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Abstract

The policy implications of estimated macro-econometric systems depend on the formulations of
their equations, the methodology of empirical model selection and evaluation, the techniques of pol-
icy analysis, and their forecast performance. Drawing on recent results in the theory of forecasting,
we question the role of ‘rational expectations’; criticize a common approach to testing economic
theories; show that impulse-response methods of evaluating policy are seriously flawed; and ques-
tion the mechanistic derivation of forecasts from econometric systems. In their place, we propose
that expectations should be treated as instrumental to agents’ decisions; discuss a powerful new ap-
proach to the empirical modelling of econometric relationships; offer viable alternatives to studying
policy implications; and note modifications to forecasting devices that can enhance their robustness
to unanticipated structural breaks.
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1 Introduction

The policy implications derived from any estimated macro-econometric system depend on the formu-
lation of its equations, the methodology used for the empirical modelling and evaluation, the approach
to policy analysis, and the forecast performance. Drawing on recent results in the theory of forecasting,
we question the role of ‘rational expectations’ in the first stage; then criticize the present approach to
testing economic theories prevalent in the profession; next, we show that impulse-response methods of
evaluating the policy implications of models are seriously flawed; and finally, question the mechanistic
derivation of forecasts from econometric systems. In their place, we propose that expectations should
be treated as instrumental to agents’ decisions; suggest a powerful new approach to the empirical mod-
elling of econometric relationships; offer viable alternatives to studying policy implications; and discuss
modifications to forecasting devices that can enhance their robustness to unanticipated structural breaks.
We first sketch the arguments underlying our critical appraisals, then briefly describe the constructive re-
placements, before presenting more detailed analyses of these four issues. Sub-section 1.1 summarizes
our critiques, and sub-section 1.2 introduces our remedies.

1.1 Four critiques of present practice

Our approach builds on extensive research that has radically altered our understanding of the causes of
forecast failure, the occurrence of which was one of the driving forces behind the so-called ‘rational
expectations revolution’ that replaced ‘Keynesian’ models. Forecast failure is a significant deterioration
in forecast performance relative to the anticipated outcome, usually based on the historical performance
of a model: systematic failure is the occurrence of repeated mis-forecasting. The research reveals that
the causes of forecast failure differ from what is usually believed – as do the implications. To explain
such differences, we begin by reconsidering the ‘conventional’ view of economic forecasting.

When the data processes being modelled are weakly-stationary (so means and variances are constant
over time), three important results can be established. First, causal variables will outperform non-causal
(i.e., variables that do not determine the series being forecast), both in terms of fit and when forecasting.
Secondly, a model that in-sample fully exploits the available information (called congruent) and is
at least as good as the alternatives (encompassing) will also dominate in forecasting; and for large
samples, will do so at all forecast horizons. Thirdly, forecast failure will rarely occur, since the sample
under analysis is ‘representative’ of the sample that needs to be forecast – moreover that result remains
true for mis-specified models, inaccurate data, inefficient estimation and so on, so long as the process
remains stationary. Such theorems provide a firm basis for forecasting weakly-stationary time series
using econometric models: unfortunately, they can be extended to non-stationary processes only when
the model coincides with the data generation process (DGP).

The systematic mis-forecasting and forecast failure that has periodically blighted macroeconomics
highlights a large discrepancy between such theory and empirical practice, which is also visible in
other disciplines: see e.g., Fildes and Makridakis (1995) and Makridakis and Hibon (2000). The key
problem is the inherently non-stationary nature of economic data – even after differencing and cointe-
gration transforms have removed unit roots – interacting with the impossibility in a high-dimensional
and evolving world of building an empirical model which coincides with the DGP at all points in time.
Consequently, one can disprove the most basic theorem that forecasts based on causal variables will
dominate those from non-causal. Restated, it is easy to construct examples where forecasts based on
variables that do not enter the DGP outperform those based on well-specified causally-sound models
– one such example is shown below. Importantly, such results match the empirical evidence: we have
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opened Pandora’s Box, with profound implications that are the focus of this paper.
Having allowed the data process to be non-stationary and models to be mis-specified representa-

tions thereof (both in unspecified ways), one might imagine that an almost indefinite list of problems
could precipitate forecast failure. Fortunately, that is not the case. To understand why, we must dissect
the ingredients of econometric models. In general, econometric models have three main components:
deterministic terms, namely variables whose future values are known (such as intercepts which are 1,
1, 1,... and trends, which are 1, 2, 3, 4...); observed stochastic variables with known past, but unknown
future, values (such as GNP and inflation); and unobserved errors all of whose values (past, present and
future) are unknown. Most relationships in models involve all three components because that is how
we conceive of the data. In principle, any or all of the components could be: mis-specified; poorly
estimated; based on inaccurate data; selected by inappropriate methods; involve collinearities or non-
parsimonious formulations; and suffer structural breaks. Moreover, forecast failure might result from
each ‘problem’. Given the complexity of modern economies, most of these ‘problems’ will be present
in any empirical macro-model, and will reduce forecast performance by increasing inaccuracy and im-
precision. However, and somewhat surprisingly, most combinations do not in fact induce systematic
forecast failure.

The taxonomy of sources of forecast errors in Clements and Hendry (1998, 1999a) implicates unan-
ticipated forecast-period shifts in deterministic factors (such as equilibrium means, examples of which
are the means of the savings rate, velocity of circulation, and the NAIRU) as the dominant cause of
systematic failure. As explained in section 2.1, there is an important distinction between shifts in the
deterministic components (such as intercepts) that enter models, and those that precipitate forecast fail-
ure (unmodelled shifts in data means), but for the moment we leave that to one side, as the former is
usually sufficient for the latter. The crucial converse is that forecast failure is not in fact primarily due
to the list of ‘problems’ in the previous paragraph, or even the Lucas (1976) critique of changing pa-
rameters: by themselves, none of these factors induces systematic failure. Our first critique now follows
– since ‘rational expectations’ claim to embody the actual conditional expectations, they do not have a
sound theoretical basis in an economy subject to deterministic shifts. Further, in the presence of unmod-
elled deterministic shifts, models embodying previously-rational expectations will not forecast well in
general.

Turning to the second critique, tests of economic theories based on whole-sample goodness of fit
comparisons can be seriously misled by unmodelled deterministic shifts. This occurs because such
shifts can be proxied by autoregressive dynamics, which has two implications. First, deterministic
shifts induce apparent unit roots, so cointegration often fails in the face of such breaks. Thus, long-run
relationships – often viewed as the statistical embodiment of economic theory predictions – then receive
no support. Secondly, such false unit roots can make lagged information from other variables appear
irrelevant, so tests of theories – particularly of Euler equations – can be badly distorted. Our second
critique now follows: so long as the degree of non-congruence of a model is unknown, false theories
can end being accepted, and useful ones rejected.

A necessary condition for both economic theories and macro-economic models to be of practical
value is that their parameters remain constant over the relevant horizon, and for the admissible range
of policy changes to be implemented. Many structural breaks are manifest empirically, and so are
easy to detect; deterministic shifts are a salient example. The class of breaks that are easy to detect
comprises shifts in the unconditional expectations of non-integrated (denoted I(0)) components. Their
ease of detection is the obverse of their pernicious effect on forecast performance. However, it transpires
that a range of parameter changes in econometric models cannot be easily detected by conventional
statistical tests. This class includes changes that leave unaltered the unconditional expectations, even
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when dynamics, adjustment speeds, and intercepts are radically altered: illustrations are provided in
Hendry and Doornik (1997). This leads to our third critique – impulse-response methods of evaluating
the policy implications of models are dependent on the absence of such ‘undetectable breaks’, and so
can be mis-leading in both sign and magnitude when non-deterministic shifts have occurred, even when
models are rigorously tested (and certainly when minimal testing occurs).

Fourthly, there is ample evidence that forecasts from econometric systems can err systematically in
the face of deterministic shifts, such that they perform worse than ‘naive’ methods in forecasting compe-
titions. Theory now exists to explain how and why that occurs: see e.g., Clements and Hendry (1999c).
The implementation of cointegration may in practice have reduced the robustness of econometric-model
forecasts to breaks, by ensuring they adjust back to pre-existing equilibria, even when those equilibria
have shifted. Mechanistic econometric-model based forecasts, therefore, are unlikely to be robust to
precisely the form of shift that is most detrimental to forecasting. It is well known that devices such
as intercept corrections can improve forecast performance (see e.g., Turner, 1990), but manifestly do
not alter policy implications; and conversely, that time-series models with no policy implications might
provide the best available forecasts. Hence our fourth critique – it is inadvisable to select policy-analysis
models by their forecast accuracy: see Hendry and Mizon (2000).

1.2 Some remedies

The existence of these four problems implies that many empirical macro-econometric models are in-
correctly formulated and wrongly selected, with policy implications derived by inappropriate methods.
Whilst we suspect that some amelioration arises in practice as a result of most macro-forecasters con-
tinuing to use intercept corrections to improve forecasts, the almost insuperable problems confronting
some approaches to macro-economics remain. Fortunately though, effective alternatives exist.

First, since expectations are instrumental to the decisions of economic agents, not an end in them-
selves, the devices that win forecasting competitions – which are easy to use and economical in infor-
mation – suggest themselves as natural ingredients in agents’ decision rules (possibly ‘economically-
rational expectations’: see Feige and Pearce, 1976). We show that is the case, with the interesting
implication that the resulting rules may not be susceptible to the Lucas (1976) critique, thus helping to
explain its apparent empirical irrelevance: see Ericsson and Irons (1995).

Next, stimulated by Hoover and Perez (1999), Hendry and Krolzig (1999) investigate econometric
model selection from a computer-automation perspective, focusing on general-to-specific reduction ap-
proaches, embodied in the program PcGets (general–to–specific: see Krolzig and Hendry, 2000). In
Monte Carlo experiments, PcGets recovers the DGP with remarkable accuracy, having empirical size
and power close to what one would expect if the DGP were known, suggesting that search costs are low.
Thus, a general-to-specific modelling strategy that starts from a congruent general model and requires
congruence and encompassing throughout the reduction process offers a powerful method for selecting
models. This outcome contrasts with beliefs in economics about the dangers of ‘data mining’. Rather,
it transpires that the difficult problem is not to eliminate spurious variables, but to retain relevant ones.
The existence of PcGets not only allows the advantages of congruent modelling to be established, it
greatly improves the efficiency of modellers who take advantage of this model-selection strategy.

Thirdly, there is a strong case for using open, rather than closed, macro-econometric systems, par-
ticularly those which condition on policy instruments. Modelling open systems has the advantage that
amongst their parameters are the dynamic multipliers which are important ingredients for estimating the
responses of targets to policy changes. Further, it is difficult to build models of variables such as interest
rates, tax rates, and exchange rates, which are either policy instruments or central to the determination
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of targets. Since many policy decisions entail shifts in the unconditional means of policy instruments,
corresponding shifts in the targets’ unconditional means are required for policy to be effective. The rele-
vant concept is called co-breaking, and entails that although each variable in a set shifts, there are linear
combinations that do not shift (i.e., are independent of the breaks: see Clements and Hendry, 1999a,
ch. 9). Co-breaking is analogous to cointegration where a linear combination of variables is stationary
although individually they are all non-stationary. Whenever there is co-breaking between the instrument
and target means, reliable estimates of the policy responses can be obtained from the model of the targets
conditioned on the instruments, despite the probable absence of weak exogeneity of policy instruments
for the parameters of interest in macro-models (due to mutual dependence on previous disequilibria):
Ericsson (1992) provides an excellent exposition of weak exogeneity. The existence of co-breaking be-
tween the means of the policy instruments and targets is testable, and moreover, is anyway necessary to
justify impulse-response analysis (see Hendry and Mizon, 1998).

Finally, there are gains from separating policy models – to be judged by their ability to deliver
accurate advice on the responses likely from policy changes – from forecasting models, to be judged by
their forecast accuracy and precision. No forecast can be robust to unanticipated events that occur after
its announcement, but some are much more robust than others to unmodelled breaks that occurred in the
recent past. Since regime shifts and major policy changes act as breaks to models that do not embody
the relevant policy responses, we discuss pooling robust forecasts with scenario differences from policy
models to avoid both traps.

We conclude that the popular methodologies of model formulation, modelling and testing, policy
evaluation, and forecasting may prejudice the accuracy of implications derived from macro-econometric
models. Related dangers confronted earlier generations of macro-models: for example, the use of dy-
namic simulation to select systems was shown in Hendry and Richard (1982) to have biased the choice
of models to ones which over-emphasized the role of unmodelled (‘exogenous’) variables at the expense
of endogenous dynamics, with a consequential deterioration in forecast performance, and mis-leading
estimates of speeds of policy responses. As in that debate, we propose positive antidotes to each of the
major lacunae in existing approaches. The detailed analyses have been presented in other publications:
here we seek to integrate and explain their implications for macro-econometric modelling.

1.3 Overview

The remainder of the paper is structured as follows. Since we attribute a central role to forecast-period
shifts in deterministic factors as the cause of forecast failure, section 2 first explains the concept of
deterministic shifts, reviews their implications, and contrasts those with the impacts of non-deterministic
shifts. Thereafter, the analysis assumes a world subject to such shifts. Section 3 derives the resulting
implications for ‘rational expectations’, and suggests alternatives that are both feasible and more robust
to breaks. Then section 4 discusses tests of theory-based propositions, before section 5 turns to model
selection for forecasting. Next, section 6 introduces three related sections concerned with aspects of
model selection for policy. First, section 6.1, considers the obverse of section 5, and shows that policy
models should not be selected by forecast criteria. Secondly, section 6.2 considers policy analyses
based on impulse responses, and thirdly, section 6.3 examines estimation of policy responses. Section 7
describes appropriate model-selection procedures, based on computer automation, and section 8 justifies
the focus on congruent modelling. Finally, section 9 concludes.
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2 Setting the scene

In a constant-parameter, stationary world, forecast failure should rarely occur: the in-sample and out-
of-sample fits will be similar because the data properties are unchanged. As discussed in Miller (1978),
stationarity ensures that, on average (i.e., excluding rare events), an incorrectly-specified model will
forecast within its anticipated tolerances (providing these are correctly calculated). Although a mis-
specified model could be beaten by methods based on correctly-specified equations, it will not suffer
excessive forecast failure purely because it is mis-specified. Nevertheless, since a congruent, encom-
passing model will variance-dominate in-sample, it will continue to do so when forecasting under un-
changed conditions. Thus, adding causal variables will improve forecasts on average; adding non-causal
variables (i.e., variables that do not enter the DGP) will only do so when they proxy for omitted causal
variables. In an important sense, the best model will win.

Empirical models are usually data-based (selected to match the available observations), which could
induce some overfitting, but should not produce systematic forecast failure (see Clements and Hendry,
1999b). Conversely, when the data properties over the forecast horizon differ from those in-sample – a
natural event in non-stationary processes – forecast failure will result. The latter’s regular occurrence is
strong evidence for pandemic non-stationarity in economics, an unsurprising finding given the manifest
legislative, social, technological and political changes witnessed over modern times (and indeed through
most of history).

Once such non-stationarity is granted, many ‘conventional’ results that are provable in a constant-
parameter, stationary setting change radically. In particular, since the future will not be like the present or
the past, two important results can be established in theory, and demonstrated in practice: the potential
forecast dominance of models using causal variables by those involving non-causal variables; and of
in-sample well-specified models by badly mis-specified ones. Clements and Hendry (1999a) provide
several examples: another is offered below. Together, such results remove the theoretical support for
basing forecasting models – and hence agents’ expectations formation – on the in-sample conditional
expectation given available information. We develop this analysis in section 3. Moreover, these two
results potentially explain why over-differencing and intercept corrections – both of which introduce
non-causal variables into forecasting devices – could add value to model-based forecasts: this aspect
is explored in section 5, which emphasizes the potential dangers of selecting a policy model by such
criteria as forecast accuracy. Finally, a failure to model the relevant non-stationarities can distort in-
sample tests, and lead to incorrect inferences about the usefulness or otherwise of economic theories:
that is the topic of section 4.

Not all forms of non-stationarity are equally pernicious. For example, unit roots generate stochastic
trends in data series, which thereby have changing means and variances, but nevertheless seem relatively
benign. This form of non-stationarity can be removed by differencing or cointegration transformations,
and often, it may not matter greatly whether or not those transforms are imposed (see e.g., Sims, Stock
and Watson, 1990, for estimation, and Clements and Hendry, 1998, for forecasting). Of course, omitting
dynamics could induce ‘nonsense regressions’, but provided appropriate critical values are used, even
that hypothesis is testable – and its rejection entails cointegration. As we show in section 2.2, shifts
in parameters that do not produce any deterministic shifts also need not induce forecast failure, despite
inducing non-stationarities.

Consider an h-step ahead forecast made at time T , denoted ŷT+h|T , for a vector of ny variables
yT+h. The difference between the eventual outcomes and the forecast values is the vector of forecast er-
rors eT+h|T = yT+h− ŷT+h|T , and this can be decomposed into the various mistakes and unpredictable
elements. Doing so delivers a forecast-error taxonomy, partitioned appropriately into deterministic, ob-
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served stochastic, and innovation-error influences. For each component, there are effects from structural
change, model mis-specification, data inaccuracy, and inappropriate estimation. Although the decom-
position is not unique, it can be expressed in nearly-orthogonal effects corresponding to influences on
forecast-error means and variances respectively. The former involves all the deterministic terms; the
latter the remainder. We now briefly consider these major categories of error, commencing with mean
effects, then turn to variance components.

2.1 Forecast failure and deterministic shifts

Systematic forecast-error biases derive from deterministic factors being mis-specified, mis-estimated, or
non-constant. The simplest example is omitting a trend; or when a trend is included, under-estimating
its slope; or when the slope is correct, experiencing a shift in the growth rate. A similar notion applies
to equilibrium means, including shifts, mis-specification of, or mis-estimation in the means of (say) the
savings rate, velocity of circulation, or the NAIRU. Any of these will lead to a systematic, and possibly
increasing, divergence between outcomes and forecasts. However, there is an important distinction
between the roles of intercepts, trends etc., in models, and any resulting deterministic shifts, as we will
now explain.

To clarify the roles of deterministic, stochastic, and error factors, we consider a static regression
where the parameters change prior to forecasting. The in-sample DGP, for t = 1, . . . , T , is:

yt = α + βxt + εt, (1)

where xt is an independent normally-distributed variable with mean µ and variance σ2x. Also, εt is an
independent, normally-distributed error with mean zero and constant variance σ2ε . Finally, xt has known
future values to the forecaster, and {εt} is independent of x. A special case of interest below is β = 0,
so α is just the mean of y.

In (1), the conditional mean of yt is E [yt|xt] = α + βxt and the conditional variance is V[yt] = σ2
ε .

The unconditional mean, E [yt], and variance, V [yt], (which allow for the variation in xt) are α+βµ = γ

and σ2
ε + β2σ2

x respectively. Thus, there are two deterministic components in (1): the intercept α and
the mean of the regressor µ, so the overall deterministic term is γ. Indeed, we can always rewrite (1) as:

yt = α + βµ + β (xt − µ) + εt

= γ + β (xt − µ) + εt, (2)

Shifts in the composite deterministic term γ will transpire to be crucial.
Consider using the estimated DGP (1) as the forecasting model. For simplicity, we assume known

parameter values. Then, with an exactly-measured forecast origin at time T , (1) produces the h-step
ahead forecast sequence:

ŷT+h|T = α + βxT+h. (3)

However, over the forecast period, h = 1, . . . ,H , there is a shift in the parameters of the process
unknown to the forecaster, so that in fact:

yT+h = α∗ + β∗xT+h + εT+h

= γ∗ + β∗ (xT+h − µ) + εT+h.

The distributions of {xT+h} and {εT+h} could also change (e.g., µ, σ2
x or σ2

ε might change), but we
neglect such effects here as not germane to the central issues. Indeed, when xt is known, as is assumed
here, changes µ in are irrelevant.
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The resulting sequence of forecast errors eT+h|T = yT+h − ŷT+h|T after the unanticipated shift is:

α∗ + β∗xT+h + εT+h − (α + βxT+h)

= (α∗ − α) + (β∗ − β) xT+h + εT+h. (4)

There are two kinds of terms in (4): those contributing to the mean, and deviations from that mean. The
former is obtained by taking expectations, which leads to:

ET+h

[
eT+h|T

]
= (α∗ − α) + (β∗ − β) µ

= γ∗ − γ. (5)

The composite shift is zero if and only if γ∗ = γ: importantly, that does not require α∗ = α and
(β∗ − β) µ = 0. When (5) is non-zero, we call it a ‘deterministic shift’: the effect is pernicious when
ET+h

[
eT+h|T

]
increases by several σε, but is then usually easy to detect.

An empirically-relevant case is when the variables labelled yt and xt are log-differences, so µ defines
the mean growth rate of xt, and γ that of yt. Many econometric growth-rate equations have µ � σε

(often around 0.5%–1%), so the requirement that γ∗ − γ be as large as (say) 2σε is actually very strong:
e.g., a doubling of the trend rate of growth. Consequently, even moderate trend shifts can be hard to
detect till quite a few periods have elapsed.

To illustrate that an ‘incorrect’ model can outperform the in-sample DGP in forecasting, we return
to the special case of (1) when β∗ = β = 0. The expected forecast error sequence from using the
in-sample DGP will be (α∗ − α). That remains true when the forecast origin moves through time to
T + 1, T + 2 etc.: because the forecasting model remains unchanged, so do the average forecast errors.
Consider, instead, using the naive predictor ỹT+h|T+1 = yT+1. The resulting sequence of forecast
errors will be similar to eT+h|T when the origin is T : unanticipated shifts after forecasting are bound to
harm all methods. However, when forecasting from time T + 1 onwards, a different result ensues for
ẽT+h|T+1 = yT+h − ỹT+h|T+1 because:

ẽT+h|T+1 = yT+h − yT+1

= α∗ + εT+h − α∗ − εT+1

= ∆h−1εT+h, (6)

where ∆h−1εT+h = εT+h−εT+1. The last line of (6) has a mean of zero, despite the deterministic shift.
Thus, on a bias criterion, ỹT+h|T+1 outperforms the in-sample DGP (and could win on mean-square
error), despite the fact that yt−1 is not a causal variable. Dynamics make the picture more complicated,
but similar principles apply.

An interesting, and much studied, example of a deterministic shift concerns forecast failure in a
model of narrow money (M1) in the UK after the Banking Act of 1984, which permitted interest pay-
ments on current accounts in exchange for all interest payments being after the deduction of ‘standard
rate’ tax. The own rate of interest (Ro) changed from zero to near the value of the competitive rate (Rc:
about 12 per cent per annum at the time) in about 6 quarters, inducing very large inflows to M1. Thus,
a large shift occurred in the mean opportunity cost of holding money, namely a deterministic shift from
Rc to Rc − Ro. Pre-existing models of M1 – which used the outside rate of interest Rc as the measure
of opportunity cost – suffered marked forecast failure, which persisted for many years after the break.
Models that correctly re-measured the opportunity cost by Rc − Ro continued to forecast well, once
the break was observed, and indeed had the same estimated parameter values after the break as before.
However, methods analogous to ỹT+h|T also did not suffer forecast failure: see Clements and Hendry
(1999c) for details and references.
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In general, the key drivers of forecast failure are mis-specification of, uncertainty in, or changes to
the conditional expectation (where that exists) given the history of the process. The mean forecast can
differ from the correct conditional expectation due to biased estimation of the mean, or when there are
unexpected shifts. Because forecast failure is usually judged relative to in-sample behaviour, the latter is
the dominant cause. However, mis-estimation of coefficients of deterministic terms could be deleterious
to forecast accuracy if estimation errors are large by chance.

2.2 Non-deterministic shifts

Having extracted the deterministic terms, all other factors fall under the heading of non-deterministic.
The converse problem now occurs. Shifts in the coefficients of zero-mean variables have a surprisingly
small impact on forecasts (as measured by the inability of parameter-constancy tests to detect the break).
There are three consequences. First, such shifts seem an unlikely explanation for observed forecast
failure. Secondly, changes in reaction parameters such as β are difficult to detect unless they induce
a deterministic shift in the model, which cannot occur when xt has mean zero (µ = 0). This finding
helps explain the absence of empirical evidence on the Lucas (1976) critique, as discussed in section 3.
Finally, although they have relatively benign effects in the context of forecasting, undetected changes in
reaction parameters could have disastrous effects on policy analyses – but we leave that story till section
6.2.

More formally, when xt and yt both have mean zero in (1) , all terms in (4) have zero expectations,
so no forecast bias results when β changes. There is an increase in the forecast error variance, from
σ2

ε to (β∗ − β)2 σ2
x + σ2

ε , and the detectability (or otherwise) of the break depends on how much the
variance increases. For (β∗ − β)2 = 4σ2

ε (say), then the ratio is 1 + 4σ2
x which can be difficult to detect

against the background noise (see e.g., Hendry and Doornik, 1997, for simulation illustrations).
In a stationary dynamic process, an intercept like α also differs from the unconditional mean γ, and

it is shifts in the latter which are again relevant to forecast failure. A strong, and corroborated, prediction
is that shifts in both the intercepts and the regression parameters which leave the unconditional mean
unchanged will not induce forecast failure, and tests will be relatively powerless to detect that anything
has changed. For example, γ∗ = γ when α∗ + β∗µ = α + βµ, even though every parameter has
altered. Indeed, the situation where the unconditional mean is constant is precisely the same as when
all the means are zero: Hendry and Doornik (1997) and section 6.2 below provide the details, and lead
to the conclusions that shifts in unconditional means are a primary source of forecast failure, and other
‘problems’ are less relevant to forecast failure.

For example, omitting zero-mean stochastic components is unlikely to be a major source of forecast
failure, but could precipitate failure if stochastic mis-specification resulted in deterministic shifts else-
where in the economy affecting the model. Equally, the false inclusion of zero-mean stochastic variables
is a secondary problem, whereas wrongly including regressors which experienced deterministic shifts
could have a marked impact on forecast failure as the model mean shifts although the data mean does
not.

Estimation uncertainty in the parameters of stochastic variables also seems to be a secondary prob-
lem, as such errors add variance terms of O(1/T ) for stationary components. Neither collinearity nor a
lack of parsimony per se seem likely culprits, although interacting with breaks occurring elsewhere in
the economy could induce problems.

Finally, better-fitting models have smaller error accumulation, but little can be done otherwise about
forecast inaccuracy from that source.
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2.3 Digression: modelling deterministic terms

Over long runs of historical time, all aspects of economic behaviour are probably stochastic. However,
in shorter periods some variables may exhibit little variation (or deviation from trend) and so be well
represented by a deterministic variable. Further, such variables might be subject to level shifts char-
acterizing different epochs (see Anderson and Mizon, 1989). ‘Models’ of intercept shifts are easily
envisaged, where they become drawings from a ‘meta’ distribution; or where large shocks persist but
small do not; or they are functions of more basic causes – endogenous growth theory could be seen
as one attempt to model the intercepts in growth-rate equations. Such re-representations do not alter
the forecasting implications drawn above, merely re-interpret what we call deterministic shifts: the key
issue is whether the average draw over the relevant horizon is close to that over the sample used, or
differs therefrom. The latter induces forecast failure.

That concludes the ‘scene setting’ analysis, summarized as: deterministic shifts of the data relative
to the model are the primary source of forecast failure. Monte Carlo evidence presented in several papers
bears out the analytics: parameter non-constancy and forecast-failure tests reject for small changes in
unconditional means, but not for substantial changes in dynamics, or in all parameters when that leaves
equilibrium means unaltered (all measured as a proportion of σε).

3 ‘Rational expectations’

When unanticipated deterministic shifts make an economy non-stationary, the formation of ‘rational
expectations’ requires agents to know:

• all the relevant information;
• how every component enters the joint data density;
• the changes in that density at each point in time.

In terms of our scalar example, the model forecast error eT+h|T in (4) equals the ‘rational expectations’
error εT+h if and only if every other term is zero. Yet most shifts, and many of their consequences,
cannot be anticipated: assuming knowledge of current and future deterministic shifts is untenable. Oth-
erwise, the resulting forecasting device can be dominated by methods which use no causally-relevant
variables. Thus, it ceases to be rational to try and form expectations using the current conditional expec-
tation when that will neither hold in the relevant future, nor forecast more accurately than other devices.
Agents will learn that they do better forming expectations from ‘robust forecasting rules’ – which adapt
rapidly to deterministic shifts. These may provide an example of ‘economically-rational expectations’
as suggested by Feige and Pearce (1976), equating the marginal costs and benefits of improvements in
the accuracy of expectations: Hendry (2000b) provides a more comprehensive discussion.

Robust forecasting rules need not alter with changes in policy. Of course, if agents fully understood
a policy change and its implications, they would undoubtedly be able to forecast better: but that would
require the benefits of doing so to exceed the costs. The problem for agents is compounded by the
fact that many major policy changes occur in turbulent times, precisely when it is most difficult to
form ‘rational expectations’, and when robust predictors may outperform. Thus, many agents may
adopt the adaptive rules discussed above, consistent with the lack of empirical evidence in favour of the
Lucas (1976) critique reported in Ericsson and Irons (1995). Consequently, if an econometric model
used ∆xt as a replacement for the expected change ∆xe

t+1|t when agents used robust rules, then the
model’s parameters need not change even after forecast failure occurred. Alternatively, the unimportant
consequences for forecasting of changes in reaction coefficients, rather than their absence, could account
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for the lack of empirical evidence that the critique occurs, but anyway reduces its relevance. Hence,
though it might be sensible to use ‘rational expectations’ for a congruent and encompassing model in a
stationary world, in practice the evident non-stationarities make it inadvisable.

4 Model selection for theory testing

Although not normally perceived as a ‘selection’ issue, tests of economic theories based on whole-
sample goodness of fit comparisons involve selection, and can be seriously misled by deterministic
shifts. Three examples affected by unmodelled shifts are: lagged information from other variables ap-
pearing irrelevant, affecting tests of Euler equation theories; cointegration failing so long-run relation-
ships receive no empirical support; and tests of forecast efficiency rejecting because of residual serial
correlation induced ex post by an unpredictable deterministic shift. We address these in turn.

The first two are closely related, so our illustration concerns tests of the implications of the Hall
(1978) Euler-equation consumption theory when credit rationing changes, as happened in the UK (see
Muellbauer, 1994). The log of real consumers’ expenditure on non-durables and services (c) is not
cointegrated with the log of real personal disposable income (y) over 1962(2)–1992(4): a unit-root
test using 5 lags of each variable, a constant and seasonals delivers tur = 0.97 so does not reject
(see Banerjee and Hendry, 1992, and Ericsson and MacKinnon, 1999, on the properties of this test).
Nevertheless, the solved long-run relation is:

c = − 0.53
(0.99)

+ 0.98
(0.10)

y + Seasonals. (7)

Lagged income terms are individually (max t = 1.5) and jointly (F(5, 109) = 1.5) insignificant in
explaining ∆4ct = ct − ct−4. Such evidence appears to support the Hall life-cycle model, which
entails that consumption changes are unpredictable, with permanent consumption proportional to fully-
anticipated permanent income. As fig. 1a shows for annual changes, the data behaviour is at odds with
the theory after 1985, since consumption first grows faster than income for several years, then falls
faster – far from smoothing. Moreover, the large departure from equilibrium in (7) is manifest in panel
b, resulting in a marked deterioration in the resulting (fixed-parameter) 1-step forecast errors from the
model in Davidson, Hendry, Srba and Yeo (1978) after 1984(4) (the period to the right of the vertical
line in fig. 1c). Finally, an autoregressive model for ∆∆4ct = ∆4ct − ∆4ct−1 produces 1-step forecast
errors which are smaller than average after 1984(4): see panel (d). Such a result is consistent with a
deterministic shift around the mid 1980s (see Hendry, 1994, and Muellbauer, 1994, for explanations
based on financial deregulation inducing a major reduction in credit rationing), which neither precludes
the ex ante predictability of consumption from a congruent model, nor consumption and income being
cointegrated. The apparent insignificance of additional variables may be an artefact of mis-specifying a
crucial shift, so the ‘selected’ model is not valid support for the theory. Conversely, non-causal proxies
for the break may seem significant. Thus, models used to test theories should first be demonstrated to
be congruent and encompassing.

We must stress that our example is not an argument against econometric modelling. While ∆∆4ct−1

may be a more robust forecasting device than the models extant at the time, it is possible in principle that
the appropriate structural model – which built in changes in credit markets – would both have produced
better forecasts and certainly better policy. For example, by 1985, building society data suggested that
mortgages were available on much easier terms than had been the case historically, and ‘housing-equity
withdrawal’ was already causing concern to policy makers. Rather, we are criticizing the practice of
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Figure 1 UK real consumers’ expenditure and income with model residuals.

‘testing theories’ without first testing that the model used is a congruent and undominated represen-
tation, precisely because ‘false’ but robust predictors exist, and deterministic shifts appear to occur
intermittently.

The same data illustrate the third mistake: rejecting forecast efficiency because of residual serial
correlation induced ex post by an unpredictable deterministic shift. A model estimated prior to such a
shift could efficiently exploit all available information; but if a shift was unanticipated ex ante, and un-
modelled ex post, it would induce whole-sample residual serial correlation, apparently rejecting forecast
efficiency. Of course, the results correctly reject ‘no mis-specification’; but as no-one could have out-
performed the in-sample DGP without prescience, the announced forecasts were not ex ante inefficient
in any reasonable sense.

5 Model selection for forecasting

Forecast performance in a world of deterministic shifts is not a good guide to model choice, unless the
sole objective is short-term forecasting. This is because models which omit causal factors and cointe-
grating relations, by imposing additional unit roots, may adapt more quickly in the face of unmodelled
shifts, and so provide more accurate forecasts after breaks. We referred to this above as ‘robustness’ to
breaks.

The admissible deductions on observing either the presence or absence of forecast failure are rather
stark, particularly for general methodologies which believe that forecasts are the appropriate way to
judge empirical models. In this setting of structural change, there may exist non-causal models (i.e.,
models none of whose ‘explanatory’ variables enter the DGP) that do not suffer forecast failure, and
indeed may forecast absolutely more accurately on reasonable measures, than previously congruent,
theory-based models. Conversely, ex ante forecast failure may merely reflect inappropriate measures
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of the inputs, as we showed with the example of ‘opportunity-cost’ affecting UK M1: a model that
suffers severe forecast failure may nonetheless have constant parameters on ex post re-estimation. Con-
sequently, neither relative success nor failure in forecasting is a reliable basis for selecting between
models – other than for forecasting purposes. Apparent failure on forecasting need have no implications
for the goodness of a model, nor its theoretical underpinnings, as it may arise from incorrect data, that
are later corrected.

Some forecast failures will be due to model mis-specification, such as omitting a variable whose
mean alters; and some successes to having well-specified models that are robust to breaks. The problem
is discriminating between such cases, since the event of success or failure per se is insufficient infor-
mation. Because the future can differ in unanticipated ways from the past in non-stationary processes,
previous success (failure) does not entail the same will be repeated later. That is why we have stressed
the need for ‘robust’ or adaptable devices in the forecasting context. If it is desired to use a ‘structural’ or
econometric model for forecasting, then there are many ways of increasing its robustness, as discussed
in Clements and Hendry (1999a). The most usual are ‘intercept corrections’, which adjust the fit at the
forecast origin to exactly match the data, and thereby induce the differences of the forecast errors that
would otherwise have occurred. Such an outcome is close to that achieved by modelling the differenced
data, but retains the important influences from disequilibria between levels. Alternatively, and closely
related, one could update the equilibrium means and growth rates every period, placing considerable
weight on the most recent data, retaining the in-sample values of all other reaction parameters.

In both cases, howsoever the adjustments are implemented, the policy implications of the underlying
model are unaltered, although the forecasts may be greatly improved after deterministic shifts. The
obvious conclusion, discussed further below, is that forecast performance is also not a good guide to
policy-model choice. Without the correction, the forecasts would be poor; with the correction they
are fine, but the policy recommendation is unaffected. Conversely, simple time-series predictors like
∆∆4ct−1 have no policy implications. We conclude that policy-analysis models should be selected on
different criteria, which we now discuss.

6 Model selection for policy analysis

The next three sub-sections consider related, but distinct, selection issues when the purpose of modelling
is policy: using forecast performance to select a policy model; investigating policy in closed models,
where every variable is endogenous; and analyzing policy in open models, which condition on some
policy variables. Although the three issues arise under the general heading of selecting a policy model,
and all derive from the existence of, and pernicious consequences from, deterministic shifts, very dif-
ferent arguments apply to each, as we now sketch. ‘Selection’ is used in a general sense: only the first
topic concerns an ‘empirical criterion’ determining the choice of model, whereas the other two issues
derive from ‘prior’ decisions to select from within particular model classes.

First, because forecast failure derives primarily from unanticipated deterministic shifts, its occur-
rence does not sustain the rejection of a policy model: shifts in means may be pernicious, but need not
impugn policy implications. For example, intercept corrections would have altered the forecast perfor-
mance, but not the policy advice. Secondly, because badly mis-specified models can win forecasting
competitions, forecast performance is not a sensible criterion for selecting policy models, as shown in
section 6.1. Thirdly, policy conclusions depend on the values of reaction parameters, but we have noted
the difficulty of detecting shifts in those parameters when there are no concomitant deterministic shifts,
with adverse consequences for impulse-response analyses. Section 6.2 provides some detailed evidence.
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Finally, policy changes in open models almost inevitably induce regime shifts with deterministic effects,
and so can highlight previously hidden mis-specifications, or non-deterministic shifts; but also have a
sustainable basis in the important concept of co-breaking, noted in section 1.2 above.

6.1 Selecting policy models by forecast performance

A statistical forecasting system is one having no economic-theory basis, in contrast to econometric mod-
els for which economic theory is the hallmark. Since the former system will rarely have implications
for economic-policy analysis – and may not even entail links between target variables and policy in-
struments – being the ‘best’ available forecasting device is insufficient to ensure any value for policy
analysis. Consequently, the main issue is the converse: does the existence of a dominating forecasting
procedure invalidate the use of an econometric model for policy? Since forecast failure often results
from factors unrelated to the policy change in question, an econometric model may continue to charac-
terize the responses of the economy to a policy, despite its forecast inaccuracy.

Moreover, as stressed above, while such ‘tricks’ as intercept corrections may mitigate forecast fail-
ure, they do not alter the reliability of the policy implications of the resulting models. Thus, neither
direction of evaluation is reliable: from forecast failure or success to poor or good policy advice. Policy
models require evaluation on policy criteria.

Nevertheless, post-forecasting policy changes that entail regime shifts should induce breaks in mod-
els that do not embody the relevant policy links. Statistical forecasting devices will perform worse in
such a setting: their forecasts are unaltered (since they do not embody the instruments), but the out-
comes change. Conversely, econometric systems that do embody policy reactions need not experience
any policy-regime shifts. Consequently, when both structural breaks and regime shifts occur, neither
econometric nor time-series models alone are adequate: this suggests that they should be combined, and
Hendry and Mizon (2000) provide an empirical illustration of doing so.

6.2 Impulse-response analyses

Impulse response analysis is a widely-used method for evaluating the response of one set of variables
to ‘shocks’ in another set of variables (see e.g., Lütkepohl, 1991, Runkle, 1987, and Sims, 1980).
The finding that shifts in the parameters of dynamic reactions are not readily detectable is potentially
disastrous for impulse-response analyses of economic policy based on closed systems, usually vector
autoregressions (VARs). Since changes in VAR intercepts and dynamic coefficient matrices may not be
detected – even when tested for – but the full-sample estimates are a weighted average across different
regimes, the resulting impulse responses need not represent the policy outcomes that will in fact occur.
Indeed, this problem may be exacerbated by specifying VARs in first differences (as often occurs), since
deterministic factors play a small role in such models.

It may be felt to be a cruel twist of fate that when a class of breaks is not pernicious for forecasting,
it should be detrimental to policy – but these are just the opposite sides of the same coin. Moreover, this
is only one of a sequence of drawbacks to using impulse responses on models to evaluate policy we have
emphasized over recent years: see Banerjee, Hendry and Mizon (1996), Ericsson, Hendry and Mizon
(1998a), and Hendry and Mizon (1998). Impulse response functions describe the dynamic properties of
an estimated model, and not the dynamic characteristics of the variables. For example, when the DGP
is a multivariate random walk, the impulse responses calculated from an estimated VAR in levels will
rarely reveal the ‘persistence’ of shocks, since the estimated roots will not be exactly unity. Equally,
estimated parameters may be inconsistent or inefficient, unless the model is congruent, encompasses
rival models, and is invariant to extensions of the information used (see section 8). When a model has
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the three properties just noted, it may embody structure (see Hendry, 1995b), but that does not imply
that its residuals are structural: indeed, residuals cannot be invariant to extensions of information unless
the model coincides with the DGP. In particular, increasing or reducing the number of variables directly
affects the residuals, as does conditioning on putative exogenous variables. Worse still, specifying a
variable to be weakly or strongly exogenous alters the impulse responses, irrespective of whether or not
that variable actually is exogenous. While Granger non-causality (Granger, 1969) is sufficient for the
equivalence of standard-error based impulse responses from systems and conditional models, it does not
ensure efficient or valid inferences unless the conditioning variables are weakly exogenous. Moreover,
the results are invariant to the ordering of variables only by ignoring the correlations between residuals
in different equations. Avoiding this last problem by reporting orthogonalized impulse responses is not
recommended either: it violates weak exogeneity for most orderings, induces a sequential conditioning
of variables that depends on the chance ordering of the variables, and may lose invariance. The literature
on ‘structural VARs’ (see, e.g., Bernanke, 1986, and Blanchard and Quah, 1989), which also analyzes
impulse responses for a transformed system, faces a similar difficulty. The lack of understanding of the
crucial role of weak exogeneity in impulse-response analyses is puzzling in view of the obvious feature
that any given ‘shock’ to the error and to the intercept are indistinguishable, yet the actual reaction in
the economy will be the same only if the means and variances are linked in the same way – which is
the weak exogeneity condition in the present setting. Finally in closed systems which ‘model’ policy
variables, impulse-response analysis assumes that the instrument process remains constant under the
‘shock’, when in fact this will often not be so. Thus, it may not be the response of agents that changes
when there is change in policy, but via the policy feedback, the VAR coefficients themselves neverthe-
less shift, albeit in a way that is difficutl to detect. There seems no alternative for viable policy analyses
to carefully investigating the weak and super exogeneity status of appropriate policy conditioning vari-
ables.

Despite the fact that all of these serious problems are well known, impulse responses are still cal-
culated. However, the problem which we are highlighting here – of undetectable breaks – is not well
known, so we will demonstrate its deleterious impact using a Monte Carlo simulation. Consider the
unrestricted I(0) VAR:

y1,t = φ11y1,t−1 + φ12y2,t−1 + ε1,t

y2,t = φ21y1,t−1 + φ22y2,t−1 + ε2,t

where both errors εi,t are independent, normally-distributed with means of zero and constant variances
σii, with E[ε1,tε2,s] = 0 ∀t, s. The yi,t are to be interpreted as I(0) transformations of integrated vari-
ables, either by differencing or cointegration. We consider breaks in the Φ = (φij) matrix, maintaining
constant unconditional expectations of zero (E[yi,t] = 0). The full-sample size is T = 120, with a
single break at t = 0.5T = 60, setting σii = 0.01 (1% in a log-linear model). An unrestricted VAR
with intercepts and one lag is estimated, and then tested for breaks. The critical values for the constancy
tests are those for a known break point, which delivers the highest possible power for the test used. We
consider a large parameter shift, from:

Φ =

(
0.50 −0.20
−0.20 −0.25

)
, (8)

to:

Φ∗ =

(
0.50 0.20
0.20 0.25

)
, (9)
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Figure 2 Constancy-test rejection frequencies for the I(0) null.

so the sign is altered on all but one response, which is left constant simply to highlight the changes in
the other impulses below.

We computed 1000 replications at both p = 0.05 and p = 0.01 (the estimates have standard errors of
about 0.007 and 0.003 respectively), both when the null is true (no break) and when the break from Φ to
Φ∗ occurs. The resulting constancy-test rejection frequencies are reported graphically for both p values
to illustrate the outcomes visually: the vertical axes show the rejection frequencies plotted against the
sample sizes on the horizontal.

6.2.1 Test rejection frequencies under the null

As fig. 2 reveals, the null rejection frequencies in the I(0) baseline data are reassuring: with 1000
replications, the approximate 95% confidence intervals are (0.036, 0.064) and (0.004, 0.016) for 5%
and 1% nominal, and these are shown on the graphs as dotted and dashed lines respectively. The actual
test null rejection frequencies are, therefore, close to their nominal levels. This gives us confidence that
the estimated power to detect the break is reliable.

6.2.2 Shift in the dynamics

The constancy-test graph in fig. 3 shows the rejection frequencies when a break occurs. The highest
power is less than 25%, even though the change constitutes a major structural break for the model
economy: the detectability of a shift in dynamics is low when the DGP is an I(0) VAR. This may be an
explanation for the lack of evidence supporting the Lucas (1976) critique: shifts in zero-mean reaction
parameters are relatively undetectable, rather than absent.
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Figure 3 Constancy-test rejection frequencies for the I(0) structural break.

6.2.3 Misleading impulse responses

Finally, we record the impulse responses from the averages of pre- and post- break models, and the
model fitted across the regime shifts in fig. 4. The contrast is marked: despite the near undetectability
of the break, the signs of most of the impulses have altered, and those obtained from the fitted model
sometimes reflect one regime, and sometimes the other. Overall, mis-leading policy advice would fol-
low, since even testing for the break would rarely detect it.

6.3 Policy analysis in open-models

Many of the problems in analyzing the responses of targets to changes in instruments noted above are
absent when the modelling is validly conditional on the instruments, leading to an open model. Since
it is often difficult to model the time-series behaviour of the policy instruments, particularly in high-
dimensional systems, conditioning on them is much easier and is certainly preferable to omitting them
from the analysis. For economic policy analysis, another advantage of modelling ny target variables yt

conditionally on nz instrument variables zt, is that ∂yt+h/∂z′t , which are important ingredients in the
required policy responses, are directly estimable analytically, or at worst via simulation.

The fact that the {zt} process is under the control of a policy agency does not ensure that zt are
exogenous variables: indeed, policy is likely to depend on precisely the disequilibria in the rest of the
economy that are key to its internal dynamics. Although the weak exogeneity of zt for the parameters
of the endogenous variables’ equations is required for there to be no loss of information in making
inferences on the parameters of interest, in practice it is likely that reliable estimates of policy responses
will be obtained even when zt is not weakly exogenous. This is because cointegration relations are
usually established in the system, before conditioning is introduced.

A more important requirement is that whenever policy involves a regime shift, the instruments must
be super exogenous for the parameters of interest. Co-breaking (described in section 1.2 above) between
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Figure 4 Impulse response comparisons in an I(0) VAR.

the targets and instruments then ensures that the policy is effective, and that the response of yt can be
reliably estimated (efficiently, when zt is weakly exogenous for the response parameters). Since realistic
policies involve deterministic shifts, any failure of co-breaking will be readily detected.

6.3.1 Stationary process

This section draws on some results in Ericsson et al. (1998a), and is presented for completeness as a
preliminary to considering the more realistic integrated setting in the next sub-section. Modelling the
conditional distribution for yt given zt (and any relevant lags) will yield efficient inference on the pa-
rameters of interest when zt is weakly exogenous for those parameters. In addition, the conditional
model will provide reliable estimates of the response in yt to policy changes in zt when its parameters
are invariant to the policy change. When these conditions are satisfied, the conditional model provides
viable impulse responses and dynamic multipliers for assessing the effects of policy. However, Erics-
son et al. (1998a) showed that, in general, the weak exogeneity status of conditioning variables is not
invariant to transformations such as orthogonalizations, or identified ‘structural VARs’.

Irrespective of the exogeneity status of zt, modelling the conditional distribution alone will result
in different impulse-response matrices (∂yt+h/∂ε′t) and dynamic multipliers (∂yt+h/∂z′t) because the
latter takes into account the effects from contemporaneous and lagged zt. Thus, the response of yt to
an impulse in the innovation εt of the conditional model is not the relevant response for assessing the
effects of policy changes in the {zt} process.

6.3.2 Integrated process

In an integrated process, the class of open models will be equilibrium-correction systems conditional on
the current growth-rate of the policy instruments, ∆zt, assuming that the zt are I(1), and are included
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in some of the r cointegration relations β′xt−1. For there to be no loss of information, this analysis
requires that zt be weakly exogenous for both the long-run parameters β, and any short-run dynamic
response parameters (for both lagged yt−s and lagged zt−k), all of which parameters should be invariant
to the policy change. Under these conditions, it is possible to estimate the responses in the growth rates
∆yt and the disequilibria β′xt to particular choices of the instruments zt even when the latter are I(1).
To derive the impact on (say) ∆yt+h from a change in zt requires a specification of the future path of
zt+i in response to zt over t = 1 to t + h; implicitly, the model must be closed. This provides a link
to the ‘policy rules literature’ (see e.g., Taylor, 1993, 2000), where alternative mappings of the policy
instruments onto past values of disequilibria are evaluated. Nevertheless, the outcomes obtained can
differ substantially from impulse-response analysis based on a (cointegrated) VAR when the policy rule
does not coincide with the historical description of policy responses, and in importantly when the policy
rule itself is changed perhaps as a result of observing previous responses to policy.

Partitioning the disequilibria β′xt = β′
yyt + β′

zzt reveals that β′
yyt are feasible target variables in

this context despite yt and β′
yyt being I(1). However, an implication of this analysis is that very special

conditions are required for policy that changes a single instrument zi,t (e.g., the minimum lending
rate) to successfully target a single target variable yj,t (e.g., inflation) when these variables are I(1).
Conversely, Johansen and Juselius (2000) demonstrate that if a policy that targets an I(1) variable is
successful, then the target will be rendered I(0).

Also, there are only ny + nz − r unconstrained stochastic trends when r is equal to the number
of cointegrating vectors, so the growth rates πy of yt and πz of zt are linked by β′

yπy + β′
zπz =

0. However, when there is co-breaking between ∆yt and ∆zt, then a change in πz will result in a
corresponding change in the unconditional mean πy of ∆yt. Hence, just as in Hendry and Mizon
(1998, 2000), linkages between deterministic terms are critical for policy to be effective when it is
implemented via shifts in deterministic terms in the instrument process. Moreover, co-breaking here
requires that ∆yt responds to contemporaneous and/or lagged changes in zt.

An important aspect of policy changes which comprise deterministic shifts is their ability to reveal
previously undetected changes which might contaminate model specification. The dynamic response
in a model will trace out a sequence of shifts over time, which will differ systematically from the
corresponding responses in the economy when earlier changes lurk undetected. While the outcome will
not be as anticipated, the mis-specification does not persist undetected.

7 Empirical model selection

First developing congruent general models, then selecting appropriate simplifications thereof that retain
only the relevant information has not proved easy – even to experienced practitioners. The former re-
mains the domain where considerable detailed institutional, historical and empirical knowledge interacts
with value-added insights and clever theories of investigators: a good initial general model is essential.
However, the latter is primarily determined by econometric modelling skills, and the developments in
Hoover and Perez (1999) suggest automating those aspects of the task that require the implementation
of selection rules, namely the simplification process. Just as early chess-playing programs were easily
defeated, but later ones can systematically beat Grandmasters, so we anticipate computer-automated
model selection software will develop well beyond the capabilities of the most expert modellers. We
now explain why a general-to-specific modelling strategy – as implemented in PcGets – is able to per-
form so well despite the problem of ‘data mining’, discuss the costs of search, distinguish them from the
(unavoidable) costs of inference, and suggest that the practical modelling problem is to retain relevant
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variables, not eliminate spurious ones.
Statistical inference is always uncertain because of type I and type II errors (rejecting the null when

it is true; and failing to reject the null when it is false respectively). Even if the DGP were derived a
priori from economic theory, an investigator could not know that such a specification was ‘true’, and
inferential mistakes will occur when testing hypotheses about it. This is a ‘pre-test’ problem: beginning
with the truth and testing it will sometimes lead to false conclusions. ‘Pre-testing’ is known to bias
estimated coefficients, and may distort inference (see inter alia, Judge and Bock, 1978). Of course,
the DGP specification is never known in practice, and since ‘theory dependence’ in a model has as
many drawbacks as ‘sample dependence’, data-based model-search procedures are used in practice,
thus adding search costs to the costs of inference. A number of arguments point towards the advantages
of ‘general-to-specific’ searches.

Statistical analyses of repeated testing provide a pessimistic background: every test has a non-zero
null rejection frequency (‘size’), so type I errors accumulate. Size could be lowered by increasing the
significance levels of selection tests, but only at the cost of reducing power to detect the influences that
really matter. The simulation experiments in Lovell (1983) suggested that search had high costs, leading
to an adverse view of ‘data mining’. However, he evaluated outcomes against the truth, compounding
costs of inference with costs of search. Rather, the key issue for any model-selection procedure is:
how costly is it to search across many alternatives relative to commencing from the DGP? As we now
discuss, it is feasible to lower size and raise power simultaneously by improving the search algorithm.

First, White (1990) showed that with sufficiently-rigorous testing and a large enough data sample,
the selected model will converge to the DGP, so selection error is a ‘small-sample’ problem, albeit a
difficult and prevalent one. Secondly, Mayo (1981) noted that diagnostic testing was effectively inde-
pendent of the sufficient statistics from which parameter estimates are derived, so would not distort the
latter. Thirdly, since the DGP is obviously congruent with itself, congruent models are the appropriate
class within which to search. This argues for commencing the search from a congruent model. Fourthly,
encompassing – explaining the evidence relevant for all alternative models under consideration– resolves
‘data mining’ (see Hendry, 1995a) and delivers a dominant outcome. This suggests commencing from
a general model that embeds all relevant contenders. Fifthly, any model-selection process must avoid
getting stuck in search paths that inadvertently delete relevant variables, thereby retaining many other
variables as proxies. The resulting approach of sequentially simplifying a congruent general unrestricted
model (GUM) to obtain the maximal acceptable reduction, is called general-to-specific (Gets).

To evaluate the performance of Gets modelling procedures, Hoover and Perez (1999) reconsidered
the Lovell (1983) experiments, searching for a single conditional equation (with 0 to 5 regressors) from
a large macroeconomic database (containing up to 40 variables, including lags). By following several
reduction search paths – each terminated by either no further feasible reductions or significant diagnostic
test outcomes – they showed how much better the structured Gets approach was than any method Lovell
considered, suggesting that modelling per se need not be bad. Indeed, the overall ‘size’ (false null
rejection frequency) of their selection procedure was close to that expected without repeated testing, yet
the power was reasonable.

Building on their findings, Hendry and Krolzig (1999) and Krolzig and Hendry (2000) developed
the Ox (see Doornik, 1999) program PcGets which first tests the congruency of a GUM, then conducts
pre-selection tests for ‘highly irrelevant’ variables at a loose significance level (25% or 50%, say),
and simplifies the model accordingly. It then explores many selection paths to eliminate statistically-
insignificant variables on F- and t-tests, applying diagnostic tests to check the validity of all reductions,
thereby ensuring a congruent final model. All the terminal selections resulting from search paths are
stored, and encompassing procedures and information criteria select between the contenders. Finally,
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sub-sample significance is used to assess the reliability of the resulting model choice. In Monte Carlo
experiments, PcGets recovers the DGP with power close to what one would expect if the DGP were
known, and empirical size often below the nominal, suggesting that search costs are in fact low. In the
‘classic’ experiment in which the dependent variable is regressed on 40 irrelevant regressors, PcGets
correctly finds the null model about 97% of the time for the Lovell database.

Some simple analytics proposed in Hendry (2000a) suggest why PcGets performs well, even though
the following analysis ignores pre-selection, search paths and diagnostic testing (all of which improve
the algorithm). An F-test against the GUM using critical value cγ would have size P (F ≥ cγ) = γ

under the null if it were the only test implemented. For k regressors, the probability of retaining no
variables from t-tests at size α is:

P (|ti| < cα ∀i = 1, . . . , k) = (1 − α)k , (10)

where the average number of variables retained then is:

n = kα. (11)

Combined with the F-test of the GUM, the probability π of correctly selecting the null model is no
smaller than:

π = (1 − γ) + γ (1 − α)k . (12)

For γ = 0.05 and α = 0.01, when k = 40, then π = 0.98 and n = 0.4. Although falsely rejecting
the null on the F-test signals that spurious significance lurks, so (11) will understate the number of
regressors then retained, nevertheless, eliminating adventitiously-significant (spurious) variables is not
the real problem in empirical modelling.

Indeed, the focus in earlier research on ‘over-fitting’ – reflecting inferior algorithms – has mis-
directed the profession’s attention. The really difficult problem is retaining the variables that matter.
Consider an equation with six relevant regressors, all with (absolute) t-values of 2 on average (i.e.,
E[|ti|] = 2). The probability in any given sample that each observed |̂ti| ≥ cα = 2 (say) is approxi-
mately 0.5, so even if one began with the DGP, the probability of retaining all six is:

P
(|̂ti| ≥ cα ∀i = 1, . . . , k | |ti| = 2

)
= 0.56

� 0.016.

Using 1% significance lowers this to essentially zero. Surprisingly, even if every E[|ti|] = 3, the chances
of keeping the DGP specification are poor:

P
(|̂ti| ≥ cα ∀i | |ti| = 3

)
= 0.846 � 0.35.

Thus, the costs of inference are high in such full-sample testing, and will lead to under-estimating
model size. An alternative, block-testing, approach discussed in Hendry (2000a) seems able to improve
the power substantially.

Nevertheless, many empirical equations have many regressors. This is probably due to the high
average t-values found in economics:

P
(|̂ti| ≥ cα ∀i | |ti| = 5

) � 0.9896 � 0.935,

(so almost all will always be retained), and not to selection biases as shown above. Even selecting
by t-testing from 40 candidate regressors at 5% would only deliver 2 significant variables on average.
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We conclude that models with many significant variables correctly represent some of the complexity of
aggregate economic behaviour and not ‘over-fitting’.

The evidence to date in Hoover and Perez (1999) and Hendry and Krolzig (1999) for conditional
dynamic models, Krolzig (2000) for VARs, and Hoover and Perez (2000) for cross-section data sets is
of equally impressive performance by Gets in model selection. Certainly, the Monte Carlo evidence
concerns selecting a model which is a special case of the DGP, whereas empirically, models are unlikely
even to be special cases of the local DGP (LDGP). However, that is not an argument against Gets, but
confirms the need for commencing with general specifications than have some chance of embedding the
LDGP. Only then will relaible approximations to the actual economic process be obtained.

8 Congruent modelling

As a usable knowledge base, theory-related, congruent and encompassing econometric models remain
undominated by matching the data in all measurable respects (see, e.g., Hendry, 1995a). For empirical
understanding, such models seem likely to remain an integral component of any progressive research
strategy. Nevertheless, even the ‘best available model’ can be caught out when forecasting by an unan-
ticipated outbreak of (say) a major war or other crisis for which no effect was included in the forecast.
However, if empirical models which are congruent within sample remain subject to a non-negligible
probability of failing out of sample, then a critic might doubt their worth. Our defence of the program
of attempting to discover such models rests on the fact that empirical research is part of a progressive
strategy, in which knowledge gradually accumulates. This includes knowledge about general causes
of structural changes, such that later models incorporate measures accounting for previous events, and
hence are more robust (e.g., to wars, changes in credit rationing, financial innovations, etc.). For exam-
ple, the dummy variables for purchase-tax changes in Davidson et al. (1978) that at the time ‘mopped
up’ forecast failure, later successfully predicted the effects of introducing VAT, as well as the conse-
quences of its doubling in 1979; and the First World-War shift in money demand in Ericsson, Hendry
and Prestwich (1998b) matched that needed for the Second World War.

Since we now have an operational selection methodology with excellent properties, Gets seems a
natural way to select models for empirical characterization, theory testing and policy analyses. When the
GUM is a congruent representation, embedding the available theory knowledge of the target-instrument
linkages, and parsimoniously encompassing previous empirical findings, the selection strategy described
in section 7 offers scope for selecting policy models. Four features favour such a view. First, for a given
null rejection frequency, variables that matter in the DGP are selected with the same probabilities as
if the DGP were known. In the absence of omniscience, it is difficult to imagine doing much better
systematically. Secondly, although estimates are biased on average, conditional on retaining a variable,
its coefficient provides an unbiased estimate of the policy reaction parameter. This is essential for
economic policy – if a variable is included, PcGets delivers the right response; otherwise, when it
is excluded, one is simply unaware that such an effect exists.1 Thirdly, the probability of retaining
adventitiously significant variables is around the anticipated level for the variables that remain after
pre-selection simplification. If that is (say) even as many as 30 regressors, of which 5 actually matter,
then at 1% significance, 0.25 extra variables will be retained on average: i.e., one additional ‘spuriously-
significant’ variable per four equations. This seems unlikely to distort policy in important ways. Finally,

1This is one of three reasons why we have not explored ‘shrinkage’ estimators, which have been proposed as a solution to
the ‘pre-test’ problem, namely, they deliver biased estimators (see, e.g., Judge and Bock, 1978). The second, and main, reason
is that such a strategy has no theoretical underpinnings in processes subject to intermittent parameter shifts. The final reason
concerns the need for progressivity, explaining more by less, which such an approach hardly facilitates.
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the sub-sample – or more generally, recursive – selection procedures help to reveal which variables have
non-central t-statistics, and which central (and hence should be eliminated). Overall, the role of Gets in
selecting policy models looks promising.

Because changes to the coefficients of zero-mean variables are difficult to detect in dynamic models,
for policy models they remain hazardous: the estimated parameters would appear to be constant, but in
fact be mixtures across regimes, leading to inappropriate advice. In a progressive research context (i.e.,
from the perspective of learning), this is unproblematic since most policy changes involve determinis-
tic shifts (as opposed to mean-preserving spreads), hence earlier incorrect inferences will be detected
rapidly – but is cold comfort to the policy maker, or the economic agents subjected to the wrong policies.

9 Conclusion

The implications for econometric modelling that result from the observance of forecast failure differ
considerably from those obtained when the model is assumed to coincide with a constant mechanism.
Causal information can no longer be shown to uniformly dominate non-causal. Intercept corrections
have no theoretical justification in stationary worlds with correctly-specified empirical models, but in a
world subject to structural breaks of unknown form, size, and timing, they serve to ‘robustify’ forecasts
against deterministic shifts – as the practical efficacy of intercept corrections confirms. Forecasting
success is no better an index for model selection than forecast failure is for model rejection. Thus,
emphasizing ‘out-of-sample’ forecast performance (perhaps because of fears over ‘data-mining’) is un-
sustainable (see, e.g., Newbold, 1993, p.658), as is the belief that a greater reliance on economic theory
will help forecasting (see, e.g., Diebold, 1998), because that does not tackle the root problem.

A taxonomy of potential sources of forecast errors clarifies the roles of model mis-specification,
sampling variability, error accumulation, forecast origin mis-measurement, intercept shifts, and slope-
parameter changes. Forecast failure seems primarily attributable to deterministic shifts in the model
relative to the data. Other shifts are far more difficult to detect. Such findings are potentially disas-
trous for ‘impulse-response’ analyses of economic policy. Since the changes in VAR intercepts and
dynamic coefficient matrices may not be detected even when tested for, but the recorded estimates are
a weighted average across the different regimes, the resulting impulse responses do not represent the
policy outcomes that will in fact occur.

If the economy were reducible by transformations to a stationary stochastic process, where the re-
sulting unconditional moments were constant over time, then well-tested, causally-relevant, congruent
models which embodied valid theory restrictions would both fit best, and by encompassing, also domi-
nate in forecasting on average. The prevalence historically of unanticipated deterministic shifts suggests
that such transformations do not exist. Even the best policy model may fail at forecasting in such an
environment. As we have shown, this need not impugn its policy relevance – other criteria than fore-
casting are needed for that judgement. Nevertheless, the case for continuing to use econometric systems
probably depends on their competing reasonably successfully in the forecasting arena. Cointegration,
co-breaking, and model-selection procedures as good as PcGets, with rigorous testing will help in un-
derstanding economic behaviour and evaluating policy options, but none of these ensures immunity to
forecast failure from new breaks. An approach which incorporates causal information in a congruent
econometric system for policy, but operates with robustified forecasts, merits consideration. We have
not yet established formally that Gets should be used for selecting policy models from a theory-based
GUM – but such a proof should be possible, given the relative accuracy with which the DGP is located.
Achieving that aim represents the next step of our research program, and we anticipate establishing that
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a data-based Gets approach will perform well in selecting models for policy.
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