
Rapport, David J.

Real, L. A.

Schoener, Thomas W.

Sih, Andrew

Smith, Eric A.

Smith, James N. M., and Hugh P. A. Sweatman

Stein, Roy A.

Stephens, David W.

Townsend, Colin R., and Roger N. Hughes

Werner, Earl E., and Donald J. Hall

Werner, Earl E., Gary G. Mittelbach, and Donald J. Hall

Westoby, Mark

Zach, Reto, and J. Bruce Falls

Optimal Foraging Models and the Case of the !Kung

Kristen Hawkes
James F. O’Connell
Department of Anthropology
University of Utah

We concur with Sih and Milton that optimal foraging models "promise to be capable of providing valuable insights into the study of human foraging." Two important questions are raised by their comments: (1) How are optimal foraging models most usefully employed; and (2) Did we make a valid point about the !Kung? We address the general point first.

About Foraging Models

In our view, contrary to that of Sih and Milton, foraging models are not suited to describe the interaction of all, or even a large number of the variables that might affect subsistence-related behavior. They are intended to simplify the complexity of the real world for purposes of analysis. They help one specify a set of hypotheses about the factors that most significantly shape subsistence behavior. These hypotheses lead to predictions that can be tested against real data. If the data are inconsistent with predictions, one or more of the hypotheses is wrong and must be revised. The nature of the mismatch between predicted and observed behavior should guide this revision. To interpret it efficiently, one must keep the number of variables under simultaneous consideration to a minimum.
This is one of the reasons we used energy as the measure of benefit. As Sih and Milton point out, other qualities of food are also important. Nevertheless, attempting to incorporate such potentially complicating factors at the beginning of analysis invites confusion, not clarification. Almost all successful (that is, informative) applications of optimal foraging models, including those cited favorably by Sih and Milton (e.g., Belovsky 1978, 1980) employ the “piecemeal” approach (Krebs, Stephens, and Sutherland 1983), initially identifying a few variables as critical, and adding others only as necessary to improve the fit between predicted and observed behavior. The alternate approach, beginning with large arrays of nutrients, involves complex models, which demand unrealistically precise estimates of nutritional requirements (e.g., Keene 1982). Predictions are very sensitive to small changes in these estimates, so that many fragile hypotheses come under simultaneous test, making it virtually impossible to tell which are at fault (Smith 1983; O’Connell and Hawkes 1984).

Sih and Milton are mistaken when they say that it is a “major prediction” of optimal foraging theory that food value be measured in calories (Charnov and Orians 1973; Krebs et al. 1983; Smith 1983). Still, there are good reasons for preferring energy in the early stages of analysis (Smith 1979, 1983; Schoener 1971; Winterhalder 1981a), especially over more complex measures of food value, which reduce the comparability of different applications and narrow the generality of any conclusions. Because nutritional needs are so poorly understood, decisions about which nutrients to include in an analysis and assessments of the implications of acquiring various fractions of each often lack empirical or theoretical justification. Moreover, complex measures require complex models that have additional drawbacks (see Krebs et al. 1983; O’Connell and Hawkes 1984; Smith 1983 for further discussion).

Sih and Milton also find unrealistic the assumption that human foragers know or can accurately estimate returns available from alternative resources, though they are apparently prepared to accept it for other organisms. We find this analytic simplification least unrealistic for human foragers, whose intimate familiarity with their local environments has long been noted. Modeling the cost of acquiring this information is, as Sih and Milton say, an area of current interest. Constraints other than the need to acquire information, including predator avoidance (e.g., Milinski and Heller 1978; Sih 1980), territorial defense (e.g., Davies and Houston 1981; Martindale 1982), and minimizing the risk of starvation (e.g., Caraco, Martindale, and Whittam 1980; Stephens 1981; Stephens and Charnov 1982) may also be important. Nevertheless, keeping the analysis as simple as possible by studying only a few variables at a time allows the clearest assessment of results.

About the !Kung

The note (Hawkes and O’Connell 1981) that prompted Sih and Milton’s comments was stimulated by the results of our analysis of the recent elimination of tree and grass seeds from the diet of the !Alyawara of central Australia (O’Connell and Hawkes 1981, 1984). That analysis was guided by the optimal diet model (Charnov and Orians 1973; Charnov 1976), which drew our attention to the high processing costs of these resources relative to the returns they provide in energy and nutrients.

This led us to make two general points in our note:

1. The relative abundance and high nutrient content of many resources on which hunters rely has prompted the inference, now the conventional wisdom, that the costs of subsistence in hunting economies are very low. This inference fails to take account of the time required to process these resources. It takes five hours of cracking and pounding to produce 1 kg of mongongo nutmeats (Lee 1979:145), 4–6 hours to pick, winnow, and grind 1 kg of grass or tree seeds (O’Connell and Hawkes 1981; Simms 1984). In spite of their abundance and high nutrient content, these and other similar resources yield comparatively low returns on encounter—for example, approximately 1,300 kcal/hr for mongongo nuts (Lee 1979), 100–1,300 kcal/hr for certain species of central Australian and western North American grass seeds (O’Connell and Hawkes 1981; Simms 1984). In contrast, the available data suggest that returns on encounter with game animals in tropical and subtropical environments are in the range of 2500–>15,000 kcal/hr (e.g., Hawkes, Hill, and O’Connell 1982; Hill and Hawkes 1983; Hill, Hawkes, Hurtado, and Kaplan 1984; Yost and Kelley 1983; Lee 1979; see Jones 1984 for a summary). The more heavily foragers rely on high cost/low return resources, the greater their subsistence costs, and the less legitimately they can be characterized as “affluent” (Sahlins 1968).

2. This observation has an important, but initially counterintuitive implication. If hunters seek to maximize their rate of food acqui-
sition, then relatively high cost/low return re-

sources like mongongo nuts and grass seeds

may be eliminated from local diets, regardless of

their quantitative importance, given a sufficient in-

crease in the availability of resources that pro-

cede a better return relative to time invested in

collecting and processing.

Sih and Milton disagree with this inference,

arguing that “energy based rankings do not ap-

pear relevant for the !Kung.” They suggest

that protein may be the more critical measure of

food value, although they cautiously ob-

serve that “the data are insufficient to evalu-

ate the appropriateness” of these alternatives.

The data are indeed limited, but suggest that

Sih and Milton are wrong: energy is appar-

ently a more critical resource than protein for

the !Kung. Lee (1968), for example, reports a

very high protein but just sufficient calorie in-

take at Dobe. He also documents a pattern of

seasonal weight loss (Lee 1979; see also Wilm-

sen 1982). The extensive medical assessment

of Truswell and Hansen (1976:194) leads them to

conclude that “the only nutritional weak-

ness in the San’s diet is a shortage of en-

ergy (calories) usually in the spring dry sea-

son.”

There is a more basic issue. Sih and Milton

argue that “If protein rankings are indeed ap-

propriate, then contrary to Hawkes and

O’Connell’s (1981) assertion that mongongos

should be near the bottom of the list, they

should be strongly preferred (see Lee’s 1979

appendix D and table D.1).” The point of our

note was to underline the importance of count-

ing the costs of resources. We were concerned

to show the difference between the value of a

resource as measured only by its nutritional

constituents, and its net value, counting pro-

cessing costs. Mongongo nuts are a rich source

of both calories and protein, but they also have

high processing costs. These costs remain high

regardless of whether energy or protein is cho-

sen as the measure of food value. Mongongo

nuts are expensive resources.

The table to which Sih and Milton refer re-

ports the nutritional constituents of an array of

!Kung plant resources. Surprisingly, the corre-

lation between protein and calories in

these resources is extremely high ($r = 0.93$).

If game animals were added to the list, the

correlation would be even higher. This means

that the ranking of !Kung resources would be very sim-

ilar using calories or protein. Either way, mon-

gongo nuts are low ranked because of their

processing requirements, and are thus likely to

be eliminated given a sufficient increase in the

availability of higher-ranked resources.

A final point about resource distribution: an

assumption of the optimal diet model is that

resources are encountered at random. This is

often untrue in the real world, and certainly

untrue for the !Kung. Sih and Milton suggest

that the patch choice model may be more ap-

propriate, especially because its predictions

differ radically from those of the optimal

diet model. We definitely agree that the patch

choice model is a useful tool in anthropologi-

cal analysis (see O’Connell and Hawkes 1981,

1984; Hawkes et al. 1982; Winterhalder

1981b; Smith 1980 for examples of its appli-

cation). Like the diet breadth model, it entails

an unrealistic, but useful simplifying assump-

tion: that resources are encountered in per-

fectly discrete patches separated by unproduc-

tive space. Picking one or the other of these

models depends on the question of interest.

Even if we consider mongongo groves as a

patch, their value as a resource still depends

on processing costs.

Summary

The major issue here is not the utility of for-

aging models, but how they are most produc-

tively employed. Sih and Milton advocate an

approach that incorporates many complicat-

ing variables from the beginning of an anal-

ysis. This makes it very difficult to formulate

quantitatively testable predictions about be-

havior or to tell which, if any, of the multiple

hypotheses are not at fault when predicted and

observed behavior fail to match. The alterna-

tive approach, in which the number and com-

plexity of hypotheses simultaneously under

consideration is kept to a minimum, has

served students of foraging well in the past and

should continue to do so in the future.

Sih and Milton conclude with the comment

that foraging models have clarified the impor-

tance of quantifying not just energy, but also

its cost. This is the point that prompted our

note on affluent hunters.

Acknowledgments. We thank N. Blurton

Jones, E. Charnov, D. Grayson, R. Hames, D.

Metcalfe, E. Smith, J. Speth, and B. Winter-

halder for useful comments.

References Cited

Belovsky, G. E.

1978 Diet Optimization in a Generalist

Herbivore: The Moose. Theoretical Pop-

1980 Optimal Activity Times and Habi-

Caraco, T., S. Martindale, and T. S. Whittam

1980 An Empirical Demonstration of

Risk-Sensitive Foraging Preferences. An-

Truswell, A. S., and J. D. L. Hansen
Agricultural Intensification and Women’s Work

DAVID A. CLEVELAND
Center for People, Food and Environment
Tucson, AZ

Ember’s analysis in “The Relative Decline in Women’s Contribution to Agriculture with Intensification” (AA 85:285–304, 1983) of changing women’s roles in agricultural labor organization is unconvincing. She fails to adequately define concepts, which leads to inappropriate comparisons, and she takes an ahistorical, synchronic approach which leads to viewing the process of change in isolation from the larger world. I offer the following four comments in an attempt to further discussion of this important issue.

1. The lack of a critical, comparative evaluation of the definitions, methods, and time frames used in the various studies she uses in her analysis makes the tables, each with different numbers of different cases from different surveys, very confusing. The only evidence offered in support of her central argument, that there is a relative decline in women’s labor contribution to agriculture and an increase in their domestic work with intensification, is given in Table I. This table consists of a sample of 13 groups taken from a previous review (Minge-Klevana 1980). In subsequent sections she supports proposed causes for this change in women’s roles by drawing on three additional cross-cultural surveys: the HRAF Probability Sample, the Ethnographic Atlas (Murdock 1967), and Nag’s (1962) survey of factors affecting fertility. Mixing data from these surveys together, often in the same table, and using different sets of groups in each table (none of the five subsequent tables uses the same groups used in Table I to establish the condition to be explained) makes the argument unconvincing.

2. Although the concept of agricultural intensification is central to Ember’s argument, it is never explicitly defined. She does imply, however, that intensification is to be equated with “having the plow or irrigation” (p. 287). This is not the usual definition of intensification, which centers on the increasingly frequent use of land (Boserup 1965:43), although it can include increased technical and labor inputs (Netting, Cleveland, and Stier 1980; Cox and Atkins 1979:139–140; Runthenberg 1980:15–16). Thus, while the use of the plow or irrigation may be associated with intensification, it does not define it. Ember also states, in explanation of her assignment to categories in Table I, that people practicing hoe agriculture are probably nonintensive, although she “cannot be sure” (p. 287). While “hoe agriculture” is often equated in the anthropological literature with “slash and burn” techniques, which of course are relatively nonintensive, many people using the hoe as the major tool of cultivation have quite intensive systems. Ember does not, however, even follow her own definition. For example, the Tallensi and Ashanti are both classified as intensive agriculturalists in Tables II and IV even though neither use irrigation and neither depend on the plow. Although the plow was introduced to the Tallensi in the 1930s, it has not replaced the hoe as the primary tool in their intensive system of cultivation centered on continuous cropping of manured fields. Puzzlingly, in Table VI the Ashanti have become horticulturalists. They are in fact nonintensive, cropping a plot for three years and then following from two to ten times as long (Allan