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Abstract 

This paper examines persistence in inflation rates using CPI and WPI based inflation series of 
the Turkish economy. The inflationary process in Turkey is believed to be inertial, which 
should lead to strongly persistent inflation series. Persistence of 84 inflation series at different 
aggregation levels are examined by estimating models that allow long memory through 
fractional integration. The order of fractional differencing is estimates using several 
semiparametric and approximate maximum likelihood methods. We find that the inflation 
series at the highest aggregation level show strong persistence. However, the data at lower 
aggregation levels show no significant persistence. Thus, paper finds evidence of spurious 
long memory due to aggregation. The paper also examines possibility of spurious long 
memory due to level shifts by estimating ARFIMA models that allow stochastic permanent 
breaks. We find that all inflation series are antipersistent, if the effects of stochastic level 
shifts are taken into account.  
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1.  Introduction 

A number of countries have experienced very long periods of inflation. It is argued that inflationary 

processes in these countries are determined by their own inflationary experience and in the absence of 

new shocks the inflation reproduces itself. This implies that time series of inflation rates are highly 

persistent. Turkey is one of the very typical among these countries with a very long period of high 

inflation experience since late 1970s. Chronic inflation is the main feature of the Turkish economy. In 

the last 25 years the country has not faced a single year without two digit annual inflation rates.  

If the inflationary process is inertial, then time series of inflation rates should have strong 

persistence. Persistence refers to an important statistical property of inflation, namely the current 

value of the inflation rate is strongly influenced by its past history. The major question is the 

following: Do one-time inflationary shocks give rise to long-term persistence? Long memory models 

are very commonly used to embody highly persistent time series data. In this paper, we examine 
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persistence in inflation rates using several CPI and WPI based inflation measures of the Turkish 

economy. The inflationary process in Turkey is believed to be highly persistent. It is often argued that 

the feedback mechanism developed between inflation and wages was so strong that current supply 

shocks, such as the oil-price hikes, automatically translated into permanent increases in the rate of 

inflation. Further, because the inertia in inflation rendered inflation unresponsive to demand, 

monetary and fiscal policies were failed to curb inflation. Recently, Turkish government attempted to 

curb inflation using a controlled exchange rate policy and later turned to more orthodox policies after 

the failure of this policy. Inertial inflation was cited as the major reason for the failure of this policy. 

For instance, in the Letter of Intend submitted to IMF by the Undersecretariat of Treasury in March 

2000, it was stated that �Inflation has remained high during December-February. This outcome 

reflected ... inflation inertia ...� This makes Turkey an interesting subject matter for a study on 

inflationary persistence. 

There have been several papers analyzing the persistence in inflation rates. These papers can be 

classified into two major headings. The first group of papers test for the existence of unit roots in 

inflation rates. So, the main concern in these papers is the classification of inflation rates as stationary 

or nonstationary. Barsky (987), MacDonald and Murphy (1989), and Ball and Cecchetti (1990) found 

evidence in support of unit roots in inflation rates. On the other hand, Rose (1988) provided evidence 

against the existence of unit roots in inflation rates. Brunner and Hess (1993) claimed that the 

inflation rate was stationary before the 1980s, but it became nonstationary afterward. 

In response to these conflicting evidences about the stationarity of inflation rates, following the 

influential paper Diebold and Rudebusch (1989), the second group papers used long memory models 

to examine the strength of persistence in inflation rates. Long memory implies that shocks have a 

long-lasting effect, but the underlying process is mean reversing. Furthermore, long memory is not the 

property of only nonstationary processes; the stationary processes may as well have long memory. 

Long memory can be captured by a fractionally integrated I(d) model, where the fractional order of 

differencing d is a real number. Baillie, Chung, and Tieslau (1996) used frictionally integrated ARMA 

(ARFIMA) models with GARCH errors to test for long memory in the inflation rates of the G7 

countries and claim to have found significant evidence. Delgado and Robinson (1994) found 

significant evidence of long memory in the Spanish inflation rate. More recently, Baum, Barkoulas, 

and Caglayan (1999) found significant evidence of long memory in both CPI and WPI based inflation 

rates for industrial as well as developing countries. 

The purpose of this paper is twofold. The first is to show whether the aggregate CPI and WPI 

based inflation series have long memory. Using several parametric and semiparametric estimators, we 

show that aggregate inflation rates show moderate to high persistence and have significant long 

memory parameter estimates. The estimators used include Geweke and Porter-Hudak�s log 

periodogram regression estimator, Robinson�s Gaussian semiparametric estimator, Whittle�s 
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approximate maximum likelihood estimator, and a wavelet based estimator. ARMA models are also 

estimated for comparison. For parametric models persistence is evaluated using the implied impulse 

response functions of the estimated models. Standard errors of the impulse response functions are 

obtained via bootstrap. For nine different inflation series at the highest aggregation level, all 

estimators gave significant long memory estimates. The implied impulse responses of the estimated 

parametric long memory models indicate strong long memory for all aggregate inflation series.  

The second purpose of the paper is to investigate whether the finding of significant long memory 

in inflation series is intrinsic or due to other causes. For this purpose, the paper examines possible 

sources of long memory in inflation rates. Two causes of (spurious) long memory are regime 

switching and aggregation. Although long memory in inflation rates may be inertial, level shifts and 

aggregation can also create spurious long memory.  

Aggregation over a large number of sectors each subject to white noise shocks may lead to long 

memory in aggregate inflation rates. The key idea is that aggregation of independent weakly 

dependent series may produce a series with strong dependence. A motivation for this can be found in 

Robinson (1978) and Granger (1980). In order to examine this possibility we estimate long memory 

models for 75 disaggregated inflation rates. Estimates show that disaggregated data display very weak 

memory. The hypothesis of no long memory cannot be rejected for the majority of sector specific 

inflation rates. 

Alternatively, inflation series may show apparent long memory due to neglected occasional level 

shifts. Bos, Franses, and Ooms (1999) find evidence of spurious long memory due to neglected level 

shifts in inflation rates of the G7 countries. Bos, Franses, and Ooms (2001) argue that US CPI based 

inflation rates may have a long memory component because of occasional breaks. In order to examine 

the possibility of spurious long memory due to neglected occasional breaks the paper extends the 

STOPBREAK model of Engle and Smith (1999) to ARFIMA case and shows that when an ARFIMA 

model with occasional level shifts is estimated the long memory in aggregate inflation rates 

completely disappear. 

The organization of the rest of the paper is the following. In section 2, we briefly review the long 

memory models and examine several estimation methods. How should the persistence of long 

memory models be evaluated is also discussed in this section. Section 3 discusses possible causes of 

long memory in economic time series. Section 4 briefly explains the dataset used in the paper. In 

section 5, we present our estimation results. In section 6, we briefly discuss our findings.
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2.  The theoretical framework 

2.1.  Long memory models 

Granger (1966) first pointed out that power spectra of many economic variables suggest 

overwhelming contribution of the low frequency components. Autoregressive and moving average 

models (ARMA) cannot capture this phenomenon. In the last two decades, using integrated ARMA 

(ARIMA) models is the preferred approach to model this phenomenon. Overwhelming evidence of 

unit roots in most economic time series encouraged researchers to use ARIMA models. However, 

ARIMA models imply an extreme form of persistence since the impact of shocks on the level of time 

series does not die out even in the infinite horizon. It is usually impossible to justify this type of 

infinite persistence on theoretical grounds for many economic time series, such as inflation rates 

examined in this paper. Based on this observation, researchers looked for alternative ways of 

modeling strong persistence in economic time series data. Most recent work on persistence in 

economic time series data preferred long memory models as an alternative to ARIMA models. A good 

treatment of basic mathematical statistics related to long memory models can be found in Beran 

(1994). The econometric literature on long memory was reviewed by Robinson (1994a) and Baillie 

(1996). Here, we will only examine some salient features of long memory models relevant to our 

work. There are several different ways of defining long memory of which two most common ones 

will be given below. Let , 1,2, ,ty t T= … , be the time series of interest. For example, in the empirical 

section of this paper, ty  will represent rate of inflation. Assume that ty  is weakly stationary and let 

( )f λ  be the spectral density of ty  at frequency ( , ]λ π π∈ −  satisfying 

 cov( , ) ( )cos( )k t t ky y f k d
π

π
ρ λ λ λ+ −

= = ∫  (1) 

where , 0, 1, 2,k kρ = ± ± … , are the autocovariances of .ty  Let spectral density of ty  satisfy 

 2( ) ~ as 0df cλ λ λ− +→  (2) 

and autocovariances follow 

 2 1~ as d
k ck kρ − → ∞  (3) 

Then, ty  follows a long memory process with 0.5 0.5d− < < . 

Parametric specifications of long memory models include fractional Gaussian noise (FGN) of 

Hurst (1951) and Mandelbrot (1963), an extension of the Bloomfield exponential model as in 3.19 of 

Robinson (1994a), and ARFIMA model of Granger and Joyeux (1980) and Hosking (1981). The FGN 

model with long memory parameter d, denoted FGN(d), can be described in terms of its spectral 

density as 
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 2( 1)( ) 2 (1 cos ) 2 d

j
f cλ λ π λ

∞
− +

=−∞
= − +∑  (4) 

where ( ) ( )2 1(2 ) sin ( 1/ 2) 2( 1)c d dσ π π−= + Γ + . Here, 2 var( )tyσ =  and ( )Γ ⋅  is the gamma function. 

Neither the FGN nor the Bloomfield exponential model has shared the empirical success of the 

ARFIMA model. The ARFIMA model with integration order d, autoregressive order p, and moving 

average order q, is denoted as ARFIMA(p,d,q) and satisfy the difference equations 

 ( )(1 ) ( ) ( )d
t tL L y Lφ µ θ ε− − =  (5) 

where tε  is a white noise and 
1 1

( ) 1 , ( ) 1p qj j
j jj j

L L L Lφ φ θ θ
= =

= − = −∑ ∑  are polynomials in the lag 

operator L with degrees p, q respectively. We assume that ( )zφ  and ( )zθ  share no common roots and 

( ) 0, ( ) 0z zφ θ≠ ≠  for 1z ≤ . The order of integration d is not restricted to integer values and  for any 

real number 1d > − , we define the (1 )dL−  by means of binomial expansion (see  Granger and Joyeux 

(1980), Hosking (1981), and Brockwell and Davis (1991)), 

 (1 )d j
j

j
L b L

∞

=−∞
− = ∑  (6) 

where 

 
0

( ) 1 , 0,1,2,
( ) ( )j

k j

j d k db j
j d d k< <

Γ − − −= = =
Γ + Γ − ∏ …  (7) 

 The time series ty  is denoted I(d) in reference to the degree of integration. The fundamental 

properties of ty  can be stated in terms of d. For 0.5 0.5d− < <  ty  is covariance stationary and 

invertible. When 0,d =  the spectral density of ty  is finite and positive at 0λ =  and autocorrelations 

are summable. In this case, the ARFIMA model is reduced to a standard ARMA(p,q) model. The unit 

root case is obtained with 1d = . For 0 0.5,d< <  ty  is said to have long memory with 

.kk
ρ∞

=−∞
= ∞∑  When 0.5 0d− < < , ty  is called antipersistent or intermediate memory. This case is 

characterized by kk
ρ∞

=−∞
< ∞∑   with a shrinking spectral density at 0λ =  and it is empirically 

relevant to the extent that it describes the behavior of overdifferenced series that were mistakenly 

believed to have a unit root. When 0.5,d ≤ −  ty  is covariance stationary but not invertible. For 

.5,d ≥ ty  is nonstationary and has infinite variance.  For macroeconomic applications a particularly 

interesting interval for d is .5 1d< < , where the time series ty  has infinite variance and displays 

strong persistence as measured by (8), but mean reverts in the sense that impulse response function is 

slowly decaying. 
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2.2.  Measuring persistence in long memory models 

Although the presence of statistically significant d is commonly interpreted to mean that ty  is a 

persistent time series (see for instance Baum, Barkoulas, Caglayan (1999)), this is misleading. In this 

paper, impulse response function of an ARFIMA model will be used to measure persistence. An 

impulse response function ka  measures the effect of a unit shock at time t on t ky + . Impulse responses 

of a stationary process are the coefficients of its infinite order moving average representation. For a 

stationary ARFIMA model the impulse responses are given by the coefficients ka  of 

 1 2
1 2( ) (1 ) ( ) ( ) 1dA L L L L a L a Lφ θ− −= − = + + +"  (8) 

where the impulse response ka  satisfy 2
1 kk
a∞

=
< ∞∑ . In this representation, the value taken by 

k t k ta y ε+= ∂ ∂  certainly measures the effect of a unit shock at time t on t ky + . In order to calculate 

impulse response function of an ARFIMA model first we obtain the impulse responses corresponding 

to ARMA part of the model. These impulse responses corresponds to kψ  in 1( ) ( ) ( )L L Lψ φ θ−=  and  

obtained from 

 1
0

q

k j k j
j

ψ θ η + −
=

= −∑  

with 0 1θ = , 0lη =  for 0l ≤ , 1 1η = , and 
1

p
l j l jj

η φ η −=
=∑ for 1l > . There is a tendency in the 

literature on unit roots to classify models as stationary or nonstationary based on a∞ . 

Usually, values of ka for large k are reported and large values are interpreted to mean high 

persistence or existence of a unit root. Although ka a∞→  as k → ∞ , such an interpretation may be 

misleading for ARFIMA models. The persistence a∞  calculated from an ARFIMA model satisfies 

 
, if  1
(1) (1), if  1

0, if  1

d
a d

d
θ φ∞

∞ >
= =
 <

 (9) 

Note that 0 (1) (1)θ φ≤ < ∞ holds in view of our assumption on the impulse response coefficients .ka  

For the purpose of measuring persistence implied by an ARFIMA model, the precise classification 

given in (1) is quite meaningless and undesirable. It is obvious from (9) that the estimated persistence 

�a∞  obtained from an estimated ARFIMA model for time series ty  will necessarily tend to 0 or ∞ 

whenever 1d ≠  (Hauser, Pötscher, and Reschenhofer (1999)). Furthermore, this result is true 

regardless of the sample size. Since finding estimates of d exactly equal to 1 will rarely be the case we 

will almost always find �a∞  to be 0 or ∞. In other words, assigning persistence implied by an estimated 
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ARFIMA model based on �a∞  is an untenable position, since a∞  assumes a value of 0 or ∞ a priori 

and �a a∞ ∞→  as T → ∞ . The measure �ka may also be misleading due to the fact that ka a∞→  and 

� �ka a∞→  as k → ∞ . Therefore, estimates �ka  will be substantially distorted towards 0 or ∞. Another 

problem with persistence measure based on ka  is related to the very slow decay of ka . Consider the 

following example: For an ARFIMA(0,0.4,0) processes, straightforward calculation shows that 

100 0.0286a =  while 1000 0.0071a =  with 
10

4.
kka a #  Indeed, for an ARFIMA(0,d,0), it is 

straightforward to show that 

 ( )
( 1) ( )k

k da
k d
Γ +=

Γ + Γ
 (10) 

Then, it follows that 1 1~ ( ) d
ka d k− −Γ  as k → ∞ . For any l k> , we get 1( )d

l ka a l k −=  as k → ∞ . 

The above example follows with 0.4d =  and 10l k= . In the special case of a unit root, we obtain the 

well known result 1l ka a = . Thus, for an ARFIMA model, one gets no further information by 

calculating higher order persistence measures. The ratio l ka a  will always approach 1 in the limit. In 

such cases, a measure of persistence that is independent of the clear-cut classification in (1) is more 

appropriate. In this regard, a useful measure of persistence may be based on how fast the effects of 

shocks to ty  dissipate. In addition to ka  we use 

 sup 1 , 0 1k t k tyατ ε α α+= ∂ ∂ ≤ − < <  (11) 

as a measure of persistence. ατ  aims to capture the time required for a fraction α of the full effect of a 

unit shock to complete. For 0.5,α =  ατ  is the period beyond which t k ty ε+∂ ∂  no longer exceed 0.5. 

The measure ατ  is independent of prior choice of k. k will be automatically determined once we 

decide on the value of α. Therefore, it is more appropriate for ARIMA models as a measure of 

persistence. 

2.3.  Estimation methods for long memory models 

In this paper, we will evaluate the persistence in inflation rates using the impulse response functions 

of the estimated ARFIMA models. In order to obtain impulse responses we first need to estimate the 

parameters of the models. The most important parameter is the long memory parameter d. The 

existing methods for estimating d may be grouped under four major headings: graphical, parametric, 

nonparametric, and semiparametric. Among many estimators in these groups, we will briefly examine 

four estimators, which are used in this paper. 

Two well known parametric methods are the exact maximum likelihood estimator (Sowell 

(1992a)) and the approximate Whittle estimator (Whittle (1951), Fox and Taqqu (1986)). In this 

paper, only the Whittle estimator will be used. The Whittle estimator is obtained by maximizing an 
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approximation of the likelihood function in the frequency domain. In this method, the parameter 

vector ( )1 1, , , , , 'p qdβ φ φ θ θ= … …   is estimated by minimizing the following approximate log 

likelihood function 

 1 1

1 1

( )
log ( ) log log ( , )

( , )

m m
j

j
j jj

I
L m m g

g
λ

β λ β
λ β

− −

= =

= − −∑ ∑  (12) 

where ( )jI λ  is the periodogram defined at the Fourier frequencies 2 / , 1,2, ,j j T j mλ π= = …   

 
2

1

1
( ) ( ) j

T
it

j t
t

I T y y e λλ −

=

= −∑  (13) 

 

[ ]( 1) 2m T= − , [ ]⋅  is the integer part, and 2( , ) 2 ( , ) /g fλ β π λ β σ= . Here, ( , )jf λ β  is the spectral 

density of an ARFIMA(p,d,q) model given by 

 
22 2( )( , ) 1

2 ( )

i di
i

ef e
e

λ
λ

λ
σ θλ β
π φ

− −−
−= −  (14) 

The white noise variance 2σ  is estimated by 

 2 1

1

( )
� �( , )

m
j

j j

I
m

g
λ

σ
λ β

−

=

= ∑  (15) 

On the assumption that the order (p,q) of the ARFIMA model is known a priori, the model parameters 

β  are estimated by maximizing the likelihood function in (12). The resulting estimates �β  are known 

to be asymptotically efficient, in the sense that, under suitable regularity conditions, 
1 2 �( ) (0, )dT Nβ β− → Ω  as T → ∞ , where Ω is the covariance matrix of β  and d→  means 

convergence in distribution. Robinson (1994a) and Beran (1995) suggests a method to prove 

asymptotic efficiency and normality of the Whittle estimator. The asymptotic covariance matrix of the 

parameters (see Beran (1994, 1995)) is given by 

 1( ) (2 ) log ( , ) log ( , )
'

f f d
π

π
β π λ β λ β λ

β β
−

−

∂ ∂Ω =
∂ ∂∫  (16) 

In the empirical section of this paper, the covariance matrix of parameter estimates �β  is calculated 

from (16) with �β β= . 

One difficulty with the parametric estimators is their reliance on the correct specification of the 

orders (p,q). The simulation results in Taqqu and Teverovsky (1998) show that the parametric method 

may not be improved upon when the orders (p,q) is correctly specified, but it performs rather poorly 
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when the order is misspecified.  The semiparametric estimators of d advocated by Granger and Joyeux 

(1980) and Janacek (1982), and developed by Geweke and Porter-Hudak (1983) and Robinson 

(1194b, 1995a, 1995b) relies only on (2) and does not suffer from the problems of correct model 

specification. The modified log periodogram regression estimator (GPH) of Geweke and 

Porter-Hudak (1983) is based on the following relationship 

 log ( ) log (0) log 1 log ( ) / ( ) log ( ) / (0)ji
j u j j u j uI f d e I f f fλλ λ λ λ= − − + +  (17) 

where 2 / (0, )j j Tλ π π= ∈  and ( )uf ⋅  is the spectral density of (1 )d
t tu L y= −  given by 

2 2 2( ) ( 2 )(| ( ) | | ( ) | )i i
uf e eλ λλ σ π θ φ= . If jλ  is near zero, say j mλ λ≤ , where mλ  is small, the last term 

in (17) is small relative to others and (17) can be written as a simple linear regression 

 , 1,2, ,j j jz c dx j mε= − + = …  (18) 

where log ( )j jz I λ= , log 1 ji
jx e λ= − ,  log ( ) / ( )j j jI fε λ λ= , and (0)uc f= . d can be estimated by 

least squares regression of jz  on , 1,2, ,jx j m= … , where m is a function of T such that 0m T →  as 

.T → ∞  Geweke and Porter-Hudak (1993) argue that there exists a sequence m such that 
2(log ) 0n m →  as T → ∞   

 2

1

� ~ , 6 ( )
m

j
j

d N d x xπ
=

  
−     

∑  (19) 

Here 2 6π  is the asymptotic variance of jε . Ooms and Hasler (1997) showed that the GPH estimator 

will contain singularities when the data are deseasonalized by utilizing seasonal dummies. In order 

avoid this problem, following the suggestion by Ooms and Hassler (1997), we extend the data series 

to full calendar years via zero padding and then omit the periodogram ordinates corresponding to 

seasonal frequencies. For consistency, this method is also followed in other frequency domain 

estimators we use. 

The Gaussian semiparametric estimator (GSP) suggested by Robinson (1995a) is also based on 

the periodogram and it only specifies the parametric form of spectral density via (2). Like the GPH 

estimator the GSP estimator involves the introduction of an additional parameter m, which can be 

taken less than or equal to [ ]( 1) 2T −  and should satisfy 1 0m m T+ →  as T → ∞ . The GSP 

estimator of d is obtained by minimizing the function 

 1 1
2

1 1

( )
�( ) ( , ) 1 log 2 log

m m
j

jd
j jj

I
r d q g d m dm

λ
λ

λ
− −

−
= =

= − = −∑ ∑  (20) 

where 
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 1 2
2

1

( )
� �( , ) log

�

m
j d

jd
j j

I
q g d m g

g
λ

λ
λ

− −
−

=

 
= +  

 
∑  (21) 

with 1 2
1

� ( )m d
j jj

g m Iλ λ−
=

= ∑ .  The value �d  which minimizes ( )r d  converges in probability to the 

actual value of d as T → ∞ . Robinson (1995a) also shows that 1 2 �( ) (0,1 4)dm d d N− →  as T → ∞ . 

The asymptotic variance of �d  is then equal to1 4m . 

For the GPH and GSP estimators the choice of the bandwidth parameter m may be quite 

important. For the GPH estimator the ad hoc 1 2T  order bandwidth suggested by Geweke and 

Porter-Hudak (1993) for the stationary region of d is commonly used. Hurvich, Deo, and Brodsky 

(1998) prove that the mean squared error minimizing bandwidth m is of order  4 5T . This is the upper 

rate for its class of estimators. However, this concerns the stationary region (0,.5)d ∈  and most 

macroeconomic time series are found to be nonstationary. The larger the value of m, the faster �d  

converges to d. On the other hand, if the time series is not ideal, e.g. if it is an ARFIMA(p,d,q) with 

not both 0p =  and 0q = , then we should use small values of m, since at higher frequencies the short 

run behavior of the series will affect the form of the spectral density.  Sowell (1992b) argues that too 

large a choice of bandwidth m leads misspecification of the short run dynamics and this results in 

untrue strong mean reversion. In order to be robust against the choice of the bandwidth parameter m 

we will report the GPH and GSP estimates for m Tα= for various values of [.5,1)α ∈ . 

Another semiparametric estimator used in this study is the wavelet based maximum likelihood 

estimator of Jensen (2000). This estimator, called wavelet MLE, is invariant to unknown, means 

model specification, and contamination. In brief terms, a wavelet ( )tψ  is an oscillationg function that 

decreases rapidly to 0 as t → ±∞  and satisfies the admissibility condition ( ) 0,rt t dtψ =∫  

0,1, , 1,r M= −…  (Mallat (1989), Daubechies (1992)). The wavelet ( )tψ  has M vanishing moments. 

By defining the dilated and translated wavelet as 2
,( ) 2 (2 )m m

m nt t nψ ψ= − , where 

, {0, 1, 2, }m n Z∈ = ± ± … , we obtain a function well localized in time around n. For a time series ( )y t  

the wavelet ,( )m ntψ  covers diverse frequencies and periods of time for different values of m and n. 

The wavelet MLE is based on the wavelet transform of ( )y t  defined by  

 , ,( ) ( )m n m nw y t t dtψ= ∫  (22) 

By normalizing the time interval of ( )y t  as [0,1]t ∈ , i.e., the unit interval, the support of ,m nw  can be 

thought of as [ 2 ,( 1)2 ]m mn n− −+ . If we observe discrete realizations ty  at 0,1,2, ,2 1Jt = −… , then for 
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1m J= − , 0,1,2, ,2 1Jn = −…  is needed.  Therefore, for a given scale m the translation parameter 

need to take values only at 0,1,2, ,2 1mn = −… .  

As noted by Jensen (2000), the strength of wavelets lie in their ability to simultaneously localize a 

time series in time and scale. The recent book by Gençay, Selçuk, and Whitcher (2001) contains many 

practical wavelet examples from economics and finance. They also show that wavelets can 

successfully be used in wide variety of challenging research problems. Wavelets can zoom in on a 

time series behavior at a point in time at high frequencies (large m, 2 m n− is small). Alternatively, 

wavelets can also zoom out to reveal any long and smooth (low frequency or long run) features of a 

time series, such as trends and periodicity, at low frequencies (small m). The wavelet estimator of the 

long memory parameter d is obtained by maximizing the approximate log likelihood function 

 12 1 1 1log ( ) log 2 log '
2 2 2

J

L d W Wπ −−= − − Ω − Ω  (23) 

where 1 10,0 1,0 1,1 2,0 1,2 2 1,2 1
[ , , , , , , ]J JJ JW w w w w w w− −− − − −

= …  and [ ']E WWΩ =  is the covariance matrix of W. 

In order to estimate d by wavelet MLE we need to specify J and the functional form of the wavelet 

function ,m nψ (wavelet filter). In the empirical section, we report estimates of d for several wavelets 

and two different choice of J. Simulations in Jensen (2000) show that wavelet MLE estimator is 

superior to the approximate frequency domain Whittle MLE when ARFIMA models are 

contaminated. 

3.  Causes of long memory in economic time series 

Although long memory in natural time series data has been established in various fields, long memory 

in economic and other social time series data is at least an open question. Until now there has been a 

lack of theoretical explanations for the common existence of long memory in economic time series 

data (but see Haubrich and Lo (1989) for an account of long memory in the US business cycles). An 

immediate explanation for evidence of long memory in economic time series is the inheritance of 

climatological long memory through agricultural prices. In this way the long memory in geophysical 

time series, such as rainfall, riverflow, and climatic time series, spills over into the economic time 

series without any economic mechanism. Additionally, a real business cycle model with long memory 

shocks can explain the presence of long memory in aggregate income and output series. Although the 

inheritance of the long memory from the underlying geophysical process is not completely 

impossible, there are there more appealing explanation of long memory in economic time series. 

Nonstationarity of the underlying process may be a plausible explanation for long memory in the 

finite sample realized time series. This explanation will not be further pursued here, since inflation 

rates we examine are stationary time series.  
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One of the more appealing and one that is intrinsically rooted in the economic process is based on 

an aggregation result due to Robinson (1978) and Granger (1980). Backus and Zin (1993) argue that 

long memory in inflation rates are due to aggregation. More recently, Michelacci (1997) examines 

this possibility in the context of output fluctuations. Granger (1980) argued that if the economy is 

composed of a large number individual units each following an AR(p) process, whose coefficients are 

drawn from a beta distribution on (0,1), then the additive aggregation of these AR(p) processes will 

display long memory.  Focusing on AR(1) for simplicity, let 

 1
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t. We assume that both shocks are i.i.d. white noise and iα  is drawn from a beta distribution on (γ,ν). 

As n → ∞ , the autocovariance of ty  is  
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Therefore, ~ (1 2)ty I v− . Lippi and Zaffaroni (1999) generalize this result by replacing assumed beta 

distribution with weaker semiparametric assumptions. Chambers (1998) examines temporal 

aggregation as well as cross sectional aggregation in both discrete and continuous time. 

A second and more recent explanation is related to structural change and based on the stochastic 

permanent breaks (STOPBREAK) model of Engle and Smith (1999). The studies by Hidalgo and 

Robinson (1996), Lobato and Savin (1998), Granger and Hyung (1999), Liu (2000), and Diebold and 

Inoue (2001) suggested that occasional level shifts generates an illusion of apparent long memory in 

economic time series. Bos, Franses, and Ooms (1999) find that evidence about the spurious long 

memory due to level shifts in G7 inflation rates is weak. However, they note that long memory in 

some inflation series disappear when level shifts are taken into account. 

The STOPBREAK model of Engle and Smith (1999) is formulated as follows: 
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where ( )t tq q ε=  is a nondecreasing function in tε  and bounded by zero and one. The innovations 

tε  are i.i.d. white noises. Engle and Smith (1999) use 
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This model allows breaks (level shifts or regime switching) by allowing different innovations to have 

different degrees of persistence. The specification for tq  in (25) allows bigger innovations to have 

more permanent effect than small ones. The parameter γ  for the specification of tq  in (25) controls the 

likelihood of persistent innovations, with more persistent innovations more likely when γ  is small. 
Popular tests of long memory are substantially biased when applied to time series with occasional 

level shifts. This bias leads to incorrect conclusion that these time series have long memory. Diebold 

and Inoue (2001) replace γ in (25) with a time varying parameter ( )T O T δγ = , for some 0δ > , and 

show that the STOPBREAK process with this modification is ( )I d , where 1d δ= − . Thus, this 

process will appear fractionally integrated. When 0δ = , we see that the standard STOPBRAK 

process is I(1). 

In odder examine possibility of long memory in inflation rates due to aggregation this paper 

estimates long memory models at low aggregation levels. If the long memory in aggregate series is 

due to aggregation we should find weaker memory at lower aggregation levels. In order to guard 

against level shifts we modify the ARFIMA model to include a STOPBREAK component. This 

model simultaneously allows long memory and level shifts (shocks) that have permanent effects. 

4.  Data   

The long memory properties of inflation rates are examined at different aggregation levels using both 

WPI and CPI based inflation rates of the Turkish economy. The literature on persistence in inflation 

rates exclusively considered CPI based inflation series except Baum, Barkoulas, and Caglayan (1999). 

Unlike CPI the prices of nontraded goods do not heavily influence WPI. Therefore, WPI based 

inflation series are better suited in tests of the international arbitrage. Inflation rates are constructed 

from the price indexes by taking 100 times the first differences of the natural logarithmic 

transformation of the indexes. All seasonal inflation series show moderate to high seasonal effects. 

The analyzed series are seasonally adjusted by discarding ordinates of the periodogram corresponding 

to seasonal frequencies when frequency domain estimation methods are used. When the estimation is 

carried out in the time domain, the data are deseasonalized by regressing the series on seasonal 

dummies. However, these two methods of deseasonalization are equivalent.  

At the highest aggregation level, we examine 6 WPI based inflation and 3 CPI based inflation 

rates. First of these is an annual WPI based inflation series covering the period 1924-2001. The 1924-

1990 period of this series is obtained from the WPI (1968=100) given in Pakdemirli (1991). The 

second part (1991-2001) is obtained from the State Institute of Statistics� (SIS) All Items WPI 

(1982=100) index. The second WPI based inflation series is a monthly inflation series, which is 
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obtained by augmenting the Treasury Department�s (1964:1-1988:1, 1963=100) WPI index by the SIS 

All Items WPI (1982=100) index and covers the period 1964:2-2002:6.  The third WPI based inflation 

series is based on the Treasury Department�s (1964:2-1988:1, 1963=100) monthly WPI index. The 

fourth aggregate WPI based inflation series we use is based on the SIS All Items WPI (1982=100) 

index. This monthly inflation series covers the period 982:2-2002:6. The fifth aggregate WPI inflation 

series is obtained from the Istanbul Chambers of Trade monthly WPI index and covers the period 

1987:2-2002:6. The sixth WPI based inflation series is based on the SIS monthly WPI index 

(1994=100) and covers the period of 1994:2-2002:6. Among the three aggregate CPI based inflation 

rates, first one is an annual inflation series for 1951-2001. This series is obtained from the In IMF�s 

International Financial Statistics database. The second and third CPI based inflation series are both 

monthly, which are obtained from the SIS�s 1987=100 and 1994=100 CPI indexes, and cover the 

periods 1987:2-2002:6  and 1994:2-2002:6, respectively. 

At lower aggregation levels we consider 3 major groups of monthly inflation series. The sector 

codes together with aggregation levels are for these series are given in the Appendix. All these data 

are obtained from the SIS. Several series included in the SIS database have many missing value and 

excluded from the analysis. First group contain WPI (1987=100) based inflation series for the period 

1982:2-2002:6. There are 26 sectoral inflation series in this group. Four of these are at 1 digit 

aggregation level for agriculture, mining, manufacturing, and energy sectors. Remaining 22 series are 

at 2 digit aggregation level with 7 series in agriculture, 3 series in mining, 10 series in manufacturing, 

and 2 series in energy sectors. Total number of observations for each series in this group is 245. The 

second group of sectoral inflation series is based on the CPI (1987=100) indexes for the period 

1987:2-2002:6 (185 observations for each series) and contain 9 series. The sectors in this group are 

about 1 digit aggregation level and include 7 sectors in addition to inflation series for Ankara and 

Istanbul. The third group of sectoral inflation series are also CPI (1994=100) based for the period 

1994:2-2002:6 and contain 40 series. 10 of the series in this group are at 1 digit aggregation level and 

remaining 30 series are approximately at 3 digit aggregation level. Each series in this group has 101 

observations. 

5.  Empirical estimates 

Estimation results for the four different estimation methods are presented below. Results for the four 

groups of data sets are presented separately. Examination of the sample autocorrelation functions 

(available at the web site cited above) revealed that all monthly data examined in this paper show 

moderate to high seasonality. The available estimation methods for the long memory models 

unfortunately are not well suitable for the seasonal series. Although some progress is made in the 

literature for modeling seasonal long memory time series these methods at the moment are at their 

infancy and does not allow flexible modeling. Therefore, we decided to deseasonalize the data. For 

the frequency domain estimation methods, which are the Whittle, GPH, and GSP estimators, 
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deseasonalization is performed by first extending the data into full calendar years and then discarding 

the periodogram ordinates corresponding to seasonal frequencies. For the wavelet MLE estimator this 

is not feasible and deseasonalization is carried in the time domain by subtracting the seasonal means, 

through a regression of the series on a set of seasonal dummies. All estimation is performed using the 

LONGMEM library for GAUSS written by the author. 

For the parametric model estimates we present results for only FGN(d) and ARFIMA(p,d,q) 

models with , 1p q ≤ . Thus, five parametric models are estimated. Estimation of ARFIMA models 

with , 1p q >  are also tried, in most cases, estimation of these models either failed and when 

estimation was successful they always had lower AIC value. Therefore, we do not report results for 

these higher order ARFIMA models. For brevity only the results of FGN(d) and ARFIMA(p,d,q) that 

has the minimum the Akaike information criterion (AIC) will be presented. We however report the 

AIC values for all FGN and ARFIMA models estimated with , 1p q ≤ . The parameters of the FGN 

and ARFIMA models are estimated using the Whittle approximate maximum likelihood method. The 

ARFIMA models are also estimated by Sowell�s exact maximum likelihood estimator. For brevity 

Sowell�s exact maximum likelihood estimates are not reported here, but available at the web site cited 

above.  Standard errors for the FGN and ARFIMA models are calculated using the asymptotic 

formula in Robinson (1994a) and Beran (1995). Persistence of these parametric models is evaluated 

using their impulse response functions. Inference is based on the 95 percent confidence intervals for 

the implied impulse responses. These 95 percent confidence intervals are obtained via a parametric 

bootstrap with 5000 replicates. For comparison, we also estimated ARMA models for each inflation 

series and constructed 95 percent confidence intervals for the models that have the minimum AIC 

values. In all cases, the best ARMA model selected by the AIC showed very weak persistence. The 

results for ARMA models are not reported for space requirements. Interested reader can obtain these 

results from the web site cited above. 

In estimating the long memory parameter d with the semiparametric GPH and GSP methods, a 

choice has to be made with respect to the number of low order frequency ordinates (bandwidth). 

Inclusion of medium or high order periodogram ordinates will lead to bias in the estimates of d. On 

the other hand, inclusion of too few periodogram ordinates will increase the sampling variability of 

the estimates due to reduced sample size. In order to evaluate the robustness of the GPH and GSP 

estimates to the choice of bandwidth we report GPH and GSP estimates for several values of 

bandwidth choice m. These choices vary with sample size T and determined via [ ]m Tα=  for 

{0.50,0.55.0.60,0.70,0.75,0.80}α = . 

The wavelet MLE estimator also requires a decision on two choices. First of all, there are 

different wavelet filters to use in the wavelet transform. Second, one should also determine the depth 

of the wavelet transform, J. The choice of wavelet depth determines number of scales used in the 
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estimation. Thus, it is similar to bandwidth choice. To evaluate the sensitivity of estimates to the 

number of scales included, we use two different choices, 2logJ T=  and 4J = . In regard to the 

choice of wavelet filter, we use 6 different wavelet families, compact Haar wavelet, Daubechies 

wavelet of order 8 and 16 (D8, D16), minimum-bandwidth discrete-time wavelet of length 8 and 16 

(MB8, MB16), and Daubechies orthonormal compactly supported wavelet of length 8 (LA8).  

5.1.  Empirical results for aggregate inflation series 

The GPH and GSP estimates of the long memory parameter d for the 9 aggregate inflation series are 

given in Table 1. For most series the results are quite robust to the choice of bandwidth. There are 

only two series that show some sensitivity to the bandwidth length. Both of these series are annual 

and have d greater than 0.50, .i.e., these series are nonstationary but mean reversing. Indeed, there is 

some evidence that these series may even not be mean reverting, since estimates of d for some 

bandwidths are close to or greater than 1. Although there is no theoretical result showing temporal 

aggregation creates long memory and the result in Chambers (1998) points to this direction, the 

estimates for the annual series have stronger memory than the estimates for the monthly series. 

However, this may be a sample issue. The annual series we use spans the longest history of the 

Turkish economy. One of the series (WPI based inflation series) spans the period of 1924-2002 and 

the other series (CPI based inflation series) covers the period of 1951-2002. The longest time span the 

monthly series cover is 1964-2002. We have no way of verifying whether this is a sample issue or not 

since we do not have monthly data that goes back to 1950s or 1920s. Estimates from other methods 

show that this maybe a sample size issue but the evidence in this direction is very weak. They also 

indicate that these two annual series are indeed mean reverting and probably stationary. For the first 

four and the sixth series in Table 1 estimates are all significant at the 5 percent level, except the fourth 

series for which some GPH estimates are not significant. At 0.50α =  (a commonly used choice) two 

annual series and first four of the WPI based inflation series show significant long memory at the 5 

percent level. When 0.80α = , a choice possibly leading to biased estimates due to improper inclusion 

high frequency periodogram ordinates, all aggregate inflation series have significant long memory 

parameter estimates. 

The wavelet based MLE estimates are displayed in Table 2. The estimates are very robust to the 

choices of scale and wavelet filter. Estimates closely match the estimates given in Table 1 for the 

GPH and GSP estimators, except for two annual series. For two annual series, the GPH and wavelet 

MLE estimates are below 0.50 across the choices of wavelet filter and scale. These two annual series 

seem to be either nonstationary or near nonstationary, and the GPH and GSP estimators may 

exaggerate the long memory parameter. Since wavelets strength lie in their ability to simultaneously 

localize a time series in time and scale wavelet estimates may be more reliable for nonstationary or 

near nonstationary time series.    
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The estimates for FGN and ARFIMA models are given in Table 3. The AIC values are always at 

the minimum for ARFIMA(0,d,0) among the ARFIMA(p,d,q), , 1p q ≤ , class of models. A 

comparison of the AIC values between FGN and ARFIMA models show that the AIC is at the 

minimum for 6 series when the model is FGN. However, the FGN and ARFIMA models have 

different spectral densities, so a comparison is not completely correct across these models. Further, 

the FGN and ARFIMA(0,d,0) models are similar in terms of the behavior of the series they try to 

capture. They also give very close estimates of d for all series except two annual series. All parameter 

estimates for FGN and ARFIMA models are significant at the conventional 5 percent significance 

level. Estimates of the long memory parameter from the FGN and ARFIMA(0,d,0) models closely 

match each other for all series. These estimates are also very close to the estimates of d from the 

wavelet based MLE. When 0.65α ≥ , the FGN and ARFIMA model estimates are also close to the 

estimates by the semiparametric GPH and GSP methods. Thus, a value of α  around 0.65 seems to be 

an optimal choice for these series.  

For each series, the 95 percent confidence intervals for the impulse responses of the ARFIMA 

models that have the minimum AIC are given in Table 4. These confidence intervals are calculated 

via a parametric bootstrap with 5000 repetitions. None of the confidence intervals brackets zero even 

after 1200 periods, i.e., 100 years for monthly series and 1200 years for annual series. Long memory 

properties of these aggregate inflation series are profoundly reflected in the estimated impulse 

responses. As discussed in the second section, the impulse response function may not be a good mean 

for measuring persistence in long memory models. A more appropriate measure, the time required for 

α percent of a unit shock to dissipate, denoted ατ , is proposed in the second section. Estimates of ατ  

for each aggregate inflation series are displayed in Table 5. For the monthly series the longest time 

required for the 90 percent of the effect of shocks to disappear is 4 years. On the other hand, the 

annual WPI inflation series needs 666 years for the 90 percent of the effects of shocks to disappear, 

while the annual CPI inflation series requires even more than 1200 years. The shortest time required 

for the monthly inflation series for the 99 percent of the effect of a unit shock to disappear is about 13 

years, while the longest time required is about 88 years. 

5.2.  Empirical results for sectoral WPI based inflation series 

One of the reasons, which is examined in the third section, why evidence of long memory in the 

inflation series can be spurious is based on aggregation. The inflation series examined above are 

based on the aggregate WPI and CPI indexes. It may well happen that the specific shocks to 

inflationary process indeed do not exhibit strong persistence and the apparent long memory in the 

aggregate inflation series due to aggregation as argued by Robinson (1978) and Granger (1980). To 

examine this possibility, this subsection analyzes long memory properties of 26 sectoral WPI based 

inflation series. The next subsection will further examine 49 sectoral CPI based inflation series. 
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The GPH and GSP estimates of long memory parameter d are given in Table 6. There are several 

features of these estimates which should be noticed. First, the GPH estimates show evidence of long 

memory only for two series and the GSP estimates only for three series at the 5 percent significance 

level. Second, at the commonly used bandwidth choice 0.50α = , there is only 1 GPH estimate and 5 

GSP estimates significant at the 5 percent level. Third, five series have negative d estimates. Fourth, 

estimates are quite insensitive to the choice of bandwidth. Sixth, on average the estimates of d for 

these sectoral WPI based inflation series are lower than the d estimates of aggregate inflation series. 

The wavelet MLE estimates are displayed in Table 7. Estimates of d are quite robust across the 

choices of wavelet filters and scales. For scale 2logJ T= , 8  series are antipersistent and, for scale 

4J = , 6 series are antipersistent. On average, the wavelet MLE estimates of d are lower than the 

GPH and GSP estimates. Like the GPH and GSP estimates, estimates of d for these sectoral WPI 

based inflation series are significantly less than the estimates of d for the aggregate inflation series. 

The estimation results for the parametric FGN and ARFIMA models are given in Table 8. From 

the AIC values given in the left panel of Table 8, we see that among the family of ARFIMA(p,d,q) 

models we estimated ARFIMA(0,d,0) model has the minimum AIC value for all sectoral WPI based 

inflation series. For all series, the estimates of d for the FGN(d) ARFIMA(0,d,0) models are very 

close to each other. For the FGN model, estimates of d for 18 series are significant at 5 percent level. 

Likewise, estimates of d from the ARFIMA(0,d,0) model are significant at the five percent level for 

19 series. In general, the estimates of the long memory parameter d are higher than the GPH, GSP, 

and wavelet MLE estimates. However, almost all of these estimates are still lower than the estimates 

for aggregate inflation series. 

In order to evaluate the persistence sectoral WPI based inflation series we constructed the 95 

percent confidence intervals for the impulse responses of the ARFIMA models with the minimum 

AIC values. These confidence intervals are shown in Table 9. For these series, it should be noted that 

estimates of d from the ARFIMA models were in general higher than the estimates obtained from 

other methods, so impulse responses are evaluated at the highest estimate of the long memory 

parameter and probably overstated. The confidence intervals given in Table 19 bracket zero for 22 

series out of 26 at k=1200. At k=384, only confidence intervals for 6 series do not bracket zero. 

Compared to the confidence intervals for the impulse responses of the aggregate series, the much 

weaker persistence in the sectoral WPI based inflation series is very clearly evidenced by the 

confidence intervals given in Table 9. This claim is much strongly supported by the estimates of ατ  

given in Table 10. These estimates show that only for 2 series a period of more than 2 years is 

required for 90 percent of the effects of shocks to dissipate. For 99 percent of the effect of a shock to 

dissipate, 20 series need less than 5 years and only 6 series need more than 10 years. 
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5.3.  Empirical results for sectoral CPI based inflation series  

In this section we will discuss the estimation results for two groups of sectoral monthly CPI based 

inflation series in the dataset we consider. The first group spans a longer time interval, 1987:2-2002:6, 

but is at 1 digit aggregation level, while the second group of inflation series contains 10 series at 1 

digit aggregation level and 30 series at 2 digit aggregation level, but spans a shorter time period, 

1994:2-2002:6.  

The semiparametric GPH and GSP estimates for the first and second group of sectoral CPI based 

inflation series are given in Table 11 and Table 16, respectively. The GPH estimates of d given in the 

first panel of Table 11 show that only 1 series, A07, has significant long memory at the the 5 percent 

level across all choices of bandwidth. At the bandwidth choice of 0.50α =  only two series have 

significant long memory. The GSP estimates given in the second panel of Table 11 confirm the 

significant long memory for series A07 and indicate that 3 more series have long memory when 

0.50α = . Both estimators show that 3 series are indeed antipersistent. In summary, for the first group 

of inflation series, there is evidence of significant long memory only for one series. 

The GPH and GSP estimates of d for the second group of CPI based inflation series given in 

Table 16 show that 19 out of 40 series are antipersistent when 0.50α = . Only for two series are the 

GPH estimates for most of α choices significant at the 5 percent level. Likewise, the GSP estimates 

indicate that only 5 series have significant long memory at the 5 percent level for all choices of α. 

When 0.50α = , only two GPH estimates are significant, while for the same value of α, 11 of the GSP 

estimates are significant. For this group of inflation series, the GPH and GSP estimates are somewhat 

differ both in magnitude and number of significant estimates. This, however, most likely due to small 

sample size, since the inflation series in this group have the smallest number of observations with a 

sample size of 101.  

The wavelet MLE estimates are given in Table 12 and Table 17 for the first and second groups of 

inflation series, respectively. Estimates are quite insensitive to the choices of wavelet filter and scale 

for both groups. For the majority of wavelet filter and scale choices, 3 series in the first group and 10 

series in the second group are antipersistent. Similar to the GPH and GSP estimates the wavelet MLE 

estimates of d for the majority of sectoral CPI based inflation rates are lower than the estimates of d 

for the aggregate series.  

The estimation results for the FGN and ARFIMA models are given in Table 13 and Table 18, for 

the first and second group of sectoral CPI based inflation series, respectively. The first panels of these 

tables display the AIC values for FGN and ARFIMA models. Within the class of ARFIMA models, 

the AIC values are always at minimum for the ARFIMA(0,d,0) model. Like the estimates for other 

inflation series the estimates of d for the FGN and ARFIMA(0,d,0) models are very close to each 

other. Only half of the estimates are significant at the 5 percent significance level for both FGN and 
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ARFIMA(0,d,0) models. Magnitudes of d estimates are in most cases lower compared to the estimates 

for aggregate series. Last feature of these estimates we notice is the similarity with the estimates from 

wavelet MLE.  

As we did for the other inflation series, we will evaluate persistence of sectoral CPI based 

inflation series using the impulse responses of the ARFIMA models that has the minimum AIC values 

and time required for α percent of the effect of a unit shock to dissipate. The 95 percent bootstrap 

confidence intervals for the longer inflation series are given in Table 14. Confidence intervals bracket 

zero for all series when impulse responses are evaluated at 1200k =  (100 years).  When 384k = , the 

confidence intervals do not bracket zero only for 2 series. The weaker persistence in these sectoral 

inflation series can be followed by narrower confidence intervals at all values of k. In Table 15, we 

display estimates of ατ  for the longer CPI based inflation series. Estimates for ατ  point out that a 

period of less than 6 months is required for 90 percent of the effects of shocks to dissipate for all 

series. Moreover, only 2 series require more than 10 years an only 3 series requires more than 5 years 

for 99 percent of the effects of shocks to die out. 

In Table 19, we display the 95 percent confidence intervals for the shorter sectoral CPI based 

inflation series. When evaluated at 1200k = , the 95 percent confidence intervals of 33 out of 40 

series bracket zero. At a much shorter horizon, 384k = , the 95 percent confidence intervals do not 

bracket zero only for 9 series. Although estimates of d  for the ARFIMA(0,d,0) model indicate that 

half the series have significant long memory, it seems that this is not fully supported by the bootstrap 

estimates of impulse responses. This result suggests that there may be a small sample issue that biases 

the estimates of d upward. Bootstrap is a method that reduces bias due to small sample and this is 

probably why we do not observe strong persistence in the bootstrap impulse responses. 

The estimates of ατ  for the shorter sectoral CPI based inflation series are given in Table 20. We 

observe that only 1 series require more than 3 years for 90 percent of the effect of shocks to fade 

away, while only 7 series require more than 1 year. Indeed, for 28 series, time required for 90 percent 

of the effects of shocks to dissipate is less than 6 months. The last column of Table 20 reveals that the 

estimates of ατ  are greater than 10 years for 99 percent of the effects of  shocks to dissipate for 16 

series, while they are less than 5 years for 21 series.  

It should be noted that small sample bias will also be reflected in the estimates of ατ . A better 

approach would be to consider bootstrap estimates of ατ . Even though these estimates may be upward 

biased, we see that the disaggregate CPI based inflation series do not display persistence as strong as 

the aggregate inflation series. 
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5.4.  Long memory and regime shifts 

In this subsection, we examine the possibility of spurious long memory due to neglected structural 

breaks. The studies by Hidalgo and Robinson (1996), Lobato and Savin (1998), Granger and Hyung 

(1999), Liu (2000), and Diebold and Inoue (2001) showed that apparent long memory may also be 

caused by neglected stochastic level shifts. The stochastic permanent level shifts mimic the effect of a 

persistent shock. Therefore, the long memory models fitted to the data that has occasional level shifts 

may incorrectly find evidence of long memory.  

Several studies examined this possibility using models that allow level shifts. Bos, Franses, and 

Ooms (1999) attempt to capture the effect of level shifts by inclusion of dummy variables. This 

approach is subject known critics of pretesting, since the locations of the level shifts are 

predetermined. A more flexible model is the STOPBREAK model examined above (see Smith (2000) 

for further details), which models the level shifts as a component with stochastic permanent shifts. 

Hence, a model that can capture both long memory and occasional level shifts seems to be highly 

desirable. A version of such model is studied in Hyung and Franses (2002). We consider the 

following extension of an ARFIMA model 
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where tε  is a white noise and 
1 1

( ) 1 , ( ) 1p qj j
j jj j
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= =

= − = −∑ ∑  are polynomials in the lag 

operator L with degrees p, q respectively. We assume that ( )zφ  and ( )zθ  share no common roots and 

( ) 0, ( ) 0z zφ θ≠ ≠  for 1z ≤ . The operator (1 )dL−  is defined in (6) and (7). We will call this model 

the ARFIMA-BREAK model. This model can be written as 

 1 1( )(1 ) ( ) ( )d
t t t tL L y q Lφ ε θ ε− −− ∆ − =  (27) 

where 1 L∆ = − . The model examined in Hyung and Franses (2002) is a variant of this model and 

given by 

 1 1( )(1 )d
t t t tL L yφ ε θ ε− −− ∆ = −  

where 1 11t tqθ − −= − . 

In this susection, we will fit the ARFIMA-BREAK model given in (26) to aggregate inflation 

series. Parameters of this model can be estimated using the approximate likelihood method (AML) of 
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Beran (1995). Under the regularity conditions given in Engle and Smith (1999) the AML estimator is 

consistent and asymptotically normal. 

We already established that disaggregated inflation series do not show significant persistence. 

Therefore, we will examine the possible spurious long memory due to level shifts only for the 

aggregate inflation series. In order to estimate the parameters of the ARFIMA-BREAK model one 

needs to determine the orders p, q, and s. We tried to estimate models with { }, 0,1p q ∈  and { }1,2s ∈ . 

For 1q = , estimation often either failed or did not converge. Therefore, we estimated all models with 

0.q =   

Estimation results for the ARFIMA-BREAK model are given in Table 21. Several features of 

these estimates should be noted. First, the estimates of γ for 6 series are significant at the 5 percent 

significance level. Second, five inflation series have estimate of γ below 1 and all series have no γ 

estimate above 6. Hence, all inflation series have high likelihood of occasional level shifts. Third, 

estimates of d are all less than zero and significant at the 5 percent level except the last one. That is, 

all series become antipersistent once the effects of level shifts are taken into account. All persistence 

in these inflation series are then due to level shifts. Therefore, the evidence of long memory in the 

aggregate inflation series we found in the previous section is spurious.   

6. Discussion 

Inflation has been a major problem of many economies. In order to keep inflation in check the 

policymakers need to have good knowledge about the dynamic properties of the inflation. Despite 

extensive research on the dynamic properties of inflation rates, there is still no agreement about the 

key question of persistence in inflation. Since the early eighties the inertial inflation approach has 

become very influential. The inertial inflation implies highly persistent inflation rates. Turkey is one 

of the countries believed to have a highly inertial inflationary process. Thus, an examination of the 

long lasting inflation in Turkey should provide a valuable contribution to the literature on the 

dynamics of inflation.  

The purpose of this paper has been to evaluate the persistent inflation hypothesis using an 

extensive dataset on the CPI and WPI based inflation rates of the Turkish economy. The paper used 

several parametric and semiparametric estimators of long memory models. All estimators gave similar 

results. Thus, the findings of the paper are quite robust. The persistence in inflation series are 

evaluated using the impulse responses of the estimated models. We found significant evidence of 

strong persistence for the inflation series at the highest aggregation level. 

The paper also examined the causes of long memory in inflation series. We considered two 

reasonable explanations. The first one is due to Robinson (1978) and Granger (1980), which states 

that aggregation over a large number of sectors each subject to white noise shocks may lead to long 
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memory in aggregate inflation rates. The key idea is that aggregation of independent weakly 

dependent series may produce a series with strong dependence. In order to examine this possibility we 

estimated long memory models for 75 disaggregated CPI and WPI based inflation rates. Estimates 

show that disaggregated data display very weak memory. The hypothesis of no long memory cannot 

be rejected for the majority of sector specific CPI and WPI based inflation rates.  

Neglected level shifts can also cause long memory. In order to examine the possibility of spurious 

long memory in inflation rates due to level shifts we extended the ARFIMA model by incorporating a 

component with occasional stochastic level shifts. With this extension the effect of level shifts are 

removed, and the long memory is captured by the ARFIMA component. This model is estimated for 9 

inflation series at the highest aggregation level. The standard ARFIMA model estimates indicated 

significant long memory for these series. After taking into account the effect of occasional level shifts, 

we showed that all these series have indeed intermediate memory (antipersistent).   
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Appendix: Sector Codes for Inflation Series

Code Description Aggregation

Monthly Wholesale Prices Index (1987=100)
E01 Agriculture Sector Price Index 1
E02 Mining Sector Price Index 1
E03 Manufacturing Sector Price Index 1
E04 Energy Sector Price Index 1
E05 Cereals 2
E06 Pulses 2
E07 Other Field Products 2
E08 Vegetables and Fruits 2
E09 Live Animals 2
E10 Animal Products 2
E11 Fishery Products 2
E12 Coal Mining 2
E13 Crude Petroleum 2
E14 Metallic Mining 2
E15 Non-Metallic Mining 2
E16 Food, Beverages, Tobacco 2
E17 Textiles 2
E18 Wood Products 2
E19 Paper Products and Printing 2
E20 Chemicals, Petroleum Products 2
E21 Non-Metallic Minerals 2
E22 Metals 2
E23 Metals and Machinery 2
E24 Other Industries 2
E25 Water (Energy Sector) 2
E26 Electricity (Energy Sector) 2

Monthly Consumer Price Index (1987=100)
A01 Food-Stuffs 1
A02 Clothing 1
A03 House Appliances and Furniture 1
A04 Medical Health and Personal Care 1
A05 Transportation and Communication 1
A06 Culture, Training and Entertainment 1
A07 Housing 1
A08 Consumer Prices Index of Ankara 1
A09 Consumer Prices Index of Istanbul 1

Monthly Consumer Price Index (1994=100)
T01 Food, Beverages and Tobacco 1
T02 Clothing and Shoes 1
T03 Housing 1
T04 Houseware 1
T05 Health 1
T06 Transportation 1
T07 Entertainment and culture 1
T08 Education 1
T09 Restaurant, Cafe and Hotels 1
T10 Miscelaneous 1
T11 Food 3
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T12 Beverages 3
T13 Clothing 3
T14 Shoes 3
T15 House rent 3
T16 Housing maintenance 3
T17 Other housing expenditures 3
T18 Elektricity, gas and other fuels 3
T19 Furniture and floor 3
T20 Fabric furnishings 3
T21 Electric and non-eletric houseware 3
T22 Kitchenware 3
T23 Tools 3
T24 Housekeeping and services 3
T25 Medicine and medical goods 3
T26 Medical services 3
T27 Hospital services 3
T28 Private transportation vehicles 3
T29 Maintenance 3
T30 Transportation services 3
T31 Goods 3
T32 Services 3
T33 Newspapers, books and stationery 3
T34 Services 3
T35 Goods 3
T36 Dining 3
T37 Hotel services 3
T38 Personal care 3
T39 Jewelary 3
T40 Other services 3
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GPH Estimates

Inflation Series α =0.50 α =0.55 α =0.60 α =0.65 α =0.70 α =0.75 α =0.80

WPI (1923-2001) d 1.151 0.936 0.636 0.663 0.656 0.701 0.673
s.e. 0.347 0.295 0.246 0.215 0.182 0.162 0.147

WPI (1964:2-2002:6) d 0.373 0.568 0.558 0.420 0.384 0.342 0.308
s.e. 0.176 0.143 0.120 0.100 0.084 0.071 0.061

WPI (1964:2-1988:1) d 0.477 0.633 0.507 0.306 0.282 0.274 0.205
s.e. 0.210 0.171 0.146 0.121 0.103 0.088 0.076

WPI (1982:2-2002:6) d 0.320 0.419 0.283 0.215 0.202 0.282 0.346
s.e. 0.220 0.182 0.150 0.129 0.109 0.094 0.082

WPI (1987:2-2002:6) d 0.505 0.529 0.307 0.206 0.277 0.353 0.446
s.e. 0.243 0.202 0.171 0.145 0.124 0.107 0.094

WPI (1994:2-2002:6) d -0.059 -0.107 0.098 0.263 0.308 0.369 0.410
s.e. 0.294 0.258 0.222 0.185 0.162 0.144 0.127

CPI (1951-2001) d 0.965 1.107 0.928 0.885 0.895 0.845 0.835
s.e. 0.388 0.351 0.299 0.265 0.231 0.203 0.185

CPI (1987:2-2002:6) d 0.243 0.313 0.193 0.178 0.141 0.319 0.376
s.e. 0.243 0.202 0.171 0.145 0.124 0.107 0.094

CPI (1994:2-2002:6) d 0.107 -0.002 0.088 0.242 0.335 0.396 0.421
s.e. 0.294 0.258 0.222 0.185 0.162 0.144 0.127

GSP Estimates

WPI (1923-2001) d 0.984 0.754 0.572 0.601 0.647 0.681 0.616
s.e. 0.177 0.158 0.139 0.125 0.109 0.098 0.088

WPI (1964:2-2002:6) d 0.476 0.534 0.565 0.409 0.355 0.345 0.333
s.e. 0.109 0.093 0.080 0.069 0.059 0.050 0.043

WPI (1964:2-1988:1) d 0.580 0.689 0.487 0.366 0.363 0.328 0.272
s.e. 0.125 0.107 0.094 0.081 0.071 0.061 0.053

WPI (1982:2-2002:6) d 0.277 0.323 0.247 0.178 0.192 0.250 0.328
s.e. 0.129 0.112 0.096 0.085 0.073 0.064 0.056

WPI (1987:2-2002:6) d 0.219 0.365 0.168 0.163 0.217 0.287 0.400
s.e. 0.139 0.121 0.107 0.093 0.081 0.071 0.062

WPI (1994:2-2002:6) d -0.031 -0.060 0.025 0.188 0.317 0.403 0.451
s.e. 0.158 0.144 0.129 0.112 0.100 0.090 0.079

CPI (1951-2001) d 0.962 1.050 0.830 0.760 0.770 0.751 0.734
s.e. 0.189 0.177 0.158 0.144 0.129 0.115 0.104

CPI (1987:2-2002:6) d 0.269 0.332 0.178 0.176 0.152 0.242 0.336
s.e. 0.139 0.121 0.107 0.093 0.081 0.071 0.062

CPI (1994:2-2002:6) d 0.137 0.036 0.075 0.204 0.306 0.405 0.398
s.e. 0.158 0.144 0.129 0.112 0.100 0.090 0.079

Table 1: GPH and GSP Estimates of d  for Aggregate Inflation Series

Notes: GSP and GPH estimates are the Geweke and Porter-Hudak (1983) log periodogram and Robison (1995a) gaussian 
semiparametric estimates, respectively. s.e. is the standard error of the estimate above it. α  determines the number of periodogram 
ordinates (sample size), m , used in the estimation by m =[T α ]. For the GSP estimates the known theoretical variance π 2/6 of 
innovations is imposed in the calculation of the s.e. of d . Similarly, the known innovation variance of 1/4m  is imposed in the 
calculation of the s.e. of the GSP estimates. Data are seasonally adjusted by discarding the periodogram ordinates corresponding to 
seasonal frequencies.
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Inflation Series Haar D8 D16 MB8 MB16 LA8

WPI (1923-2001) 0.459 0.460 0.429 0.448 0.451 0.480
WPI (1964:2-2002:6) 0.289 0.251 0.230 0.316 0.313 0.327
WPI (1964:2-1988:1) 0.277 0.275 0.246 0.205 0.283 0.299
WPI (1982:2-2002:6) 0.298 0.269 0.264 0.305 0.320 0.382
WPI (1987:2-2002:6) 0.311 0.313 0.317 0.380 0.389 0.393
WPI (1994:2-2002:6) 0.360 0.346 0.356 0.396 0.414 0.450
CPI (1951-2001) 0.484 0.456 0.485 0.476 0.487 0.483
CPI (1987:2-2002:6) 0.336 0.242 0.282 0.329 0.334 0.355
CPI (1994:2-2002:6) 0.373 0.299 0.330 0.377 0.390 0.438

Haar D8 D16 MB8 MB16 LA8

WPI (1923-2001) 0.433 0.413 0.423 0.418 0.423 0.431
WPI (1964:2-2002:6) 0.328 0.340 0.340 0.338 0.346 0.359
WPI (1964:2-1988:1) 0.289 0.294 0.307 0.287 0.297 0.307
WPI (1982:2-2002:6) 0.286 0.284 0.286 0.312 0.318 0.338
WPI (1987:2-2002:6) 0.283 0.297 0.282 0.318 0.330 0.344
WPI (1994:2-2002:6) 0.305 0.305 0.302 0.333 0.344 0.376
CPI (1951-2001) 0.444 0.449 0.453 0.452 0.455 0.446
CPI (1987:2-2002:6) 0.293 0.263 0.264 0.284 0.293 0.319
CPI (1994:2-2002:6) 0.326 0.298 0.301 0.334 0.341 0.373

Table 2: Wavelet Based Estimates of d  for Aggregate Inflation Series

J =log2 T

J =4

Notes: The wavelet MLE estimates are obtained from the discrete wavelet transform with depth J  of the inflation 
series. Six different wavelet filters, compact Haar wavelet, Daubechies wavelet of order 8 and 16 (D8, D16), 
minimum-bandwidth discrete-time wavelet of length 8 and 16 (MB8, MB16), and Daubechies orthonormal 
compactly supported wavelet of length 8 (LA8), are used. Data are seasonally adjusted prior to estimation using a 
set of seasonal dummies. 
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AIC for FGN and ARFIMA Models

Inflation Series FGN(d ) ARFIMA(0,d ,0) ARFIMA(1,d ,0) ARFIMA(0,d ,1) ARFIMA(1,d ,1)

WPI (1923-2001) 3.023 2.971 4.971 4.939 6.939
WPI (1964:2-2002:6) 3.324 3.331 5.329 5.328 7.326
WPI (1964:2-1988:1) 3.537 3.525 5.524 5.518 7.518
WPI (1982:2-2002:6) 3.581 3.614 5.578 5.589 7.566
WPI (1987:2-2002:6) 3.558 3.598 5.556 5.542 7.529
WPI (1994:2-2002:6) 3.580 3.634 5.577 5.488 7.484
CPI (1951-2001) 2.741 2.706 4.703 4.681 6.674
CPI (1987:2-2002:6) 3.638 3.676 5.631 5.639 7.612
CPI (1994:2-2002:6) 3.586 3.635 5.585 5.520 7.520

Estimates for FGN and Best ARFIMA Models Selected by AIC

FGN(d ) ARFIMA(0,d ,0)
d s.e. d s.e.

WPI (1923-2001) 0.433 0.077 0.600 0.089
WPI (1964:2-2002:6) 0.308 0.031 0.358 0.037
WPI (1964:2-1988:1) 0.260 0.039 0.304 0.046
WPI (1982:2-2002:6) 0.307 0.043 0.355 0.050
WPI (1987:2-2002:6) 0.335 0.049 0.392 0.058
WPI (1994:2-2002:6) 0.366 0.067 0.439 0.078
CPI (1951-2001) 0.472 0.095 0.702 0.110
CPI (1987:2-2002:6) 0.297 0.049 0.337 0.058
CPI (1994:2-2002:6) 0.350 0.067 0.413 0.078

Table 3:  Parameter Estimates and Model Selection Criteria of FGN and ARFIMA Models for 
Aggregate Inflation Series

Notes: First panel of the Table reports the Akaike Information Criterion (-2 ln L  + 2k ) for each model, where L  is the 
likelihood and k  is the number of parameters. Both the FGN and ARFIMA models are estimated using the Whittle frequency 
domain approximate maximum likelihood method. The second panel shows the estimates for the FGN and ARFIMA models 
that have the minimum AIC. Standard errors (s.e.) are calculated using the asymptotic formula in Robinson (1994a) and 
Beran (1995). For an ARFIMA(0,d ,0) process the asymptotic variance is independent of d  and difference in s.e. estimates in 
the bottom right panel of the Table is only due to sample size differences. Data are seasonally adjusted by discarding the 
periodogram ordinates corresponding to seasonal frequencies.
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Inflation Series Pct. k =1 k =3 k =6 k =12 k =24 k =48 k =96 k =192 k =384 k =504 k =744 k =984 k =1200

WPI (1923-2001) 2.5 0.336 0.175 0.112 0.072 0.045 0.029 0.018 0.011 0.007 0.006 0.005 0.004 0.003
97.5 0.781 0.645 0.562 0.486 0.419 0.361 0.310 0.267 0.229 0.216 0.198 0.187 0.179

WPI (1964:2-2002:6) 2.5 0.270 0.130 0.080 0.048 0.029 0.018 0.011 0.006 0.004 0.003 0.002 0.002 0.002
97.5 0.426 0.246 0.168 0.114 0.077 0.052 0.035 0.023 0.016 0.014 0.011 0.009 0.008

WPI (1964:2-1988:1) 2.5 0.187 0.081 0.047 0.027 0.015 0.009 0.005 0.003 0.002 0.001 0.001 0.001 0.001
97.5 0.386 0.213 0.142 0.094 0.061 0.040 0.026 0.017 0.011 0.010 0.007 0.006 0.006

WPI (1982:2-2002:6) 2.5 0.224 0.102 0.060 0.035 0.021 0.012 0.007 0.004 0.002 0.002 0.001 0.001 0.001
97.5 0.444 0.261 0.181 0.124 0.085 0.058 0.039 0.027 0.018 0.016 0.013 0.011 0.010

WPI (1987:2-2002:6) 2.5 0.233 0.107 0.064 0.038 0.022 0.013 0.008 0.005 0.003 0.002 0.002 0.001 0.001
97.5 0.494 0.307 0.220 0.157 0.111 0.078 0.055 0.039 0.027 0.024 0.020 0.017 0.015

WPI (1994:2-2002:6) 2.5 0.198 0.087 0.051 0.029 0.017 0.010 0.006 0.003 0.002 0.001 0.001 0.001 0.001
97.5 0.573 0.387 0.294 0.221 0.165 0.123 0.092 0.068 0.051 0.045 0.038 0.034 0.031

CPI (1951-2001) 2.5 0.321 0.164 0.105 0.066 0.041 0.026 0.016 0.010 0.006 0.005 0.004 0.003 0.003
97.5 0.909 0.842 0.795 0.749 0.705 0.662 0.622 0.584 0.549 0.535 0.517 0.504 0.495

CPI (1987:2-2002:6) 2.5 0.177 0.076 0.043 0.025 0.014 0.008 0.004 0.003 0.001 0.001 0.001 0.001 0.001
97.5 0.433 0.251 0.173 0.118 0.080 0.054 0.037 0.025 0.017 0.014 0.011 0.010 0.009

CPI (1994:2-2002:6) 2.5 0.175 0.074 0.043 0.024 0.014 0.008 0.004 0.002 0.001 0.001 0.001 0.001 0.001
97.5 0.549 0.361 0.269 0.199 0.146 0.107 0.079 0.057 0.042 0.037 0.031 0.028 0.025

Table 4: Bootstrap Confidence Intervals of the Impulse Response Functions of the Best ARFIMA Models for 
Aggregate Inflation Series

Notes: For each series, we report the 95 percent (1-2α , α =0.025) confidence intervals of the impulse response function, a k , of  the ARFIMA model 
that has the minimum AIC. k  is measured in the frequency of corresponding inflation series, i.e., months for monthly series and years for annual 
series. The confidence intervals are calculated using 5000 bootstrap replicates from the ARFIMA models that have the minimum AICs.
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Inflation Series α =0.30 α =0.50 α =0.80 α =0.90 α =0.95 α =0.99

WPI (1923-2001) 1 2 21 118 666 >1200
WPI (1964:2-2002:6) 1 1 3 9 26 315
WPI (1964:2-1988:1) 1 1 2 6 16 159
WPI (1982:2-2002:6) 1 1 3 9 25 305
WPI (1987:2-2002:6) 1 1 4 12 36 508
WPI (1994:2-2002:6) 1 1 5 18 60 1054
CPI (1951-2001) 2 4 93 947 >1200 >1200
CPI (1987:2-2002:6) 1 1 3 8 21 240
CPI (1994:2-2002:6) 1 1 5 14 45 695

Table 5: Estimates of τ α  for Aggregate Inflation Series

Notes: For each series, we report the time required for α  percent of the effect of a unit shock to 
dissipate, τ α . τ α  is calculated from the impulse response function of the ARFIMA model that has the 
minimum AIC. Time is measured in the frequency of the corresponding series, i.e., months for monthly 
series and years for annual series.
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GPH Estimates GSP Estimates

Code α =0.50 α =0.55 α =0.60 α =0.65 α =0.70 α =0.75 α =0.80 α =0.50 α =0.55 α =0.60 α =0.65 α =0.70 α =0.75 α =0.80

E01 0.371 0.361 0.116 0.233 0.092 0.224 0.161 0.328 0.297 0.107 0.105 0.063 0.104 0.107
E02 -0.121 -0.035 -0.051 0.024 0.037 0.140 0.193 0.161 0.168 0.113 0.114 0.130 0.167 0.219
E03 0.249 0.401 0.230 0.136 0.131 0.206 0.273 0.172 0.238 0.199 0.129 0.170 0.233 0.312
E04 0.162 0.270 0.338 0.239 0.205 0.112 0.094 0.120 0.250 0.263 0.158 0.041 -0.005 0.011
E05 0.286 0.347 0.182 0.254 0.153 0.144 0.241 0.218 0.235 0.182 0.208 0.151 0.146 0.221
E06 0.275 0.341 0.279 0.259 0.110 0.224 0.172 0.385 0.434 0.290 0.260 0.156 0.197 0.193
E07 0.154 0.274 0.115 0.144 0.224 0.219 0.210 0.157 0.244 0.086 0.087 0.145 0.129 0.144
E08 0.036 -0.129 -0.362 -0.190 -0.265 -0.167 -0.149 -0.022 -0.099 -0.220 -0.189 -0.197 -0.124 -0.077
E09 0.061 0.070 0.131 0.079 0.038 -0.045 -0.024 0.165 0.149 0.136 0.097 0.041 -0.067 -0.056
E10 0.105 0.166 0.083 -0.060 -0.048 0.019 0.029 0.084 0.087 0.103 -0.027 -0.029 0.020 0.053
E11 -0.094 -0.349 -0.399 -0.424 -0.275 -0.241 -0.185 -0.190 -0.337 -0.376 -0.399 -0.342 -0.244 -0.140
E12 0.472 0.266 0.133 0.111 0.115 0.115 0.109 0.296 0.233 0.146 0.121 0.114 0.123 0.122
E13 0.021 0.237 -0.064 0.026 0.081 0.103 0.132 -0.069 -0.008 -0.139 -0.055 0.066 0.116 0.129
E14 -0.170 -0.102 0.083 -0.035 -0.061 -0.011 -0.034 0.060 0.105 0.161 0.029 0.001 0.004 0.001
E15 0.097 0.298 0.127 0.081 0.058 0.073 0.159 0.049 0.174 0.147 0.108 0.120 0.143 0.209
E16 0.015 0.077 0.074 0.013 0.057 0.165 0.158 0.173 0.203 0.192 0.088 0.098 0.156 0.172
E17 0.224 0.360 0.335 0.264 0.245 0.312 0.403 0.190 0.297 0.275 0.246 0.233 0.309 0.414
E18 0.421 0.207 0.154 0.150 0.090 0.152 0.147 0.258 0.129 0.140 0.130 0.101 0.102 0.115
E19 0.362 0.119 0.273 0.211 0.103 0.059 0.067 0.250 0.137 0.111 0.096 0.108 0.112 0.098
E20 -0.045 0.028 -0.035 -0.032 0.070 0.127 0.165 0.058 0.125 0.056 0.060 0.144 0.173 0.215
E21 -0.212 -0.138 -0.132 -0.193 -0.083 0.029 0.136 -0.017 -0.004 0.020 -0.053 0.001 0.076 0.179
E22 0.238 0.245 0.179 0.130 0.180 0.314 0.330 0.174 0.222 0.169 0.092 0.154 0.221 0.256
E23 0.396 0.492 0.392 0.310 0.285 0.317 0.464 0.298 0.421 0.321 0.260 0.254 0.291 0.384
E24 0.125 -0.012 -0.015 -0.013 0.055 0.135 0.210 0.220 0.057 0.049 0.054 0.070 0.136 0.165
E25 0.387 0.097 -0.005 0.147 -0.023 0.017 -0.013 0.216 -0.057 -0.066 0.016 -0.079 -0.088 -0.078
E26 0.357 0.466 0.304 0.151 0.060 -0.029 -0.127 0.155 0.382 0.229 0.101 -0.023 -0.085 -0.113

s.e 0.220 0.182 0.150 0.129 0.109 0.094 0.082 0.129 0.112 0.096 0.085 0.073 0.064 0.056
Notes: See notes to Table 1.

Table 6: GPH and GSP Estimates for Sectoral WPI Based Inflation Series
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Code Haar D8 D16 MB8 MB16 LA8 Haar D8 D16 MB8 MB16 LA8

E01 0.089 0.137 0.257 0.088 0.139 0.098 0.162 0.160 0.203 0.190 0.188 0.171
E02 0.249 0.285 0.248 0.269 0.246 0.250 0.234 0.244 0.226 0.259 0.241 0.247
E03 0.272 0.308 0.276 0.320 0.324 0.395 0.270 0.266 0.268 0.291 0.301 0.328
E04 -0.048 -0.013 -0.014 -0.063 -0.035 -0.021 -0.011 -0.009 -0.023 -0.009 -0.014 0.003
E05 0.172 0.250 0.265 0.191 0.208 0.158 0.197 0.238 0.227 0.230 0.227 0.205
E06 0.126 0.148 0.204 0.057 0.157 0.143 0.156 0.165 0.168 0.162 0.173 0.191
E07 0.111 0.128 0.173 0.099 0.131 0.140 0.145 0.148 0.159 0.151 0.156 0.160
E08 -0.131 -0.029 0.100 -0.047 -0.001 -0.045 -0.021 -0.016 0.057 0.009 0.021 -0.014
E09 -0.094 -0.075 -0.036 -0.122 -0.120 -0.115 -0.063 -0.020 -0.032 -0.024 -0.047 -0.075
E10 -0.003 -0.046 0.014 -0.101 -0.025 -0.122 0.021 0.016 0.027 0.019 0.028 0.039
E11 -0.049 -0.065 -0.019 -0.012 -0.024 -0.059 -0.037 -0.060 -0.047 0.002 -0.020 -0.037
E12 0.097 0.095 0.123 0.056 0.076 0.080 0.141 0.124 0.124 0.145 0.132 0.124
E13 0.131 0.197 0.161 0.130 0.144 0.143 0.126 0.165 0.140 0.140 0.146 0.160
E14 -0.026 0.071 0.016 0.027 0.009 -0.019 0.008 0.069 0.046 0.067 0.043 0.025
E15 0.189 0.166 0.172 0.195 0.212 0.232 0.198 0.168 0.195 0.197 0.204 0.218
E16 0.160 0.168 0.203 0.148 0.162 0.263 0.190 0.174 0.191 0.192 0.204 0.252
E17 0.369 0.372 0.367 0.405 0.406 0.401 0.333 0.314 0.323 0.349 0.346 0.348
E18 0.132 0.111 0.119 0.112 0.133 0.181 0.164 0.150 0.141 0.161 0.147 0.185
E19 0.093 0.043 0.080 0.060 0.079 0.077 0.135 0.097 0.097 0.112 0.113 0.093
E20 0.157 0.227 0.192 0.207 0.193 0.253 0.167 0.191 0.185 0.206 0.210 0.239
E21 0.106 0.109 0.105 0.167 0.144 0.145 0.126 0.106 0.119 0.159 0.155 0.139
E22 0.170 0.282 0.212 0.275 0.288 0.260 0.193 0.252 0.242 0.248 0.257 0.234
E23 0.405 0.370 0.364 0.405 0.410 0.430 0.352 0.319 0.327 0.355 0.350 0.365
E24 0.125 0.086 0.109 0.058 0.095 0.118 0.143 0.117 0.104 0.128 0.125 0.144
E25 -0.050 -0.074 -0.151 -0.101 -0.119 -0.083 -0.059 -0.092 -0.093 -0.073 -0.105 -0.110
E26 -0.254 -0.181 -0.167 -0.225 -0.219 -0.212 -0.202 -0.146 -0.206 -0.187 -0.193 -0.162
Notes: See notes to Table 2.

J =log2 T J =4

Table 7: Wavelet Based Estimates of d  for Sectoral WPI Based Inflation Series
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AIC for FGN and ARFIMA Models Estimates for FGN and Best ARFIMA Models Selected by AIC
FGN(d ) ARFIMA(0,d ,0)

Code FGN(d ) ARFIMA(0,d ,0) ARFIMA(1,d ,0) ARFIMA(0,d ,1) ARFIMA(1,d ,1) d    s.e.  d    s.e.  

E01 3.837 3.872 5.762 5.853 7.762 0.210 0.042 0.209 0.050
E02 3.744 3.782 5.701 5.711 7.701 0.260 0.042 0.285 0.050
E03 3.647 3.679 5.643 5.646 7.626 0.291 0.043 0.338 0.050
E04 4.015 3.999 5.993 5.995 6.000 -0.009 0.040 -0.017 0.050
E05 3.763 3.786 5.752 5.764 6.000 0.231 0.042 0.257 0.050
E06 3.899 3.897 5.897 5.897 7.869 0.148 0.042 0.172 0.050
E07 3.903 3.910 5.895 5.893 7.892 0.155 0.042 0.173 0.050
E08 3.993 3.997 5.845 5.860 7.835 0.088 0.041 0.038 0.050
E09 4.012 3.994 5.994 5.994 7.986 -0.026 0.039 -0.043 0.050
E10 4.013 4.000 6.000 6.000 7.981 0.018 0.040 0.009 0.050
E11 4.006 4.000 5.836 5.818 7.796 0.057 0.041 -0.011 0.050
E12 3.932 3.932 5.926 5.919 6.000 0.125 0.041 0.136 0.050
E13 3.924 3.937 5.885 5.877 7.861 0.154 0.042 0.163 0.050
E14 3.999 3.993 5.966 5.972 7.965 0.061 0.041 0.049 0.050
E15 3.868 3.878 5.865 5.860 7.855 0.177 0.042 0.202 0.050
E16 3.847 3.864 5.833 5.846 7.831 0.189 0.042 0.207 0.050
E17 3.464 3.495 5.469 5.459 7.449 0.353 0.043 0.421 0.050
E18 3.887 3.903 5.849 5.865 6.000 0.168 0.042 0.174 0.050
E19 3.959 3.956 5.951 5.952 6.000 0.105 0.041 0.113 0.050
E20 3.854 3.866 5.850 5.842 7.832 0.188 0.042 0.216 0.050
E21 3.933 3.941 5.921 5.900 7.890 0.139 0.041 0.151 0.050
E22 3.724 3.754 5.714 5.712 7.700 0.262 0.042 0.300 0.050
E23 3.430 3.469 5.426 5.434 7.410 0.366 0.043 0.427 0.050
E24 3.955 3.951 5.950 5.949 7.939 0.108 0.041 0.124 0.050
E25 4.002 3.981 5.981 5.981 7.968 -0.053 0.039 -0.080 0.050
E26 3.915 3.906 5.843 5.865 7.842 -0.136 0.037 -0.170 0.050
Notes: See notes to Table 3.

Table 8:  Parameter Estimates and Model Selection Criteria of FGN and ARFIMA Models for Sectoral WPI Based Inflation Series
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Code Pct. k =1 k =3 k =6 k =12 k =24 k =48 k =96 k =192 k =384 k =504 k =744 k =984 k =1200

E01 2.5 0.075 0.028 0.015 0.008 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
97.5 0.293 0.145 0.090 0.056 0.034 0.021 0.013 0.008 0.005 0.004 0.003 0.003 0.002

E02 2.5 0.156 0.065 0.037 0.020 0.011 0.006 0.004 0.002 0.001 0.001 0.001 0.000 0.000
97.5 0.371 0.201 0.133 0.087 0.056 0.037 0.024 0.015 0.010 0.008 0.007 0.005 0.005

E03 2.5 0.205 0.091 0.053 0.031 0.018 0.010 0.006 0.003 0.002 0.002 0.001 0.001 0.001
97.5 0.425 0.245 0.168 0.114 0.077 0.052 0.035 0.023 0.016 0.013 0.011 0.009 0.008

E04 2.5 -0.152 -0.040 -0.018 -0.008 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.067 0.025 0.013 0.007 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000

E05 2.5 0.126 0.050 0.028 0.015 0.008 0.005 0.002 0.001 0.001 0.001 0.000 0.000 0.000
97.5 0.340 0.177 0.114 0.073 0.046 0.029 0.019 0.012 0.007 0.006 0.005 0.004 0.004

E06 2.5 0.037 0.013 0.007 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.256 0.121 0.073 0.044 0.026 0.016 0.009 0.006 0.003 0.003 0.002 0.002 0.001

E07 2.5 0.044 0.015 0.008 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.258 0.122 0.074 0.045 0.027 0.016 0.010 0.006 0.003 0.003 0.002 0.002 0.001

E08 2.5 -0.095 -0.027 -0.013 -0.006 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.121 0.048 0.026 0.014 0.008 0.004 0.002 0.001 0.001 0.001 0.000 0.000 0.000

E09 2.5 -0.177 -0.044 -0.019 -0.008 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.042 0.015 0.008 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

E10 2.5 -0.123 -0.034 -0.015 -0.007 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.098 0.038 0.020 0.011 0.006 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000

E11 2.5 -0.146 -0.039 -0.017 -0.008 -0.003 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.074 0.027 0.014 0.008 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000

E12 2.5 0.004 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.220 0.099 0.059 0.034 0.020 0.012 0.007 0.004 0.002 0.002 0.001 0.001 0.001

E13 2.5 0.030 0.011 0.005 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.250 0.117 0.071 0.042 0.025 0.015 0.009 0.005 0.003 0.003 0.002 0.002 0.001

E14 2.5 -0.086 -0.025 -0.012 -0.005 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.132 0.053 0.029 0.016 0.009 0.005 0.003 0.001 0.001 0.001 0.000 0.000 0.000

E15 2.5 0.069 0.026 0.013 0.007 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
97.5 0.284 0.139 0.086 0.053 0.032 0.020 0.012 0.007 0.004 0.004 0.003 0.002 0.002

E16 2.5 0.071 0.026 0.014 0.007 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
97.5 0.292 0.144 0.090 0.055 0.034 0.021 0.013 0.008 0.005 0.004 0.003 0.002 0.002

E17 2.5 0.287 0.141 0.088 0.054 0.033 0.020 0.012 0.008 0.005 0.004 0.003 0.002 0.002
97.5 0.513 0.325 0.237 0.171 0.122 0.088 0.063 0.045 0.032 0.028 0.023 0.020 0.018

E18 2.5 0.040 0.014 0.007 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.258 0.122 0.074 0.045 0.027 0.016 0.010 0.006 0.003 0.003 0.002 0.002 0.001

E19 2.5 -0.017 -0.006 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.195 0.085 0.050 0.029 0.016 0.009 0.005 0.003 0.002 0.001 0.001 0.001 0.001

E20 2.5 0.079 0.029 0.016 0.008 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000
97.5 0.301 0.150 0.094 0.058 0.036 0.022 0.014 0.008 0.005 0.004 0.003 0.003 0.002

E21 2.5 0.015 0.005 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.237 0.109 0.065 0.039 0.023 0.014 0.008 0.005 0.003 0.002 0.002 0.001 0.001

E22 2.5 0.169 0.071 0.041 0.023 0.013 0.007 0.004 0.002 0.001 0.001 0.001 0.001 0.001
97.5 0.389 0.215 0.144 0.095 0.063 0.041 0.027 0.018 0.012 0.010 0.008 0.007 0.006

E23 2.5 0.300 0.150 0.094 0.058 0.036 0.022 0.014 0.008 0.005 0.004 0.003 0.003 0.002
97.5 0.518 0.330 0.241 0.175 0.126 0.090 0.065 0.046 0.033 0.029 0.024 0.021 0.019

E24 2.5 -0.009 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.205 0.091 0.053 0.031 0.018 0.010 0.006 0.003 0.002 0.002 0.001 0.001 0.001

E25 2.5 -0.212 -0.050 -0.021 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

E26 2.5 -0.303 -0.060 -0.023 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 -0.086 -0.025 -0.012 -0.006 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000

Notes: See notes to Table 4.

Table 9: Bootstrap Confidence Intervals of the Impulse Response Functions of the Best ARFIMA 
Models for Sectoral WPI Based Inflation Series

37



Code α =0.30 α =0.50 α =0.80 α =0.90 α =0.95 α =0.99

E01 1 1 2 3 7 53
E02 1 1 2 5 14 126
E03 1 1 3 8 22 241
E04 1 1 1 1 1 2
E05 1 1 2 4 11 91
E06 1 1 1 3 5 34
E07 1 1 1 3 5 35
E08 1 1 1 1 1 5
E09 1 1 1 1 1 4
E10 1 1 1 1 1 1
E11 1 1 1 1 1 2
E12 1 1 1 2 4 23
E13 1 1 1 2 5 31
E14 1 1 1 1 1 6
E15 1 1 2 3 7 48
E16 1 1 2 3 7 52
E17 1 1 5 15 49 783
E18 1 1 1 3 5 35
E19 1 1 1 2 3 17
E20 1 1 2 3 8 57
E21 1 1 1 2 4 27
E22 1 1 2 6 15 150
E23 1 1 5 16 52 867
E24 1 1 1 2 3 19
E25 1 1 1 1 2 7
E26 1 1 1 2 3 11
Notes: See notes to Table 5.

Table 10: Estimates of τ α  for Sectoral WPI Based Inflation Series
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GPH Estimates

Code α =0.50 α =0.55 α =0.60 α =0.65 α =0.70 α =0.75 α =0.80

A01 0.138 0.326 0.177 0.150 0.098 0.155 0.194
A02 -0.061 -0.103 -0.026 -0.087 -0.129 -0.034 0.023
A03 0.059 0.047 0.198 0.200 0.187 0.302 0.339
A04 0.455 0.229 0.260 0.226 0.172 0.083 0.180
A05 -0.009 0.000 -0.134 -0.101 -0.049 -0.020 0.015
A06 0.045 -0.202 -0.160 -0.140 -0.048 -0.038 -0.026
A07 0.486 0.426 0.392 0.296 0.290 0.243 0.246
A08 0.466 0.323 0.130 0.135 0.095 0.166 0.266
A09 0.398 0.427 0.254 0.246 0.168 0.176 0.094

s.e. 0.243 0.202 0.171 0.145 0.124 0.107 0.094

GSP Estimates

A01 0.160 0.218 0.043 0.033 0.034 0.113 0.181
A02 0.007 -0.018 0.035 -0.044 -0.082 -0.010 0.063
A03 0.160 0.158 0.186 0.205 0.199 0.257 0.288
A04 0.295 0.180 0.168 0.191 0.181 0.128 0.180
A05 -0.038 -0.037 -0.129 -0.108 -0.048 -0.004 0.067
A06 0.228 0.050 0.037 0.068 0.087 0.088 0.059
A07 0.519 0.500 0.440 0.394 0.344 0.309 0.297
A08 0.317 0.282 0.121 0.144 0.113 0.164 0.212
A09 0.286 0.348 0.165 0.137 0.096 0.108 0.064

s.e. 0.139 0.121 0.107 0.093 0.081 0.071 0.062
Notes: See notes to Table 1.

Table 11: GPH and GSP Estimates of d  for Sectoral CPI Based 
Inflation Series (1987-2002)
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Code Haar D8 D16 MB8 MB16 LA8

A01 0.083 0.110 0.131 0.050 0.070 0.024
A02 -0.065 0.063 0.066 -0.015 0.014 -0.047
A03 0.226 0.296 0.285 0.249 0.253 0.213
A04 0.054 0.083 0.115 0.043 0.040 0.018
A05 0.028 0.022 0.042 0.028 0.049 0.047
A06 -0.017 -0.001 0.042 -0.064 -0.065 -0.068
A07 0.242 0.146 0.315 0.247 0.263 0.229
A08 0.234 0.122 0.190 0.076 0.153 0.146
A09 -0.054 -0.040 0.013 -0.192 -0.077 -0.170

Haar D8 D16 MB8 MB16 LA8

A01 0.094 0.124 0.123 0.133 0.134 0.115
A02 -0.054 0.076 0.061 0.068 0.059 0.022
A03 0.214 0.272 0.243 0.265 0.255 0.241
A04 0.079 0.116 0.098 0.108 0.104 0.097
A05 0.027 0.075 0.023 0.081 0.068 0.093
A06 -0.002 0.057 0.011 0.027 0.010 0.026
A07 0.257 0.290 0.267 0.288 0.280 0.275
A08 0.237 0.190 0.177 0.187 0.208 0.230
A09 -0.024 0.048 -0.011 0.006 0.018 0.032
Notes: See notes to Table 2.

Table 12: Wavelet Based Estimates of d  for Sectoral CPI Based 
Inflation Series (1987-2002)

J =log2 T

J =4
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AIC for FGN and ARFIMA Models

Code FGN(d ) ARFIMA(0,d ,0) ARFIMA(1,d ,0) ARFIMA(0,d ,1) ARFIMA(1,d ,1)

A01 3.932 3.937 5.921 5.912 7.908
A02 3.997 3.992 5.955 5.952 7.931
A03 3.701 3.726 5.699 5.683 7.673
A04 3.959 3.947 5.944 5.944 7.942
A05 3.991 3.989 5.943 5.929 7.928
A06 4.011 3.995 5.994 5.994 7.994
A07 3.564 3.555 5.548 5.546 7.537
A08 3.822 3.841 5.809 5.810 7.808
A09 4.017 3.997 5.976 5.979 6.000

Estimates for FGN and Best ARFIMA Models Selected by AIC

FGN(d ) ARFIMA(0,d ,0)
d s.e. d s.e.

A01 0.139 0.048 0.148 0.058
A02 0.076 0.047 0.058 0.058
A03 0.268 0.049 0.308 0.058
A04 0.103 0.047 0.120 0.058
A05 0.087 0.047 0.068 0.058
A06 0.040 0.046 0.038 0.058
A07 0.248 0.049 0.292 0.058
A08 0.205 0.048 0.223 0.058
A09 0.023 0.046 0.025 0.058
Notes: See notes to Table 3.

Table 13:  Parameter Estimates and Model Selection Criteria of FGN and 
ARFIMA Models for Sectoral CPI Inflation Series (1987-2002)
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Code Pct. k =1 k =3 k =6 k =12 k =24 k =48 k =96 k =192 k =384 k =504 k =744 k =984 k =1200

A01 2.5 -0.016 -0.005 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.246 0.115 0.069 0.041 0.025 0.015 0.009 0.005 0.003 0.002 0.002 0.002 0.001

A02 2.5 -0.114 -0.032 -0.015 -0.007 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.153 0.063 0.036 0.020 0.011 0.006 0.003 0.002 0.001 0.001 0.001 0.000 0.000

A03 2.5 0.154 0.064 0.036 0.020 0.011 0.006 0.003 0.002 0.001 0.001 0.001 0.000 0.000
97.5 0.406 0.229 0.155 0.104 0.069 0.046 0.030 0.020 0.013 0.011 0.009 0.008 0.007

A04 2.5 -0.045 -0.014 -0.007 -0.003 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.214 0.096 0.057 0.033 0.019 0.011 0.006 0.004 0.002 0.002 0.001 0.001 0.001

A05 2.5 -0.093 -0.027 -0.012 -0.006 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.161 0.067 0.038 0.021 0.012 0.007 0.004 0.002 0.001 0.001 0.001 0.001 0.000

A06 2.5 -0.123 -0.034 -0.015 -0.007 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.129 0.052 0.029 0.016 0.009 0.005 0.003 0.001 0.001 0.001 0.000 0.000 0.000

A07 2.5 0.135 0.054 0.030 0.017 0.009 0.005 0.003 0.002 0.001 0.001 0.000 0.000 0.000
97.5 0.390 0.216 0.144 0.095 0.063 0.041 0.027 0.018 0.012 0.010 0.008 0.007 0.006

A08 2.5 0.063 0.023 0.012 0.006 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.320 0.163 0.104 0.065 0.041 0.026 0.016 0.010 0.006 0.005 0.004 0.003 0.003

A09 2.5 -0.137 -0.037 -0.016 -0.007 -0.003 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.123 0.049 0.027 0.015 0.008 0.004 0.002 0.001 0.001 0.001 0.000 0.000 0.000

Notes: See notes to Table 4.

Table 14: Bootstrap Confidence Intervals of the Impulse Response Functions of the Best 
ARFIMA Models for Sectoral CPI Based Inflation Series (1987-2002)
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Code α =0.30 α =0.50 α =0.80 α =0.90 α =0.95 α =0.99

A01 1 1 1 2 4 26
A02 1 1 1 1 2 7
A03 1 1 3 6 17 166
A04 1 1 1 2 3 18
A05 1 1 1 1 2 9
A06 1 1 1 1 1 5
A07 1 1 2 6 14 137
A08 1 1 2 4 8 62
A09 1 1 1 1 1 3
Notes: See notes to Table 5.

Table 15: Estimates of τ α  for Sectoral CPI Based Inflation 
Series (1987-2002)
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GPH Estimates GSP Estimates

Code α =0.50 α =0.55 α =0.60 α =0.65 α =0.70 α =0.75 α =0.80 α =0.50 α =0.55 α =0.60 α =0.65 α =0.70 α =0.75 α =0.80

T01 0.265 0.054 0.059 0.195 0.342 0.493 0.503 0.184 -0.034 -0.039 0.077 0.232 0.427 0.356
T02 0.637 0.461 0.373 0.356 0.588 0.504 0.450 0.449 0.378 0.349 0.337 0.357 0.381 0.396
T03 0.336 0.241 0.661 0.604 0.499 0.433 0.385 0.344 0.297 0.427 0.389 0.381 0.399 0.409
T04 -0.015 -0.086 0.040 0.293 0.341 0.360 0.434 -0.062 -0.092 0.016 0.246 0.376 0.397 0.493
T05 0.036 0.059 0.187 0.288 0.271 0.255 0.147 0.152 0.177 0.257 0.146 0.189 0.160 0.108
T06 -0.200 -0.202 -0.138 0.029 0.075 0.093 0.142 -0.103 -0.093 -0.068 0.039 0.060 0.092 0.159
T07 0.252 0.360 0.245 0.304 0.196 0.174 0.289 0.163 0.179 0.218 0.215 0.193 0.211 0.318
T08 -0.041 -0.011 -0.149 -0.109 -0.077 -0.206 -0.252 -0.077 -0.048 -0.119 -0.179 -0.178 -0.223 -0.216
T09 0.339 0.202 0.139 0.228 0.260 0.326 0.292 0.349 0.250 0.226 0.244 0.288 0.243 0.221
T10 -0.193 -0.200 -0.131 0.206 0.199 0.203 0.190 -0.213 -0.199 -0.145 0.017 0.053 0.079 0.112
T11 0.176 -0.022 0.088 0.227 0.326 0.437 0.514 0.154 -0.055 -0.036 0.086 0.219 0.365 0.357
T12 -0.221 -0.166 -0.133 0.029 0.068 0.040 0.030 -0.155 -0.190 -0.122 -0.033 0.069 0.070 0.073
T13 0.558 0.399 0.343 0.344 0.515 0.453 0.456 0.454 0.366 0.356 0.343 0.367 0.380 0.413
T14 0.424 0.412 0.306 0.328 0.427 0.461 0.384 0.411 0.406 0.310 0.266 0.284 0.314 0.264
T15 1.052 0.894 0.743 0.618 0.464 0.372 0.428 0.961 0.761 0.680 0.569 0.425 0.370 0.382
T16 -0.031 -0.088 0.097 0.294 0.249 0.252 0.203 0.008 0.003 0.130 0.358 0.340 0.338 0.268
T17 0.023 0.062 0.026 -0.056 -0.175 -0.242 -0.096 -0.023 0.068 0.080 0.021 -0.087 -0.137 -0.053
T18 -0.246 -0.273 -0.111 0.075 0.052 0.086 0.086 -0.310 -0.247 -0.066 0.091 0.086 0.116 0.147
T19 0.176 0.042 0.231 0.273 0.253 0.363 0.343 0.146 0.025 0.142 0.170 0.187 0.209 0.182
T20 -0.010 -0.037 0.134 0.318 0.442 0.443 0.522 -0.007 0.006 0.138 0.297 0.416 0.411 0.524
T21 0.089 0.021 0.001 0.301 0.250 0.140 0.151 -0.064 -0.041 -0.020 0.222 0.230 0.141 0.153
T22 -0.031 -0.136 0.123 0.271 0.355 0.408 0.488 -0.084 -0.180 -0.047 0.083 0.243 0.334 0.482
T23 -0.485 -0.512 -0.342 -0.098 0.011 0.080 0.235 -0.431 -0.404 -0.235 0.010 0.197 0.291 0.445
T24 -0.152 -0.242 -0.178 -0.053 0.139 0.191 0.273 -0.235 -0.276 -0.203 -0.041 0.188 0.312 0.393
T25 -0.312 -0.243 -0.046 0.128 0.206 0.094 -0.009 -0.337 -0.234 -0.065 0.130 0.074 -0.031 -0.142
T26 0.540 0.355 0.277 0.221 0.188 0.225 0.173 0.449 0.396 0.381 0.093 0.142 0.189 0.161
T27 0.372 0.297 0.233 0.118 0.227 0.175 0.142 0.344 0.303 0.262 0.094 0.143 0.144 0.111
T28 0.486 0.251 0.009 0.131 0.153 0.042 0.048 0.501 0.259 0.095 0.115 0.114 0.020 0.036
T29 -0.315 -0.280 0.020 0.126 0.094 0.126 0.090 -0.329 -0.246 -0.153 -0.020 0.016 0.085 0.078
T30 -0.496 -0.405 -0.384 -0.278 -0.155 -0.155 -0.033 -0.181 -0.155 -0.132 -0.102 -0.033 -0.010 0.086
T31 -0.062 -0.127 -0.177 0.121 0.044 0.121 0.345 -0.108 -0.131 -0.147 0.015 -0.033 0.076 0.262
T32 0.200 0.316 0.229 0.202 0.210 0.128 0.168 0.205 0.330 0.217 0.190 0.124 0.095 0.120
T33 0.412 0.257 0.291 0.361 0.331 0.295 0.340 0.294 0.228 0.242 0.214 0.286 0.220 0.269
T34 -0.137 -0.113 -0.242 -0.268 -0.239 -0.344 -0.382 -0.146 -0.131 -0.177 -0.251 -0.241 -0.289 -0.292
T35 -0.023 0.023 -0.065 -0.044 -0.081 -0.063 -0.049 0.069 0.117 0.052 0.010 -0.030 -0.019 -0.016
T36 0.342 0.190 0.153 0.208 0.216 0.262 0.274 0.325 0.226 0.228 0.232 0.259 0.212 0.207
T37 0.278 0.184 0.040 0.215 0.209 0.198 0.160 0.255 0.192 0.074 0.099 0.132 0.062 0.077
T38 -0.176 -0.184 -0.039 0.090 0.286 0.354 0.489 -0.140 -0.125 -0.042 0.069 0.252 0.391 0.596
T39 -0.234 -0.239 -0.045 0.179 0.097 0.060 0.084 -0.288 -0.215 -0.016 0.096 0.132 0.114 0.196
T40 0.554 0.291 0.128 -0.143 -0.075 -0.141 -0.235 0.395 0.138 -0.019 -0.141 -0.073 -0.104 -0.160

s.e. 0.294 0.258 0.222 0.185 0.162 0.144 0.127 0.158 0.144 0.129 0.112 0.1 0.09 0.079
Notes: See notes to Table 1.

Table 16: GPH and GSP Estimates for Sectoral CPI Based Inflation Series (1994-2002)
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Code Haar D8 D16 MB8 MB16 LA8 Haar D8 D16 MB8 MB16 LA8

T01 0.380 0.255 0.354 0.378 0.385 0.394 0.320 0.272 0.282 0.331 0.340 0.341
T02 0.301 0.256 0.332 0.192 0.295 0.288 0.308 0.308 0.300 0.303 0.316 0.325
T03 0.233 0.361 0.281 0.256 0.181 0.166 0.275 0.322 0.286 0.293 0.301 0.308
T04 0.425 0.329 0.352 0.405 0.329 0.403 0.341 0.301 0.305 0.338 0.323 0.356
T05 -0.006 -0.031 0.097 0.066 -0.157 -0.054 0.073 0.071 0.079 0.102 0.085 0.096
T06 0.159 0.092 0.184 0.115 0.123 0.215 0.146 0.114 0.134 0.166 0.180 0.240
T07 0.397 0.177 0.373 0.317 0.287 0.342 0.327 0.225 0.296 0.293 0.305 0.315
T08 -0.370 -0.343 -0.237 -0.291 -0.392 -0.494 -0.344 -0.247 -0.263 -0.272 -0.262 -0.296
T09 0.183 0.157 0.272 0.212 0.104 0.213 0.262 0.217 0.234 0.252 0.250 0.303
T10 0.036 0.032 0.096 0.094 0.039 0.097 0.052 0.074 0.074 0.127 0.129 0.143
T11 0.357 0.233 0.322 0.365 0.371 0.405 0.307 0.262 0.263 0.325 0.329 0.346
T12 0.080 0.006 0.096 0.062 0.010 0.123 0.079 0.067 0.058 0.079 0.117 0.165
T13 0.278 0.250 0.325 0.186 0.281 0.252 0.300 0.304 0.289 0.295 0.305 0.313
T14 0.292 0.184 0.273 0.111 0.245 0.284 0.282 0.255 0.273 0.262 0.289 0.299
T15 0.226 0.338 0.281 0.292 0.222 0.141 0.298 0.323 0.304 0.297 0.305 0.298
T16 0.191 0.194 0.263 0.201 0.136 0.220 0.186 0.203 0.203 0.229 0.227 0.245
T17 -0.019 -0.110 -0.065 -0.302 -0.252 -0.276 -0.021 -0.131 -0.064 -0.113 -0.118 -0.105
T18 0.116 0.134 0.118 0.131 0.119 0.249 0.107 0.148 0.111 0.134 0.157 0.205
T19 0.173 0.059 0.153 0.099 0.032 0.034 0.185 0.137 0.134 0.157 0.157 0.158
T20 0.447 0.352 0.373 0.430 0.384 0.431 0.357 0.311 0.331 0.354 0.349 0.377
T21 0.110 0.033 0.036 0.012 -0.021 0.006 0.116 0.071 0.061 0.072 0.073 0.119
T22 0.428 0.349 0.404 0.447 0.436 0.463 0.330 0.298 0.331 0.356 0.353 0.386
T23 0.441 0.311 0.419 0.437 0.344 0.473 0.329 0.278 0.319 0.343 0.336 0.386
T24 0.454 0.275 0.354 0.418 0.362 0.456 0.355 0.258 0.301 0.333 0.332 0.371
T25 -0.059 -0.197 -0.070 -0.129 -0.340 -0.181 -0.044 -0.112 -0.084 -0.058 -0.068 -0.060
T26 -0.011 0.021 0.116 0.104 -0.118 -0.082 0.094 0.118 0.110 0.131 0.116 0.102
T27 -0.092 -0.082 0.026 0.003 -0.155 -0.111 0.007 -0.001 0.021 0.043 0.034 0.039
T28 0.089 -0.045 0.062 -0.201 -0.037 -0.009 0.098 0.061 0.065 0.049 0.055 0.069
T29 0.038 -0.001 0.078 0.029 0.047 0.086 0.038 0.019 0.037 0.089 0.096 0.143
T30 0.075 0.032 0.120 0.093 -0.021 0.213 0.079 0.072 0.083 0.115 0.124 0.215
T31 0.411 0.133 0.259 0.313 0.281 0.356 0.308 0.163 0.232 0.258 0.280 0.300
T32 -0.031 0.109 0.110 -0.021 -0.226 -0.110 0.064 0.117 0.116 0.087 0.086 0.098
T33 0.221 0.198 0.335 0.215 0.218 0.265 0.235 0.239 0.258 0.233 0.246 0.263
T34 -0.456 -0.496 -0.307 -0.363 -0.500 -0.500 -0.457 -0.364 -0.370 -0.386 -0.384 -0.421
T35 -0.161 -0.056 -0.119 -0.165 -0.134 -0.175 -0.125 -0.018 -0.062 -0.067 -0.043 -0.051
T36 0.154 0.143 0.254 0.198 0.089 0.207 0.242 0.204 0.220 0.236 0.236 0.293
T37 0.044 -0.024 0.107 -0.042 -0.099 -0.148 0.112 0.070 0.078 0.072 0.090 0.109
T38 0.446 0.416 0.466 0.468 0.433 0.477 0.353 0.347 0.373 0.388 0.378 0.410
T39 0.031 0.205 0.113 0.071 0.060 0.112 0.028 0.186 0.094 0.099 0.129 0.122
T40 -0.192 -0.213 -0.290 -0.218 -0.266 -0.231 -0.195 -0.131 -0.158 -0.139 -0.166 -0.187
Notes: See notes to Table 2.

Table 17: Wavelet Based Estimates of d  for Sectoral CPI Based Inflation Series (1994-2002)

J =log2 T J =4

45



AIC for FGN and ARFIMA Models Estimates for FGN and Best ARFIMA Models Selected by AIC
FGN(d ) ARFIMA(0,d ,0)

Code FGN(d ) ARFIMA(0,d ,0) ARFIMA(1,d ,0) ARFIMA(0,d ,1) ARFIMA(1,d ,1) d    s.e.  d    s.e.  

T01 3.612 3.678 5.580 5.519 7.512 0.362 0.067 0.419 0.078
T02 3.563 3.570 5.570 5.538 7.538 0.291 0.066 0.344 0.078
T03 3.641 3.641 5.641 5.594 7.586 0.274 0.066 0.334 0.078
T04 3.621 3.663 5.628 5.521 7.519 0.342 0.067 0.413 0.078
T05 4.019 3.989 5.978 5.973 7.966 0.055 0.063 0.056 0.078
T06 3.938 3.950 5.874 5.834 7.817 0.169 0.065 0.154 0.078
T07 3.693 3.744 5.652 5.644 7.604 0.308 0.066 0.332 0.078
T08 3.901 3.833 5.831 5.831 7.832 -0.182 0.056 -0.262 0.078
T09 3.748 3.766 5.741 5.749 6.000 0.242 0.066 0.263 0.078
T10 4.002 3.988 5.956 5.880 7.879 0.096 0.064 0.073 0.078
T11 3.663 3.721 5.640 5.575 7.573 0.333 0.067 0.378 0.078
T12 4.005 3.990 5.957 5.892 7.890 0.092 0.064 0.067 0.078
T13 3.589 3.590 5.589 5.558 7.556 0.279 0.066 0.332 0.078
T14 3.683 3.693 5.690 5.661 6.000 0.255 0.066 0.290 0.078
T15 3.574 3.547 5.478 5.525 7.444 0.254 0.066 0.309 0.078
T16 3.855 3.858 5.855 5.760 7.755 0.204 0.065 0.237 0.078
T17 4.018 3.964 5.964 5.964 7.963 -0.067 0.060 -0.117 0.078
T18 3.946 3.952 5.900 5.800 7.793 0.160 0.065 0.153 0.078
T19 3.967 3.953 5.952 5.897 7.895 0.121 0.064 0.127 0.078
T20 3.528 3.569 5.539 5.447 7.446 0.371 0.067 0.455 0.078
T21 4.022 3.994 5.994 5.916 7.904 0.055 0.063 0.046 0.078
T22 3.534 3.617 5.482 5.428 7.378 0.412 0.067 0.493 0.078
T23 3.593 3.678 5.510 5.463 7.379 0.402 0.067 0.472 0.078
T24 3.640 3.717 5.584 5.506 7.461 0.376 0.067 0.436 0.078
T25 4.001 3.944 5.942 5.865 7.845 -0.090 0.059 -0.155 0.078
T26 3.975 3.952 5.947 5.947 7.927 0.100 0.064 0.108 0.078
T27 4.036 4.000 5.937 5.915 7.852 0.007 0.062 0.005 0.078
T28 4.009 3.989 5.945 5.975 6.000 0.079 0.064 0.058 0.078
T29 4.017 3.996 5.975 5.866 7.866 0.072 0.063 0.045 0.078
T30 3.972 3.981 5.833 5.840 7.792 0.146 0.065 0.101 0.078
T31 3.789 3.865 5.619 5.655 7.553 0.309 0.066 0.291 0.078
T32 3.994 3.974 5.973 5.973 7.972 0.092 0.064 0.090 0.078
T33 3.753 3.780 5.742 5.712 7.697 0.260 0.066 0.285 0.078
T34 3.776 3.711 5.694 5.700 6.000 -0.253 0.052 -0.353 0.078
T35 4.028 3.981 5.980 5.980 7.920 -0.043 0.061 -0.083 0.078
T36 3.779 3.798 5.758 5.776 7.736 0.233 0.066 0.247 0.078
T37 4.005 3.983 5.981 5.981 7.979 0.080 0.064 0.071 0.078
T38 3.336 3.429 5.218 5.222 7.123 0.470 0.068 0.683 0.078
T39 3.933 3.941 5.894 5.800 7.797 0.170 0.065 0.169 0.078
T40 3.983 3.924 5.923 5.886 7.883 -0.111 0.059 -0.171 0.078
Notes: See notes to Table 3.

Table 18:  Parameter Estimates and Model Selection Criteria of FGN and ARFIMA Models for Sectoral CPI Based Inflation Series 
(1994-2002)
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Code Pct. k =1 k =3 k =6 k =12 k =24 k =48 k =96 k =192 k =384 k =504 k =744 k =984 k =1200

T01 2.5 0.190 0.083 0.048 0.027 0.016 0.009 0.005 0.003 0.002 0.001 0.001 0.001 0.001
97.5 0.559 0.371 0.279 0.208 0.154 0.113 0.084 0.062 0.045 0.040 0.034 0.030 0.027

T02 2.5 0.105 0.041 0.022 0.012 0.006 0.003 0.002 0.001 0.001 0.000 0.000 0.000 0.000
97.5 0.473 0.287 0.203 0.142 0.099 0.069 0.048 0.033 0.023 0.020 0.016 0.014 0.013

T03 2.5 0.090 0.034 0.018 0.010 0.005 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000
97.5 0.470 0.284 0.201 0.140 0.098 0.068 0.047 0.033 0.023 0.020 0.016 0.014 0.012

T04 2.5 0.175 0.074 0.042 0.024 0.014 0.008 0.004 0.002 0.001 0.001 0.001 0.001 0.001
97.5 0.551 0.364 0.272 0.201 0.148 0.109 0.080 0.059 0.043 0.038 0.032 0.028 0.026

T05 2.5 -0.194 -0.047 -0.020 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.180 0.077 0.044 0.025 0.014 0.008 0.005 0.003 0.001 0.001 0.001 0.001 0.001

T06 2.5 -0.091 -0.026 -0.012 -0.006 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.280 0.136 0.084 0.051 0.031 0.019 0.012 0.007 0.004 0.004 0.003 0.002 0.002

T07 2.5 0.094 0.036 0.019 0.010 0.006 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000
97.5 0.464 0.279 0.196 0.137 0.095 0.065 0.045 0.031 0.022 0.019 0.015 0.013 0.012

T08 2.5 -0.508 -0.064 -0.023 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 -0.129 -0.035 -0.016 -0.006 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T09 2.5 0.015 0.005 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.395 0.220 0.147 0.098 0.065 0.043 0.028 0.018 0.012 0.010 0.008 0.007 0.006

T10 2.5 -0.175 -0.044 -0.019 -0.008 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.204 0.090 0.053 0.031 0.018 0.010 0.006 0.003 0.002 0.002 0.001 0.001 0.001

T11 2.5 0.140 0.057 0.032 0.018 0.010 0.005 0.003 0.002 0.001 0.001 0.001 0.000 0.000
97.5 0.515 0.328 0.239 0.173 0.124 0.089 0.064 0.045 0.033 0.028 0.024 0.021 0.019

T12 2.5 -0.177 -0.044 -0.019 -0.008 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.195 0.085 0.049 0.028 0.016 0.009 0.005 0.003 0.002 0.001 0.001 0.001 0.001

T13 2.5 0.084 0.031 0.017 0.009 0.005 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000
97.5 0.466 0.280 0.198 0.138 0.096 0.066 0.046 0.032 0.022 0.019 0.015 0.013 0.012

T14 2.5 0.040 0.014 0.007 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.422 0.242 0.166 0.112 0.076 0.051 0.034 0.023 0.015 0.013 0.010 0.009 0.008

T15 2.5 0.064 0.024 0.012 0.006 0.003 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.440 0.258 0.178 0.122 0.083 0.057 0.038 0.026 0.018 0.015 0.012 0.010 0.009

T16 2.5 -0.009 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.361 0.193 0.127 0.082 0.053 0.034 0.022 0.014 0.009 0.008 0.006 0.005 0.004

T17 2.5 -0.359 -0.063 -0.023 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.008 0.003 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T18 2.5 -0.094 -0.027 -0.013 -0.006 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.281 0.137 0.085 0.052 0.032 0.019 0.012 0.007 0.004 0.004 0.003 0.002 0.002

T19 2.5 -0.111 -0.031 -0.014 -0.007 -0.003 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.253 0.119 0.072 0.043 0.026 0.016 0.009 0.006 0.003 0.003 0.002 0.002 0.001

T20 2.5 0.216 0.097 0.057 0.034 0.020 0.011 0.007 0.004 0.002 0.002 0.001 0.001 0.001
97.5 0.592 0.407 0.313 0.238 0.181 0.136 0.103 0.078 0.059 0.052 0.045 0.040 0.037

T21 2.5 -0.192 -0.047 -0.020 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.173 0.073 0.042 0.024 0.013 0.008 0.004 0.002 0.001 0.001 0.001 0.001 0.001

T22 2.5 0.252 0.119 0.072 0.043 0.026 0.015 0.009 0.005 0.003 0.003 0.002 0.002 0.001
97.5 0.635 0.456 0.361 0.283 0.221 0.172 0.133 0.104 0.081 0.073 0.063 0.057 0.053

T23 2.5 0.236 0.109 0.065 0.039 0.023 0.013 0.008 0.005 0.003 0.002 0.002 0.001 0.001
97.5 0.609 0.426 0.331 0.255 0.196 0.150 0.114 0.087 0.066 0.060 0.051 0.046 0.043

T24 2.5 0.196 0.086 0.050 0.029 0.016 0.009 0.005 0.003 0.002 0.001 0.001 0.001 0.001
97.5 0.570 0.383 0.290 0.218 0.162 0.121 0.090 0.067 0.050 0.044 0.037 0.033 0.030

T25 2.5 -0.394 -0.064 -0.023 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 -0.026 -0.008 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T26 2.5 -0.139 -0.037 -0.017 -0.007 -0.003 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.229 0.105 0.062 0.037 0.022 0.013 0.007 0.004 0.003 0.002 0.002 0.001 0.001

Table 19: Bootstrap Confidence Intervals of the Impulse Response Functions of the Best 
ARFIMA Models for Sectoral CPI Based Inflation Series (1994-2002)
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T27 2.5 -0.238 -0.053 -0.022 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.133 0.054 0.030 0.016 0.009 0.005 0.003 0.001 0.001 0.001 0.000 0.000 0.000

T28 2.5 -0.184 -0.045 -0.020 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.183 0.079 0.045 0.026 0.015 0.008 0.005 0.003 0.002 0.001 0.001 0.001 0.001

T29 2.5 -0.200 -0.048 -0.020 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.170 0.072 0.041 0.023 0.013 0.007 0.004 0.002 0.001 0.001 0.001 0.001 0.001

T30 2.5 -0.143 -0.038 -0.017 -0.008 -0.003 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.224 0.102 0.060 0.035 0.021 0.012 0.007 0.004 0.002 0.002 0.001 0.001 0.001

T31 2.5 0.045 0.016 0.008 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.416 0.237 0.162 0.109 0.073 0.049 0.033 0.022 0.015 0.012 0.010 0.008 0.007

T32 2.5 -0.152 -0.040 -0.018 -0.008 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.212 0.095 0.056 0.032 0.019 0.011 0.006 0.004 0.002 0.002 0.001 0.001 0.001

T33 2.5 0.042 0.015 0.008 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.418 0.239 0.163 0.110 0.074 0.050 0.033 0.022 0.015 0.013 0.010 0.009 0.008

T34 2.5 -0.596 -0.064 -0.023 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 -0.221 -0.050 -0.017 -0.005 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

T35 2.5 -0.322 -0.061 -0.023 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.043 0.015 0.008 0.004 0.002 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

T36 2.5 0.005 0.002 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.378 0.207 0.137 0.090 0.059 0.038 0.025 0.016 0.011 0.009 0.007 0.006 0.005

T37 2.5 -0.177 -0.044 -0.019 -0.008 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.195 0.085 0.049 0.028 0.016 0.009 0.005 0.003 0.002 0.001 0.001 0.001 0.001

T38 2.5 0.455 0.271 0.189 0.131 0.090 0.062 0.043 0.029 0.020 0.017 0.014 0.012 0.011
97.5 0.839 0.730 0.660 0.594 0.533 0.477 0.427 0.382 0.342 0.327 0.307 0.294 0.285

T39 2.5 -0.080 -0.023 -0.011 -0.005 -0.002 -0.001 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 0.295 0.146 0.091 0.056 0.035 0.021 0.013 0.008 0.005 0.004 0.003 0.003 0.002

T40 2.5 -0.410 -0.064 -0.023 -0.009 -0.004 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000
97.5 -0.042 -0.013 -0.006 -0.003 -0.002 -0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: See notes to Table 4.
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Code α =0.30 α =0.50 α =0.80 α =0.90 α =0.95 α =0.99

T01 1 1 5 15 48 766
T02 1 1 3 8 23 262
T03 1 1 3 8 21 229
T04 1 1 4 14 45 691
T05 1 1 1 1 2 7
T06 1 1 1 2 5 28
T07 1 1 3 7 20 223
T08 1 1 2 2 4 12
T09 1 1 2 5 11 97
T10 1 1 1 1 2 9
T11 1 1 4 11 32 418
T12 1 1 1 1 2 8
T13 1 1 3 7 20 223
T14 1 1 2 6 14 133
T15 1 1 3 6 17 167
T16 1 1 2 4 9 72
T17 1 1 1 2 3 9
T18 1 1 1 2 4 28
T19 1 1 1 2 4 20
T20 1 1 6 20 72 >1200
T21 1 1 1 1 1 6
T22 1 1 8 30 116 >1200
T23 1 1 7 24 89 >1200
T24 1 1 5 17 58 995
T25 1 1 1 2 3 10
T26 1 1 1 2 3 16
T27 1 1 1 1 1 1
T28 1 1 1 1 2 7
T29 1 1 1 1 1 5
T30 1 1 1 2 3 14
T31 1 1 2 6 14 135
T32 1 1 1 1 2 12
T33 1 1 2 5 14 126
T34 1 1 2 3 4 12
T35 1 1 1 1 2 7
T36 1 1 2 4 10 81
T37 1 1 1 1 2 9
T38 1 4 66 582 >1200 >1200
T39 1 1 1 2 5 33
T40 1 1 1 2 3 11
Notes: See notes to Table 5.

Table 20: Estimates of τ α  for Sectoral CPI Based Inflation 
Series (1994-2002)
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AIC for ARFIMA-BREAK Models

Inflation Series p,q,s 0,0,1 1,0,1 0,0,2 1,0,2

WPI (1923-2001) 565.163 566.050 558.293 559.321
WPI (1964:2-2002:6) 1568.063 1903.738 1567.141 1756.581
WPI (1964:2-1988:1) 932.742 930.237 1068.706 1059.603
WPI (1982:2-2002:6) 834.759 836.639 844.394 833.697
WPI (1987:2-2002:6) 602.782 602.230 665.820 684.735
WPI (1994:2-2002:6) 285.473 286.603 300.401 302.376
CPI (1951-2001) 337.776 336.965 330.969 328.103
CPI (1987:2-2002:6) 577.562 578.538 574.401 575.137
CPI (1994:2-2002:6) 226.140 246.350 224.699 224.491

Estimates for ARFIMA-BREAK Models with Minimum AIC

γ s.e. d s.e. φ1 s.e.
0.150 0.113 -0.356 0.089 - -

WPI (1923-2001) 0.000 0.000 -0.476 0.037 - -
WPI (1964:2-2002:6) 0.487 0.024 -0.538 0.105 0.338 0.127
WPI (1964:2-1988:1) 3.071 0.125 -0.472 0.099 0.218 0.123
WPI (1982:2-2002:6) 2.877 0.109 -0.624 0.134 0.353 0.160
WPI (1987:2-2002:6) 0.000 0.001 -0.593 0.078 - -
WPI (1994:2-2002:6) 5.458 1.700 -0.426 0.189 0.070 0.240
CPI (1951-2001) 2.268 0.077 -0.407 0.058 - -
CPI (1987:2-2002:6) 0.809 0.025 -0.389 0.226 0.491 0.252
CPI (1994:2-2002:6)
Notes: First panel of the Table reports the Akaike Information Criterion (-2 ln L  + 2k ) for ecah model, where L  is the 
likelihood and k  is the number of paremters. The models are estimated using the approximate maximum likelihood function. 
The second panel shows the estimates for the ARFIMA-BREAK model that has the minimum AIC. Data are seasonally 
adjusted by subtracting the seasonal means.

Table 21:  Parameter Estimates and Model Selection Criteria of ARFIMA-BREAK Models for 
Aggregate Inflation Series
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