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ABSTRACT

Johansen, Mosconi and Nielsen (2000) generalize the likelihood-based cointegration analysis
developed by Johansen (1988, 1996) to the case where structural breaks exist at known points in
time.  In this paper we provide a simple explanation of the specification of intervention dummies
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1. Introduction

The empirical literature making use of unit root and cointegration tests has been growing

over the last two decades.  The application of those tests is challenging for many reasons

including the treatment of deterministic terms (constant and trend) and structural breaks.

Franses (2001) addresses the problem of how to deal with intercept and trend in practical

cointegration analysis.  In this note we use Franses (2001) approach to consider the

treatment of structural breaks in VAR models used to tests for unit roots and

cointegration.  In what follows we assume that structural breaks occur at known break

points.

There is a vast literature on structural breaks and unit root tests.  If a series is stationary

around a deterministic trend with a structural break we are likely to accept the null of a

unit root even if we include a trend in the ADF regression.  There is a similar loss of

power in the unit root tests if the series present a shift in intercept.  If the breaks are

known the ADF test can be adjusted by including dummy variables in the ADF

regression (Perron (1989, 1990), Zivot and Andrews (1992) among others).

In this note we show how intervention dummies should be specified and included in VAR

models to test for unit roots and cointegration.  Note that there is nothing new in this

note, the material is basically covered in the Johansen, Mosconi and Nielsen (2000) paper

(JMN (2000) thereafter).  This note, however, provides a simple explanation of the

specification of intervention dummies which is not present in the later paper.  A survey of

the applied literature using Johansen’s test for cointegration in a VAR setting would

reveal that intervention dummies are usually inappropriately specified.  Indeed in

empirical work it is often the case that structural breaks have to be accounted for.  The

inclusion of intervention dummies should improve the normality properties of the

estimated residuals.  This is, however, often not the case.  The reason for this is that the

dummy variables are incorrectly specified.  It is the aim of this note to show how to

specify and include intervention dummies and to make accessible to applied economists

the latest development in the use of intervention dummies when testing for cointegration.
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In Section 2 we present the results in the univariate case and in Section 3 we generalize to

the multivariate case.  Simulation results, which illustrate the importance of specifying the

dummy variables correctly, are included in Section 4.  Section 5 concludes.

2. Univariate Case

In this section we look at processes which can be modelled as autoregressive processes

with possibly a trend or an intercept shift at some point in time.

Shift in Intercept Model

In this section we consider a univariate time series yt, t = 1, 2, …,T which has a shift in

mean at time T1, 1 < T1 < T, and can be described by:

yt - µ1 = φ1(yt-1 - µ1) + εt    when t ≤ T1

and

yt – (µ1 + µ2)= φ1(yt-1 – (µ1 + µ2)) + εt    when t > T1

where εt is a white noise process.  The parameter φ1 is assumed to be the same in all sub-

samples.  The model above is formulated conditionally on the first observations of each

sub-sample: y1 and 1T1
y + .

When 11 <φ , one can say that yt is attracted by µ1 for t ≤ T1 and by (µ1 + µ2) for t > T1.

This model can be rewritten as:

yt – (µ1 + µ2Dt)= φ1(yt-1 – (µ1 + µ2Dt-1)) + εt (1)

where

Dt = 0 if t ≤ T1

and

Dt = 1 if t > T1.

If we let φ1 = 1 in equation (1) we get

yt = yt-1 + µ2(Dt - Dt-1) + εt (2)

µ1 is not identified when φ1 = 1 but the shift in mean µ2 is.

We can rewrite (1) as:

t1t1t2111t1t )DD()1(y)1(y εφµµφφ∆ +−+−+−= −− (5)

or

tt21t2111t1t D)D)(1(y)1(y ε∆µµµφφ∆ +++−+−= −− (6)
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If we let ρ1 = φ1 – 1, (6) can be rewritten as:

ttttt D)D(yy ε∆µµµρρ∆ +++−= −− 2121111 (7)

Since 0Dt =∆  if t ≤ T1 or if t > T1+1, and 1Dt =∆ if t = T1+1, the effect of tD∆

corresponding to the observation 1T1
y +  is to render the associated residual zero given the

initial value in the second sub-sample.  The inclusion of tD∆  does not affect the

asymptotic distribution of the t statistic of the estimated coefficient of yt-1, 1ρ̂ , under the

null of a unit root.

This representation also illustrates that when testing for a unit root the test regression

should include both the lagged intervention dummy and the first difference of the

intervention dummy, even though under the null of ρ1 = 0 the lagged dummy disappears.

Perron (1990) and Perron and Vogelsang (1992) tabulate the asymptotic distribution of

the t statistic of the estimated coefficient of yt-1, 1ρ̂ , under the null of a unit root.  A

better test would be to test for the joint significance of the coefficient of yt-1, the intercept

and the lagged intervention dummy in (7).  In the multivariate case the test considered in

this note is indeed a joint test of the above hypotheses.

Shift in Trend Model

In this section we consider a univariate time series yt, t = 1, 2, …,T which has a shift in

mean and a shift in trend at time T1, 1 < T1 < T, and can be described by:

yt - µ1-δ1t = φ1(yt-1 - µ1 - δ1 (t-1)) + εt      when t ≤ T1

and

yt – (µ1 + µ2) –(δ1 + δ2)t= φ1(yt-1 – (µ1 + µ2) –(δ1 + δ2)(t-1)) + εt    when t > T1

where εt is a white noise process.  As before the model above is formulated conditionally

on the first observations of each sub-sample: y1 and 1T1
y + .

This model can be rewritten as:

yt – (µ1 + µ2Dt) –(δ1 + δ2Dt) t = φ1 [yt-1 – (µ1 + µ2Dt-1) –(δ1 + δ2Dt-1)(t-1)] + εt (8)

Alternatively (8) can be written as:
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The effect of tD∆  and tDt∆ , corresponding to the observation 1T1
y + , is to render the

associated residual zero given the initial value in the second sub-sample.  There is,

however, no point in including both tD∆ and tDt∆  in (9) since µ2 tD∆ = µ2  if t = T1+1

and 0 otherwise, and δ2 tDt∆ = δ2(T1+1) for t = T1+1 and 0 otherwise.  We can thus

rewrite (9) as:

tttttt DDtDtyy ε∆κηηδρδρρ∆ ++++−−= −−− 01211211111 (10)

where η1 = -ρ1µ1 + φ1δ1, η2 = -ρ1µ2 + φ1δ2 and κ0 = µ2+δ2(T1+1).

As for the shift in intercept only case this representation shows that the test regression

should include both the lagged intervention dummy and the first difference of the

intervention dummy.  It also shows that the lagged intervention dummy should be

included both in the intercept and the deterministic trend variable, even though under the

null of ρ1 = 0 the lagged dummy disappears in the trend component (but not in the

intercept part).  So the practical rule would be to include in the test regression the

intercept, a lagged dummy intercept, a first difference dummy intercept, the trend, and

the lagged dummy times the trend.  Perron (1989) tabulates the asymptotic distribution of

the t statistic of the estimated coefficient of yt-1, 1ρ̂ , under the null of a unit root.  Note

that the trend and the lagged dummy times the trend disappear under the null.  A better

test of the null of a unit root test is a joint test of the joint significance of the coefficients

of yt-1, the trend and the lagged dummy times the trend in (10).

Generalization to an AR(k) process

In the case where the process follows an AR(k) model with AR coefficients φ1,...,φk

equation (10) becomes:

t
k

i
iti

k

i
itiktktkktkt DyDtDtyy ε∆κ∆Γηηδρδρρ∆ +∑+∑+++−−=

−

=
−

−

=
−−−−

1

0

1

1
21211 (11)

where

ρk = φ1 + φ2 + .... +φk - 1
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and the model is formulated conditionally on the first k observations of each sub-sample.

This representation shows that the test regression should include both the intervention

dummy lagged k periods, the first difference of the intervention dummy and up to k-1 lags

of the first difference of the intervention dummy.  It also shows that the intervention

dummy lagged k periods should be included both in the intercept and the deterministic

trend variable, even though under the null of ρ1 = 0 the lagged dummy disappears in the

trend component (but not in the intercept part).  A unit root test should be a joint test of

the joint significance of the coefficients of yt-1, the trend and the dummy lagged k periods

times the trend in (11).

Generalization to the case of more than one shift

We allow for q samples periods, 1 = T0 < T1 < T2 < ...< Tq = T.  The last observation of

the jth sample is Tj and the first period of the (j+1)th sample period is Tj+1, j= 1,...,q.

The model is formulated conditionally on the first k observations of each sub-sample, for

example for the jth sub-sample, kT1T 1j1j
y,...,y ++ −−

.  We also define q-1 intervention

dummy variables1:



 ≤≤+

= −

                otherwise,

for

0

,Tt1T1
D j1j

t,j for  j = 2,...,q

and



 +≤≤++

= −
−                 otherwise,0

1for1 1 ,kTtkT
D jj

kt,j for j = 2,...,q.

Correspondingly we define:



 +=

= −

                otherwise,

for

0

,1Tt1
I 1j

t,j .

When q = 2 , Ij,t is just t,jD∆ .  Ij,t-i+1 is an indicator variable for the ith observation in the

jth period.

Equation (11), in the case of q periods becomes:

                                                                
1 Our notation for the intervention dummies differ from JMN (2000).  In this later paper Dj,t denotes an
indicator function for the last observation in the j-1th sample.
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(12)

As before the effect of 1kt,jt,j I,...,I +− , corresponding to the observations 1T 1j
y +−

, ...,

kT 1j
y +−

, is to render the respective residuals zero given the initial values in each period.

In practice we need to include the intervention dummies for each sub-sample with the

appropriate lags as well as the dummies times the trend and the indicator variables for the

break points, again with the appropriate lags.

3. Multivariate Case

The most common method to test for the cointegration rank is the maximum likelihood

cointegration test method developed by Johansen (1988, 1996).  It is, however, the case

that the inclusion of intervention dummies affects the distribution of cointegration tests.

JMN (2000) generalize the likelihood-based cointegration analysis developed by

Johansen (1988, 1996) to the case where structural breaks exist at known points in time.

They show that new asymptotic tables are required.  In this section we show how to

obtain equation (2.6) of JMN (2000) by expanding the results from Section 2.

In what follows we assume that we have a p-vector process Yt and that without structural

breaks the model can be formulated conditionally on the first k observations by:

t
1k

1i
iti11tt YtYY ε∆ΓµΠΠ∆ +∑+++=

−

=
−− (13)

where ε1,...,εT  are normal, independent and identically distributed p×1 vectors with mean

0 and variance Ω.  We also assume that although some or all of the p time series in Yt

may have a time trend, none have a quadratic trend.

The hypothesis of cointegration can be reformulated as a reduced rank problem of the Π

matrix, in which case Π = αβ’, where α and β are (p×r) full rank matrices, and Yt has a

quadratic trend.  If none of the p time series displays a quadratic trend we need to assume

that Π1 = αγ’, where γ is a (1×r) full rank matrix.



8

If we now assume that we have q-1 breaks (and q sub-samples), conditionally on the first

k observations of each sub-sample the model can be rewritten as q equations:

( ) t

1k

1i
itij

1t
jt Y

t

Y
,Y ε∆ΓµΠΠ∆ +∑++





=

−

=
−

− (14)

j = 1,...,q, where Πj  and µj are (p×1) vectors.

Under the null of cointegration, we restrict the trend to the cointegrating relationships to

exclude the possibility of quadratic trends in any time series.  This means that Πj = αγj’.

Instead of writing q equations we can define the following matrices:

Dt = (1,...,Dq,t)’, µ = (µ1,...,µq), γ = (γ1’,...,γq’)’

of dimensions (q×1), (p×q), (q×r) respectively, and rewrite (14) in a form similar to (12):

t

k

i

q

j
it,ji,j

k

i
itikt

kt

t
t IYD

tD

Y
Y εκ∆Γµ

γ
β

α∆ +∑ ∑+∑++




′







=

−

= =
−

−

=
−−

−

− 1

0 2

1

1

1 (15)

where the dummy variables Dj,t, Dj,t-k and Ij,t are defined as in the previous section, and

the κj,i are (p×1).vectors.

JMN (2000) develop a maximum likelihood cointegration test method based on the

squared sample canonical correlations, iλ̂ , of tY∆  and ( )t1t Dt,Y ′′−  corrected for the

regressors:

Dt-k , itY −∆ , i = 1,...,k-1, Ij,t-i , i = 0,..., k-1; j = 2,...,q.

The likelihood ratio test statistic for the hypothesis of at most r cointegrating relations is

given by:

LR = ∑ −−
+=

p

1ri
i )ˆ1log(T λ (16)

We consider next three cases:

1. none of the p time series displays a trending pattern, but the cointegrating relations

have an intercept which can differ between the sub-samples;

2. some or all of the time series follow a trending pattern in each sub-sample and the

cointegrating relations are trend stationary in each sub-sample; trend breaks are

allowed both in the cointegrating relations and in the non-stationary series;
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3. some or all of the time series follow a trending pattern in each sub-sample and the

cointegrating relations are stationary in each sub-sample (with possibly a broken

constant level); trend breaks are allowed only in the non-stationary series;

Shift in Intercept Model:  None of the p time series have a deterministic trend

The only deterministic components in the model are the intercepts in the cointegrating

relations which can differ between sub-samples.  In that case we have:

Π1 = Π2 = ... Πq = 0  , moreover  µ is restricted to the cointegrating relations.

The interpretation is that the cointegrating relations have an attractor µj which varies

between sub-samples.  This model is denoted by Hc(r) in JMN (2000).

t
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t IY
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1 (17)

where αν’ = µ.

JMN (2000) show that the asymptotic distribution of the likelihood ratio test is well

approximated by a Γ-distribution.  The reader is referred to section 3.4 of JMN (2000) for

the computation of the critical values depending on the number of non-stationary

relations and the location of the break points.

Some or all of the time series follow a trending pattern

This model allows the individual time series to have broken trends, while the

cointegrating relations may also broken trends. This model is denoted by Hl(r) in JMN

(2000).  It is the most general case and is represented by equation (15).  The derivation of

the critical values for this model is also given in section 3.4 of JMN (2000).

Some or all of the time series follow a trending pattern in each sub-sample and the

cointegrating relations are stationary in each sub-sample (with possibly a broken

constant level); trend breaks are allowed only in the non-stationary series

This model is denoted Hlc(r) in JMN (2000).  The asymptotic distribution of the

likelihood ratio test depends on nuisance parameters and cannot easily be obtained.
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Unit Root Tests

In the first two cases, models (15) and (17), JMN (2000) also show that test for linear

restrictions on β, γ  and ν are asymptotically χ2-distributed.  Such tests are particularly

useful because they make it possible to test whether the individual time series are trend

stationary on each sub-sample.

4. Simulation Results

Under construction…

5. Conclusion

In the last decade applied econometricians have usually treated structural breaks in VAR

models in an ad hoc fashion.  Intervention dummies have been included with little care

given to their specification.  In this note we have considered three models of interest in

applications and have given a detailed account of the specification and inclusion of

intervention dummies in those cases.  Statistical theory for those cases has  been

developed in JMN (2000).  Although there is no new statistical theory in this note, the

discussion of the inclusion and specification of intervention dummies should be useful to

applied economists.  It is indeed often the case that including dummies does not solve the

non-normality problems of the residuals encountered in the estimation of VAR and

VECM models.  The reason for this should now be clear.
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