0.24% -0.31% -0.38% -0.43% -0.48%
CentRZ2 G 0.71 0.83 0.87 0.89% 0.89% 0.90% 0.90% 0.90% 0.90% 0.89% 0.86 0.84 0.83 0.82 0.81
FFE < 27% 31% 36% 53%% 49% 53%% 53%% 51% 53%% 53%% 49% 45% 45% 44% 45%
FFE < 1% G 50% 61% T1% 77% 80% 83% 87 %% 88%* 90%* 85% 82% T7% 76% 78% 78%
FFE < 2% 77% 88% 96% 100% 100% 100% 100% 100% 100% 100% 99% 98% 98% 97% 95%
FFE < 3% 91% 98% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 4% 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
75 MONTH
Late
RMS FE 2.02% 1.14% 0.78% 0.69% 0.68% 0.66% 0.60%%  0.61%% 0.67% 0.74% 0.72% 0.74% 0.89% 1.02% 1.11%
Avg FE 1.36% 0.90% 0.56% 0.23% 0.14% 0.04%% -0.15% -0.06% -0.19% -0.29% -0.37% -0.42% -0.51% -0.58% -0.68%
CentR? G 0.64 0.77 0.89% 0.91% 0.90% 0.90% 0.90% 0.91% 0.88% 0.83 0.84 0.83 0.73 0.62 0.54
FFE < 5% 28% 29% 48% 51% 54% 52% 56% 50% 54% 63% 68%% 61% 47% 46% 40%
FFE < 1% G 43% 60% T7% 90% 80% 88% 92%% 94%0% 89% 82% 85% 83% 78% 73% 68%
FFE < 2% 74% 91% 100% 100% 100% 100% 100% 100% 100% 99% 97% 99% 96% 91% 90%
FFE < 3% 91% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99%
FFE < 4% 95% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 95% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
10 YEAR
Late
RMSFE G 2.13% 1.13% 0.85% 0.60% 0.65% 0.57% 047%%  0.53% 0.49%x  0.54% 0.66% 0.82% 0.92% 0.91% 0.98%
Avg FE 1.47% 0.91% 0.67% 0.35% 0.24% 0.03%x -0.07% -0.20% -0.17% -0.17% -0.34% -0.45% -0.54% -0.56% -0.67%
CentRZ G 0.60 0.78 0.84 0.92% 0.91x 0.92% 0.94% 0.92% 0.94% 0.92% 0.87 0.76 0.69 0.68 0.64
FFE < 5% G 27% 30% 38% 46% 57% 58% 76%% 70% 73% T1% 58% 2% 35% 37% 35%
FFE < 1% G 45% 60% T3% 96%* 89% 92% 94%% 91% 95%* 92% 89% 80% 73% 74% 71%
FFE < 2% 74% 97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 99% 96% 98% 95%
FFE < 3% 90% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 4% 93% 99% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 94% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
20 YEAR
Late
RMSFE G 2.63% 1.49% 1.25% 0.79% 0.69% 0.54% 0.57% 0.52% 048%%  0.50%%  0.65% 0.65% 0.68% 0.82% 0.93%
Avg FE 2.09% 1.39% 1.02% 0.68% 0.53% 0.27% 0.31% 0.16% 0.03%* -0.25% -0.32% -0.39% -0.47% -0.47% -0.55%
CentR?2 G 0.38 0.57 0.69 0.81 0.85 0.90% 0.87 0.90% 0.92% 0.90% 0.81 0.82 0.80 0.68 0.49
FFE < 5% 15% 4% 27% 33% 48% 59% 54% 63% 67 %% 68%* 55% 59% 44% 31% 33%
FFE < 1% G 19% 26% 61% 80% 84% 96%* 95%* 97 %% 96%* 96%% 85% 87% 86% T7% 63%
FFE < 2% 52% 87% 87% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 3% 81% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 4% 92% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 95% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
LT CORP
Late
RMSFE G 3.07% 1.66% 1.27% 0.64% 0.61% 047%x  0.53% 0.46%x  0.52% 0.77% 0.68% 0.89% 1.01% 1.13% 1.10%
Avg FE 2.57% 1.49% 1.01% 0.37% 0.41% 0.26% 0.33% 0.20% 0.03%x -0.35% -0.50% -0.72% -0.86% -0.94% -0.93%
CentR? G 0.23 0.58 0.76 0.92 0.92 0.95% 0.93% 0.95% 0.94% 0.87 0.87 0.78 0.68 0.58 0.56
FFE < 5% G 1% 13% 26% 62% 47% T2%% 61% 68% 63% 55% 54% 42% 30% 29% 29%
FFE < 1% G 7% 24% 40% 91% 96% 97 %% 95% 100%% 96% 81% 79% 70% 61% 50% 59%
FFE < 2% 47% 77% 89% 99% 100% 100% 100% 100% 100% 98% 100% 99% 100% 97% 97%
FFE < 3% 75% 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 4% 88% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
FFE < 5% 90% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Total Stars 0 1 11 20 24 39 40 32 30 20 12 9 7 11 5
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gives more detail about the performance of initial yield as a predictor of return at
that F.

4. Empirical Results for an Horizon of Twice Duration

This section provides an in-depth analysis of the F* = 2 case. Figure 4 begins by
showing both the initial yield and the forward realized return for the bonds. For ex-
ample, the 10-year bond bought in February 1976 had “two times initial duration”
ending on April 1990; its initial yield was 7.64%, but its actual annualized return
over that period was 8.86%; so its red dotted line is 1.22% higher than its solid
line, illustrated by the vertical dashed line. The yield at the end of the period was
8.56%; the figure’s dashed sloped line joins the initial yield to the end-of-period
yield. This bond did better than initially expected primarily because despite the
fact that yields rose, which caused a small capital loss, the sharply higher yields
in the middle of the period caused its interest earnings to be much higher than its
initial yield. Section 5 analyzes such reasons for forecast errors.

The gap between the two lines in Figure 4 is graphed with a black solid line in
Figure 5. (Ignore the figure’s blue dash-dot lines until Section 5.) The “G” and “B”
code used in Table 6 is also used in this figure, with a dash representing neither G
nor B, with the five criteria listed in the order they appear in Table 6 (RMS FE, Avg
FE, etc.), and with “Avg FE” obtaining a “G” if its absolute value is less than 0.20%
and a “B” if its absolute value is greater than 0.50%.'® Because here these codes
apply only to F' = 2, the pattern can differ from that in Table 6 despite keeping
Table 6’s definitions of each period’s dates. The G/B/- code next to the name of
the bond series pertains to the full period, i.e., all purchase dates lying to the left
of the vertical dashed line; that near the upper left-hand corner pertains to the
early period, whose purchase dates lie between the vertical axis and the first solid
vertical line; and the code in the upper center-right part of the graph pertains to the
late period, whose purchase dates lie between the 9/1/81 solid vertical line and the
dashed vertical line. It is impossible to calculate forecast errors for purchase dates
to the right of the dashed vertical line when F© = 2.5 and so those dates are not
included in any of this Section’s analyses, but some of them are feasible for FF =2
and are depicted in Figure 5. (They brought Figure 5’s number of observations,
listed in the order given in Table 4, to 664, 624, 583, 545, 478, and 478.)

The sharp drop near the end of the Long-term Corporate series reflects the late-
2008 market disruptions.!”

The best fit is for the 10-year bonds’ late period, where three of the five cri-
teria deem the fit to be good. For overall performance, the 10-year is somewhat

16This was not used in Table 6 because if it had been, every “Avg FE” row in that table except one
would have gotten a “G.”

"Long-term Corporate data for (purchase date, last date of twice initial duration, forecast error)
for twice-duration periods ending from October 2008 to January 2009 is: (10/89, 11/08, —1.78%);
(11/89, 12/08, —1.38%); (12/89, 1/09, —1.23%); (1/90, 12/08, —1.45%); (2/90, 10/08, —1.79%);
(6/90, 12/08, —1.62%); (8/90, 11/08, —2.14%); (11/90, 11/08, —2.27%).
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10yr: 8.86%—....
10yr: 8.56% | - B A
10yr: 7.64%7;__‘;“....-,, I 1V A

) 75-month

I I T I T I \
4/53 1/60 1/70 2/76  1/80 1/904/90 1/00 6/08

Figure 4. Initial yield (solid line) and forward return (dotted red line) for F = 2. Hori-
zontal axis: purchase date. Vertical axis: continually-compounded annualized return, with

absolute yields not shown so that the graphs can be separated for legibility, but vertical tick
marks given every 1%. 30
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better than the 3-year’s, 5-year’s, and 75-month constant duration’s, while the 20-
year and the long-term corporate have the worst performance, with all five criteria
deeming their fit poor, due to persistent positive forecast errors for bonds purchased
before the early 1980’s.

There is no data for the 20-year bonds before 4/1953, but for the long-term cor-
porate bonds there is data going back to 1919, which is useful in obtaining a longer
historical perspective on the persistent forecast errors for long bonds. The yield,
forward return, and duration are plotted in Figure 6. A very prominent feature of
Figure 6 graph is its the two interest rates peaks, in 1932 and 1981.!% From 1932
until the late-1950’s, the yield path on a scale appropriate to long-term bonds—
approximately two decades—has an overall convex shape; then it reaches an in-
flection point and becomes concave. From the Corollary to Proposition 4, this
would give rise to negative forecast errors during the earlier period, which are
observed at least from 1934 until the late 1940’s, and positive errors afterwards,
which are observed until the early-1980’s.

For concreteness, Figure 6 has three straight lines, each of which has a length
equal to twice the duration of the bond on the left-hand endpoint of the line. One
of these lines connects the 4/35 yield with the 4/61 yield, which was lower. The
intervening yields lie mostly below this line, so the shape is generally convex.
That explains the 4/35 negative forecast error in accordance with the Corollary of
Proposition 4. The next line connects the 2/40 yield with the 7/69 yield, which
was higher. The intervening yields lie mostly below this line, so the shape is again
generally convex, again leading to a negative forecast error. The yields between the
start and end of the line from 9/67 to 1/93 lie mostly above the line, so the shape
is generally concave, and the forecast error positive. The lines going to the right
from 2/40 and from 9/67 have similar positive slopes, but they have very different
forecast errors—the first negative, the second positive—because their associated
yield paths differ in convexity. These results are all in complete accordance with
the Corollary of Proposition 4 that it is not the direction of the yield path but rather
its concavity or convexity that determines the sign of the forecast error.'”

Table 7 gives details for ¥ = 2 which are not included in Table 6. Its row
RMS?/St. Dev? is included because although the traditional measure of risk is
variance (the square of the standard deviation of the row labeled “Avg. annualized
return over 2 # initial duration™), a better measure of risk might be the square of
Table 6’s 2.0 column’s “RMS FE,” the argument being that short-term fluctuations

8The sharp interest rate peak of 1932 in Figure 6 was due to a rise in long-term Treasury rates
(FRED’s “Long-term U.S. Government Securities (Discontinued Series)”) of slightly more than 1%
coupled with an increase in the spread between these two rates from approximately 2% in early 1929
to more than 7% in mid-1932.

YThe direction of the yield path did play a role in Column G of Table 1, which showed that forecast
error would be lowered by using larger ”’s when AY > 0 and smaller F’s when AY < 0, but that was
a consequence of using the geometric mean, which is inapplicable to the continuously-compounded
yields and returns of this Section.
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75 month
3 year 5 year duration 10year 20 year Long-Term
Treasury Treasury Treasury Treasury Treasury Corporate
FULL PERIOD
Last date of 2 * initial duration 11/1/12 12/1/11 2/1/11 3/1/10 4/1/09 4/1/09
Avg. annualized return over 6.0% 6.4% 6.7% 6.9% 7.9% 9.6%
2 « initial duration +2.7% +2.7% +2.9% +3.0% +2.4% +2.7%
RMS?/St. Dev? 0.13 0.12 0.13 0.10 0.39 0.49
Correlation Coefficient 0.94 0.94 0.93 0.95 0.96 0.94
EARLY PERIOD
Last date of 2 = initial duration 5/1/80 7/1/79 7/1/78 T/1/77
Avg. annualized return over 4.4% 4.1% 3.4% 3.1%
2 « initial duration +1.5% +1.2% +0.8% +0.5%
RMS?/St. Dev? 0.20 0.19 0.31 0.65
Correlation Coefficient 0.92 0.92 0.85 0.87
LATE PERIOD
Last date of 2 = initial duration 11/1/12 12/1/11 2/1/11 3/1/10 4/1/09 4/1/09
Avg. annualized return over 6.4% 7.2% 7.9% 8.7% 10.0% 11.5%
2 « initial duration +2.4% +2.1% +1.8% +1.9% +1.6% +2.2%
RMS?/St. Dev? 0.18 0.11 0.17 0.08 0.10 0.13
Correlation Coefficient 0.93 0.97 0.97 0.98 0.98 0.95

Table 7: Results for F' = 2. Numbers after & are standard deviations.

are unimportant, and that the important source of risk for the long-term investor
is having realized return turn out to be unequal to initial yield. This row gives the
latter divided by the former.

Only as a cautionary tale does Table 7 report the “Correlation Coefficient”
between initial yield and subsequent return, since if the data exactly followed
Rumr: = aYy, + b but a was not equal to one or b was not equal to zero, then
the correlation coefficient would be a perfect 1.0, but the hypothesis proposed in
this paper would have failed. The “full period” portion of Table 7 gives an example
of how misleading this correlation coefficient can be: there the 20-year Treasury
has the highest correlation coefficient at 0.96 but, as shown in Figure 5, one of the
worst fits by all of the legitimate criteria.

Post-1953, Figure 5 shows that the only large and persistently positive or neg-
ative forecast errors occur for bonds influenced by the 1970’s. Outside of those
bonds, forecast errors tend to be less than 1% per year, except for the 3-year se-
ries where errors remain larger but rarely reach +2% per year, and forecast errors
change sign at least twice a decade, often much more frequently.

The centered R? values in Table 6’s 2.0 column are quite good, 0.82 or higher,
except for the longest bonds of the full and early periods. For the full period the
root mean square forecast error at /' = 2 was around one percent per year for 10-
year and shorter bonds, and between 1.5 and 1.9 percent for longer bonds. In the
early period, initial yield is 1% of realized return more than 91% of the time.
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Actual Path

Linear Path

Return Approximation

R~ 1% — (D—1)(+1%)
R> ~ 3% — (D—1)(+0%)
(a) R, ~ 2.5% — 0.005D

Ry ~ 1% — (D—1)(+1 %)
Ry ~ 2% — (D—1)(+1 %)
(b) R, ~ 1.5% — 0.005D

No Return Approximation

Ry = In[e!% — 1 + 2VGD]

PV(1%)

— 3% PV(3%)
R2 = ln[e — 1+ PV(3%)]
()R, =1.5%+ S In[e'™ — 1+

PV (3%)
PV(1%)

]

Ry =In[e!% — 1 + LV2D)]

PV(1%)

1 [2% PV(3%)

R2 =1In [8 -1+ m}

(DR, =

1 1% PV (2%)
2 ln{ e —1+ PV(l%)]
2% PV(3%)

* [e —1+ PV(Z%)]}

Table 8: Sources of error in continuously-compounded returns. Returns with no approxi-
mation use Section 1’s (3).

In the late period, initial yield is +1% of realized return more than 81% of the
time except for the 3-year Treasury at 60%. Predictions for the full period are not
as precise, but initial yield is 2% of realized return more than 83% of the time
except for the long-term corporate, when it is this accurate only 60% of the time.
In summary, almost all the time, initial yield is within a percent or two of realized
return with a horizon of twice initial duration.

5. Sources of Error

So far we have assumed linear yield paths and the Return Approximation, which
for the example of Figure 1 gives rise to the R, of Table 8’s cell “(b).” The actual
historical return comes about by dropping the linear path assumption and the Re-
turn Approximation, resulting for that example in the Table’s “(c).” In this section
we decompose the error, (b) minus (c), into two components:

1. acorrection “NL” for the nonlinearity of the yield path (in the example above,
“(a) minus (b)”) ; and

2. a correction “CRA” for the Return Approximation (in the example above,
“(d) minus (b)”).

Note that NL in the example above, 1%, is also equal to the difference between
the point (2, 2%) and the point (2, 3%) in Figure 1. (Since the actual path and our
linear path share the same initial and final yields, the average capital gains along
the two paths are the same, so the difference in return is just due to the differ-
ence in average income earned.) There will be a residual gap between “(b) plus
NL plus CRA” and (c) for a few reasons: a theoretical reason (“(b) plus NL plus
CRA” does not quite equal (c) due to interaction terms between the two approx-
imations); and several empirical reasons (the data used in Sections 3 and 4 has
nonconstant duration or, in the case of the constant-75-month-duration series, im-
perfect interpolation methods (and in the Long-term Corporate series, nonconstant
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duration and imprecisely known maturity); horizons rounded to an integer number
of months; and possible imperfections in the Federal Reserve’s method for calcu-
lating constant-maturity yields). However, this section will show that the residual
gap was small, so NL and CRA do explain most of the error between (b) and (c) in
our data.

To illustrate of how our definition for NL is calculated using actual data, for the
10-year Treasury between 2/76 and 4/90, first form a linear path between the actual
2/76 and 4/90 yields (the sloped dashed line drawn in Figure 4). Then calculate the
(discrete-time analog of) the average area between the actual time path of yields
and our chosen linear path, counting as negative the areas generated when actual
yields are below the straight line. Formally, let Y{ . be the value at date ¢ of a
straight line joining Y,,, and Y,,;+Fp,). Then the measure of nonlinearity “NL” we

use 1s
+FD,

1 4
NLy. = FD+1 E (Y — YmrtF)‘
1=t

By allowing positive and negative deviations from linearity to cancel, this measure
ensures that “nonlinearity” will be furthest from zero when yields mostly deviate
from linearity in a single direction. If the yield path is convex, the yield path will be
below the linear path and NL < O; if the yield path is concave, NL > 0. According
to Proposition 4’s corollary, if the yield path is convex and quadratic, forecast error
is negative, and if the yield path is concave and quadratic, forecast error is positive,
so if the actual yield paths are sufficiently close to being quadratic, NL will have
the same sign as forecast error.

NL is the difference between the average yield along the realized path and the
average yield along the linear path. To show this, denote the slope of the linear path
(Yim(e+FD,)—Yme)/(F -D;) by s ; then since Y{ . = Y, +s(t—1) fort < t < t+FD,,

+FD,
NL = mpr 2 e = Your)
1=t

+FD, +FD;, +FD;

-1 _ 1 — s —
= FD+1 E: Y — Fp1 Z Yine — Fpa Z (t—1
=t t=t t=t

| s (F-D)(F -D,+1)
mZYm’_Y’"’_F-DTH 2

Y. +Y
_ 1 mrt m(t+FD;)
~ F-D+1 Z Yine — 2 :

20This expression for NL has the same form as the measure of nonlinearity in equation (2) of
Emancipator and Kroll (1993) except that they take the absolute value of the differences.
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75 month
3 year 5 year duration 10year 20 year Long-Term

Treasury Treasury Treasury Treasury Treasury Corporate
FULL PERIOD
Average NL 0.15% 0.12% 0.15% 0.21% 1.13% 1.31%
NL & Forec. Err. Corr. Coeff. 0.99 0.995 0.999 0.99 0.98 0.97
R’NLFE 0.95 0.96 0.99 0.94 0.89 0.90
EARLY PERIOD
Average NL 0.03% 0.02% -0.04% -0.20%
NL & Forec. Err. Corr. Coeff. 0.995 0.995 0.998 0.99
R’NLFE 0.95 0.96 0.93 0.97
LATE PERIOD
Average NL 0.06% -0.05% -0.20% -0.16% -0.51% -0.67%
NL & Forec. Err. Corr. Coeff. 0.996 0.996 0.999 0.98 0.93 0.87
R’NLFE 0.96 0.95 0.98 0.94 0.34 0.55

Table 9: Results for F = 2. The abbreviation “R>NLFE” stands for the centered R? of
Runrt — Y = 1 % NL,,r; + 0; the abbreviation “NL & Forec. Err. Corr. Coeff” stands for
the correlation coefficient between NL and the forecast errors.

The blue dash-dot lines in Figure 5 graph NL. To the extent that NL moves
together with the forecast error, the former explains the latter. The graphs certainly
suggest that forecast errors are largely due to nonlinearity as measured by NL.

One formal measure of how well NL fits forecast error is the correlation coef-
ficient between them; another is the centered R? of Rynps — Y = 1 % NLyps + 0.
This last measure is reported below using the abbreviation “R>NLFE ?! Table 9
gives the correlation coefficients between the Nonlinearity Measure and the fore-
cast error, and they are quite high, ranging from 0.97 to 0.999, except for the two
longest bonds in the late period, which have 0.93 and 0.87. The R>NLFE statistics
are almost as good, except again for the two longest bonds in the later period.

For the Long-term Corporate series NL is graphed as the blue dash-dot line in
Figure 7, together with the forecast error, which is the solid line. Their correlation
coefficient is 0.93, their R2NLFE is 0.75, and just as in Figure 5, in some periods it
is difficult to distinguish by eye the forecast error from NL. Certainly nonlinearity
is the source of a great deal of forecasting error. However, in Figure 7, nonlinearity
does not explain forecasting error well circa 1932, 1981, and quite prominently in

21 An alternative to NL as an explanation of forecast errors would be an estimate of the right-hand
side of (17), where for a purchase date of ¢, one would set z; = arg min Z;SIF*D" [Y(t;) — 218> — 20t —
z3]? given the constraints Y () = zlt12+Z2t| +zzand Y (4, +F *D,)) = z;(t}+F =D, V+25(t1 +F *Dy )+23,
which can be rewritten so that z, and z3 drop out of the minimization problem, whose only unknown
then is z;. This measure captures only quadratic nonlinearity, not all nonlinearity, and using it on
the long-term corporate data gave a predictor which was highly correlated with NL but had wider
swings, which made it worse than NL. This measure is also much harder to calculate than NL
because it requires solving an optimization problem for each purchase date, whereas NL just requires
summing up differences.
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Figure 7. The dash-dot blue line is the nonlinearity measure NL, and the solid line is the
forecast error, of Figure 6. The scale is the same as in Figure 5.

1945-1952, when forecast error deviated from NL to an extent probably unimagin-
able if the only the post-1953 data had been available. 1932 and 1981 are interest
rate peaks and 1945-1952 is an interest rate trough, so they have large differences
between their paths’ initial and final yields, which Section 1’s discussion of Propo-
sition 3 warned us are just the circumstances—together with long duration—in
which errors in the Return Approximation are most likely to be important.

To confirm this requires calculating our correction for the Return Approxi-
mation, CRA. The formal version of the definition we gave above is CRA =
Fﬁm Fre — Fﬁm r.p Where the first is the arithmetic mean of exact return, starting
at time 7 and ending at time 7 + F - D,, of bonds following a linear yield path from
Y 10 Y4 Fp,), and the second is the arithmetic mean of the Return Approxima-
tion of return over the same linear yield path. Because the formula for exact bond
price changes is nonlinear, calculating the first quantity requires generating one
counterfactual linear yield path between 7z and 7+ F - D, for each starting month
(and each bond series and each F') in the data set, then calculating the exact price
change over each month for each of the counterfactual paths.

Performing the required calculations and then adding CRA to NL should pro-
vide a close match to forecast error. Figure 8 tests this; it is like Figure 7, but its
blue dash-dot line is NL + CRA instead of just NL. The fit is much improved; in-
corporating CRA eliminates the unexplained forecast error around the interest rate
peaks and trough.

We calculated CRA for all the other bond series, and choose in Table 10 to
summarize the results by reporting only the size of root mean square of “forecast
error minus NL minus CRA,” although the other descriptors used in Table 6 could
be displayed as well. The “RMS FE — NL — CRA” numbers in the “2” column
are remarkably small, and, if not the smallest in their row, are only one basis point
more than the smallest in their row. If one knew in advance how to correct for
nonlinearity and the Return Approximation, then ' = 2 gives the best match be-
tween initial yield and return, as suggested by theory. It is not possible to know in
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Figure 8. The dash-dot blue line is the nonlinearity measure NL added to the correction for
the Return Approximation CRA, and the solid line is the forecast error, of Figure 6. The
scale is the same as in Figure 5.

advance how to correct for nonlinearity and the Return Approximation, but to the
extent they are as likely to increase return as to decrease it, ' &~ 2 remains the best
choice for ex ante prediction of the future. Ex post, ' & 2 will not have been the
best choice for any era, due to unpredictable idiosyncracies.

Finally, for ' = 2 predicted return (initial yield plus NL plus CRA) and actual
return is graphed in Figure 9. It reinforces the message of Figure 8 that “initial
yield plus NL plus CRA” is quite close to actual return—so close that in Figure 9,
for 75-month the constant-duration series there is hardly any difference between
them at this scale. (The vertical scale is the same one used in all the previous yield
graphs, namely Figures 4, 5, 6, 7, and 8.)

A closer examination of 9’s residuals is permitted by magnifying the vertical
scale ten times, as in Figure 10. The residuals in Figure 10 reflect the interac-
tion terms between NL and CRA, and approximations such as our horizons being
rounded to an integer number of months. The cycles of the 75-month constant-
duration series might reflect slow changes in the nonlinearity of the yield curve
(that is, the instantaneous graph of maturity versus yield; we treated the yield
curve as linear when we used linear interpolation between yields to construct the
constant-duration yield series). Figure 10’s graphs of the constant-maturity se-
ries are never positive and are quite smooth. The artificial smoothness may come
about because the constant-maturity series have an unchanging “maturity” argu-
ment in their bond pricing formulas, while that argument changes every month
for the constant-duration series. Figures 9 and 10 suggest that the model of Sec-
tions 1 and 2 does apply best to constant-duration, rather than constant-maturity,
portfolios.

Overall, the three factors of initial yield, NL, and CRA did capture all impor-
tant aspects of the 75-month constant-duration rolling-bond portfolio returns over
approximately 2D — 1 periods. Even for the constant-maturity portfolios, the resid-
uals are small enough to be of little significance. Of the three factors, initial yield
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Figure 9. Actual forward return and “initial yield plus NL plus CRA,” over a period twice
initial duration, for each bond series. For legibility the graphs have been separated, so
absolute yields are not shown, but 1% tick marks appear on the vertical axis to show the
relative scale for all.
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Figure 10. For F = 2, forecast error minus NL minus CRA for 75-month constant duration
(solid line), 3 year (dotted line), 5 year (dashed line), 10 year (symbol “1°), 20 year (sym-
bol “2”), and Long-term Corporate (symbol “L”). The vertical scale’s tick marks appear at
every 0.1%, in contrast with the 1% spacing of the previous graphs.

is the only one knowable in advance, confirming its significance as a tool for fore-
casting returns.

Conclusion

Assuming linear yield paths, a linear approximation of the relationship between
bond price and yield change, and using an approximation that after one month
the duration of a bond shrinks by one month, the initial continuously-compounded
yield of a constant-duration bond portfolio equals its arithmetic mean continuously-
compounded return over a period slightly less than twice duration. Twice duration
gave low errors in most of our samples of historical yield paths, despite all but one
of them being constant-maturity instead of constant-duration. As anticipated in
Section 2, in those historical samples the forecast errors were mostly explained by
the convexity of the yield path, with negative forecast errors occurring when the
yield path was generally convex and positive forecast errors occurring when the
yield path was generally concave. The Return Approximation explained most of
the remaining forecast errors.

The extent of bond returns’ predictability demonstrated in this paper may make
investment-grade bonds appear less risky to long-term investors than the bonds’
variance has in the past made them appear. On the other hand, with long-term
bonds, experiencing a fixed annual forecast error of a percent or two for a period of
almost thirty years will lead to a substantial difference in final value. Furthermore,
what predictability we have discovered only applies to nominal returns, while what
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most investors care about are bonds’ real returns, which can be quite hard to pre-
dict. For example, long-term corporate bonds, which had the highest real return
over the full period (Table 3), during the early period turned an initial $10,000
investment into $5,597 in constant dollars. Theory suggests the initial yield on
inflation-indexed bonds predicts their real return over twice their duration minus
one rollover period; once more data becomes available it will be interesting to see
how close that fit is.
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