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1 Introduction

Suppose the parameters of a model are summarized by a vector θ of Þxed and
Þnite dimensionsm×1. A question that arises in some applications takes the form
of testing restrictions on θ. The restrictions may be of the type H0 : h (θ) = 0;
where h (.) is an (r + 1)× 1 function which is once-differentiable with respect to
θ, and r + 1 ≤ m. We shall write h (θ) ≡ [h1 (θ) : h2 (θ)0]0 to separate the Þrst
scalar component of h (.).
If the alternatives to these restrictions are of the form H1 : h (θ) 6= 0, then

well-known classical tests exist and their asymptotic optimality has been estab-
lished in some circumstances. However, suppose that the alternatives were to
take the different form H1 : h (θ) ≤ 0 and ι0h (θ) < 0, where ι ≡ [1 . . . 1]0. Then,
it would improve the powers of classical tests, for a given size, if the one-sided
nature of the alternatives is exploited to modify the decision rules; for example,
see Gouriéroux, Holly and Monfort (1982), Rogers (1986), Dufour (1989). See
also Berger (1989) or Liu and Berger (1995) for the equivalent formulation of
such alternative hypotheses as sign tests, ordering tests, etc. when h (θ) is linear
in θ.
We now wish to investigate the different setting of mixed alternatives of the

form

(1) H1 : h1 (θ) < 0
1×1
or h2 (θ) 6= 0

r×1
,

which include the special subset H∩1 : h1 (θ) < 0 and h2 (θ) 6= 0, of relevance to
the application in our paper. We wish to do so in generality, without assuming
the linearity of h (θ) or the Normality of estimators of θ. Few authors have
investigated (1) or variants thereof; for example, see Andrews (1998) in the case of
linear h (.), and Wolak (1989), Kodde and Palm (1986), Silvapulle (1991). Some
treatments deal with the related inequality h1 (θ) ≤ 0 for H1, which would not
extend to h1 (θ) < 0 because of a problem relating to optimizing over a parameter
space which is not closed. Additionally, see the criticisms, about critical regions
and least favourable distributions, in Perlman and Wu (1999). These difficulties
do not apply to the different setup in (1); see Perlman and Wu (1999, Section
10).
In this paper, we propose a class of statistics where the direction of the al-

ternative on h1 (θ) is incorporated. It is based on modifying, for the one-sided
component h1 (θ), a class of multivariate tests having conÞdence regions which
are elliptical in the test�s univariate components. That the class of statistics
leads to decision rules based on ellipses for its components does not mean that
it is based on estimators which are elliptically distributed, the latter being a
much stronger requirement. The class of statistics leading to elliptical conÞdence
regions includes well-known statistics like the conventional Wald (W) Lagrange
Multiplier (LM), and normally Likelihood Ratio (LR), even when their distrib-
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utions are nonstandard and possibly distinct from each other; e.g. see Abadir
(1993b). Our approach to solving the inference problem will not presuppose the
asymptotic Normality of the estimator(s) of θ. The resulting class of test statis-
tics is easy to compute, as they do not require the re-estimation of models subject
to inequality restrictions, and their distributions are unique (i.e. do not neces-
sitate bounds-based inference). For the Normal special case, we also give exact
explicit formulae for the new tests� null distributions (hence quantiles) and power
functions. Having done so, we can prove the unbiasedness and consistency of our
decision rules, and their invariance to some groups of transformations. We can
then also prove analytically, without resort to simulations, that the unmodiÞed
decision rules are inadmissible. Apart from proving consistency, earlier papers
dealing with general nonlinear h (.) restrictions have not proved analytically the
uniform superiority (if at all) of their one-sided inference procedures over the
unadjusted counterparts.
One motivation for alternative hypotheses of the forms H∩1 or H1 of (1) may be

given by a simple Auto-Regressive (AR) model with deterministic components.
It is often of interest, e.g. in macroeconomics and Þnance, to test economic
efficiency. The hypothesis of strong efficiency usually take the form of a series
following a random walk with no deterministic components. Alternative hypothe-
ses could include trend-stability of a series (no unit root), weak efficiency (unit
root with deterministic components), as well as others. The main feature of such
inference is that the component of the test which is one-sided is the largest AR
root, ruling out explosive roots in a frequentist setup, while the remaining AR
roots and deterministic variables (e.g. drift and/or time trend) have a two-sided
component if it is not the objective of the test to determine whether the series
is trending up or down. AR models are also known to give rise to problems of
low powers and lack of similarity and of pivots,1 and are therefore a useful tool
for illustration. By using our procedure, we give a novel application of mixed
one-sided and two-sided inference in this time series problem.2

In some cases, approaches alternative to ours may be based on separate testing
of the components h1 (.) and h2 (.). First, one may use the standard methods of
testing multiple hypotheses; for example, see Savin (1984) for an introduction.
A second possibility would be a sequential (conditional) procedure for separate
testing of h1 (.) and h2 (.). When similar tests do not exist for either of the
individual components of H0, the approach based on separate testing of h1 (.)
and h2 (.) raises a number of difficulties, and conservative bounds-based decision
rules would be needed. These would result in a loss of power, which was supposed
to have been avoided by the new procedure. We therefore opted for joint inference
to tackle our problem, and the reasons for our choice will be illustrated further

1For the deÞnitions of pivots and similarity, see, for example, Cox and Hinkley (1974) or
Lehmann (1986).

2Kim and Newbold (2001) also give an application of one-sided inference and inequality-
restricted estimation to a related time series problem.
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by the application of our method in the latter part of our paper.
In Section 2, we present the general setup and give the main theorems of the

paper. Section 3 contains an application of our approach to devising improved
inference procedures for tests of random walks in AR models with deterministic
components. Section 4 concludes. The proofs of our theorems are collected in
an Appendix, where we use the concept of a size-unadjusted power function in
order to prove an inequality of size-adjusted power functions. These concepts are
often used in simulations, but here we use them unconventionally for analytical
derivations. Finally, we use the following notation frequently throughout the
paper. The indicator function 1K gives 1 if condition K is satisÞed and zero
otherwise. The standard Normal density and distribution functions are deÞned
by φ (.) and Φ (.), respectively, and a noncentral χ2 variate with ν degrees of
freedom and noncentrality parameter δ is denoted by χ2ν (δ).

2 A class of modiÞed statistics

Suppose n observations are available for the model whose parameters are sum-
marized by θ. Let �θ be some consistent estimator of the parameter vector θ,
and I−1 be its asymptotic variance matrix, which we assume is Þnite. When
standard regularity conditions hold, one may think of I as Fisher�s information
matrix, but this need not be the case for our paper. However, we need to assume
that the parameters are locally identiÞed, implying that I is nonsingular; see
Rothenberg (1971), Catchpole and Morgan (1997). We will also need to assume
that ∂h (θ) /∂θ0 has rank r + 1.
Let h(�θ) be the function h (.), with argument �θ instead of θ. By consistency

of �θ, the delta method gives the asymptotic variance of h(�θ) as

V ≡
·
v11 v021
v21 V22

¸
≡ ∂h (θ)

∂θ0
I −1∂h (θ)

0

∂θ
,

implying that

(2) h2⊥1

³
�θ
´
≡ h2

³
�θ
´
− h1(

�θ)

v11
v21

is uncorrelated with h1(�θ). The function h2⊥1(�θ) contains v11 and v21 which will,
in general, depend on the unknown parameter θ (but not on the random �θ). The
function h2⊥1(θ) is deÞned as in (2), but with �θ replaced by θ. The asymptotic
variance of h2⊥1(�θ) is

V2⊥1 ≡ V22 −
1

v11
v21v

0
21.

In some models, analytical derivation of Imay be intractable, and a resort to
numerical methods may be required in devising h2⊥1(�θ).
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In general, orthogonality and independence will coincide only to second order,
and an application involving non-Normal densities will follow in Section 3. This
caveat aside, the canonical form of the class of statistics we suggest is

(3) τ ≡ τ 22 + 1τ1<0τ 21,
with critical region of size α deÞned by τ > c2α and where:

1. the component τ 22 tests the joint hypotheses h2⊥1 (θ) = 0 [by applying
h (θ) = 0 to (2)] versus h2⊥1 (θ) 6= 0; and

2. the component τ 1 is a one-sided statistic for testing h1 (θ) = 0 versus
h1 (θ) < 0.

We now explain this choice of canonical form, starting with a general justiÞcation
in the next subsection then a formal assessment in the cases of standard and
nonstandard asymptotics for �θ.

2.1 Design of the class of statistics

The class of statistics in (3) is a modiÞcation of the usual critical regions of the
form

(4) �τ ≡ τ22 + τ 21 > �c2α,
where c2α < �c2α for α ∈ (0, 1). In the two-dimensional decision space of the two
components for testing the scalar h1(.) and the vector h2⊥1(.), the critical regions
deÞned by (4) are bounded by circles. These would have been ellipses in the non-
orthogonalized space which would have been based on h1(.) and h2(.). Rotating
the axes in that latter space, namely orthogonalizing the components into h1(�θ)
and h2⊥1(�θ), implies that the critical regions can now be fully characterized by
the sum of a function of τ 1 and another function of τ2, but no cross-products like
τ 1τ 2. This has simpliÞed the modiÞcation which we propose in (3).
The critical regions implied by (3) and (4) can be represented graphically in

τ 1|τ 2 space, as in Figure 1. The curve C1 represents the boundary for the usual
critical region implied by (4). This region is unduly conservative, in the light of
the partially one-sided nature of H1 in (1). It tends to reject the null hypothesis
when

(5) h1 (θ) > 0 and h2⊥1 (θ) = 0,

which is clearly not intersecting H∩1 at all. Furthermore, as we will now show,
the design of optimal test procedures for inference on H1 will give rise to regions
which will again not intersect with the one in (5), thus causing an unnecessarily
large Type I error when using C1. If one were to use a region of the form of C1
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with a Þxed size, a lower Type I error would come at the expense of an increased
Type II error (i.e. reduced power), which is not desirable.
The intersection of the set in (5) with H1 is the (possibly empty) manifold3

deÞned by

(6)
h1 (θ)

v11
v21 = h2 (θ) 6= 0.

The complement of the set given by H1 requires h1 (θ) ≥ 0, and the least
favourable distribution [e.g. Lehmann (1986, Section 3.8)] is reached at h1 (θ) =
0. Optimal inference should therefore Þx h1 (θ) = 0 and exclude h1 (θ) > 0 from
the critical region. This amounts to excluding the rectangular region separating
h2⊥1 (θ) = 0 from h2⊥1 (θ) 6= 0, whenever h1 (θ) > 0. Not only would (5) not
overlap with H∩1 , it would also lead now to the manifold in (6) being empty (be-
cause of the inequality there) hence not intersecting at all with H1 either. The
critical region bounded by C1 is therefore not optimally-sized, as it contains some
events which are incompatible with both H∩1 and H1.
Removing the region (5) from the old critical region modiÞes the boundary

C1 into C2 which, in Figure 1, is composed of the dotted lines for τ 1 > 0 and
the old semicircle for τ1 ≤ 0. However, excluding the set in (5) from the critical
region bounded by C1 has reduced its size (Type I error). So, for a Þxed size α,
the dotted curve C3 gives the new boundary for the critical region of comparable
size to the original C1. The parameterization of the boundary of our new critical
region is given by (3), and the decision rule implied by it is to reject H0 if either:

1. τ 22 > c
2
α; or

2. τ 22 + τ
2
1 > c

2
α if τ 1 < 0.

The decision rule is in terms of one rectangular coordinate in the right half of the
graph, while in terms of the radius (one polar coordinate) in the left half of the
graph. In the latter half, the decision rule is the same as the one in (4), albeit
with a smaller quantile c2α instead of �c

2
α, which should help in achieving a power

gain for τ over �τ . An analysis of power gains will follow in the next subsection.
The statistic τ leaves some open choices, just as �τ would. For example, if

I were Fisher�s Information, one may replace it by minus the Hessian (second
derivative of the model�s log-likelihood, also called Observed Information), and/or
different estimates of V (e.g. H0-restricted versus unrestricted) may be used.
Under classical conditions, these choices are asymptotically equivalent under H0.
In general, however, this is not always the case; for an example in time series,
see Abadir (1993b). These aspects will be discussed further in our application in
Section 3.

3We investigate this intersection because set (5) is in terms of h2⊥1 (θ), while H1 is in terms
of h2 (θ).
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2.2 Assessment of performance for the class of statistics,
Normal case

The question arises as to what type of distribution τ takes under the standard
classical assumptions that lead to asymptotic Normality of �θ; see Le Cam (1986)
and also Ploberger (1999). Having orthogonalized the two components and Þxed
the form of τ , we consider asymptotically-optimal tests of each component. Op-
timal directed tests of h1 (θ) = 0 are asymptotically standard Normal under H0,
and are distributed independently from optimal tests of h2⊥1 (θ) = 0 which are
asymptotically χ2r; whereas at least one of them is not properly centred under H1.
For either hypothesis, the density of τ of (3) is the convolution of two independent
variates, χ2r (δ) and the square of a positive-censored N(λ, 1) where λ ≤ 0. The
following theorem derives the distribution function of τ under both hypotheses

H0 : λ = δ = 0(7)

H1 : λ < 0 or δ 6= 0

Theorem 1 For τ 1 ∼ N (λ, 1) independently from τ 22 ∼ χ2r (δ), the distribution
function of τ ≡ τ 22 + 1τ1<0τ 21 is

Gλ,δ (τ ) =

¡
τ
2

¢r
2

√
2π
e−

δ
2
− τ
2

∞X
j=0

τ
j
2D−

j−1 (−λ)
j!

∞X
k=0

Γ
¡
j
2
+ 1
¢ ¡

δτ
4

¢k
Γ
¡
k + j+r

2
+ 1
¢
k!

1F1

µ
j

2
+ 1; k +

j + r

2
+ 1;

τ

2

¶
where Γ (.) is the Gamma (generalized factorial) function and 1F1 is Kummer�s
function. [For an introduction, see Erdélyi (1953) or Abadir (1999).] The func-
tion D−

j−1 (−λ) ≡ e−λ
2/4Dj−1 (−λ) is the modiÞed parabolic cylinder function,

whose series expansions are derived in Abadir (1993c).

The power function of τ follows from this formula as 1−Gλ,δ (c2α), where c2α
is the quantile leading to a test of size α. The (limiting) distributions are the
same as existing ones for the one-sided LR of, for example, Gouriéroux et al.
(1982, p.68) and Conaway et al. (1990) when r = 0, but not for r > 0. Our
theorem gives their explicit formulae for the Þrst time. Strictly speaking, the
LR and W tests are not applicable here to testing (7). First, the LR test would
require the maximum likelihood estimation procedure to restrict the maximum
likelihood estimator of λ, say �λ, to be strictly negative under the alternative H1.
Such estimates need not exist, because the parameter space is open as �λ → 0−.
The results of Kudô (1963, pp.417-418), Wolak (1989, pp.26-27) and Silvapulle
(1991, pp.388-390) concerning LR tests are therefore not usable here. Second,
the same difficulty occurs with a Wald test, if one interprets it in the sense of
being based on estimation under H1. The derivations of Kodde and Palm (1986)
for W would then be relating to the alternative comprising h1 (θ) ≤ 0, rather
than their stated h1 (θ) < 0, or we could interpret W as a pseudo-Wald test.
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It is now possible to analyse the distributions Gλ,δ (τ ) and their implied den-
sities. For example, for j ∈ Z,

(8) D−
j−1 (−λ) ≡

√
2π

Z
. . .

Z
Φ (λ) (dλ)−j ,

which indicates the relation of our distribution to functionals of the Normal. Note
that (8) is a multiple of the Hermite polynomials when j ∈ N and negative orders
of integration are interpreted as derivatives. One may also wish to establish the
rates of decay of the density as τ tends to extreme values. More speciÞcally, the
leading (dominant) term for the tails of the distribution are, as τ → 0,

Gλ,δ (τ ) ∼ Φ (λ)

Γ
¡
r
2
+ 1
¢ ³τ
2

´ r
2
e−

δ
2
− τ
2

which is a scaling of the distribution of χ2r; and, as τ →∞,

Gλ,δ (τ) ∼ Φ
¡
λ +

√
τ
¢ ∼ 1− φ (λ+√τ)

λ +
√
τ

by (18) of the Appendix and by the large-argument expansion of Kummer func-
tions. The effect of large and/or small −λ, δ and/or r may be analysed in a
similar way.
Once a class of tests is proposed, it is natural to investigate whether it satisÞes

the main desirable properties, such as unbiasedness, consistency, invariance and
optimality. The following theorems do so, in the Normal setup for �θ.

Theorem 2 The power function of the test of (7) based on τ of (3) is a monotone
nondecreasing function of −λ and δ, and the test is therefore unbiased.

Theorem 3 The test of (7) based on τ of (3) is consistent as λ → −∞ or
δ →∞.

Theorem 4 The test of (7) based on τ of (3) is invariant to the subgroup of the
Affine Group of transformations given by a Jacobian matrix which takes the block
diagonal form diag(a,A), where a ∈ R+ and A is r × r positive deÞnite.

Theorem 5 The power of the test of (7) based on τ is no less than the power of
the corresponding unmodiÞed one based on �τ , whenever the sizes (Type I errors)
of the two tests are equal. This also implies that the unmodiÞed pseudo-W, LR
and LM are therefore inadmissible.

The invariance group of Theorem 4 is obviously a restricted class of the one
in Kariya and Cohen (1992). Theorems 2 and 5 stand in particular contrast with
earlier results in the literature, where such performances were not necessarily
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achievable; e.g. see the warning remark in Perlman (1969, p.558). In the standard
setting of this subsection, our procedure based on modiÞed conÞdence regions
achieves unbiasedness and provides uniform power gains over the unmodiÞed
counterparts. See also Eaton (1970) for the case when h (θ) is linear, which
relies on an exact global (not local) conic representation of the parameter space.
Of course, the power gains are not limited to α/2, the potential savings in Type
I error. To illustrate the potential for power gains we take the following simple
canonical example.
Suppose a random sample of i = 1, 2, . . . , n observations is available for yi ∼

IN(µ,Ω), where µ ≡ [µ1 : µ2]0 andΩ is a known 2×2matrix. For the equivalence
of testing hypotheses in this canonical model and in standard linear regressions,
see Gouriéroux et al. (1982, pp. 66-67). Let Ω be the identity matrix of
order 2, without loss of generality because of our orthogonalization inherent in
the component τ2 of (3) and (4). For both statistics, set α = 0.10, n = 50,
µ1 = −0.3 and µ2 = 0. Then, the power of tests based on �τ is 0.59, while
the power of tests based on τ is 0.67. These numbers have been obtained by
the evaluation of the exact sizes and power functions in Theorem 1 and the
noncentral χ2 distribution; e.g. see Abadir (1999, p.300). The total time taken
for both calculations was a fraction of a second on a PC running on a Pentium
III processor, which illustrates how efficient these formulae are. The series in
j and k of Theorem 1 converge exponentially fast; see Abadir (1999) for more
details. Users of ScientiÞc Workplace need not even programme these formulae:
this typesetting package interprets the formulae in Maple and computes them
numerically when required.

2.3 Assessment of performance for the class of statistics,
general case

We now consider the behaviour of our class of tests when not restricting ourselves
to the (asymptotically) Normal setting of the previous theorems. Less can be said
analytically about the general properties in nonstandard setups (such as in the
application of the following section), and we cannot resort to Gλ,δ (τ ) of Theorem
1 for investigating all the desirable properties in Theorems 2-5. We can, however,
show the following.

Theorem 6 For τ 1 a consistent tests of h1 (θ) = 0 versus h1 (θ) < 0, and τ22
a consistent tests of h2⊥1 (θ) = 0 versus h2⊥1 (θ) 6= 0, tests based on τ of (3)
are also consistent for testing H0 versus H1 of (1) or any subsets thereof (such as
H∩1 ).

Theorem 7 For τ 1 and τ 2 invariant to a class T of data-transformations, the
test based on τ of (3) is also invariant to T . This class T includes the subgroup of
the Orthogonal Group whose induced transformation leaves the direction of h1 (θ)
unchanged.
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Our class of statistics is geared towards exploiting the one-sidedness of h1 (θ)
in the hypotheses outlined in and after (1). It is really best at discriminating
between H0 and H∩1 ; because H

∩
1 is true only if h1 (θ) = 0 is violated, whereas

H1 could be true in spite of h1 (θ) = 0. This makes it particularly suited to the
application of the following section, where H0 and H∩1 are the most relevant parts
of the parameter space in the economic applications of that model.

3 An application: tests of random walks in AR
models with deterministic components

The linear model with autocorrelated errors has a long history in econometrics;
e.g. see the discussion of and references on common factor models in Hendry,
Pagan and Sargan (1984). We now consider a special case of it, namely Bhargava�s
(1986)

yt = β1 + β2

³
t− 1− n

2

´
+ ut,(9)

ut = ρut−1 + εt, t = 1, 2, . . . , n

with {εt} ∼ IN(0, σ2) and we set u0 = 0. Here we choose to centre the time
variable around zero to enhance the ease of parameter interpretations in terms of
mean and trend of the series of interest {yt}, but also because this will simplify
the calculation of the elements of the Hessian matrix later on.
Model (9) can be more conveniently rewritten as

y1 = β1 − β2
n

2
+ ε1,(10)

5yt = γyt−1 − β1γ + β2 (γ + 1)− β2γ
³
t− 1− n

2

´
+ εt, t = 2, . . . , n

where γ + 1 ≡ ρ and 5yt ≡ yt − yt−1, and the parameters of the model are

(11) θ ≡


θ1
θ2
θ3
θ4

 =

γ
β1
β2
σ2

 .
Then, we can formulate the following null hypothesis

(12) H0 : h(θ) ≡
·
h1(θ)
h2(θ)

¸
=

·
γ

−β1γ + β2 (γ + 1)
¸
= 0

versus the alternative hypothesis H1 given by (1). The null hypothesis is that of
a random walk without deterministic components, while the alternative allows
for either a dynamically-stable root or deterministic components. The subset
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H∩1 , where both components of the null are violated, is one of trend stationarity.
We now need to settle a couple of choices regarding the statistic which we shall
modify into our τ statistic analysed earlier.
The Þrst choice is about using −H, Fisher�sI or some other variants. There

is a growing body of evidence suggesting that procedures using the Hessian are
preferable to ones using the Information matrix; e.g. see Wang and McDermott
(1998) in the context of one-sided multivariate tests, and Lindsay and Li (1997).
Under our null hypotheses, limiting distributions in this model are the same
functionals of Brownian motions as in the model which is linear in its parameters.
Therefore, orthogonalization will achieve approximate asymptotic independence
of components for Hessian-based statistics but not for Information-based ones; see
Abadir (1993a, pp.1068-1069; 1995a, pp.787-788), Larsson (1995) and Gonzalo
and Pitarakis (1998) for the distribution functions and their relation to shifted
and rescaled Normals. We shall therefore focus on modifying H-based statistics
in our application.
The second choice is about the testing principle. LM (both I and H-based)

has lower power in this unit-root setting, because of the discontinuous and non-
standard nature of limit theory for the two hypotheses; see Abadir (1993b). We
therefore do not consider it further in this section. As for W, it can have some un-
pleasant features which affect size, such as lack of invariance; see the differential-
geometric interpretations in Critchley, Marriott and Salmon (1996) for W based
on I (but not on H), and the impossibility theorems in Dufour (1997). These
problems will not arise in the case studied in this section, where we useH-based
W and the hypotheses formulate a Þxed coordinate system for the time series
{yt}. Notice that the second component of the hypothesis is not regarding β1
per se, so the important problem highlighted by Dufour (1997, p.1380) does not
arise in our setup. In fact, as we shall see in Theorem 8 below, inference for (12)
is invariant to β1. Also notice that the parameters are always identiÞed. This is
true for β1 which is identiÞed through the existence of a separate treatment of
the initial condition y1, though it cannot be consistently estimated when H0 is
true.
We now need to set up the likelihood before analysing estimators and test

statistics. The log-likelihood function is

` (θ) = −n
2
log (2π)− n

2
log
¡
σ2
¢− ¡y1 − β1 + β2 n2 ¢2

2σ2
(13)

−
nX
t=2

£5yt − γyt−1 + β1γ − β2 (γ + 1) + β2γ ¡t− 1− n
2

¢¤2
2σ2

.
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The Hessian with respect to the parameters (11) of the model is given by

(14) H ≡


H11 H12 H13 H14

H12 H22 H23 H24

H13 H23 H33 H34

H14 H24 H34 H44

 ,
where, by using

Pn
t=2

¡
t− 1− n

2

¢
= 0, we have

H11 =
1

σ2

"
−
Ã

nX
t=2

y2t−1

!
+ 2 (β1 − β2)

Ã
nX
t=2

yt−1

!
+ 2β2

Ã
nX
t=2

(t− 1− n
2
)yt−1

!

− (n − 1) (β1 − β2)2 − β22
nX
t=2

(t− 1− n
2
)2

#
,

H12 =
1

σ2

"
2γ

Ã
nX
t=2

yt−1

!
−
Ã

nX
t=2

5yt
!
− 2β1γ (n− 1) + β2 (n− 1) (2γ + 1)

#

H13 =
1

σ2

"
− (2γ + 1)

Ã
nX
t=2

yt−1

!
+

Ã
nX
t=2

5yt
!
+ 2γ

Ã
nX
t=2

(t− 1− n
2
)yt−1

!

−
Ã

nX
t=2

(t− 1− n
2
)5 yt

!
+ (n− 1)β1(2γ + 1)

−2(n− 1)β2(γ + 1)− 2β2γ
nX
t=2

(t− 1− n
2
)2

#
,

H22 =
1

σ2
£− (n− 1) γ2 − 1¤ ,

H23 =
1

σ2

h
(n − 1)γ(γ + 1) + n

2

i
,

H33 =
1

σ2

"
−(n− 1)(γ + 1)2 − n

2

4
− γ2

nX
t=2

(t− 1− n
2
)2

#
.

By Normality of {εt} and the corresponding least-squares orthogonality decom-
position, �H is block-diagonal with respect to the last parameter σ2. Moreover,
∂h� (θ) /∂σ2 = 0. So, one need not work out H�4 explicitly for the purpose of
the subsequent analysis of our H0.
We maximize (13) numerically, obtaining the estimates of the parameters (11).

We can write accordingly the Hessian-based Wald statistic, WH, as

WH = h
³
�θ
´0
�V
−1
h
³
�θ
´
,
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where
�V =

·
�v11 �v21
�v21 �v22

¸
=
∂h (θ)

∂θ0

¯̄̄̄
θ=�θ

³
− �H

´−1 ∂h (θ)0
∂θ

¯̄̄̄
θ=�θ

.

Now, we modify WH into the τ statistic deÞned in Section 2. After having
calculated

\
h2⊥1

³
�θ
´
≡ h2

³
�θ
´
−
�v21h1

³
�θ
´

�v11
,

the test statistic τ is given by

τ =

·
∂h2⊥1 (θ)

∂θ0

¯̄̄̄
θ=�θ

³
− �H

´−1 ∂h2⊥1 (θ)
∂θ

¯̄̄̄
θ=�θ

¸−1µ \
h2⊥1

³
�θ
´¶2

+1h1(�θ)<0

·
∂h1 (θ)

∂θ0

¯̄̄̄
θ=�θ

³
− �H

´−1 ∂h1 (θ)
∂θ

¯̄̄̄
θ=�θ

¸−1 ³
h1

³
�θ
´´2

=

·
∂h2⊥1 (θ)

∂θ0

¯̄̄̄
θ=�θ

³
− �H

´−1 ∂h2⊥1 (θ)
∂θ

¯̄̄̄
θ=�θ

¸−1µ \
h2⊥1

³
�θ
´¶2

+ 1�γ<0

³
− �H11

´−1
�γ2,

where H11 refers to the Þrst diagonal element of the inverse of (14). We Þnally
need a theorem deriving the explicit expression for the function

h2⊥1 (θ) ≡ h2 (θ)−
v21h1 (θ)

v11
,

where V is now based on the negative of the Hessian, instead of I used at the
beginning of Section 2. Recall from the discussion earlier in this section that
the choice between I and H is only needed for the construction of the statistic,
and does not alter the deÞnition of the hypotheses to be tested. This distinction
should be borne in mind because the components of the Hessian-based V are
only �Þxed� after conditioning on H.
Theorem 8 The function h2⊥1 (θ) based on the Hessian matrix is

h2⊥1 (θ) =
£
n (n − 1) (n− 2)S1γ5 + n (n− 1) (n− 2) (β2 (n− 1)− S2) γ4
+3 (n− 2) ((n− 2)S1 + 2S3) γ3 +

¡
β2
¡
4n3 − 18n2 + 26n− 12¢

−12 (n− 2)S1 − 3 (n− 2)2 S2 − 12S3 − 6 (n− 2)S4
¢
γ2

+6 (2S1 − 2β2 (n− 1) (n− 2) + (n− 2)S2 + 2S4) γ + 12β2 (n− 1)]
÷ £(n− 1) ¡12 + n (n− 1) (n − 2) γ4 + 2 (2n − 3) (n− 2) γ2 − 12 (n − 2) γ¢¤ ,

where

S1 ≡
nX
t=2

t−3X
j=0

(γ + 1)j εt−1−j,

S2 ≡
nX
t=2

εt,

13



S3 ≡
nX
t=2

t−3X
j=0

(γ + 1)j
³
t− 1− n

2

´
εt−1−j ,

S4 ≡
nX
t=2

³
t− 1− n

2

´
εt.

One of the implications of this theorem is to complete the proof of invariance,
with respect to β1, of both components h1 (.) and h2⊥1 (.) of our test τ . The
former invariance follows from the deÞnition h1(θ) = γ from (12), while the
latter follows from this theorem.
A Monte-Carlo experiment based on 100,000 replications has been carried out

to evaluate the power of the proposed testing procedures for

ρ = 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 1
β2 = 0, 0.25, 0.5
n = 25, 50, 100
α = 5%, 10%

where α is the size of the test. By the invariance to β1 implied by Theorem 8, we
set β1 = 0 in our simulations. Table I summarizes the resulting quantiles of the
WH and τ statistics. Furthermore, Table II expands the simulation to a larger
number of sample sizes, in order to Þt response surfaces for the 5% and 10%
quantiles. These are approximated parsimoniously by the following functional
forms:

(15) c20.05 ' 4.7945 exp
µ
9.1869

n
− 3.5652

n2

¶
for the 5% critical value, and

(16) c20.10 ' 3.7670 exp
µ
8.0603

n
+
26.0097

n2

¶
for the 10% critical value. As Table II shows the approximation is very accurate,
and can be used by practitioners to generate quantiles for any sample size. These
exponential functional forms have been used in the related context of approxi-
mating unit-root estimators� moments in Abadir (1995b), based on derivations
in earlier work by the same author.
In Table III, we report the values of the power of the WH and τ tests. They

are qualitatively analogous to the powers based on a size of 10%, which are not
reported here for space considerations. The one-sided modiÞcation of WH into τ
achieves uniform power gains, some of them substantial (e.g. 0.57 to 0.63, when
ρ = 0.6 and β2 = 0). When the time trend vanishes (β2 → 0) and the AR root
is close to unit boundary (ρ→ 1−), the usual biases of unit root tests reappear,
thought they are less severe in the case of our modiÞed τ test.
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Finally, the model we have considered can be extended in many different
directions, with the same qualitative conclusions holding. For example, one may
wish to consider higher-order AR models or correct for higher order dynamics
nonparametrically; see the parametric reformulation of high-order ARs into an
AR(1) in Dickey and Fuller (1981), or the nonparametric Phillips and Perron
(1988) type of correction.

4 Concluding comments
In illustrating our new class of tests, we have chosen an application involving
a model which is nonlinear in its parameters. There are many other possibly
simpler applications to which our method may be applied, but they are too
many to tackle in this single paper. The applications are not restricted to time
series either. For example, Silvapulle�s (1991) paper was motivated by a model of
limited dependent variables, and our methods can be applied to microeconometric
problems too. Finally, other potential applications to nonstandard problems (i.e.
ones with non-Normal underlying distribution theory) include:

1. Conditional heteroskedasticity models; e.g. see Bollerslev, Engle and Nel-
son (1994). For example, one-sided inference on the sum of the GARCH
roots may be required jointly with inference on other components of the
model, or vice versa. More speciÞcally, in testing the market efficiency hy-
pothesis in Þnancial data, many authors have employed AR models with
GARCH disturbances. The new procedure can provide tests for the null hy-
pothesis of a unit root and no ARCH effect, versus the alternative that the
model is (asymptotically) stationary or that there is some Auto-Regressive
Conditional Heteroskedasticity in the data.

2. One more application that can be studied is inference in the type of random-
coefficients model introduced by McCabe and Tremayne (1995), extended
by Smith and Taylor (2001), and used in the empirical study by Leybourne,
McCabe and Tremayne (1996) where the model is applied successfully to
important economic datasets. Theirs is a model where the autoregressive
parameter is stochastic, and distributed around a Þxed mean of 1. Their H0
is that of an exact (deterministic) unit root as opposed to H1 of a random
root with mean 1. Fixing this latter mean to be 1 is restrictive, and the
alternative can be generalized to allow for a random root with mean less
than 1.

3. Yet another possible application is to test for structural breaks [e.g. see
Perron (1989) and the large subsequent literature] when a speciÞc direction
is suspected for one of the breaks. This is often the case in practice, when
one identiÞes an event which has caused a break with the past of the process
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to occur. For example, regarding the oil shock which happened in the early
1970�s, the suspected direction of its effect was not positive. Ceteris paribus,
the shock could not have been a stimulus to consumption in the short to
medium run. Similarly for the possible break induced by the October 1997
stock market crash.
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APPENDIX

Proof of Theorem 1: We will use freely standard statistical theorems
that can be found in, for example, Mood, Graybill and Boes (1974), and the
transcendental functions and their properties in Erdélyi (1953) or Abadir (1999).
We denote the generalized hypergeometric function by pFq.
First, we need the distribution of the square of a positive-censored N(λ, 1),

say ξ ≡ 1τ1≤0τ
2
1 ∈ [0,∞), which is Φ

¡
λ+

√
ξ
¢
. Knowing that the density of a
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χ2r (δ) variate, say ζ, is

1

2Γ
¡
r
2

¢ µζ
2

¶ r
2
−1
e−

δ
2
− ζ
2 0F1

µ
r

2
;
δ

4
ζ

¶
,

we can then apply the convolution theorem for independent variates to τ ≡ ζ + ξ
as

Gλ,δ (τ ) =
1

2Γ
¡
r
2

¢e− δ
2

Z τ

0

Φ
³
λ+

p
τ − ζ

´µζ
2

¶ r
2
−1
e−

ζ
2 0F1

µ
r

2
;
δ

4
ζ

¶
dζ(17)

=
1

2Γ
¡
r
2

¢e− δ
2
− τ
2

Z τ

0

Φ
³
λ +

p
ζ
´µτ − ζ

2

¶ r
2
−1
e
ζ
2 0F1

µ
r

2
;
δ

4
(τ − ζ)

¶
dζ

by a change of variable. By the addition theorem

Φ
³
λ +

p
ζ
´
≡ 1√

2π
D−
−1
³
−λ−

p
ζ
´

(18)

=
1√
2π

∞X
j=0

D−
j−1 (−λ)
j!

ζ
j
2

and the expansion of 0F1, we can write

Gλ,δ (τ ) =
1√
8π
e−

δ
2
− τ
2

∞X
j=0

D−
j−1 (−λ)
j!

∞X
k=0

¡
δ
2

¢k
Γ
¡
k + r

2

¢
k!

Z τ

0

ζ
j
2

µ
τ − ζ
2

¶k+ r
2
−1
e
ζ
2dζ

=

¡
τ
2

¢ r
2

√
2π
e−

δ
2
− τ
2

∞X
j=0

τ
j
2D−

j−1 (−λ)
j!

∞X
k=0

Γ
¡
j
2
+ 1
¢ ¡

δτ
4

¢k
Γ
¡
k + j+r

2
+ 1
¢
k!

1F1

µ
j

2
+ 1; k +

j + r

2
+ 1;

τ

2

¶
by the integral representation of 1F1. By analysing the orders of magnitude in
terms of j and k, the double series are absolutely convergent for all values of the
parameters and variable. Q.E.D.

Proof of Theorem 2: The power function is given by 1−Gλ,δ (c2α) when
the size α of the test is such that c2α > 0. From (17), its derivative with respect
to −λ is

1

2Γ
¡
r
2

¢e− δ
2
− τ
2

Z τ

0

φ
³
λ +

p
ζ
´µτ − ζ

2

¶ r
2
−1
e
ζ
2 0F1

µ
r

2
;
δ

4
(τ − ζ)

¶
dζ.

This integral is nonnegative everywhere, which establishes the required monotonic-
ity with respect to −λ. The monotonicity with respect to δ follows by rewriting
the convolution with the roles of ξ and ζ swapped, and noting that the cumula-
tive distribution function of a χ2r (δ) is a decreasing function of δ. Unbiasedness
follows by deÞnition. Q.E.D.
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Proof of Theorem 3: Consider (17). As λ→−∞, we have Φ ¡λ +√ζ¢→
0 so that 1 − Gλ,δ (c2α) → 1. The monotonicity with respect to δ follows by
rewriting the convolution with the roles of ξ and ζ swapped, and noting that the
cumulative distribution function of a χ2r (δ) tends to zero as δ →∞. Q.E.D.

Proof of Theorem 4: The subgroup mentioned in the theorem can be
represented by the transformation

�θ 7→ b+ diag (a,A) �θ ∼ N¡b+ diag (a,A)θ,diag (a,A)I−1diag (a,A0)
¢

where b is (r + 1)× 1. The direction of the Þrst component of the mean vector is
preserved, and the orthogonalization inherent in τ2 preserves the independence
of the components of the test τ . Q.E.D.

Proof of Theorem 5: The unmodiÞed statistics are deterministic monotone
transforms of �τ ≡ τ 21 + τ 22. The distribution of �τ is the convolution of a χ21

¡
λ2
¢

with an independent χ2r (δ), which is a χ
2
r+1

¡
λ2 + δ

¢
. The distribution function

of �ξ ≡ τ21 is
Φ

µ
λ+

q
�ξ

¶
− Φ

µ
λ−

q
�ξ

¶
;

e.g. see Abadir (1999, p.300). For the comparisons to follow, derivations similar
to the ones in Theorem 1 allow us to write χ2r+1

¡
λ2 + δ

¢
as the convolution

�Gλ,δ (�τ ) =
1

2Γ
¡
r
2

¢e− δ
2
− �τ
2

Z �τ

0

h
Φ
³
λ+

p
ζ
´
− Φ

³
λ−

p
ζ
´i

(19) µ
�τ − ζ
2

¶ r
2
−1
e
ζ
2 0F1

µ
r

2
;
δ

4
(�τ − ζ)

¶
dζ.

The variate �τ stochastically-dominates τ , because �τ = τ + 1τ1>0τ
2
1 > τ where

the inequality holds almost surely (i.e. with probability 1). Recalling Gλ,δ (τ) of
(17), the excess of the power function of τ over that of �τ is given by

Ξ (λ, δ) ≡ £1−Gλ,δ ¡c2α¢¤− h1− �Gλ,δ
¡
�c2α
¢i
= �Gλ,δ

¡
�c2α
¢−Gλ,δ ¡c2α¢

where �c2α > c2α. The equality of the sizes of the two tests gives G0,0 (c2α) =
�G0,0 (�c

2
α) = 1 − α, hence Ξ (0, 0) = 0. We will now show that, for −λ and δ

Þnite and nonnegative, the difference Ξ (λ, δ) is minimized at Ξ (0, 0), so that
Ξ (λ, δ) ≥ 0. A direct proof of this inequality seems hard to establish, so we
adopt an indirect route.
Consider the size-unadjusted difference of power functions

�Ξ (λ, δ, �τ ) ≡ �Gλ,δ (�τ )−Gλ,δ
¡
c2α
¢
,
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where the components are given by (19) and (17), respectively. Recall that, by the
deÞnition of a c.d.f., �G (.) and G (.) are monotone functions of their arguments,
e.g. �τ , as they vary. We will now show that the magnitude of the adjustment of �τ
in order to go from �Ξ (λ, δ, c2α) < 0 to �Ξ (λ, δ, �τ) = 0 is maximized when λ = δ = 0,
i.e. under the null hypothesis where Ξ (0, 0) = 0. Therefore, making the sizes
of the two tests equal will lead to Ξ (λ, δ) > 0 for all positive and Þnite −λ and
δ. One may wish to visualize this algebraic manipulation as a size adjustment of
the power function of the �τ -based test, with the �horizontal� axes being −λ ∈ R+
and δ ∈ R+. This adjustment shifts the function horizontally until it touches the
power function of the τ -based test at any chosen coordinates of λ and δ. It will
be shown that the maximal such displacement of this function is the one that
leads to the sizes of the two tests being equal, so that the size-adjusted power
function of the �τ-based test lies below that of τ everywhere in the space where λ
and δ are Þnite.
We need to solve the optimization problem

(20) max
λ,δ

�τ subject to �Gλ,δ (�τ ) = Gλ,δ
¡
c2α
¢

for −λ and δ Þnite and nonnegative. We know that equality is achieved for the
quantile �τ = �c2α when λ = δ = 0, which is now our starting point. Recalling (17)
and (19), a more negative λ reduces the extent of the inequality

(21) e−λ
√
ζ > e−λ

√
ζ − eλ

√
ζ

which implies that the limit of integration �τ needs to be reduced in (19) to keep
the equality �Gλ,δ (�τ ) = Gλ,δ (c2α) as λ decreases. This proves that the maximum �τ
in (20) is achieved for λ = 0. As for δ > 0, rewrite the convolutions (17) and (19)
with the roles of τ 1 and τ2 swapped. As δ increases, the distribution function
χ2r (δ) of τ

2
2 declines. This dampens the inequality of powers caused by (21), thus

requiring a smaller �τ to equate them. This proves that the maximum �τ in (20)
is achieved for δ = 0. Q.E.D.

Proof of Theorem 6: Consider the situation of H0 not true. When v21 =
0, either (or both) 1τ1<0τ

2
1 or τ

2
2 diverge to∞. When v21 6= 0, the component τ22

diverges except on the manifold h2⊥1 (θ) = 0. But in this case, 1τ1<0τ
2
1

p→∞, so
that τ

p→∞ too. Q.E.D.

Proof of Theorem 7: The proof follows directly from the deÞnitions of τ1
and τ 2, by the orthogonalization to h1 (.) inherent in τ2. Q.E.D.

Proof of Theorem 8: We can solve the model for yt in terms of y1 and
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the sequence {εt} by recursive substitution. We obtain

yt = ρt−1y1 + [β1 (1− ρ) + β2ρ]
"
t−2X
j=0

ρj

#
(22)

+β2 (1− ρ)
"
t−2X
j=0

³
t− 1− n

2
− j
´
ρj

#
+

t−2X
j=0

ρjεt−j.

For ρ 6= 1, the deterministic summations can be simpliÞed by means of geometric
series, giving

yt = ρt−1y1 + [β1 (1− ρ) + β2ρ]
ρt−1 − 1
ρ− 1

+β2 (1− ρ)
·
t− 1− n/2
1− ρ − ρ (1− ρ

t−2)

(1− ρ)2 − (1− n/2) ρ
t−1

1− ρ
¸
+

t−2X
j=0

ρjεt−j,

and

5yt = y1ρ
t−2 (ρ− 1) + [β1 (1− ρ) + β2ρ]ρt−2

+β2 (1− ρ)
·
1

1− ρ −
ρt−2

(1− ρ) +
³
1− n

2

´
ρt−2

¸
+ εt + (ρ− 1)

t−3X
j=0

ρjεt−1−j .

The result follows by substituting into the components of H and simplifying.
For the simpler case of ρ = 1, summing the deterministic components in (22)
and proceeding in the same way gives the same formula for h2⊥1 (θ), but with
γ = ρ− 1 = 0 substituted in. Q.E.D.
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TABLE I.
Quantiles of τ and of WH [in brackets].

n 1% 2.5% 5% 10% 50% 90% 95% 97.5% 99%
0.18 0.26 0.35 0.49 1.89 5.41 6.88 8.42 10.5425
[0.22] [0.29] [0.38] [0.53] [1.97] [5.60] [7.16] [8.76] [11.00]

0.20 0.27 0.36 0.51 1.63 4.50 5.77 7.05 8.8150
[0.22] [0.29] [0.38] [0.53] [1.67] [4.67] [6.05] [7.53] [9.75]

0.20 0.28 0.37 0.52 1.57 4.08 5.25 6.52 8.71100
[0.22] [0.29] [0.38] [0.53] [1.59] [4.18] [5.46] [7.00] [10.29]

TABLE II.
Simulated and approximate critical values of τ .

5% Critical values 10% Critical values
n

Simulated Approx. Simulated Approx.
25 6.88 6.88 5.41 5.42
50 5.77 5.75 4.50 4.47
100 5.25 5.25 4.08 4.09
150 5.09 5.10 3.97 3.98
200 5.01 5.02 3.90 3.92
300 4.92 4.94 3.86 3.87
400 4.89 4.91 3.82 3.84
500 4.91 4.88 3.81 3.83
600 4.87 4.87 3.83 3.82
700 4.90 4.86 3.84 3.81
800 4.85 4.85 3.83 3.81
1000 4.81 4.84 3.81 3.80
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TABLE III.
Powers of τ and of WB [in brackets], both for a size of 5%.

β2 = 0 β2 = 0.25 β2 = 0.5ρ
n = 25 n = 50 n = 100 n = 25 n = 50 n = 100 n = 25 n = 50 n = 100
0.15 0.63 1.00 0.24 0.85 1.00 0.60 1.00 1.00

0.6
[0.13] [0.57] [0.99] [0.21] [0.81] [1.00] [0.56] [1.00] [1.00]

0.09 0.35 0.94 0.15 0.63 1.00 0.49 1.00 1.00
0.7

[0.07] [0.30] [0.92] [0.14] [0.58] [0.99] [0.45] [1.00] [1.00]

0.06 0.15 0.58 0.11 0.37 0.96 0.41 0.97 1.00
0.8

[0.05] [0.12] [0.53] [0.09] [0.32] [0.95] [0.37] [0.94] [1.00]

0.04 0.05 0.13 0.08 0.19 0.73 0.35 0.89 1.00
0.9

[0.03] [0.04] [0.11] [0.07] [0.16] [0.69] [0.32] [0.86] [1.00]

0.04 0.04 0.05 0.09 0.15 0.52 0.35 0.83 1.00
0.95

[0.03] [0.03] [0.03] [0.08] [0.12] [0.47] [0.32] [0.80] [1.00]

0.04 0.04 0.03 0.11 0.18 0.41 0.37 0.77 1.00
0.99

[0.04] [0.04] [0.03] [0.10] [0.16] [0.37] [0.35] [0.73] [1.00]

0.05 0.05 0.05 0.13 0.21 0.44 0.40 0.75 0.99
1

[0.05] [0.05] [0.05] [0.12] [0.20] [0.41] [0.37] [0.72] [0.98]
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Figure 1: Boundaries of the critical regions, C1 (unmodi…ed), C2 (modi…ed but
size-unadjusted), C3 (modi…ed and size-adjusted).
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