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Abstract

We analyze the sustainability over time of collusion equilibrium in a
two ¯rms market with uncertain demand and risk neutrality, modeling
uncertainty under several di®erent distributional assumptions. Expected
demand is assumed to be subject to inertia in that a di®erence between
the two ¯rms' prices results in a smooth variation of the market share
instead of a discrete 0-1 outcome; demand is modeled as continuous in
the price di®erence and secret price cuts result in the increase of the own
market share and pro¯t. We show that when secret price cuts cannot be
observed directly and cheating may be inferred only on the ground of the
own pro¯t's level, the higher demand uncertainty, the more deviating from
collusion equilibrium pays. Under the assumption of trigger strategies and
¯rms employing a tail test based upon a threshold pro¯t level to detect
price cuttings, we ¯nd that strict detection rules result to be less e®ective
than milder ones in order to avoid deviation.
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1 Introduction

Theoretical work starting with Stigler (1964) suggests that tacit collusion sus-
tainability in a repeated game environment is more di±cult when ¯rms face
uncertain, unobservable demand. If ¯rms maximize expected pro¯ts, unobserv-
ability of the state of demand and the only knowledge of the own performance
makes it harder, to distinguish the rivals' cheating from bad performances due
to demand °uctuations.
We show that in a duopoly where: a) ¯rms are identical and split demand
equally if they charge equal price, b) secret price cuts result in an increase of
the low-price ¯rm's market share, though this won't obtain all the demand, c)
a tail test is used in order to detect deviations, and d) ¯rms use trigger strate-
gies after detecting deviations; then the threshold level of the discount factor
over which collusion is sustainable depends critically on the level of the demand
uncertainty and on the tail test employed. Consistently with intuition, we show
that: a) the higher volatility, the more collusion is di±cult until becoming im-
possible; b) under various circumstances, the higher demand uncertainty, the
lower the benchmark for the tail test is to be in order for collusion to be sus-
tainable.
We have chosen to model market share as sensitive to price cuts but with iner-
tia. The speci¯cation we consider embeds anyway the standard possibility that
the low price ¯rm gets all demand. However, this is only a special case: mod-
eling market share as being subject to a transition regime means considering
the possibility that, for example, purchasers are unwilling to change seller even
when identical, cheaper substitutes are available. Or we may interpret it as a
case where information on the price is not available to all consumers but only
to a part of them, with the proportion of "aware" consumers increasing with
the price spread. Actually, as shown in Appendix I, our assumptions on market
share embed the case of splitting consumers. We don't allow this inertia to be
time varying for computational simplicity.
The environment we consider and the results we obtain are as follows. We
consider that case of a two ¯rms market without the possibility of new competi-
tor's entrance and where ¯rms maximize expected pro¯ts by risk neutrality, as
in Green and Porter (1984). Firm's strategic behavior takes place in an in¯nitely
repeated game context and it includes tacit collusion with ¯rms maximizing the
industry's pro¯t, deviation from collusion where one ¯rm maximizes its own
pro¯t given the other's collusive behavior, and competition. All maximization
problems are w.r.t. the price. Given that both demand and the rival's pro¯ts
are never observable, in every period each ¯rm will employ a tail test based on
comparing its previous pro¯t with a threshold level; both the former and the
discount factor are assumed to be ¯xed over time and deterministic, while de-
mand is subject to uncertainty. This allows to avoid the dependence of collusive
equilibrium price on the discount factor, which has been considered by Dal Bo'
(2001). Demand uncertainty is modeled as a continuous distributions whose
details are in Section 2.1. Firms will discount expected pro¯ts by the discount
factor and taking into consideration the presence of the rival's tail test: there-
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fore they will make decision on the expected sum of expected pro¯ts.
The main results derived are two. First, volatility is crucial in determining the
set of equilibrium outcomes and hence the sustainability of tacit. We show that
under various circumstances, the higher demand volatility, the higher the care of
the future required in order for collusion to be possible. Moreover, there exists
a threshold level for volatility over which collusion is never possible. Second, we
show that for any degree of uncertainty there exists an "optimal" level of the
benchmark that triggers the tail test, "optimal" meaning that ceteris paribus
it minimizes the lower bound of the discount factor above which collusion is
sustainable. Our conclusion is that - if some quite general condition that will
be speci¯ed later on hold - the higher uncertainty, the lower the aforementioned
optimal level is: in order to maintain collusion, the tail test is required to be
milder as demand volatility increases.

The rest of the paper is organized as follows. Below, some of the related
literature on collusion is discussed. Section 2 provides the theoretical framework
for demand uncertainty and market share. Section 3 considers the model, while
Section 4 is aimed at presenting the main result arising from both the analytical
and simulation viewpoint. Conclusions are in Section 5. We also sketched the
simulation exercise on which part of the analysis is based in Appendix I, where
we present some further structure necessary to fully understand our model for
the market share.

1.1 Related literature

According to Dal Bo' (2001), the related literature falls into ¯ve categories: 1)
studies of the e®ect of demand °uctuations on optimal tacit collusion; 2) studies
of optimal punishment schemes under quantity competition; 3) repeated game
with ¯xed discount factor; 4) empirical studies of collusive pricing; 5) studies of
the role of oligopolies in macroeconomic °uctuations.
Our paper is mainly related to the ¯rst and the third ¯elds of the analysis,
even though some of the analysis can be referred to the second branch of the
literature.
As to the literature dealing with the e®ect of demand variation on optimal tacit
collusion, we follow the lines of the seminal work by Green and Porter (1984),
modeling uncertainty in details in Section 2.1. Alike Green and Porter, how-
ever, our paper refers uncertainty to the (total) quantity demanded rather than
directly to the price, still considering demand outcomes over time as indepen-
dent of one another. Our aim, too, is di®erent, too. While Green and Porter
work showed the necessity for periodic price wars in order to maintain the in-
centives for collusion when ¯rm cannot monitor the behavior of their rivals, we
are more concerned with the exogenous conditions that make collusion possible.
Literature has anyway also considered the case of demand correlation, within
a Rotemberg and Saloner (1986) framework. Kandori (1991), Haltiwanger and
Harrington (1991) and Bagwell and Staiger (1997) have alla considered tacit
collusion under demand °uctuations; Dal Bo' (2001) has considered the case of
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a stochastic discount factor - which may be related also to the third of the ¯elds
above - transferring the volatility from direct or inverse demand to this variable.
As far as the third category is concerned, a standard result says that, for re-
peated games with ¯xed discount factor, the higher the discount factor, the
bigger the set of equilibrium outcomes will be - see for example Abreu, Pierce
and Stacchetti (1990). Dal Bo' (2001) has also show the striking result that
under discount factor °uctuations it is not only the magnitude of the factor
that counts in determining the set of equilibrium outcomes but also its volatil-
ity. Our paper remains in the classical ¯eld where the discount factor is not
variable.

2 Modeling demand uncertainty and market share

This section is aimed at providing some considerations on two issues of basic
importance for the analysis below: the demand volatility and the shape of the
expected demand function.

2.1 Uncertainty

Demand uncertainty has been considered in several works and has been rep-
resented with various functional forms so far. Literature usually models the
inverse demand function rather than the direct one, therefore assuming uncer-
tainty to be relative to the price rather than to the quantity itself. The two main
speci¯cations that emerge from literature consider two kinds of uncertainty: the
additive and the multiplicative one.
Additive uncertainty considers the variable a®ected by uncertainty, say ~k, to be
given by a ¯xed, deterministic value, say k, plus a stochastic shock, say ²:

~k = k + ²

The functional form of the shock ² is what actually determines the un-
certainty. So far literature has considered stochastic shocks with a bounded
support. Porter (1986) has modeled price as the usual indirect demand plus a
shock whose support is bounded so as to avoid negative prices. Reynolds and
Wilson (1998) consider a demand uncertainty due to variability in the intercept
of the demand function with a bounded support; the same assumption is made
by Cason and Mason (1999), where the intercept of the inverse demand func-
tion is a discrete random variable with three possible outcomes (a mean, a high
and a low value), and in Porter (1986), who considers a binary random price
function.
Multiplicative uncertainty has been employed in order to model price variability,
in the classical paper by Green and Porter (1984). Their model considers price
at time t, ept, given by the multiplicative equation ept = µtp(qt). Here p(qt) is the
expected inverse demand at time t and the random variable µt is an i.i.d. random
variable with expected value equal to one and continuous and integrable den-
sity function f . Two observations about this speci¯cation are possible. First,
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notice that this formulation doesn't involve any constraint to the random com-
ponent's support, which wouldn't prevent price from becoming lower than zero.
This problem is actually negligible if the probability of negative prices is small

enough, i.e. if
R 0
¡1 p(qt)f(x)dx is "small". Second, the i.i.d. assumption on µt

allows for a kind of heteroscedasticity in the price generation process. Depend-
ing on the strategy chosen by the ¯rms, i.e. on the total output level qt, the
expected price level in fact is allowed to be changing with the strategies, which
is re°ected in a di®erent variance for the random variable µtp(qt).

2.2 The expected demand function

The expected demand function (from now on: EDF) we consider is the direct
one at each t, qt. As the parametric speci¯cation we consider is assumed to be
stable across time, we will drop the subscript t whenever unnecessary.
Consumers are considered to be in an environment where information on the
two ¯rms' prices is not symmetric and fully available. Let n be the total number
of consumers: we assume they will be divided into two groups: the ¯rst group
will buy from ¯rm 1 and will consist of n1 individuals, and the second, which
buys from ¯rm 2, is of n2 = n¡ n1. It is known that when the two prices are
equal, the market will be symmetrically split between the two ¯rms. If a price
di®erence occurs, for example if p1 < p2, we assume that only a few of the n2
consumers will start buying from ¯rm 1, migrating o group 1. Firm 1 therefore
will increase its market share, but it won't capture the whole market. Such
an EDF will be de¯ned a smooth transition market share, and the assumption
on the smooth increase of the ¯rm's market share as they cut their price will
be referred to as the smooth transition hypothesis, in that we assume that the
consumers' switching from one ¯rm to the other follows a smooth, rather that
discrete patterns such as the Bertrand 0, 1 one or the splitting consumer one.
This assumption may be interpreted and formalized as follows. Let: q(ji) be the
quantity bought by the i -th consumer from the j -th ¯rm, and pj the j -th ¯rm's
price. Then the demand function for each consumer will be

q(1i) = a(1) ¡ b(1)p1
q(2i) = a(2) ¡ b(2)p2

The total demand is

q =

n1X
i=1

q1i +

n2X
i=1

q2i = n1q
1i + n2q

2i (1)

Let now ® = n1=n be the market share for ¯rm 1. If a(1) = a(2) = a=n and
b(1) = b(2) = b=n, then, after some manipulating, (1) turns out to be

q = a¡ b[®p1 + (1¡ ®)p2] (2)

For (2) to be a smooth transition EDF some more structure is required.
In particular, ® is to be speci¯ed so that it can vary smoothly with the price
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di®erence and some other variables, according to the discussion above. This will
be derived in the next Section.

3 The model: assumptions and analytic results

This section is divided into two subsections. The ¯rst presents the hypotheses
on which the model we consider is based; the second contains the analytic results
obtained.

3.1 Assumptions

The hypotheses on which the following analysis and considerations lie fall into
four groups. Speci¯cally, assumptions are relative to:

1. the demand the ¯rms face;

2. the ¯rms' characteristics and behavior and the market structure;

3. the strategies ¯rm implement for each of the possible situations and the
properties of the demand function required for the optimization problems
involved;

4. the distributional assumptions of the demand function, which will charac-
terize its uncertainty.

Before enumerating the assumptions, some preliminary notation - that will
be further developed below - is required. We will refer to the i -th ¯rm's price
and quantity sold at time t as pit and qit respectively, qt being the total demand
qt = q1t + q2t . Firm i 's expected pro¯t at time t will be referred to as ¦it,
while the discounted sum of expected pro¯ts will be denoted as ¦i. Any random
variable X will be indicated as eX and its expected value as X.

1. Demand:

As stated in the previous Section, total demand will be modeled according
to a smooth transition speci¯cation.

(a) the expected total demand at time t follows the speci¯cation of equa-
tion (2) and the smooth transition requirement for ®. Notice that,
by de¯nition, q1t = ®tqt, q2t = (1 ¡ ®t)qt, the same holding for the
random variables;

(b) the ¯rm 1's market share ®t is a function of the di®erence between
the two ¯rms' prices and of the rival's price level:

®t = ®(xt; p2t)

with xt = p1t ¡ p2t. The following further conditions are required:
i. ®t(0; p2t) =

1
2 for any p2t;
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ii. @
@xt
®t · 0 for any xt; p2t;

iii. @2

@2xt
®t =

½
> 0 for xt > 0
< 0 for xt < 0

;

iv.
lim ®t(xt; p2t) = 0

xt ! +1
lim ®t(xt; p2t) = 1

xt ! ¡1

v. @
@p2t

®t =

½
> 0 for xt > 0
< 0 for xt < 0

;

vi.
lim ®t(xt; p2t) = I[xt < 0]

p2t ! c+

with c being the marginal cost for each ¯rm (see below for fur-
ther details) and I[¢] an index function assuming value 1 if the
condition in braces holds and 0 otherwise. Notice that clearly
p1t; p2t 2 (c;+1).

The hypotheses above include some of the functional requirements for the
market share; other requirements, that enter the ¯rms' optimization prob-
lems, will be reported below. A brief comment on them is as follows: as-
sumption i states that when there is no di®erence between the ¯rm prices,
the market demand will be split between the two ¯rms, regardless of the
price level, which a®ects anyway the total demand level; assumption iii is
a symmetry condition around xt = 0 and states that the marginal e®ect of
a price cutting is decreasing (though always positive); assumptions v and
vi are required to obtain certain results for the competition equilibrium
and they will be made clearer in the third subsection. In Appendix I we
will report some further results from simulation on the market share ®.

2. Firms' behavior and market structure:

This subsection is aimed at modeling the ¯rms' behavior and the environ-
ment where decisions are made.

(a) ¯rms are assumed to have the same, linear cost structure. If Ci is
the total cost of ¯rm i, then Cit = cqit, c being the marginal (and
average) cost;

(b) ¯rms are risk neutral and they maximize their expected pro¯t, inde-
pendently of the level of the uncertainty;

(c) ¦1t and ¦2t are given respectively by:

¦1t = ®t(p1t ¡ c)qt (3)

¦2t = (1¡ ®t)(p2t ¡ c)qt (4)

(d) each ¯rm knows its own expected outcomes for any strategy.
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Assumption b) is a common representation of risk neutrality - see for
example Green and Porter (1984); assumption d) means that each ¯rm
knows its expected pro¯t under collusion, competition and in the cases of
its own or the rival's deviation. What ¯rms do not know is the strategy
currently implemented by their competitor.

3. Firms' strategies:

In this subsection, we specify the single-period component game G for
our discounted duopoly supergame. In particular, we formalize the ¯rms'
strategies under various circumstances and the rules according to which
each ¯rm reverts from one strategy to another. In the following lines, and
in the rest of the paper as well, we will denote at some times the density
function for a generic random variable eX as eX itself, whenever this will
not be ambiguous.
The possible strategies ¯rm 1 (and, by symmetry, ¯rm 2 as well) may
implement are: collusion, deviation while the other ¯rm is still playing
according to the collusion rule and competition. The following assumption
describe a situation where a ¯rm keeps respecting the collusion price until
it doesn't notice a (possible) deviation. Firms cannot observe the quantity
demanded at each period. This results in employing a tail test.

(a) under collusion the two ¯rms will maximize, at any t, the joint pro¯t
of the industry w.r.t. their prices which, by symmetry, will be equal:

max (¦1t +¦2t)
p1t; p2t
s.t. p1t = p2t

(5)

The solution to this maximization problem will be referred to as pc

and ¦c. Solutions are of course the same at each t, which justi¯es
our dropping the subscript t ;

(b) in case of deviation, the price cutting ¯rm (say 1), will maximize its
own pro¯t w.r.t. its own price assuming the other ¯rm (say 2) will
maintain its price to the optimal collusion level pc. 1's optimization
problem is hence as follows:

max ¦1t(p1t; p
c)

p1t
(6)

The solution to this problem will be referred to as pd1 and ¦
d
i . Here

too the optimum remains stable across time;

(c) when there is competition between the two ¯rms, each will employ
the well-known reaction function that takes into account of the other
¯rm's price choice. The two maximization problems whose solutions
are respectively 1's and 2's reaction function are as follows:
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max ¦1t(p1t; p2t)
p1t

(7)

max ¦2t(p1t; p2t)
p2t

(8)

Solutions will be symmetric - i.e. the same for either ¯rm - and
denoted as pco and ¦co.

(d) at each t, both ¯rms will try and detect whether there has been a
secret price cut in the previous period by considering their own pro¯t
in t¡ 1. The critical set of own pro¯ts that trigger the reversion to
competition is [0; b¦] - i.e. ¯rm i will react to deviation if ¦it¡1 2
[0; b¦]. We will refer to the set upper bound b¦ as the threshold pro¯t.
Being it impossible to observe either the rival's behavior or qt¡1, each
¯rm employs a tail test - see Porter (1983) and Porter (1986). It is
in fact impossible to observe the rival's behavior or the total demand
level at t¡1. The tail test triggers competition regardless of whether
pro¯t decreasing is due to the other ¯rm's cheating or to a demand
shock, as in Green and Porter (1984).

(e) ¯rms do not consider review strategies: the threshold pro¯t at time
t is in fact independent of pro¯ts prior to t¡ 1.

The last assumption is worth commenting further. The cheating detec-
tion tail test suggested above consists of choosing, at each t, whether to
keep ¯xing the collusion price pc and producing the collusion output, or
to revert to competition on the ground of a threshold level of the own
pro¯t. Such a strategy is similar to the one analyzed by Abreu, Pearce
and Stacchetti (1986), where the control variable is the ¯rm's own price.

4. Distributional assumptions:

(a) the total demand eqt is assumed to be a normally distributed random
variable, with expected value qt and variance ¾

2. We will denote this
as eqt » N [qt; ¾2];

Notice that the distributional assumption, under no restrictions such as
the i.i.d. requirement, allows for heteroscedasticity. Actually, assumingeqt as a normally distributed variable allows for both the additive and
multiplicative representation of the uncertainty.
We will say that uncertainty is additive if one considers the demand eqt
expressed as

eqt = qt + ²t (9)

where ²t » N [0; ¾2].
Multiplicative uncertainty can be represented considering the random vari-
able eµ » N(1; ¾2) and, for any t, the relationship
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eqt = µqt (10)

This relationship will allow for heteroscedasticity due to di®erent strate-
gies, even though no variations across time are allowed, due to the i.i.d.
requirement. According to the ¯rms' behavior, in fact, total quantity will
assume di®erent values which will cause the variance to change. For sim-
plicity, we will consider both ²t and eµ as i.i.d. variables.
Notice that in the additive case, demand uncertainty is assumed to be ho-
moscedastic not only across time, but also with strategies. Regardless of
the ¯rms' behavior, in fact, the variance of the total demand will be a con-
stant, equal to ¾2. Not withstanding this, the pro¯t is still heteroscedastic
across time, but homoscedastic w.r.t. the strategies. Due to this, the ap-
parent drawback of additive representation is overcome. Hence, in the
rest of the paper we will employ the additive form, which is slightly eas-
ier from the algebraic viewpoint. A subsection will be dedicated to the
multiplicative case, mostly in order to show that employing the additive
speci¯cation instead of the multiplicative one may be done almost w.l.o.g.
Last, notice that making variance - and therefore uncertainty - vary across
time is possible by removing the i.i.d. requirement for the random vari-
ables ²t or eµ. One might want to model an uncertainty which is sensitive
to its own past values. The i.i.d. hypothesis seems to be quite strict:
demand variability could follow for instance a more complex process, such
as a martingale, as suggested in a note in Green and Porter's article. We
will limit our analysis to the i.i.d. case.

3.2 The model

This subsection is organized as follows. First, we present some theorems and
lemmata in order to give the solutions for the model at time t, i.e. for the single
period component game G. Second, we model the in¯nitely repeated gameG(±),
de¯ned by the component game G and the discount factor ± 2 (0; 1). Third, we
analyze the circumstances under which collusive solution is the equilibrium one.
We remind that deviation from collusion will be studied w.r.t. ¯rm 1, being the
opposite case (1 colluding and 2 deviating) exactly symmetric.

3.2.1 Theorems and other results for the static game

THEOREM 3.1

Let qc be the total quantity under collusion. The solution of problem (5) is

qc =
a¡ bc
2
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8<:
pc = a+bc

2b
®c = 1

2

¦c = (a¡bc)2
8b

(11)

and it holds that

e¦c » N [¦c; 1
4
(
a¡ bc
2b

)2¾2] (12)

THEOREM 3.2

Let ®d be ¯rm 1's market share and qd the total quantity under deviation.
If the following optimum uniqueness condition holds

@
@p1
¦1 = ®0(p1 ¡ c)fa¡ b[®p1 + (1¡ ®)pc]g+ ®fa¡ b[®p1 + (1¡ ®)pc]g+

+®(p1 ¡ c)(¡b®¡ b®0p1 + b®0pc)6= 0 for any p1 6= pd1
(13)

and if

®0(0) < ¡ b

2(a¡ bc) (14)

then the unique solution for the optimization problem pd1 is always a maxi-
mum and the following relationships hold:

qd = a¡ b[®dpd1 + (1¡ ®d)pc]

8<: p
d
1 < p

c

¦d1 = ®
d(pd1 ¡ c)qd > ¦c

®d > 1
2

(15)

¦d2 = (1¡ ®d)(
a¡ bc
2b

)qd < ¦c (16)

and besides

e¦d2 » N [¦d2; (1¡ ®d)2(a¡ bc2b
)2¾2] (17)

THEOREM 3.3

If

®0(0; p2) < ¡
[12 (a¡ bp2)¡ 1

4b(p2 ¡ c)]
(p2 ¡ c)(a¡ bp2) for any p2 > c (18)

then the solution for the problem (7)-(8) is pco = c, and hence pro¯ts, for
both ¯rms, will be identically and deterministically equal to zero.
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Proofs for the three Theorems are in Appendix II.

Notice that solution for problems (7) and (8) could be pco = c even under
other competition regimes without imposing restriction (18). It would in fact
su±ce to suppose that, after detecting deviation, ¯rm 2 chooses Bertrand com-
petition, setting its price equal to p2 = c. Firm 1 would then have zero pro¯ts
regardless of its response: any p1 > c would in fact result in a zero market share,
after condition vi.

3.2.2 Results for the dynamic game

Before introducing the main results concerning the in¯nitely repeated game,
some preliminary notation is required:

1. the discount factor will be denoted as ± 2 (0; 1);
2. the probability that ¯rm 2's pro¯t is be lower than the threshold pro¯t b¦
under collusion will be denoted as Ác and is equal to

R b¦
¡1 e¦c(x)dx. We

will refer to
R +1b¦ e¦c(x)dx as bÁc;

3. the probability that ¯rm 2's pro¯t will be lower than the lower bound
when ¯rm 1 deviates from collusion while 2 doesn't will be referred to as

Ád and is equal to
R b¦
¡1 e¦d2(x)dx. We will denote R +1b¦ e¦d2(x)dx as bÁd.

The theorems presented above provide a solution for each of the three prob-
lems in the previous subsection. With them, at any t, we know what the possible
outcomes of the industry will be depending on the ¯rms' behavior. Through
them, it's immediate to understand the outcomes of the repeated game.
The problem ¯rm 1 faces is whether to collude or to cheat. The decision it
will make will be based on the discounted sum of the expected two payo®s
corresponding to either alternative, following a framework that has been quite
popular in literature. As pointed out in the previous subsection, ¯rm 2 will
begin producing and pricing at collusive level and continue to do so until it
realizes, through the tail test, ¯rm 1 has cheated. If ¯rm 2's pro¯t should fall
below the threshold level b¦, then it will revert forever to competition. Modeling
this may be sketched as follows.
At time t = 0, ¯rm 1 will decide whether to collude or deviate, knowing 2 is
colluding. Results will be obtained for the ¯rst alternative, being the second
analogous. If ¯rm 1 and 2 both collude, the problem they will face will be (5).
Hence ¯rm 1 will earn ¦c at time t = 0. At time t = 1, ¯rm 1 will earn ¦c i® at
t = 0 2 has earned enough to think no cheating has taken place, i.e. i® ¦c > b¦;
otherwise, the industry will revert to competition and ¦11 = 0. The probability
¯rm 2 will earn enough given 1 colludes is bÁc. If the game should ¯nish after
time t = 1, the expected pro¯t ¯rm 1 obtains is

¦1 = ¦
c + ±bÁc¦c + ±Ác0 = ¦c + ±bÁc¦c
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It is now immediate to extend the result given above to the case of in¯nite
iterations of the game and to both collusion and deviation cases:

Lemma 3.1 Under collusion, ¯rm 1's discounted expected pro¯t is equal to:

¦c1 =
¦c

1¡ ±bÁc
Under deviation, 1's discounted sum of expected pro¯ts is:

¦d1 =
¦d

1¡ ±bÁd
Hence, given the game is repeated an in¯nite number of times, ¯rm 1 will

deviate i®

¦d

1¡ ±bÁd > ¦c

1¡ ±bÁc (19)

The following section is aimed at analyzing the conditions under which col-
lusion is found to be more pro¯table than deviation.

4 Analytical results and simulation

The analytical results we consider here are about the roles played by demand
uncertainty, i.e. variance ¾2, and the threshold pro¯t level b¦.
It is well known that in order for collusion to be preferred to cheating, the

discount factor ± has to be large enough. Solving out condition (19) leads to
the following inequality

± >
¦d1 ¡¦c

¦d1
bÁc ¡¦cbÁd ´ ±¤ (20)

Relationship (20) states the well known result according to which unless the
discount factor is higher than the threshold level ±¤, deviation will be preferred
to collusion as a solution of the supergame G(±). Anyway, relationship (20)
considers a deeper result. The threshold ±¤ is in fact a function of several
variables, and particularly of ¾2 and b¦: ±¤ = ±¤(¾2; b¦): the threshold level ±¤
is hence a frontier, in the (±; ¾2; b¦) space, that divides the whole space into a
collusion and deviation region.
Now, consider the following well-known results from probability analysis, that
hold for a normally distributed random variable eY » N(¹; ¾2):
1.

@

@¾2

Z +1

x

eY (t)dt = ½> 0 if t > ¹
< 0 if t < ¹

(21)
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2.
lim

R +1
x

eY (t)dt = 1
2

¾2 ! +1
(22)

3.
lim

R +1
x

eY (t)dt = I[x > ¹]
¾2 ! 0

(23)

Consider also the following, preliminary, notation:

¿i =

½
1
4 (
a¡bc
2b )

2 if i = c

(1¡ ®d)2( a¡bc2b )
2 if i = d

° =
¦c(b¦¡¦d2)p

¿c

p
¿d

¦d1(
b¦¡¦c)

Then:

THEOREM 4.1

For the supergame G(±), if the following integral inequality holds

bÁc¦d1 ¡ bÁd¦c > 0 (24)

then:

1. the threshold level ±¤ is continuous and di®erentiable w.r.t. ¾2;

2. for any b¦,
lim ±¤ = 2

¾2 ! +1

3. if b¦ 2 (¦d2;¦c),
(a)

lim ±¤ = ¦d1¡¦c
¦d1

¾2 ! 0+

(b) ±¤ is monotonically increasing in ¾2, i.e.

@

@¾2
±¤ ´ ±¤¾ > 0 for any ¾2

(c) there exists a d > 0 s.t.½
±¤ < 1 if ¾2 2 [0; d)
±¤ 2 (1; 2) if ¾2 2 (d;+1)

14



4. if b¦ < ¦d2 - i.e. if the tail test is "mild" - consider the following two
inequalities:

(b¦¡¦c)p
¿c

<
(b¦¡¦d2)p

¿d
(25)

¦d1(b¦¡¦c)p
¿c

<
¦c(b¦¡¦d2)p

¿d
(26)

Then it holds that:

(a)
lim ±¤ = 1

¾2 ! 0+

(b) if (25) doesn't hold and (26) does, then ±¤ > 1 for any ¾2 2 (0;+1);
(c) if (25) holds or, alternatively, if neither (25) nor (26) hold, then

there always exists an e > 0 s.t.½
±¤ < 1 if ¾2 2 [0; e)
±¤ 2 (1; 2) if ¾2 2 (e;+1)

Proof is in Appendix II.

Theorem 4.1 states that:

1. the deterministic case, where the outcomes of the ¯rms' strategies are
observable, implies collusion to be possible either according to the well-
known condition of result 3.a) or never, after result 4.a), when the tail
test is mild and hence cheating is never detected and punished. A mild
tail test under deterministic demand implies then that colluding is never
rational;

2. the other results - 3.b), 3.c), 4.b), 4.c) - all state that for high demand
volatility collusion will never be sustainable.

The following graph illustrates the two possible shapes of the function ±¤,
denoted as d¤, as ¾, denoted as s, varies:
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Simulation was made assuming the following data:

b¦ ¦c ¦d1 ¦d2 ¿c ¿d
d1 900 1000 1200 600 100 16
d2 400 1000 1200 600 100 16
d3 400 1000 1300 660 100 16

We remind that ±¤ is also a function, among the other parameters, of the
threshold pro¯t b¦, constrained to be 2 [0;¦c]. This means that one may wonder
what happens to the frontier when b¦ is changed.
Analytical results concerning ±¤'s dependence on b¦ can be obtained but this
would be rather tedious, if easy. Anyway the following Lemma, which is only a
partial response to the problem, holds:

Lemma 4.1

For the frontier ±¤ = ±¤(b¦), let
@

@b¦±¤ = ±¤b¦
16



¾2k1 =
(¦d2 ¡¦c)2

2(¿c ¡ ¿d)log[ 1° ]

¾2k2 =
(¦d2 ¡¦c)2
2¿clog[

1
° ]

Then, if

¦d1p
¿c

p
¿d
¦c

> 1 (27)

the following results hold:

1. ±¤(b¦) is continuous and di®erentiable w.r.t. b¦;
2. for the partial derivative ±¤b¦:

(a) if ¾2 > ¾2k1, then ±
¤b¦ < 0 for any b¦;

(b) if ¾2k2 < ¾
2 < ¾2k1, then there exists a m1 2 (0;¦d2) s.t.

±¤b¦ =
½
> 0 if b¦ > m1

< 0 if b¦ < m1

(c) if ¾2 < ¾2k2, then there exists a m2 > ¦
d
2 s.t.

±¤b¦ =
½
> 0 if b¦ > m2

< 0 if b¦ < m2

Proof is omitted and, together with the other analytical results concerning
±¤b¦. The Lemma states that, under condition (27), for any ¾2 there is an "opti-
mal" level for the value of the threshold pro¯t b¦. Here "optimal" means that
this is the threshold level that makes the collusion equilibrium set the widest.
Lemma 4.1 states that the higher volatility, the less con¯dent a ¯rm can be
when trying to detect cheating via a tail test (and vice versa), and hence when
uncertainty is high, the best way to try and prevent from deviating is to em-
ploy a mild tail test. This lowers the threshold level towards zero as volatility
increases.
If condition (27) does not hold, anyway, some further structure is required, and
results are possibly the opposite as Lemma 4.1. In this case, we will provide
results from simulation, in the following graph. It represents ±¤'s ¯rst derivative
w.r.t. b¦ - denoted as d0 - as a function of b¦ itself for several di®erent levels of
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¾, referred to as s. Notice that condition (27) doesn't hold:
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s1=10
s2=50
s3=70

Results have been obtained employing the following data:

b¦ ¦c ¦d1 ¦d2 ¿c ¿d
¾21 10 1000 1200 600 7 1
¾22 50 1000 1200 600 7 1
¾23 70 1000 1200 600 7 1

The graph shows that as ¾2 increases, the "optimal" threshold pro¯t de-
creases. This seems to con¯rm the initial intuition given by Theorem 4.2, ac-
cording to which the more demand is volatile, the more employing a mild tail
test pays in order to make collusion more sustainable. Actually, when condition
(27) doesn't hold, there are some regions in the parameters space where our
conclusions don't hold. This happens for instance whenever ¿i is very large.
These and other results from simulation are available upon request.

4.1 Results under multiplicative uncertainty

If demand follows the speci¯cation referred to as (10), then the following Theo-
rem - viewable as a generalization of the results obtained so far for the additive
case - holds:
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THEOREM 4.2

If the total demand qt follows, for any t, the multiplicative uncertainty spec-
i¯cation as in equation (10), then (dropping the time subscript t):

1. c¦c » N [¦c; ¾2(¦c)2];
2. c¦d1 » N [¦d1; ¾2(¦d1)2];
3. c¦d2 » N [¦d2; ¾2(¦d2)2],
with ¦c, ¦d1, ¦

d
2 as in Theorems 3.1 and 3.2. Moreover:

1. ¿c > ¿d always;

2. equation (24) always holds.

Moreover, the ¯rst three points of Theorem 4.1 hold. Also, if b¦ < ¦d2:
1. relationship (25) will always hold ;

2. there always exists an e > 0 s.t.½
±¤ < 1 if ¾2 2 [0; e)
±¤ 2 (1; 2) if ¾2 2 (e;+1)

Also, for any ¾2, there exists a b¦¤ > 0 s.t. b¦¤ = argminf±¤(b¦)g, with b¦¤
monotonically increasing with ¾2.
The Proof is sketched in Appendix II. The results obtained here are almost

the same as the ones holding for the additive uncertainty case, and hence no
further comment is required. The only striking result, which is the opposite as
what stated in Lemma 4.1, is that now the "optimal" threshold level increases
as volatility increases. This means that the higher volatility, the stricter the tail
test is required to be to try and prevent the rival from cheating.

5 Conclusions

This paper has developed a dynamic model of collusion under demand uncer-
tainty, focusing on the role of demand volatility in determining the sustainability
of tacit collusion. The work presents two main issues:

1. modeling market share under the smooth transition hypothesis;

2. deriving theorems aimed at establishing how market volatility a®ects tacit
collusion.
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Notice that the structure of the model is such that the two issues are actually
independent of each other. Modeling market share in a di®erent way would in
fact result in a change in Theorems 3.1-3.3, but it wouldn't change the results
(or, rather, their structure) provided by Theorems 4.1, 4.2 and Lemma 4.1.
As far as market share is concerned, to our knowledge this is the ¯rst attempt
to model it under the smooth transition framework. Such a speci¯cation is
based on a question that arises from the Italian experience of the telephonic
service market. There exist in fact several companies selling the same product
at di®erent prices: the Bertrand framework, where the low-price ¯rm gets all
the market, seems inadequate to describe this situation.
As to the second set of conclusions, a central result in the model is that volatil-
ity a®ects both tacit collusion sustainability (via the impact on the discount
factor) and the optimal tail test as well. We have shown that under quite gen-
eral assumptions increases in volatility result in a narrower possibility for tacit
collusion to be possible. In a game theoretic framework, this would mean that
the equilibrium would be competition, i.e. zero pro¯t for both ¯rms. Also, we
have derived the quite surprising result that at some times collusion is facili-
tated when deviations detection rule is mild, i.e. when the threshold pro¯t is
lower than the pro¯t in case of the rival's deviation. This will hold more and
more likely as uncertainty increases.
Actually, a possible extension of our assumptions is to allow ® to be time-
varying, i.e. to increase over time with a speed depending on the price di®erence
x(t):

®0 = ®0(x; p2t; t)

This would lead to an optimal control problem, where the ¯rm's objective
would be to maximize, in case of deviation, its expected sum of discounted
pro¯ts w.r.t. a vector of optimal prices changing over time. Such a problem
remains for future work.
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Appendix I: smooth transition market share
This Appendix considers some results from the simulation of the market share ®; this is modeled,
as in the rest of the paper, as being ¯rm 1's market share.
We employed the following functional form:

®(x; p2) =
1

2
¡ 1

¼
arctanfmx[1 + °exp(

±

(p2 ¡ c)2
)]g (28)

It is immediate to verify that this functional speci¯cation satis¯es all the properties required.
Moreover, though less immediate, the optimum uniqueness condition is satis¯ed as well.
Condition (13) needs for some further comments. It is immediate to verify that a wide class satisfy-
ing this uniqueness requirement is the family of quasi-convex functions. Imposing quasi-convexity
to ¦d1 would then be enough in order to ensure there is a unique critical point. Condition (14) and
equation (5) - which will be presented in Appendix II when proving Theorem 3.2 - will then ensure
this critical point to correspond to an x < 0. Its being a maximum would be a direct consequence
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of quasi-convexity. Notice also that - if ¦ is the pro¯t function and ¦0 its ¯rst derivative w.r.t. the
price - the su±cient condition for quasi-convexity based on the bordered Hessian here is ine®ective.
It is straightforward to prove that this condition would work i® ¡(¦0)2 = 0 had only one solution,
which is indeed what required by relationship (13).

The following graph represents the pro¯t ¦d1 , denoted as P as a function of the price di®erence x,
employing the functional form (28) chosen for ®. Notice how this functional speci¯cation for ® does
result in a quasi-convex pro¯t function:
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Notice that the parameters m, ±, ° are used to control the results from simulation. Also, there
is actually no need of squaring ¯rm 2's markup. The square power is to be regarded as another
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parameter employed to control the simulation.
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Last, we point out that our smooth, continuous representation for the market share ® embeds
the case of splitting consumers. The splitting consumers case in is fact a collection of points in
the (x, ®) space, and by manipulating the parameters of the functional speci¯cation of ® (provided
they are enough), this collection of points can be embedded in the continuous space de¯ned by ®
itself.

Appendix II: proofs of theorems and lemmata

Proof of Theorem 3.1
The result of problem (5) is standard in tacit collusion literature - see for example Koutsoyiannis
(1992) or Tirole (1988).

Proof of Theorem 3.2
Theorem 2.2 considers two results: a non-closed form expression for qd, and results on the nature of
the price cutting, i.e. whether ¯rm 1, under deviation, chooses to reduce or increase its own price
w.r.t. the collusive solution pc. Proof will be aimed at showing the latter.
The ¯rst derivative of ¯rm 1's pro¯t w.r.t. price p1 is equal to

@
@p1

¦1 = ®0(p1 ¡ c)fa¡ b[®p1 + (1¡ ®)pc]g+ ®fa¡ b[®p1 + (1¡ ®)pc]g+
+®(p1 ¡ c)(¡b®¡ b®0p1 + b®0pc)

and it is a continuous function being it a transform of the continuous functions ® and its ¯rst
derivative. Optimum uniqueness ensures it has only one zero. Being:
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lim @
@p1

¦1 = ®(c)fa¡ b[®c+ (1¡ ®)pc] > 0g
p1 ! c+

and

@

@p1
¦1j p1=pc = ®

0(0)(a¡ bpc) + 1

2
(a¡ bpc) + 1

2
(¡1
2
b) < 0 (29)

due to condition (14), the zero of the ¯rst derivative must be between c - the lower bound for

p1 - and p
c; hence, pd 2 (c; pc) and therefore, by de¯nition of ®, ®d > 1

2 . This, together with rela-
tionship (29) which states the suboptimality of pc for problem (6), proves this part of the theorem.
Last, notice that the industry's total pro¯t is at most equal to 2¦c. Hence, ¦1+¦2 · 2¦c always.
In case of deviation, Theorem 3.2 ensures that ¦d1 > ¦c, and therefore ¦d2 < ¦c.

Proof of Theorem 3.3
Following the same passages in the previous proof, it is immediate to extend the results of The-
orem 2.2 to the case of any p2 > c. Hence, for any p2 > c, the solution for problem (7) will be
c < pco1 < p2. The same will hold for problem (8) by symmetry. This means that for any p1 > c
and p2 > c, the two reaction functions pco2 (p1) and p

co
1 (p2) will not intersect.

When p2 ! c+, a well-known result of limit theory states that pco1 = c - see Pagani and Salsa (1994)
for details. As the same will hold for pco2 , the two reaction functions will have a common point in
c. This will be the only intersection point and therefore the two reaction functions will determine
the solution pco1 = pco2 = pco = c. Q.E.D.

Proof of Theorem 4.1
Recall the de¯nition of the threshold level ±¤ in equation (20):

¦d1 ¡¦c

¦d1bÁc ¡¦cbÁd
Consider then the following variables:

eÁi¾ = @bÁi
@¾2

=
1

2
p
2¼(¾2)

3
2

b¦¡¦ip
¿i

expf¡ 1

2¾2
(b¦¡¦i)2

¿i
g

with

½ = ¡ (b¦¡¦d2)
2

2¿d
+
(b¦¡¦c)2

2¿c

The continuity and di®erentiability w.r.t. ¾2 follows from eÁi and eÁi¾ 's being continuous ±¤'s
being a continuous transform via equation (24).
Result 2) follows from equation (22).

If b¦ 2 (¦d2 ;¦c), then after equation (23)

lim eÁc¾ = 1
¾2 ! 0+

lim eÁd¾ = 0
¾2 ! 0+

This proves result 3.a). Noticing that eÁd¾ > 0 and eÁc¾ < 0, given that

±
¤
¾ =

¦d1 ¡¦c

(eÁc¦d1 ¡ eÁd¦c)2 (eÁd¾¦c ¡ eÁc¾¦d1) = !
2
(eÁd¾¦c ¡ eÁc¾¦d1)

result 3.b) follows immediately. Continuity and monotonicity between
¦d
1
¡¦c

¦d
1

< 1 and 2 imply

- via the zeroes theorem - that there must be one only point between 0 and +1 s.t. ±¤ = 1. This,
together with increasing monotonicity, proves result 3.c).

If b¦ < ¦d2 , after equation (23)
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lim eÁi¾ = 1
¾2 ! 0+

result 4.a) follows immediately. Being moreover eÁi¾ > 0, the sign of ±¤¾ is ambiguous, in that

it may have or not some zeroes depending on the solutions w.r.t. ¾2 of the equation ±¤¾ , which is
equivalent to

° exp(
½

¾2
) = 1

If both (25) and (26) hold, then the equation doesn't admit a solution in R+, which means
±¤¾ > 0 always. This proves result 4.b) following the same argument as for result 3.c). Otherwise,
monotonicity implies a unique, positive solution which may be either a minimum or a maximum for
±¤. Being

lim ±¤¾ = 0+

¾2 ! +1

always, provided either (25) or (26) doesn't hold, it follows that the only zero for the ¯rst
derivative ±¤¾ must be a minimum. Having ±¤ a minimum between 1 and 2, result 4.c) follows by
continuity.
Q.E.D.

Proof of Theorem 4.2
The Proof here is just sketched, a full version being available upon request but easily obtainable by
the proof of Theorem 4.1.
Notice ¯rst that ¿c = (¾¦c)2 > ¿d = (¾¦d2). Asb¦¡¦c

¾¦c
<
b¦¡¦d2
¾¦d2

it is straightforward to verify that bÁc > bÁd. This implies (24) to hold always, and particularly
for any level of the threshold pro¯t b¦.
The extension of point 4 of Theorem 4.1 is immediate if one considers that inequality (25), which
here is

fb¦¡¦cp
¿c

= (
b¦
¦c

¡ 1)g < fb¦¡¦d2p
¿d

= (
b¦
¦d2

¡ 1)g

will always hold.
Last, the extension of Lemma 4.1 follows from ¯nding out the minimum for ±¤b¦. This is a function
of ¾, and its ¯rst derivative w.r.t. ¾2 is found to be always higher than zero.
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