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ABSTRACT 

 

Autoregressive models have many applications in business and economics. In this 

paper, we consider two regressive models 

Yi,t = µi + δi Xi,t + ei,t  (i = 1, 2 ; t = 1, 2, ..., ni ) 

where the random errors ei,t are autocorrelated, i.e., 

ei,t = φi ei,t – 1 + ai,t  , | φi | < 1; 

ai,t are iid random errors. The autoregression coefficicents φi (i = 1, 2) may or may not be 

equal. The problem is to estimate µi , δi and φi and σi
2 = V(ai,t); the variances σi

2 (i = 1, 2) may 

or may not be equal. 

 Traditionally, the random errors at have been assumed to be normal N(0, σ2). There is 

now a realization that non-normal distributions are more prelavent in practice. We consider 

non-normal distributions and derive efficient estimators by using the methodology of 

modified likelihood. We also give a test for H0: δ1 = δ2. Both situations are considered when 

Xt (1 ≤ t ≤ n) are fixed design points and when they change with Yt (1 ≤ t ≤ n).  

 

1. Introduction 

The main problem in a simple regression model with autocorrelated errors is the 

estimation of the coefficients. Most of the literature on this topic has hinged on the 

assumption of normality; see, for example, Anderson (1949), Cochrane and Orcutt (1949), 

Durbin (1960), Tiao and Tan (1966), Gallant and Goebel (1967), Beach and Mackinnon 

(1978), Kramer (1980), Magee et al. (1987), Velu and Gregory (1987), Dielman and 

Pfaffenberger (1989), Maller (1989), Cogger (1990), Weiss (1990), Schäffler (1991) and 

Nagaraj et al. (1992). However, there is now a realization that non-normal distributions are 

more prevalent in practice (Pearson 1932; Elveback et al. 1970; Tukey 1970; Tse 1991) than 

the normal. The methodology of maximum likelihood (ML) does indeed extend in principle to 



non-normal distributions but there are difficulties. Due to enormous mathematical complexity 

with the maximum likelihood methodology, extensions to nonnormal distributions have not 

been possible. Therefore, least squares (LS) methodology has been widely used in this 

context. Recently, however, Tiku et al. (1999) and Akkaya and Tiku (2001) worked out these 

extensions by using the modified likelihood methodology (MML). They showed, in 

particular, that the LS estimators have low efficiency and their relative efficiency (as 

compared to the MML estimators) decreases as the sample size n increases. This is indeed a 

disconcerting feature of the LS estimatiors. Tiku et al. (1999) and Akkaya and Tiku (2001) 

results, however, are available for a single source of information. However, in practice, 

several independent sources of information may be available so that several models have to be 

considered simultaneously. In such systems of linear regression equations, the main interest is 

in testing whether the parameter vector is the same for all equations or not. In this paper, two 

linear regression models are considered in detail and estimation and hypothesis tests are 

developed. 

 

2. Autoregressive Models 

Consider two simple regressive models 

yi,t = µi
/ + δi xi,t + ei,t 

ei,t = φi ei,t-1 + ai,t   (1 ≤ t ≤ ni ,i = 1, 2, φi < 1)  (1) 

where  ai,t (1 ≤ t ≤ ni ; i = 1, 2) are individually and jointly iid random errors having equal or 

different variances σ1
2 and σ2

2, respectively. Here yi,t ( 1 ≤ t ≤ ni ) are the observed value of a 

random variable Yi ( i = 1, 2) at time t and xi,t ( 1 ≤ t ≤ ni ) (i) are design variables and pre-

determined as in controlled experiments in agricultural, biological and engineering sciences, 

or (ii) change with yi,t as in business and economics. In case (ii), the full likelihood is             

L = LYX LX but is difficult to handle mathematically. Instead, we work with LYX and regard 

xi,t fixed as is usually done in practice. 

Model (1) can alternatively be written as 

yi,t - φi yi,t – 1 = µi + δi (xi,t - φi xi,t – 1) + ai,t     ( | φi | < 1,  i = 1, 2)  (2) 

which is nonlinear because of the parameter δiφi and is mathematically more complex than the 

simple linear model, i.e., model (2) with φi = 0 (i = 1, 2). The autoregressive model has many 

applications. For example, in predicting future stock prices, the effect of an innovation might 

persist for some time. Numerous other applications of the model are in agricultural, biological 

and biomedical sciences besides business and economics; see, for example, Anderson (1949), 



Durbin (1960), Tiao and Tan (1966), Beach and Mackinnon (1978), Cogger (1990), Weiss 

(1990) and Schäffler (1991). 

 Although our technique can be used for any location-scale distribution of the type 

(1/σ) f((y - µ) / σ), for illustration, we consider the family of Generalized Logistic 
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This family of distributions is very flexible: (i) for b < 1, it represents negatively skewed 

distributions, (ii) for b = 1, it is the well-known logistic distribution and is symmetric and 

close to a normal distribution, and (iii) for b > 1, it represents positively skewed distributions. 

We assume that b is known, and take n1 = n2 = n for simplicity in presentation. In practice b is 

determined by using a Q-Q plot. 

The initial values (y0 , x0 ) are generated by using the Vinod-Shenton Models A or B. 

Since their Model B is more general, we will use this model.  

The conditional (given y0 and x0) likelihood function is 
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where zij = {(yij- φiyij-1) - µi - δi(xij - φixij-1)}/σi  . 

 The ML estimators are the solutions of the following equations: 
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where gi(zij) = ( )ijij zz e1e −− + . 

 Solving these equations is very problematic indeed; see, for example, Pearson and 

Hartley (1972, p.87-9), Barnett (1966), Lee et al. (1980), Tiku et al. (1986), Puthenpura and 

Sinha (1986), Tiku and Suresh (1992) and Vaughan (1992, 2002). 

 



3. Modified Likelihood 

To obtain efficient and robust, and explicit, estimators, we express the equations (3)-(6) in 

terms of the order statistics y(i) ( 1 ≤ i ≤ n) and the corresponding concomitants x[i]; see 

Akkaya and Tiku (2001), Tiku et al. (1999). The linearized equations are called modified 

likelihood equations and are given by 
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 The solutions of these equations are the MML estimators: 

iδ̂  = Gi - Hi σ̂       (11) 

iφ̂  = Ki - Di σ̂       (i=1, 2)     (12) 
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The estimators σ̂ i (i = 1, 2) are always real and positive since βij > 0. 

Computations: Write γi = - δi φi (i = 1, 2) and obtain the initial values from the equations 
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(i = 1, 2); each sum is carried over j = 1, 2, ..., n. The estimators given by (15) are essentially 

the LS estimators obtained by minimizing ∑
=

ε+µ
n

1j

2
iji )(  ,  i = 1, 2. 

 Using these initial values, calculate the MML estimates iδ̂  (i = 1, 2) and iσ̂  from (11) 

and (13). Then calculate the MML estimates iφ̂  (i = 1, 2) from (12). Carry out a second 

iteration by replacing 0iδ̂ , 0iφ̂  and 0iγ̂  (i = 1, 2) by iδ̂ , iφ̂  and - iδ̂ iφ̂  (i = 1, 2), respectively. 



Final MML estimates iδ̂ , iφ̂  (i = 1, 2) and iσ̂  are obtained at the end of the third iteration. 

Then compute the MML estimates µ̂ i (i = 1, 2) from (14). 

 This is, in fact, the procedure suggested by Akkaya and Tiku (2001) and is similar to 

those adopted by earlier authors, e.g., Durbin (1960), Tan and Lin (1993), and Tiku et al. 

(1999). 

 

4. Asymptotic Properties 

The differences [gi{zi(j)} – {αij - βij zi(j)}] converge to zero as n tends to infinity. 

Consequently, the differences (1/n){(∂lnL/∂µi)-(∂lnL*/∂µi)} and (1/n){(∂lnL/∂δi)-(∂lnL*/∂δi)} 

(i = 1, 2) are equal to zero asymptotically. For a rigorous proof see, for example, Vaughan and 

Tiku (2000). Therefore, the MML estimators are asymptotically equivalent to the ML 

estimators; Bhattacharya 1985; Vaughan and Tiku 2000. 
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(i = 1, 2) where iδ̂ (φi, σi) = Gi - Hi σi ;  
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5. Efficiencies of the Estimators 

The LS estimators are widely used regardless of the underlying distribution which we will 

show results in enormous loss of efficiency. Since it is very difficult to work out the expected 

values and the variance-covariances of the LS estimators even asymptotically, they are 

simulated. 

The LS estimators are computed exactly the same way as MML estimators since the LS 

estimators can be obtained from the modified likelihood equations simply by equating αij and 

βij to 0 and 1, respectively. However, the LS estimators i
~µ and i

~σ  so obtained need to be 

corrected for bias; (ψ(b) - ψ(1)) iσ̂ must be subtracted to obtain the bias-corrected LS 

estimator of µi while the estimator of σi has to be divided by (ψ/(b) + ψ/(1))1/2.  

The x-values are generated from a uniform distribution U(0, 1). The values of b 

considered are b = 0.5, 1.0, and 2.0. µ1 = µ2 = 0, δ1= δ2 = 1, φ1 = φ2 = 0.5, σ1 = 1 and σ2 = 1.5 

are chosen, without loss of generality. For n = 50, the simulated means and variances of LS 

and MML estimators of µi, δi, φi, and σi and the relative efficiencies of the LS estimators 

defined as E = 100(variance of the MML estimator/variance of the LS estimator) are given in 

Table 1 for the case (ii) xi,t change with yi,t.  

 

Table 1. Values of (1) Mean, (2) Variance, and Relative Efficiency E of the Least 
Squares Estimators for the Generalized Logistic Distribution. 
 

b  δ1 δ2 φ1 φ2 σ1 σ2 µ1 µ2 

0.5 

(1) 

LS 

MML 

1.0012    

1.0015 

1.0013     

1.0010 

0.4563    

0.4675 

0.4571    

0.4689 

0.9659    

0.9808 

1.4323     

1.4547 

-0.1750     

-0.1231 

-0.2670    

-0.1834 

 

(2) 

LS 

MML 

E 

0.0865    

0.0662 

76.5 

0.0872     

0.0681 

78.1 

0.0160    

0.0131 

81.9 

0.0158    

0.0138 

87.3 

0.0201    

0.0156 

77.6 

0.0468     

0.0350 

74.8 

0.2734     

0.2375 

86.9 

0.6188    

0.5365 

86.7 

1.0 

(1) 

LS 

MML 

0.9946    

0.9939 

0.9985     

0.9999 

0.4547    

0.4576 

0.4560    

0.4602 

0.9573    

0.9716 

1.4399     

1.4586 

-0.0064     

-0.0055 

-0.0060    

-0.0069 

 

(2) 

LS 

MML 

E 

0.0429    

0.0403 

93.9 

0.0397     

0.0370 

93.2 

0.0167    

0.0162 

97.0 

0.0167    

0.0159 

95.2 

0.0154    

0.0138 

89.6 

0.0337     

0.0309 

91.7 

0.0816     

0.0755 

92.5 

0.1926    

0.1751 

90.9 

2.0 

(1) 

LS 

MML 

1.0016    

1.0021 

1.0015     

1.0020 

0.4534    

0.4614 

0.4619    

0.4656 

0.9563    

0.9701 

1.4386     

1.4564 

0.1345     

0.1079 

0.1680    

0.1409 

 

(2) 

LS 

MML 

E 

0.0280    

0.0248 

88.6 

0.0294     

0.0264 

89.8 

0.0168    

0.0150 

89.3 

0.0162    

0.0145 

89.5 

0.0149    

0.0129 

86.6 

0.0363     

0.0316 

87.1 

0.1237     

0.1117 

90.3 

0.2667    

0.2454 

92.0 



From the table, it can be seen that the LS estimators are considerably less efficient 

than the MML estimators. Similar results were obtained for other φi , µi and n values, but are 

not reported for conciseness. In fact, the relative efficiencies of the LS estimators decrease as 

the sample size n increases. 

Similar results were obtained for the first case where xi,t are design variables in Türker 

(2002) so we do not reproduce them here. 

 

6. Hypothesis Testing 

The main interest here is to test H0 : δ1 = δ2 . We consider two cases: 1) σ1 = σ2 , and      

2) σ1 ≠ σ2 . 

Case 1) The test statistic 
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is used to test the null hypothesis H0: δ1 = δ2. 

 Here σ̂  is the pooled estimator of σ which is given by ( ) 2ˆˆˆ 2
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 For given values of φi (< 1 in absolute value), the conditional distribution (i.e. σ 

known) of δ̂ i is asymptotically normal as n tends to infinity. Since φ̂i and σ̂  converge to φi 

and σ, respectively, as n becomes large, the asymptotic distribution of t is normal N(0, 1). The 

asymptotic power function is Prob{Z ≥ zα - λ} where Z is a standard normal variate, zα is 

its 100(1 - α)% point and λ is the noncentrality parameter, 
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Case 2) The test statistic 
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is used to test the null hypothesis H0: δ1 = δ2. 

 For given value of φi (< 1 in absolute value), the conditional distribution (i.e. σi 

known) of δ̂ i is asymptotically normal as n tends to infinity. Since iφ̂  and iσ̂  converge to φi 

and σi , respectively, as n becomes large, the asymptotic distribution of t is normal N(0, 1). 

The asymptotic power function is Prob{Z ≥ zα - λ} where Z is a standard normal variate, zα 

is its 100(1 - α)% point and λ is the noncentrality parameter, 
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 To obtain the test statistics based on the LS estimators, simply replace the MML 

estimators by LS estimators in (16) and (18). Also equate βij values to 1 and the multiplier     

(b + 1) to 1 in (16)-(19). For a comparison of the power of the tests based on the MML 

estimators and LS estimators, we have done simulations. Power of the test statistics based on 

the LS and the MML estimators are calculated by using both the simulated variances and the 

asymptotic variances of the estimator of ( δ 1 - δ 2). Also the theoretical power values are 

calculated. We considered µ1 = µ2 = 0, φ1 = φ2 = 0.5 and δ1= 1 without loss of generality. For 

n = 50 type I errors with the use of the simulated variances are given in Table 2; the graphs of 

the power functions are given in Figure 1.  

 

Table 2. Type I Error Values 
 
 σ1 = 1.0 and σ2 = 1.5 σ1 = σ2 = 1.0 

b LS MML LS MML 

0.5 0.054 0.049 0.051 0.045 

1.0 0.052 0.048 0.052 0.049 

2.0 0.050 0.051 0.050 0.047 

 

From the table, it can be seen that in both cases, the test based on the MML estimators 

has type I error less than the test based on the LS estimators. Also, in all situations, the tests 

based on the MML estimators are more powerful which can be seen from the figures.  
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Fig. 1. Graph of Power Functions of Test Statistics Based on LS, MML Estimators and 
Theoretical Power Function for H0: δ1 = δ2. 
 



For large n ( ≥ 100), asymptotic variances of δ̂ i (i = 1, 2) can be used with similar 

results. Türker (2002) obtained similar results for the first case where xi,t are design variables 

so we do not reproduce them here. 

 

7. Q-Q Plots 

To locate a plausible distribution, we construct a Q-Q plot by plotting the order statistics 

y(i) (1 ≤ i ≤  n) of a random sample of size n (called sample quantiles) against the population 

quantiles t(i) defined as follows. 

Let the underlying distribution be the location-scale type, i.e., (1/σ) f((y-µ)/σ). Writing z = 

(y - µ) / σ, the distribution of z is f(z). The functional form f is not known. For an assumed f, 

we obtain t(i) from the equation 

( )
n)i 1 (                   ,  

1n
idz)z(f

i

t i

≤≤
+

=∫
∞−

. 

We plot y(i) against t(i) (1 ≤ i ≤  n). If we get a straight line (or closest to such), then f is 

a plausible distribution (model) for the data. In fact, we calibrate with several density 

functions and choose the one which gives us closest to a straight line.  

 To locate a plausible error distribution for our model 

Yt = φYt-1 + µ + δ (Xt - φXt-1) + εt , 

we construct a Q-Q plot for the observations  

wt = yt - φ~ yt-1 - δ~ (Xt - φ~ Xt-1) 

where δ~  and φ~  are the LSE. We calibrate with a few conceivable distributions and choose 

the one which gives closest to a straight line pattern. We follow it up with a statistical analysis 

based on the MMLE. 

 

8. Conclusion 

The use of LS estimators in autoregressive models when the innovations have a           

non-normal distribution, which is more prevalent in practice, results in loss of efficiency as 

compared to ML estimators. However, the ML estimators have numerous computational 

difficulties. Therefore, it is recommended to use the MML estimators which have explicit 

solutions. In this study, the MML esitmators for two regressive models where the innovations 

come from generalized logistic family are derived and showed to be efficient. It is shown that 

LS estimators have less efficiencies compared to the MML estimators. Also, the test statistic 



for testing the equivalance of the parameters (H0 : δ1 = δ2) are derived and its properties are 

studied and found that it has less type I error and more powerfull than the corresponding test 

statistic based on the LS estimators.  
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