“Geography, International Trade and Technological Diffusion”

Sami REZGUI

Assistant Professor at the University of Tunis-El Manar

e-mail : sami.rezgui@fsegt.rnu.tn

Abstract

This paper investigates the impact of geography on technological diffusion via international trade and proposes to re-examine the contribution of Coe, Helpman and Hoffmaister to the knowledge spillovers literature. Using a gravitational model, we first confirm the negative effect of physical distance on imports. We also show that geographic proximity contributes to more technological diffusion generated by imports. However, a decreasing technological diffusion effect is observed over time. A 1 percent increase in imports from European G6 countries generates, via technological diffusion, a mean increase of TFP by 1.3 percent for Mediterranean countries and 0.9 percent for MENA countries during the period 1982-1988, whereas technological diffusion effects on TFP are no more significant for the period 1989-1995.

JEL Classification : F, O

1. Campus Universitaire, Boulevard du 7 Novembre, 2092 El Manar, Tunisia.
Geography, International Trade and Technological Diffusion

Sami REZGUI²

I. Introduction

During the last years, the contribution of technological diffusion to economic growth has been mainly studied by focusing on the role of international trade. Following Coe and Helpman (CH) and Coe, Helpman and Hoffmaister (CHH), developing countries could benefit from technological spillovers generated by imports from developed countries. Empirical results obtained by the authors also confirm the positive effect that these spillovers had on economic growth. Since this literature, however, little had been said about the intensity of technological diffusion. Should we consider technological diffusion that benefit developing countries to be of a uniform intensity? According to recent studies, this could be not the case. In fact, gravitational models show that imports, supposed to be a mechanism for technological diffusion, could be influenced by geographical factors and particularly by physical distance separating importers and exporters (Frankel & ali., 1996 ; Frankel and Romer, 1999). Technological diffusion also depends on the geographic location of knowledge diffusers and receivers. From this point of view, it seems that knowledge diffusion could be limited to a little geographic area (Eaton & Kortum, 1996; Keller, 2001). Hence, geography is an issue that deserves to be explored for the explanation of the relationship between technological diffusion, trade and growth.

P. Krugman had yet stressed the importance of geography in explaining the dynamic of international trade. Transport costs are then considered as a factor that determines not only the inter-regional trade but also the economic growth of importing countries. Using a Harrod-Domar growth model with imports of capital goods, Gallups, Sachs and Mellinger show that as far as developing countries are from “core economies”, transport costs increase the cost of importing which reduce the economic growth of these countries.

Another set of studies, belonging to the spatial economy, provides strong empirical evidence on the existence of localization effects that are considered as a major determinant for technological diffusion. A. Marshall³ expressed firstly the idea. When firms are geographically concentrated, it is supposed that knowledge flows more easily between them. Inspired by the Marshall-Arrow-Romer approach, many empirical studies have been showing

² Assistant Professor at the University of Tunis-El Manar / sami.rezgui@fsegt.rnu.tn
³ Speaking about Marshall’s contribution to the external effects analysis, P. Krugman notes: “Because information flows locally more easily than over a greater distance, an industrial center generates what we would now call technological spillovers” (Krugman, 1991, p37-38).
the existence of a localized technological diffusion that contributes to the innovative activity of firms located in big American agglomerations (D.Audretsch & M.Feldman, 1996; V.Henderson, 1997, L.Anselin, & alii, 1997). Although the kind of knowledge diffused remains of a public good nature, geographic proximity seems to play an important role in explaining technological diffusion⁴.

Technological diffusion explained by geographic location is also expressed through the contributions of A.Jaffe and A.Jaffe, M.Trajtenberg and R.Henderson. By examining the correlation between patent citations and the geographic location of inventors, the authors show that technological diffusion is limited to an intra-industry level. At the level of countries, Branstetter consider that technological diffusion is much more intensive inside United-States and Japan than it is between the two countries. Using patent deposits as a measure of technological diffusion, Eaton and Kortum show that bilateral imports between OCDE countries do not significantly contribute to patenting activity. However, physical distance between OCDE countries explains this activity. According to the authors’ estimations, technological diffusion is minimal by a distance of 10.000 km (J.Eaton et S.Kortum, 1996, p265-266).

In an NBER working paper, W.Keller estimates the contribution of technological diffusion to Total Factor Productivity (TFP) growth using panel data for 8 industrial sectors in the G7 countries, data covering the period 1970-1995. In his paper, Keller suggests studying separately the explaining power of physical distance and bilateral imports to technological diffusion and then compares their effect on TFP. Using a non linear model⁵, three main results were stressed by the author: first, the stock of knowledge diffused decreases by half when the distance separating G7 countries exceeds 1.600 km. Second, technological diffusion seems to be less localised on the period 1983-1995. Third, physical distance predominates imports in explaining the effect of technological diffusion on TFP growth.

From this literature, we could argue that an international scope of technological diffusion is not evident⁶. In fact, technological spillovers supposed to benefit developing countries should depend on their imports structure and especially on their geographic location. We then consider that it would be useful to re-examine the CH and CHH contributions to the knowledge spillovers literature by including geographic factors. In doing so, we could have a more accurate estimation of knowledge spillovers generated by international trade and their effects on developing countries’ growth.

⁴. Tacit knowledge should be invariant to geographic proximity.
⁵. The model also includes foreign direct investment and language communication. The econometric specification used is inspired from G.Hanson (1998).
⁶. Although learning externalities from foreign R&D are possible as claimed by Grossman and Helpman (1990).
The remainder of this paper is organized as follows. In section II, we use a gravitational model to estimate the effect of geographic factors on imports using a sample of 42 countries trading with G6 countries. Section III examines the impact of geographic proximity to technological diffusion by considering four regional groups of countries and by using panel data covering the period 1982-1995. The CHH model is then applied to get estimations of the impact technological diffusion on growth for each regional group of countries. Comments on the results obtained and conclusions are made in section IV.

II. Imports and geographic factors.

We use the Frankel and Romer approach to explain the geographic determinants of imports. Our approach and estimations are nevertheless quite different from those of the authors because the sample of countries considered is different and, most importantly, the endogenous variable explained is not bilateral trade but only unilateral imports.

Using a gravitational model, we explain the imports realised by 42 countries (see annexe) from G6 countries. The explaining variables considered are physical distance and two measures of size of importing countries: country population and area. The use of these measures of country size could be correlated to imports for two reasons. First, the more country population is important; the highest would the level of its imports. Choosing area as a measure of size is explained by the fact that as country area is big, local trade should be more important than imports (Frankel & Romer, 1999). We then expect a negative sign for the coefficients of both distance and country area whereas country population is expected to be positively correlated to imports.

The log linear specification of the model we use is written as follows:

\[\log M_{ij} = \alpha_0 + \alpha_1 \log D_{ij} + \alpha_2 \log P_i + \alpha_3 \log S_i + e_{ij} \]

\(M_{ij} \) = Imports of country \(i \) from country \(j \) (country \(j \) belongs to G6)
\(D_{ij} \) = Physical distance separating country \(i \) from country \(j \)
\(P_i \) = Population of country \(i \)
\(S_i \) = Area of country \(i \)
\(e_{ij} \) = residual term

7. The regional groups of countries studied are Mediterranean countries, MENA countries, Central and South America countries and South East Asia countries.
8. Frankel and Romer explain bilateral trade (imports and exports) between 150 countries.
9. The G6 countries considered are: United States, Japan, Germany, France, Italy and United Kingdom. Canada was not considered.
Equation 1 is estimated for the years 1982 and 1995. Results reported in table 1 confirm the expected signs of the coefficients. Imports are decreasing when distance increases, the estimated elasticity of imports with respect to distance is by –0.658 for 1982 and by –0.456 for 1995. Country population and area have contradictory effects on imports and it seems that population effect predominates area effect in explaining imports.

The contribution of geographic factors in explaining imports could not be limited to the estimations we obtain with equation 1. In order to evaluate the explaining power of the geographic factors considered, a constructed indicator of imports is defined according to equation 1. Let’s note M_{ij}^C this indicator:

$$M_{ij}^C = \exp(\alpha_0 + \alpha_1 \log D_{ij} + \alpha_2 \log P_i + \alpha_3 \log S_i)$$

$$\Rightarrow M_{ij}^C = \exp(\alpha_0 \alpha_1 \alpha_2 \alpha_3)$$

$$\Rightarrow M_i^C = \sum_j M_{ij}^C$$

Using equation 4, we regress for the two years 1982 and 1995 the observed level of imports for all 42 countries (M_i) on the constructed indicator M_i^C. Estimations are done following equation 5:

$$\log(M_i) = \beta_0 + \beta_1 \log(M_i^C) + u_i$$ u_i is a residual term

Results reported in table 2 show a significant correlation between M_i^C and M_i. The value of the adjusted R squared is near 0.3 for both 1982 and 1995 years. This result suggests that the constructed indicator of imports M_i^C contains sufficient amount of information on the observed levels of imports realised by the 42 countries considered.

On the basis of these estimations, we can argue that geographical factors have some influence on imports. In the particular case of physical distance, we found a negative and significant effect of this variable on imports. We try now to focus on the link between geographical structure of imports and physical distance.

For this purpose, 4 regional groups of countries were formed and basic statistics on the geographic structure of imports for each regional group are used and confronted with physical

10 M_i^C represents fitted values of imports computed under the hypothesis that the residual term e_{ij} is homoscedastik.
distance statistics11. As shown in table 3, developing Mediterranean (MED) and MENA countries trade more with European G6 countries. At the same time, these two regional groups of countries are geographically located near European G6 countries. It is also the case for Central and South America countries (CSA) and South East Asia countries (SEA) whose imports are mostly realized respectively from United States and Japan. The correlation between distance and geographic structure of imports for the four regional groups of countries seems to be evident. Could the factor of geographic proximity that underlies imports be of some influence on technological diffusion? We will try to answer this question in the following section.

\textbf{III. Imports, technological diffusion and growth.}

As noticed earlier, the CHH model does not take in account the geographic factors that explain imports and particularly the physical distance. Trade is only considered as an exogenous variable that contributes to TFP growth \textit{via} knowledge spillovers. The re-examination of the CHH hypothesis on knowledge spillovers will be done according to three approaches: The first approach allows us to estimate the contribution of technological diffusion to growth regardless to the geographic structure of imports of the four regional groups of countries formed (3.1). The second approach takes in account the geographic proximity underlying imports and estimates its influence on the intensity of technological diffusion (3.2). The third approach we use aims to study the “geographic proximity effect” on technological diffusion over time (3.3).

\textbf{3.1 Imports and the intensity of technological diffusion}

Equation 6, inspired from the CHH model, is used to estimate the contribution of imports to growth \textit{via} technological diffusion. Imports are measured in Million Dollars (M$) and the foreign stock of knowledge is computed using R&D spending data (M$) for the G6 countries considered as reported in the Main Science and Technology Indicators (MSTI) data base [OCDE, 1999]. An interaction term between the two variables is also considered.

Panel data for MED, MENA, CSA and SEA countries is used and covers the period 1982 to 1995.

11 According to G.Hanson, two methods could be used to estimate distance separating two points A and B. The first method is based on the computed value of the minimal distance of the arc linking the two points. The second method is based on a hub-and-spoke measure of distance between A and B with point C considered as a "hub point". Using the ICAO statistics, our measures of physical distance are exclusively based on the second method.
Log TFP\textsubscript{it} = λ\textsubscript{0} + \lambda\textsubscript{1} \log M\textsubscript{it} + \lambda\textsubscript{2} \log(M\textsubscript{it} * \log(\sum S\textsubscript{ijt})) + \mu\textsubscript{ijt} \tag{6}

TFP\textsubscript{it} = Total Factor Productivity12 of country i for year t.

M\textsubscript{it} = Imports of country i from G6 countries

S\textsubscript{ijt} = Foreign stock of knowledge benefiting country i proportionately to its imports from country j at year t.

\mu\textsubscript{ijt} = residual term

The foreign stock of knowledge is measured according to the Keller’s approach, which integrates a depreciation ratio of knowledge capital:

S\textsubscript{j1981} = D\textsubscript{j1981} / (\tau + \delta) \tag{7}13

S\textsubscript{jt} = D\textsubscript{jt} + (1 - \delta) S\textsubscript{jt-1} \quad ; t = \{1982, \ldots, 1995\} \tag{8}

S\textsubscript{ijt} = [M\textsubscript{ijt} / M\textsubscript{it}] * S\textsubscript{jt} \tag{9}

Equation 7 allows us to compute the stock of knowledge of country j belonging to the G6 group just for the year before the period considered in our estimations. The stock of knowledge of country j for the year 1981 is equal to country j R&D spending for the year 1981 (noted D\textsubscript{j1981}) divided by the sum of country j R&D spending growth ratio (noted \tau) for the period 1981-1995 and a knowledge capital depreciation ratio (noted \delta) fixed at 0.1. Country j R&D stock is then computed for the period 1982-1995 using equation 8. Foreign stock of knowledge that benefits importing countries is assumed to be in proportion to their imports and is computed using equation 9.

Results are reported in table 5. The specification tests used show that for Mediterranean countries, knowledge spillovers benefit only to some of the countries considered if we take into account the fixed effects specification (column 3). The estimated elasticity of TFP with respect to imports (E\textsubscript{m}) ranges between 0.85 and 0.89 meaning that a 1 percent increase in MED countries imports generates a mean increase in TFP by 0.87 percent for the period 1982-1995. Although MED countries imports are no more important than those of MENA or CSA countries14, technological diffusion effect benefiting to the former seems to be much stronger. The results we obtain show that a 1 percent increase in MENA countries imports generates a mean increase in TFP by 0.75 percent for the same period whereas no

12. TFP is computed assuming a Cobb-Douglas production function with constant returns to scale:

Y = A.K^\alpha L^{(1-\alpha)} \text{ with } \alpha = 0.4.

13. Data on countries R&D spending reported in the Main Science and Technology Indicators Data Base starts at the year 1981.

14. Using the International Trade Statistical Year Book, the values reported in table 9 and weighed by the percentages of table 3 give an idea on the importance of imports for each regional group of countries.
technological diffusion benefit to CSA countries via imports. Our estimations show also that SEA countries are the most benefiting countries from technological diffusion (column 8, table 5).

By the first approach we use, we show that technological diffusion generated by imports has not the same intensity. It is also interesting to note that the level of imports does not always explain the intensity of technological diffusion.

3.2 Geographic location and the intensity of technological diffusion.

If the level of imports does not influence technological diffusion, then geographic location of importers with respect to exporters should be considered. We will try now to see if the “imports effect” could be unbalanced by a “geographic proximity effect” in the estimation of technological diffusion intensity. For this purpose, we use the same model specification given by equation 6. The only difference introduced concerns the imports variable. Instead of including all imports from G6 countries, we just consider the imports emanating from the principal trading partner for each regional group of countries. For example, we include MED and MENA imports from European G6 countries, CSA imports from United States and SEA imports from Japan. In doing so, we obviously modify the level of foreign stock of knowledge supposed to benefit to each country. This last variable is then recomputed for all importing countries.

The estimations we do follow equation 10 which should be considered as an illustration to the way we get MED countries estimations:

\[
\log TFP_{it} = a_0 + a_1 \log I_{(i/Eur),t} + a_2 \log I_{(i/Eur),t} \times \log \left[\sum R_{(i/Eur),t} \right] + r_{(i/Eur),t}
\]

(10)

TFP$ _{it} =$ Total Factor Productivity at time t of country i belonging to the Mediterranean region.

I_{(i/Eur),t} =$ Imports realized from European G6 countries at time t by country i belonging to the Mediterranean region.

R_{(i/Eur),t} =$ Foreign stock of knowledge benefiting at time t country i proportionately to its imports from European G6 countries. Country i belongs to the Mediterranean region.

r_{(i/Eur),t} =$ residual term

The same model specification is then reapplied for MENA, CSA and SEA countries using the appropriate measure of I and R for each country. Results are reported in table 6. As a matter of comparison, we use the new computed value of TFP elasticity with respect to imports noted E_i and compare it to the preceding E_m value. After testing for the appropriate
econometric specification, the results we obtain confirm the existence of a “geographic proximity effect” that concerns some of the MED countries. For these countries, the value of E_i is more important than E_m, which means that a 1 percent increase in their European imports has more effects on TFP than could have their imports from all G6 countries. The mean increase in TFP is estimated by 0.95 percent (column 3 and 4, table 6), which is significantly different from the earlier 0.87 percent estimation. However, the “geographic proximity” between importers and exporters does not play any role in determining the intensity of technological diffusion for MENA, CSA and SEA importing countries. The Keller’s argument about technology level of exporting countries in enhancing TFP growth could be sustainable here particularly in the case of MENA countries. In fact, as shown in table 3, the geographic structure of imports of MENA countries was clearly changing. During the period 1982 to 1995, MENA countries has been importing more from “less technology advanced” exporters whereas the part of “technology advanced exporter” especially European countries has been deceasing. One should also consider the changing structure of imports in what concerns the kind of goods imported by MENA countries during this period.

3.3 Geographic location and technological diffusion over time.

We try now to evaluate the contribution of the geographic proximity to technological diffusion over time. For this purpose, we estimate equation 10 on the periods 1982-1988 and 1989-1995 for each regional group of countries. As shown in tables 7-a and 7-b, technological diffusion is changing in intensity over time if we consider the value of E_i from one period to another. From table 7-a, we note an important contribution of geographic proximity to technological diffusion generated by imports particularly for MED, MENA and SEA countries on the period 1982-1988. The negative sign of the coefficient a_1 should be interpreted with some caution. In fact, the level of foreign stock of knowledge linked to imports seems to be insufficient in order to enhance TFP growth so that, technological diffusion should have an indirect effect on TFP [S.Rezgui, H.Salah, 2001]. Results reported in table 7-b show that with the exception of SEA countries, technological diffusion has been no

15. Keller notes: « the composition of imports matters. Productivity growth in a typical developing country might not depend too much on whether 50 percent of its imports come from the United States and 30 percent from Japan, or 30 percent from the United States and 50 percent from Japan. But productivity is likely to be much lower if the country were too significantly to reduce the share of its imports from both United States and Japan while increasing its share of imports from other developing countries that are not world technology leaders” (W.Keller, 2000, pp 36).

16. SEA countries were observing an accelerated technological diffusion effect from one period to another, which is confirmed by the E_i value. For some of these countries, a one percent increase in imports from Japan contributes to 1.54 percent increase in TFP on the first period and to 1.69 percent on the second one. This result could be explained by the importance of local R&D capabilities of SEA countries, which offer larger possibilities of dynamic learning compared to those of the other regional groups of countries considered in this study.
more significant for MED and MENA countries on the period 1989-1995. The results we obtain are quite close to those obtained by W.Keller for the case of developed countries17. On recent periods, technological diffusion seems to be less localized, which means that physical proximity does not play any role in intensifying knowledge spillovers. For the case of MED and MENA countries, our results also confirm the idea that increasing imports from the nearest trading partners (European countries) does not always allow much more knowledge diffusion to importing countries.

IV. Concluding Remarks

Economic geography has been a main extension to growth analyses and especially to endogenous growth theories integrating knowledge spillovers as mean to achieve economic development. By using a gravitational model, our paper aimed first to show that imports could not be considered as an exogenous mechanism for knowledge spillovers as it was the case in the CHH analysis. In a preliminary empirical work, we show that geographic factors and particularly physical distance separating importing countries from G6 exporting countries have important and significant influence on imports. Although subject to some criticism18, the use of a gravitational model allows us to demonstrate that imports explained by geographic factors explain themselves, in some part, the observed levels of imports for the sample of countries considered.

The preceding results justified the opportunity to re-examine the CHH hypothesis on knowledge diffusion generated by international trade. By showing that geographic location could have some influence on imports, the second step of our empirical investigations led us to three main results for the case of developing countries:

- Knowledge diffusion does not necessarily benefit more to regional groups of countries with high levels of imports from G6 countries. This is the case for MENA and CSA countries by comparison with MED countries.

- Geographic location of importing countries could not be the only factor that determines the intensity of technological diffusion. Knowledge spillovers also depend on the evolution of the geographic structure of imports for these countries and on the kind of goods they import (knowledge intensive or not).

17 In the case of the technology frontier’ countries, Keller found that the distance variable is negatively and significantly correlated to technological diffusion on the period 1970-1982 whereas no significant correlation is observed on the period 1983-1995. The author concludes at the absence of any “localized effect” for knowledge diffusion between the G7 countries (Keller, 2001, p19-20).

18 The use of a gravitational model lead to the exclusion of many other variables relative to the policy trade of each country. These variables should be crucial for the explanation of imports especially in developing countries.
- Geographic proximity of importing countries to “core economies” does not always contribute to more technological diffusion in favour of the former. An amplified technological gap coupled with an increase in importing prices of new knowledge intensive goods may explain this result. The access to new technologies should also become more difficult because, over some periods, local learning capabilities of importing countries may not be sufficiently able to integrate these technologies even by mean of knowledge externalities.

On a technical ground, our paper is based on a log linear model of estimation with a classical measure of TFP. By using this econometric model, the study of physical proximity effect on knowledge diffusion does not directly integrate the distance variable, which could be done with a non-linear model specification19 in further investigations. Finally, we consider that a suitable measure of TFP for the international comparisons we did should be the one proposed by Caves, Christensen and Diewert20 (1982), which consists in the computation of a superlative TFP index. However, this method requires a precise measure of factor costs for all the countries included in the sample.

19 Following the G.Hanson model specification.

Bibliography

Statistical References

- World Development Data, CD-Rom, 2000
- Main Science and Technology Indicators, OECD, 1999
- ICAO, Traffic by flight stage.
Table 1: Geographic factors and imports

(Dependent variable: Imports of country i from country j (Mij))

<table>
<thead>
<tr>
<th>Estimators</th>
<th>Year 1982</th>
<th>Year 1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_0</td>
<td>3.210**</td>
<td>0.310</td>
</tr>
<tr>
<td></td>
<td>(1.571)</td>
<td>(1.796)</td>
</tr>
<tr>
<td>α_1</td>
<td>-0.658***</td>
<td>-0.456***</td>
</tr>
<tr>
<td></td>
<td>(0.125)</td>
<td>(0.138)</td>
</tr>
<tr>
<td>α_2</td>
<td>0.657***</td>
<td>0.845***</td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
<td>(0.124)</td>
</tr>
<tr>
<td>α_3</td>
<td>-0.226***</td>
<td>-0.339***</td>
</tr>
<tr>
<td></td>
<td>(0.072)</td>
<td>(0.084)</td>
</tr>
<tr>
<td>Observations Number</td>
<td>252</td>
<td>252</td>
</tr>
<tr>
<td>Adj.R2</td>
<td>0.21</td>
<td>0.24</td>
</tr>
<tr>
<td>F Statistic</td>
<td>23.2</td>
<td>27.6</td>
</tr>
</tbody>
</table>

Standard error in parenthesis corrected by applying the White’s test (1981)

*** Significant at 1%; ** significant at 5% ;

Table 2: Correlation between observed levels of imports (Mi) and the constructed indicator of imports (M_i^C) for the 42 countries considered in the sample.

<table>
<thead>
<tr>
<th>Estimators</th>
<th>Year 1982</th>
<th>Year 1995</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0</td>
<td>0.521</td>
<td>0.964</td>
</tr>
<tr>
<td></td>
<td>(1.723)</td>
<td>(2.236)</td>
</tr>
<tr>
<td>β_1</td>
<td>0.989***</td>
<td>0.953***</td>
</tr>
<tr>
<td></td>
<td>(0.243)</td>
<td>(0.294)</td>
</tr>
<tr>
<td>Observations Number</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Adj.R2</td>
<td>0.291</td>
<td>0.284</td>
</tr>
<tr>
<td>F Statistic</td>
<td>17.83</td>
<td>17.30</td>
</tr>
</tbody>
</table>

Standard error in parenthesis corrected by applying the White test (1981)

*** Significant at 1%; ** significant at 5%;
Table 3: Regional groups of countries and their imports proportion from G6 countries (values in percent)

<table>
<thead>
<tr>
<th>Regional groups / G6 countries</th>
<th>Years</th>
<th>United-States</th>
<th>Japan</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Méditerranée (MED)</td>
<td>1982</td>
<td>7</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>4</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>Middle-East and North Africa (MENA)</td>
<td>1982</td>
<td>23</td>
<td>28</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>8</td>
<td>4</td>
<td>29</td>
</tr>
<tr>
<td>Central and South America (CSA)</td>
<td>1982</td>
<td>42</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>45</td>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>South-East Asia (ASE)</td>
<td>1982</td>
<td>32</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1995</td>
<td>46</td>
<td>87</td>
<td>44</td>
</tr>
</tbody>
</table>

Table 4: Physical distance (in km) separating countries considered from G6 countries*

<table>
<thead>
<tr>
<th>Regional groups / G6</th>
<th>United-States</th>
<th>Japan</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>MED</td>
<td>5795 - 9234</td>
<td>9289 - 11607</td>
<td>578 - 3682</td>
</tr>
<tr>
<td>MENA</td>
<td>5795 - 10629</td>
<td>9209 - 12031</td>
<td>578 - 5092</td>
</tr>
<tr>
<td>AMECS</td>
<td>2540 - 10677</td>
<td>12286 - 18892</td>
<td>7470 - 12149</td>
</tr>
<tr>
<td>ASE</td>
<td>11070 - 18623</td>
<td>1227 - 5837</td>
<td>8552 - 12110</td>
</tr>
</tbody>
</table>

* We just consider minimal and maximal distance separating the countries considered and each G6 country.
Table 5: Imports, Technological Diffusion and Growth
(Dependent Variable: LogTFP)

<table>
<thead>
<tr>
<th>Regions</th>
<th>MED</th>
<th>MED</th>
<th>MED</th>
<th>MENA²¹</th>
<th>MENA</th>
<th>CSA</th>
<th>SEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimators /specifications</td>
<td>LS</td>
<td>FE</td>
<td>RE</td>
<td>FE</td>
<td>RE</td>
<td>FE</td>
<td>FE</td>
</tr>
<tr>
<td>(\lambda_0)</td>
<td>2.332</td>
<td>-</td>
<td>2.811***</td>
<td>-</td>
<td>2.83***</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.118)***</td>
<td>-</td>
<td>(0.15)</td>
<td>-</td>
<td>(0.138)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(\lambda_1)</td>
<td>-0.095</td>
<td>-0.296***</td>
<td>-0.28***</td>
<td>-0.244***</td>
<td>-0.24***</td>
<td>-0.022</td>
<td>-0.52***</td>
</tr>
<tr>
<td></td>
<td>(0.113)</td>
<td>(0.08)</td>
<td>(0.079)</td>
<td>(0.06)</td>
<td>(0.06)</td>
<td>(0.05)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>(\lambda_2)</td>
<td>0.042</td>
<td>0.096***</td>
<td>0.091***</td>
<td>0.08***</td>
<td>0.079***</td>
<td>0.001</td>
<td>0.197***</td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.028)</td>
<td>(0.027)</td>
<td>(0.021)</td>
<td>(0.021)</td>
<td>(0.017)</td>
<td>(0.027)</td>
</tr>
</tbody>
</table>

Observations Nbr. | 98 | 98 | 98 | 126 | 126 | 224 | 98 |
Adj. R² | 0.02 | 0.77 | 0.75 | 0.94 | 0.94 | 0.95 | 0.99 |

\(E_i^{(1)} \) | - | 0.89 | 0.85 | 0.76 | 0.74 | - | 2.02 |

Standard error in parenthesis

\(. \) = Least Squares; FE = Fixed Effects; RE = Random Effects

Table 6: Geographic proximity and technological diffusion (period 1982-1995)
(Dependent variable: Log TFP)

<table>
<thead>
<tr>
<th>Regions</th>
<th>MED</th>
<th>MED</th>
<th>MED</th>
<th>MENA</th>
<th>CSA</th>
<th>SEA</th>
<th>SEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimators /specifications</td>
<td>LS</td>
<td>FE</td>
<td>RE</td>
<td>FE</td>
<td>FE</td>
<td>FE</td>
<td>RE</td>
</tr>
<tr>
<td>(a_0)</td>
<td>2.388</td>
<td>-</td>
<td>2.945***</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.706***</td>
</tr>
<tr>
<td></td>
<td>(0.114)</td>
<td>-</td>
<td>(0.152)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>(0.042)</td>
</tr>
<tr>
<td>(a_1)</td>
<td>-0.124</td>
<td>-0.366***</td>
<td>-0.341***</td>
<td>-0.272***</td>
<td>-0.01</td>
<td>-0.377***</td>
<td>-0.358***</td>
</tr>
<tr>
<td></td>
<td>(0.133)</td>
<td>(0.091)</td>
<td>(0.089)</td>
<td>(0.065)</td>
<td>(0.052)</td>
<td>(0.077)</td>
<td>(0.08)</td>
</tr>
<tr>
<td>(a_2)</td>
<td>0.053</td>
<td>0.119**</td>
<td>0.112***</td>
<td>0.089***</td>
<td>-0.002</td>
<td>0.145***</td>
<td>0.138***</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td>(0.032)</td>
<td>(0.031)</td>
<td>(0.023)</td>
<td>(0.023)</td>
<td>(0.026)</td>
<td>(0.001)</td>
</tr>
</tbody>
</table>

Observations Nbr. | 98 | 98 | 98 | 126 | 224 | 98 | 98 |
Adj. R² | 0.02 | 0.76 | 0.76 | 0.94 | 0.95 | 0.99 | 0.99 |

Fisher test: FE vs LS (F1%) | 6.96 [18.0] | 47.8 [10.9] | 121.59 [6.7] | 101.98 [18.0] |
Hausman test: FE vs RE (\(\chi^2 \);5%) | 3.51 [5.99] | 17.6 [5.99] | 39.18 | accepted²² |
\(E_i^{(1)} \) | - | 0.97 | 0.92 | 0.72 | - | 1.32 | 1.25 |

Standard error in parenthesis

\(. \) = \(\Delta \)logPGF / \(\Delta \)log\(I \)

²¹. Missing data for Kuwait and Oman obliged us to not include these two countries in MENA estimations.
²². The m statistic of the Hausman test is near zero, we then accept the RE specification.
Table 7-a: Geographic proximity and technological diffusion over time: Estimations for the period 1982-1988, (Dependent variable: LogTFP)

<table>
<thead>
<tr>
<th>Regions</th>
<th>MED</th>
<th>MED</th>
<th>MENA</th>
<th>MENA</th>
<th>CSA</th>
<th>SEA</th>
<th>SEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimators/ specifications</td>
<td>FE</td>
<td>RE</td>
<td>FE</td>
<td>RE</td>
<td>FE</td>
<td>RE</td>
<td>FE</td>
</tr>
<tr>
<td>(a_0)</td>
<td>-</td>
<td>3.146***</td>
<td>-</td>
<td>2.973***</td>
<td>-</td>
<td>-</td>
<td>2.492***</td>
</tr>
<tr>
<td></td>
<td>(0.188)</td>
<td>(0.165)</td>
<td>(0.134)</td>
<td>(0.134)</td>
<td>(0.134)</td>
<td>(0.134)</td>
<td>(0.134)</td>
</tr>
<tr>
<td>(a_1)</td>
<td>-0.491***</td>
<td>-0.485***</td>
<td>-0.321***</td>
<td>-0.14**</td>
<td>-0.418***</td>
<td>-0.411***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.099)</td>
<td>(0.079)</td>
<td>(0.083)</td>
<td>(0.072)</td>
<td>(0.055)</td>
<td>(0.058)</td>
<td></td>
</tr>
<tr>
<td>(a_2)</td>
<td>0.162***</td>
<td>0.161***</td>
<td>0.114***</td>
<td>0.108***</td>
<td>0.037</td>
<td>0.173***</td>
<td>0.171***</td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.038)</td>
<td>(0.033)</td>
<td>(0.035)</td>
<td>(0.027)</td>
<td>(0.019)</td>
<td>(0.02)</td>
</tr>
<tr>
<td>Observations Nbr.</td>
<td>49</td>
<td>49</td>
<td>63</td>
<td>63</td>
<td>112</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Adj. R2</td>
<td>0.94</td>
<td>0.94</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Fisher test: FE vs LS ((F_{1%,2}))</td>
<td>42.6</td>
<td>[18.0]</td>
<td>125.88</td>
<td>[10.9]</td>
<td>223.7[6.7]</td>
<td>[18.0]</td>
<td></td>
</tr>
<tr>
<td>LR test: FE vs LS ((\chi^2 ;5%))</td>
<td>21.73</td>
<td>[5.99]</td>
<td>33.84</td>
<td>[5.99]</td>
<td>57.08[5.99]</td>
<td>36.3[5.99]</td>
<td></td>
</tr>
<tr>
<td>Hausman test: FE vs RE ((\chi^2 ;5%))</td>
<td>0.248</td>
<td>[5.99]</td>
<td>accepted</td>
<td>22.98[5.99]</td>
<td>accepted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_I)</td>
<td>1.29</td>
<td>1.28</td>
<td>0.9</td>
<td>0.85</td>
<td>-</td>
<td>1.55</td>
<td>1.54</td>
</tr>
</tbody>
</table>

\(E_I \) is computed on the basis of the mean value of \(\log(R_j) \), \(j \in \{\text{USA, JAP, EUR}\} \) for the period 1982-1988.

Table 7-b: Geographic proximity and technological diffusion over time: Estimations for the period 1989-1995, (Dependent variable: LogTFP)

<table>
<thead>
<tr>
<th>Regions</th>
<th>MED</th>
<th>MED</th>
<th>MENA</th>
<th>MENA</th>
<th>CSA</th>
<th>SEA</th>
<th>SEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimators/ specifications</td>
<td>LS</td>
<td>FE</td>
<td>FE</td>
<td>RE</td>
<td>FE</td>
<td>RE</td>
<td>FE</td>
</tr>
<tr>
<td>(a_0)</td>
<td>2.236***</td>
<td>-</td>
<td>2.414***</td>
<td>-</td>
<td>2.564***</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.148)</td>
<td>(0.162)</td>
<td>(0.162)</td>
<td>(0.162)</td>
<td>(0.162)</td>
<td>(0.162)</td>
</tr>
<tr>
<td>(a_1)</td>
<td>-0.01</td>
<td>-0.052</td>
<td>0.013</td>
<td>-0.046</td>
<td>-0.012</td>
<td>-0.015</td>
<td>-0.508***</td>
</tr>
<tr>
<td></td>
<td>(0.166)</td>
<td>(0.139)</td>
<td>(0.121)</td>
<td>(0.112)</td>
<td>(0.112)</td>
<td>(0.112)</td>
<td>(0.112)</td>
</tr>
<tr>
<td>(a_2)</td>
<td>0.014</td>
<td>0.015</td>
<td>-0.004</td>
<td>0.015</td>
<td>0.003</td>
<td>-0.003</td>
<td>0.184***</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.049)</td>
<td>(0.044)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
<td>(0.04)</td>
</tr>
<tr>
<td>Observations Nbr.</td>
<td>49</td>
<td>49</td>
<td>63</td>
<td>63</td>
<td>112</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td>Adj. R2</td>
<td>0.11</td>
<td>0.84</td>
<td>0.84</td>
<td>0.98</td>
<td>159.1</td>
<td>159.1</td>
<td>384.25</td>
</tr>
<tr>
<td>Fisher test: FE vs LS ((F_{1%,2}))</td>
<td>10.9</td>
<td>[18.0]</td>
<td>163.8</td>
<td>[10.9]</td>
<td>[18.0]</td>
<td>[18.0]</td>
<td></td>
</tr>
<tr>
<td>Hausman test: FE vs RE ((\chi^2 ;5%))</td>
<td>accepted</td>
<td>accepted</td>
<td>13.39</td>
<td>[5.99]</td>
<td>accepted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(E_I)</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>ns</td>
<td>1.72</td>
</tr>
</tbody>
</table>

\(E_I \) is computed on the basis of the mean value of \(\log(R_j) \), \(j \in \{\text{USA, JAP, EUR}\} \) for the period 1989-1995. ns = not significant
Table 9: Imports from G6 countries (in MS) realized by the 42 countries considered

<table>
<thead>
<tr>
<th>Years</th>
<th>United-States</th>
<th>Japon</th>
<th>Europe</th>
</tr>
</thead>
<tbody>
<tr>
<td>1982</td>
<td>62384</td>
<td>45971</td>
<td>54639</td>
</tr>
<tr>
<td>1995</td>
<td>209149</td>
<td>167087</td>
<td>139267.2</td>
</tr>
</tbody>
</table>

Table 10: List of 42 countries considered in the sample

<table>
<thead>
<tr>
<th>Algeria</th>
<th>Ecuador</th>
<th>Madagascar*</th>
<th>Senegal*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>Egypt, Arab Rep.</td>
<td>Malaysia</td>
<td>Singapore</td>
</tr>
<tr>
<td>Bahrain</td>
<td>El Salvador</td>
<td>Mexico</td>
<td>Sudan*</td>
</tr>
<tr>
<td>Bolivia</td>
<td>Hong Kong</td>
<td>Oman</td>
<td>Thailand</td>
</tr>
<tr>
<td>Brazil</td>
<td>Indonesia</td>
<td>Pakistan*</td>
<td>Tunisia</td>
</tr>
<tr>
<td>Cameroon*</td>
<td>Jamaica</td>
<td>Panama</td>
<td>Turkey</td>
</tr>
<tr>
<td>Central Africa Rep.*</td>
<td>Jordan</td>
<td>Paraguay</td>
<td>Uruguay</td>
</tr>
<tr>
<td>Chile</td>
<td>Kenya*</td>
<td>Peru</td>
<td>Venezuela</td>
</tr>
<tr>
<td>Colombia</td>
<td>Korea, Republic</td>
<td>Philippines</td>
<td></td>
</tr>
<tr>
<td>Costa Rica</td>
<td>Kuwait</td>
<td>Saudi Arabia</td>
<td></td>
</tr>
</tbody>
</table>

* Countries not considered in the regional groups of countries formed.