Unit 5. Common Stock:
 Valuation and Aggregate
 Measures of Stock Markets

Readings Chapters 9 and 10

Chapter 9. The Valuation of Common Stock

The investor's expected return
2. Valuation as the Present Value (PV) of dividends and the growth of dividends
The investor's required return and stock valuation
. Alternative valuation techniques: Multiplier models
5. Valuation and the efficient market hypothesis

2. Valuation as The Present Value of

Dividends and the Growth of Dividends

- For an investment to be attractive, the expected return must equal to or exceed the investor's required return.
- Required return is the return an individual investor demands to justify the purchase of the stock.
This return included the risk-free rate (rf), plus a premium for bearing the risk associated with investments in common stock (rm and beta).
The valuation of a stock involves bringing all future cash inflows back to the present (using Present Value Factor) at the appropriate discount rate.

Different investors may have different discount rates. For the individual investor, the discount rate is the required return.

- Decision:

If the valuation exceeds the price of a stock, the stock is undervalued Buy the stock.
If the valuation is less than the price, the stock is overvalued. Short the stock.
2.1. Dividend Growth Valuation Model Dividend Grows at Rate g

Notations:

$\mathrm{V}=$ Valuation

$\mathrm{D}_{0}=$ Initial dividend (first year)
$\mathrm{k}=$ Discount rate=Required return
$\mathrm{g}=$ Dividends annual growth rate
If the dividend grows at the rate of g annually, valuation is

$$
\mathrm{V}=D_{0} \frac{(1+g)}{(k-g)}
$$

Note the dividend valuation model with no growth is just a special case of the dividend growth valuation model with $g=0$)

2.2. Examples

1. Given the following data, what is the value of the stock?

- Required return (discount rate) $\mathrm{k}=12 \%$
- Present dividend $\mathrm{D}_{0}=\$ 1$
- Dividend growth rate g=6\%
- Answer: This is a valuation case using dividend growth valuation model.

$$
V=\frac{D_{0}(1+g)}{(k-g)}=\frac{\$ 1 *(1+6 \%)}{(12 \%-6 \%)}=\$ 17.67
$$

3. Given the following data, what is the value of the stock?

- Required return $\mathrm{k}=12 \%$
- Present dividend $\mathrm{D}_{0}=\$ 1$
- Dividend growth rate g=o\% (no growth)
- Answer: This is a valuation case when there is no dividend growth.

$$
V=\frac{D_{0}(1+g)}{(k-g)}=\frac{D_{0}}{k}=\frac{\$ 1}{12 \%}=\$ 8.33
$$

If the market price of this stock is over $\$ 8.33$, don't buy. If it's under $\$ 8.33$, buy.

2.4. Some Generalizations from the Dividend Growth Model

- The larger the initial dividend, the higher the valuation.
- The higher the dividend growth rate, the higher the valuation.
- The lower the required return (discount rate), the higher the valuation.

2. Now suppose this stock is traded in the market for $\$ 18$ a share. Should this investor (with a 12% required return) buy this stock?

- Answer: No. Because the stock's value is only \$17.67, less than the market price of $\$ 18$. Thus this stock is overvalued.

2.3. How to Valuate More Complicated

 Dividend Patterns?- If the dividend patterns are more complicated, such as a combination of super growth for several years and slow growth later on, one can still use the dividend growth model. The only difference is that the equation setup is a bit more complicated. We will not get into the details, but there is an example in the textbook you can look at to get an idea.

远

3.3. An Example of Valuation hncorporating

Risk-Adjusted Required Return

- Firm XYZ's current dividend is $\$ 2.00\left(\mathrm{D}_{\mathrm{o}}\right)$, which is expected to grow annually at $5 \%(\mathrm{~g})$. The risk free rate is $3.5 \%\left(\mathrm{r}_{\mathrm{f}}\right)$, and the market is expected to grow at 10% (r_{M}). If the Firm XYZ stock has a Beta of 1.2, what should be the value of XYZ's stock?
- Answer:
- Step 1. Compute required return
$\mathrm{k}=3.5 \%+(10 \%-3.5 \%)^{*} 1.2=3.5 \%+7.8 \%=11.3 \%$
- Step 2. Compute valuation V using Dividend Growth Model:
$V=\frac{D_{0}(1+g)}{(k-g)}=\frac{\$ 2.00 *(1+5 \%)}{(11.3 \%-5 \%)}=\$ 33.33$

3.1. Required Return

- r_{s} on Slide 88 of Unitoz is the required return.
- In the context of stock valuation, this r_{s} is typically denoted as k
- $K=r_{s}=r_{f}+\left(r_{M}-r_{f}\right) \beta$, where
- $r_{f}=$ the risk free rate (i.e.Treasure Bill rate)
- $\mathrm{r}_{\mathrm{M}}=$ the return on the market
- $\beta=$ the stock's beta

3.2. An Example of Computing Required
 Return
 - The annual risk-free rate of return is 4%. The overall market rate of return is 12%. ABC stock as a Beta of 1.4. What is the required return for ABC stock, adjusting for its risk?
 - Answer: The required return k is:
 $\mathrm{k}=\mathrm{r}_{\mathrm{f}}+\left(\mathrm{r}_{\mathrm{M}}-\mathrm{r}_{\mathrm{f}}\right) \beta=4 \%+(12 \%-4 \%) * 1.4=15.2 \%$
 $-\mathrm{r}_{\mathrm{i}}+\left(\mathrm{r}_{\mathrm{M}}-\mathrm{r}_{\mathrm{i}}\right) \beta=4 \%+(12 \%-4 \%) * 1.4=15.2 \%$

3.4. Beta and Valuation

- If Beta is larger, the risk is higher. Thus the required return is higher to compensate for that risk. Assume dividend and dividend growth rate are the same, the stock with a higher beta has a lower value.

Weakness in the Use of P/E Ratio

- Question of the appropriate multiplier
- What is an appropriate $\mathrm{P} / \mathrm{E}(\mathrm{m})$?
- Today most stocks trade between $15-25$ P/E range. In the Dot-com bubble the average P / E had risen to 32 . The collapse in earnings caused P/E to rise to 46.5 in 2001
- A possible solution is to use current industrial average P/E ratio as the appropriate $\mathrm{P} / \mathrm{E}(\mathrm{m})$.
- Differences in estimated earnings
- A particular year's earnings may contain special items that do not occur every year
- Adjustments should be made for such events.
- Historical earnings may not predict future earnings.

4.1. Valuation Using P/E Ratio

- P/E ratio is the price to earning ratio of a stock
- E.g., If the current stock price is $\$ 50$, and earnings per year on the stock is $\$ 20$, then the $P / E=50 / 20=2.5$
Stock valuation using P / E :
- $\mathrm{P}=(\mathrm{m})(\mathrm{EPS})$

Where m is the "appropriate P / E ratio"
Note: I would rather write the formula as " $\mathrm{V}=\mathrm{m}^{*} \mathrm{E}$ ", where V is valuation and E is arnings per share. However convention i is such that in this odel, notations are different. So I am following the textbook with these different notations. Please note that this P here is the same as the V in the Divide
Growth Model, and the EPS here is the same as E in the P / E ratio
E.g., If the financial analysts believe the appropriate P/E ratio (m) for a particular stock should be, say 5, and the earning per share (EPS) for this stock is $\$ 3.5$, then the value of this stock is $\mathrm{P}=\mathrm{m}^{*} \mathrm{EPS}=5 * \$ 3.5=\$ 17.5$

4.2. Valuation Using Cash Flow

- Cash flow is the balance of the amounts of cash being received and paid by a business.
- The valuation process of using cash flow is essentially the same as is used with P / E ratio, except cash flow is substituted for earnings.
Again, the determination of future cash flow and the determination of appropriate multiplier are at the discretion of the analyst.

4.4. The PEG Ratio

- Standardizes the P/E ratio for growth

- Low PEG ratios (below 1.0) suggest undervaluation.
- E.g., If a stock's P/E is 15 , and the per-share earning growth rate is $10 \%, \mathrm{PEG}=15 / 10=1.5$
- Adjusted PEG ratio takes both dividends and growth into consideration.

$$
P E G_{\text {Adj. }}=\frac{\mathrm{P} / \mathrm{E}}{\text { Growth rate }+ \text { Dividend yield }}
$$

- E.g., If in the previous example dividend yield is 2% on top of the 10% earning growth rate, then the adjusted PEG=15/(10+2)=1.25
- Low values of adjusted PEG is better than higher values.

4.5. Additional Ratios

Return on equity
Price/Book
$\frac{\text { Profit margin }}{\text { Price/Sales }}$

- Return on equity is earnings divided by a firm's equity and is a measure of performance.
- The higher the better.
-Profit margin is the ratio of earnings to sales. -The higher the better.

An Example

- One can get stock technical information online. Yahoo Finance is a good place to go. Here is the information on Wal-Mart I found on Yahoo Finance. http://finance.yahoo.com/q/ks?s=WMT. The site updates numbers frequently so what you see may be different from what I cite below.
- P/E ratio - there are two P/E ratios (Trailing P/E is 18.80 and Forward P / E is 16.73).
- P/S ratio - P/S is o. 61
- PEG ratio - PEG ratio (5 year expected) is $\mathbf{1 . 5 3}$.
- P/B ratio - P/B is 3.65
- Return on equity to Price/Book ratio. Return on equity is 20.75%
Return on equity to $\mathrm{P} / \mathrm{B}=20.75 \% / 3.65=5.68 \%$
- Profit margin to Price/Book ratio

Profit margin is 3.38%
Profit margin to $\mathrm{P} / \mathrm{B}=3.38 \% / 3.65=0.93 \%$

5. Valuation and the Efficient Market Hypothesis (EMH)

- Stock valuation and selection is not a mechanical process.
- These ratios can provide information, but they are by no means definitive.
- Depending on the data and method, analytical techniques may be manipulated to achieve pretty much any preconceived results.
- The result is that few investors and securities analysts consistently outperform the market on a risk-adjusted basis - consistent with the Efficent Market Hypothesis (EMH)

Chapter 10. Investment Returns and Aggregate Measures of Stock Markets

Measures of stock performance: Averages and Indexes
2. The Dow
3. Other indexes of aggregate stock prices
4. Rates of return on investments in common stocks
5. Reducing the impact of price fluctuations: Averaging

1.1. A Price-weighted Average
 Ton

- Price of stock A \$10
- Price of stock B \$2o
- Price-weighted average is
$(\$ 10+\$ 20) / 2=\$ 15$
- The Dow-Jones Industrial Average uses this method.

1.2. A Value-weighted Average
- Weights the prices by the number of shares outstanding
- Continue with the previous example:
- Price of stock $A=\$ 10$
- Price of stock B=\$20
- Additional information is needed for value-weighted average Number of shares outstanding of stocks A: $1,000,000$
Number of shares outstanding of stocks B: 10,000,000
- Total value of each stock needs to be calculated
- Total value of stock $\mathrm{A}=\$ 10^{*} 1,000,000=\$ 10,000,000$
- Total value of stock $B=\$ 20^{*} 10,000,000=\$ 200,000,000$

Weighted Average Price is total value divided by total shares Weighted average price
$=\$ 210,000,000 /(1,000,000+10,000,000)$ $=\$ 19.09$

- The S\&P 5 oo stock index uses the value-weighted average method.

1.4. A Geometric Average

- Instead of dividing, take the $1 / \mathrm{n}$ root. Example:
- Price of stock A = \$10
- Price of stock B = \$20
- $\mathrm{n}=2$ (two stocks)
- Geometric average price of a share: $(10)(20)^{\wedge}(1 / 2)=$ \$14.14
- The Value-Line stock index uses the geometric average method.

1.3. An Equal-weighted Average

- This approach assumes equal dollar amount invested in each stock.
- Continue with previous example
- Price of stock A is $\$ 10$
- Price of stock B is $\$ 20$
- Assume one invests $\$ 100$ in each stock (equal dollar amount - Share of A purchased $=100 / 10=10$
- Share of B purchased $=100 / 20=5$

Average price of a share: $\$ 200 /(10+5)=\$ 200 / 15=\$ 13.33$
Note with this approach it does not matter whether you assume \$100 invested in each stock or $\$ 1$ million invested in each stock. The answer is the same.

1.5. Comparing Prices Over Time

There are two main methods of comparison prices over time:

- Graphic illustrations
- Numbers: Rate of return
- We will first cover graphic illustrations, followed by market indexes using graphic illustrations. Then we will cover rate of return computations.

Use of Different Scales to Illustrate Stock Price Movements

Graphical Illustrations: Linear Scale vs. Log Scale

- For Composite Indexes, often there are two ways: Linear scale and Log scale
- Presentation of data on a log scale can be helpful when the data covers a large range of values - the logarithm reduces this to a more manageable range.
- Next slide shows two Dow Jones Composite Index graphs: Linear scale and Log scale.

2. Dow Jones Industrial Average

- Perhaps the most well-known index is the Dow Jones Industrial Average.
Created by Charles Dow in 1896. Of the original 12, only GE is currently still part of the index.
In 1916, number of stock in the index increased to 20 . It increased to 30
Currently comprised of 30 largest and most widely help public companies in the U.S.
- Price-weighted and scaled average.
- Scaled average means the divisor changes so that substitutions of one firm for another has no impact on the average.
- For a good description of the history and some interesting anecdotes see http://en.wikipedia.org/wiki/Dow Jones Industrial Average

3. Additional Aggregate Measures of the

 Stock Market Include:- Standard \& Poor's 500 stock index:
- Contains the stocks of 500 large-cap corporations.
- http://en.wikipedia.org/wiki/S\&P 500
- NYSE composite index
- http://en.wikipedia.org/wiki/NYSE_Composite
- Value Line Stock average
- http://en.wikipedia.org/wiki/Value Line_Composite Index
- Nasdaq composite index
- http://en.wikipedia.org/wiki/NASDAQ
- Dow Jones Wilshire 5000 index
- http://en.wikipedia.org/wiki/Wilshire_5000

Additional Aggregate Measures of the Stock Market
- Russell 1000, Russell 2000, Russell 3000 - http://en.wikipedia.org/wiki/Russell Indexes - S\&P 400 MidCap - http://en.wikipedia.org/wiki/S\&P_400 - S\&P 600 SmallCap - http://en.wikipedia.org/wiki/S\%26P 600 - S\&P 1500 - http://en.wikipedia.org/wiki/S\&P 1500

3.3. Bond Averages

- In addition to stock indexes, there are aggregate measures of the bond market.
- Bond averages are expressed in yield instead of prices.
- Yield can be expressed in both dollars and percentage changes.
- Bond Indexes: Can be categorized based on their broad characteristics, such as whether they are government bonds, corporate bonds, high-yield bonds, mortgagebacked securities, etc. They can also be classified based on their credit rating or maturity.
- An example: Dow Jones Corporate Bond Index
http://www.djindexes.com/mdsidx/?event=showCorpBond

Dow Jones Bond Average and Yields on Mergent's (Moody's) Aaa-Rated Bonds, 1978-2000

Inverse relationship between bond price and yield. During the period covered in this graph, bond prices (Dow Jones Bond Average, blue line) was going down while yield (gray line) was going up.

3.4. The Volatility Index (VIX) - the

 "fear" index- The VIX is a measure of investors' expectations about near-term market volatility.
- The calculation of the VIX is based on the S\&P 500 index options and is expressed in percentages (options are explained in later units).
- Low values suggest low volatility (e.g. VIX=10)
- High values suggest high volatility (e.g. VIX=50)
- Current VIX is around 30 (Sept. 2011)

3.5. Securities Prices and Inflation - Changes in Real Terms (Instead of Nominal)
- Another means of measuring securities price performance is to compare the measure with a general price index, such as Consumer Price Index (CPI).
- When adjusted for CPI, stock performance is much more modest.

4. Rates of Return on Investments

- Just as there are many ways to compute an average, there are several ways to compute a return.
- Holding period return
- Dollar-weighted return (also called: internal rate of return, true annualized rate of return)
- Time-weighted return (also called: average percentage return)

4.1.Holding Period Return (HPR)

- The percentage earned on an investment during a period of time

$$
H P R=\frac{P_{1}+D-P_{0}}{P_{0}}
$$

- P_{0} is purchase price, P_{1} is sell price, D is dividend

Example: You buy a stock for $\$ 20$. After a year the price rises to $\$ 25$ but falls back to $\$ 22$ at the end of the second year. The total dividend payment for
the two years was $\$ 2$. What was the holding period return?
Answer:

- In this case the holding period is two years. For holding period return only the beginning and ending prices matter, the middle price ($\$ 25$ in this case) does not matter.
Holding period return $=(\$ 22+\$ 2-\$ 20) / \$ 20=20 \%$
Major weakness of HPR
- Does not consider the length of time
4.2. Dollar-Weighted Rate of Return (Also called "True

Annualized Return" or "Internal Rate of Return")

- This measure takes compounding into consideration.
- It is the discount rate that equates the cost of an investment with the present value of cash flows generated by the investment.
- See equation below. Solve for r.

Computation can be very tedious. I usually use Excel and try different numbers of r in order to solve the equation. One can also use a financial calculator if the number of years are small. - Note if the dividend amount is the same every year, one can
simplify the dividend part of the equation using Present Value Factor Sum (PVFS, see Week 1 notes or FCS 3450 notes)

$$
P_{0}=\frac{D_{1}}{(1+r)}+\ldots+\frac{D_{n}}{(1+r)^{n}}+\frac{P_{1}}{(1+r)^{n}}
$$

Weaknesses of the internal rate of return:

- Assumes cash flows are reinvested at that internal rate of return.

- Consider the previous example again. You buy a stock for \$20. After a year the price rises to $\$ 25$ but falls back to $\$ 22$ at the end of the second year. Dividends were $\$ 1$ per year. What was the true annualized return?
- Answer:

$$
20=\frac{1}{(1+r)}+\frac{1}{(1+r)^{2}}+\frac{22}{(1+r)^{2}},
$$

Solving for r using Excel by trying different numbers for $\mathrm{r}, \mathrm{r}=9.76 \%$
4.3. Time-Weighted_Rate of Return-simple Average
(also called "Average Percentage Return) and Geometric Average

- The time-weighted rate of return is to compute return for every year, and then take the average.
- Simple average is also called 'average percentage return".
- Geometric average is the true compound rate

Consider the previous example again. You buy a stock for $\$ 20$. After year the price rises to $\$ 25$ but falls back to $\$ 22$ at the end of the second year. Dividends were \$1 per year. What is the average percentage return? What is the geometric time-weighted rate of return?
Answer:

- Year 1 return $=(25+1-20) / 20=30 \%$

Sim 2 return $=(22+1-25) / 25$ ercentage return) $=(30 \%-8 \%) / 2=11 \%$

- Geometric average $=[(1+30 \%)(1-8 \%)]^{\wedge}(1 / 2)-1=9.36 \%$
- Weakness of this measure:
- Compounding is not taken into consideration

4.5. Which Rate of Return Measure is the Best?

- The dollar-weighted measure of rate of return makes the most sense in theoretical consistency.
- However the time-weighted rate of return can be useful to evaluate the performance of a portfolio manager.

6. Reducing the Impact of Pric

Fluctuation: Averaging Strategies

- Averaging is one strategy designed to reduce the impact of security price fluctuations.
- Two averaging methods:
- Dollar cost averaging through periodic purchase
- Averaging down - buying additional shares after prices fall
- These strategies may reduce the average cost of the stock.

