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Abstract

In this paper, a stochastic frontier production model is estimated
on panel data, and technical inefficiency indices are computed for
Tunisian manufacturing Þrms over the 1983-1993 time period. The
most commonly used one-sided distributions of the inefficiency er-
ror term are speciÞed, namely the truncated normal, the half-normal
and the exponential distributions. A generalized version of the half-
normal, which does not embody the zero-mean restriction, is also ex-
plored. For each distribution, the likelihood function and the coun-
terpart of Jondrow et al. (1982) estimator of technical efficiency are
explicitly stated. Based on our data set, formal tests lead to a strong
rejection of the zero-mean restriction embodied in the half normal
distribution. Our main conclusion is that the degree of measured in-
efficiency is very sensitive to the postulated assumptions about the
distribution of the one-sided error term. The estimated inefficiency
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indices are, however, unaffected by the choice of the functional form
for the production function.
Keywords: Stochastic frontier; Farrell�s technical inefficiency; Unbal-
anced panel data; Composed disturbance error; One-sided distribu-
tion.

1 Introduction

The purpose of this paper is to estimate Þrm-speciÞc levels of technical in-
efficiency using a panel data of Tunisian manufacturing Þrms. This panel
data set covers the time period 1983-1993. Our methodology applies the
stochastic frontier analysis which became popular in the recent literature.
The basic difference between stochastic frontier model and the standard

econometric model is that the former adds a one-sided distributed random
variable to the usual stochastic disturbances term. This supplementary ran-
dom variable is intended to take into account the amount by which observed
output is less than potential output. This amount is a measure of technical
inefficiency in the sense of Farrell (1957).
Econometric estimation of Þrm-speciÞc technical inefficiency raises two

problems. The Þrst problem relates to the appropriateness of the postulated
distribution for the one-sided error term, particularly if maximum likelihood
estimation method is to be used. Although an extensive literature had been
devoted to this question, the fact remains that there is little guidance as
to the appropriate speciÞcation of the one-sided distribution. A sensitivity
analysis of the results to alternative distributional assumptions must then be
conducted.
Once the parameters of the model have been estimated, the second prob-

lem is how one can extract the inefficiency component from the estimated
composed error term. Jondrow et al. (1982) showed that Þrm-speciÞc esti-
mates of inefficiency can be obtained through the distribution of the ineffi-
ciency term conditional on the estimate of the whole composed error term.
The Jondrow et al. estimator is easily seen to be inconsistent when used
with a single cross-section. Consistency may, however, be achieved using a
panel data of Þrms covering a sufficiently long time period.
In our empirical work we consider three alternative distributions for the

one-sided error term, which are most commonly used by econometricians.
These distributions are the truncated normal, the generalized half-normal
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and the exponential distributions. The term �generalized� is used here to
designate the distribution of the absolute value of a non-zero mean normally
distributed variable. We are not aware of any empirical study which has used
this distribution of which the standard half-normal (zero mean) is a special
case.
This paper is organized as follows. A brief discussion of some measure-

ment methods of technical inefficiency in the context of the stochastic frontier
model is presented in the following section. In section 3, explicit formulas for
the log-likelihood functions and for the estimators of Þrm-speciÞc inefficiency
are given for the three distributions stated above, in the context of (unbal-
anced) panel data. Section 4 presents data description and our empirical
results. The main conclusions are summarized in section 5.

2 Stochastic Frontier Model and Technical
Inefficiency

The stochastic frontier model was introduced by Aigner, Lovell, and Schmidt
(1977) and by Meeusen and Van der Broeck (1977) in order to avoid the
shortcomings inherent to the deterministic frontier model1. It assumes a
composed error term reßecting both the usual statistical random noise and
technical inefficiency. Assuming a log-linear form, the stochastic frontier
model may be deÞned as follows

yit = α+ xitβ + εit, (1)

where yit and xit denote, respectively, the logarithms of observed output and
of a row vector of inputs for the i th Þrm in the t th time period; α and β
are the unknown parameters to be estimated and εit is the stochastic error
term which is assumed to behave in a manner consistent with the stochastic
frontier concept, i.e.

²it = vit − ui. (2)

1The deterministic frontier model assumes only one-sided error term reßecting tech-
nical inefficiency, so that any statistical noise due to misspeciÞcation of the model or
measurement error in the variables will be translated into inefficiency.
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The disturbances vit consist of random shocks in the production process be-
yond the Þrms control and they are taken to be independent and identically
distributed (i.i.d.) across observations as N (0, σ2

v). The random variables ui,
which are assumed to be non-negative, reßect the shortfall of actual output
from the efficient frontier; they are also assumed to be i.i.d. as well as in-
dependent of vit and of factor inputs. With this speciÞcation, the quantity
eα+xitβ+vit speciÞes the efficiency stochastic production frontier as deÞned by
Aigner et al. (1977), while the case vit = 0 leads to the deterministic ef-
Þciency frontier model in Aigner and Chu (1968). In either case technical
efficiency for each unit is measured by TEi = e−ui, which, as ui ≥ 0, lies
between zero and one.
The strength of the stochastic frontier is that it provides a method to

separate random disturbances caused by inefficiency in a Þrm�s behavior from
other uncontrolled random shocks. However, given that ui is not observable,
direct estimation of TEi is not possible even when α and β are known.
Computation of TEi requires prior estimation of the non-negative error

ui, i.e. a method of decomposition of the entire error term ε into its two
individual components. Alternative solutions to this problem have been pro-
posed in the recent literature, depending on whether we assume a particular
distribution for ui or not2. However, such a decision is heavily conditioned
by the nature of inefficiency we are interested in, i.e. relative or absolute. If
inefficiency is to be deÞned relative to a completely efficient base Þrm, then
no distributional assumption for ui is needed. In this case consistent residual-
based estimation methods for Þrm-speciÞc inefficiency may be used as sug-
gested by Greene (1980) in the case of a single cross-section, and Cornwell
et al. (1990) for panel data. If, however, absolute Þrm-speciÞc inefficiency is
to be computed, then prior assumption on the distribution of ui cannot be
avoided. But, in such a case, only the population mean of technical ineffi-
ciency, i.e. 1−E(TEi), may be calculated using the estimated parameters of
the maintained distribution. IdentiÞcation of absolute Þrm-speciÞc technical
inefficiency is still impossible.
To by-pass this problem, Jondrow et al. (1982), and Kalirajan and Flinn

(1983) propose to use the conditional expectation of ui, given the entire error
term εi, as an estimator of Þrm-speciÞc technical inefficiency. This is very
attractive since such an estimator is also the best predictor of ui, i.e. the

2Greene (1994) offers an excellent survey of these methods. He also discusses the more
general case where technical inefficiency is time-variant. See, also Cornwell et al. (1990).
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minimum mean-squared-error predictor. However, it must be noted that, in
the case of a single cross-section, this estimator is not consistent. This is
because, while εi contains only imperfect information about ui, the variance
of the conditional distribution of ui given εi is independent of sample size.
The variability of vi remains no matter how large N is. This deÞciency is
resolved when panel data is used because the irrelevant variability contained
in εit, i.e. vit, is being averaged over the number of periods T . So, consistent
estimates of Þrm-speciÞc inefficiency may be obtained when T goes to inÞnity.
Extension of Jondrow et al. predictor for use with panel data can be found
in Battese and Coelli (1988), Kumbhakar (1988), and Battese, Coelli and
Colby (1989).
Much of the criticism addressed to the estimates of absolute technical in-

efficiency relate to the plausibility of the distributional assumption that must
be made for the one-sided error term. Empirical studies, as in Greene (1980,
1994) and Stevenson (1980) among many others, revealed that different spec-
iÞed distributions do give different estimates of technical inefficiency. In some
cases the estimates of the input coefficients were also affected. Without prior
information on the economic processes generating the inefficiency, the choice
of any particular distribution cannot be justiÞed. In practice, such infor-
mation is in general not available and different distributions must be tried
in order to assess the sensitivity of the results to alternative distributional
speciÞcations.
Given that ui is a non-negative random variable, numerous density func-

tions can be speciÞed for it. Some distributions are however more attractive
than others. The half-normal, exponential and truncated-normal distribu-
tions are by far the most used distributions in empirical studies. As pointed
out by Stevenson (1980), the major drawback of the Þrst two distributions
is to restrict the density of the inefficiency to be most concentrated near
zero. This implies that �the likelihood of inefficient behavior monotonically
decreases for increasing levels of inefficiency� 3. Stevenson proposed instead
a more ßexible distribution of the inefficiency given by the truncated normal
density function which does not restrict the mode to occur at zero. This is
a natural extension in so far as it enables the testing of the adequacy of the
zero-mode restriction4.

3See Stevenson (1980), p. 58.
4Note that LM tests for the adequacy of the half-normal and truncated normal dis-

tributions have been explicitly derived by Lee (1983) conditional on the assumption that
the distribution of ui belongs to the Pearson family of truncated distributions.
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3 Alternative SpeciÞcations and ML Estima-
tion

Prior to the computation of Þrm-speciÞc inefficiency the unknown parameters
of the production function must be estimated. Note that, apart from the
asymmetry of the distribution of ε, equations (1) and (2) Þt well into the
standard random effects model in panel data literature. The asymmetry
characterizing εit doesn�t matter, and in any case it can be easily avoided by
adjusting the constant term α.
The choice of the method of estimation must be assessed according to

some basic assumptions concerning the disturbances term. For example,
assuming exogenous factor inputs, the Feasible GLS technique may be used
to derive consistent estimates of the frontier. The main advantage of this
technique is that no distributional speciÞcation is needed for the one-sided
error term for consistent estimates of the parameters. However, assuming
the distribution of ui to be known, some efficiency gain over GLS may be
achieved through the ML method. If factor inputs were to be correlated with
the disturbances then neither GLS nor ML estimator would be consistent.
In such a case, an efficient IV estimator of the type discussed by Hausman
and Taylor (1981) must be used5. Recall however, that, given the parameters
estimates, prior knowledge of the inefficiency distribution is required when
absolute Þrm-speciÞc inefficiency is sought.
In this study, we choose to focus attention exclusively on the MLEmethod

in estimating the production frontier parameters. We use three different
speciÞcations for the distribution of ui. These are the truncated normal,
the generalized half-normal and the exponential distributions. The Þrst two
distributions are general enough in that they do not restrict the mode to occur
at zero, and they both encompass the standard half-normal as a special case.
Before going to the results, we give in the following the explicit formulas

we used in our programming procedures. These formulas are stated for the
general case of unbalanced panel data, and encompass both the production
frontier and the cost frontier cases. Indeed, as we deÞne εit = vit+δui, where
δ is a switching parameter taking value of −1 for a production frontier and
value of 1 for a cost frontier, we can move from one speciÞcation to another
by assigning an appropriate value to δ wherever it appears.
In deriving our results, the following two assumptions are made: (i) the

5See, Schmidt and Sickles (1984), and Cornwell et al. (1990).
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random variables vit are assumed to be i.i.d. across observations as N(0, σ2
v),

as well as independent of the ui random variables, (ii) vit and ui are both
assumed to be independently distributed of the factor inputs in the model6.

Proposition 1 Under the assumptions stated above, the log-likelihood func-
tions of the stochastic production (or cost) frontier for the three considered
distributions for ui are given by:

Case 1: The Truncated normal distribution (Battese and Coelli (1988))

L1 = −1
2

NX
i=1

ln(1 + λTi)− ln(σu)
NX
i=1

Ti − 1
2
ln(2π)

NX
i=1

Ti − N
2
γ2

−1
2
λ

NX
i=1

TiX
t=1

µ
²it
σu

¶2

+
1

2

nX
i=1

(1 + λTi)

µ
µi1
σu

¶2

(3)

+

NX
i=1

lnΦ

µp
1 + λTi

µi1
σu

¶
−N ln(Φ(γ))

where: λ = σ2
u

σ2
v
, γ = µ

σu
, and µi1 =

µ
1+λTi

+ δ λTi
1+λTi

²̄i
σu
. The functions φ and

Φ are, respectively, the density function and distribution function of the
standard normal.
Case 2: The generalized half-normal distribution

L2 = −1
2

NX
i=1

ln(1 + λTi)− ln(σu)
NX
i=1

Ti +
1

2
ln(λ)

NX
i=1

Ti − 1
2
ln(2π)

NX
i=1

Ti

−N
2
γ2 − 1

2
λ

NX
i=1

TiX
t=1

µ
²it
σu

¶2

+
1

2

NX
i=1

(1 + λTi)

µ
µi1
σu

¶2

(4)

+
NX
i=1

ln

µ
Φ

µp
1 + λTi

µi1
σu

¶
+ ψΦ

µp
1 + λTi

µi2
σu

¶¶
where : λ, γ and µi1 as deÞned in the truncated normal case; µi2 = − µ

1+λTi
+

δ λTi
1+λTi

²̄i
σu
, with ²̄i = T

−1
i

PTi
t=1 ²it and ψ = exp

³
−2δγ2

λTi
1+λTi

²̄i
σu

´
.

6This may be justiÞed using the Zellner, Kmenta and Drèze (1966) assumption that
Þrms maximize expected proÞt, and that disturbances in the Þrst order conditions are
independent of ε.
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Case 3: The exponential distribution.

L3 = −1
2

NX
i=1

ln(Ti)−
NX
i=1

Ti ln(σv) +N ln(γ2)−
1

2

NX
i=1

(Ti − 1) ln(2π)

−1
2

NX
i=1

TiX
t=1

µ
²it
σv

¶2

+
1

2

NX
i=1

Ti

µ
µi3
σv

¶2

+
nX
i=1

lnΦ

µ
µi3
σv

p
Ti

¶
(5)

where: γ2 = θσv and µi3 = − θσ2
v

Ti
+ δ ²̄i

It can be easily veriÞed from either (3) or (4) that, taking µ = 0 in µi1 and
µi2 leads to the log-likelihood function corresponding to the standard half-
normal distribution as deÞned by Aigner et al.. A standard likelihood ratio
test can thus be conducted to test the validity of the half-normal speciÞcation.
In order to derive the counterpart of Jondrow et al. estimator of tech-

nical inefficiency, the conditional distributions of ui, given sample values of
the random vector εi ≡ (εi1, εi2, · · · , εiTi)0, must be stated. For the trun-
cated normal and the exponential distributions, it can be shown that the
conditional distribution of ui given εi is deÞned by the truncation (at zero)
of the normal distribution with mean µi1 and variance (1 + λTi)

−1σ2
u for the

truncated normal case, and with mean µi3 and variance σ
2
v/Ti for the expo-

nential case. For the generalized half-normal case, it can be shown that the
conditional distribution is given by

f (ui/εi) =
1

σi

φ
³
ui−µi1
σi

´
+ φ

³
ui−µi2
σi

´
Φ

³
µi1
σi

´
+ Φ

³
µi2
σi

´ (6)

where σi = σu√
1+λTi

.
The following theorem generalize the Jondrow et al. result to the case of

panel data using the alternative distributions mentioned above.

Proposition 2 For the conditional distributions stated above, the condi-
tional expectations of TEi = e−ui , given εi, are given by

Case 1: The truncated normal distribution (Battese and Coelli (1988))

E(TEi/εi) = e
δ µi1+

σ2
i

2

Φ
³
µi1
σi
+ δ σi

´
Φ

³
µi1
σi

´ (7)
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Case 2: The generalized half-normal distribution:

E(TEi/εi) = e
δµi1+

σ2
i

2

Φ
³
µi1
σi
+ δσi

´
+ η

³
µi2
σi
+ δσi

´
Φ

³
µi1
σi

´
+ Φ

³
µi2
σi

´ (8)

where η = exp(−2δ µ
1+λTi

).
Case 3: The exponential distribution.

E(TEi/εi) = e
δµi3+

σ2
v

2Ti

Φ
³√

Tiµi3
σv

+ δ σv√
Ti

´
Φ

³√
Tiµi3
σv

´ (9)

Note that, in equations (7)-(9), the quantities µij, j = 1, 2, 3, are deÞned
as above with εi replaced by its sample counterpart ei, and with εi = ei.

4 Empirical Analysis

4.1 Data Description

The data used in our empirical work stem from the �Enquête Annuelle
d�Entreprises� which has been annually conducted since 1983 by the �In-
stitut National des Statistiques�. Unfortunately, because the surveys con-
ducted beyond 1993 were not available to us, our panel set is limited to 11
years and covers the period 1983 − 1993. The total number of observations
is 8191, corresponding to 1125 individual Þrms. These Þrms belong to six
manufacturing sectors, namely Food, Construction Materials Ceramics and
Glass, Mechanical and Electrical, Chemicals, Textiles, and Miscellaneous.
Summary statistics on the main variables used in the regression are given in
Table A1 in the Appendix. Table A2 gives both the distribution of sector
samples over the 11 years and the distribution of sector units by the number
of times they are observed over the entire period. We can see that 160 Þrms
are staying in the sample for the entire period, while 27 Þrms are observed
only once. The percentage of Þrms which are observed over at least 5 years
is about 83.5.
Note that, the volume of output, Y , is deÞned as value added measured

at factor costs and at constant prices with 1990 as a base year. The volume
of Þxed capital, K, is also measured at constant prices using the same base
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year. Labor, L, is deÞned as total employment and is measured by the
number of employees. And Þnally, the capital vintage, agek, is measured as
the average age of equipments. A detailed information on the procedure used
to construct these variables may be found in Zribi (1995).

4.2 Frontier SpeciÞcation

The production technology is assumed to be described by the transcendental
logarithmic form, T-L, suggested by Christensen et al. (1973), which pro-
vides a second-order Taylor-series approximation to any twice-differentiable
production function. The advantage of this ßexible speciÞcation is twofold.
Firstly, it allows the elasticities of output to vary across Þrms and across
periods. Secondly, it allows to test, through exclusion restrictions on some
parameters, the empirical plausibility of the restrictive Cobb-Douglas, C-D,
speciÞcation. Formally the model we estimate can be written as

yit = α + γ1t+ γ2t
2 + (βk + γkt)kit + (β l + γlt)lit + (βa + γat)agekit

+0.5βkkk
2 + βkl(kit × lit) + βka(kit × agekit) + 0.5βlll2it (10)

+β la(lit × agekit) + 0.5βaaagek2
it + δfoodS1 + δcmcgS2 + δchimS4

+δtextS5 + δMiscS6 + vit − ui
where y, k and l, denote, respectively, logarithms of Y , K and L. The
time variable t is included as a regressor in order to catch neutral technical
progress in production7. This implies that some of the shifts in the produc-
tion frontier are allowed to occur independently of changes in inputs. The
dummy variables Si are introduced in order to take into account some secto-
rial heterogeneity, and their effects must be interpreted in comparison with
the omitted Mechanical and Electrical sector.

4.3 Empirical Results

In this section, the translog frontier model deÞned by (10) is estimated, along
with the Cobb-Douglas frontier, by maximum likelihood method using alter-
native distributions for the one-sided error term8. These distributions are

7See Solow (1957).
8The use of the ML method supposes that the speciÞc effects is random rather than

Þxed. This is the case here since the Hausman test statistic equals 199.42 which is largely
greater than the χ214 critical value.
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the truncated normal, the generalized half-normal (µ 6= 0), the half-normal
(µ = 0), and the exponential. Since we are interested particularly in the
measurement of technical inefficiency, the frontier parameters estimates are
left out from the text and reported in Tables A4 and A5 in the Appendix9.
A close look at these Tables reveals that there are no substantial changes in
the parameters estimates over the alternative distributions for ui. In par-
ticular, estimates obtained with the truncated normal and the generalized
half-normal are the same10. Note also that pooled ordinary least squares
estimates, shown in the last column, are quite similar to ML estimates, par-
ticularly in comparison with the exponential case. This similarity in the pa-
rameters estimates suggests that the shape and the location of the stochastic
frontier are not sensitive to the distributional assumption of the inefficiency
term.
Another interesting result that must be pointed out is that, in view of

the asymptotic t-statistics, almost all the estimated parameters appear to
be highly signiÞcant. As a consequence, a substantial reduction in the value
of the likelihood function, given in the bottom row of Table 1, occurred
when we moved from the T-L form to the C-D form. For example, for the
truncated model, the value of the likelihood ratio test statistic, corresponding
to the null hypothesis of a C-D form equals 408.2, which exceeds the χ2

10

critical value by a large amount. The C-D technology is thus rejected. The
null hypothesis of absence of technological progress is also rejected without
ambiguity, according to the likelihood ratio statistic. The same conclusion
holds independently of the hypothesized distribution for ui.
Table 1 below gives estimates of the main parameters characterizing the

alternative distributions of the inefficiency one-sided error term. If these
parameters happen to be statistically non signiÞcant, this error term can
be altogether ignored. In this case the restricted ML estimation reduces to
ordinary least squares.
Before coming to formal hypotheses testing, some insights regarding the

importance of inefficiency may be pointed out. Indeed, recall that according
to our parametrization, λ is an indicator of the relative variability of the two
sources of random errors, i.e. λ = σ2

u/σ
2
v. Based on the translog frontier, a

simple calculation reveals that, for the truncated normal case, the estimated

9The computer programs we used are available from the authors upon request. These
programs were written using Gauss procedure.
10Recall that, contrary to the Cobb-Douglas case, the individual parameters in the

translog model are not directly interpretable as elasticities.
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variance of ui is about 44.7 percent of the estimated entire disturbance vari-
ance, V (ui) + σ2

v which is equal to 0.12
11. The Þgure is very different for the

half-normal distribution (µ = 0) where the estimated variance of ui equals
0.021, leading to 23.5 percent of the estimated total variance. This percent-
age dramatically reduces to 4.6 percent in the exponential case.
Formal tests on the signiÞcance of the random variable ui in the frontier

model, i.e. λ = µ = 0, may be conducted through the generalized likelihood
ratio statistic. From the bottom row of Table 1, we can see that the value
of the likelihood function is the same for both the truncated normal and the
generalized half-normal cases. Thus, the same conclusion will apply to both.
For the translog case, the absolute value of the restricted maximum like-

lihood is equal to 2723.4. Hence, the negative of twice the logarithm of the
likelihood ratio is equal to 2331.4, which is by far greater, at any signiÞcance
level, than the χ2

2 critical value given in Table 1 of Kodde and Palm (1986)
12.

We conclude that the one-sided error term can not be ignored. Next we
test, through the restriction µ = 0, whether the truncated normal (or the
generalized half-normal) is more reliable than the half-normal. From the
corresponding values of the likelihood functions, it can be easily seen that
the half-normal distribution is strongly rejected in favor of the alternative
hypothesis. Note that all these conclusions were to be expected given the
high values of the asymptotic t-statistics which are given in parenthesis in
Table 1.
11It is worth noting here that the true variance of the truncated random variable ui is

not equal to σ2u, but rather to:

V (ui) =

½
1− µ

σu

φ( µ
σu
)

Φ( µ
σu
)
−

³
φ( µ

σu
)

Φ( µ
σu
)

´2¾
σ2u.

For the half normal case, µ = 0, this variance reduces to
£
1− 2

π

¤
σ2u, see Greene (1994),

page 27.

12This Table must be used instead of the usual χ2 Table, because the polar value, λ = 0,
is on the boundary of the parameter space, not in its interior.
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Table 1: Estimated parameters of the distribution of ui
Translog Frontier Cobb-Douglas Frontier

TN HN
µ6=0

HN
µ=0

EXP TN HN
µ6=0

HN
µ=0

EXP

σu 0.239
(119.5)

0.237
(47.4)

0.416
(34.7)

− 0.260
(32.5)

0.258
(23.4)

0.458
(38.2)

−
λ 0.861

(66.2)
0.845
(20.6)

2.568
(15.6)

− 0.987
(14.5)

0.970
(88.2)

3.001
(16.9)

−
µ
σu

2.344
(167.4)

2.201
(62.9)

− − 2.302
(9.7)

2.158
(196.2)

− −
σv − − − 0.397

(132.3)
− − − 0.417

(139)

θσv − − − 4.532
(15.0)

− − − 4.513
(14.9)

|L| 1557.7 1557.3 1624.4 4292.4 1761.8 1760.7 1836.1 4705.4

Using the estimated parameter values for the frontier production function,
Þrm-speciÞc technical efficiency were predicted for each model, using formulas
(7)-(9). The results are summarized in Table 2. The columns Q1 and Q3
refer, respectively, to the Þrst and third quartile.

Table 2: Summary statistics on technical efficiency
Frontier Min Q1 Mean Median Q3 Max S-D Min. CV

Truncated Normal
C-D 30.6 45.9 56.3 54.4 65.9 93.4 13.1 5.369
T-L 33.8 49.0 58.3 57.0 66.3 92.9 12.3 5.665

Half Normal (µ 6= 0)
C-D 35.5 52.2 63.0 61.6 73.8 94.8 13.4 3.103
T-L 38.6 55.7 65.3 64.6 74.3 94.9 12.5 3.102

Half Normal (µ = 0)
C-D 36.7 57.5 70.1 69.6 84.3 97.6 15.4 4.322
T-L 38.8 61.3 72.5 72.4 84.3 97.4 14.3 4.482

Exponential
C-D 66.3 89.4 91.6 93.1 95.3 97.9 5.1 5.966
T-L 66.2 90.2 92.0 93.4 95.5 97.9 4.9 6.247

COLS13

C-D 19.2 32.9 41.7 39.8 49.5 87.4 11.8 −
T-L 16.8 36.4 45.0 43.8 52.1 90.0 11.6 −

13COLS estimates are calculated for each year relative to a base Þrm and then averaged
over the entire period. That is why the maximum value is not equal to 100.
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Two salient facts from Table 2 are worth emphasizing. Firstly, the es-
timates of technical efficiency using the C-D and T-L functional forms are
strongly similar. Indeed, column four indicates that, given the distribution of
ui, the difference in sample mean values never exceeds 2.4 percentage points.
This Þnding seems to be somewhat troublesome since the C-D form has been
strongly rejected in favor of the T-L form. However, it is worth noting that,
in our case, this is hardly a surprise since, on the one hand, the C-D and T-L
forms led approximately to the same parameters estimates of the distribution
of ui, and that, on the other, residuals are being averaged over periods when
technical efficiency is computed.
The second salient fact that emerges from Table 2 is that technical effi-

ciency estimates appear to be highly sensitive to the maintained hypothesis
on the distribution of the one-sided error term. First, the exponential case
leads to the highest technical efficiency levels with a sample average rate of
91.2%, the half-normal ranked second with a rate of 72.5% and the gener-
alized half-normal and truncated normal followed with rates of 65.3% and
58.3%, respectively. However, we have some reasons to believe that results
obtained from the last two distributions are more reliable. Indeed, the half-
normal imposes µ = 0, which seems to be, in the light of our statistical tests,
a very restrictive assumption. The exponential estimates seem meaningless:
the minimum efficiency rate is about 66% and, as indicated by the Þrst quar-
tile Q1, 75% of the sample Þrms have a rate of technical efficiency greater
than 89.4%.
The truncated normal and the generalized half-normal distributions give

plausible estimates of technical efficiency, probably because their densities
are not restricted to be more concentrated near zero. Which one of them is
more reliable remains an open question.
Note that, the �COLS� estimates stem from the deterministic frontier.

They are obtained in compliance with Greene�s (1980) suggestion, i.e. using
least squares slope estimates on the pooled data and shifting the constant
term up until no residual is positive and one is zero. Hence, the Þnding
that �COLS� method leads to important reduction in technical efficiency is
not a surprise since the entire deviation from the frontier is attributed to
inefficiency.
The last column of Table 2 reports the minimum value over the sample

Þrms of the coefficient of variation, CV, associated to the estimates of techni-
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cal inefficiency14. It shows that all our estimates of efficiency are statistically
quite accurate.
The Þgure above illustrates the estimated kernal densities of the esti-

mated Þrm-technical efficiencies. It clearly reinforces our previous Þnding
that different assumptions about the distribution of ui leads to quite differ-
ent measures of Þrm-technical efficiency. In particular, the expected upward
bias in the exponential case and the downward bias inherent to the deter-
ministic case, i.e. COLS estimates, are apparent. The estimated densities for
the three other cases deviate substantially from each other, with as expected
that corresponding to the half-normal assumption is to the right of those of
the truncated normal and the generalized half-normal assumptions.

14CV is the coefficient of variation of the technical efficiency. Note that the variance of
technical efficiency is easily calculated for a truncated normal X of mean µ and variance
σ2, using the following formula:

E(eaX) = exp(aµ+ .5a2 σ2)
Φ(µσ+aσ)

Φ(µσ )
.

This formula also applies, with a minor change, for the generalized half normal case.
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5 Concluding remarks
This paper provides alternative measures of technical inefficiency depending
on what type of distributional assumptions for the one sided error term are
considered. These assumptions include the most commonly used one-sided
distributions, namely the half-normal, the exponential and the truncated
normal distributions. A generalized version of the half-normal, which does
not embody the zero-mean restriction, is also suggested.
Comparisons of the estimated technical inefficiency indices induced by all

these distributions were attempted using a panel data on Tunisian manufac-
turing Þrms over the 1983-1993 time period.
Our main Þndings can be summarized as follows. Firstly, absence of tech-

nical inefficiency is wrongly rejected. This implies that the one-sided error
term must be taken into account explicitly when econometric estimation of
frontier function is in order. Secondly, estimates of technical efficiency seem
to be insensitive to the degree of ßexibility of the frontier production func-
tion. Indeed, the Cobb-Douglas technology gives almost the same estimates
of efficiency as the translog functional form. Thirdly, different assumptions
on the distribution of technical inefficiency imply quite different estimates of
efficiency.
The estimated inefficiencies suggest that the restricted models, i.e. the

exponential and, to a lesser degree, the half-normal, produce a very optimistic
impression, with an average rate of efficiency of 92% and 72.5%, respectively.
It is worth noting, however, that formal test led to a strong rejection of the
zero-mean half-normal model.
Based on the truncated normal or the generalized half normal models, we

Þnd that Tunisian Þrms had been inefficient over the period 1983-1993; the
average rate of inefficiency being approximately equal to 40%. Fifty percent
of the sampled Þrms have a rate of efficiency between 58.3% and 66.3% for the
truncated normal case; the counterpart is 65.3 and 74.3% for the generalized
half normal case.
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Appendix
Table A1: Mean values

Year Y K L agek
1983 653.4 4383.7 118.1 7.2
1984 610.2 4241.1 105.9 7.1
1985 657.1 3904.4 105.6 7.4
1986 688.0 4203.8 99.5 7.8
1987 715.0 4405.8 101.5 8.0
1988 784.9 4668.4 107.0 8.1
1989 821.8 4564.9 108.3 7.9
1990 812.0 3912.7 105.8 7.9
1991 850.6 4310.0 108.4 7.9
1992 822.2 3705.9 101.9 8.4
1993 764.8 3548.1 93.3 8.7

Table A2: Sector samples by the number of
time Þrms are observed over the period

Ti S1 S2 S3 S4 S5 S6 Total
1 5 1 17 1 3 27
2 8 6 21 4 3 7 49
3 9 9 7 3 3 5 36
4 17 13 24 9 3 8 74
5 19 15 39 7 13 8 101
6 24 18 44 15 10 22 133
7 29 16 49 9 13 26 142
8 29 18 42 9 17 29 144
9 28 29 34 13 12 21 137
10 26 17 46 5 13 15 122
11 21 24 54 13 21 27 160

Total 215 166 377 88 108 171 1125
S1 = Food, S2 = ConstructionMaterials Ceramics and Glass, S3 = Mechanical and

Electrical, S4 = Chemicals, S5 = Textiles, S6 = Miscellaneous
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Table A3: Parameters estimates of the translog frontier
V ar. TN HN

(µ6=0)
HN

(µ=0)
EXP OLS

cte 8.407
(652.218)

8.367
(28.151)

7.973
(24.750)

8.003
(37.556)

8.008
(35.153)

k −0.468
(25.200)

−0.468
(8.866)

−0.425
(6.890)

−0.537
(14.070)

−0.535
(12.897)

l 1.779
(33.600)

1.778
(29.036)

1.734
(24.734)

1.857
(40.654)

1.849
(37.465)

agek 0.045
(4.422)

0.045
(4.217))

0.043
(2.504)

0.098
(8.829)

0.084
(7.344)

t −0.031
(3.009)

−0.031
(2.952◦)

−0.031
(2.598)

−0.051
(3.747)

−0.043
(3.346)

0.5k2 0.099
(29.459)

0.098
(17.907)

0.094
(13.797)

0.105
(25.826)

0.105
(23.670)

kl −0.117
(18.745)

−0.117
(16.733)

−0.112 −0.114
(21.766)

−0.115
(20.291)

k × agek −0.009
(9.256)

−0.009
(8.915)

−0.009
(5.680)

−0.014
(13.204)

−0.012
(11.688)

k × t 0.010
(10.380)

0.010
(10.251)

0.010
(9.387)

0.011
(9.192)

0.011
(9.356)

0.5l2 0.115
(10.078)

0.115
(9.414)

0.112
(8.100)

0.091
(10.350)

0.097
(10.211)

l × agek 0.017
(10.145)

0.017
(9.957)

0.016
(8.381)

0.017
(11.556)

0.017
(10.944)

l× t −0.012
(8.547)

−0.012
(8.406)

−0.012
(8.545)

−0.012
(6.952)

−0.012
(7.383)

0.5inc2 −0.001
(1.726)

−0.001
(1.749)

−0.001
(1.748)

−0.000
(1.409)

−0.000
(1.184)

agek × t −0.002
(4.213)

−0.002
(4.186)

−0.002
(3.783)

−0.002
(5.275)

−0.002
(4.955)

0.5t2 −0.002
(2.556)

−0.002
(2.605)

−0.002
(2.608)

0.001
(0.735)

−0.001
(0.594)

s1 0.116
(9.045)

0.115
(6.374)

0.139
(6.886))

0.128
(12.634)

0.124
(10.846)

s2 0.254
(21.116)

0.254
(13.235)

0.259
(11.130)

0.264
(22.904)

0.260
(20.047)

s4 0.082
(5.390)

0.081
(4.143)

0.055
(2.108)

0.102
(7.279)

0.100
(6.341)

s5 −0.207
(18.089)

−0.210
(11.620)

−0.188
(7.531)

−0.203
(15.722)

−0.211
(14.638)

s6 −0.002
(0.205)

−0.002
0.117

−0.031
(1.804)

0.021
(1.989)

0.015
(1.205)

L 1557.7 1557.3 1624.4 4292.4

19



Table A4: Parameter estimates of the
Cobb-Douglas frontier

V ar. TN HN
(µ6=0)

HN
(µ=0)

EXP OLS

cte 5.038
(63.941)

4.994
(452.851)

4.781
(94.042)

4.308
(125.658)

4.277
(114.086)

k 0.378
(63.725)

0.378
(77.256)

0.380
(77.235))

0.388
(114.177)

0.387
(100.718)

l 0.718
(83.231)

0.718
(67.445)

0.719
(101.520)

0.741
(152.019)

0.738
(135.091)

agek −0.029
(18.002)

−0.029
(2.911)

−0.029
(18.710)

−0.039
(31.104)

−.038
(28.748)

t 0.033
(29.187)

0.033
(6.755)

0.033
(28.979)

0.036
(24.661)

0.035
(26.477)

s1 0.087
(4.299)

0.086
(7.794)

0.097
(5.380)

0.093
(9.104)

0.090
(7.629)

s2 0.267
(10.653)

0.267
(24.179)

0.285
(13.161)

0.276
(23.734)

0.270
(20.255)

s4 0.062
(1.740)

0.062
(5.624)

0.007
(0.264)

0.079
(5.560)

0.079
(4.882)

s5 −0.234
(8.018)

−0.237
(21.425)

−0.223
(9.791)

−0.238
(18.355)

−0.246
(16.784)

s6 −0.017
(1.720)

−0.019
(1.568)

0.014
(0.712)

0.008
(0.857)

0.001
(0.053)

L 1761.8 1760.7 1836.1 4705.4
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