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CHAPTER 1

Preface

These are class notes from several different graduate econometrics and statistics
classes. In the Spring 2000 they were used for Statistics 6869, syllabus on p. ??, and
in the Fall 2000 for Economics 7800, syllabus on p. ??. The notes give a careful and
complete mathematical treatment intended to be accessible also to a reader inexpe-
rienced in math. There are 618 exercise questions, almost all with answers. The
R-package ecmet has many of the datasets and R-functions needed in the examples.
P. 279 gives instructions how to download it.

Here are some features by which these notes may differ from other teaching
material available:

• A typographical distinction is made between random variables and the val-
ues taken by them (page 33).

• Best linear prediction of jointly distributed random variables is given as a
second basic building block next to the least squares model (chapter 27).

• Appendix A gives a collection of general matrix formulas in which the g-
inverse is used extensively.

• The “deficiency matrix,” which gives an algebraic representation of the null
space of a matrix, is defined and discussed in Appendix A.4.

• A molecule-like notation for concatenation of higher-dimensional arrays is
introduced in Appendix B and used occasionally, see (10.5.7), (64.3.2),
(65.0.18).

Other unusual treatments can be found in chapters/sections 3.11, 18.3, 25, 29, 40, 36,
41–42, and 64. There are a number of plots of density functions, confidence ellipses,
and other graphs which use the full precision of TEX, and more will be added in the
future. Some chapters are carefully elaborated, while others are still in the process
of construction. In some topics covered in those notes I am an expert, in others I am
still a beginner.

This edition also includes a number of comments from a critical realist per-
spective, inspired by [Bha78] and [Bha93]; see also [Law89]. There are many
situations in the teaching of probability theory and statistics where the concept of
totality, transfactual efficacy, etc., can and should be used. These comments are still
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at an experimental state, and are the students are not required to know them for the
exams. In the on-line version of the notes they are printed in a different color.

After some more cleaning out of the code, I am planning to make the AMS-LATEX
source files for these notes publicly available under the GNU public license, and up-
load them to the TEX-archive network CTAN. Since I am using Debian GNU/Linux,
the materials will also be available as a deb archive.

The most up-to-date version will always be posted at the web site of the Econom-
ics Department of the University of Utah www.econ.utah.edu/ehrbar/ecmet.pdf.
You can contact me by email at ehrbar@econ.utah.edu

Hans Ehrbar



CHAPTER 2

Probability Fields

2.1. The Concept of Probability

Probability theory and statistics are useful in dealing with the following types
of situations:

• Games of chance: throwing dice, shuffling cards, drawing balls out of urns.
• Quality control in production: you take a sample from a shipment, count

how many defectives.
• Actuarial Problems: the length of life anticipated for a person who has just

applied for life insurance.
• Scientific Eperiments: you count the number of mice which contract cancer

when a group of mice is exposed to cigarette smoke.
• Markets: the total personal income in New York State in a given month.
• Meteorology: the rainfall in a given month.
• Uncertainty: the exact date of Noah’s birth.
• Indeterminacy: The closing of the Dow Jones industrial average or the

temperature in New York City at 4 pm. on February 28, 2014.
• Chaotic determinacy: the relative frequency of the digit 3 in the decimal

representation of π.
• Quantum mechanics: the proportion of photons absorbed by a polarization

filter
• Statistical mechanics: the velocity distribution of molecules in a gas at a

given pressure and temperature.

In the probability theoretical literature the situations in which probability theory
applies are called “experiments,” see for instance [Rén70, p. 1]. We will not use this
terminology here, since probabilistic reasoning applies to several different types of
situations, and not all these can be considered “experiments.”

Problem 1. (This question will not be asked on any exams) Rényi says: “Ob-
serving how long one has to wait for the departure of an airplane is an experiment.”
Comment.

1
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Answer. Rény commits the epistemic fallacy in order to justify his use of the word “exper-
iment.” Not the observation of the departure but the departure itself is the event which can be
theorized probabilistically, and the word “experiment” is not appropriate here. �

What does the fact that probability theory is appropriate in the above situations
tell us about the world? Let us go through our list one by one:

• Games of chance: Games of chance are based on the sensitivity on initial
conditions: you tell someone to roll a pair of dice or shuffle a deck of cards,
and despite the fact that this person is doing exactly what he or she is asked
to do and produces an outcome which lies within a well-defined universe
known beforehand (a number between 1 and 6, or a permutation of the
deck of cards), the question which number or which permutation is beyond
their control. The precise location and speed of the die or the precise order
of the cards varies, and these small variations in initial conditions give rise,
by the “butterfly effect” of chaos theory, to unpredictable final outcomes.

A critical realist recognizes here the openness and stratification of the
world: If many different influences come together, each of which is gov-
erned by laws, then their sum total is not determinate, as a naive hyper-
determinist would think, but indeterminate. This is not only a condition
for the possibility of science (in a hyper-deterministic world, one could not
know anything before one knew everything, and science would also not be
necessary because one could not do anything), but also for practical human
activity: the macro outcomes of human practice are largely independent of
micro detail (the postcard arrives whether the address is written in cursive
or in printed letters, etc.). Games of chance are situations which delib-
erately project this micro indeterminacy into the macro world: the micro
influences cancel each other out without one enduring influence taking over
(as would be the case if the die were not perfectly symmetric and balanced)
or deliberate human corrective activity stepping into the void (as a card
trickster might do if the cards being shuffled somehow were distinguishable
from the backside).

The experiment in which one draws balls from urns shows clearly an-
other aspect of this paradigm: the set of different possible outcomes is
fixed beforehand, and the probability enters in the choice of one of these
predetermined outcomes. This is not the only way probability can arise;
it is an extensionalist example, in which the connection between success
and failure is external. The world is not a collection of externally related
outcomes collected in an urn. Success and failure are not determined by a
choice between different spacially separated and individually inert balls (or
playing cards or faces on a die), but it is the outcome of development and
struggle that is internal to the individual unit.
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• Quality control in production: you take a sample from a shipment, count
how many defectives. Why is statistics and probability useful in produc-
tion? Because production is work, it is not spontaneous. Nature does not
voluntarily give us things in the form in which we need them. Production
is similar to a scientific experiment because it is the attempt to create local
closure. Such closure can never be complete, there are always leaks in it,
through which irregularity enters.

• Actuarial Problems: the length of life anticipated for a person who has
just applied for life insurance. Not only production, but also life itself is
a struggle with physical nature, it is emergence. And sometimes it fails:
sometimes the living organism is overwhelmed by the forces which it tries
to keep at bay and to subject to its own purposes.

• Scientific Eperiments: you count the number of mice which contract cancer
when a group of mice is exposed to cigarette smoke: There is local closure
regarding the conditions under which the mice live, but even if this clo-
sure were complete, individual mice would still react differently, because of
genetic differences. No two mice are exactly the same, and despite these
differences they are still mice. This is again the stratification of reality. Two
mice are two different individuals but they are both mice. Their reaction
to the smoke is not identical, since they are different individuals, but it is
not completely capricious either, since both are mice. It can be predicted
probabilistically. Those mechanisms which make them mice react to the
smoke. The probabilistic regularity comes from the transfactual efficacy of
the mouse organisms.

• Meteorology: the rainfall in a given month. It is very fortunate for the
development of life on our planet that we have the chaotic alternation be-
tween cloud cover and clear sky, instead of a continuous cloud cover as in
Venus or a continuous clear sky. Butterfly effect all over again, but it is
possible to make probabilistic predictions since the fundamentals remain
stable: the transfactual efficacy of the energy received from the sun and
radiated back out into space.

• Markets: the total personal income in New York State in a given month.
Market economies are a very much like the weather; planned economies
would be more like production or life.

• Uncertainty: the exact date of Noah’s birth. This is epistemic uncertainty:
assuming that Noah was a real person, the date exists and we know a time
range in which it must have been, but we do not know the details. Proba-
bilistic methods can be used to represent this kind of uncertain knowledge,
but other methods to represent this knowledge may be more appropriate.
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• Indeterminacy: The closing of the Dow Jones Industrial Average (DJIA)
or the temperature in New York City at 4 pm. on February 28, 2014: This
is ontological uncertainty, not only epistemological uncertainty. Not only
do we not know it, but it is objectively not yet decided what these data
will be. Probability theory has limited applicability for the DJIA since it
cannot be expected that the mechanisms determining the DJIA will be the
same at that time, therefore we cannot base ourselves on the transfactual
efficacy of some stable mechanisms. It is not known which stocks will be
included in the DJIA at that time, or whether the US dollar will still be
the world reserve currency and the New York stock exchange the pinnacle
of international capital markets. Perhaps a different stock market index
located somewhere else will at that time play the role the DJIA is playing
today. We would not even be able to ask questions about that alternative
index today.

Regarding the temperature, it is more defensible to assign a probability,
since the weather mechanisms have probably stayed the same, except for
changes in global warming (unless mankind has learned by that time to
manipulate the weather locally by cloud seeding etc.).

• Chaotic determinacy: the relative frequency of the digit 3 in the decimal
representation of π: The laws by which the number π is defined have very
little to do with the procedure by which numbers are expanded as decimals,
therefore the former has no systematic influence on the latter. (It has an
influence, but not a systematic one; it is the error of actualism to think that
every influence must be systematic.) But it is also known that laws can
have remote effects: one of the most amazing theorems in mathematics is
the formula π

4 = 1− 1
3 + 1

5 − 1
4 + · · · which estalishes a connection between

the geometry of the circle and some simple arithmetics.
• Quantum mechanics: the proportion of photons absorbed by a polarization

filter: If these photons are already polarized (but in a different direction
than the filter) then this is not epistemic uncertainty but ontological inde-
terminacy, since the polarized photons form a pure state, which is atomic
in the algebra of events. In this case, the distinction between epistemic un-
certainty and ontological indeterminacy is operational: the two alternatives
follow different mathematics.

• Statistical mechanics: the velocity distribution of molecules in a gas at a
given pressure and temperature. Thermodynamics cannot be reduced to
the mechanics of molecules, since mechanics is reversible in time, while
thermodynamics is not. An additional element is needed, which can be
modeled using probability.
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Problem 2. Not every kind of uncertainty can be formulated stochastically.
Which other methods are available if stochastic means are inappropriate?

Answer. Dialectics. �

Problem 3. How are the probabilities of rain in weather forecasts to be inter-
preted?

Answer. Renyi in [Rén70, pp. 33/4]: “By saying that the probability of rain tomorrow is
80% (or, what amounts to the same, 0.8) the meteorologist means that in a situation similar to that
observed on the given day, there is usually rain on the next day in about 8 out of 10 cases; thus,
while it is not certain that it will rain tomorrow, the degree of certainty of this event is 0.8.” �

Pure uncertainty is as hard to generate as pure certainty; it is needed for en-
cryption and numerical methods.

Here is an encryption scheme which leads to a random looking sequence of num-
bers (see [Rao97, p. 13]): First a string of binary random digits is generated which is
known only to the sender and receiver. The sender converts his message into a string
of binary digits. He then places the message string below the key string and obtains
a coded string by changing every message bit to its alternative at all places where
the key bit is 1 and leaving the others unchanged. The coded string which appears
to be a random binary sequence is transmitted. The received message is decoded by
making the changes in the same way as in encrypting using the key string which is
known to the receiver.

Problem 4. Why is it important in the above encryption scheme that the key
string is purely random and does not have any regularities?

Problem 5. [Knu81, pp. 7, 452] Suppose you wish to obtain a decimal digit at
random, not using a computer. Which of the following methods would be suitable?

• a. Open a telephone directory to a random place (i.e., stick your finger in it
somewhere) and use the unit digit of the first number found on the selected page.

Answer. This will often fail, since users select “round” numbers if possible. In some areas,
telephone numbers are perhaps assigned randomly. But it is a mistake in any case to try to get
several successive random numbers from the same page, since many telephone numbers are listed
several times in a sequence. �

• b. Same as a, but use the units digit of the page number.

Answer. But do you use the left-hand page or the right-hand page? Say, use the left-hand
page, divide by 2, and use the units digit. �

• c. Roll a die which is in the shape of a regular icosahedron, whose twenty faces
have been labeled with the digits 0, 0, 1, 1,. . . , 9, 9. Use the digit which appears on
top, when the die comes to rest. (A felt table with a hard surface is recommended for
rolling dice.)
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Answer. The markings on the face will slightly bias the die, but for practical purposes this
method is quite satisfactory. See Math. Comp. 15 (1961), 94–95, for further discussion of these
dice. �

• d. Expose a geiger counter to a source of radioactivity for one minute (shielding
yourself) and use the unit digit of the resulting count. (Assume that the geiger
counter displays the number of counts in decimal notation, and that the count is
initially zero.)

Answer. This is a difficult question thrown in purposely as a surprise. The number is not
uniformly distributed! One sees this best if one imagines the source of radioactivity is very low
level, so that only a few emissions can be expected during this minute. If the average number of
emissions per minute is λ, the probability that the counter registers k is e−λλk/k! (the Poisson

distribution). So the digit 0 is selected with probability e−λ
∑∞

k=0
λ10k/(10k)!, etc. �

• e. Glance at your wristwatch, and if the position of the second-hand is between
6n and 6(n+ 1), choose the digit n.

Answer. Okay, provided that the time since the last digit selected in this way is random. A
bias may arise if borderline cases are not treated carefully. A better device seems to be to use a
stopwatch which has been started long ago, and which one stops arbitrarily, and then one has all
the time necessary to read the display. �

• f. Ask a friend to think of a random digit, and use the digit he names.

Answer. No, people usually think of certain digits (like 7) with higher probability. �

• g. Assume 10 horses are entered in a race and you know nothing whatever about
their qualifications. Assign to these horses the digits 0 to 9, in arbitrary fashion, and
after the race use the winner’s digit.

Answer. Okay; your assignment of numbers to the horses had probability 1/10 of assigning a
given digit to a winning horse. �

2.2. Events as Sets

With every situation with uncertain outcome we associate its sample space U ,
which represents the set of all possible outcomes (described by the characteristics
which we are interested in).

Events are associated with subsets of the sample space, i.e., with bundles of
outcomes that are observable in the given experimental setup. The set of all events
we denote with F . (F is a set of subsets of U .)

Look at the example of rolling a die. U = {1, 2, 3, 4, 5, 6}. The events of getting
an even number is associated with the subset {2, 4, 6}; getting a six with {6}; not
getting a six with {1, 2, 3, 4, 5}, etc. Now look at the example of rolling two indistin-
guishable dice. Observable events may be: getting two ones, getting a one and a two,
etc. But we cannot distinguish between the first die getting a one and the second a



2.2. EVENTS AS SETS 7

two, and vice versa. I.e., if we define the sample set to be U = {1, . . . , 6}×{1, . . . , 6},
i.e., the set of all pairs of numbers between 1 and 6, then certain subsets are not
observable. {(1, 5)} is not observable (unless the dice are marked or have different
colors etc.), only {(1, 5), (5, 1)} is observable.

If the experiment is measuring the height of a person in meters, and we make
the idealized assumption that the measuring instrument is infinitely accurate, then
all possible outcomes are numbers between 0 and 3, say. Sets of outcomes one is
usually interested in are whether the height falls within a given interval; therefore
all intervals within the given range represent observable events.

If the sample space is finite or countably infinite, very often all subsets are
observable events. If the sample set contains an uncountable continuum, it is not
desirable to consider all subsets as observable events. Mathematically one can define
quite crazy subsets which have no practical significance and which cannot be mean-
ingfully given probabilities. For the purposes of Econ 7800, it is enough to say that
all the subsets which we may reasonably define are candidates for observable events.

The “set of all possible outcomes” is well defined in the case of rolling a die
and other games; but in social sciences, situations arise in which the outcome is
open and the range of possible outcomes cannot be known beforehand. If one uses
a probability theory based on the concept of a “set of possible outcomes” in such
a situation, one reduces a process which is open and evolutionary to an imaginary
predetermined and static “set.” Furthermore, in social theory, the mechanism by
which these uncertain outcomes are generated are often internal to the members of
the statistical population. The mathematical framework models these mechanisms
as an extraneous “picking an element out of a pre-existing set.”

From given observable events we can derive new observable events by set theo-
retical operations. (All the operations below involve subsets of the same U .)

Mathematical Note: Notation of sets: there are two ways to denote a set: either
by giving a rule, or by listing the elements. (The order in which the elements are
listed, or the fact whether some elements are listed twice or not, is irrelevant.)

Here are the formal definitions of set theoretic operations. The letters A, B, etc.
denote subsets of a given set U (events), and I is an arbitrary index set. ω stands
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for an element, and ω ∈ A means that ω is an element of A.

A ⊂ B ⇐⇒ (ω ∈ A ⇒ ω ∈ B) (A is contained in B)(2.2.1)

A ∩ B = {ω : ω ∈ A and ω ∈ B} (intersection of A and B)(2.2.2)
⋂

i∈I
Ai = {ω : ω ∈ Ai for all i ∈ I}(2.2.3)

A ∪ B = {ω : ω ∈ A or ω ∈ B} (union of A and B)(2.2.4)
⋃

i∈I
Ai = {ω : there exists an i ∈ I such that ω ∈ Ai}(2.2.5)

U Universal set: all ω we talk about are ∈ U .(2.2.6)

A′ = {ω : ω /∈ A but ω ∈ U}(2.2.7)

∅ = the empty set: ω /∈ ∅ for all ω.(2.2.8)

These definitions can also be visualized by Venn diagrams; and for the purposes of
this class, demonstrations with the help of Venn diagrams will be admissible in lieu
of mathematical proofs.

Problem 6. For the following set-theoretical exercises it is sufficient that you
draw the corresponding Venn diagrams and convince yourself by just looking at them
that the statement is true. For those who are interested in a precise mathematical
proof derived from the definitions of A ∪B etc. given above, should remember that a
proof of the set-theoretical identity A = B usually has the form: first you show that
ω ∈ A implies ω ∈ B, and then you show the converse.

• a. Prove that A ∪ B = B ⇐⇒ A ∩B = A.

Answer. If one draws the Venn diagrams, one can see that either side is true if and only
if A ⊂ B. If one wants a more precise proof, the following proof by contradiction seems most
illuminating: Assume the lefthand side does not hold, i.e., there exists a ω ∈ A but ω /∈ B. Then
ω /∈ A ∩ B, i.e., A ∩ B 6= A. Now assume the righthand side does not hold, i.e., there is a ω ∈ A
with ω /∈ B. This ω lies in A ∪ B but not in B, i.e., the lefthand side does not hold either.

�

• b. Prove that A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

Answer. If ω ∈ A then it is clearly always in the righthand side and in the lefthand side. If
there is therefore any difference between the righthand and the lefthand side, it must be for the
ω /∈ A: If ω /∈ A and it is still in the lefthand side then it must be in B ∩ C, therefore it is also in
the righthand side. If ω /∈ A and it is in the righthand side, then it must be both in B and in C,
therefore it is in the lefthand side.

�

• c. Prove that A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).



2.2. EVENTS AS SETS 9

Answer. If ω /∈ A then it is clearly neither in the righthand side nor in the lefthand side. If
there is therefore any difference between the righthand and the lefthand side, it must be for the
ω ∈ A: If ω ∈ A and it is in the lefthand side then it must be in B ∪C, i.e., in B or in C or in both,
therefore it is also in the righthand side. If ω ∈ A and it is in the righthand side, then it must be
in either B or C or both, therefore it is in the lefthand side. �

• d. Prove that A ∩
(⋃∞

i=1Bi

)
=
⋃∞
i=1(A ∩ Bi).

Answer. Proof: If ω in lefthand side, then it is in A and in at least one of the Bi, say it is
in Bk. Therefore it is in A∩Bk, and therefore it is in the righthand side. Now assume, conversely,
that ω is in the righthand side; then it is at least in one of the A∩Bi, say it is in A∩Bk. Hence it
is in A and in Bk, i.e., in A and in

⋃
Bi, i.e., it is in the lefthand side. �

Problem 7. 3 points Draw a Venn Diagram which shows the validity of de
Morgan’s laws: (A ∪ B)′ = A′ ∩ B′ and (A ∩ B)′ = A′ ∪ B′. If done right, the same
Venn diagram can be used for both proofs.

Answer. There is a proof in [HT83, p. 12]. Draw A and B inside a box which represents U ,
and shade A′ from the left (blue) and B′ from the right (yellow), so that A′ ∩ B′ is cross shaded
(green); then one can see these laws. �

Problem 8. 3 points [HT83, Exercise 1.2-13 on p. 14] Evaluate the following
unions and intersections of intervals. Use the notation (a, b) for open and [a, b] for
closed intervals, (a, b] or [a, b) for half open intervals, {a} for sets containing one
element only, and ∅ for the empty set.

∞⋃

n=1

( 1

n
, 2
)

=

∞⋂

n=1

(
0,

1

n

)
=(2.2.9)

∞⋃

n=1

[ 1

n
, 2
]

=
∞⋂

n=1

[
0, 1 +

1

n

]
=(2.2.10)

Answer.
∞⋃

n=1

(
1

n
, 2

)
= (0, 2)

∞⋂

n=1

(
0,

1

n

)
= ∅(2.2.11)

∞⋃

n=1

[
1

n
, 2

]
= (0, 2]

∞⋂

n=1

[
0, 1 +

1

n

]
= [0, 1](2.2.12)

Explanation of
⋃∞
n=1

[
1
n
, 2
]
: for every α with 0 < α ≤ 2 there is a n with 1

n
≤ α, but 0 itself is in

none of the intervals. �

The set operations become logical operations if applied to events. Every ex-
periment returns an element ω∈U as outcome. Here ω is rendered green in the
electronic version of these notes (and in an upright font in the version for black-and-
white printouts), because ω does not denote a specific element of U , but it depends
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on chance which element is picked. I.e., the green color (or the unusual font) indicate
that ω is “alive.” We will also render the events themselves (as opposed to their
set-theoretical counterparts) in green (or in an upright font).

• We say that the event A has occurred when ω∈A.
• If A ⊂ B then event A implies event B, and we will write this directly in

terms of events as A ⊂ B.
• The set A ∩ B is associated with the event that both A and B occur (e.g.

an even number smaller than six), and considered as an event, not a set,
the event that both A and B occur will be written A ∩ B.

• Likewise, A ∪ B is the event that either A or B, or both, occur.
• A′ is the event that A does not occur.
• U the event that always occurs (as long as one performs the experiment).
• The empty set ∅ is associated with the impossible event ∅, because whatever

the value ω of the chance outcome ω of the experiment, it is always ω /∈ ∅.
If A ∩ B = ∅, the set theoretician calls A and B “disjoint,” and the probability
theoretician calls the events A and B “mutually exclusive.” If A ∪ B = U, then A

and B are called “collectively exhaustive.”
The set F of all observable events must be a σ-algebra, i.e., it must satisfy:

∅ ∈ F
A ∈ F ⇒ A′ ∈ F

A1,A2, . . . ∈ F ⇒ A1 ∪ A2 ∪ · · · ∈ F which can also be written as
⋃

i=1,2,...

Ai ∈ F

A1,A2, . . . ∈ F ⇒ A1 ∩ A2 ∩ · · · ∈ F which can also be written as
⋂

i=1,2,...

Ai ∈ F .

2.3. The Axioms of Probability

A probability measure Pr : F → R is a mapping which assigns to every event a
number, the probability of this event. This assignment must be compatible with the
set-theoretic operations between events in the following way:

Pr[U] = 1(2.3.1)

Pr[A] ≥ 0 for all events A(2.3.2)

If Ai ∩ Aj = ∅ for all i, j with i 6= j then Pr[

∞⋃

i=1

Ai] =

∞∑

i=1

Pr[Ai](2.3.3)

Here an infinite sum is mathematically defined as the limit of partial sums. These
axioms make probability what mathematicians call a measure, like area or weight.
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In a Venn diagram, one might therefore interpret the probability of the events as the
area of the bubble representing the event.

Problem 9. Prove that Pr[A′] = 1 − Pr[A].

Answer. Follows from the fact that A and A′ are disjoint and their union U has probability
1. �

Problem 10. 2 points Prove that Pr[A ∪ B] = Pr[A] + Pr[B] − Pr[A ∩ B].

Answer. For Econ 7800 it is sufficient to argue it out intuitively: if one adds Pr[A] + Pr[B]
then one counts Pr[A ∩ B] twice and therefore has to subtract it again.

The brute force mathematical proof guided by this intuition is somewhat verbose: Define
D = A ∩ B′, E = A ∩ B, and F = A′ ∩ B. D, E, and F satisfy

D ∪ E = (A ∩ B′) ∪ (A ∩ B) = A ∩ (B′ ∪ B) = A ∩ U = A,(2.3.4)

E ∪ F = B,(2.3.5)

D ∪ E ∪ F = A ∪ B.(2.3.6)

You may need some of the properties of unions and intersections in Problem 6. Next step is to
prove that D, E, and F are mutually exclusive. Therefore it is easy to take probabilities

Pr[A] = Pr[D] + Pr[E];(2.3.7)

Pr[B] = Pr[E] + Pr[F];(2.3.8)

Pr[A ∪ B] = Pr[D] + Pr[E] + Pr[F].(2.3.9)

Take the sum of (2.3.7) and (2.3.8), and subtract (2.3.9):

Pr[A] + Pr[B] − Pr[A ∪ B] = Pr[E] = Pr[A ∩ B];(2.3.10)

A shorter but trickier alternative proof is the following. First note that A∪B = A∪(A′∩B) and
that this is a disjoint union, i.e., Pr[A∪B] = Pr[A]+Pr[A′∩B]. Then note that B = (A∩B)∪(A′∩B),
and this is a disjoint union, therefore Pr[B] = Pr[A∩B]+Pr[A′∩B], or Pr[A′∩B] = Pr[B]−Pr[A∩B].
Putting this together gives the result.

�

Problem 11. 1 point Show that for arbitrary events A and B, Pr[A ∪ B] ≤
Pr[A] + Pr[B].

Answer. From Problem 10 we know that Pr[A ∪ B] = Pr[A] + Pr[B] − Pr[A ∩ B], and from
axiom (2.3.2) follows Pr[A ∩ B] ≥ 0. �

Problem 12. 2 points (Bonferroni inequality) Let A and B be two events. Writ-
ing Pr[A] = 1 − α and Pr[B] = 1 − β, show that Pr[A ∩ B] ≥ 1 − (α + β). You are
allowed to use that Pr[A∪B] = Pr[A] + Pr[B]−Pr[A∩B] (Problem 10), and that all
probabilities are ≤ 1.
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Answer.

Pr[A ∪ B] = Pr[A] + Pr[B]− Pr[A ∩ B] ≤ 1(2.3.11)

Pr[A] + Pr[B] ≤ 1 + Pr[A ∩ B](2.3.12)

Pr[A] + Pr[B] − 1 ≤ Pr[A ∩ B](2.3.13)

1 − α+ 1 − β − 1 = 1 − α− β ≤ Pr[A ∩ B](2.3.14)

�

Problem 13. (Not eligible for in-class exams) Given a rising sequence of events
B1 ⊂ B2 ⊂ B3 · · · , define B =

⋃∞
i=1 Bi. Show that Pr[B] = limi→∞ Pr[Bi].

Answer. Define C1 = B1, C2 = B2 ∩B′
1, C3 = B3 ∩ B′

2, etc. Then Ci ∩ Cj = ∅ for i 6= j, and

Bn =
⋃n

i=1
Ci and B =

⋃∞
i=1

Ci. In other words, now we have represented every Bn and B as a union

of disjoint sets, and can therefore apply the third probability axiom (2.3.3): Pr[B] =
∑∞

i=1
Pr[Ci].

The infinite sum is merely a short way of writing Pr[B] = limn→∞
∑n

i=1
Pr[Ci], i.e., the infinite sum

is the limit of the finite sums. But since these finite sums are exactly
∑n

i=1
Pr[Ci] = Pr[

⋃n

i=1
Ci] =

Pr[Bn], the assertion follows. This proof, as it stands, is for our purposes entirely acceptable. One
can make some steps in this proof still more stringent. For instance, one might use induction to
prove Bn =

⋃n

i=1
Ci. And how does one show that B =

⋃∞
i=1

Ci? Well, one knows that Ci ⊂ Bi,

therefore
⋃∞
i=1

Ci ⊂
⋃∞
i=1

Bi = B. Now take an ω ∈ B. Then it lies in at least one of the Bi, but
it can be in many of them. Let k be the smallest k for which ω ∈ Bk. If k = 1, then ω ∈ C1 = B1

as well. Otherwise, ω /∈ Bk−1, and therefore ω ∈ Ck . I.e., any element in B lies in at least one of

the Ck , therefore B ⊂
⋃∞
i=1

Ci. �

Problem 14. (Not eligible for in-class exams) From problem 13 derive also
the following: if A1 ⊃ A2 ⊃ A3 · · · is a declining sequence, and A =

⋂
i Ai, then

Pr[A] = lim Pr[Ai].

Answer. If the Ai are declining, then their complements Bi = A′
i are rising: B1 ⊂ B2 ⊂ B3 · · ·

are rising; therefore I know the probability of B =
⋃

Bi. Since by de Morgan’s laws, B = A′, this
gives me also the probability of A. �

The results regarding the probabilities of rising or declining sequences are equiv-
alent to the third probability axiom. This third axiom can therefore be considered a
continuity condition for probabilities.

If U is finite or countably infinite, then the probability measure is uniquely
determined if one knows the probability of every one-element set. We will call
Pr[{ω}] = p(ω) the probability mass function. Other terms used for it in the litera-
ture are probability function, or even probability density function (although it is not
a density, more about this below). If U has more than countably infinite elements,
the probabilities of one-element sets may not give enough information to define the
whole probability measure.

Mathematical Note: Not all infinite sets are countable. Here is a proof, by
contradiction, that the real numbers between 0 and 1 are not countable: assume
there is an enumeration, i.e., a sequence a1, a2, . . . which contains them all. Write
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them underneath each other in their (possibly infinite) decimal representation, where
0.di1di2di3 . . . is the decimal representation of ai. Then any real number whose
decimal representation is such that the first digit is not equal to d11, the second digit
is not equal d22, the third not equal d33, etc., is a real number which is not contained
in this enumeration. That means, an enumeration which contains all real numbers
cannot exist.

On the real numbers between 0 and 1, the length measure (which assigns to each
interval its length, and to sets composed of several invervals the sums of the lengths,
etc.) is a probability measure. In this probability field, every one-element subset of
the sample set has zero probability.

This shows that events other than ∅ may have zero probability. In other words,
if an event has probability 0, this does not mean it is logically impossible. It may
well happen, but it happens so infrequently that in repeated experiments the average
number of occurrences converges toward zero.

2.4. Objective and Subjective Interpretation of Probability

The mathematical probability axioms apply to both objective and subjective
interpretation of probability.

The objective interpretation considers probability a quasi physical property of the
experiment. One cannot simply say: Pr[A] is the relative frequency of the occurrence
of A, because we know intuitively that this frequency does not necessarily converge.
E.g., even with a fair coin it is physically possible that one always gets head, or that
one gets some other sequence which does not converge towards 1

2 . The above axioms
resolve this dilemma, because they allow to derive the theorem that the relative
frequencies converges towards the probability with probability one.

Subjectivist interpretation (de Finetti: “probability does not exist”) defines prob-
ability in terms of people’s ignorance and willingness to take bets. Interesting for
economists because it uses money and utility, as in expected utility. Call “a lottery
on A” a lottery which pays $1 if A occurs, and which pays nothing if A does not
occur. If a person is willing to pay p dollars for a lottery on A and 1 − p dollars for
a lottery on A′, then, according to a subjectivist definition of probability, he assigns
subjective probability p to A.

There is the presumption that his willingness to bet does not depend on the size
of the payoff (i.e., the payoffs are considered to be small amounts).

Problem 15. Assume A, B, and C are a complete disjunction of events, i.e.,
they are mutually exclusive and A ∪ B ∪ C = U, the universal set.

• a. 1 point Arnold assigns subjective probability p to A, q to B, and r to C.
Explain exactly what this means.
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Answer. We know six different bets which Arnold is always willing to make, not only on A,
B, and C, but also on their complements. �

• b. 1 point Assume that p+q+r > 1. Name three lotteries which Arnold would
be willing to buy, the net effect of which would be that he loses with certainty.

Answer. Among those six we have to pick subsets that make him a sure loser. If p+q+r > 1,
then we sell him a bet on A, one on B, and one on C. The payoff is always 1, and the cost is
p+ q + r > 1. �

• c. 1 point Now assume that p+ q + r < 1. Name three lotteries which Arnold
would be willing to buy, the net effect of which would be that he loses with certainty.

Answer. If p+ q+ r < 1, then we sell him a bet on A′, one on B′, and one on C′. The payoff
is 2, and the cost is 1 − p+ 1 − q + 1 − r > 2. �

• d. 1 point Arnold is therefore only coherent if Pr[A]+Pr[B]+Pr[C] = 1. Show
that the additivity of probability can be derived from coherence, i.e., show that any
subjective probability that satisfies the rule: whenever A, B, and C is a complete
disjunction of events, then the sum of their probabilities is 1, is additive, i.e., Pr[A∪
B] = Pr[A] + Pr[B].

Answer. Since r is his subjective probability of C, 1− r must be his subjective probability of
C′ = A ∪ B. Since p+ q + r = 1, it follows 1 − r = p+ q. �

This last problem indicates that the finite additivity axiom follows from the
requirement that the bets be consistent or, as subjectivists say, “coherent” with
each other. However, it is not possible to derive the additivity for countably infinite
sequences of events from such an argument.

2.5. Counting Rules

In this section we will be working in a finite probability space, in which all atomic
events have equal probabilities. The acts of rolling dice or drawing balls from urns
can be modeled by such spaces. In order to compute the probability of a given event,
one must count the elements of the set which this event represents. In other words,
we count how many different ways there are to achieve a certain outcome. This can
be tricky, and we will develop some general principles how to do it.

Problem 16. You throw two dice.

• a. 1 point What is the probability that the sum of the numbers shown is five or
less?

Answer.
11 12 13 14
21 22 23
31 32
41

, i.e., 10 out of 36 possibilities, gives the probability 5
18

. �

• b. 1 point What is the probability that both of the numbers shown are five or
less?
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Answer.

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35
41 42 43 44 45
51 52 53 54 55

, i.e., 25
36

. �

• c. 2 points What is the probability that the maximum of the two numbers shown
is five? (As a clarification: if the first die shows 4 and the second shows 3 then the
maximum of the numbers shown is 4.)

Answer.

15
25
35
45

51 52 53 54 55

, i.e., 1
4
. �

In this and in similar questions to follow, the answer should be given as a fully
shortened fraction.

The multiplication principle is a basic aid in counting: If the first operation can
be done n1 ways, and the second operation n2 ways, then the total can be done n1n2

ways.
Definition: A permutation of a set is its arrangement in a certain order. It was

mentioned earlier that for a set it does not matter in which order the elements are
written down; the number of permutations is therefore the number of ways a given
set can be written down without repeating its elements. From the multiplication
principle follows: the number of permutations of a set of n elements is n(n− 1)(n−
2) · · · (2)(1) = n! (n factorial). By definition, 0! = 1.

If one does not arrange the whole set, but is interested in the number of k-
tuples made up of distinct elements of the set, then the number of possibilities is
n(n − 1)(n − 2) · · · (n − k + 2)(n − k + 1) = n!

(n−k)! . (Start with n and the number

of factors is k.) (k-tuples are sometimes called ordered k-tuples because the order in
which the elements are written down matters.) [Ame94, p. 8] uses the notation P nk
for this.

This leads us to the next question: how many k-element subsets does a n-element
set have? We already know how many permutations into k elements it has; but always
k! of these permutations represent the same subset; therefore we have to divide by
k!. The number of k-element subsets of an n-element set is therefore

(2.5.1)
n!

k!(n− k)!
=
n(n− 1)(n− 2) · · · (n− k + 1)

(1)(2)(3) · · · k =

(
n

k

)
,

It is pronounced as n choose k, and is also called a “binomial coefficient.” It is
defined for all 0 ≤ k ≤ n. [Ame94, p. 8] calls this number Cnk .

Problem 17. 5 points Compute the probability of getting two of a kind and three
of a kind (a “full house”) when five dice are rolled. (It is not necessary to express it
as a decimal number; a fraction of integers is just fine. But please explain what you
are doing.)
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Answer. See [Ame94, example 2.3.3 on p. 9]. Sample space is all ordered 5-tuples out of 6,
which has 65 elements. Number of full houses can be identified with number of all ordered pairs of
distinct elements out of 6, the first element in the pair denoting the number which appears twice
and the second element that which appears three times, i.e., P 6

2 = 6 · 5. Number of arrangements

of a given full house over the five dice is C5
2 = 5·4

1·2 (we have to specify the two places taken by the

two-of-a-kind outcomes.) Solution is therefore P 6
2 · C5

2/6
5 = 50/64 = 0.03858. This approach uses

counting.
Alternative approach, using conditional probability: probability of getting 3 of one kind and

then two of a different kind is 1 · 1
6
· 1

6
· 5

6
· 1

6
= 5

64 . Then multiply by
(
5
2

)
= 10, since this is the

number of arrangements of the 3 and 2 over the five cards. �

Problem 18. What is the probability of drawing the King of Hearts and the
Queen of Hearts if one draws two cards out of a 52 card game? Is it 1

522 ? Is it
1

(52)(51)? Or is it 1
/(

52
2

)
= 2

(52)(51)?

Answer. Of course the last; it is the probability of drawing one special subset. There are two
ways of drawing this subset: first the King and then the Queen, or first the Queen and then the
King. �

2.6. Relationships Involving Binomial Coefficients

Problem 19. Show that
(
n
k

)
=
(
n

n−k
)
. Give an intuitive argument why this must

be so.

Answer. Because
(
n

n−k
)

counts the complements of k-element sets. �

Assume U has n elements, one of which is ν ∈ U . How many k-element subsets
of U have ν in them? There is a simple trick: Take all (k− 1)-element subsets of the
set you get by removing ν from U , and add ν to each of these sets. I.e., the number
is
(
n−1
k−1

)
. Now how many k-element subsets of U do not have ν in them? Simple; just

take the k-element subsets of the set which one gets by removing ν from U; i.e., it is(
n−1
k

)
. Adding those two kinds of subsets together one gets all k-element subsets of

U :

(2.6.1)
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
.

This important formula is the basis of the Pascal triangle:
(2.6.2)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

=

(0
0)

(1
0) (1

1)
(2
0) (2

1) (2
2)

(3
0) (3

1) (3
2) (3

3)
(4
0) (4

1) (4
2) (4

3) (4
4)

(5
0) (5

1) (5
2) (5

3) (5
4) (5

5)
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The binomial coefficients also occur in the Binomial Theorem

(2.6.3) (a+ b)n = an +
(
n
1

)
an−1b+ · · · +

(
n
n−1

)
abn−1 + bn =

n∑

k=0

(
n
k

)
an−kbk

Why? When the n factors a+b are multiplied out, each of the resulting terms selects
from each of the n original factors either a or b. The term an−kbk occurs therefore(
n

n−k
)

=
(
n
k

)
times.

As an application: If you set a = 1, b = 1, you simply get a sum of binomial
coefficients, i.e., you get the number of subsets in a set with n elements: it is 2n

(always count the empty set as one of the subsets). The number of all subsets is
easily counted directly. You go through the set element by element and about every
element you ask: is it in the subset or not? I.e., for every element you have two
possibilities, therefore by the multiplication principle the total number of possibilities
is 2n.

2.7. Conditional Probability

The concept of conditional probability is arguably more fundamental than prob-
ability itself. Every probability is conditional, since we must know that the “ex-
periment” has happened before we can speak of probabilities. [Ame94, p. 10] and
[Rén70] give axioms for conditional probability which take the place of the above ax-
ioms (2.3.1), (2.3.2) and (2.3.3). However we will follow here the common procedure
of defining conditional probabilities in terms of the unconditional probabilities:

(2.7.1) Pr[B|A] =
Pr[B ∩ A]

Pr[A]

How can we motivate (2.7.1)? If we know that A has occurred, then of course the only
way that B occurs is when B ∩ A occurs. But we want to multiply all probabilities
of subsets of A with an appropriate proportionality factor so that the probability of
the event A itself becomes = 1.

Problem 20. 3 points Let A be an event with nonzero probability. Show that
the probability conditionally on A, i.e., the mapping B 7→ Pr[B|A], satisfies all the
axioms of a probability measure:

Pr[U|A] = 1(2.7.2)

Pr[B|A] ≥ 0 for all events B(2.7.3)

Pr[

∞⋃

i=1

Bi|A] =

∞∑

i=1

Pr[Bi|A] if Bi ∩ Bj = ∅ for all i, j with i 6= j.(2.7.4)
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Answer. Pr[U|A] = Pr[U∩A]/Pr[A] = 1. Pr[B|A] = Pr[B∩A]/Pr[A] ≥ 0 because Pr[B∩A] ≥ 0
and Pr[A] > 0. Finally,
(2.7.5)

Pr[

∞⋃

i=1

Bi|A] =
Pr[(
⋃∞
i=1

Bi) ∩ A]

Pr[A]
=

Pr[
⋃∞
i=1

(Bi ∩ A)]

Pr[A]
=

1

Pr[A]

∞∑

i=1

Pr[Bi ∩ A] =

∞∑

i=1

Pr[Bi|A]

First equal sign is definition of conditional probability, second is distributivity of unions and inter-
sections (Problem 6 d), third because the Bi are disjoint and therefore the Bi ∩ A are even more
disjoint: Bi ∩ A ∩ Bj ∩ A = Bi ∩ Bj ∩ A = ∅ ∩ A = ∅ for all i, j with i 6= j, and the last equal sign
again by the definition of conditional probability. �

Problem 21. You draw two balls without replacement from an urn which has 7
white and 14 black balls.

If both balls are white, you roll a die, and your payoff is the number which the
die shows in dollars.

If one ball is black and one is white, you flip a coin until you get your first head,
and your payoff will be the number of flips it takes you to get a head, in dollars again.

If both balls are black, you draw from a deck of 52 cards, and you get the number
shown on the card in dollars. (Ace counts as one, J, Q, and K as 11, 12, 13, i.e.,
basically the deck contains every number between 1 and 13 four times.)

Show that the probability that you receive exactly two dollars in this game is 1/6.

Answer. You know a complete disjunction of events: U = {ww}∪{bb}∪{wb}, with Pr[{ww}] =
7
21

6
20

= 1
10

; Pr[{bb}] = 14
21

13
20

= 13
30

; Pr[{bw}] = 7
21

14
20

+ 14
21

7
20

= 7
15

. Furthermore you know the con-

ditional probabilities of getting 2 dollars conditonally on each of these events: Pr[{2}|{ww}] = 1
6
;

Pr[{2}|{bb}] = 1
13

; Pr[{2}|{wb}] = 1
4
. Now Pr[{2}∩{ww}] = Pr[{2}|{ww}] Pr[{ww}] etc., therefore

Pr[{2}] = Pr[{2} ∩ {ww}] + Pr[{2} ∩ {bw}] + Pr[{2} ∩ {bb}](2.7.6)

=
1

6

7

21

6

20
+

1

4

(
7

21

14

20
+

14

21

7

20

)
+

1

13

14

21

13

20
(2.7.7)

=
1

6

1

10
+

1

4

7

15
+

1

13

13

30
=

1

6
(2.7.8)

�

Problem 22. 2 points A and B are arbitrary events. Prove that the probability
of B can be written as:

(2.7.9) Pr[B] = Pr[B|A] Pr[A] + Pr[B|A′] Pr[A′]

This is the law of iterated expectations (8.6.2) in the case of discrete random vari-
ables: it might be written as Pr[B] = E

[
Pr[B|A]

]
.

Answer. B = B ∩ U = B ∩ (A ∪ A′) = (B ∩ A) ∪ (B ∩ A′) and this union is disjoint, i.e.,
(B ∩ A) ∩ (B ∩ A′) = B ∩ (A ∩ A′) = B ∩ ∅ = ∅. Therefore Pr[B] = Pr[B ∩ A] + Pr[B ∩ A′].
Now apply definition of conditional probability to get Pr[B ∩ A] = Pr[B|A]Pr[A] and Pr[B ∩ A′] =
Pr[B|A′] Pr[A′]. �
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Problem 23. 2 points Prove the following lemma: If Pr[B|A1] = Pr[B|A2] (call
it c) and A1 ∩ A2 = ∅ (i.e., A1 and A2 are disjoint), then also Pr[B|A1 ∪ A2] = c.

Answer.

Pr[B|A1 ∪ A2] =
Pr[B ∩ (A1 ∪ A2)]

Pr[A1 ∪ A2]
=

Pr[(B ∩ A1) ∪ (B ∩ A2)]

Pr[A1 ∪ A2]

=
Pr[B ∩ A1] + Pr[B ∩ A2]

Pr[A1] + Pr[A2]
=
cPr[A1] + cPr[A2]

Pr[A1] + Pr[A2]
= c.(2.7.10)

�

Problem 24. Show by counterexample that the requirement A1 ∩ A2 = ∅ is
necessary for this result to hold. Hint: use the example in Problem 38 with A1 =
{HH,HT}, A2 = {HH,TH}, B = {HH,TT}.

Answer. Pr[B|A1] = 1/2 and Pr[B|A2] = 1/2, but Pr[B|A1 ∪ A] = 1/3. �

The conditional probability can be used for computing probabilities of intersec-
tions of events.

Problem 25. [Lar82, exercises 2.5.1 and 2.5.2 on p. 57, solutions on p. 597,
but no discussion]. Five white and three red balls are laid out in a row at random.

• a. 3 points What is the probability that both end balls are white? What is the
probability that one end ball is red and the other white?

Answer. You can lay the first ball first and the last ball second: for white balls, the probability
is 5

8
4
7

= 5
14

; for one white, one red it is 5
8

3
7

+ 3
8

5
7

= 15
28

. �

• b. 4 points What is the probability that all red balls are together? What is the
probability that all white balls are together?

Answer. All red balls together is the same as 3 reds first, multiplied by 6, because you may
have between 0 and 5 white balls before the first red. 3

8
2
7

1
6
· 6 = 3

28
. For the white balls you get

5
8

4
7

3
6

2
5

1
4
· 4 = 1

14
.

BTW, 3 reds first is same probability as 3 reds last, ie., the 5 whites first: 5
8

4
7

3
6

2
5

1
4

= 3
8

2
7

1
6
.
�

Problem 26. The first three questions here are discussed in [Lar82, example
2.6.3 on p. 62]: There is an urn with 4 white and 8 black balls. You take two balls
out without replacement.

• a. 1 point What is the probability that the first ball is white?

Answer. 1/3 �

• b. 1 point What is the probability that both balls are white?

Answer. It is Pr[second ball white|first ball white] Pr[first ball white] = 3
3+8

4
4+8

= 1
11

. �
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• c. 1 point What is the probability that the second ball is white?

Answer. It is Pr[first ball white and second ball white]+Pr[first ball black and second ball white] =

(2.7.11) =
3

3 + 8

4

4 + 8
+

4

7 + 4

8

8 + 4
=

1

3
.

This is the same as the probability that the first ball is white. The probabilities are not dependent
on the order in which one takes the balls out. This property is called “exchangeability.” One can
see it also in this way: Assume you number the balls at random, from 1 to 12. Then the probability
for a white ball to have the number 2 assigned to it is obviously 1

3
. �

• d. 1 point What is the probability that both of them are black?

Answer. 8
12

7
11

= 2
3

7
11

= 14
33

(or 56
132

). �

• e. 1 point What is the probability that both of them have the same color?

Answer. The sum of the two above, 14
33

+ 1
11

= 17
33

(or 68
132

). �

Now you take three balls out without replacement.

• f. 2 points Compute the probability that at least two of the three balls are white.

Answer. It is 13
55

. The possibilities are wwb, wbw, bww, and www. Of the first three, each

has probability 4
12

3
11

8
10

. Therefore the probability for exactly two being white is 288
1320

= 12
55

. The

probability for www is 4·3·2
12·11·10 = 24

1320
= 1

55
. Add this to get 312

1320
= 13

55
. More systematically, the

answer is
((

4
2

)(
8
1

)
+
(
4
3

))/(
12
3

)
. �

• g. 1 point Compute the probability that at least two of the three are black.

Answer. It is 42
55

. For exactly two: 672
1320

= 28
55

. For three it is
(8)(7)(6)

(12)(11)(10)
= 336

1320
= 14

55
.

Together 1008
1320

= 42
55

. One can also get is as: it is the complement of the last, or as
((

8
3

)
+(

8
2

)(
4
1

))/(
12
3

)
. �

• h. 1 point Compute the probability that two of the three are of the same and
the third of a different color.

Answer. It is 960
1320

= 40
55

= 8
11

, or
((

4
1

)(
8
2

)
+
(
4
2

)(
8
1

))/(
12
3

)
. �

• i. 1 point Compute the probability that at least two of the three are of the same
color.

Answer. This probability is 1. You have 5 black socks and 5 white socks in your drawer.
There is a fire at night and you must get out of your apartment in two minutes. There is no light.
You fumble in the dark for the drawer. How many socks do you have to take out so that you will
have at least 2 of the same color? The answer is 3 socks. �

Problem 27. If a poker hand of five cards is drawn from a deck, what is the prob-
ability that it will contain three aces? (How can the concept of conditional probability
help in answering this question?)
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Answer. [Ame94, example 2.3.3 on p. 9] and [Ame94, example 2.5.1 on p. 13] give two
alternative ways to do it. The second answer uses conditional probability: Probability to draw

three aces in a row first and then 2 nonaces is 4
52

3
51

2
50

48
49

47
48

Then multiply this by
(
5
3

)
= 5·4·3

1·2·3 = 10

This gives 0.0017, i.e., 0.17%. �

Problem 28. 2 points A friend tosses two coins. You ask: “did one of them
land heads?” Your friend answers, “yes.” What’s the probability that the other also
landed heads?

Answer. U = {HH,HT,TH, TT}; Probability is 1
4
/ 3

4
= 1

3
. �

Problem 29. (Not eligible for in-class exams) [Ame94, p. 5] What is the prob-
ability that a person will win a game in tennis if the probability of his or her winning
a point is p?

Answer.

(2.7.12) p4
(

1 + 4(1 − p) + 10(1 − p)2 +
20p(1 − p)3

1 − 2p(1 − p)

)

How to derive this: {ssss} has probability p4; {sssfs}, {ssfss}, {sfsss}, and {fssss} have prob-

ability 4p4(1 − p); {sssffs} etc. (2 f and 3 s in the first 5, and then an s, together
(
5
2

)
= 10

possibilities) have probability 10p4(1 − p)2. Now {sssfff} and
(
6
3

)
= 20 other possibilities give

deuce at least once in the game, i.e., the probability of deuce is 20p3(1− p)3. Now Pr[win|deuce] =
p2 + 2p(1 − p)Pr[win|deuce], because you win either if you score twice in a row (p2) or if you get

deuce again (probablity 2p(1−p)) and then win. Solve this to get Pr[win|deuce] = p2/
(
1−2p(1−p)

)
and then multiply this conditional probability with the probability of getting deuce at least once:

Pr[win after at least one deuce] = 20p3(1 − p)3p2/
(
1 − 2p(1 − p)

)
. This gives the last term in

(2.7.12). �

Problem 30. (Not eligible for in-class exams) Andy, Bob, and Chris play the
following game: each of them draws a card without replacement from a deck of 52
cards. The one who has the highest card wins. If there is a tie (like: two kings and
no aces), then that person wins among those who drew this highest card whose name
comes first in the alphabet. What is the probability for Andy to be the winner? For
Bob? For Chris? Does this probability depend on the order in which they draw their
cards out of the stack?

Answer. Let A be the event that Andy wins, B that Bob, and C that Chris wins.
One way to approach this problem is to ask: what are the chances for Andy to win when he

draws a king?, etc., i.e., compute it for all 13 different cards. Then: what are the chances for Bob
to win when he draws a king, and also his chances for the other cards, and then for Chris.

It is computationally easier to make the following partitioning of all outcomes: Either all three
cards drawn are different (call this event D), or all three cards are equal (event E), or two of the
three cards are equal (T). This third case will have to be split into T = H∪ L, according to whether
the card that is different is higher or lower.

If all three cards are different, then Andy, Bob, and Chris have equal chances of winning; if all

three cards are equal, then Andy wins. What about the case that two cards are the same and the
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third is different? There are two possibilities. If the card that is different is higher than the two
that are the same, then the chances of winning are evenly distributed; but if the two equal cards
are higher, then Andy has a 2

3
chance of winning (when the distribution of the cards Y (lower)

and Z (higher) among ABC is is ZZY and ZY Z), and Bob has a 1
3

chance of winning (when

the distribution is Y ZZ). What we just did was computing the conditional probabilities Pr[A|D],
Pr[A|E], etc.

Now we need the probabilities of D, E, and T . What is the probability that all three cards
drawn are the same? The probability that the second card is the same as the first is 3

51
; and the

probability that the third is the same too is 2
50

; therefore the total probability is
(3)(2)

(51)(50)
= 6

2550
.

The probability that all three are unequal is 48
51

44
50

= 2112
2550

. The probability that two are equal and

the third is different is 3 3
51

48
50

= 432
2550

. Now in half of these cases, the card that is different is higher,
and in half of the cases it is lower.

Putting this together one gets:

Uncond. Prob. Cond. Prob. Prob. of intersection
A B C A B C

E all 3 equal 6/2550 1 0 0 6/2550 0 0

H 2 of 3 equal, 3rd higher 216/2550 1
3

1
3

1
3

72/2550 72/2550 72/2550

L 2 of 3 equal, 3rd lower 216/2550 2
3

1
3

0 144/2550 72/2550 0

D all 3 unequal 2112/2550 1
3

1
3

1
3

704/2550 704/2550 704/2550

Sum 2550/2550 926/2550 848/2550 776/2550

I.e., the probability that A wins is 926/2550 = 463/1275 = .363, the probability that B wins is
848/2550 = 424/1275 = .3325, and the probability that C wins is 776/2550 = 338/1275 = .304.

Here we are using Pr[A] = Pr[A|E] Pr[E] + Pr[A|H] Pr[H] + Pr[A|L] Pr[L] + Pr[A|D] Pr[D]. �

Problem 31. 4 points You are the contestant in a game show. There are three
closed doors at the back of the stage. Behind one of the doors is a sports car, behind
the other two doors are goats. The game master knows which door has the sports car
behind it, but you don’t. You have to choose one of the doors; if it is the door with
the sports car, the car is yours.

After you make your choice, say door A, the game master says: “I want to show
you something.” He opens one of the two other doors, let us assume it is door B,
and it has a goat behind it. Then the game master asks: “Do you still insist on door
A, or do you want to reconsider your choice?”

Can you improve your odds of winning by abandoning your previous choice and
instead selecting the door which the game master did not open? If so, by how much?

Answer. If you switch, you will lose the car if you had initially picked the right door, but you
will get the car if you were wrong before! Therefore you improve your chances of winning from 1/3
to 2/3. This is simulated on the web, see www.stat.sc.edu/∼west/javahtml/LetsMakeaDeal.html.

It is counterintuitive. You may think that one of the two other doors always has a goat behind
it, whatever your choice, therefore there is no reason to switch. But the game master not only shows
you that there is another door with a goat, he also shows you one of the other doors with a goat
behind it, i.e., he restricts your choice if you switch. This is valuable information. It is as if you
could bet on both other doors simultaneously, i.e., you get the car if it is behind one of the doors B

or C. I.e., if the quiz master had said: I give you the opportunity to switch to the following: you
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get the car if it is behind B or C. Do you want to switch? The only doubt the contestant may have
about this is: had I not picked a door with the car behind it then I would not have been offered
this opportunity to switch.

�

2.8. Ratio of Probabilities as Strength of Evidence

Pr1 and Pr2 are two probability measures defined on the same set F of events.
HypothesisH1 says Pr1 is the true probability, andH2 says Pr2 is the true probability.
Then the observation of an event A for which Pr1[A] > Pr2[A] is evidence in favor of
H1 as opposed to H2. [Roy97] argues that the ratio of the probabilities (also called
“likelihood ratio”) is the right way to measure the strength of this evidence. Among
others, the following justification is given [Roy97, p. 7]: If H2 is true, it is usually
not impossible to find evidence favoring H1, but it is unlikely ; and its probability is
bounded by the (reverse of) the ratio of probabilities.

This can be formulated mathematically as follows: Let S be the union of all events
A for which Pr1[A] ≥ kPr2[A]. Then it can be shown that Pr2[S] ≤ 1/k, i.e., if H2

is true, the probability to find evidence favoring H1 with strength k is never greater
than 1/k. Here is a proof in the case that there is only a finite number of possible
outcomes U = {ω1, . . . , ωn}: Renumber the outcomes such that for i = 1, . . . ,m,
Pr1[{ωi}] < kPr2[{ωi}], and for j = m + 1, . . . , n, Pr1[{ωj}] ≥ kPr2[{ωj}]. Then

S = {ωm+1, . . . , ωn}, therefore Pr2[S] =
∑n
j=m+1 Pr2[{ωj}] ≤

∑n
j=m+1

Pr1[{ωj}]
k =

1
k Pr1[S] ≤ 1

k as claimed. The last inequality holds because Pr1[S] ≤ 1, and the
equal-sign before this is simply the definition of S.

With more mathematical effort, see [Rob70], one can strengthen this simple in-
equality in a very satisfactory manner: Assume an unscrupulous researcher attempts
to find evidence supporting his favorite but erroneous hypothesis H1 over his rival’s
H2 by a factor of at least k. He proceeds as follows: he observes an outcome of the
above experiment once, say the outcome is ωi(1). If Pr1[{ωi(1)}] ≥ kPr2[{ωi(1)}] he
publishes his result; if not, he makes a second independent observation of the exper-
iment ωi(2). If Pr1[{ωi(1)}] Pr1[{ωi(2)}] > kPr2[{ωi(1)}] Pr2[{ωi(2)}] he publishes his
result; if not he makes a third observation and incorporates that in his publication as
well, etc. It can be shown that this strategy will not help: if his rival’s hypothesis is
true, then the probability that he will ever be able to publish results which seem to
show that his own hypothesis is true is still ≤ 1/k. I.e., the sequence of independent
observations ωi(2), ωi(2), . . . is such that

(2.8.1) Pr2

[ n∏

j=1

Pr1[{ωi(j)}] ≥ k

n∏

j=1

Pr2[{ωi(1)}] for some n = 1, 2, . . .
]
≤ 1

k

It is not possible to take advantage of the indeterminacy of a random outcome by
carrying on until chance places one ahead, and then to quit. If one fully discloses
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all the evidence one is accumulating, then the probability that this accumulated
evidence supports one’s hypothesis cannot rise above 1/k.

Problem 32. It is usually not possible to assign probabilities to the hypotheses
H1 and H2, but sometimes it is. Show that in this case, the likelihood ratio of event
A is the factor by which the ratio of the probabilities of H1 and H2 is changed by the
observation of A, i.e.,

(2.8.2)
Pr[H1|A]

Pr[H2|A]
=

Pr[H1]

Pr[H2]

Pr[A|H1]

Pr[A|H2]

Answer. Apply Bayes’s theorem (2.9.1) twice, once for the numerator, once for the denomi-
nator. �

A world in which probability theory applies is therefore a world in which the
transitive dimension must be distinguished from the intransitive dimension. Research
results are not determined by the goals of the researcher.

2.9. Bayes Theorem

In its simplest form Bayes’s theorem reads

(2.9.1) Pr[A|B] =
Pr[B|A] Pr[A]

Pr[B|A] Pr[A] + Pr[B|A′] Pr[A′]
.

Problem 33. Prove Bayes theorem!

Answer. Obvious since numerator is Pr[B ∩ A] and denominator Pr[B ∩ A] + Pr[B ∩ A′] =
Pr[B]. �

This theorem has its significance in cases in which A can be interpreted as a
cause of B, and B an effect of A. For instance, A is the event that a student who
was picked randomly from a class has learned for a certain exam, and B is the
event that he passed the exam. Then the righthand side expression contains that
information which you would know from the cause-effect relations: the unconditional
probability of the event which is the cause, and the conditional probabilities of the
effect conditioned on whether or not the cause happened. From this, the formula
computes the conditional probability of the cause given that the effect happened.
Bayes’s theorem tells us therefore: if we know that the effect happened, how sure
can we be that the cause happened? Clearly, Bayes’s theorem has relevance for
statistical inference.

Let’s stay with the example with learning for the exam; assume Pr[A] = 60%,
Pr[B|A] = .8, and Pr[B|A′] = .5. Then the probability that a student who passed

the exam has learned for it is (.8)(.6)
(.8)(.6)+(.5)(.4) = .48

.68 = .706. Look at these numbers:

The numerator is the average percentage of students who learned and passed, and
the denominator average percentage of students who passed.
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Problem 34. AIDS diagnostic tests are usually over 99.9% accurate on those
who do not have AIDS (i.e., only 0.1% false positives) and 100% accurate on those
who have AIDS (i.e., no false negatives at all). (A test is called positive if it indicates
that the subject has AIDS.)

• a. 3 points Assuming that 0.5% of the population actually have AIDS, compute
the probability that a particular individual has AIDS, given that he or she has tested
positive.

Answer. A is the event that he or she has AIDS, and T the event that the test is positive.

Pr[A|T ] =
Pr[T |A] Pr[A]

Pr[T |A] Pr[A] + Pr[T |A′] Pr[A′]
=

1 · 0.005
1 · 0.005 + 0.001 · 0.995 =

=
100 · 0.5

100 · 0.5 + 0.1 · 99.5 =
1000 · 5

1000 · 5 + 1 · 995 =
5000

5995
=

1000

1199
= 0.834028

Even after testing positive there is still a 16.6% chance that this person does not have AIDS. �

• b. 1 point If one is young, healthy and not in one of the risk groups, then the
chances of having AIDS are not 0.5% but 0.1% (this is the proportion of the applicants
to the military who have AIDS). Re-compute the probability with this alternative
number.

Answer.

1 · 0.001
1 · 0.001 + 0.001 · 0.999 =

100 · 0.1
100 · 0.1 + 0.1 · 99.9 =

1000 · 1
1000 · 1 + 1 · 999 =

1000

1000 + 999
=

1000

1999
= 0.50025.

�

2.10. Independence of Events

2.10.1. Definition of Independence. Heuristically, we want to say: event B

is independent of event A if Pr[B|A] = Pr[B|A′]. From this follows by Problem 23
that the conditional probability is equal to the unconditional probability Pr[B], i.e.,
Pr[B] = Pr[B ∩ A]/Pr[A]. Therefore we will adopt as definition of independence the
so-called multiplication rule:

Definition: B and A are independent, notation B⊥A, if Pr[B∩A] = Pr[B] Pr[A].
This is a symmetric condition, i.e., if B is independent of A, then A is also inde-

pendent of B. This symmetry is not immediately obvious given the above definition
of independence, and it also has the following nontrivial practical implication (this
example from [Daw79a, pp. 2/3]): A is the event that one is exposed to some possi-
bly carcinogenic agent, and B the event that one develops a certain kind of cancer. In
order to test whether B⊥A, i.e., whether the exposure to the agent does not increase
the incidence of cancer, one often collects two groups of subjects, one group which
has cancer and one control group which does not, and checks whether the exposure in
these two groups to the carcinogenic agent is the same. I.e., the experiment checks
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whether A⊥B, although the purpose of the experiment was to determine whether
B⊥A.

Problem 35. 3 points Given that Pr[B∩A] = Pr[B]·Pr[A] (i.e., B is independent
of A), show that Pr[B ∩ A′] = Pr[B] · Pr[A′] (i.e., B is also independent of A′).

Answer. If one uses our heuristic definition of independence, i.e., B is independent of event
A if Pr[B|A] = Pr[B|A′], then it is immediately obvious since definition is symmetric in A and
A′. However if we use the multiplication rule as the definition of independence, as the text of
this Problem suggests, we have to do a little more work: Since B is the disjoint union of (B ∩ A)
and (B ∩ A′), it follows Pr[B] = Pr[B ∩ A] + Pr[B ∩ A′] or Pr[B ∩ A′] = Pr[B] − Pr[B ∩ A] =
Pr[B] − Pr[B]Pr[A] = Pr[B](1 − Pr[A]) = Pr[B] Pr[A′]. �

Problem 36. 2 points A and B are two independent events with Pr[A] = 1
3 and

Pr[B] = 1
4 . Compute Pr[A ∪ B].

Answer. Pr[A∪B] = Pr[A] + Pr[B]−Pr[A∩B] = Pr[A] + Pr[B]−Pr[A] Pr[B] = 1
3

+ 1
4
− 1

12
=

1
2
. �

Problem 37. 3 points You have an urn with five white and five red balls. You
take two balls out without replacement. A is the event that the first ball is white,
and B that the second ball is white. a. What is the probability that the first ball
is white? b. What is the probability that the second ball is white? c. What is the
probability that both have the same color? d. Are these two events independent, i.e.,
is Pr[B|A] = Pr[A]? e. Are these two events disjoint, i.e., is A ∩ B = ∅?

Answer. Clearly, Pr[A] = 1/2. Pr[B] = Pr[B|A]Pr[A] + Pr[B|A′] Pr[A′] = (4/9)(1/2) +
(5/9)(1/2) = 1/2. The events are not independent: Pr[B|A] = 4/9 6= Pr[B], or Pr[A ∩ B] =
5
10

4
9

= 2/9 6= 1/4. They would be independent if the first ball had been replaced. The events are
also not disjoint: it is possible that both balls are white. �

2.10.2. Independence of More than Two Events. If there are more than
two events, we must require that all possible intersections of these events, not only
the pairwise intersections, follow the above multiplication rule. For instance,

(2.10.1) A,B,C mutually independent ⇐⇒

Pr[A ∩ B] = Pr[A] Pr[B];

Pr[A ∩ C] = Pr[A] Pr[C];

Pr[B ∩ C] = Pr[B] Pr[C];

Pr[A ∩ B ∩ C] = Pr[A] Pr[B] Pr[C].

This last condition is not implied by the other three. Here is an example. Draw a ball
at random from an urn containing four balls numbered 1, 2, 3, 4. Define A = {1, 4},
B = {2, 4}, and C = {3, 4}. These events are pairwise independent but not mutually
independent.
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Problem 38. 2 points Flip a coin two times independently and define the fol-
lowing three events:

A = Head in first flip

B = Head in second flip

C = Same face in both flips.

(2.10.2)

Are these three events pairwise independent? Are they mutually independent?

Answer. U =
{
HH HT
TH TT

}
. A = {HH,HT}, B = {HH, TH}, C = {HH, TT}. Pr[A] = 1

2
,

Pr[B] = 1
2
, Pr[C] = 1

2
. They are pairwise independent, but Pr[A ∩ B ∩ C] = Pr[{HH}] = 1

4
6=

Pr[A] Pr[B]Pr[C], therefore the events cannot be mutually independent. �

Problem 39. 3 points A, B, and C are pairwise independent events whose prob-
abilities are greater than zero and smaller than one, and A ∩ B ⊂ C. Can those
events be mutually independent?

Answer. No; from A ∩ B ⊂ C follows A ∩ B ∩ C = A ∩ B and therefore Pr[A ∩ B ∩ C] 6=
Pr[A ∩ B] Pr[C] since Pr[C] < 1 and Pr[A ∩ B] > 0. �

If one takes unions, intersections, complements of different mutually independent
events, one will still end up with mutually independent events. E.g., if A, B, C

mutually independent, then A′, B, C are mutually independent as well, and A ∩ B

independent of C, and A∪B independent of C, etc. This is not the case if the events
are only pairwise independent. In Problem 39, A ∩ B is not independent of C.

&%
'$
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&%
'$R S T
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Figure 1. Generic Venn Diagram for 3 Events

2.10.3. Conditional Independence. If A and B are independent in the prob-
ability measure conditionally on C, i.e., if Pr[A ∩ B|C] = Pr[A|C] Pr[B|C], then they
are called conditionally independent given that C occurred, notation A⊥B|C. In
formulas,

(2.10.3)
Pr[A ∩ C]

Pr[C]

Pr[B ∩ C]

Pr[C]
=

Pr[A ∩ B ∩ C]

Pr[C]
.
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Problem 40. 5 points Show that A⊥B|C is equivalent to Pr[A|B∩C] = Pr[A|C].
In other words: independence of A and B conditionally on C means: once we know
that C occurred, the additional knowledge whether B occurred or not will not help us
to sharpen our knowledge about A.

Literature about conditional independence (of random variables, not of events)
includes [Daw79a], [Daw79b], [Daw80].

2.10.4. Independent Repetition of an Experiment. If a given experiment
has sample space U, and we perform the experiment n times in a row, then this
repetition can be considered a single experiment with the sample space consisting of
n-tuples of elements of U. This set is called the product set Un = U × U × · · · × U

(n terms).
If a probability measure Pr is given on F , then one can define in a unique way

a probability measure on the subsets of the product set so that events in different
repetitions are always independent of each other.

The Bernoulli experiment is the simplest example of such an independent rep-
etition. U = {s, f} (stands for success and failure). Assume Pr[{s}] = p, and that
the experimenter has several independent trials. For instance, U5 has, among others,
the following possible outcomes:

(2.10.4)

If ω =(f, f, f, f, f) then Pr[{ω}] = (1 − p)n

(f, f, f, f, s) (1 − p)n−1p

(f, f, f, s, f) (1 − p)n−1p

(f, f, f, s, s) (1 − p)n−2p2

(f, f, s, f, f) (1 − p)n−1p, etc.

One sees, this is very cumbersome, and usually unnecessarily so. If we toss a coin
5 times, the only thing we usually want to know is how many successes there were.
As long as the experiments are independent, the question how the successes were
distributed over the n different trials is far less important. This brings us to the
definition of a random variable, and to the concept of a sufficient statistic.

2.11. How to Plot Frequency Vectors and Probability Vectors

If there are only 3 possible outcomes, i.e., U = {ω1, ω2, ω3}, then the set of all
probability measures is the set of nonnegative 3-vectors whose components sum up to
1. Graphically, such vectors can be represented as points inside a trilateral triangle
with height 1: the three components of the vector are the distances of the point
to each of the sides of the triangle. The R/Splus-function triplot in the ecmet

package, written by Jim Ramsay ramsay@ramsay2.psych.mcgill.ca, does this, with
optional rescaling if the rows of the data matrix do not have unit sums.
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Figure 2. Geometry of an equilateral triangle

Problem 41. In an equilateral triangle, call a = the distance of the sides from
the center point, b = half the side length, and c = the distance of the corners from
the center point (as in Figure 2). Show that b = a

√
3 and c = 2a.

Answer. From (a + c)2 + b2 = 4b2, i.e., (a + c)2 = 3b2, follows a + c = b
√

3. But we
also have a2 + b2 = c2. Therefore a2 + 2ac + c2 = 3b2 = 3c2 − 3a2, or 4a2 + 2ac − 2c2 = 0
or 2a2 + ac − c2 = (2a − c)(a + c) = 0. The positive solution is therefore c = 2a. This gives

a+ c = 3a = b
√

3, or b = a
√

3. �

And the function quadplot, also written by Jim Ramsey, does quadrilinear plots,
meaning that proportions for four categories are plotted within a regular tetrahe-
dron. Quadplot displays the probability tetrahedron and its points using XGobi.
Each vertex of the triangle or tetrahedron corresponds to the degenerate probabil-
ity distribution in which one of the events has probability 1 and the others have
probability 0. The labels of these vertices indicate which event has probability 1.

The script kai is an example visualizing data from [Mor65]; it can be run using
the command ecmet.script(kai).

Example: Statistical linguistics.
In the study of ancient literature, the authorship of texts is a perplexing problem.

When books were written and reproduced by hand, the rights of authorship were
limited and what would now be considered forgery was common. The names of
reputable authors were borrowed in order to sell books, get attention for books, or the
writings of disciples and collaborators were published under the name of the master,
or anonymous old manuscripts were optimistically attributed to famous authors. In
the absence of conclusive evidence of authorship, the attribution of ancient texts
must be based on the texts themselves, for instance, by statistical analysis of literary
style. Here it is necessary to find stylistic criteria which vary from author to author,
but are independent of the subject matter of the text. An early suggestion was to use
the probability distribution of word length, but this was never acted upon, because
it is too dependent on the subject matter. Sentence-length distributions, on the
other hand, have proved highly reliable. [Mor65, p. 184] says that sentence-length
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is “periodic rather than random,” therefore the sample should have at least about
100 sentences. “Sentence-length distributions are not suited to dialogue, they cannot
be used on commentaries written on one author by another, nor are they reliable on
such texts as the fragmentary books of the historian Diodorus Siculus.”

Problem 42. According to [Mor65, p. 184], sentence-length is “periodic rather
than random.” What does this mean?

Answer. In a text, passages with long sentences alternate with passages with shorter sen-
tences. This is why one needs at least 100 sentences to get a representative distribution of sen-
tences, and this is why fragments and drafts and commentaries on others’ writings do not exhibit
an average sentence length distribution: they do not have the melody of the finished text. �

Besides the length of sentences, also the number of common words which express
a general relation (“and”, “in”, “but”, “I”, “to be”) is random with the same distri-
bution at least among the same genre. By contrast, the occurrence of the definite
article “the” cannot be modeled by simple probabilistic laws because the number of
nouns with definite article depends on the subject matter.

Table 1 has data about the epistles of St. Paul. Abbreviations: Rom Romans; Co1
1st Corinthians; Co2 2nd Corinthians; Gal Galatians; Phi Philippians; Col Colos-
sians; Th1 1st Thessalonians; Ti1 1st Timothy; Ti2 2nd Timothy; Heb Hebrews. 2nd
Thessalonians, Titus, and Philemon were excluded because they were too short to
give reliable samples. From an analysis of these and other data [Mor65, p. 224] the
first 4 epistles (Romans, 1st Corinthians, 2nd Corinthians, and Galatians) form a
consistent group, and all the other epistles lie more than 2 standard deviations from
the mean of this group (using χ2 statistics). If Paul is defined as being the author of
Galatians, then he also wrote Romans and 1st and 2nd Corinthians. The remaining
epistles come from at least six hands.

Table 1. Number of Sentences in Paul’s Epistles with 0, 1, 2, and
≥ 3 occurrences of kai

Rom Co1 Co2 Gal Phi Col Th1 Ti1 Ti2 Heb
no kai 386 424 192 128 42 23 34 49 45 155
one 141 152 86 48 29 32 23 38 28 94
two 34 35 28 5 19 17 8 9 11 37
3 or more 17 16 13 6 12 9 16 10 4 24

Problem 43. Enter the data from Table 1 into xgobi and brush the four epistles
which are, according to Morton, written by Paul himself. 3 of those points are almost
on top of each other, and one is a little apart. Which one is this?
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Answer. In R, issue the commands library(xgobi) then data(PaulKAI) then quadplot(PaulKAI,

normalize = TRUE). If you have xgobi but not R, this dataset is one of the default datasets coming
with xgobi.

�



CHAPTER 3

Random Variables

3.1. Notation

Throughout these class notes, lower case bold letters will be used for vectors
and upper case bold letters for matrices, and letters that are not bold for scalars.
The (i, j) element of the matrix A is aij , and the ith element of a vector b is bi;
the arithmetic mean of all elements is b̄. All vectors are column vectors; if a row
vector is needed, it will be written in the form b>. Furthermore, the on-line version
of these notes uses green symbols for random variables, and the corresponding black
symbols for the values taken by these variables. If a black-and-white printout of
the on-line version is made, then the symbols used for random variables and those
used for specific values taken by these random variables can only be distinguished
by their grey scale or cannot be distinguished at all; therefore a special monochrome
version is available which should be used for the black-and-white printouts. It uses
an upright math font, called “Euler,” for the random variables, and the same letter
in the usual slanted italic font for the values of these random variables.

Example: If y is a random vector, then y denotes a particular value, for instance
an observation, of the whole vector; yi denotes the ith element of y (a random scalar),
and yi is a particular value taken by that element (a nonrandom scalar).

With real-valued random variables, the powerful tools of calculus become avail-
able to us. Therefore we will begin the chapter about random variables with a
digression about infinitesimals

3.2. Digression about Infinitesimals

In the following pages we will recapitulate some basic facts from calculus. But
it will differ in two respects from the usual calculus classes. (1) everything will be
given its probability-theoretic interpretation, and (2) we will make explicit use of
infinitesimals. This last point bears some explanation.

You may say infinitesimals do not exist. Do you know the story with Achilles and
the turtle? They are racing, the turtle starts 1 km ahead of Achilles, and Achilles
runs ten times as fast as the turtle. So when Achilles arrives at the place the turtle
started, the turtle has run 100 meters; and when Achilles has run those 100 meters,
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the turtle has run 10 meters, and when Achilles has run the 10 meters, then the turtle
has run 1 meter, etc. The Greeks were actually arguing whether Achilles would ever
reach the turtle.

This may sound like a joke, but in some respects, modern mathematics never
went beyond the level of the Greek philosophers. If a modern mathematicien sees
something like

(3.2.1) lim
i→∞

1

i
= 0, or lim

n→∞

n∑

i=0

1

10i
=

10

9
,

then he will probably say that the lefthand term in each equation never really reaches
the number written on the right, all he will say is that the term on the left comes
arbitrarily close to it.

This is like saying: I know that Achilles will get as close as 1 cm or 1 mm to the
turtle, he will get closer than any distance, however small, to the turtle, instead of
simply saying that Achilles reaches the turtle. Modern mathematical proofs are full
of races between Achilles and the turtle of the kind: give me an ε, and I will prove to
you that the thing will come at least as close as ε to its goal (so-called epsilontism),
but never speaking about the moment when the thing will reach its goal.

Of course, it “works,” but it makes things terribly cumbersome, and it may have
prevented people from seeing connections.

Abraham Robinson in [Rob74] is one of the mathematicians who tried to remedy
it. He did it by adding more numbers, infinite numbers and infinitesimal numbers.
Robinson showed that one can use infinitesimals without getting into contradictions,
and he demonstrated that mathematics becomes much more intuitive this way, not
only its elementary proofs, but especially the deeper results. One of the elemrntary
books based on his calculus is [HK79].

The well-know logician Kurt Gödel said about Robinson’s work: “I think, in
coming years it will be considered a great oddity in the history of mathematics that
the first exact theory of infinitesimals was developed 300 years after the invention of
the differential calculus.”

Gödel called Robinson’s theory the first theory. I would like to add here the fol-
lowing speculation: perhaps Robinson shares the following error with the “standard”
mathematicians whom he criticizes: they consider numbers only in a static way, with-
out allowing them to move. It would be beneficial to expand on the intuition of the
inventors of differential calculus, who talked about “fluxions,” i.e., quantities in flux,
in motion. Modern mathematicians even use arrows in their symbol for limits, but
they are not calculating with moving quantities, only with static quantities.

This perspective makes the category-theoretical approach to infinitesimals taken
in [MR91] especially promising. Category theory considers objects on the same
footing with their transformations (and uses lots of arrows).
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Maybe a few years from now mathematics will be done right. We should not let
this temporary backwardness of mathematics allow to hold us back in our intuition.
The equation ∆y

∆x = 2x does not hold exactly on a parabola for any pair of given
(static) ∆x and ∆y; but if you take a pair (∆x,∆y) which is moving towards zero
then this equation holds in the moment when they reach zero, i.e., when they vanish.
Writing dy and dx means therefore: we are looking at magnitudes which are in the
process of vanishing. If one applies a function to a moving quantity one again gets a
moving quantity, and the derivative of this function compares the speed with which
the transformed quantity moves with the speed of the original quantity. Likewise,
the equation

∑n
i=1

1
2n = 1 holds in the moment when n reaches infinity. From this

point of view, the axiom of σ-additivity in probability theory (in its equivalent form
of rising or declining sequences of events) indicates that the probability of a vanishing
event vanishes.

Whenever we talk about infinitesimals, therefore, we really mean magnitudes
which are moving, and which are in the process of vanishing. dVx,y is therefore not,
as one might think from what will be said below, a static but small volume element
located close to the point (x, y), but it is a volume element which is vanishing into
the point (x, y). The probability density function therefore signifies the speed with
which the probability of a vanishing element vanishes.

3.3. Definition of a Random Variable

The best intuition of a random variable would be to view it as a numerical
variable whose values are not determinate but follow a statistical pattern, and call
it x, while possible values of x are called x.

In order to make this a mathematically sound definition, one says: A mapping x :
U → R of the set U of all possible outcomes into the real numbers R is called a random
variable. (Again, mathematicians are able to construct pathological mappings that
cannot be used as random variables, but we let that be their problem, not ours.) The
green x is then defined as x = x(ω). I.e., all the randomness is shunted off into the
process of selecting an element of U . Instead of being an indeterminate function, it
is defined as a determinate function of the random ω. It is written here as x(ω) and
not as x(ω) because the function itself is determinate, only its argument is random.

Whenever one has a mapping x : U → R between sets, one can construct from it
in a natural way an “inverse image” mapping between subsets of these sets. Let F ,
as usual, denote the set of subsets of U , and let B denote the set of subsets of R. We
will define a mapping x−1 : B → F in the following way: For any B ⊂ R, we define
x−1(B) = {ω ∈ U : x(ω) ∈ B}. (This is not the usual inverse of a mapping, which
does not always exist. The inverse-image mapping always exists, but the inverse
image of a one-element set is no longer necessarily a one-element set; it may have
more than one element or may be the empty set.)
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This “inverse image” mapping is well behaved with respect to unions and inter-
sections, etc. In other words, we have identities x−1(A∩B) = x−1(A)∩x−1(B) and
x−1(A ∪ B) = x−1(A) ∪ x−1(B), etc.

Problem 44. Prove the above two identities.

Answer. These are a very subtle proofs. x−1(A ∩ B) = {ω ∈ U : x(ω) ∈ A ∩ B} = {ω ∈
U : x(ω) ∈ A and x(ω) ∈ B = {ω ∈ U : x(ω) ∈ A} ∩ {ω ∈ U : x(ω) ∈ B} = x−1(A) ∩ x−1(B). The
other identity has a similar proof. �

Problem 45. Show, on the other hand, by a counterexample, that the “direct
image” mapping defined by x(E) = {r ∈ R : there exists ω ∈ E with x(ω) = r} no
longer satisfies x(E ∩ F ) = x(E) ∩ x(F ).

By taking inverse images under a random variable x, the probability measure
on F is transplanted into a probability measure on the subsets of R by the simple
prescription Pr[B] = Pr

[
x−1(B)

]
. Here, B is a subset of R and x−1(B) one of U , the

Pr on the right side is the given probability measure on U , while the Pr on the left is
the new probability measure on R induced by x. This induced probability measure
is called the probability law or probability distribution of the random variable.

Every random variable induces therefore a probability measure on R, and this
probability measure, not the mapping itself, is the most important ingredient of
a random variable. That is why Amemiya’s first definition of a random variable
(definition 3.1.1 on p. 18) is: “A random variable is a variable that takes values
acording to a certain distribution.” In other words, it is the outcome of an experiment
whose set of possible outcomes is R.

3.4. Characterization of Random Variables

We will begin our systematic investigation of random variables with an overview
over all possible probability measures on R.

The simplest way to get such an overview is to look at the cumulative distribution
functions. Every probability measure on R has a cumulative distribution function,
but we will follow the common usage of assigning the cumulative distribution not
to a probability measure but to the random variable which induces this probability
measure on R.

Given a random variable x : U 3 ω 7→ x(ω) ∈ R. Then the cumulative distribu-
tion function of x is the function Fx : R → R defined by:

(3.4.1) Fx(a) = Pr[{ω ∈ U : x(ω) ≤ a}] = Pr[x≤a].

This function uniquely defines the probability measure which x induces on R.
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Properties of cumulative distribution functions: a function F : R → R is a cu-
mulative distribution function if and only if

a ≤ b⇒ F (a) ≤ F (b)(3.4.2)

lim
a→−∞

F (a) = 0(3.4.3)

lim
a→∞

F (a) = 1(3.4.4)

lim
ε→0,ε>0

F (a+ ε) = F (a)(3.4.5)

Equation (3.4.5) is the definition of continuity from the right (because the limit
holds only for ε ≥ 0). Why is a cumulative distribution function continuous from
the right? For every nonnegative sequence ε1, ε2, . . . ≥ 0 converging to zero which
also satisfies ε1 ≥ ε2 ≥ . . . follows {x ≤ a} =

⋂
i{x ≤ a + εi}; for these sequences,

therefore, the statement follows from what Problem 14 above said about the proba-
bility of the intersection of a declining set sequence. And a converging sequence of
nonnegative εi which is not declining has a declining subsequence.

A cumulative distribution function need not be continuous from the left. If
limε→0,ε>0 F (x − ε) 6= F (x), then x is a jump point, and the height of the jump is
the probability that x = x.

It is a matter of convention whether we are working with right continuous or
left continuous functions here. If the distribution function were defined as Pr[x < a]
(some authors do this, compare [Ame94, p. 43]), then it would be continuous from
the left but not from the right.

Problem 46. 6 points Assume Fx(x) is the cumulative distribution function of
the random variable x (whose distribution is not necessarily continuous). Which of
the following formulas are correct? Give proofs or verbal justifications.

Pr[x = x] = lim
ε>0; ε→0

Fx(x+ ε) − Fx(x)(3.4.6)

Pr[x = x] = Fx(x) − lim
δ>0; δ→0

Fx(x− δ)(3.4.7)

Pr[x = x] = lim
ε>0; ε→0

Fx(x+ ε) − lim
δ>0; δ→0

Fx(x− δ)(3.4.8)

Answer. (3.4.6) does not hold generally, since its rhs is always = 0; the other two equations
always hold. �

Problem 47. 4 points Assume the distribution of z is symmetric about zero,
i.e., Pr[z < −z] = Pr[z>z] for all z. Call its cumulative distribution function Fz(z).
Show that the cumulative distribution function of the random variable q = z2 is
Fq(q) = 2Fz(

√
q) − 1 for q ≥ 0, and 0 for q < 0.
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Answer. If q ≥ 0 then

Fq(q) = Pr[z2≤q] = Pr[−√
q≤z≤√

q](3.4.9)

= Pr[z≤√
q] − Pr[z < −√

q](3.4.10)

= Pr[z≤√
q] − Pr[z>

√
q](3.4.11)

= Fz(
√
q) − (1 − Fz(

√
q))(3.4.12)

= 2Fz(
√
q) − 1.(3.4.13)

�

Instead of the cumulative distribution function Fy one can also use the quan-
tile function F−1

y to characterize a probability measure. As the notation suggests,
the quantile function can be considered some kind of “inverse” of the cumulative
distribution function. The quantile function is the function (0, 1) → R defined by

(3.4.14) F−1
y (p) = inf{u : Fy(u) ≥ p}

or, plugging the definition of Fy into (3.4.14),

(3.4.15) F−1
y (p) = inf{u : Pr[y≤u] ≥ p}.

The quantile function is only defined on the open unit interval, not on the endpoints
0 and 1, because it would often assume the values −∞ and +∞ on these endpoints,
and the information given by these values is redundant. The quantile function is
continuous from the left, i.e., from the other side than the cumulative distribution
function. If F is continuous and strictly increasing, then the quantile function is
the inverse of the distribution function in the usual sense, i.e., F−1(F (t)) = t for
all t ∈ R, and F (F−1((p)) = p for all p ∈ (0, 1). But even if F is flat on certain
intervals, and/or F has jump points, i.e., F does not have an inverse function, the
following important identity holds for every y ∈ R and p ∈ (0, 1):

(3.4.16) p ≤ Fy(y) iff F−1
y (p) ≤ y

Problem 48. 3 points Prove equation (3.4.16).

Answer. ⇒ is trivial: if F (y) ≥ p then of course y ≥ inf{u : F (u) ≥ p}. ⇐: y ≥ inf{u :
F (u) ≥ p} means that every z > y satisfies F (z) ≥ p; therefore, since F is continuous from the
right, also F (y) ≥ p. This proof is from [Rei89, p. 318].

�

Problem 49. You throw a pair of dice and your random variable x is the sum
of the points shown.

• a. Draw the cumulative distribution function of x.

Answer. This is Figure 1: the cdf is 0 in (−∞, 2), 1/36 in [2,3), 3/36 in [3,4), 6/36 in [4,5),
10/36 in [5,6), 15/36 in [6,7), 21/36 in [7,8), 26/36 on [8,9), 30/36 in [9,10), 33/36 in [10,11), 35/36
on [11,12), and 1 in [12,+∞). �
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Figure 1. Cumulative Distribution Function of Discrete Variable

• b. Draw the quantile function of x.

Answer. This is Figure 2: the quantile function is 2 in (0, 1/36], 3 in (1/36,3/36], 4 in
(3/36,6/36], 5 in (6/36,10/36], 6 in (10/36,15/36], 7 in (15/36,21/36], 8 in (21/36,26/36], 9 in
(26/36,30/36], 10 in (30/36,33/36], 11 in (33/36,35/36], and 12 in (35/36,1]. �

q q q q q q q q q q

Figure 2. Quantile Function of Discrete Variable

Problem 50. 1 point Give the formula of the cumulative distribution function
of a random variable which is uniformly distributed between 0 and b.

Answer. 0 for x ≤ 0, x/b for 0 ≤ x ≤ b, and 1 for x ≥ b. �
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Empirical Cumulative Distribution Function:
Besides the cumulative distribution function of a random variable or of a proba-

bility measure, one can also define the empirical cumulative distribution function of
a sample. Empirical cumulative distribution functions are zero for all values below
the lowest observation, then 1/n for everything below the second lowest, etc. They
are step functions. If two observations assume the same value, then the step at
that value is twice as high, etc. The empirical cumulative distribution function can
be considered an estimate of the cumulative distribution function of the probability
distribution underlying the sample. [Rei89, p. 12] writes it as a sum of indicator
functions:

(3.4.17) F =
1

n

∑

i

1[xi,+∞)

3.5. Discrete and Absolutely Continuous Probability Measures

One can define two main classes of probability measures on R:
One kind is concentrated in countably many points. Its probability distribution

can be defined in terms of the probability mass function.

Problem 51. Show that a distribution function can only have countably many
jump points.

Answer. Proof: There are at most two with jump height ≥ 1
2
, at most four with jump height

≥ 1
4
, etc. �

Among the other probability measures we are only interested in those which can
be represented by a density function (absolutely continuous). A density function is a
nonnegative integrable function which, integrated over the whole line, gives 1. Given

such a density function, called fx(x), the probability Pr[x∈(a, b)] =
∫ b
a
fx(x)dx. The

density function is therefore an alternate way to characterize a probability measure.
But not all probability measures have density functions.

Those who are not familiar with integrals should read up on them at this point.
Start with derivatives, then: the indefinite integral of a function is a function whose
derivative is the given function. Then it is an important theorem that the area under
the curve is the difference of the values of the indefinite integral at the end points.
This is called the definite integral. (The area is considered negative when the curve
is below the x-axis.)

The intuition of a density function comes out more clearly in terms of infinitesi-
mals. If fx(x) is the value of the density function at the point x, then the probability
that the outcome of x lies in an interval of infinitesimal length located near the point
x is the length of this interval, multiplied by fx(x). In formulas, for an infinitesimal
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dx follows

(3.5.1) Pr
[
x∈[x, x + dx]

]
= fx(x) |dx| .

The name “density function” is therefore appropriate: it indicates how densely the
probability is spread out over the line. It is, so to say, the quotient between the
probability measure induced by the variable, and the length measure on the real
numbers.

If the cumulative distribution function has everywhere a derivative, this deriva-
tive is the density function.

3.6. Transformation of a Scalar Density Function

Assume x is a random variable with values in the region A ⊂ R, i.e., Pr[x/∈A] = 0,
and t is a one-to-one mapping A → R. One-to-one (as opposed to many-to-one)
means: if a, b ∈ A and t(a) = t(b), then already a = b. We also assume that t has a
continuous nonnegative first derivative t′ ≥ 0 everywhere in A. Define the random
variable y by y = t(x). We know the density function of y, and we want to get
that of x. (I.e., t expresses the old variable, that whose density function we know, in
terms of the new variable, whose density function we want to know.)

Since t is one-to-one, it follows for all a, b ∈ A that a = b ⇐⇒ t(a) = t(b). And

recall the definition of a derivative in terms of infinitesimals dx: t′(x) = t(x+dx)−t(x)
dx .

In order to compute fx(x) we will use the following identities valid for all x ∈ A:

fx(x) |dx| = Pr
[
x∈[x, x+ dx]

]
= Pr

[
t(x)∈[t(x), t(x + dx)]

]
(3.6.1)

= Pr
[
t(x)∈[t(x), t(x) + t′(x) dx]

]
= fy(t(x)) |t′(x)dx|(3.6.2)

Absolute values are multiplicative, i.e., |t′(x)dx| = |t′(x)| |dx|; divide by |dx| to get

fx(x) = fy

(
t(x)

)
|t′(x)| .(3.6.3)

This is the transformation formula how to get the density of x from that of y. This
formula is valid for all x ∈ A; the density of x is 0 for all x /∈ A.

Heuristically one can get this transformation as follows: write |t′(x)| = |dy|
|dx| , then

one gets it from fx(x) |dx| = fy(t(x)) |dy| by just dividing both sides by |dx|.
In other words, this transformation rule consists of 4 steps: (1) Determine A,

the range of the new variable; (2) obtain the transformation t which expresses the
old variable in terms of the new variable, and check that it is one-to-one on A; (3)
plug expression (2) into the old density; (4) multiply this plugged-in density by the
absolute value of the derivative of expression (2). This gives the density inside A; it
is 0 outside A.

An alternative proof is conceptually simpler but cannot be generalized to the
multivariate case: First assume t is monotonically increasing. Then Fx(x) = Pr[x ≤
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x] = Pr[t(x) ≤ t(i)] = Fy(t(x)). Now differentiate and use the chain rule. Then
also do the monotonically decresing case. This is how [Ame94, theorem 3.6.1 on
pp. 48] does it. [Ame94, pp. 52/3] has an extension of this formula to many-to-one
functions.

Problem 52. 4 points [Lar82, example 3.5.4 on p. 148] Suppose y has density
function

(3.6.4) fy(y) =

{
1 for 0 < y < 1

0 otherwise.

Obtain the density fx(x) of the random variable x = − log y.

Answer. (1) Since y takes values only between 0 and 1, its logarithm takes values between
−∞ and 0, the negative logarithm therefore takes values between 0 and +∞, i.e., A = {x : 0 < x}.
(2) Express y in terms of x: y = e−x. This is one-to-one on the whole line, therefore also on A.
(3) Plugging y = e−x into the density function gives the number 1, since the density function does
not depend on the precise value of y, as long is we know that 0 < y < 1 (which we do). (4) The
derivative of y = e−x is −e−x. As a last step one has to multiply the number 1 by the absolute
value of the derivative to get the density inside A. Therefore fx(x) = e−x for x > 0 and 0 otherwise.

�

Problem 53. 6 points [Dhr86, p. 1574] Assume the random variable z has
the exponential distribution with parameter λ, i.e., its density function is fz(z) =
λ exp(−λz) for z > 0 and 0 for z ≤ 0. Define u = − log z. Show that the density
function of u is fu(u) = exp

(
µ− u− exp(µ− u)

)
where µ = logλ. This density will

be used in Problem 151.

Answer. (1) Since z only has values in (0,∞), its log is well defined, and A = R. (2) Express
old variable in terms of new: −u = log z therefore z = e−u; this is one-to-one everywhere. (3)
plugging in (since e−u > 0 for all u, we must plug it into λ exp(−λz)) gives . . . . (4) the derivative of
z = e−u is −e−u, taking absolute values gives the Jacobian factor e−u. Plugging in and multiplying

gives the density of u: fu(u) = λ exp(−λe−u)e−u = λe−u−λe
−u

, and using λ exp(−u) = exp(µ−u)
this simplifies to the formula above.

Alternative without transformation rule for densities: Fu(u) = Pr[u≤u] = Pr[− log z≤u] =

Pr[log z≥− u] = Pr[z≥e−u] =
∫ +∞
e−u λe−λz dz = −e−λz|+∞

e−u = e−λe
−u

, now differentiate. �

Problem 54. 4 points Assume the random variable z has the exponential dis-
tribution with λ = 1, i.e., its density function is fz(z) = exp(−z) for z ≥ 0 and 0
for z < 0. Define u =

√
z. Compute the density function of u.

Answer. (1) A = {u : u ≥ 0} since √ always denotes the nonnegative square root; (2) Express

old variable in terms of new: z = u2, this is one-to-one on A (but not one-to-one on all of R);
(3) then the derivative is 2u, which is nonnegative as well, no absolute values are necessary; (4)
multiplying gives the density of u: fu(u) = 2u exp(−u2) if u ≥ 0 and 0 elsewhere. �
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3.7. Example: Binomial Variable

Go back to our Bernoulli trial with parameters p and n, and define a random
variable x which represents the number of successes. Then the probability mass
function of x is

(3.7.1) px(k) = Pr[x=k] =

(
n

k

)
pk(1 − p)(n−k) k = 0, 1, 2, . . . , n

Proof is simple, every subset of k elements represents one possibility of spreading
out the k successes.

We will call any observed random variable a statistic. And we call a statistic t

sufficient for a parameter θ if and only if for any event A and for any possible value
t of t, the conditional probability Pr[A|t≤t] does not involve θ. This means: after
observing t no additional information can be obtained about θ from the outcome of
the experiment.

Problem 55. Show that x, the number of successes in the Bernoulli trial with
parameters p and n, is a sufficient statistic for the parameter p (the probability of
success), with n, the number of trials, a known fixed number.

Answer. Since the distribution of x is discrete, it is sufficient to show that for any given k,
Pr[A|x=k] does not involve p whatever the event A in the Bernoulli trial. Furthermore, since the
Bernoulli trial with n tries is finite, we only have to show it if A is an elementary event in F , i.e.,
an event consisting of one element. Such an elementary event would be that the outcome of the
trial has a certain given sequence of successes and failures. A general A is the finite disjoint union
of all elementary events contained in it, and if the probability of each of these elementary events
does not depend on p, then their sum does not either.

Now start with the definition of conditional probability

(3.7.2) Pr[A|x=k] =
Pr[A ∩ {x=k}]

Pr[x=k]
.

If A is an elementary event whose number of sucesses is not k, then A ∩ {x=k} = ∅, therefore its
probability is 0, which does not involve p. If A is an elementary event which has k successes, then

A ∩ {x=k} = A, which has probability pk(1 − p)n−k. Since Pr[{x=k}] =
(
n
k

)
pk(1 − p)n−k , the

terms in formula (3.7.2) that depend on p cancel out, one gets Pr[A|x=k] = 1/
(
n
k

)
. Again there is

no p in that formula. �

Problem 56. You perform a Bernoulli experiment, i.e., an experiment which
can only have two outcomes, success s and failure f . The probability of success is p.

• a. 3 points You make 4 independent trials. Show that the probability that the
first trial is successful, given that the total number of successes in the 4 trials is 3,
is 3/4.

Answer. Let B = {sfff, sffs, sfsf, sfss, ssff, ssfs, sssf, ssss} be the event that the first

trial is successful, and let {x=3} = {fsss, sfss, ssfs, sssf} be the event that there are 3 successes,
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it has
(
4
3

)
= 4 elements. Then

(3.7.3) Pr[B|x=3] =
Pr[B ∩ {x=3}]

Pr[x=3]

Now B ∩ {x=3} = {sfss, ssfs, sssf}, which has 3 elements. Therefore we get

(3.7.4) Pr[B|x=3] =
3 · p3(1 − p)

4 · p3(1 − p)
=

3

4
.

�

• b. 2 points Discuss this result.

Answer. It is significant that this probability is independent of p. I.e., once we know how
many successes there were in the 4 trials, knowing the true p does not help us computing the
probability of the event. From this also follows that the outcome of the event has no information
about p. The value 3/4 is the same as the unconditional probability if p = 3/4. I.e., whether we
know that the true frequency, the one that holds in the long run, is 3/4, or whether we know that
the actual frequency in this sample is 3/4, both will lead us to the same predictions regarding the
first throw. But not all conditional probabilities are equal to their unconditional counterparts: the
conditional probability to get 3 successes in the first 4 trials is 1, but the unconditional probability
is of course not 1. �

3.8. Pitfalls of Data Reduction: The Ecological Fallacy

The nineteenth-century sociologist Emile Durkheim collected data on the fre-
quency of suicides and the religious makeup of many contiguous provinces in West-
ern Europe. He found that, on the average, provinces with greater proportions of
Protestants had higher suicide rates and those with greater proportions of Catholics
lower suicide rates. Durkheim concluded from this that Protestants are more likely
to commit suicide than Catholics. But this is not a compelling conclusion. It may
have been that Catholics in predominantly Protestant provinces were taking their
own lives. The oversight of this logical possibility is called the “Ecological Fallacy”
[Sel58].

This seems like a far-fetched example, but arguments like this have been used to
discredit data establishing connections between alcoholism and unemployment etc.
as long as the unit of investigation is not the individual but some aggregate.

One study [RZ78] found a positive correlation between driver education and
the incidence of fatal automobile accidents involving teenagers. Closer analysis
showed that the net effect of driver education was to put more teenagers on the
road and therefore to increase rather than decrease the number of fatal crashes in-
volving teenagers.

Problem 57. 4 points Assume your data show that counties with high rates of
unemployment also have high rates of heart attacks. Can one conclude from this that
the unemployed have a higher risk of heart attack? Discuss, besides the “ecological
fallacy,” also other objections which one might make against such a conclusion.
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Answer. Ecological fallacy says that such a conclusion is only legitimate if one has individual
data. Perhaps a rise in unemployment is associated with increased pressure and increased workloads
among the employed, therefore it is the employed, not the unemployed, who get the heart attacks.
Even if one has individual data one can still raise the following objection: perhaps unemployment
and heart attacks are both consequences of a third variable (both unemployment and heart attacks
depend on age or education, or freezing weather in a farming community causes unemployment for
workers and heart attacks for the elderly).

�

But it is also possible to commit the opposite error and rely too much on indi-
vidual data and not enough on “neighborhood effects.” In a relationship between
health and income, it is much more detrimental for your health if you are poor in a
poor neighborhood, than if you are poor in a rich neighborhood; and even wealthy
people in a poor neighborhood do not escape some of the health and safety risks
associated with this neighborhood.

Another pitfall of data reduction is Simpson’s paradox. According to table 1,
the new drug was better than the standard drug both in urban and rural areas. But
if you aggregate over urban and rural areas, then it looks like the standard drug was
better than the new drug. This is an artificial example from [Spr98, p. 360].

Responses in Urban and Rural Areas to Each of Two Drugs
Standard Drug New Drug
Urban Rural Urban Rural

No Effect 500 350 1050 120
Cure 100 350 359 180

Table 1. Disaggregated Results of a New Drug

Response to Two Drugs
Standard Drug New Drug

No Effect 850 1170
Cure 450 530

Table 2. Aggregated Version of Table 1

3.9. Independence of Random Variables

The concept of independence can be extended to random variables: x and y are
independent if all events that can be defined in terms of x are independent of all events
that can be defined in terms of y, i.e., all events of the form {ω ∈ U : x(ω) ∈ C} are
independent of all events of the form {ω ∈ U : y(ω) ∈ D} with arbitrary (measurable)
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subsets C,D ⊂ R. Equivalent to this is that all events of the sort x≤a are independent
of all events of the sort y≤b.

Problem 58. 3 points The simplest random variables are indicator functions,
i.e., functions which can only take the values 0 and 1. Assume x is indicator function
of the event A and y indicator function of the event B, i.e., x takes the value 1 if A

occurs, and the value 0 otherwise, and similarly with y and B. Show that according
to the above definition of independence, x and y are independent if and only if the
events A and B are independent. (Hint: which are the only two events, other than
the certain event U and the null event ∅, that can be defined in terms of x)?

Answer. Only A and A′. Therefore we merely need the fact, shown in Problem 35, that if A

and B are independent, then also A and B′ are independent. By the same argument, also A′ and B

are independent, and A′ and B′ are independent. This is all one needs, except the observation that
every event is independent of the certain event and the null event. �

3.10. Location Parameters and Dispersion Parameters of a Random
Variable

3.10.1. Measures of Location. A location parameter of random variables is
a parameter which increases by c if one adds the constant c to the random variable.

The expected value is the most important location parameter. To motivate it,
assume x is a discrete random variable, i.e., it takes the values x1, . . . , xr with prob-
abilities p1, . . . , pr which sum up to one:

∑r
i=1 pi = 1. x is observed n times inde-

pendently. What can we expect the average value of x to be? For this we first need
a formula for this average: if ki is the number of times that x assumed the value
xi (i = 1, . . . , r) then

∑
ki = n, and the average is k1

n x1 + · · · + kn

n xn. With an

appropriate definition of convergence, the relative frequencies ki

n converge towards
pi. Therefore the average converges towards p1x1 + · · · + pnxn. This limit is the
expected value of x, written as

(3.10.1) E[x] = p1x1 + · · · + pnxn.

Problem 59. Why can one not use the usual concept of convergence here?

Answer. Because there is no guarantee that the sample frequencies converge. It is not phys-
ically impossible (although it is highly unlikely) that certain outcome will never be realized. �

Note the difference between the sample mean, i.e., the average measured in a
given sample, and the “population mean” or expected value. The former is a random
variable, the latter is a parameter. I.e., the former takes on a different value every
time the experiment is performed, the latter does not.

Note that the expected value of the number of dots on a die is 3.5, which is not
one of the possible outcomes when one rolls a die.
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Expected value can be visualized as the center of gravity of the probability mass.
If one of the tails has its weight so far out that there is no finite balancing point then
the expected value is infinite of minus infinite. If both tails have their weights so far
out that neither one has a finite balancing point, then the expected value does not
exist.

It is trivial to show that for a function g(x) (which only needs to be defined for
those values which x can assume with nonzero probability), E[g(x)] = p1g(x1)+ · · ·+
png(xn).

Example of a countable probability mass distribution which has an infinite ex-

pected value: Pr[x = x] = a
x2 for x = 1, 2, . . .. (a is the constant 1

/∑∞
i=1

1
i2 .) The

expected value of x would be
∑∞

i=1
a
i , which is infinite. But if the random variable

is bounded, then its expected value exists.
The expected value of a continuous random variable is defined in terms of its

density function:

(3.10.2) E[x] =

∫ +∞

−∞
xfx(x) dx

It can be shown that for any function g(x) defined for all those x for which fx(x) 6= 0
follows:

(3.10.3) E[g(x)] =

∫

fx(x)6=0

g(x)fx(x) dx

Here the integral is taken over all the points which have nonzero density, instead of
the whole line, because we did not require that the function g is defined at the points
where the density is zero.

Problem 60. Let the random variable x have the Cauchy distribution, i.e., its
density function is

(3.10.4) fx(x) =
1

π(1 + x2)

Show that x does not have an expected value.

Answer.

(3.10.5)

∫
x dx

π(1 + x2)
=

1

2π

∫
2x dx

1 + x2
=

1

2π

∫
d(x2)

1 + x2
=

1

2π
ln(1 + x2)

�
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Rules about how to calculate with expected values (as long as they exist):

E[c] = c if c is a constant(3.10.6)

E[ch] = cE[h](3.10.7)

E[h + j] = E[h] + E[j](3.10.8)

and if the random variables h and j are independent, then also

E[hj] = E[h] E[j].(3.10.9)

Problem 61. 2 points You make two independent trials of a Bernoulli experi-
ment with success probability θ, and you observe t, the number of successes. Compute
the expected value of t3. (Compare also Problem 197.)

Answer. Pr[t = 0] = (1 − θ)2; Pr[t = 1] = 2θ(1− θ); Pr[t = 2] = θ2. Therefore an application
of (3.10.1) gives E[t3] = 03 · (1 − θ)2 + 13 · 2θ(1 − θ) + 23 · θ2 = 2θ + 6θ2. �

Theorem 3.10.1. Jensen’s Inequality: Let g : R → R be a function which is
convex on an interval B ⊂ R, which means

(3.10.10) g(λa+ (1 − λ)b) ≤ λg(a) + (1 − λ)g(b)

for all a, b ∈ B. Furthermore let x : R → R be a random variable so that Pr[x ∈
B] = 1. Then g(E[x]) ≤ E[g(x)].

Proof. The Jensen inequality holds with equality if h(x) is a linear func-
tion (with a constant term), i.e., in this case, E[h(x)] = h(E[x]). (2) Therefore
Jensen’s inequality is proved if we can find a linear function h with the two prop-
erties h(E[x]) = g(E[x]), and h(x) ≤ g(x) for all other x—because with such a
h, E[g(x)] ≥ E[h(x)] = h(E[x]). (3) The existence of such a h follows from con-
vexity. Since g is convex, for every point a ∈ B there is a number β so that
g(x) ≥ g(a) + β(x − a). This β is the slope of g if g is differentiable, and other-
wise it is some number between the left and the right derivative (which both always
exist for a convex function). We need this for a = E[x].

This existence is the deepest part of this proof. We will not prove it here, for a
proof see [Rao73, pp. 57, 58]. One can view it as a special case of the separating
hyperplane theorem. �

Problem 62. Use Jensen’s inequality to show that (E[x])2 ≤ E[x2]. You are
allowed to use, without proof, the fact that a function is convex on B if the second
derivative exists on B and is nonnegative.

Problem 63. Show that the expected value of the empirical distribution of a
sample is the sample mean.
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Other measures of locaction: The median is that number m for which there is
as much probability mass to the left of m as to the right, i.e.,

(3.10.11) Pr[x≤m] =
1

2
or, equivalently, Fx(m) =

1

2
.

It is much more robust with respect to outliers than the mean. If there is more than
one m satisfying (3.10.11), then some authors choose the smallest (in which case the
median is a special case of the quantile function m = F−1(1/2)), and others the
average between the biggest and smallest. If there is no m with property (3.10.11),
i.e., if the cumulative distribution function jumps from a value that is less than 1

2 to

a value that is greater than 1
2 , then the median is this jump point.

The mode is the point where the probability mass function or the probability
density function is highest.

3.10.2. Measures of Dispersion. Here we will discuss variance, standard de-
viation, and quantiles and percentiles: The variance is defined as

var[x] = E[(x − E[x])2],(3.10.12)

but the formula

var[x] = E[x2] − (E[x])2(3.10.13)

is usually more convenient.
How to calculate with variance?

var[ax] = a2 var[x](3.10.14)

var[x + c] = var[x] if c is a constant(3.10.15)

var[x + y] = var[x] + var[y] if x and y are independent.(3.10.16)

Note that the variance is additive only when x and y are independent; the expected
value is always additive.

Problem 64. Here we make the simple step from the definition of the variance
to the usually more convenient formula (3.10.13).

• a. 2 points Derive the formula var[x] = E[x2]− (E[x])2 from the definition of a
variance, which is var[x] = E[(x − E[x])2]. Hint: it is convenient to define µ = E[x].
Write it down carefully, you will lose points for missing or unbalanced parentheses
or brackets.
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Answer. Here it is side by side with and without the notation E[x] = µ:

var[x] = E[(x − E[x])2]

= E[x2 − 2x(E[x]) + (E[x])2]

= E[x2] − 2(E[x])2 + (E[x])2

= E[x2] − (E[x])2.

var[x] = E[(x − µ)2]

= E[x2 − 2xµ + µ2]

= E[x2] − 2µ2 + µ2

= E[x2] − µ2.

(3.10.17)

�

• b. 1 point Assume var[x] = 3, var[y] = 2, x and y are independent. Compute
var[−x], var[3y + 5], and var[x − y].

Answer. 3, 18, and 5. �

Problem 65. If all yi are independent with same variance σ2, then show that
ȳ has variance σ2/n.

The standard deviation is the square root of the variance. Often preferred be-
cause has same scale as x. The variance, on the other hand, has the advantage of a
simple addition rule.

Standardization: if the random variable x has expected value µ and standard
deviation σ, then z = x−µ

σ has expected value zero and variance one.
An αth quantile or a 100αth percentile of a random variable x was already defined

previously to be the smallest number x so that Pr[x≤x] ≥ α.

3.10.3. Mean-Variance Calculations. If one knows mean and variance of a
random variable, one does not by any means know the whole distribution, but one
has already some information. For instance, one can compute E[y2] from it, too.

Problem 66. 4 points Consumer M has an expected utility function for money
income u(x) = 12x−x2. The meaning of an expected utility function is very simple:
if he owns an asset that generates some random income y, then the utility he derives
from this asset is the expected value E[u(y)]. He is contemplating acquiring two
assets. One asset yields an income of 4 dollars with certainty. The other yields an
expected income of 5 dollars with standard deviation 2 dollars. Does he prefer the
certain or the uncertain asset?

Answer. E[u(y)] = 12 E[y] − E[y2] = 12 E[y] − var[y] − (E[y])2. Therefore the certain asset
gives him utility 48 − 0 − 16 = 32, and the uncertain one 60 − 4 − 25 = 31. He prefers the certain
asset. �

3.10.4. Moment Generating Function and Characteristic Function. Here
we will use the exponential function ex, also often written exp(x), which has the two

properties: ex = limn→∞(1 + x
n )n (Euler’s limit), and ex = 1 + x+ x2

2! + x3

3! + · · · .
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Many (but not all) random variables x have a moment generating function mx(t)
for certain values of t. If they do for t in an open interval around zero, then their
distribution is uniquely determined by it. The definition is

(3.10.18) mx(t) = E[etx]

It is a powerful computational device.
The moment generating function is in many cases a more convenient charac-

terization of the random variable than the density function. It has the following
uses:

1. One obtains the moments of x by the simple formula

(3.10.19) E[xk] =
dk

dtk
mx(t)

∣∣∣
t=0

.

Proof:

etx = 1 + tx +
t2x2

2!
+
t3x3

3!
+ · · ·(3.10.20)

mx(t) = E[etx] = 1 + tE[x] +
t2

2!
E[x2] +

t3

3!
E[x3] + · · ·(3.10.21)

d

dt
mx(t) = E[x] + tE[x2] +

t2

2!
E[x3] + · · ·(3.10.22)

d2

dt2
mx(t) = E[x2] + tE[x3] + · · · etc.(3.10.23)

2. The moment generating function is also good for determining the probability
distribution of linear combinations of independent random variables.

a. it is easy to get the m.g.f. of λx from the one of x:

(3.10.24) mλx(t) = mx(λt)

because both sides are E[eλtx].
b. If x, y independent, then

(3.10.25) mx+y(t) = mx(t)my(t).

The proof is simple:

(3.10.26) E[et(x+y)] = E[etxety] = E[etx] E[ety] due to independence.

The characteristic function is defined as ψx(t) = E[eitx], where i =
√
−1. It has

the disadvantage that it involves complex numbers, but it has the advantage that it
always exists, since exp(ix) = cosx + i sinx. Since cos and sin are both bounded,
they always have an expected value.

And, as its name says, the characteristic function characterizes the probability
distribution. Analytically, many of its properties are similar to those of the moment
generating function.
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3.11. Entropy

3.11.1. Definition of Information. Entropy is the average information gained
by the performance of the experiment. The actual information yielded by an event
A with probabbility Pr[A] = p 6= 0 is defined as follows:

(3.11.1) I [A] = log2

1

Pr[A]

This is simply a transformation of the probability, and it has the dual interpretation
of either how unexpected the event was, or the informaton yielded by the occurrense
of event A. It is characterized by the following properties [AD75, pp. 3–5]:

• I [A] only depends on the probability of A, in other words, the information
content of a message is independent of how the information is coded.

• I [A] ≥ 0 (nonnegativity), i.e., after knowing whether A occurred we are no
more ignorant than before.

• If A and B are independent then I [A ∩ B] = I [A] + I [B] (additivity for
independent events). This is the most important property.

• Finally the (inessential) normalization that if Pr[A] = 1/2 then I [A] = 1,
i.e., a yes-or-no decision with equal probability (coin flip) is one unit of
information.

Note that the information yielded by occurrence of the certain event is 0, and that
yielded by occurrence of the impossible event is ∞.

But the important information-theoretic results refer to average, not actual,
information, therefore let us define now entropy:

3.11.2. Definition of Entropy. The entropy of a probability field (experi-
ment) is a measure of the uncertainty prevailing before the experiment is performed,
or of the average information yielded by the performance of this experiment. If the
set U of possible outcomes of the experiment has only a finite number of different el-
ements, say their number is n, and the probabilities of these outcomes are p1, . . . , pn,
then the Shannon entropy H[F ] of this experiment is defined as

(3.11.2)
H[F ]

bits
=

n∑

k=1

pk log2

1

pk

This formula uses log2, logarithm with base 2, which can easily be computed from the
natural logarithms, log2 x = logx/ log 2. The choice of base 2 is convenient because
in this way the most informative Bernoulli experiment, that with success probability
p = 1/2 (coin flip), has entropy 1. This is why one says: “the entropy is measured
in bits.” If one goes over to logarithms of a different base, this simply means that
one measures entropy in different units. In order to indicate this dependence on the

measuring unit, equation (3.11.2) was written as the definition H[F ]
bits instead of H[F ]
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itself, i.e., this is the number one gets if one measures the entropy in bits. If one uses
natural logarithms, then the entropy is measured in “nats.”

Entropy can be characterized axiomatically by the following axioms [Khi57]:

• The uncertainty associated with a finite complete scheme takes its largest
value if all events are equally likely, i.e., H(p1, . . . , pn) ≤ H(1/n, . . . , 1/n).

• The addition of an impossible event to a scheme does not change the amount
of uncertainty.

• Composition Law: If the possible outcomes are arbitrarily combined into
m groups W1 = X11 ∪ · · · ∪ X1k1 , W2 = X21 ∪ · · · ∪ X2k2 , . . . , Wm =
Xm1 ∪ · · · ∪ Xmkm

, with corresponding probabilities w1 = p11 + · · · + p1k1 ,
w2 = p21 + · · · + p2k2 , . . . , wm = pm1 + · · · + pmkm

, then

H(p1, . . . , pn) = H(w1, . . . , wn) +

+ w1H(p11/w1 + · · · + p1k1/w1) +

+ w2H(p21/w2 + · · · + p2k2/w2) + · · · +
+ wmH(pm1/wm + · · · + pmkm

/wm).

Since pij/wj = Pr[Xij |Wj ], the composition law means: if you first learn half the
outcome of the experiment, and then the other half, you will in the average get as
much information as if you had been told the total outcome all at once.

The entropy of a random variable x is simply the entropy of the probability
field induced by x on R. It does not depend on the values x takes but only on the
probabilities. For discretely distributed random variables it can be obtained by the
following “eerily self-referential” prescription: plug the random variable into its own
probability mass function and compute the expected value of the negative logarithm
of this, i.e.,

(3.11.3)
H[x]

bits
= E[− log2 px(x)]

One interpretation of the entropy is: it is the average number of yes-or-no ques-
tions necessary to describe the outcome of the experiment. For instance, consider an
experiment which has 32 different outcomes occurring with equal probabilities. The
entropy is

(3.11.4)
H

bits
=

32∑

i=1

1

32
log2 32 = log2 32 = 5 i.e., H = 5 bits

which agrees with the number of bits necessary to describe the outcome.

Problem 67. Design a questioning scheme to find out the value of an integer
between 1 and 32, and compute the expected number of questions in your scheme if
all numbers are equally likely.
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Answer. In binary digits one needs a number of length 5 to describe a number between 0 and
31, therefore the 5 questions might be: write down the binary expansion of your number minus 1.
Is the first binary digit in this expansion a zero, then: is the second binary digit in this expansion a
zero, etc. Formulated without the use of binary digits these same questions would be: is the number
between 1 and 16?, then: is it between 1 and 8 or 17 and 24?, then, is it between 1 and 4 or 9 and
12 or 17 and 20 or 25 and 28?, etc., the last question being whether it is odd. Of course, you can
formulate those questions conditionally: First: between 1 and 16? if no, then second: between 17

and 24? if yes, then second: between 1 and 8? Etc. Each of these questions gives you exactly the
entropy of 1 bit. �

Problem 68. [CT91, example 1.1.2 on p. 5] Assume there is a horse race
with eight horses taking part. The probabilities for winning for the eight horses are
1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64 .

• a. 1 point Show that the entropy of the horse race is 2 bits.

Answer.

H

bits
=

1

2
log2 2 +

1

4
log2 4 +

1

8
log2 8 +

1

16
log2 16 +

4

64
log2 64 =

=
1

2
+

1

2
+

3

8
+

1

4
+

3

8
=

4 + 4 + 3 + 2 + 3

8
= 2

�

• b. 1 point Suppose you want to send a binary message to another person
indicating which horse won the race. One alternative is to assign the bit strings 000,
001, 010, 011, 100, 101, 110, 111 to the eight horses. This description requires 3 bits
for any of the horses. But since the win probabilities are not uniform, it makes sense
to use shorter descriptions for the horses more likely to win, so that we achieve
a lower expected value of the description length. For instance, we could use the
following set of bit strings for the eight horses: 0, 10, 110, 1110, 111100, 111101,
111110, 111111. Show that the the expected length of the message you send to your
friend is 2 bits, as opposed to 3 bits for the uniform code. Note that in this case the
expected value of the description length is equal to the entropy.

Answer. The math is the same as in the first part of the question:

1

2
· 1 +

1

4
· 2 +

1

8
· 3 +

1

16
· 4 + 4 · 1

64
· 6 =

1

2
+

1

2
+

3

8
+

1

4
+

3

8
=

4 + 4 + 3 + 2 + 3

8
= 2

�

Problem 69. [CT91, example 2.1.2 on pp. 14/15]: The experiment has four
possible outcomes; outcome x=a occurs with probability 1/2, x=b with probability
1/4, x=c with probability 1/8, and x=d with probability 1/8.

• a. 2 points The entropy of this experiment (in bits) is one of the following
three numbers: 11/8, 7/4, 2. Which is it?
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• b. 2 points Suppose we wish to determine the outcome of this experiment with
the minimum number of questions. An efficient first question is “Is x=a?” This
splits the probability in half. If the answer to the first question is no, then the second
question can be “Is x=b?” The third question, if it is necessary, can then be: “Is
x=c?” Compute the expected number of binary questions required.

• c. 2 points Show that the entropy gained by each question is 1 bit.

• d. 3 points Assume we know about the first outcome that x6=a. What is the
entropy of the remaining experiment (i.e., under the conditional probability)?

• e. 5 points Show in this example that the composition law for entropy holds.

Problem 70. 2 points In terms of natural logarithms equation (3.11.4) defining
entropy reads

(3.11.5)
H

bits
=

1

ln 2

n∑

k=1

pk ln
1

pk
.

Compute the entropy of (i.e., the average informaton gained by) a roll of an unbiased
die.

Answer. Same as the actual information gained, since each outcome is equally likely:

(3.11.6)
H

bits
=

1

ln 2

(
1

6
ln 6 + · · · + 1

6
ln 6

)
=

ln 6

ln 2
= 2.585

�

• a. 3 points How many questions does one need in the average to determine the
outcome of the roll of an unbiased die? In other words, pick a certain questioning
scheme (try to make it efficient) and compute the average number of questions if
this scheme is followed. Note that this average cannot be smaller than the entropy
H /bits, and if one chooses the questions optimally, it is smaller than H /bits + 1.

Answer. First question: is it bigger than 3? Second question: is it even? Third question (if
necessary): is it a multiple of 3? In this scheme, the number of questions for the six faces of the

die are 3, 2, 3, 3, 2, 3, therefore the average is 4
6
· 3 + 2

6
· 2 = 2 2

3
. Also optimal: (1) is it bigger than

2? (2) is it odd? (3) is it bigger than 4? Gives 2, 2, 3, 3, 3, 3. Also optimal: 1st question: is it 1 or
2? If anser is no, then second question is: is it 3 or 4?; otherwise go directly to the third question:
is it odd or even? The steamroller approach: Is it 1? Is it 2? etc. gives 1, 2, 3, 4, 5, 5 with expected
number 3 1

3
. Even this is here < 1 + H /bits. �

Problem 71.

• a. 1 point Compute the entropy of a roll of two unbiased dice if they are
distinguishable.
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Answer. Just twice the entropy from Problem 70.

(3.11.7)
H

bits
=

1

ln 2

(
1

36
ln 36 + · · · + 1

36
ln 36

)
=

ln 36

ln 2
= 5.170

�

• b. Would you expect the entropy to be greater or less in the more usual case
that the dice are indistinguishable? Check your answer by computing it.

Answer. If the dice are indistinguishable, then one gets less information, therefore the exper-
iment has less entropy. One has six like pairs with probability 1/36 and 6 · 5/2 = 15 unlike pairs
with probability 2/36 = 1/18 each. Therefore the average information gained is

(3.11.8)
H

bits
=

1

ln 2

(
6 · 1

36
ln 36 + 15 · 1

18
ln 18

)
=

1

ln 2

(
1

6
ln 36 +

5

6
ln 18

)
= 4.337

�

• c. 3 points Note that the difference between these two entropies is 5/6 = 0.833.
How can this be explained?

Answer. This is the composition law (??) in action. Assume you roll two dice which you first
consider indistinguishable and afterwards someone tells you which is which. How much information
do you gain? Well, if the numbers are the same, then telling you which die is which does not give
you any information, since the outcomes of the experiment are defined as: which number has the
first die, which number has the second die, regardless of where on the table the dice land. But if
the numbers are different, then telling you which is which allows you to discriminate between two
outcomes both of which have conditional probability 1/2 given the outcome you already know; in
this case the information you gain is therefore 1 bit. Since the probability of getting two different
numbers is 5/6, the expected value of the information gained explains the difference in entropy. �

All these definitions use the convention 0 log 1
0 = 0, which can be justified by the

following continuity argument: Define the function, graphed in Figure 3:

(3.11.9) η(w) =

{
w log 1

w if w > 0

0 if w = 0.

η is continuous for all w ≥ 0, even at the boundary point w = 0. Differentiation gives
η′(w) = −(1+logw), and η′′(w) = −w−1. The function starts out at the origin with
a vertical tangent, and since the second derivative is negative, it is strictly concave
for all w > 0. The definition of strict concavity is η(w) < η(v) + (w − v)η′(v) for
w 6= v, i.e., the function lies below all its tangents. Substituting η′(v) = −(1 + log v)
and simplifying gives w − w logw ≤ v − w log v for v, w > 0. One verifies that this
inequality also holds for v, w ≥ 0.

Problem 72. Make a complete proof, discussing all possible cases, that for
v, w ≥ 0 follows

(3.11.10) w − w logw ≤ v − w log v
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Answer. We already know it for v, w > 0. Now if v = 0 and w = 0 then the equation reads
0 ≤ 0; if v > 0 and w = 0 the equation reads 0 ≤ v, and if w > 0 and v = 0 then the equation reads
w −w logw ≤ +∞. �

3.11.3. How to Keep Forecasters Honest. This mathematical result allows
an interesting alternative mathematical characterization of entropy. Assume Anita
performs a Bernoulli experiment whose success probability she does not know but
wants to know. Clarence knows this probability but is not on very good terms with
Anita; therefore Anita is unsure that he will tell the truth if she asks him.

Anita knows “how to keep forecasters honest.” She proposes the following deal
to Clarence: “you tell me the probability q, and after performing my experiment I
pay you the amount log2(q) if the experiment is a success, and log2(1 − q) if it is a
failure. If Clarence agrees to this deal, then telling Anita that value q which is the
true success probability of the Bernoulli experiment maximizes the expected value of
his payoff. And the maximum expected value of this payoff is exactly the negative
of the entropy of the experiment.

Proof: Assume the correct value of the probability is p, and the number Clarence
tells Tina is q. For every p, q between 0 and 1 we have to show:

(3.11.11) p log p+ (1 − p) log(1 − p) ≥ p log q + (1 − p) log(1 − q).

For this, plug w = p and v = q as well as w = 1 − p and v = 1 − q into equation
(3.11.10) and add.
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Figure 3. η : w 7→ w log 1
w is continuous at 0, and concave everywhere
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3.11.4. The Inverse Problem. Now let us go over to the inverse problem:
computing those probability fields which have maximum entropy subject to the in-
formation you have.

If you know that the experiment has n different outcomes, and you do not know
the probabilities of these outcomes, then the maximum entropy approach amounts
to assigning equal probability 1/n to each outcome.

Problem 73. (Not eligible for in-class exams) You are playing a slot machine.
Feeding one dollar to this machine leads to one of four different outcomes: E1: ma-
chine returns nothing, i.e., you lose $1. E2: machine returns $1, i.e., you lose nothing
and win nothing. E3: machine returns $2, i.e., you win $1. E4: machine returns $10,
i.e., you win $9. Events Ei occurs with probability pi, but these probabilities are un-
known. But due to a new “Truth-in-Gambling Act” you find a sticker on the side
of the machine which says that in the long run the machine pays out only $0.90 for
every dollar put in. Show that those values of p1, p2, p3, and p4 which maximize the
entropy (and therefore make the machine most interesting) subject to the constraint
that the expected payoff per dollar put in is $0.90, are p1 = 0.4473, p2 = 0.3158,
p3 = 0.2231, p4 = 0.0138.

Answer. Solution is derived in [Rie85, pp. 68/9 and 74/5], and he refers to [Rie77]. You
have to maximize −

∑
pn log pn subject to

∑
pn = 1 and

∑
cnpn = d. In our case c1 = 0, c2 = 1,

c3 = 2, and c4 = 10, and d = 0.9, but the treatment below goes through for arbitrary ci as long as

not all of them are equal. This case is discussed in detail in the answer to Problem 74. �

• a. Difficult: Does the maximum entropy approach also give us some guidelines
how to select these probabilities if all we know is that the expected value of the payout
rate is smaller than 1?

Answer. As shown in [Rie85, pp. 68/9 and 74/5], one can give the minimum value of the
entropy for all distributions with payoff smaller than 1: H < 1.6590, and one can also give some
bounds for the probabilities: p1 > 0.4272, p2 < 0.3167, p3 < 0.2347, p4 < 0.0214. �

• b. What if you also know that the entropy of this experiment is 1.5?

Answer. This was the purpose of the paper [Rie85]. �

Problem 74. (Not eligible for in-class exams) Let p1, p2, . . . , pn (
∑
pi = 1) be

the proportions of the population of a city living in n residential colonies. The cost of
living in colony i, which includes cost of travel from the colony to the central business
district, the cost of the time this travel consumes, the rent or mortgage payments,
and other costs associated with living in colony i, is represented by the monetary
amount ci. Without loss of generality we will assume that the ci are numbered in
such a way that c1 ≤ c2 ≤ · · · ≤ cn. We will also assume that the ci are not all
equal. We assume that the ci are known and that also the average expenditures on
travel etc. in the population is known; its value is d. One approach to modelling the
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population distribution is to maximize the entropy subject to the average expenditures,
i.e., to choose p1, p2, . . . pn such that H =

∑
pi log 1

pi
is maximized subject to the two

constraints
∑
pi = 1 and

∑
pici = d. This would give the greatest uncertainty about

where someone lives.

• a. 3 points Set up the Lagrange function and show that

(3.11.12) pi =
exp(−λci)∑
exp(−λci)

where the Lagrange multiplier λ must be chosen such that
∑
pici = d.

Answer. The Lagrange function is

(3.11.13) L = −
∑

pn log pn − κ(
∑

pn − 1) − λ(
∑

cnpn − d)

Partial differentiation with respect to pi gives the first order conditions

(3.11.14) − log pi − 1 − κ− λci = 0.

Therefore pi = exp(−κ − 1) exp(−λci). Plugging this into the first constraint gives 1 =
∑

pi =

exp(−κ − 1)
∑

exp(−λci) or exp(−κ − 1) = 1∑
exp(−λci)

. This constraint therefore defines κ

uniquely, and we can eliminate κ from the formula for pi:

(3.11.15) pi =
exp(−λci)∑

exp(−λci)
Now all the pi depend on the same unknown λ, and this λ must be chosen such that the second
constraint holds. This is the Maxwell-Boltzmann distribution if µ = kT where k is the Boltzmann
constant and T the temperature. �

• b. 2 points Here is a mathematical lemma needed for the next part: Prove that
for ai ≥ 0 and ci arbitrary follows

∑
ai
∑
aic

2
i ≥ (

∑
aici)

2, and if all ai > 0 and
not all ci equal, then this inequality is strict.

Answer. By choosing the same subscripts in the second sum as in the first we pair elements
of the first sum with elements of the second sum:

∑

i

ai

∑

j

c2jaj −
∑

i

ciai

∑

j

cjaj =
∑

i,j

(c2j − cicj)aiaj

(3.11.16)

but if we interchange i and j on the rhs we get

=
∑

j,i

(c2i − cjci)ajai =
∑

i,j

(c2i − cicj)aiaj(3.11.17)

Now add the righthand sides to get

2
(∑

i

ai

∑

j

c2jaj −
∑

i

ciai

∑

j

cjaj
)

=
∑

i,j

(c2i + c2j − 2cicj)aiaj =
∑

i,j

(ci − cj)
2aiaj ≥ 0

(3.11.18)

�
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• c. 3 points It is not possible to solve equations (3.11.12) analytically for λ, but
the following can be shown [Kap89, p. 310/11]: the function f defined by

(3.11.19) f(λ) =

∑
ci exp(−λci)∑
exp(−λci)

is a strictly decreasing function which decreases from cn to c1 as λ goes from −∞
to ∞, and f(0) = c̄ where c̄ = (1/n)

∑
ci. We need that λ for which f(λ) = d, and

this equation has no real root if d < c1 or d > cn, it has a unique positive root if
c1 < d < c̄ it has the unique root 0 for d = c̄, and it has a unique negative root for
c̄ < d < cn. From this follows: as long as d lies between the lowest and highest cost,
and as long as the cost numbers are not all equal, the pi are uniquely determined by
the above entropy maximization problem.

Answer. Here is the derivative; it is negative because of the mathematical lemma just shown:

(3.11.20) f ′(λ) =
u′v − uv′

v2
= −

∑
exp(−λci)

∑
c2i exp(−λci) −

(∑
ci exp(−λci)

)2
(∑

exp(−λci)
)2 < 0

Since c1 ≤ c2 ≤ · · · ≤ cn, it follows

(3.11.21) c1 =

∑
c1 exp(−λci)∑
exp(−λci)

≤
∑

ci exp(−λci)∑
exp(−λci)

≤
∑

cn exp(−λci)∑
exp(−λci)

= cn

Now the statement about the limit can be shown if not all cj are equal, say c1 < ck+1 but c1 = ck.
The fraction can be written as

(3.11.22)
kc1 exp(−λc1) +

∑n−k
i=1

ck+i exp(−λck+i)
k exp(−λc1) +

∑
i = 1n−k exp(−λck+i)

=
kc1 +

∑n−k
i=1

ck+i exp(−λ(ck+i − c1))

k +
∑n−k

i=1
exp(−λ(ck+i − c1))

Since ck+i − c1 > 0, this converges towards c1 for λ → ∞. �

• d. 3 points Show that the maximum attained entropy is H = λd+ k(λ) where

(3.11.23) k(λ) = log
(∑

exp(−λcj)
)
.

Although λ depends on d, show that ∂ H
∂d = λ, i.e., it is the same as if λ did not

depend on d. This is an example of the “envelope theorem,” and it also gives an
interpretation of λ.

Answer. We have to plug the optimal pi =
exp(−λci)∑

exp(−λci)
into the formula for H = −

∑
pi log pi.

For this note that − log pi = λci + k(λ) where k(λ) = log(
∑

exp(−λcj)) does not depend on i.

Therefore H =
∑

pi(λci+k(λ)) = λ
∑

pici+k(λ)
∑

pi = λd+k(λ), and ∂H
∂d

= λ+d ∂λ
∂d

+k′(λ) ∂λ
∂d

.

Now we need the derivative of k(λ), and we discover that k′(λ) = −f(λ) where f(λ) was defined in

(3.11.19). Therefore ∂ H
∂d

= λ+ (d− f(λ)) ∂λ
∂d

= λ. �

• e. 5 points Now assume d is not known (but the ci are still known), i.e., we
know that (3.11.12) holds for some λ but we don’t know which. We want to estimate
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this λ (and therefore all pi) by taking a random sample of m people from that met-
ropolitan area and asking them what their regional living expenditures are and where
they live. Assume xi people in this sample live in colony i. One way to estimate this
λ would be to use the average consumption expenditure of the sample,

∑
xi

m ci, as an
estimate of the missing d in the above procedure, i.e., choose that λ which satisfies
f(λ) =

∑
xi

m ci. Another procedure, which seems to make a better use of the infor-
mation given by the sample, would be to compute the maximum likelihood estimator
of λ based on all xi. Show that these two estimation procedures are identical.

Answer. The xi have the multinomial distribution. Therefore, given that the proportion pi
of the population lives in colony i, and you are talking a random sample of size m from the whole
population, then the probability to get the outcome x1, . . . , xn is

(3.11.24) L =
m!

x1! · · · xn!
px1
1 px2

2 · · · pxn
n

This is what we have to maximize, subject to the condition that the pi are an entropy maximizing
population distribution. Let’s take logs for computational simplicity:

(3.11.25) logL = logm! −
∑

j

log xj ! +
∑

xi log pi

All we know about the pi is that they must be some entropy maximizing probabilities, but we don’t
know yet which ones, i.e., they depend on the unknown λ. Therefore we need the formula again
− log pi = λci + k(λ) where k(λ) = log(

∑
exp(−λcj)) does not depend on i. This gives

(3.11.26) logL = logm!−
∑

j

log xj !−
∑

xi(λci+k(λ)) = logm!−
∑

j

log xj !−λ
∑

xici+k(λ)m

(for this last term remember that
∑

xi = m. Therefore the derivative is

(3.11.27)
1

m

∂

∂λ
logL =

∑ xi

m
ci − f(λ)

I.e., using the obvious estimate for d is the same as maximum likelihood under the assumption of

maximum entropy. �

This is a powerful estimation strategy. An article with sensational image re-
constitutions using maximum entropy algorithms is [SG85, pp. 111, 112, 115, 116].
And [GJM96] applies maximum entropy methods to ill-posed or underdetermined
problems in econometrics!



CHAPTER 4

Random Number Generation and Encryption

How can a computer, which is a fully determinate system, be programmed to
generate random numbers?

The most frequently used method to generate pseudo-random numbers uniformly
distributed between 0 and 1 is the “linear congruential” method. The algorithm is
parametrized with four integers, as follows:

µ the modulus µ > 0

α the multiplier 0 ≤ α < µ

γ the increment 0 ≤ γ < µ

x0 the starting value, or seed 0 ≤ x0 < µ

If xn is the current value of the “random seed” then a call to the random number
generator first computes

(4.0.28) xn+1 = (αxn + γ) modµ

as the seed for the next call, and then returns xn+1/µ as independent observation of
a pseudo random number which is uniformly distributed in (0, 1).

amod b is the remainder in the integer division of a by b. For instance 13 mod10 =
3, 16 mod8 = 0, etc.

The selection of α, γ, and µ is critical here. We need the following criteria:

• The random generator should have a full period, i.e., it should produce all
numbers 0 < x < µ before repeating. (Once one number is repeated, the
whole cycle is repeated).

• The function should “appear random.”
• The function should implement efficiently with 32-bit arithmetic.

If µ is prime and γ = 0, then for certain values of α the period is µ−1, with only the
value 0 missing. For 32-bit arithmetic, a convenient value of µ is 231 − 1, which is a
prime number. Of the more than 2 billion possible choices for α, only and handful
pass all 3 tests.
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Problem 75. Convince yourself by some examples that for all a, b, and µ fol-
lows:

(4.0.29) a · bmodµ =
(
a · (bmodµ)

)
modµ

In view of of Question 75, the multiplicative congruential random generator is
based on the following procedure: generate two sequences of integers ai and bi as
follows: ai = x1 · αi and bi = i · µ. ai is multiplicative and bi additive, and µ is a
prime number which is not a factor of α. In other words, ai and bi have very little to
do with each other. Then for each i find ai− bs(i) where bs(i) is the largest b which is

smaller than or equal to ai, and then form form
ai−bs(i)

µ to get a number between 0

and 1. This is a measure of relationship between two processes which have very little
to do with each other, and therefore we should not be surprised if this interaction
turns out to look “random.” Knuth writes [Knu81, p. 10]: “taking the remainder
modµ is somewhat like determining where a ball will land in a spinning roulette
wheel.” Of course, this is a heuristic argument. There is a lot of mathematical
theory behind the fact that linear congruential random number generators are good
generators.

If γ = 0 then the period is shorter: then the maximum period is µ − 1 because
any sequence which contains 0 has 0 everywhere. But not having to add γ at every
step makes computation easier.

Not all pairs α and µ give good random number generators, and one should only
use random number generators which have been thoroughly tested. There are some
examples of bad random number generators used in certain hardware or software
programs.

Problem 76. The dataset located at www.econ.utah.edu/ehrbar/data/randu.txt
(which is available as dataset randu in the R-base distribution) has 3 columns and
400 rows. Each row is a consecutive triple of numbers generated by the old VAX
FORTRAN function RANDU running under VMS 1.5. This random generator,
which is discussed in [Knu98, pp. 106/7], starts with an odd seed x0, the n + 1st
seed is xn+1 = (65539xn) mod 231, and the data displayed are xn/2

31 rounded to 6
digits. Load the data into xgobi and use the Rotation view to check whether you
can see something suspicious.

Answer. All data are concentrated in 15 parallel planes. All triplets of observations of randu

fall into these planes; [Knu98, pp. ??] has a mathematical proof. VMS versions 2.0 and higher use
a different random generator.

�
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4.1. Alternatives to the Linear Congruential Random Generator

One of the common fallacies encountered in connection with random number
generation is the idea that we can take a good generator and modify it a little in
order to get an “even more random” sequence. This is often false.

Making the value dependent on the two preceding values increases the maximum
possible period to µ2. The simplest such generator, the Fibonacci sequence

(4.1.1) xn+1 = (xn + xn−1) modµ

is definitely not satisfactorily random. But specific other combinations are good:

(4.1.2) xn+1 = (xn−100 − xn−37) mod 230

is one of the state of the art random generators used in R.
Using more work to get from one number to the next, not mere addition or

multiplication:

(4.1.3) xn+1 = (αx−1
n + γ) modµ

Efficient algorithms exist but are not in the repertoire of most computers. This
generator is completely free of the lattice structure of multiplicative congruential
generators.

Combine several random generators: If you have two random generators with
modulus m, use

(4.1.4) xm − ymmodµ

The Wichmann-Hill portable random generator uses this trick.
Randomizing by shuffling: If you have xn and yn, put the first k observation

of xn into a buffer, call them v1, . . . , vk (k = 100 or so). Then construct xn+1 and
yn+1. Use yn+1 to generate a random integer j between 1 and k, use vj as your next
random observation, and put xn+1 in the buffer at place j. This still gives the same
values as xn but in a different order.

4.2. How to test random generators

Chi-Square Test: partition the outcomes into finitely many categories and test
whether the relative frequencies are compatible with the probabilities.

Kolmogorov-Smirnoff test for continuous distributions: uses the maximum dis-
tance between the empirical distribution function and the theoretical distribution
function.

Now there are 11 kinds of empirical tests, either on the original xn which are
supposedly uniform between 0 and 1, or on integer-valued yn between 0 and d-1.

Equidistribution: either a Chi-Square test that the outcomes fall into d intervals,
or a Kolmogoroff-Smirnov test.
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Serial test: that all integer pairs in the integer-valued outcome are equally likely.
Gap test: for 0 ≤ α < β ≤ 1 a gap of length r is a sequence of r + 1 consecutive

numbers in which the last one is in the interval, and the others are not. Count the
occurrence of such gaps, and make a Chi Squared test with the probabilities of such
occurrences. For instance, if α = 0 and β = 1/2 this computes the lengths of “runs
above the mean.”

Poker test: consider groups of 5 successive integers and classify them into the
7 categories: all different, one pair, two pairs, three of a kind, full house, four of a
kind, five of a kind.

Coupon collectors test: observe the length of sequences required to get a full set
of integers 0, . . . , d− 1.

Permutation test: divide the input sequence of the continuous random variable
into t-element groups and look at all possible relative orderings of these k-tuples.
There are t! different relative orderings, and each ordering has probability 1/t!.

Run test: counts runs up, but don’t use Chi Square test since subsquent runs
are not independent; a long run up is likely to be followed by a short run up.

Maximum-of-t-Test: split the sample into batches of equal length and take the
maximum of each batch. Taking these maxima to the tth power should again give
an equidistributed sample.

Collision tests: 20 consecutive observations are all smaller than 1/2 with prob-
ability 2−20; and every other partition defined by combinations of bigger or smaller
than 1/2 has the same probability. If there are only 214 observations, then on the
average each of these partitions is populated only with probability 1/64. We count
the number of “collisions”, i.e., the number of partitions which have more than 1 ob-
servation in them, and compare this with the binomial distribution (the Chi Square
cannot be applied here).

Birthday spacings test: lagged Fibonacci generators consistently fail it.
Serial correlation test: a statistic which looks like a sample correlation coefficient

which can be easily computed with the Fast Fourier transformation.
Tests on subsequences: equally spaced subsequences are usually worse than the

original sequence if it is a linear congruential generator.

4.3. The Wichmann Hill generator

The Wichmann Hill generator defined in [WH82] can be implemented in almost
any high-level language. It used to be the default random number generator in R,
but version 1.0 of R has different defaults.

Since even the largest allowable integers in ordinary programming languages
are not large enough to make a good congruential random number generator, the
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Wichmann Hill generator is the addition mod 1 of 3 different multiplicative con-
gruential generators which can be computed using a high-level programming lan-
guage. [Zei86] points out that due to the Chinese Remainder Theorem, see [Knu81,
p. 286], this is equivalent to one single multiplicative congruential generator with
α = 1655 54252 64690 and µ = 2781 71856 04309. Since such long integers cannot
be used in ordinary computer programs, Wichmann-Hill’s algorithm is an efficient
method to compute a congruential generator with such large numbers.

Problem 77. Here is a more detailed description of the Wichmann-Hill gener-

ator: Its seed is a 3-vector
[
x1 y1 z1

]>
satisfying

0 < x1 ≤ 30269(4.3.1)

0 < y1 ≤ 30307(4.3.2)

0 < z1 ≤ 30323(4.3.3)

A call to the random generator updates the seed as follows:

x2 = 171x1 mod 30269(4.3.4)

y2 = 172y1 mod 30307(4.3.5)

z2 = 170z1 mod 30323(4.3.6)

and then it returns

(4.3.7)
( x2

30269
+

y2
30307

+
z2

30323

)
mod 1

as its latest drawing from a uniform distribution. If you have R on your computer,
do parts b and c, otherwise do a and b.

• a. 4 points Program the Wichmann-Hill random generator in the programming
language of your choice.

Answer. A random generator does two things:

• It takes the current seed (or generates one if there is none), computes the next seed from it, and
stores this next seed on disk as a side effect.

• Then it converts this next seed into a number between 0 and 1.

The ecmet package has two demonstration functions which perform these two tasks separately for
the Wichmann-Hill generator, without side effects. The function next.WHseed() computes the next
seed from its argument (which defaults to the seed stored in the official variable .Random.seed), and
the function WH.from.current.seed() gets a number between 0 and 1 from its argument (which
has the same default). Both functions are one-liners:

next.WHseed <- function(integer.seed = .Random.seed[-1])

(c( 171, 172, 170) * integer.seed) %% c(30269, 30307, 30323)

WH.from.current.seed <- function(integer.seed = .Random.seed[-1])

sum(integer.seed / c(30269, 30307, 30323)) %% 1
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�

• b. 2 points Check that the 3 first numbers returned by the Wichmann-Hill
random number generator after setting the seed to 1 10 2000 are 0.2759128 0.8713303
0.6150737. (one digit in those 3 numbers is wrong; which is it, and what is the right
digit?)

Answer. The R-code doing this is ecmet.script(wichhill):

##This script generates 3 consecutive seeds, with the

##initial seed set as (1, 10, 2000), puts them into a matrix,

##and then generates the random numbers from the rows of

##this matrix:

my.seeds <- matrix(nrow=3, ncol=3)

my.seeds[1,] <- next.WHseed(c(1, 10, 2000))

my.seeds[2,] <- next.WHseed(my.seeds[1,])

my.seeds[3,] <- next.WHseed(my.seeds[2,])

my.unif <- c(WH.from.current.seed(my.seeds[1,]),

WH.from.current.seed(my.seeds[2,]),

WH.from.current.seed(my.seeds[3,]))

�

• c. 4 points Check that the Wichmann-Hill random generator built into R is
identical to the one described here.

Answer. First make sure that R will actually use the Wichmann-Hill generator (since it is not
the default): RNGkind("Wichmann-Hill"). Then call runif(1). (This sets a seed if there was none,
or uses the existing seed if there was one.) .Random.seed[-1] shows present value of the random
seed associated with this last call, dropping 1st number which indicates which random generator
this is for, which is not needed for our purposes. Therefore WH.from.current.seed(), which takes
.Random.seed[-1] as default argument, should give the same result as the last call of the official
random generator. And WH.from.current.seed(next.WHseed()) takes the current seed, computes
the next seed from it, and converts this next seed into a number between 0 and 1. It does not write
the updated random seed back. Therefore if we issue now the official call runif(1) again, we should
get the same result. �

4.4. Public Key Cryptology

The development of public key encryption is the greatest revolution so far in the
history of cryptography. In ordinary encryption, the same key is used to encrypt and
decrypt the message. In public-key encryption, there is a pair of keys, a public key
and a private key. If the message is encrypted with the public key, then it must be
decrypted with the private key, and vice versa. But knowledge of the public key will
not allow you to determine the private key belonging to it.
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This solves one of the most vexing problems for encryption, namely, the exchange
of keys. In order to communicate privately with each other, the partners no longer
have to exchange a secret key first. A broadcasts his public key to the world, and
only has to safeguard his private key. Everyone who wants to send a secret message
to A simply uses A’s public key.

This same scheme can also be used for signing documents (i.e. ensuring that
the author of a given document is the person who pretends to be the author): if A
signs his document with his private key (i.e., attaches a checksum of the document
encrypted with his private key), the recipient has to do two things: decrypt the
checksum with A’s public key, and compute the checksum of the document himself.
If these two checksums agree, then B knows that the document indeed comes from
A and that it has not been altered in transit.

The original computer program doing this kind of encryption was written by the
programmer Phil Zimmerman. The program is called PGP, “Pretty Good Privacy,”
and manuals are [Zim95] and [Sta95]. More recently, a free version of this program
has been written, called GNU Privacy Guard, textttwww.gnupg.org, which does not
use the patented IDEA algorithm and is under the Gnu Public License.

Here is the mathematics of it. I am following [Sch97, p. 120, 130], a relevant
and readable book. First some number-theoretic preliminaries.

Fermat’s theorem: for a prime p and an integer b not divisible by p, bp−1 mod p =
1.

Euler’s φ function or Euler’s “totient” is the number of positive integers r smaller
than m that are coprime to m, i.e., have no common divisors with m. Example: for
m = 10, the coprime numbers are r = 1, 3, 7, 9, therefore φ(m) = 4.

If m is prime, then φ(m) = m− 1.
If m and n are coprime, then φ(mn) = φ(m)φ(n).
If p and q are to different prime numbers, then φ(pq) = (p− 1)(q − 1).
Euler’s theorem extends Fermat’s theorem: if b is coprime with e, then bφ(e) mod e =

1.
Application to digital encryption (RSA algorithm): r is a large “modulus” (in-

dicating the largest message size which is encrypted in one step) and the plaintext
message is a number M with 1 < M < r which must be coprime with r. (A real
life text is first converted into a sequence of positive integers M < r which are then
encrypted individually. Indeed, since the RSA algorithm is rather slow, the message
is encrypted with a temporary ordinary secret key, and only this key is encrypted
with the RSA algorithm and attached to the conventionally encrypted message.) By
applying Euler’s theorem twice one can show that pairs of integers s and t exist such
that encryption consists in raising to the sth power modulo r, and decryption in rais-
ing to the tth power modulo r. I.e., in order to encrypt one computes E = M s mod r,
and one can get M back by computing M = Et mod r.
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If s is any number coprime with φ(r), then t = sφ(φ(r))−1 modφ(r) is the de-
cryption key belonging to s. To prove this, we will first show that Et mod r =
Mst mod r = M . Now st = sφ(φ(r)), and since s is coprime with φ(r), we can apply
Euler’s theorem to get stmodφ(r) = 1, i.e., a k exists with st = 1+kφ(r). Therefore
Et mod r = Mst mod r = (MMkφ(r)) mod r =

(
M(Mφ(r) mod r)k

)
mod r. A second

application of Euler’s theorem says that Mφ(r) mod r = 1, therefore M st mod r =
M mod r = M . Finally, sinceMφ(r) mod r = 1, we getM st mod r = Mstmodφ(r) mod r.

If r is a prime and s is coprime with r − 1, then someone who has enough
information to do the encryption, i.e., who knows s and r, can also easily compute
t: t = sφ(r−1)−1.

But if r is the product of two different big primes, call them p and q, then someone
who knows p and q can compute pairs s, t fairly easily, but it is computationally very
expensive to get t from the knowledge of s and r alone, because no algorithm is
known which easily determines the prime factors of huge integers.

Problem 78. [Sta99, p. 200] As an example showing what is involved in the
RSA algorithm, first generate the private and public keys as follows:

• a. 2 points Select two primes, p = 3 and q = 11. The modulus of our encryption
algorithm is their product r = pq = 33. Enumerate all numbers < 33 which are
coprime to 33. You should come up with φ(r) = (3 − 1)(11 − 1) = 20 numbers.

Answer. 1, 2, 4, 5, 7, 8, 10, 13, 14, 16, 17, 19, 20, 23, 25, 26, 28, 29, 31, 32. �

• b. 2 points Now we have to select s such that s is relatively prime to φ(r) = 20
and less than φ(r); a possible choice which we will use here is s = 7. To get a t such
that stmod 20 = 1 we have to compute t = sφ(φ(r))−1 modφ(r) = sφ(20)−1 modφ(r).
First compute φ(20) and then t.

Answer. The numbers coprime with 20 are 1, 3, 7, 9, 11, 13, 17, 19. Therefore φ(20) = 8.
Therefore t = 77 mod 20 = 823543 mod 20 = 3. One easily verifies that t = 3 is correct because
st = 7 · 3 = 20 + 1. �

• c. 2 points Therefore the public key is {7, 33} and the private key {t, 33} with
the t just computed. Now take a plaintext consisting of the number 5, use the public
key to encrypt it. What is the encrypted text? Use the private key to decrypt it again.

Answer. If the plaintext = 5, then encryption is the computation of 57 mod 33 = 78125 mod 33 =
14. Decryption is the computation of 143 mod 33 = 2744 mod 33 = 5. �

• d. 1 point This procedure is only valid if the plaintext is coprime with t. What
should be done about this?

Answer. Nothing. t is huge, and if it is selected in such a way that it does not have many
different prime multipliers, the chance that a text happens to be not coprime with it is minuscule. �
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• e. 2 points Now take the same plaintext and use the private key to encrypt it.
What is the encrypted text? Then use the public key to decrypt it.

Answer. If the plaintext = 5, then encryption is the computation of 53 mod 33 = 125 mod 33 =
26. Decryption is the computation of 267 mod 33 = 8031810176 mod 33 = 5. �



CHAPTER 5

Specific Random Variables

5.1. Binomial

We will begin with mean and variance of the binomial variable, i.e., the number
of successes in n independent repetitions of a Bernoulli trial (3.7.1). The binomial
variable has the two parameters n and p. Let us look first at the case n = 1, in which
the binomial variable is also called indicator variable: If the event A has probability
p, then its complement A′ has the probability q = 1 − p. The indicator variable of
A, which assumes the value 1 if A occurs, and 0 if it doesn’t, has expected value p
and variance pq. For the binomial variable with n observations, which is the sum of
n independent indicator variables, the expected value (mean) is np and the variance
is npq.

Problem 79. The random variable x assumes the value a with probability p and
the value b with probability q = 1 − p. Show that var[x] = pq(a− b)2.

Answer. E[x] = pa + qb; var[x] = E[x2] − (E[x])2 = pa2 + qb2 − (pa + qb)2 = (p − p2)a2 −
2pqab+ (q − q2)b2 = pq(a− b)2. For this last equality we need p− p2 = p(1 − p) = pq. �

The Negative Binomial Variable is, like the binomial variable, derived from the
Bernoulli experiment; but one reverses the question. Instead of asking how many
successes one gets in a given number of trials, one asks, how many trials one must
make to get a given number of successes, say, r successes.

First look at r = 1. Let t denote the number of the trial at which the first success
occurs. Then

(5.1.1) Pr[t=n] = pqn−1 (n = 1, 2, . . .).

This is called the geometric probability.
Is the probability derived in this way σ-additive? The sum of a geometrically

declining sequence is easily computed:

1 + q + q2 + q3 + · · · = s Now multiply by q:(5.1.2)

q + q2 + q3 + · · · = qs Now subtract and write 1− q = p:(5.1.3)

1 = ps(5.1.4)
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Equation (5.1.4) means 1 = p + pq + pq2 + · · · , i.e., the sum of all probabilities is
indeed 1.

Now what is the expected value of a geometric variable? Use definition of ex-
pected value of a discrete variable: E[t] = p

∑∞
k=1 kq

k−1. To evaluate the infinite
sum, solve (5.1.4) for s:

s =
1

p
or 1 + q + q2 + q3 + q4 · · · =

∞∑

k=0

qk =
1

1 − q
(5.1.5)

and differentiate both sides with respect to q:

1 + 2q + 3q2 + 4q3 + · · · =

∞∑

k=1

kqk−1 =
1

(1 − q)2
=

1

p2
.(5.1.6)

The expected value of the geometric variable is therefore E[t] = p
p2 = 1

p .

Problem 80. Assume t is a geometric random variable with parameter p, i.e.,
it has the values k = 1, 2, . . . with probabilities

(5.1.7) pt(k) = pqk−1, where q = 1 − p.

The geometric variable denotes the number of times one has to perform a Bernoulli
experiment with success probability p to get the first success.

• a. 1 point Given a positive integer n. What is Pr[t>n]? (Easy with a simple
trick!)

Answer. t>n means, the first n trials must result in failures, i.e., Pr[t>n] = qn. Since
{t > n} = {t = n+ 1} ∪ {t = n+ 2} ∪ · · · , one can also get the same result in a more tedious way:
It is pqn + pqn+1 + pqn+2 + · · · = s, say. Therefore qs = pqn+1 + pqn+2 + · · · , and (1 − q)s = pqn;
since p = 1 − q, it follows s = qn. �

• b. 2 points Let m and n be two positive integers with m < n. Show that
Pr[t=n|t>m] = Pr[t=n−m].

Answer. Pr[t=n|t>m] =
Pr[t=n]
Pr[t>m]

= pqn−1

qm = pqn−m−1 = Pr[t=n−m]. �

• c. 1 point Why is this property called the memory-less property of the geometric
random variable?

Answer. If you have already waited form periods without success, the probability that success
will come in the nth period is the same as the probability that it comes in n −m periods if you
start now. Obvious if you remember that geometric random variable is time you have to wait until
1st success in Bernoulli trial.

�
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Problem 81. t is a geometric random variable as in the preceding problem. In
order to compute var[t] it is most convenient to make a detour via E[t(t− 1)]. Here
are the steps:

• a. Express E[t(t − 1)] as an infinite sum.

Answer. Just write it down according to the definition of expected values:
∑∞

k=0
k(k −

1)pqk−1 =
∑∞

k=2
k(k − 1)pqk−1. �

• b. Derive the formula

(5.1.8)

∞∑

k=2

k(k − 1)qk−2 =
2

(1 − q)3

by the same trick by which we derived a similar formula in class. Note that the sum
starts at k = 2.

Answer. This is just a second time differentiating the geometric series, i.e., first time differ-
entiating (5.1.6). �

• c. Use a. and b. to derive

(5.1.9) E[t(t − 1)] =
2q

p2

Answer.

(5.1.10)

∞∑

k=2

k(k − 1)pqk−1 = pq

∞∑

k=2

k(k − 1)qk−2 = pq
2

(1 − q)3
=

2q

p2
.

�

• d. Use c. and the fact that E[t] = 1/p to derive

(5.1.11) var[t] =
q

p2
.

Answer.

(5.1.12) var[t] = E[t2] − (E[t])2 = E[t(t − 1)] + E[t] − (E[t])2 =
2q

p2
+

1

p
− 1

p2
=

q

p2
.

�

Now let us look at the negative binomial with arbitrary r. What is the probability
that it takes n trials to get r successes? (That means, with n−1 trials we did not yet
have r successes.) The probability that the nth trial is a success is p. The probability

that there are r − 1 successes in the first n − 1 trials is
(
n−1
r−1

)
pr−1qn−r. Multiply

those to get:

(5.1.13) Pr[t=n] =

(
n− 1

r − 1

)
prqn−r.

76 5. SPECIFIC RANDOM VARIABLES

This is the negative binomial, also called the Pascal probability distribution with
parameters r and p.

One easily gets the mean and variance, because due to the memory-less property
it is the sum of r independent geometric variables:

(5.1.14) E[t] =
r

p
var[t] =

rq

p2

Some authors define the negative binomial as the number of failures before the
rth success. Their formulas will look slightly different than ours.

Problem 82. 3 points A fair coin is flipped until heads appear 10 times, and x

is the number of times tails appear before the 10th appearance of heads. Show that
the expected value E[x] = 10.

Answer. Let t be the number of the throw which gives the 10th head. t is a negative binomial
with r = 10 and p = 1/2, therefore E[t] = 20. Since x = t − 10, it follows E[x] = 10. �

Problem 83. (Banach’s match-box problem) (Not eligible for in-class exams)
There are two restaurants in town serving hamburgers. In the morning each of them
obtains a shipment of n raw hamburgers. Every time someone in that town wants
to eat a hamburger, he or she selects one of the two restaurants at random. What is
the probability that the (n + k)th customer will have to be turned away because the
restaurant selected has run out of hamburgers?

Answer. For each restaurant it is the negative binomial probability distribution in disguise:
if a restaurant runs out of hamburgers this is like having n successes in n+ k tries.

But one can also reason it out: Assume one of the restaurantes must turn customers away
after the n + kth customer. Write down all the n + k decisions made: write a 1 if the customer
goes to the first restaurant, and a 2 if he goes to the second. I.e., write down n+ k ones and twos.
Under what conditions will such a sequence result in the n+kth move eating the last hamburgerthe
first restaurant? Exactly if it has n ones and k twos, a n+ kth move is a one. As in the reasoning

for the negative binomial probability distribution, there are
(
n+k−1
n−1

)
possibilities, each of which

has probability 2−n−k . Emptying the second restaurant has the same probability. Together the

probability is therefore
(
n+k−1
n−1

)
21−n−k . �

5.2. The Hypergeometric Probability Distribution

Until now we had independent events, such as, repeated throwing of coins or
dice, sampling with replacement from finite populations, ar sampling from infinite
populations. If we sample without replacement from a finite population, the prob-
ability of the second element of the sample depends on what the first element was.
Here the hypergeometric probability distribution applies.

Assume we have an urn with w white and n−w black balls in it, and we take a
sample of m balls. What is the probability that y of them are white?
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We are not interested in the order in which these balls are taken out; we may
therefore assume that they are taken out simultaneously, therefore the set U of
outcomes is the set of subsets containing m of the n balls. The total number of such
subsets is

(
n
m

)
. How many of them have y white balls in them? Imagine you first

pick y white balls from the set of all white balls (there are
(
w
y

)
possibilities to do

that), and then you pick m− y black balls from the set of all black balls, which can
be done in

(
n−w
m−y

)
different ways. Every union of such a set of white balls with a set

of black balls gives a set of m elements with exactly y white balls, as desired. There
are therefore

(
w
y

)(
n−w
m−y

)
different such sets, and the probability of picking such a set

is

(5.2.1) Pr[Sample of m elements has exactly y white balls] =

(
w
y

)(
n−w
m−y

)
(
n
m

) .

Problem 84. You have an urn with w white and n−w black balls in it, and you
take a sample of m balls with replacement, i.e., after pulling each ball out you put it
back in before you pull out the next ball. What is the probability that y of these balls
are white? I.e., we are asking here for the counterpart of formula (5.2.1) if sampling
is done with replacement.

Answer.

(5.2.2)

(
w

n

)y(n−w

n

)m−y(m
y

)

�

Without proof we will state here that the expected value of y, the number of
white balls in the sample, is E[y] = mw

n , which is the same as if one would select the
balls with replacement.

Also without proof, the variance of y is

(5.2.3) var[y] = m
w

n

(n− w)

n

(n−m)

(n− 1)
.

This is smaller than the variance if one would choose with replacement, which is
represented by the above formula without the last term n−m

n−1 . This last term is

called the finite population correction. More about all this is in [Lar82, p. 176–183].

5.3. The Poisson Distribution

The Poisson distribution counts the number of events in a given time interval.
This number has the Poisson distribution if each event is the cumulative result of a
large number of independent possibilities, each of which has only a small chance of
occurring (law of rare events). The expected number of occurrences is proportional
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to time with a proportionality factor λ, and in a short time span only zero or one
event can occur, i.e., for infinitesimal time intervals it becomes a Bernoulli trial.

Approximate it by dividing the time from 0 to t into n intervals of length t
n ; then

the occurrences are approximately n independent Bernoulli trials with probability of
success λt

n . (This is an approximation since some of these intervals may have more
than one occurrence; but if the intervals become very short the probability of having
two occurrences in the same interval becomes negligible.)

In this discrete approximation, the probability to have k successes in time t is

Pr[x=k] =

(
n

k

)(λt
n

)k(
1 − λt

n

)(n−k)
(5.3.1)

=
1

k!

n(n− 1) · · · (n− k + 1)

nk
(λt)k

(
1 − λt

n

)n(
1 − λt

n

)−k
(5.3.2)

→ (λt)k

k!
e−λt for n→ ∞ while k remains constant(5.3.3)

(5.3.3) is the limit because the second and the last term in (5.3.2) → 1. The sum

of all probabilities is 1 since
∑∞
k=0

(λt)k

k! = eλt. The expected value is (note that we
can have the sum start at k = 1):

(5.3.4) E[x] = e−λt
∞∑

k=1

k
(λt)k

k!
= λte−λt

∞∑

k=1

(λt)k−1

(k − 1)!
= λt.

This is the same as the expected value of the discrete approximations.

Problem 85. x follows a Poisson distribution, i.e.,

(5.3.5) Pr[x=k] =
(λt)k

k!
e−λt for k = 0, 1, . . ..

• a. 2 points Show that E[x] = λt.

Answer. See (5.3.4). �

• b. 4 points Compute E[x(x − 1)] and show that var[x] = λt.

Answer. For E[x(x − 1)] we can have the sum start at k = 2:

(5.3.6) E[x(x − 1)] = e−λt
∞∑

k=2

k(k − 1)
(λt)k

k!
= (λt)2e−λt

∞∑

k=2

(λt)k−2

(k − 2)!
= (λt)2 .

From this follows

(5.3.7) var[x] = E[x2] − (E[x])2 = E[x(x − 1)] + E[x] − (E[x])2 = (λt)2 + λt− (λt)2 = λt.

�

The Poisson distribution can be used as an approximation to the Binomial dis-
tribution when n large, p small, and np moderate.
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Problem 86. Which value of λ would one need to approximate a given Binomial
with n and p?

Answer. That which gives the right expected value, i.e., λ = np. �

Problem 87. Two researchers counted cars coming down a road, which obey a
Poisson distribution with unknown parameter λ. In other words, in an interval of
length t one will have k cars with probability

(5.3.8)
(λt)k

k!
e−λt.

Their assignment was to count how many cars came in the first half hour, and how
many cars came in the second half hour. However they forgot to keep track of the
time when the first half hour was over, and therefore wound up only with one count,
namely, they knew that 213 cars had come down the road during this hour. They
were afraid they would get fired if they came back with one number only, so they
applied the following remedy: they threw a coin 213 times and counted the number of
heads. This number, they pretended, was the number of cars in the first half hour.

• a. 6 points Did the probability distribution of the number gained in this way
differ from the distribution of actually counting the number of cars in the first half
hour?

Answer. First a few definitions: x is the total number of occurrences in the interval [0, 1]. y

is the number of occurrences in the interval [0, t] (for a fixed t; in the problem it was t = 1
2
, but we

will do it for general t, which will make the notation clearer and more compact. Then we want to

compute Pr[y=m|x=n]. By definition of conditional probability:

(5.3.9) Pr[y=m|x=n] =
Pr[y=m and x=n]

Pr[x=n]
.

How can we compute the probability of the intersection Pr[y=m and x=n]? Use a trick: express
this intersection as the intersection of independent events. For this define z as the number of
events in the interval (t, 1]. Then {y=m and x=n} = {y=m and z=n−m}; therefore Pr[y=m and
x=n] = Pr[y=m] Pr[z=n−m]; use this to get
(5.3.10)

Pr[y=m|x=n] =
Pr[y=m] Pr[z=n−m]

Pr[x=n]
=

λmtm

m!
e−λt λ

n−m(1−t)n−m

(n−m)!
e−λ(1−t)

λn

n!
e−λ

=
(n
m

)
tm(1−t)n−m ,

Here we use the fact that Pr[x=k] = tk

k!
e−t, Pr[y=k] =

(λt)k

k!
e−λt, Pr[z=k] =

(1−λ)ktk

k!
e−(1−λ)t.

One sees that a. Pr[y=m|x=n] does not depend on λ, and b. it is exactly the probability of having m
successes and n−m failures in a Bernoulli trial with success probability t. Therefore the procedure
with the coins gave the two researchers a result which had the same probability distribution as if
they had counted the number of cars in each half hour separately.

�
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• b. 2 points Explain what it means that the probability distribution of the number
for the first half hour gained by throwing the coins does not differ from the one gained
by actually counting the cars. Which condition is absolutely necessary for this to
hold?

Answer. The supervisor would never be able to find out through statistical analysis of the
data they delivered, even if they did it repeatedly. All estimation results based on the faked statistic
would be as accurate regarding λ as the true statistics. All this is only true under the assumption
that the cars really obey a Poisson distribution and that the coin is fair.

The fact that the Poisson as well as the binomial distributions are memoryless has nothing to
do with them having a sufficient statistic.

�

Problem 88. 8 points x is the number of customers arriving at a service counter
in one hour. x follows a Poisson distribution with parameter λ = 2, i.e.,

(5.3.11) Pr[x=j] =
2j

j!
e−2.

• a. Compute the probability that only one customer shows up at the service
counter during the hour, the probability that two show up, and the probability that no
one shows up.

• b. Despite the small number of customers, two employees are assigned to the
service counter. They are hiding in the back, and whenever a customer steps up to
the counter and rings the bell, they toss a coin. If the coin shows head, Herbert serves
the customer, and if it shows tails, Karl does. Compute the probability that Herbert
has to serve exactly one customer during the hour. Hint:

(5.3.12) e = 1 + 1 +
1

2!
+

1

3!
+

1

4!
+ · · · .

• c. For any integer k ≥ 0, compute the probability that Herbert has to serve
exactly k customers during the hour.

Problem 89. 3 points Compute the moment generating function of a Poisson

variable observed over a unit time interval, i.e., x satisfies Pr[x=k] = λk

k! e
−λ and

you want E[etx] for all t.

Answer. E[etx] =
∑∞

k=0
etk λ

k

k!
e−λ =

∑∞
k=0

(λet)k

k!
e−λ = eλe

t
e−λ = eλ(et−1). �

5.4. The Exponential Distribution

Now we will discuss random variables which are related to the Poisson distri-
bution. At time t = 0 you start observing a Poisson process, and the random
variable t denotes the time you have to wait until the first occurrence. t can have
any nonnegative real number as value. One can derive its cumulative distribution
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as follows. t>t if and only if there are no occurrences in the interval [0, t]. There-

fore Pr[t>t] = (λt)0

0! e−λt = e−λt, and hence the cumulative distribution function

Ft(t) = Pr[t≤t] = 1−e−λt when t ≥ 0, and Ft(t) = 0 for t < 0. The density function
is therefore ft(t) = λe−λt for t ≥ 0, and 0 otherwise. This is called the exponential
density function (its discrete analog is the geometric random variable). It can also
be called a Gamma variable with parameters r = 1 and λ.

Problem 90. 2 points An exponential random variable t with parameter λ > 0
has the density ft(t) = λe−λt for t ≥ 0, and 0 for t < 0. Use this density to compute
the expected value of t.

Answer. E[t] =
∫∞
0

λte−λtdt =
∫∞
0

uv′dt = uv
∣∣∞
0

−
∫∞
0

u′vdt, where u=t v′=λe−λt

u′=1 v=−e−λt . One

can also use the more abbreviated notation =
∫∞
0

u dv = uv
∣∣∞
0
−
∫∞
0

v du, where u=t dv′=λe−λt dt
du′=dt v=−e−λt .

Either way one obtains E[t] = −te−λt
∣∣∞
0

+
∫∞
0

e−λtdt = 0 − 1
λ
e−λt|∞0 = 1

λ
. �

Problem 91. 4 points An exponential random variable t with parameter λ > 0
has the density ft(t) = λe−λt for t ≥ 0, and 0 for t < 0. Use this density to compute
the expected value of t2.

Answer. One can use that Γ(r) =
∫∞
0

λrtr−1e−λt dt for r = 3 to get: E[t2] = (1/λ2)Γ(3) =

2/λ2. Or all from scratch: E[t2] =
∫∞
0

λt2e−λtdt =
∫∞
0

uv′dt = uv
∣∣∞
0

−
∫∞
0

u′vdt, where

u = t2 v′ = λe−λt

u′ = 2t v = −e−λt . Therefore E[t2] = −t2e−λt
∣∣∞
0

+
∫∞
0

2te−λt dt. The first term vanishes, for

the second do it again:
∫∞
0

2te−λt dt =
∫∞
0

uv′dt = uv
∣∣∞
0
−
∫∞
0

u′vdt, where
u = t v′ = e−λt

u′ = 1 v = −(1/λ)e−λt
.

Therefore the second term becomes 2(t/λ)e−λt
∣∣∞
0

+ 2
∫∞
0

(1/λ)e−λtdt = 2/λ2. �

Problem 92. 2 points Does the exponential random variable with parameter
λ > 0, whose cumulative distribution function is Ft(t) = 1 − e−λt for t ≥ 0, and
0 otherwise, have a memory-less property? Compare Problem 80. Formulate this
memory-less property and then verify whether it holds or not.

Answer. Here is the formulation: for s<t follows Pr[t>t|t>s] = Pr[t>t− s]. This does indeed

hold. Proof: lhs =
Pr[t>t and t>s]

Pr[t>s]
=

Pr[t>t]
Pr[t>s]

= e−λt

e−λs = e−λ(t−s). �

Problem 93. The random variable t denotes the duration of an unemployment
spell. It has the exponential distribution, which can be defined by: Pr[t>t] = e−λt for
t ≥ 0 (t cannot assume negative values).

• a. 1 point Use this formula to compute the cumulative distribution function
Ft(t) and the density function ft(t)

Answer. Ft(t) = Pr[t≤t] = 1 − Pr[t>t] = 1 − e−λt for t ≥ 0, zero otherwise. Taking the
derivative gives ft(t) = λe−λt for t ≥ 0, zero otherwise. �
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• b. 2 points What is the probability that an unemployment spell ends after time
t + h, given that it has not yet ended at time t? Show that this is the same as the
unconditional probability that an unemployment spell ends after time h (memory-less
property).

Answer.

Pr[t>t+ h|t>t] =
Pr[t>t+ h]

Pr[t>t]
=
e−λ(t+h)

e−λt
= e−λh(5.4.1)

�

• c. 3 points Let h be a small number. What is the probability that an unemploy-
ment spell ends at or before t + h, given that it has not yet ended at time t? Hint:
for small h, one can write approximately

(5.4.2) Pr[t < t≤t+ h] = hft(t).

Answer.

Pr[t≤t+ h|t>t] =
Pr[t≤t+ h and t>t]

Pr[t>t]
=

=
hft(t)

1 − Ft(t)
=
hλe−λt

e−λt
= hλ.(5.4.3)

�

5.5. The Gamma Distribution

The time until the second occurrence of a Poisson event is a random variable
which we will call t(2). Its cumulative distribution function is Ft(2) (t) = Pr[t(2)≤t] =
1−Pr[t(2)>t]. But t(2)>t means: there are either zero or one occurrences in the time
between 0 and t; therefore Pr[t(2)>t] = Pr[x=0]+Pr[x=1] = e−λt+λte−λt. Putting it
all together gives Ft(2) (t) = 1−e−λt−λte−λt. In order to differentiate the cumulative
distribution function we need the product rule of differentiation: (uv)′ = u′v + uv′.
This gives

(5.5.1) ft(2)(t) = λe−λt − λe−λt + λ2te−λt = λ2te−λt.

Problem 94. 3 points Compute the density function of t(3), the time of the third
occurrence of a Poisson variable.

Answer.

Pr[t(3)>t] = Pr[x=0] + Pr[x=1] + Pr[x=2](5.5.2)

F
t(3)

(t) = Pr[t(3)≤t] = 1 − (1 + λt+
λ2

2
t2)e−λt(5.5.3)

f
t(3)

(t) =
∂

∂t
F

t(3)
(t) = −

(
−λ(1 + λt+

λ2

2
t2) + (λ + λ2t)

)
e−λt =

λ3

2
t2e−λt.(5.5.4)
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�

If one asks for the rth occurrence, again all but the last term cancel in the
differentiation, and one gets

(5.5.5) ft(r)(t) =
λr

(r − 1)!
tr−1e−λt.

This density is called the Gamma density with parameters λ and r.
The following definite integral, which is defined for all r > 0 and all λ > 0 is

called the Gamma function:

(5.5.6) Γ(r) =

∫ ∞

0

λrtr−1e−λtdt.

Although this integral cannot be expressed in a closed form, it is an important
function in mathematics. It is a well behaved function interpolating the factorials in
the sense that Γ(r) = (r − 1)!.

Problem 95. Show that Γ(r) as defined in (5.5.6) is independent of λ, i.e.,
instead of (5.5.6) one can also use the simpler equation

(5.5.7) Γ(r) =

∫ ∞

0

tr−1e−tdt.

Problem 96. 3 points Show by partial integration that the Gamma function
satisfies Γ(r + 1) = rΓ(r).

Answer. Start with

(5.5.8) Γ(r + 1) =

∫ ∞

0

λr+1tre−λtdt

and integrate by parts:
∫
u′vdt = uv−

∫
uv′dt with u′ = λe−λt and v = λrtr , therefore u = −e−λt

and v′ = rλrtr−1:

(5.5.9) Γ(r + 1) = −λrtre−λt
∣∣∣
∞

0
+

∫ ∞

0

rλrtr−1e−λtdt = 0 + rΓ(r).

�

Problem 97. Show that Γ(r) = (r − 1)! for all natural numbers r = 1, 2, . . ..

Answer. Proof by induction. First verify that it holds for r = 1, i.e., that Γ(1) = 1:

(5.5.10) Γ(1) =

∫ ∞

0

λe−λtdt = −e−λt
∣∣∞
0

= 1

and then, assuming that Γ(r) = (r−1)! Problem 96 says that Γ(r+1) = rΓ(r) = r(r−1)! = r!. �
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Without proof: Γ( 1
2 ) =

√
π. This will be shown in Problem 161.

Therefore the following defines a density function, called the Gamma density
with parameter r and λ, for all r > 0 and λ > 0:

(5.5.11) f(x) =
λr

Γ(r)
xr−1e−λx for x ≥ 0, 0 otherwise.

The only application we have for it right now is: this is the distribution of the time
one has to wait until the rth occurrence of a Poisson distribution with intensity λ.
Later we will have other applications in which r is not an integer.

Problem 98. 4 points Compute the moment generating function of the Gamma
distribution.

Answer.

mx(t) = E[etx] =

∫ ∞

0

etx
λr

Γ(r)
xr−1e−λxdx(5.5.12)

=
λr

(λ− t)r

∫ ∞

0

(λ− t)rxr−1

Γ(r)
e−(λ−t)x dx(5.5.13)

=

(
λ

λ− t

)r
(5.5.14)

since the integrand in (5.5.12) is the density function of a Gamma distribution with parameters r
and λ− t. �

Problem 99. 2 points The density and moment generating functions of a Gamma
variable x with parameters r > 0 and λ > 0 are

(5.5.15) fx(x) =
λr

Γ(r)
xr−1e−λx for x ≥ 0, 0 otherwise.

(5.5.16) mx(t) =
( λ

λ− t

)r
.

Show the following: If x has a Gamma distribution with parameters r and 1, then v =
x/λ has a Gamma distribution with parameters r and λ. You can prove this either
using the transformation theorem for densities, or the moment-generating function.

Answer. Solution using density function: The random variable whose density we know is x;
its density is 1

Γ(r)
xr−1e−x. If x = λv, then dx

dv
= λ, and the absolute value is also λ. Therefore the

density of v is λr

Γ(r)
vr−1e−λv. Solution using the mgf:

(5.5.17) mx(t) = E[etx] =
( 1

1 − t

)r

(5.5.18) mv(t) E[etv] = E[e(t/λ)x] =
( 1

1 − (t/λ)

)r
=
( λ

λ− t

)r

but this last expression can be recognized to be the mgf of a Gamma with r and λ. �
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Problem 100. 2 points It x has a Gamma distribution with parameters r and
λ, and y one with parameters p and λ, and both are independent, show that x + y

has a Gamma distribution with parameters r+ p and λ (reproductive property of the
Gamma distribution.) You may use equation (5.5.14) without proof

Answer.

(5.5.19)
( λ

λ− t

)r( λ

λ− t

)p
=
( λ

λ− t

)r+p
.

�

Problem 101. Show that a Gamma variable x with parameters r and λ has
expected value E[x] = r/λ and variance var[x] = r/λ2.

Answer. Proof with moment generating function:

(5.5.20)
d

dt

(
λ

λ− t

)r
=
r

λ

(
λ

λ− t

)r+1

,

therefore E[x] = r
λ
, and by differentiating twice (apply the same formula again), E[x2] =

r(r+1)

λ2 ,

therefore var[x] = r
λ2 .

Proof using density function: For the expected value one gets E[t] =
∫∞
0

t · λr

Γ(r)
tr−1e−λtdt =

r
λ

1
Γ(r+1)

∫∞
0

trλr+1e−λtdt = r
λ
·Γ(r+1)
Γ(r+1)

= r
λ
. Using the same tricks E[t2] =

∫∞
0

t2· λr

Γ(r)
tr−1e−λtdt =

r(r+1)

λ2

∫∞
0

λr+2

Γ(r+2)
tr+1e−λtdt =

r(r+1)

λ2 .

Therefore var[t] = E[t2] − (E[t])2 = r/λ2. �

5.6. The Uniform Distribution

Problem 102. Let x be uniformly distributed in the interval [a, b], i.e., the den-
sity function of x is a constant for a ≤ x ≤ b, and zero otherwise.

• a. 1 point What is the value of this constant?

Answer. It is 1
b−a �

• b. 2 points Compute E[x]

Answer. E[x] =
∫ b
a

x
b−a dx = 1

b−a
b2−a2

2
= a+b

2
since b2 − a2 = (b+ a)(b − a). �

• c. 2 points Show that E[x2] = a2+ab+b2

3 .

Answer. E[x2] =
∫ b
a

x2

b−a dx = 1
b−a

b3−a3
3

. Now use the identity b3−a3 = (b−a)(b2 +ab+a2)

(check it by multiplying out). �

• d. 2 points Show that var[x] = (b−a)2
12 .

Answer. var[x] = E[x2] − (E[x])2 = a2+ab+b2

3
− (a+b)2

4
= 4a2+4ab+4b2

12
− 3a2+6ab+3b2

12
=

(b−a)2
12

. �
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5.7. The Beta Distribution

Assume you have two independent variables, both distributed uniformly over
the interval [0, 1], and you want to know the distribution of their maximum. Or of
their minimum. Or you have three and you want the distribution of the one in the
middle. Then the densities have their maximum to the right, or to the left, or in the
middle. The distribution of the rth highest out of n independent uniform variables
is an example of the Beta density function. Can also be done and is probability-
theoretically meaningful for arbitrary real r and n.

Problem 103. x and y are two independent random variables distributed uni-
formly over the interval [0, 1]. Let u be their minimum u = min(x,y) (i.e., u

takes the value of x when x is smaller, and the value of y when y is smaller), and
v = max(x,y).

• a. 2 points Given two numbers q and r between 0 and 1. Draw the events u≤q
and v≤r into the unit square and compute their probabilities.

• b. 2 points Compute the density functions fu(u) and fv(v).

• c. 2 points Compute the expected values of u and v.

Answer. For u: Pr[u ≤ q] = 1 − Pr[u > q] = 1 − (1 − q)2 = 2q − q2. fv(v) = 2v Therefore
fu(u) = 2 − 2u

(5.7.1) E[u] =

∫ 1

0

(2 − 2u)u du =

(
u2 − 2u3

3

)∣∣∣
1

0

=
1

3
.

For v it is: Pr[v ≤ r] = r2; this is at the same time the cumulative distribution function. Therefore
the density function is fv(v) = 2v for 0 ≤ v ≤ 1 and 0 elsewhere.

(5.7.2) E[v] =

∫ 1

0

v2v dv =
2v3

3

∣∣∣∣
1

0

=
2

3
.

�

5.8. The Normal Distribution

By definition, y is normally distributed with mean µ and variance σ2, in symbols,
y ∼ N(µ, σ2), if it has the density function

(5.8.1) fy(y) =
1√

2πσ2
e−

(y−µ)2

2σ2 .

It will be shown a little later that this is indeed a density function. This distribution
has the highest entropy among all distributions with a given mean and variance
[Kap89, p. 47].

If y ∼ N(µ, σ2), then z = (y − µ)/σ ∼ N(0, 1), which is called the standard
Normal distribution.
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Problem 104. 2 points Compare [Gre97, p. 68]: Assume x ∼ N(3, 4) (mean
is 3 and variance 4). Determine with the help of a table of the Standard Normal
Distribution function Pr[2<x≤5].

Answer. Pr[2 < x≤5] = Pr[2−3 < x−3 ≤ 5−3] = Pr[ 2−3
2

< x−3
2

≤ 5−3
2

] = Pr[− 1
2
< x−3

2
≤

1] = Φ(1) − Φ(− 1
2
) = Φ(1) − (1 − Φ( 1

2
)) = Φ(1) + Φ( 1

2
) − 1 = 0.8413 + 0.6915 − 1 = 0.5328. Some

tables (Greene) give the area between 0 and all positive values; in this case it is 0.3413+0.1915. �

The moment generating function of a standard normal z ∼ N(0, 1) is the follow-
ing integral:

(5.8.2) mz(t) = E[etz] =

∫ +∞

−∞
etz

1√
2π
e

−z2

2 dz.

To solve this integral, complete the square in the exponent:

(5.8.3) tz − z2

2
=
t2

2
− 1

2
(z − t)2;

Note that the first summand, t2

2 , no longer depends on z; therefore the factor e
t2

2

can be written in front of the integral:

(5.8.4) mz(t) = e
t2

2

∫ +∞

−∞

1√
2π
e−

1
2 (z−t)2dz = e

t2

2 ,

because now the integrand is simply the density function of a N(t, 1).
A general univariate normal x ∼ N(µ, σ2) can be written as x = µ + σz with

z ∼ N(0, 1), therefore

(5.8.5) mx(t) = E[e(µ+σz)t] = eµt E[eσzt] = e(µt+σ
2t2/2).

Problem 105. Given two independent normal variables x ∼ N(µx, σ
2
x) and y ∼

N(µy, σ
2
y). Using the moment generating function, show that

(5.8.6) αx + βy ∼ N(αµx + βµy, α
2σ2

x + β2σ2
y).

Answer. Because of independence, the moment generating function of αx+βy is the product
of the m.g.f. of αx and the one of βy:

(5.8.7) mαx+βy(t) = eµxαt+σ
2
xα

2t2/2eµyβt+σ
2
yβ

2t2/2 = e(µxα+µyβ)t+(σ2
xα

2+σ2
yβ

2)t2/2,

which is the moment generating function of a N(αµx + βµy, α2σ2
x + β2σ2

y). �

We will say more about the univariate normal later when we discuss the multi-
variate normal distribution.

Sometimes it is also necessary to use the truncated normal distributions. If z is
standard normal, then

(5.8.8) E[z|z>z] =
fz(z)

1− Fz(z)
, var[z|z>z] = 1 − µ(µ− z), where µ = E[z|z>z].
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This expected value is therefore the ordinate of the density function at point z divided
by the tail area of the tail over which z is known to vary. (This rule is only valid for
the normal density function, not in general!) These kinds of results can be found in
[JK70, pp. 81–83] or in the original paper [Coh50]

Problem 106. Every customer entering a car dealership in a certain location
can be thought of as having a reservation price y in his or her mind: if the car will be
offered at or below this reservation price, then he or she will buy the car, otherwise
there will be no sale. (Assume for the sake of the argument all cars are equal.)
Assume this reservation price is Normally distributed with mean $6000 and standard
deviation $1000 (if you randomly pick a customer and ask his or her reservation
price). If a sale is made, a person’s consumer surplus is the difference between the
reservation price and the price actually paid, otherwise it is zero. For this question
you will need the table for the standard normal cumulative distribution function.

• a. 2 points A customer is offered a car at a price of $5800. The probability

that he or she will take the car is .

Answer. We need Pr[y≥5800. If y=5800 then z= y−6000
1000

= −0.2; Pr[z≥− 0.2] = 1−Pr[z≤−
0.2] = 1 − 0.4207 = 0.5793. �

• b. 3 points Since it is the 63rd birthday of the owner of the dealership, all
cars in the dealership are sold for the price of $6300. You pick at random one of
the people coming out of the dealership. The probability that this person bought a car

and his or her consumer surplus was more than $500 is .

Answer. This is the unconditional probability that the reservation price was higher than
$6300+$500 = $6800. i.e., Pr[y≥6800. Define z = (y− $6000)/$1000. It is a standard normal, and
y≤$6800 ⇐⇒ z≤.8, Therefore p = 1 − Pr[z≤.8] = .2119. �

• c. 4 points Here is an alternative scenario: Since it is the 63rd birthday of
the owner of the dealership, all cars in the dealership are sold for the “birthday
special” price of $6300. You pick at random one of the people who bought one of
these “birthday specials” priced $6300. The probability that this person’s consumer

surplus was more than $500 is .

The important part of this question is: it depends on the outcome of the experi-
ment whether or not someone is included in the sample sample selection bias.

Answer. Here we need the conditional probability:

(5.8.9) p = Pr[y>$6800|y>$6300] =
Pr[y>$6800]

Pr[y>$6300]
=

1 − Pr[y≤$6800]

1 − Pr[y≤$6300]
.
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Again use the standard normal z = (y − $6000)/$1000. As before, y≤$6800 ⇐⇒ z≤.8, and
y≤$6300 ⇐⇒ z≤.3. Therefore

(5.8.10) p =
1 − Pr[z≤.8]
1 − Pr[z≤.3] =

.2119

.3821
= .5546.

It depends on the layout of the normal distribution table how this should be looked up. �

• d. 5 points We are still picking out customers that have bought the birthday
specials. Compute the median value m of such a customer’s consumer surplus. It is
defined by

(5.8.11) Pr[y>$6300 +m|y>$6300] = Pr[y≤$6300 +m|y>$6300] = 1/2.

Answer. Obviously, m ≥ $0. Therefore

(5.8.12) Pr[y>$6300 +m|y>$6300] =
Pr[y>$6300 +m]

Pr[y>$6300]
=

1

2
,

or Pr[y>$6300 +m] = (1/2) Pr[y>$6300] = (1/2).3821 = .1910. I.e., Pr[ y−6000
1000

> 6300−6000+m
1000

=
300
1000

+ m
1000

] = .1910. For this we find in the table 300
1000

+ m
1000

= 0.875, therefore 300 +m = 875,

or m = $575. �

• e. 3 points Is the expected value of the consumer surplus of all customers that
have bought a birthday special larger or smaller than the median? Fill in your answer

here: . Proof is not required, as long as the answer is correct.

Answer. The mean is larger because it is more heavily influenced by outliers.

E[y − 6300|y≥6300] = E[6000 + 1000z − 6300|6000 + 1000z≥6300](5.8.13)

= E[1000z − 300|1000z≥300](5.8.14)

= E[1000z|z≥0.3] − 300(5.8.15)

= 1000 E[z|z≥0.3] − 300(5.8.16)

= 1000
f(0.3)

1 − Ψ(0.3)
− 300 = 698 > 575.(5.8.17)

�

5.9. The Chi-Square Distribution

A χ2 with one degree of freedom is defined to be the distribution of the square
q = z2 of a univariate standard normal variable.

Call the cumulative distribution function of a standard normal Fz(z). Then the
cumulative distribution function of the χ2 variable q = z2 is, according to Problem
47, Fq(q) = 2Fz(

√
q) − 1. To get the density of q take the derivative of Fq(q) with
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respect to q. For this we need the chain rule, first taking the derivative with respect
to z =

√
q and multiply by dz

dq :

fq(q) =
d

dq

(
2Fz(

√
q) − 1

)
=

d

dq

(
2Fz(z) − 1

)
(5.9.1)

= 2
dFz

dz
(z)

dz

dq
=

2√
2π
e−z

2/2 1

2
√
q

(5.9.2)

=
1√
2πq

e−q/2.(5.9.3)

Now remember the Gamma function. Since Γ(1/2) =
√
π (Proof in Problem 161),

one can rewrite (5.9.3) as

fq(q) =
(1/2)1/2q−1/2e−q/2

Γ(1/2)
,(5.9.4)

i.e., it is a Gamma density with parameters r = 1/2, λ = 1/2.
A χ2 with p degrees of freedom is defined as the sum of p independent univariate

χ2 variables. By the reproductive property of the Gamma distribution (Problem
100) this gives a Gamma variable with parameters r = p/2 and λ = 1/2.

If q ∼ χ2
p then E[q] = p and var[q] = 2p(5.9.5)

We will say that a random variable q is distributed as a σ2χ2
p iff q/σ2 is a χ2

p. This

is the distribution of a sum of p independent N(0, σ2) variables.

5.10. The Lognormal Distribution

This is a random variable whose log has a normal distribution. See [Gre97, p.
71]. Parametrized by the µ and σ2 of its log. Density is

(5.10.1)
1

x
√

2πσ2
e−(lnx−µ/σ2)/2

[Cow77, pp. 82–87] has an excellent discussion of the properties of the lognormal
for income distributions.

5.11. The Cauchy Distribution

Problem 107. 6 points [JK70, pp. 155/6] An example of a distribution without
mean and variance is the Cauchy distribution, whose density looks much like the
normal density, but has much thicker tails. The density and characteristic functions
are (I am not asking you to compute the characteristic function)

(5.11.1) fx(x) =
1

π(1 + x2)
E[eitx] = exp(− |t|).
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Here i =
√
−1, but you should not be afraid of it, in most respects, i behaves like any

real number. The characteristic function has properties very similar to the moment
generating function, with the added advantage that it always exists. Using the char-
acteristic functions show that if x and y are independent Cauchy distributions, then
(x + y)/2 has the same distribution as x or y.

Answer.

(5.11.2) E

[
exp
(
it

x + y

2

)]
= E

[
exp
(
i
t

2
x
)

exp
(
i
t

2
y
)]

= exp(−
∣∣∣ t
2

∣∣∣) exp(−
∣∣∣ t
2

∣∣∣) = exp(− |t|).

�

It has taken a historical learning process to distinguish significant from insignif-
icant events. The order in which the birds sit down on a tree is insignificant, but
the constellation of stars on the night sky is highly significant for the seasons etc.
The confusion between significant and insignificant events can explain how astrol-
ogy arose: after it was discovered that the constellation of stars was significant, but
without knowledge of the mechanism through which the constellation of stars was
significant, people experimented to find evidence of causality between those aspects
of the night sky that were changing, like the locations of the planets, and events on
earth, like the births of babies. Romans thought the constellation of birds in the sky
was significant.

Freud discovered that human error may be significant. Modern political con-
sciousness still underestimates the extent to which the actions of states are signifi-
cant: If a welfare recipient is faced with an intractable labyrinth of regulations and
a multitude of agencies, then this is not the unintended result of bureaucracy gone
wild, but it is deliberate: this bureaucratic nightmare deters people from using wel-
fare, but it creates the illusion that welfare exists and it does give relief in some
blatant cases.

Also “mistakes” like the bombing of the Chinese embassy are not mistakes but
are significant.

In statistics the common consensus is that the averages are significant and the
deviations from the averages are insignificant. By taking averages one distills the
significant, systematic part of the date from the insignificant part. Usually this is
justified by the “law of large numbers.” I.e., people think that this is something
about reality which can be derived and proved mathematically. However this is an
irrealist position: how can math tell us which events are significant?

Here the Cauchy distribution is an interesting counterexample: it is a probability
distribution for which it does not make sense to take averages. If one takes the
average of n observations, then this average does not have less randomness than
each individual observation, but it has exactly the same distribution as one single
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observation. (The law of large numbers does not apply here because the Cauchy
distribution does not have an expected value.)

In a world in which random outcomes are Cauchy-distributed, taking averages
is not be a good way to learn from one’s experiences. People who try to keep track
of things by taking averages (or by running regressions, which is a natural extension
of taking averages) would have the same status in that world as astrologers have in
our world. Taking medians and other quantiles would be considered scientific, but
taking averages would be considered superstition.

The lesson of this is: even a scientific procedure as innocuous as that of taking
averages cannot be justified on purely epistemological grounds. Although it is widely
assumed that the law of large numbers is such a justification, it is not. The law of
large numbers does not always hold; it only holds if the random variable under
consideration has an expected value.

The transcendental realist can therefore say: since it apparently does make sense
to take averages in our world, we can deduce transcendentally that many random
variables which we are dealing with do have finite expected values.

This is perhaps the simplest case of a transcendental conclusion. But this sim-
plest case also vindicates another one of Bhaskar’s assumptions: these transcendental
conclusions cannot be arrived at in a non-transcendental way, by staying in the sci-
ence itself. It is impossible to decide, using statistical means alone, whether one’s
data come from a distribution which has finite expected values or not. The reason
is that one always has only finite datasets, and the empirical distribution of a finite
sample always has finite expected values, even if the sample comes from a population
which does not have finite expected values.



CHAPTER 6

Sufficient Statistics and their Distributions

6.1. Factorization Theorem for Sufficient Statistics

Given a family of probability measures Prθ defined on a sample set U, which
depend on a parameter θ ∈ Θ. By definition, the scalar random variable t : U → R

is a “sufficient statistic” for parameter θ if and only if for all events E ⊂ U and
all t, the conditional probability Prθ[E|t=t] does not involve θ. The factorization
theorem for sufficient statistics allows you to tell, from the functional form of the
probability mass function or density function, whether a given statistic t is sufficient
or not. It says: t is sufficient if and only if there exists a function of two variables
g : R×Θ → R, (t, θ) 7→ g(t, θ), and a scalar random variable h : U → R, ω 7→ h(ω)
so that in the discrete case, the probability mass function pθ(ω) = Prθ[{ω}] can be
factorized as follows:

pθ(ω) = g
(
t(ω), θ

)
· h(ω) for all ω ∈ U.

If U ⊂ R
n, we can write ω = (y1, . . . , yn). If Prθ is not discrete but generated by a

family of probability densities f(y1, . . . , yn; θ), then the condition reads

f(y1, . . . , yn; θ) = g
(
t(y1, . . . , yn), θ

)
· h(y1, . . . , yn).

Note what this means: the probability of an elementary event (or of an infinitesimal
interval) is written as the product of two parts: one depends on ω through t, while
the other depends on ω directly. Only that part of the probability that depends on
ω through t is allowed to also depend on θ.

Proof in the discrete case: First let us show the necessity of this factorization.
Assume that t is sufficient, i.e., that Prθ[ω|t=t] does not involve θ. Then one possible
factorization is

Prθ[ω] = Prθ[t=t(ω)] · Pr[ω|t=t(ω)](6.1.1)

= g(t(ω), θ) · h(ω).(6.1.2)

Now let us prove that the factorization property implies sufficiency. Assume
therefore (6.1) holds. We have to show that for all ω ∈ U and t ∈ R, the conditional
probability Prθ[{ω}|{κ ∈ U : t(κ) = t}], which will in shorthand notation be written
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as Prθ[ω|t=t], does not depend on θ.

Prθ[t=t] =
∑

ω : t(ω)=t

Prθ[{ω}] =
∑

ω : t(ω)=t

g(t(ω), θ) · h(ω)(6.1.3)

= g(t, θ) ·
∑

ω : t(ω)=t

h(ω) = g(t, θ) · k(t), say.(6.1.4)

Here it is important that k(t) does not depend on θ. Now

Prθ[ω|t=t] = Prθ[{ω} ∩ {t=t}]Prθ[t=t](6.1.5)

if t(ω) 6= t, this is zero, i.e., independent of θ. Now look at case t(ω) = t, i.e.,
{ω} ∩ {t=t} = {ω}. Then

Prθ[ω|t=t] =
g(t, θ)h(ω)

g(t, θ)k(t)
=

h(ω)

k(t)
, which is independent of θ.(6.1.6)

Problem 108. 6 points Using the factorization theorem for sufficient statistics,
show that in a n times repeated Bernoulli experiment (n is known), the number of
successes is a sufficient statistic for the success probability p.

• a. Here is a formulation of the factorization theorem: Given a family of discrete
probability measures Prθ depending on a parameter θ. The statistic t is sufficient for
parameter θ iff there exists a function of two variables g : R×Θ → R, (t, θ) 7→ g(t; θ),
and a function of one variable h : U → R, ω 7→ h(ω) so that for all ω ∈ U

Prθ[{ω}] = g
(
t(ω), θ

)
· h(ω).

Before you apply this, ask yourself: what is ω?

Answer. This is very simple: the probability of every elementary event depends on this ele-
ment only through the random variable t : U → N , which is the number of successes. Pr[{ω}] =

pt(ω)(1 − p)n−t(ω). Therefore g(k; p) = pk(1 − p)n−k and h(ω) = 1 does the trick. One can also

say: the probability of one element ω is the probability of t(ω) successes divided by
(
n

t(ω)

)
. This

gives another easy-to-understand factorization. �

6.2. The Exponential Family of Probability Distributions

Assume the random variable x has values in U ⊂ R. A family of density functions
(or, in the discrete case, probability mass functions) fx(x; ξ) that depends on the
parameter ξ ∈ Ξ is called a one-parameter exponential family if and only if there
exist functions s, u : Ξ → R and r, t : U → R such that the density function can be
written as

(6.2.1) fx(x; ξ) = r(x)s(ξ) exp
(
t(x)u(ξ)

)
if x ∈ U , and = 0 otherwise.
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For this definition it is important that U ⊂ R
n does not depend on ξ. Notice how

symmetric this condition is between observations and parameters. If we put the
factors r(x)s(ξ) into the exponent we get

(6.2.2) fx(x; ξ) = exp
(
t(x)u(ξ) + v(x) + w(ξ)

)
if x ∈ U , and = 0 otherwise.

If we plug the random variable x into the function t we get the transformed
random variable y = t(x), and if we re-define the parameter θ = u(ξ), we get the
density in its canonical form

(6.2.3) fy(y; θ) = exp
(
yθ − b(θ) + c(y)

)
if y ∈ U , and = 0 otherwise.

Note here the minus sign in front of b. We will see later that θ 7→ b(θ) is an important
function; its derivatives yield the mean and variance functions used in the generalized
linear model.

Problem 109. 3 points Show that the Binomial distribution (3.7.1)

(6.2.4) px(k) = Pr[x=k] =

(
n

k

)
pk(1 − p)(n−k) k = 0, 1, 2, . . . , n

is a member of the exponential family. Compute the canonical parameter θ and the
function b(θ).

Answer. Rewrite (6.2.4) as

(6.2.5) px(k) =
(n
k

)( p

1 − p

)k
(1 − p)n = exp

(
k ln

(
p

1 − p

)
+ n ln(1 − p) + ln

(n
k

))

therefore θ = ln

(
p

1−p

)
. To compute b(θ) you have to express n ln(1 − p) as a function of θ and

then reverse the sign. The following steps are involved: exp θ = p
1−p = 1

1−p − 1; 1 + exp θ = 1
1−p ;

ln(1 + exp θ) = − ln(1 − p); therefore b(θ) = n ln(1 + exp θ). �

Problem 110. 2 points Show that the Poisson distribution (5.3.5) with t = 1,
i.e.,

(6.2.6) Pr[x=k] =
λk

k!
e−λ for k = 0, 1, . . .

is a member of the exponential family. Compute the canonical parameter θ and the
function b(θ).

Answer. The probability mass function can be written as

(6.2.7) Pr[x=k] =
ek lnλ

k!
e−λ = exp(k lnλ− λ− ln k!) for k = 0, 1, . . .

This is (6.2.3) for the Poisson distribution, where the values of the random variable are called k
instead of x, and θ = lnλ. Substituting λ = exp(θ) in (6.2.7) gives

(6.2.8) Pr[x=k] = exp(kθ − exp(θ) − ln k!) for k = 0, 1, . . .

from which one sees b(θ) = exp(θ).
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�

The one-parameter exponential family can be generalized by the inclusion of a
scale parameter φ in the distribution. This gives the exponential dispersion family,
see [MN89, p. 28]: Each observation has the density function

(6.2.9) fy(y; θ, φ) = exp
(yθ − b(θ)

a(φ)
+ c(y, φ)

)
.

Problem 111. [MN89, p. 28] Show that the Normal distribution is a member
of the exponential dispersion family.

Answer.

(6.2.10) fy(y) =
1√

2πσ2
e
− (y−µ)2

2σ2 = exp

((
yµ − µ2/2

)
/σ2 − 1

2

(
y2/σ2 + log(2πσ2)

))
,

i.e., θ = µ, φ = σ2, a(φ) = φ, b(θ) = θ2/2, c(y, φ) = − 1
2

(
y2/σ2 + log(2πσ2)

)
. �

Problem 112. Show that the Gamma distribution is a member of the exponential
dispersion family.

Next observation: for the exponential and the exponential dispersion families,
the expected value is the derivative of the function b(θ)

(6.2.11) E[y] =
∂b(θ)

∂θ
.

This follows from the basic theory associated with maximum likelihood estimation,
see (13.4.12). E[y] is therefore a function of the “canonical parameter” θ, and in the
generalized linear model the assumption is made that this function has an inverse,
i.e., the canonical parameter can be written θ = g(µ) where g is called the “canonical
link function.”

Problem 113. 2 points In the case of the Binomial distribution (see Problem
109) compute b′(θ) and verify that it is the same as E[x].

Answer. b(θ) = n ln(1 + exp θ), therefore b′(θ) = n 1
1+exp θ

exp(θ). Now exp(θ) = p
1−p ;

plugging this in gives b′(θ) = np, which is the same as E[x]. �

Problem 114. 1 point In the case of the Poisson distribution (see Problem 110)
compute b′(θ) and verify that it is the same as E[x], and compute b′′(θ) and verify that
it is the same as var[x]. You are allowed, without proof, that a Poisson distribution
with parameter λ has expected value λ and variance λ.

Answer. b(θ) = exp θ, therefore b′(θ) = b′′(θ) = exp(θ) = λ. �
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From (13.4.20) follows furthermore that the variance is the second derivative of
b, multiplied by a(φ):

(6.2.12) var[y] =
∂2b(θ)

∂θ2
a(φ)

Since θ is a function of the mean, this means: the variance of each observation is
the product of two factors, the first factor depends on the mean only, it is called
the “variance function,” and the other factor depends on φ. This is exactly the
specification of the generalized linear model, see Section 69.3.



CHAPTER 7

Chebyshev Inequality, Weak Law of Large
Numbers, and Central Limit Theorem

7.1. Chebyshev Inequality

If the random variable y has finite expected value µ and standard deviation σ,
and k is some positive number, then the Chebyshev Inequality says

(7.1.1) Pr
[
|y − µ|≥kσ

]
≤ 1

k2
.

In words, the probability that a given random variable y differs from its expected
value by more than k standard deviations is less than 1/k2. (Here “more than”
and “less than” are short forms for “more than or equal to” and “less than or equal
to.”) One does not need to know the full distribution of y for that, only its expected
value and standard deviation. We will give here a proof only if y has a discrete
distribution, but the inequality is valid in general. Going over to the standardized
variable z = y−µ

σ we have to show Pr[|z|≥k] ≤ 1
k2 . Assuming z assumes the values

z1, z2,. . . with probabilities p(z1), p(z2),. . . , then

Pr[|z|≥k] =
∑

i : |zi|≥k
p(zi).(7.1.2)

Now multiply by k2:

k2 Pr[|z|≥k] =
∑

i : |zi|≥k
k2p(zi)(7.1.3)

≤
∑

i : |zi|≥k
z2
i p(zi)(7.1.4)

≤
∑

all i

z2
i p(zi) = var[z] = 1.(7.1.5)

The Chebyshev inequality is sharp for all k ≥ 1. Proof: the random variable
which takes the value −k with probability 1

2k2 and the value +k with probability
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1
2k2 , and 0 with probability 1 − 1

k2 , has expected value 0 and variance 1 and the
≤-sign in (7.1.1) becomes an equal sign.

Problem 115. [HT83, p. 316] Let y be the number of successes in n trials of a
Bernoulli experiment with success probability p. Show that

(7.1.6) Pr
(∣∣∣y
n
− p
∣∣∣<ε

)
≥ 1 − 1

4nε2
.

Hint: first compute what Chebyshev will tell you about the lefthand side, and then
you will need still another inequality.

Answer. E[y/n] = p and var[y/n] = pq/n (where q = 1 − p). Chebyshev says therefore

(7.1.7) Pr

(∣∣∣y
n

− p

∣∣∣≥k
√

pq

n

)
≤ 1

k2
.

Setting ε = k
√
pq/n, therefore 1/k2 = pq/nε2 one can rewerite (7.1.7) as

(7.1.8) Pr

(∣∣∣ y
n

− p

∣∣∣≥ε
)

≤ pq

nε2
.

Now note that pq ≤ 1/4 whatever their values are. �

Problem 116. 2 points For a standard normal variable, Pr[|z|≥1] is approxi-
mately 1/3, please look up the precise value in a table. What does the Chebyshev
inequality says about this probability? Also, Pr[|z|≥2] is approximately 5%, again
look up the precise value. What does Chebyshev say?

Answer. Pr[|z|≥1] = 0.3174, the Chebyshev inequality says that Pr[|z|≥1] ≤ 1. Also, Pr[|z|≥2] =
0.0456, while Chebyshev says it is ≤ 0.25. �

7.2. The Probability Limit and the Law of Large Numbers

Let y1,y2,y3, . . . be a sequence of independent random variables all of which
have the same expected value µ and variance σ2. Then ȳn = 1

n

∑n
i=1 yi has expected

value µ and variance σ2

n . I.e., its probability mass is clustered much more closely
around the value µ than the individual yi. To make this statement more precise we
need a concept of convergence of random variables. It is not possible to define it in
the “obvious” way that the sequence of random variables yn converges toward y if
every realization of them converges, since it is possible, although extremely unlikely,
that e.g. all throws of a coin show heads ad infinitum, or follow another sequence
for which the average number of heads does not converge towards 1/2. Therefore we
will use the following definition:

The sequence of random variables y1,y2, . . . converges in probability to another
random variable y if and only if for every δ > 0

(7.2.1) lim
n→∞

Pr
[
|yn − y| ≥δ

]
= 0.
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One can also say that the probability limit of yn is y, in formulas

(7.2.2) plim
n→∞

yn = y.

In many applications, the limiting variable y is a degenerate random variable, i.e.,
it is a constant.

The Weak Law of Large Numbers says that, if the expected value exists, then the
probability limit of the sample means of an ever increasing sample is the expected
value, i.e., plimn→∞ ȳn = µ.

Problem 117. 5 points Assuming that not only the expected value but also the
variance exists, derive the Weak Law of Large Numbers, which can be written as

(7.2.3) lim
n→∞

Pr
[
|ȳn − E[y]|≥δ

]
= 0 for all δ > 0,

from the Chebyshev inequality

(7.2.4) Pr[|x − µ|≥kσ] ≤ 1

k2
where µ = E[x] and σ2 = var[x]

Answer. From nonnegativity of probability and the Chebyshev inequality for x = ȳ follows

0 ≤ Pr[|ȳ − µ|≥ kσ√
n

] ≤ 1
k2

for all k. Set k = δ
√
n
σ

to get 0 ≤ Pr[|ȳn − µ|≥δ] ≤ σ2

nδ2
. For any fixed

δ > 0, the upper bound converges towards zero as n → ∞, and the lower bound is zero, therefore
the probability iself also converges towards zero. �

Problem 118. 4 points Let y1, . . . ,yn be a sample from some unknown prob-
ability distribution, with sample mean ȳ = 1

n

∑n
i=1 yi and sample variance s2 =

1
n

∑n
i=1(yi − ȳ)2. Show that the data satisfy the following “sample equivalent” of

the Chebyshev inequality: if k is any fixed positive number, and m is the number of
observations yj which satisfy |yj − ȳ| ≥ks, then m ≤ n/k2. In symbols,

(7.2.5) #{yi : |yi − ȳ| ≥ks} ≤ n

k2
.

Hint: apply the usual Chebyshev inequality to the so-called empirical distribution of
the sample. The empirical distribution is a discrete probability distribution defined
by Pr[y=yi] = k/n, when the number yi appears k times in the sample. (If all yi
are different, then all probabilities are 1/n). The empirical distribution corresponds
to the experiment of randomly picking one observation out of the given sample.

Answer. The only thing to note is: the sample mean is the expected value in that empirical
distribution, the sample variance is the variance, and the relative number m/n is the probability.

(7.2.6) #{yi : yi ∈ S} = nPr[S]

�

• a. 3 points What happens to this result when the distribution from which the
yi are taken does not have an expected value or a variance?
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Answer. The result still holds but ȳ and s2 do not converge as the number of observations
increases. �

7.3. Central Limit Theorem

Assume all yi are independent and have the same distribution with mean µ,
variance σ2, and also a moment generating function. Again, let ȳn be the sample
mean of the first n observations. The central limit theorem says that the probability
distribution for

(7.3.1)
ȳn − µ

σ/
√
n

converges to a N(0, 1). This is a different concept of convergence than the probability
limit, it is convergence in distribution.

Problem 119. 1 point Construct a sequence of random variables y1,y2 . . . with
the following property: their cumulative distribution functions converge to the cumu-
lative distribution function of a standard normal, but the random variables themselves
do not converge in probability. (This is easy!)

Answer. One example would be: all yi are independent standard normal variables.
�

Why do we have the funny expression ȳn−µ
σ/

√
n
? Because this is the standardized

version of ȳn. We know from the law of large numbers that the distribution of
ȳn becomes more and more concentrated around µ. If we standardize the sample
averages ȳn, we compensate for this concentration. The central limit theorem tells
us therefore what happens to the shape of the cumulative distribution function of ȳn.
If we disregard the fact that it becomes more and more concentrated (by multiplying
it by a factor which is chosen such that the variance remains constant), then we see
that its geometric shape comes closer and closer to a normal distribution.

Proof of the Central Limit Theorem: By Problem 120,

(7.3.2)
ȳn − µ

σ/
√
n

=
1√
n

n∑

i=1

yi − µ

σ
=

1√
n

n∑

i=1

zi where zi =
yi − µ

σ
.

Let m3, m4, etc., be the third, fourth, etc., moments of zi; then the m.g.f. of zi is

(7.3.3) mzi
(t) = 1 +

t2

2!
+
m3t

3

3!
+
m4t

4

4!
+ · · ·

Therefore the m.g.f. of 1√
n

∑n
i=1 zi is (multiply and substitute t/

√
n for t):

(7.3.4)
(
1 +

t2

2!n
+

m3t
3

3!
√
n3

+
m4t

4

4!n2
+ · · ·

)n
=
(
1 +

wn
n

)n
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where

(7.3.5) wn =
t2

2!
+
m3t

3

3!
√
n

+
m4t

4

4!n
+ · · · .

Now use Euler’s limit, this time in the form: if wn → w for n→ ∞, then
(
1+wn

n

)n
→

ew. Since our wn → t2

2 , the m.g.f. of the standardized ȳn converges toward e
t2

2 , which
is that of a standard normal distribution.

The Central Limit theorem is an example of emergence: independently of the
distributions of the individual summands, the distribution of the sum has a very
specific shape, the Gaussian bell curve. The signals turn into white noise. Here
emergence is the emergence of homogenity and indeterminacy. In capitalism, much
more specific outcomes emerge: whether one quits the job or not, whether one sells
the stock or not, whether one gets a divorce or not, the outcome for society is to
perpetuate the system. Not many activities don’t have this outcome.

Problem 120. Show in detail that ȳn−µ
σ/

√
n

= 1√
n

∑n
i=1

yi−µ
σ .

Answer. Lhs =
√
n
σ

((
1
n

∑n

i=1
yi

)
−µ
)

=
√
n
σ

((
1
n

∑n

i=1
yi

)
−
(

1
n

∑n

i=1
µ

))
=

√
n
σ

1
n

(∑n

i=1
yi−

µ

)
= rhs. �

Problem 121. 3 points Explain verbally clearly what the law of large numbers
means, what the Central Limit Theorem means, and what their difference is.

Problem 122. (For this problem, a table is needed.) [Lar82, exercise 5.6.1,
p. 301] If you roll a pair of dice 180 times, what is the approximate probability that
the sum seven appears 25 or more times? Hint: use the Central Limit Theorem (but
don’t worry about the continuity correction, which is beyond the scope of this class).

Answer. Let xi be the random variable that equals one if the i-th roll is a seven, and zero
otherwise. Since 7 can be obtained in six ways (1+6, 2+5, 3+4, 4+3, 5+2, 6+1), the probability
to get a 7 (which is at the same time the expected value of xi) is 6/36=1/6. Since x2

i = xi,

var[xi] = E[xi] − (E[xi])2 = 1
6
− 1

36
= 5

36
. Define x =

∑180

i=1
xi. We need Pr[x≥25]. Since x

is the sum of many independent identically distributed random variables, the CLT says that x is
asympotically normal. Which normal? That which has the same expected value and variance as
x. E[x] = 180 · (1/6) = 30 and var[x] = 180 · (5/36) = 25. Therefore define y ∼ N(30, 25). The
CLT says that Pr[x≥25] ≈ Pr[y≥25]. Now y≥25 ⇐⇒ y − 30≥ − 5 ⇐⇒ y − 30≤ + 5 ⇐⇒
(y − 30)/5≤1. But z = (y − 30)/5 is a standard Normal, therefore Pr[(y − 30)/5≤1] = Fz(1), i.e.,
the cumulative distribution of the standard Normal evaluated at +1. One can look this up in a
table, the probability asked for is .8413. Larson uses the continuity correction: x is discrete, and
Pr[x≥25] = Pr[x>24]. Therefore Pr[y≥25] and Pr[y>24] are two alternative good approximations;
but the best is Pr[y≥24.5] = .8643. This is the continuity correction. �



CHAPTER 8

Vector Random Variables

In this chapter we will look at two random variables x and y defined on the same
sample space U , i.e.,

(8.0.6) x : U 3 ω 7→ x(ω) ∈ R and y : U 3 ω 7→ y(ω) ∈ R.

As we said before, x and y are called independent if all events of the form x ≤ x
are independent of any event of the form y ≤ y. But now let us assume they are
not independent. In this case, we do not have all the information about them if we
merely know the distribution of each.

The following example from [Lar82, example 5.1.7. on p. 233] illustrates the
issues involved. This example involves two random variables that have only two
possible outcomes each. Suppose you are told that a coin is to be flipped two times
and that the probability of a head is .5 for each flip. This information is not enough
to determine the probability of the second flip giving a head conditionally on the
first flip giving a head.

For instance, the above two probabilities can be achieved by the following ex-
perimental setup: a person has one fair coin and flips it twice in a row. Then the
two flips are independent.

But the probabilities of 1/2 for heads and 1/2 for tails can also be achieved as
follows: The person has two coins in his or her pocket. One has two heads, and one
has two tails. If at random one of these two coins is picked and flipped twice, then
the second flip has the same outcome as the first flip.

What do we need to get the full picture? We must consider the two variables not
separately but jointly, as a totality. In order to do this, we combine x and y into one

entity, a vector

[
x

y

]
∈ R

2. Consequently we need to know the probability measure

induced by the mapping U 3 ω 7→
[
x(ω)
y(ω)

]
∈ R

2.

It is not sufficient to look at random variables individually; one must look at
them as a totality.

Therefore let us first get an overview over all possible probability measures on the
plane R

2. In strict analogy with the one-dimensional case, these probability measures
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can be represented by the joint cumulative distribution function. It is defined as

(8.0.7) Fx,y(x, y) = Pr[

[
x

y

]
≤
[
x
y

]
] = Pr[x ≤ x and y ≤ y].

For discrete random variables, for which the cumulative distribution function is
a step function, the joint probability mass function provides the same information:

(8.0.8) px,y(x, y) = Pr[

[
x

y

]
=

[
x
y

]
] = Pr[x=x and y=y].

Problem 123. Write down the joint probability mass functions for the two ver-
sions of the two coin flips discussed above.

Answer. Here are the probability mass functions for these two cases:

(8.0.9)

Second Flip
H T sum

First H .25 .25 .50
Flip T .25 .25 .50

sum .50 .50 1.00

Second Flip
H T sum

First H .50 .00 .50
Flip T .00 .50 .50

sum .50 .50 1.00

�

The most important case is that with a differentiable cumulative distribution
function. Then the joint density function fx,y(x, y) can be used to define the prob-
ability measure. One obtains it from the cumulative distribution function by taking
derivatives:

(8.0.10) fx,y(x, y) =
∂2

∂x ∂y
Fx,y(x, y).

Probabilities can be obtained back from the density function either by the in-
tegral condition, or by the infinitesimal condition. I.e., either one says for a subset
B ⊂ R

2:

Pr[

[
x

y

]
∈ B] =

∫ ∫

B

f(x, y) dx dy,(8.0.11)

or one says, for a infinitesimal two-dimensional volume element dVx,y located at [ xy ],
which has the two-dimensional volume (i.e., area) |dV |,

Pr[

[
x

y

]
∈ dVx,y] = f(x, y) |dV |.(8.0.12)

The vertical bars here do not mean the absolute value but the volume of the argument
inside.
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8.1. Expected Value, Variances, Covariances

To get the expected value of a function of x and y, one simply has to put this
function together with the density function into the integral, i.e., the formula is

(8.1.1) E[g(x,y)] =

∫ ∫

R2

g(x, y)fx,y(x, y) dx dy.

Problem 124. Assume there are two transportation choices available: bus and
car. If you pick at random a neoclassical individual ω and ask which utility this
person derives from using bus or car, the answer will be two numbers that can be

written as a vector

[
u(ω)
v(ω)

]
(u for bus and v for car).

• a. 3 points Assuming

[
u

v

]
has a uniform density in the rectangle with corners

[
66
68

]
,

[
66
72

]
,

[
71
68

]
, and

[
71
72

]
, compute the probability that the bus will be preferred.

Answer. The probability is 9/40. u and v have a joint density function that is uniform in
the rectangle below and zero outside (u, the preference for buses, is on the horizontal, and v, the
preference for cars, on the vertical axis). The probability is the fraction of this rectangle below the
diagonal.

68

69

70

71

72

66 67 68 69 70 71

�
�

�

�

• b. 2 points How would you criticize an econometric study which argued along
the above lines?

Answer. The preferences are not for a bus or a car, but for a whole transportation systems.
And these preferences are not formed independently and individualistically, but they depend on
which other infrastructures are in place, whether there is suburban sprawl or concentrated walkable
cities, etc. This is again the error of detotalization (which favors the status quo).

�

Jointly distributed random variables should be written as random vectors. In-

stead of

[
y

z

]
we will also write x (bold face). Vectors are always considered to be

column vectors. The expected value of a random vector is a vector of constants,
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notation

(8.1.2) E [x] =




E[x1]
...

E[xn]




For two random variables x and y, their covariance is defined as

(8.1.3) cov[x,y] = E
[
(x − E[x])(y − E[y])

]

Computation rules with covariances are

cov[x, z] = cov[z, x] cov[x, x] = var[x] cov[x, α] = 0(8.1.4)

cov[x + y, z] = cov[x, z] + cov[y, z] cov[αx,y] = α cov[x,y](8.1.5)

Problem 125. 3 points Using definition (8.1.3) prove the following formula:

(8.1.6) cov[x,y] = E[xy] − E[x] E[y].

Write it down carefully, you will lose points for unbalanced or missing parantheses
and brackets.

Answer. Here it is side by side with and without the notation E[x] = µ and E[y] = ν:

cov[x,y] = E
[
(x − E[x])(y − E[y])

]

= E
[
xy − xE[y] − E[x]y + E[x] E[y]

]

= E[xy] − E[x] E[y] − E[x] E[y] + E[x] E[y]

= E[xy] − E[x] E[y].

cov[x,y] = E[(x − µ)(y − ν)]

= E[xy − xν − µy + µν]

= E[xy] − µν − µν + µν

= E[xy] − µν.

(8.1.7)

�

Problem 126. 1 point Using (8.1.6) prove the five computation rules with co-
variances (8.1.4) and (8.1.5).

Problem 127. Using the computation rules with covariances, show that

(8.1.8) var[x + y] = var[x] + 2 cov[x,y] + var[y].

If one deals with random vectors, the expected value becomes a vector, and the
variance becomes a matrix, which is called dispersion matrix or variance-covariance
matrix or simply covariance matrix. We will write it V [x]. Its formal definition is

V [x] = E
[
(x − E [x])(x − E [x])>

]
,(8.1.9)

but we can look at it simply as the matrix of all variances and covariances, for
example

V[

[
x

y

]
] =

[
var[x] cov[x,y]

cov[y, x] var[y]

]
.(8.1.10)
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An important computation rule for the covariance matrix is

(8.1.11) V [x] = Ψ ⇒ V [Ax] = AΨA>.

Problem 128. 4 points Let x =

[
y

z

]
be a vector consisting of two random

variables, with covariance matrix V[x] = Ψ, and let A =

[
a b
c d

]
be an arbitrary

2 × 2 matrix. Prove that

(8.1.12) V[Ax] = AΨA>.

Hint: You need to multiply matrices, and to use the following computation rules for
covariances:
(8.1.13)

cov[x + y, z] = cov[x, z] + cov[y, z] cov[αx,y] = α cov[x,y] cov[x, x] = var[x].

Answer. V[Ax] =

V[

([
a b
c d

][
y

z

])
] = V[

[
ay + bz
cy + dz

]
] =

[
var[ay + bz] cov[ay + bz, cy + dz]

cov[cy + dz, ay + bz] var[cy + dz]

]

On the other hand, AΨA> =
[
a b
c d

][
var[y] cov[y, z]

cov[y, z] var[z]

][
a c
b d

]
=

[
a var[y] + b cov[y, z] a cov[y, z] + b var[z]
cvar[y] + d cov[y, z] c cov[y, z] + d var[z]

][
a c
b d

]

Multiply out and show that it is the same thing. �

Since the variances are nonnegative, one can see from equation (8.1.11) that
covariance matrices are nonnegative definite (which is in econometrics is often also
called positive semidefinite). By definition, a symmetric matrix ΣΣΣ is nonnegative def-
inite if for all vectors a follows a>ΣΣΣa ≥ 0. It is positive definite if it is nonnegativbe
definite, and a>ΣΣΣa = 0 holds only if a = o.

Problem 129. 1 point A symmetric matrix ΩΩΩ is nonnegative definite if and only
if a>ΩΩΩa ≥ 0 for every vector a. Using this criterion, show that if ΣΣΣ is symmetric and
nonnegative definite, and if R is an arbitrary matrix, then R>ΣΣΣR is also nonnegative
definite.

One can also define a covariance matrix between different vectors, C[x,y]; its i, j
element is cov[xi,yj ].

The correlation coefficient of two scalar random variables is defined as

(8.1.14) corr[x,y] =
cov[x,y]√
var[x] var[y]

.
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The advantage of the correlation coefficient over the covariance is that it is always
between −1 and +1. This follows from the Cauchy-Schwartz inequality

(8.1.15) (cov[x,y])2 ≤ var[x] var[y].

Problem 130. 4 points Given two random variables y and z with var[y] 6= 0,
compute that constant a for which var[ay − z] is the minimum. Then derive the
Cauchy-Schwartz inequality from the fact that the minimum variance is nonnega-
tive.

Answer.

var[ay − z] = a2 var[y] − 2a cov[y, z] + var[z](8.1.16)

First order condition: 0 = 2a var[y] − 2 cov[y, z](8.1.17)

Therefore the minimum value is a∗ = cov[y, z]/ var[y], for which the cross product term is −2 times
the first item:

0 ≤ var[a∗y − z] =
(cov[y, z])2

var[y]
− 2(cov[y, z])2

var[y]
+ var[z](8.1.18)

0 ≤ −(cov[y, z])2 + var[y] var[z].(8.1.19)

This proves (8.1.15) for the case var[y] 6= 0. If var[y] = 0, then y is a constant, therefore cov[y, z] = 0
and (8.1.15) holds trivially.

�

8.2. Marginal Probability Laws

The marginal probability distribution of x (or y) is simply the probability dis-
tribution of x (or y). The word “marginal” merely indicates that it is derived from
the joint probability distribution of x and y.

If the probability distribution is characterized by a probability mass function,
we can compute the marginal probability mass functions by writing down the joint
probability mass function in a rectangular scheme and summing up the rows or
columns:

(8.2.1) px(x) =
∑

y: p(x,y)6=0

px,y(x, y).

For density functions, the following argument can be given:

Pr[x ∈ dVx] = Pr[

[
x

y

]
∈ dVx × R].(8.2.2)
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By the definition of a product set:

[
x

y

]
∈ A × B ⇔ x ∈ A and y ∈ B. Split R into

many small disjoint intervals, R =
⋃
i dVyi

, then

Pr[x ∈ dVx] =
∑

i

Pr
[[x

y

]
∈ dVx × dVyi

]
(8.2.3)

=
∑

i

fx,y(x, yi)|dVx||dVyi
|(8.2.4)

= |dVx|
∑

i

fx,y(x, yi)|dVyi
|.(8.2.5)

Therefore
∑
i fx,y(x, y)|dVyi

| is the density function we are looking for. Now the
|dVyi

| are usually written as dy, and the sum is usually written as an integral (i.e.,
an infinite sum each summand of which is infinitesimal), therefore we get

(8.2.6) fx(x) =

∫ y=+∞

y=−∞
fx,y(x, y) dy.

In other words, one has to “integrate out” the variable which one is not interested
in.

8.3. Conditional Probability Distribution and Conditional Mean

The conditional probability distribution of y given x=x is the probability distri-
bution of y if we count only those experiments in which the outcome of x is x. If the
distribution is defined by a probability mass function, then this is no problem:

(8.3.1) py|x(y, x) = Pr[y=y|x=x] =
Pr[y=y and x=x]

Pr[x=x]
=
px,y(x, y)

px(x)
.

For a density function there is the problem that Pr[x=x] = 0, i.e., the conditional
probability is strictly speaking not defined. Therefore take an infinitesimal volume
element dVx located at x and condition on x ∈ dVx:

Pr[y ∈ dVy |x ∈ dVx] =
Pr[y ∈ dVy and x ∈ dVx]

Pr[x ∈ dVx]
(8.3.2)

=
fx,y(x, y)|dVx||dVy |

fx(x)|dVx|
(8.3.3)

=
fx,y(x, y)

fx(x)
|dVy |.(8.3.4)
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This no longer depends on dVx, only on its location x. The conditional density is
therefore

(8.3.5) fy|x(y, x) =
fx,y(x, y)

fx(x)
.

As y varies, the conditional density is proportional to the joint density function, but
for every given value of x the joint density is multiplied by an appropriate factor so
that its integral with respect to y is 1. From (8.3.5) follows also that the joint density
function is the product of the conditional times the marginal density functions.

Problem 131. 2 points The conditional density is the joint divided by the mar-
ginal:

(8.3.6) fy|x(y, x) =
fx,y(x, y)

fx(x)
.

Show that this density integrates out to 1.

Answer. The conditional is a density in y with x as parameter. Therefore its integral with
respect to y must be = 1. Indeed,

∫ +∞

y=−∞
fy|x=x(y, x) dy =

∫ +∞
y=−∞ fx,y(x, y) dy

fx(x)
=
fx(x)

fx(x)
= 1(8.3.7)

because of the formula for the marginal:

fx(x) =

∫ +∞

y=−∞
fx,y(x, y) dy(8.3.8)

You see that formula (8.3.6) divides the joint density exactly by the right number which makes the
integral equal to 1. �

Problem 132. [BD77, example 1.1.4 on p. 7]. x and y are two independent
random variables uniformly distributed over [0, 1]. Define u = min(x,y) and v =
max(x,y).

• a. Draw in the x,y plane the event {max(x,y) ≤ 0.5 and min(x,y) > 0.4} and
compute its probability.

Answer. The event is the square between 0.4 and 0.5, and its probability is 0.01. �

• b. Compute the probability of the event {max(x,y) ≤ 0.5 and min(x,y) ≤ 0.4}.
Answer. It is Pr[max(x, y) ≤ 0.5] − Pr[max(x, y) ≤ 0.5 and min(x, y) > 0.4], i.e., the area of

the square from 0 to 0.5 minus the square we just had, i.e., 0.24. �

• c. Compute Pr[max(x,y) ≤ 0.5|min(x,y) ≤ 0.4].
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Answer.

(8.3.9)
Pr[max(x,y) ≤ 0.5 and min(x,y) ≤ 0.4]

Pr[min(x, y) ≤ 0.4]
=

0.24

1 − 0.36
=

0.24

0.64
=

3

8
.

�

• d. Compute the joint cumulative distribution function of u and v.

Answer. One good way is to do it geometrically: for arbitrary 0 ≤ u, v ≤ 1 draw the area
{u ≤ u and v ≤ v} and then derive its size. If u ≤ v then Pr[u ≤ u and v ≤ v] = Pr[v ≤ v]−Pr[u ≤ u
and v > v] = v2 − (v − u)2 = 2uv − u2. If u ≥ v then Pr[u ≤ u and v ≤ v] = Pr[v ≤ v] = v2.

�

• e. Compute the joint density function of u and v. Note: this joint density is
discontinuous. The values at the breakpoints themselves do not matter, but it is very
important to give the limits within this is a nontrivial function and where it is zero.

Answer. One can see from the way the cumulative distribution function was constructed that
the density function must be

(8.3.10) fu,v(u, v) =

{
2 if 0 ≤ u ≤ v ≤ 1

0 otherwise

I.e., it is uniform in the above-diagonal part of the square. This is also what one gets from differ-
entiating 2vu− u2 once with respect to u and once with respect to v. �

• f. Compute the marginal density function of u.

Answer. Integrate v out: the marginal density of u is

(8.3.11) fu(u) =

∫ 1

v=u

2 dv = 2v

∣∣∣
1

u
= 2 − 2u if 0 ≤ u ≤ 1, and 0 otherwise.

�

• g. Compute the conditional density of v given u = u.

Answer. Conditional density is easy to get too; it is the joint divided by the marginal, i.e., it
is uniform:

(8.3.12) fv|u=u(v) =

{
1

1−u for 0 ≤ u ≤ v ≤ 1

0 otherwise.

�

8.4. The Multinomial Distribution

Assume you have an experiment with r different possible outcomes, with outcome
i having probability pi (i = 1, . . . , r). You are repeating the experiment n different
times, and you count how many times the ith outcome occurred. Therefore you get
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a random vector with r different components xi, indicating how often the ith event
occurred. The probability to get the frequencies x1, . . . , xr is

(8.4.1) Pr[x1 = x1, . . . , xr = xr] =
m!

x1! · · ·xr!
px1
1 px2

2 · · · pxr
r

This can be explained as follows: The probability that the first x1 experiments
yield outcome 1, the next x2 outcome 2, etc., is px1

1 px2

2 · · · pxr
r . Now every other

sequence of experiments which yields the same number of outcomes of the different
categories is simply a permutation of this. But multiplying this probability by n!
may count certain sequences of outcomes more than once. Therefore we have to
divide by the number of permutations of the whole n element set which yield the
same original sequence. This is x1! · · ·xr !, because this must be a permutation which
permutes the first x1 elements amongst themselves, etc. Therefore the relevant count
of permutations is n!

x1!···xr! .

Problem 133. You have an experiment with r different outcomes, the ith out-
come occurring with probability pi. You make n independent trials, and the ith out-
come occurred xi times. The joint distribution of the x1, . . . , xr is called a multinomial
distribution with parameters n and p1, . . . , pr.

• a. 3 points Prove that their mean vector and covariance matrix are
(8.4.2)

µ = E [



x1

...
xr


] = n




p1

p2

...
pr


 and Ψ = V [




x1

...
xr


] = n




p1 − p2
1 −p1p2 · · · −p1pr

−p2p1 p2 − p2
2 · · · −p2pr

...
...

. . .
...

−prp1 −prp2 · · · pr − p2
r


 .

Hint: use the fact that the multinomial distribution with parameters n and p1, . . . , pr
is the independent sum of n multinomial distributions with parameters 1 and p1, . . . , pr.

Answer. In one trial, x2
i = xi, from which follows the formula for the variance, and for i 6= j,

xixj = 0, since only one of them can occur. Therefore cov[xi, xj ] = 0 − E[xi] E[xj ]. For several
independent trials, just add this. �

• b. 1 point How can you show that this covariance matrix is singular?

Answer. Since x1 + · · · + xr = n with zero variance, we should expect

(8.4.3) n




p1 − p21 −p1p2 · · · −p1pr
−p2p1 p2 − p22 · · · −p2pr

...
...

. . .
...

−prp1 −prp2 · · · pr − p2r







1
1
...
1


 =




0
0
...
0




�
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8.5. Independent Random Vectors

The same definition of independence, which we already encountered with scalar
random variables, also applies to vector random variables: the vector random vari-
ables x : U → R

m and y : U → R
n are called independent if all events that can be

defined in terms of x are independent of all events that can be defined in terms of
y, i.e., all events of the form {x(ω) ∈ C} are independent of all events of the form
{y(ω) ∈ D} with arbitrary (measurable) subsets C ⊂ R

m and D ⊂ R
n.

For this it is sufficient that for all x ∈ R
m and y ∈ R

n, the event {x ≤ x}
is independent of the event {y ≤ y}, i.e., that the joint cumulative distribution
function is the product of the marginal ones.

Since the joint cumulative distribution function of independent variables is equal
to the product of the univariate cumulative distribution functions, the same is true
for the joint density function and the joint probability mass function.

Only under this strong definition of independence is it true that any functions
of independent random variables are independent.

Problem 134. 4 points Prove that, if x and y are independent, then E[xy] =
E[x] E[y] and therefore cov[x,y] = 0. (You may assume x and y have density func-
tions). Give a counterexample where the covariance is zero but the variables are
nevertheless dependent.

Answer. Just use that the joint density function is the product of the marginals. It can also

be done as follows: E[xy] = E
[
E[xy|x]

]
= E
[
x E[y|x]

]
= now independence is needed = E

[
xE[y]

]
=

E[x] E[y]. A counterexample is given in Problem 150. �

Problem 135. 3 points Prove the following: If the scalar random variables x

and y are indicator variables (i.e., if each of them can only assume the values 0 and
1), and if cov[x,y] = 0, then x and y are independent. (I.e., in this respect indicator
variables have similar properties as jointly normal random variables.)

Answer. Define the events A = {ω ∈ U : x(ω) = 1} and B = {ω ∈ U : y(ω) = 1}, i.e., x = iA
(the indicator variable of the event A) and y = iB. Then xy = iA∩B. If cov[x,y] = E[xy]−E[x] E[y] =
Pr[A ∩ B] − Pr[A] Pr[B] = 0, then A and B are independent. �

Problem 136. If the vector random variables x and y have the property that
xi is independent of every yj for all i and j, does that make x and y independent
random vectors? Interestingly, the answer is no. Give a counterexample that this
fact does not even hold for indicator variables. I.e., construct two random vectors x

and y, consisting of indicator variables, with the property that each component of x

is independent of each component of y, but x and y are not independent as vector
random variables. Hint: Such an example can be constructed in the simplest possible
case that x has two components and y has one component; i.e., you merely have to
find three indicator variables x1, x2, and y with the property that x1 is independent
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of y, and x2 is independent of y, but the vector

[
x1

x2

]
is not independent of y. For

these three variables, you should use three events which are pairwise independent but
not mutually independent.

Answer. Go back to throwing a coin twice independently and define A = {HH,HT}; B =
{TH,HH}, and C = {HH,TT}, and x1 = IA, x2 = IB, and y = IC. They are pairwise independent,
but A ∩ B ∩ C = A ∩ B, i.e., x1x2y = x1x2, therefore E[x1x2y] 6= E[x1x2] E[y] therefore they are not
independent. �

Problem 137. 4 points Prove that, if x and y are independent, then var[xy] =
(E[x])2 var[y] + (E[y])2 var[x] + var[x] var[y].

Answer. Start with result and replace all occurrences of var[z] with E[z2]−E[z]2, then multiply

out: E[x]2(E[y2] − E[y]2) + E[y]2(E[x2] − E[x]2) + (E[x2] − E[x]2)(E[y2] − E[y]2) = E[x2] E[y2] −
E[x]2 E[y]2 = E[(xy)2] − E[xy]2. �

8.6. Conditional Expectation and Variance

The conditional expectation of y is the expected value of y under the conditional
density. If joint densities exist, it follows

(8.6.1) E[y|x=x] =

∫
y fx,y(x, y) dy

fx(x)
=: g(x).

This is not a random variable but a constant which depends on x, i.e., a function of
x, which is called here g(x). But often one uses the term E[y|x] without specifying
x. This is, by definition, the random variable g(x) which one gets by plugging x into
g; it assigns to every outcome ω ∈ U the conditional expectation of y given x=x(ω).

Since E[y|x] is a random variable, it is possible to take its expected value. The
law of iterated expectations is extremely important here. It says that you will get
the same result as if you had taken the expected value of y:

(8.6.2) E
[
E[y|x]

]
= E[y].

Proof (for the case that the densities exist):

E
[
E[y|x]

]
= E[g(x)] =

∫ ∫
y fx,y(x, y) dy

fx(x)
fx(x) dx

=

∫ ∫
y fx,y(x, y) dy dx = E[y].

(8.6.3)

Problem 138. Let x and y be two jointly distributed variables. For every fixed
value x, var[y|x = x] is the variance of y under the conditional distribution, and
var[y|x] is this variance as a random variable, namely, as a function of x.
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• a. 1 point Prove that

(8.6.4) var[y|x] = E[y2|x] − (E[y|x])2.

This is a very simple proof. Explain exactly what, if anything, needs to be done to
prove it.

Answer. For every fixed value x, it is an instance of the law

(8.6.5) var[y] = E[y2] − (E[y])2

applied to the conditional density given x = x. And since it is true for every fixed x, it is also true
after plugging in the random variable x. �

• b. 3 points Prove that

(8.6.6) var[y] = var
[
E[y|x]

]
+ E

[
var[y|x]

]
,

i.e., the variance consists of two components: the variance of the conditional mean
and the mean of the conditional variances. This decomposition of the variance is
given e.g. in [Rao73, p. 97] or [Ame94, theorem 4.4.2 on p. 78].

Answer. The first term on the rhs is E[(E[y|x])2] − (E[E[y|x]])2, and the second term, due
to (8.6.4), becomes E[E[y2|x]] − E[(E[y|x])2]. If one adds, the two E[(E[y|x])2] cancel out, and the
other two terms can be simplified by the law of iterated expectations to give E[y2] − (E[y])2. �

• c. 2 points [Coo98, p. 23] The conditional expected value is sometimes called
the population regression function. In graphical data analysis, the sample equivalent
of the variance ratio

(8.6.7)
E
[
var[y|x]

]

var
[
E[y|x]

]

can be used to determine whether the regression function E[y|x] appears to be visu-
ally well-determined or not. Does a small or a big variance ratio indicate a well-
determined regression function?

Answer. For a well-determined regression function the variance ratio should be small. [Coo98,
p. 23] writes: “This ratio is reminiscent of a one-way analysis of variance, with the numerator rep-
resenting the average within group (slice) variance, and the denominator representing the varince
between group (slice) means.” �

Now some general questions:

Problem 139. The figure on page 116 shows 250 independent observations of
the random vector [ x

y ].

• a. 2 points Draw in by hand the approximate location of E [[ x
y ]] and the graph

of E[y|x]. Draw into the second diagram the approximate marginal density of x.
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• b. 2 points Is there a law that the graph of the conditional expectation E[y|x]
always goes through the point E [[ x

y ]]—for arbitrary probability distributions for which
these expectations exist, or perhaps for an important special case? Indicate how this
could be proved or otherwise give (maybe geometrically) a simple counterexample.

Answer. This is not the law of iterated expectations. It is true for jointly normal variables,
not in general. It is also true if x and y are independent; then the graph of E[y|x] is a horizontal line
at the height of the unconditional expectation E[y]. A distribution with U-shaped unconditional
distribution has the unconditional mean in the center of the U, i.e., here the unconditional mean
does not lie on the curve drawn out by the conditional mean. �

• c. 2 points Do you have any ideas how the strange-looking cluster of points in
the figure on page 116 was generated?

Problem 140. 2 points Given two independent random variables x and y with
density functions fx(x) and gy(y). Write down their joint, marginal, and conditional
densities.

Answer. Joint density: fx,y(x, (y) = fx(x)gy(y).

Marginal density of x is
∫∞
−∞ fx(x)gy(y) dy = fx(x)

∫∞
−∞ gy(y) dy = fx(x), and that of y is

gy(y). The text of the question should have been: “Given two independent random variables x

and y with marginal density functions fx(x) and gy(y)”; by just calling them “density functions”
without specifying “marginal” it committed the error of de-totalization, i.e., it treated elements of
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a totality, i.e., of an ensemble in which each depends on everything else, as if they could be defined
independently of each other.

Conditional density functions: fx|y=y(x; y) = fx(x) (i.e., it does not depend on y); and

gy|x=x(y; x) = gy(y). You can see this by dividing the joint by the marginal. �

8.7. Expected Values as Predictors

Expected values and conditional expected values have optimal properties as pre-
dictors.

Problem 141. 3 points What is the best predictor of a random variable y by a
constant a, if the loss function is the “mean squared error” (MSE) E[(y − a)2]?

Answer. Write E[y] = µ; then

(y − a)2 =
(
(y − µ) − (a − µ)

)2

= (y − µ)2 − 2(y − µ)(a − µ) + (a − µ)2;

therefore E[(y − a)2] = E[(y − µ)2] − 0 + (a− µ)2

(8.7.1)

This is minimized by a = µ. �

The expected value of y is therefore that constant which, as predictor of y, has
smallest MSE.

What if we want to predict y not by a constant but by a function of the random
vector x, call it h(x)?

Problem 142. 2 points Assume the vector x = [x1, . . . xj ]
> and the scalar y

are jointly distributed random variables, and assume conditional means exist. x is
observed, but y is not observed. The joint distribution of x and y is known. Show
that the conditional expectation E[y|x] is the minimum MSE predictor of y given x,
i.e., show that for any other function of x, call it h(x), the following inequality holds:

(8.7.2) E[
(
y − h(x)

)2
] ≥ E[

(
y − E[y|x]

)2
].

For this proof and the proofs required in Problems 143 and 144, you may use (1)
the theorem of iterated expectations E

[
E[y|x]

]
= E[y], (2) the additivity E[g(y) +

h(y)|x] = E[g(y)|x] + E[h(y)|x], and (3) the fact that E[g(x)h(y)|x] = g(x)E[h(y)|x].
Be very specific about which rules you are applying at every step. You must show
that you understand what you are writing down.

Answer.

E[
(
y − h(x)

)2
] = E

[(
y − E[y|x]− (h(x) − E[y|x])

)2]

= E[(y − E[y|x])2] − 2 E[(y − E[y|x])(h(x) − E[y|x])] + E[(h(x) − E[y|x])2].
(8.7.3)

Here the cross product term E[(y −E[y|x])(h(x)−E[y|x])] is zero. In order to see this, first use the
law of iterated expectations

(8.7.4) E[(y − E[y|x])(h(x) − E[y|x])] = E
[
E[(y − E[y|x])(h(x) − E[y|x])|x]

]

120 8. VECTOR RANDOM VARIABLES

and then look at the inner term, not yet doing the outer expectation:

E[(y − E[y|x])(h(x) − E[y|x])|x] = (h(x) − E[y|x]) =

E[(y − E[y|x])|x] = (h(x) − E[y|x])(E[y|x]− E[y|x]) == (h(x) − E[y|x]) · 0 = 0

Plugging this into (8.7.4) gives E[(y − E[y|x])(h(x) − E[y|x])] = E
[
0
]

= 0.

�

This is one of the few clear cut results in probability theory where a best esti-
mator/predictor exists. In this case, however, all parameters of the distribution are
known, the only uncertainty comes from the fact that some random variables are
unobserved.

Problem 143. Assume the vector x = [x1, . . .xj ]
> and the scalar y are jointly

distributed random variables, and assume conditional means exist. Define ε = y −
E[y|x].

• a. 5 points Demonstrate the following identities:

E[ε|x] = 0(8.7.5)

E[ε] = 0(8.7.6)

E[xiε|x] = 0 for all i, 1 ≤ i ≤ j(8.7.7)

E[xiε] = 0 for all i, 1 ≤ i ≤ j(8.7.8)

cov[xi, ε] = 0 for all i, 1 ≤ i ≤ j.(8.7.9)

Interpretation of (8.7.9): ε is the error in the best prediction of y based on x. If this
error were correlated with one of the components xi, then this correlation could be
used to construct a better prediction of y.

Answer. (8.7.5): E[ε|x] = E[y|x]−E
[
E[y|x]|x

]
= 0 since E[y|x] is a function of x and therefore

equal to its own expectation conditionally on x. (This is not the law of iterated expectations but
the law that the expected value of a constant is a constant.)

(8.7.6) follows from (8.7.5) (i.e., (8.7.5) is stronger than (8.7.6)): if an expectation is zero con-

ditionally on every possible outcome of x then it is zero altogether. In formulas, E[ε] = E
[
E[ε|x]

]
=

E[0] = 0. It is also easy to show it in one swoop, without using (8.7.5): E[ε] = E[y − E[y|x]] = 0.
Either way you need the law of iterated expectations for this.

(8.7.7): E[xiε|x] = xiE[ε|x] = 0.

(8.7.8): E[xiε] = E
[
E[xiε|x]

]
= E[0] = 0; or in one swoop: E[xiε] = E

[
xiy−xiE[y|x]

]
= E
[
xiy−

E[xiy|x]
]

= E[xiy]−E[xiy] = 0. The following “proof” is not correct: E[xiε] = E[xi] E[ε] = E[xi]·0 =

0. xi and ε are generally not independent, therefore the multiplication rule E[xiε] = E[xi] E[ε] cannot
be used. Of course, the following “proof” does not work either: E[xiε] = xi E[ε] = xi · 0 = 0. xi is
a random variable and E[xiε] is a constant; therefore E[xiε] = xi E[ε] cannot hold.

(8.7.9): cov[xi, ε] = E[xiε] − E[xi] E[ε] = 0 − E[xi] · 0 = 0. �

• b. 2 points This part can only be done after discussing the multivariate normal
distribution:If x and y are jointly normal, show that x and ε are independent, and
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that the variance of ε does not depend on x. (This is why one can consider it an
error term.)

Answer. If x and y are jointly normal, then x and ε are jointly normal as well, and indepen-
dence follows from the fact that their covariance is zero. The variance is constant because in the
Normal case, the conditional variance is constant, i.e., E[ε2] = E

[
E[ε2|x]

]
= constant (does not

depend on x). �

Problem 144. 5 points Under the permanent income hypothesis, the assumption
is made that consumers’ lifetime utility is highest if the same amount is consumed
every year. The utility-maximizing level of consumption c for a given consumer
depends on the actual state of the economy in each of the n years of the consumer’s
life c = f(y1, . . . ,yn). Since c depends on future states of the economy, which are
not known, it is impossible for the consumer to know this optimal c in advance; but
it is assumed that the function f and the joint distribution of y1, . . . ,yn are known to
him. Therefore in period t, when he only knows the values of y1, . . . ,yt, but not yet
the future values, the consumer decides to consume the amount ct = E[c|y1, . . . ,yt],
which is the best possible prediction of c given the information available to him. Show
that in this situation, ct+1−ct is uncorrelated with all y1, . . . ,yt. This implication of
the permanent income hypothesis can be tested empirically, see [Hal78]. Hint: you
are allowed to use without proof the following extension of the theorem of iterated
expectations:

(8.7.10) E
[
E[x|y, z]

∣∣y
]

= E[x|y].

Here is an explanation of (8.7.10): E[x|y] is the best predictor of x based on infor-
mation set y. E[x|y, z] is the best predictor of x based on the extended information
set consisting of y and z. E

[
E[x|y, z]

∣∣y
]

is therefore my prediction, based on y only,
how I will refine my prediction when z becomes available as well. Its equality with
E[x|y], i.e., (8.7.10) says therefore that I cannot predict how I will change my mind
after better information becomes available.

Answer. In (8.7.10) set x = c = f(y1 , . . . , yt, yt+1, . . . , yn), y = [y1, . . . , yt]>, and z = yt+1

to get

(8.7.11) E
[
E[c|y1, . . . , yt+1]

∣∣y1, . . . ,yt
]

= E[c|y1, . . . , yt].

Writing ct for E[c|y1, . . . ,yt], this becomes E[ct+1|y1, . . . ,yt] = ct, i.e., ct is not only the best
predictor of c, but also that of ct+1. The change in consumption ct+1−ct is therefore the prediction
error, which is uncorrelated with the conditioning variables, as shown in Problem 143. �

Problem 145. 3 points Show that for any two random variables x and y whose
covariance exists, the following equation holds:

cov[x,y] = cov
[
x,E[y|x]

]
(8.7.12)
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Note: Since E[y|x] is the best predictor of y based on the observation of x, (8.7.12)
can also be written as

cov
[
x, (y − E[y|x])

]
= 0,(8.7.13)

i.e., x is uncorrelated with the prediction error of the best prediction of y given x.
(Nothing to prove for this Note.)

Answer. Apply (8.1.6) to the righthand side of (8.7.12):
(8.7.14)

cov
[
x,E[y|x]

]
= E
[
xE[y|x]

]
−E[x] E

[
E[y|x]

]
= E
[
E[xy|x]

]
−E[x] E[y] = E[xy]−E[x] E[y] = cov[x,y].

The tricky part here is to see that xE[y|x] = E[xy|x].
�

Problem 146. Assume x and y have a joint density function fx,y(x, y) which
is symmetric about the x-axis, i.e.,

fx,y(x, y) = fx,y(x,−y).
Also assume that variances and covariances exist. Show that cov[x,y] = 0. Hint:
one way to do it is to look at E[y|x].

Answer. We know that cov[x,y] = cov
[
x,E[y|x]

]
. Furthermore, from symmetry follows

E[y|x] = 0. Therefore cov[x,y] = cov[x, 0] = 0. Here is a detailed proof of E[y|x] = 0: E[y|x=x] =∫∞
−∞ y

fx,y(x,y)

fx(x)
dy. Now substitute z = −y, then also dz = −dy, and the boundaries of integration

are reversed:

(8.7.15) E[y|x=x] =

∫ −∞

∞
z
fx,y(x,−z)
fx(x)

dz =

∫ −∞

∞
z
fx,y(x, z)

fx(x)
dz = −E[y|x=x].

One can also prove directly under this presupposition cov[x,y] = cov[x,−y] and therefore it must
be zero.

�

Problem 147. [Wit85, footnote on p. 241] Let p be the logarithm of the price
level, m the logarithm of the money supply, and x a variable representing real influ-
ences on the price level (for instance productivity). We will work in a model of the
economy in which p = m+γx, where γ is a nonrandom parameter, and m and x are
independent normal with expected values µm, µx, and variances σ2

m, σ2
x. According

to the rational expectations assumption, the economic agents know the probability
distribution of the economy they live in, i.e., they know the expected values and vari-
ances of m and x and the value of γ. But they are unable to observe m and x, they
can only observe p. Then the best predictor of x using p is the conditional expectation
E[x|p].

• a. Assume you are one of these agents and you observe p = p. How great
would you predict x to be, i.e., what is the value of E[x|p = p]?
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Answer. It is, according to formula (10.3.18), E[x|p = p] = µx +
cov(x,p)
var(p)

(p − E[p]). Now

E[p] = µm + γµx, cov[x,p] = cov[x,m] + γ cov[x, x] = γσ2
x, and var(p) = σ2

m + γ2σ2
x. Therefore

(8.7.16) E[x|p = p] = µx +
γσ2

x

σ2
m + γ2σ2

x

(p− µm − γµx).

�

• b. Define the prediction error ε = x − E[x|p]. Compute expected value and
variance of ε.

Answer.

ε = x − µx − γσ2
x

σ2
m + γ2σ2

x

(p − µm − γµx).(8.7.17)

This has zero expected value, and its variance is

var[ε] = var[x] +
( γσ2

x

σ2
m + γ2σ2

x

)2
var[p] − 2

( γσ2
x

σ2
m + γ2σ2

x

)
cov[x,p] =(8.7.18)

= σ2
x +

γ2(σ2
x)2

σ2
m + γ2σ2

x

− 2
γ2(σ2

x)2

σ2
m + γ2σ2

x

(8.7.19)

=
σ2

xσ
2
m

σ2
m + γ2σ2

x

=
σ2

x

1 + γ2σ2
x/σ

2
m

.(8.7.20)

�

• c. In an attempt to fine tune the economy, the central bank increases σ2
m. Does

that increase or decrease var(ε)?

Answer. From (8.7.20) follows that it increases the variance. �

8.8. Transformation of Vector Random Variables

In order to obtain the density or probability mass function of a one-to-one trans-
formation of random variables, we have to follow the same 4 steps described in
Section 3.6 for a scalar random variable. (1) Determine A, the range of the new
variable, whose density we want to compute; (2) express the old variable, the one
whose density/mass function is known, in terms of the new variable, the one whose

density or mass function is needed. If that of

[
x

y

]
is known, set

[
x

y

]
= t(u, v). Here

t is a vector-valued function, (i.e., it could be written t(u, v) =

[
q(u, v)
r(u, v)

]
, but we

will use one symbol t for this whole transformation), and you have to check that it
is one-to-one on A, i.e., t(u, v) = t(u1, v1) implies u = u1 and v = v1 for all (u, v)
and u1, v1) in A. (A function for which two different arguments (u, v) and u1, v1)
give the same function value is called many-to-one.)

If the joint probability distribution of x and y is described by a probability mass
function, then the joint probability mass function of u and v can simply be obtained
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by substituting t into the joint probability mass function of x and y (and it is zero
for any values which are not in A):
(8.8.1)

pu,v(u, v) = Pr
[[u

v

]
=

[
u
v

]]
=Pr

[
t(u, v) = t(u, v)

]
= Pr

[[x
y

]
= t(u, v)

]
= px,y

(
t(u, v)

)
.

The second equal sign is where the condition enters that t : R
2 → R

2 is one-to-one.
If one works with the density function instead of a mass function, one must

perform an additional step besides substituting t. Since t is one-to-one, it follows

(8.8.2) {
[
u

v

]
∈ dVu,v} = {t(u, v) ∈ t(dV )x,y}.

Therefore
(8.8.3)

fu,v(u, v)|dVu,v | = Pr[

[
u

v

]
∈ dVu,v ] = Pr[t(u, v) ∈ t(dV )x,y] = fx,y(t(u, v))|t(dV )x,y| =

(8.8.4) = fx,y(t(u, v))
|t(dV )x,y|
|dVu,v |

|dVu,v |.

The term
|t(dV )x,y |
|dVu,v | is the local magnification factor of the transformation t;

analytically it is the absolute value |J | of the Jacobian determinant

(8.8.5) J =

∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ =
∣∣∣∣
∂q
∂u (u, v) ∂q

∂v (u, v)
∂r
∂u (u, v) ∂r

∂v (u, v)

∣∣∣∣ .

Remember, u, v are the new and x,y the old variables. To compute J one
has to express the old in terms of the new variables. If one expresses the new in
terms of the old, one has to take the inverse of the corresponding determinant! The
transformation rule for density functions can therefore be summarized as:

(x,y) = t(u, v) one-to-one ⇒ fu,v(u, v) = fx,y

(
t(u, v)

)
|J | where J =

∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣ .

Problem 148. Let x and y be two random variables with joint density function
fx,y(x, y).

• a. 3 points Define u = x + y. Derive the joint density function of u and y.

Answer. You have to express the “old” x and y as functions of the “new” u and y:

x = u − y

y = y
or

[
x

y

]
=

[
1 −1
0 1

][
u

y

]
therefore J =

∣∣∣∣
∂x
∂u

∂x
∂y

∂y

∂u

∂y

∂y

∣∣∣∣ =

∣∣∣∣
1 −1
0 1

∣∣∣∣ = 1.

Therefore

(8.8.6) fu,y(u, y) = fx,y(u− y, y).

�
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• b. 1 point Derive from this the following formula computing the density func-
tion fu(u) of the sum u = x + y from the joint density function fx,y(x, y) of x and
y.

(8.8.7) fu(u) =

∫ y=∞

y=−∞
fx,y(u− y, y)dy.

Answer. Write down the joint density of u and y and then integrate y out, i.e., take its
integral over y from −∞ to +∞:

(8.8.8) fu(u) =

∫ y=∞

y=−∞
fu,y(u, y)dy =

∫ y=∞

y=−∞
fx,y(u− y, y)dy.

i.e., one integrates over all

[
x

y

]
with x+ y = u. �

Problem 149. 6 points Let x and y be independent and uniformly distributed
over the interval [0, 1]. Compute the density function of u = x + y and draw its
graph. Hint: you may use formula (8.8.7) for the density of the sum of two jointly
distributed random variables. An alternative approach would be to first compute the
cumulative distribution function Pr[x + y ≤ u] for all u.

Answer. Using equation (8.8.7):

(8.8.9) fx+y(u) =

∫ ∞

−∞
fx,y(u− y, y) dy =




u for 0 ≤ u ≤ 1

2 − u for 1 ≤ u ≤ 2

0 otherwise.

-

6

�
�@

@q qq
To help evaluate this integral, here is the area in u, y-plane (u = x+ y on the horizontal and y on
the vertical axis) in which fx,y(u− v, v) has the value 1:

-

6

�
�

�
�q qq q

This is the area between (0,0), (1,1), (2,1), and (1,0).
One can also show it this way: fx,y(x, y) = 1 iff 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1. Now take any fixed

u. It must be between 0 and 2. First assume 0 ≤ u ≤ 1: then fx,y(u− y, y) = 1 iff 0 ≤ u− y ≤ 1
and 0 ≤ y ≤ 1 iff 0 ≤ y ≤ u. Now assume 1 ≤ u ≤ 2: then fx,y(u− y, y) = 1 iff u− 1 ≤ y ≤ 1.

�

Problem 150. Assume [ x
y ] is uniformly distributed on a round disk around the

origin with radius 10.

• a. 4 points Derive the joint density, the marginal density of x, and the condi-
tional density of y given x=x.
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• b. 3 points Now let us go over to polar coordinates r and φ, which satisfy

x = r cosφ

y = r sinφ
, i.e., the vector transformation t is t(

[
r

φ

]
) =

[
r cosφ
r sinφ

]
.(8.8.10)

Which region in
(

r
φ

)
-space is necessary to cover

(
x
y

)
-space? Compute the Jacobian

determinant of this transformation. Give an intuitive explanation in terms of local
magnification factor of the formula you get. Finally compute the transformed density
function.

• c. 1 point Compute cov[x,y].

• d. 2 points Compute the conditional variance var[y|x=x].

• e. 2 points Are x and y independent?

Problem 151. [Ame85, pp. 296–7] Assume three transportation choices are
available: bus, train, and car. If you pick at random a neoclassical individual ω

and ask him or her which utility this person derives from using bus, train, and car,
the answer will be three numbers u1(ω),u2(ω),u3(ω). Here u1, u2, and u3 are as-
sumed to be independent random variables with the following cumulative distribution
functions:

(8.8.11) Pr[ui ≤ u] = Fi(u) = exp
(
− exp(µi − u)

)
, i = 1, 2, 3.

I.e., the functional form is the same for all three transportation choices (exp in-
dicates the exponential function); the Fi only differ by the parameters µi. These
probability distributions are called Type I extreme value distributions, or log Weibull
distributions.

Often these kinds of models are set up in such a way that these µi to depend on
the income etc. of the individual, but we assume for this exercise that this distribution
applies to the population as a whole.

• a. 1 point Show that the Fi are indeed cumulative distribution functions, and
derive the density functions fi(u).

Individual ω likes cars best if and only if his utilities satisfy u3(ω) ≥ u1(ω) and
u3(ω) ≥ u2(ω). Let I be a function of three arguments such that I(u1,u2,u3) is the
indicator function of the event that one randomly chooses an individual ω who likes
cars best, i.e.,

(8.8.12) I(u1, u2, u3) =

{
1 if u1 ≤ u3 and u2 ≤ u3

0 otherwise.

Then Pr[car] = E[I(u1,u2,u3)]. The following steps have the purpose to compute
this probability:
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• b. 2 points For any fixed number u, define g(u) = E[I(u1,u2,u3)|u3 = u].
Show that

(8.8.13) g(u) = exp
(
− exp(µ1 − u) − exp(µ2 − u)

)
.

• c. 2 points This here is merely the evaluation of an integral. Show that
∫ +∞

−∞
exp
(
− exp(µ1 − u) − exp(µ2 − u) − exp(µ3 − u)

)
exp(µ3 − u) du =

=
expµ3

expµ1 + expµ2 + expµ3
.

Hint: use substitution rule with y = − exp(µ1 − u) − exp(µ2 − u) − exp(µ3 − u).

• d. 1 point Use b and c to show that

(8.8.14) Pr[car] =
expµ3

expµ1 + expµ2 + expµ3
.



CHAPTER 9

Random Matrices

The step from random vectors to random matrices (and higher order random
arrays) is not as big as the step from individual random variables to random vectors.
We will first give a few quite trivial verifications that the expected value operator
is indeed a linear operator, and them make some not quite as trivial observations
about the expected values and higher moments of quadratic forms.

9.1. Linearity of Expected Values

Definition 9.1.1. Let Z be a random matrix with elements zij . Then E [Z] is
the matrix with elements E[zij ].

Theorem 9.1.2. If A, B, and C are constant matrices, then E [AZB + C] =
A E [Z]B + C.

Proof by multiplying out.

Theorem 9.1.3. E [Z>] = (E [Z])>; E [tr Z] = tr E [Z].

Theorem 9.1.4. For partitioned matrices E [

[
X

Y

]
] =

[
E [X]

E [Y ]

]
.

Special cases: If C is a constant, then E [C] = C, E [AX+BY ] = A E [X]+B E [Y ],
and E [a · X + b · Y ] = a · E [X] + b · E [Y ].

If X and Y are random matrices, then the covariance of these two matrices is a
four-way array containing the covariances of all elements of X with all elements of Y .
Certain conventions are necessary to arrange this four-way array in a two-dimensional
scheme that can be written on a sheet of paper. Before we develop those, we will
first define the covariance matrix for two random vectors.

Definition 9.1.5. The covariance matrix of two random vectors is defined as

(9.1.1) C[x,y] = E [(x − E [x])(y − E [y])>].

Theorem 9.1.6. C[x,y] = E [xy>] − (E [x])(E [y])>.

Theorem 9.1.7. C[Ax + b,Cy + d] = A C[x,y]C>.
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Problem 152. Prove theorem 9.1.7.

Theorem 9.1.8. C[

[
x

y

]
,

[
u

v

]
] =

[
C[x,u] C[x, v]

C[y,u] C[y, v]

]
.

Special case: C[Ax+By,Cu+Dv] = A C[x,u]C>+AC[x, v]D>+B C[y,u]C>+

B C[y, v]D>. To show this, express each of the arguments as a partitioned matrix,
then use theorem 9.1.7.

Definition 9.1.9. V [x] = C[x, x] is called the dispersion matrix.

It follows from theorem 9.1.8 that

(9.1.2) V [x] =




var[x1] cov[x1, x2] · · · cov[x1, xn]
cov[x2, x1] var[x2] · · · cov[x2, xn]

...
...

. . .
...

cov[xn, x1] cov[xn, x2] · · · var[xn]




Theorem 9.1.10. V [Ax] = AV [x]A>.

From this follows that V[x] is nonnegative definite (or, as it is also called, positive
semidefinite).

Problem 153. Assume y is a random vector, and var[yi] exists for every com-
ponent yi. Then the whole dispersion matrix V [y] exists.

Theorem 9.1.11. V[x] is singular if and only if a vector a exists so that a>x is
almost surely a constant.

Proof: Call V[x] = ΣΣΣ. Then ΣΣΣ singular iff an a exists with ΣΣΣa = o iff an a exists
with a>ΣΣΣa = var[a>x] = 0 iff an a exists so that a>x is almost surely a constant.

This means, singular random variables have a restricted range, their values are
contained in a linear subspace. This has relevance for estimators involving singular
random variables: two such estimators (i.e., functions of a singular random variable)
should still be considered the same if their values coincide in that subspace in which
the values of the random variable is concentrated—even if elsewhere their values
differ.

Problem 154. [Seb77, exercise 1a–3 on p. 13] Let x = [x1, . . . , xn]
> be a vector

of random variables, and let y1 = x1 and yi = xi − xi−1 for i = 2, 3, . . . , n. What
must the dispersion matrix V [x] be so that the yi are uncorrelated with each other
and each have unit variance?
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Answer. cov[xi, xj ] = min(i, j).

y = Ax with A =




1 0 0 0 0
−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1




A−1 =




1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1


 and A−1(A−1)> = (A>A)−1 =




1 1 1 1 1
1 2 2 2 2
1 2 3 3 3
1 2 3 4 4
1 2 3 4 5




�

9.2. Means and Variances of Quadratic Forms in Random Matrices

9.2.1. Expected Value of Quadratic Form.

Theorem 9.2.1. Assume E [y] = η, V[y] = σ2Ψ, and A is a matrix of constants.
Then

(9.2.1) E[y>Ay] = σ2 tr(AΨ) + η>Aη.

Proof. Write y as the sum of η and ε = y − η; then

y>Ay = (ε + η)>A(ε + η)(9.2.2)

= ε>Aε + ε>Aη + η>Aε + η>Aη(9.2.3)

η>Aη is nonstochastic, and since E [ε] = o it follows

E[y>Ay] − η>Aη = E[ε>Aε](9.2.4)

= E[tr(ε>Aε)] = E[tr(Aεε>)] = tr(A E [εε>])(9.2.5)

= σ2 tr(AΨ).(9.2.6)

Here we used that tr(AB) = tr(BA) and, if c is a scalar, i.e., a 1 × 1 matrix, then
tr(c) = c. �

In tile notation (see Appendix B), the proof of theorem 9.2.1 is much more
straightforward and no longer seems to rely on “tricks.” From y ∼ (η,ΣΣΣ), i.e., we
are writing now σ2Ψ = ΣΣΣ, follows E [yy>] = ηη> + ΣΣΣ, therefore

(9.2.7) E
[ y

y

]
=

η

η

+ ΣΣΣ ; therefore
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(9.2.8) E
[ y

A

y

]
= E

[ y

A

y

]
=

η

A

η

+ ΣΣΣ A .

Problem 155. [Seb77, Exercise 1b–2 on p. 16] If y1,y2, . . . ,yn are mutually in-
dependent random variables with commom mean η, and with variances σ2

1 , σ
2
2 , . . . , σ

2
n,

respectively, prove that

(9.2.9)
1

n(n− 1)

∑

i

(yi − ȳ)2

is an unbiased estimator of var[ȳ]. It is recommended to use theorem 9.2.1 for this.

Answer. Write y =
[
y1 y2 . . . yn

]>
and ΣΣΣ = diag(

[
σ2
1 σ2

2 . . . σ2
n

]
). Then the

vector
[
y1 − ȳ y2 − ȳ . . . yn − ȳ>

]
can be written as (I − 1

n
ιι>)y. 1

n
ιι> is idempotent,

therefore D = I − 1
n

ιι> is idempotent too. Our estimator is 1
n(n−1)

y>Dy, and since the mean

vector η = ιη satisfies Dη = o, theorem 9.2.1 gives

E[y>Dy] = tr[DΣΣΣ] = tr[ΣΣΣ] − 1

n
tr[ιι>ΣΣΣ](9.2.10)

= (σ2
1 + · · · + σ2

n) − 1

n
tr[ι>ΣΣΣι](9.2.11)

=
n− 1

n
(σ2

1 + · · · + σ2
n).(9.2.12)

Divide this by n(n− 1) to get (σ2
1 + · · · + σ2

n)/n2, which is var[ȳ], as claimed. �

For the variances of quadratic forms we need the third and fourth moments of
the underlying random variables.

Problem 156. Let µi = E[(y −E[y])i] be the ith centered moment of y, and let
σ =

√
µ2 be its standard deviation. Then the skewness is defined as γ1 = µ3/σ

3, and

kurtosis is γ2 = (µ4/σ
4)− 3. Show that skewness and kurtosis of ay + b are equal to

those of y if a > 0; for a < 0 the skewness changes its sign. Show that skewness γ1

and kurtosis γ2 always satisfy

(9.2.13) γ2
1 ≤ γ2 + 2.

Answer. Define ε = y − µ, and apply Cauchy-Schwartz for the variables ε and ε2:

(9.2.14) (σ3γ1)2 = (E[ε3])2 =
(
cov[ε, ε2]

)2 ≤ var[ε] var[ε2] = σ6(γ2 + 2)

�

Problem 157. Show that any real numbers γ1 and γ2 satisfying (9.2.13) can be
the skewness and kurtosis of a random variable.
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Answer. To show that all combinations satisfying this inequality are possible, define

r =
√
γ2 + 3 − 3γ2

1/4 a = r + γ1/2 b = r − γ1/2

and construct a random variable x which assumes the following three values:

(9.2.15) x =




a with probability 1/2ar

0 with probability 1/(γ2 + 3 − γ2
1 ),

−b with probability 1/2br

This variable has expected value zero, variance 1, its third moment is γ1, and its fourth moment
γ2 + 3.

�

Theorem 9.2.2. Given a random vector ε of independent variables εi with zero
expected value E[εi] = 0, and whose second and third moments are identical. Call
var[εi] = σ2, and E[ε3

i ] = σ3γ1 (where σ is the positive square root of σ2). Here γ1 is
called the skewness of these variables. Then the following holds for the third mixed
moments:

(9.2.16) E[εiεjεk ] =

{
σ3γ1 if i = j = k

0 otherwise

and from (9.2.16) follows that for any n× 1 vector a and symmetric n× n matrices
C whose vector of diagonal elements is c,

(9.2.17) E[(a>ε)(ε>Cε)] = σ3γ1a
>c.

Proof. If i 6= j 6= k 6= i, then E[εiεjεk ] = 0 · 0 · 0 = 0; if i = j 6= k then
E[εiεjεk] = σ2 · 0 = 0, same for i 6= j = k and j 6= i = k. Therefore only E[ε3

i ]
remains, which proves (9.2.16). Now

(a>ε)(ε>Cε) =
∑

i,j,k

aicjkεiεjεk(9.2.18)

E[a>εε>Cε] = σ3γ1

∑

i

aicii = σ3γ1a
>c.(9.2.19)

One would like to have a matrix notation for (9.2.16) from which (9.2.17) follows by
a trivial operation. This is not easily possible in the usual notation, but it is possible
in tile notation:

E
[

ε

ε ε

]
= γ1σ

3 ∆ .(9.2.20)
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Therefore

E
[

a

ε

ε ε

C

]
= γ1σ

3

a

∆

C

(9.2.21)

Since n ∆ C is the vector of diagonal elements of C, called c, the last term

in equation (9.2.21) is the scalar product a>c. �

Given a random vector ε of independent variables εi with zero expected value
E[εi] = 0 and identical second and fourth moments. Call var[εi] = σ2 and E[ε4

i ] =
σ4(γ2+3), where γ2 is the kurtosis. Then the following holds for the fourth moments:

(9.2.22) E[εiεjεkεl] =





σ4(γ2 + 3) if i = j = k = l

σ4 if i = j 6= k = l or i = k 6= j = l

or i = l 6= j = k

0 otherwise.

It is not an accident that (9.2.22) is given element by element and not in matrix
notation. It is not possible to do this, not even with the Kronecker product. But it
is easy in tile notation:

(9.2.23) E
[ ε ε

ε ε

]
= σ4 + σ4 + σ4 + γ2σ

4 ∆

Problem 158. [Seb77, pp. 14–16 and 52] Show that for any symmetric n × n
matrices A and B, whose vectors of diagonal elements are a and b,

(9.2.24) E[(ε>Aε)(ε>Bε)] = σ4
(
trA tr B + 2 tr(AB) + γ2a

>b
)
.
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Answer. (9.2.24) is an immediate consequence of (9.2.23); this step is now trivial due to
linearity of the expected value:

E
[

A

ε ε

ε ε

B

]
= σ4

A

B

+ σ4

A

B

+ σ4

A

B

+ γ2σ
4

A

∆

B

The first term is tr AB. The second is tr AB>, but since A and B are symmetric, this is equal
to trAB. The third term is tr A tr B. What is the fourth term? Diagonal arrays exist with any
number of arms, and any connected concatenation of diagonal arrays is again a diagonal array, see
(B.2.1). For instance,

(9.2.25) ∆ =

∆

∆

.

From this together with (B.1.4) one can see that the fourth term is the scalar product of the diagonal
vectors of A and B. �

Problem 159. Under the conditions of equation (9.2.23) show that

(9.2.26) cov[ε>Cε, ε>Dε] = σ4γ2c
>d + 2σ4 tr(CD).

Answer. Use cov[ε>Cε, ε>Dε] = E[(ε>Cε)(ε>Dε)] − E[ε>Cε] E[ε>Dε]. The first term is
given by (9.2.24). The second term is σ4 trC tr D, according to (9.2.1). �

Problem 160. (Not eligible for in-class exams) Take any symmetric matrix A

and denote the vector of diagonal elements by a. Let x = θ + ε where ε satisfies the
conditions of theorem 9.2.2 and equation (9.2.23). Then

(9.2.27) var[x>Ax] = 4σ2θ>A2θ + 4σ3γ1θ
>Aa + σ4

(
γ2a

>a + 2 tr(A2)
)
.

Answer. Proof: var[x>Ax] = E[(x>Ax)2] − (E[x>Ax])2. Since by assumption V[x] = σ2I,

the second term is, by theorem 9.2.1, (σ2 tr A + θ>Aθ)2. Now look at first term. Again using the
notation ε = x − θ it follows from (9.2.3) that

(x>Ax)2 = (ε>Aε)2 + 4(θ>Aε)2 + (θ>Aθ)2(9.2.28)

+ 4 ε>Aε θ>Aε + 2 ε>Aε θ>Aθ + 4 θ>Aε θ>Aθ.(9.2.29)
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We will take expectations of these terms one by one. Use (9.2.24) for first term:

(ε>Aε)2 = σ4
(
γ2a>a + (tr A)2 + 2 tr(A2)

)
.(9.2.30)

To deal with the second term in (9.2.29) define b = Aθ; then

(θ>Aε)2 = (b>ε)2 = b>εε>b = tr(b>εε>b) = tr(εε>bb>)(9.2.31)

E[(θ>Aε)2 ] = σ2 tr(bb>) = σ2b>b = σ2θ>A2θ(9.2.32)

The third term is a constant which remains as it is; for the fourth term use (9.2.17)

ε>Aε θ>Aε = ε>Aε b>ε(9.2.33)

E[ε>Aε θ>Aε] = σ3γ1a>b = σ3γ1a>Aθ(9.2.34)

If one takes expected values, the fifth term becomes 2σ2 tr(A) θ>Aθ, and the last term falls away.
Putting the pieces together the statement follows. �



CHAPTER 10

The Multivariate Normal Probability Distribution

10.1. More About the Univariate Case

By definition, z is a standard normal variable, in symbols, z ∼ N(0, 1), if it has
the density function

(10.1.1) fz(z) =
1√
2π
e−

z2

2 .

To verify that this is a density function we have to check two conditions. (1) It is
everywhere nonnegative. (2) Its integral from −∞ to ∞ is 1. In order to evaluate this
integral, it is easier to work with the independent product of two standard normal

variables x and y; their joint density function is fx,y(x, y) = 1
2π e

− x2+y2

2 . In order to
see that this joint density integrates to 1, go over to polar coordinates x = r cosφ,
y = r sinφ, i.e., compute the joint distribution of r and φ from that of x and y: the
absolute value of the Jacobian determinant is r, i.e., dx dy = r dr dφ, therefore

(10.1.2)

∫ y=∞

y=−∞

∫ x=∞

x=−∞

1

2π
e−

x2+y2

2 dx dy =

∫ 2π

φ=0

∫ ∞

r=0

1

2π
e−

r2

2 r dr dφ.

By substituting t = r2/2, therefore dt = r dr, the inner integral becomes − 1
2π e

−t∣∣∞
0

=
1
2π ; therefore the whole integral is 1. Therefore the product of the integrals of the
marginal densities is 1, and since each such marginal integral is positive and they are
equal, each of the marginal integrals is 1 too.

Problem 161. 6 points The Gamma function can be defined as Γ(r) =
∫∞
0 xr−1e−x dx.

Show that Γ( 1
2 ) =

√
π. (Hint: after substituting r = 1/2, apply the variable transfor-

mation x = z2/2 for nonnegative x and z only, and then reduce the resulting integral
to the integral over the normal density function.)

Answer. Then dx = z dz, dx√
x

= dz
√

2. Therefore one can reduce it to the integral over the

normal density:

(10.1.3)

∫ ∞

0

1√
x
e−x dx =

√
2

∫ ∞

0

e−z
2/2 dz =

1√
2

∫ ∞

−∞
e−z

2/2 dz =

√
2π√
2

=
√
π.

�
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A univariate normal variable with mean µ and variance σ2 is a variable x whose
standardized version z = x−µ

σ ∼ N(0, 1). In this transformation from x to z, the

Jacobian determinant is dz
dx = 1

σ ; therefore the density function of x ∼ N(µ, σ2) is
(two notations, the second is perhaps more modern:)

(10.1.4) fx(x) =
1√

2πσ2
e−

(x−µ)2

2σ2 = (2πσ2)−1/2 exp
(
−(x− µ)2/2σ2

)
.

Problem 162. 3 points Given n independent observations of a Normally dis-
tributed variable y ∼ N(µ, 1). Show that the sample mean ȳ is a sufficient statis-
tic for µ. Here is a formulation of the factorization theorem for sufficient statis-
tics, which you will need for this question: Given a family of probability densities
fy(y1, . . . , yn; θ) defined on R

n, which depend on a parameter θ ∈ Θ. The statistic
T : R

n → R, y1, . . . , yn 7→ T (y1, . . . , yn) is sufficient for parameter θ if and only if
there exists a function of two variables g : R×Θ → R, t, θ 7→ g(t; θ), and a function
of n variables h : R

n → R, y1, . . . , yn 7→ h(y1, . . . , yn) so that

(10.1.5) fy(y1, . . . , yn; θ) = g
(
T (y1, . . . , yn); θ

)
· h(y1, . . . , yn).

Answer. The joint density function can be written (factorization indicated by ·):
(10.1.6)

(2π)−n/2 exp
(
−1

2

n∑

i=1

(yi−µ)2
)

= (2π)−n/2 exp
(
−1

2

n∑

i=1

(yi−ȳ)2
)
·exp
(
−n

2
(ȳ−µ)2

)
= h(y1, . . . , yn)·g(ȳ;µ).

�

10.2. Definition of Multivariate Normal

The multivariate normal distribution is an important family of distributions with
very nice properties. But one must be a little careful how to define it. One might
naively think a multivariate Normal is a vector random variable each component
of which is univariate Normal. But this is not the right definition. Normality of
the components is a necessary but not sufficient condition for a multivariate normal

vector. If u =

[
x

y

]
with both x and y multivariate normal, u is not necessarily

multivariate normal.
Here is a recursive definition from which one gets all multivariate normal distri-

butions:
(1) The univariate standard normal z, considered as a vector with one compo-

nent, is multivariate normal.

(2) If x and y are multivariate normal and they are independent, then u =

[
x

y

]

is multivariate normal.
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(3) If y is multivariate normal, and A a matrix of constants (which need not
be square and is allowed to be singular), and b a vector of constants, then Ay + b

is multivariate normal. In words: A vector consisting of linear combinations of the
same set of multivariate normal variables is again multivariate normal.

For simplicity we will go over now to the bivariate Normal distribution.

10.3. Special Case: Bivariate Normal

The following two simple rules allow to obtain all bivariate Normal random
variables:

(1) If x and y are independent and each of them has a (univariate) normal
distribution with mean 0 and the same variance σ2, then they are bivariate normal.
(They would be bivariate normal even if their variances were different and their
means not zero, but for the calculations below we will use only this special case, which
together with principle (2) is sufficient to get all bivariate normal distributions.)

(2) If x =

[
x

y

]
is bivariate normal and P is a 2 × 2 nonrandom matrix and µ

a nonrandom column vector with two elements, then Px + µ is bivariate normal as
well.

All other properties of bivariate Normal variables can be derived from this.
First let us derive the density function of a bivariate Normal distribution. Write

x =

[
x

y

]
. x and y are independent N(0, σ2). Therefore by principle (1) above the

vector x is bivariate normal. Take any nonsingular 2 × 2 matrix P and a 2 vector

µ =

[
µ
ν

]
, and define

[
u

v

]
= u = Px + µ. We need nonsingularity because otherwise

the resulting variable would not have a bivariate density; its probability mass would
be concentrated on one straight line in the two-dimensional plane. What is the
joint density function of u? Since P is nonsingular, the transformation is on-to-one,
therefore we can apply the transformation theorem for densities. Let us first write
down the density function of x which we know:

(10.3.1) fx,y(x, y) =
1

2πσ2
exp
(
− 1

2σ2
(x2 + y2)

)
.

For the next step, remember that we have to express the old variable in terms
of the new one: x = P −1(u − µ). The Jacobian determinant is therefore J =

det(P −1). Also notice that, after the substitution

[
x
y

]
= P−1

[
u− µ
v − ν

]
, the expo-

nent in the joint density function of x and y is − 1
2σ2 (x2 + y2) = − 1

2σ2

[
x
y

]> [
x
y

]
=
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− 1
2σ2

[
u− µ
v − ν

]>
P−1>P−1

[
u− µ
v − ν

]
. Therefore the transformation theorem of density

functions gives

(10.3.2) fu,v(u, v) =
1

2πσ2

∣∣det(P−1)
∣∣ exp

(
− 1

2σ2

[
u− µ
v − ν

]>
P−1>P−1

[
u− µ
v − ν

])
.

This expression can be made nicer. Note that the covariance matrix of the

transformed variables is V[

[
u

v

]
] = σ2PP> = σ2Ψ, say. Since P−1>P−1PP> = I ,

it follows P −1>P−1 = Ψ−1 and
∣∣det(P−1)

∣∣ = 1/
√

det(Ψ), therefore

(10.3.3) fu,v(u, v) =
1

2πσ2

1√
det(Ψ)

exp
(
− 1

2σ2

[
u− µ
v − ν

]>
Ψ−1

[
u− µ
v − ν

])
.

This is the general formula for the density function of a bivariate normal with non-
singular covariance matrix σ2Ψ and mean vector µ. One can also use the following
notation which is valid for the multivariate Normal variable with n dimensions, with
mean vector µ and nonsingular covariance matrix σ2Ψ:

(10.3.4) fx(x) = (2πσ2)−n/2(detΨ)−1/2 exp
(
− 1

2σ2
(x − µ)>Ψ−1(x − µ)

)
.

Problem 163. 1 point Show that the matrix product of (P −1)>P−1 and PP>

is the identity matrix.

Problem 164. 3 points All vectors in this question are n×1 column vectors. Let
y = α + ε, where α is a vector of constants and ε is jointly normal with E [ε] = o.
Often, the covariance matrix V[ε] is not given directly, but a n×n nonsingular matrix
T is known which has the property that the covariance matrix of Tε is σ2 times the
n× n unit matrix, i.e.,

(10.3.5) V [Tε] = σ2In.

Show that in this case the density function of y is

(10.3.6) fy(y) = (2πσ2)−n/2 |det(T )| exp
(
− 1

2σ2

(
T (y − α)

)>
T (y − α)

)
.

Hint: define z = Tε, write down the density function of z, and make a transforma-
tion between z and y.

Answer. Since E [z] = o and V[z] = σ2In, its density function is (2πσ2)−n/2 exp(−z>z/2σ2).

Now express z, whose density we know, as a function of y, whose density function we want to know.
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z = T (y − α) or

z1 = t11(y1 − α1) + t12(y2 − α2) + · · · + t1n(yn − αn)(10.3.7)

...(10.3.8)

zn = tn1(y1 − α1) + tn2(y1 − α2) + · · · + tnn(yn − αn)(10.3.9)

therefore the Jacobian determinant is det(T ). This gives the result.
�

10.3.1. Most Natural Form of Bivariate Normal Density.

Problem 165. In this exercise we will write the bivariate normal density in its
most natural form. For this we set the multiplicative “nuisance parameter” σ2 = 1,
i.e., write the covariance matrix as Ψ instead of σ2Ψ.

• a. 1 point Write the covariance matrix Ψ = V [

[
u

v

]
] in terms of the standard

deviations σu and σv and the correlation coefficient ρ.

• b. 1 point Show that the inverse of a 2 × 2 matrix has the following form:

(10.3.10)

[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
.

• c. 2 points Show that

q2 =
[
u − µ v − ν

]
Ψ−1

[
u − µ
v − ν

]
(10.3.11)

=
1

1 − ρ2

( (u − µ)2

σ2
u

− 2ρ
u − µ

σu

v − ν

σv

+
(v − ν)2

σ2
v

)
.(10.3.12)

• d. 2 points Show the following quadratic decomposition:

(10.3.13) q2 =
(u − µ)2

σ2
u

+
1

(1 − ρ2)σ2
v

(
v − ν − ρ

σv

σu

(u − µ)
)2

.

• e. 1 point Show that (10.3.13) can also be written in the form

(10.3.14) q2 =
(u − µ)2

σ2
u

+
σ2

u

σ2
uσ

2
v − (σuv)2

(
v − ν − σuv

σ2
u

(u − µ)
)2

.

• f. 1 point Show that d =
√

detΨ can be split up, not additively but multiplica-

tively, as follows: d = σu · σv

√
1− ρ2.
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• g. 1 point Using these decompositions of d and q2, show that the density
function fu,v(u, v) reads
(10.3.15)

1√
2πσ2

u

exp
(
− (u− µ)2

2σ2
u

)
· 1√

2πσ2
v

√
1 − ρ2

exp
(
−
(
(v − ν) − ρ σv

σu
(u− µ)

)2

2(1− ρ2)σ2
v

)
.

The second factor in (10.3.15) is the density of a N(ρ σv

σu
u, (1− ρ2)σ2

v) evaluated
at v, and the first factor does not depend on v. Therefore if I integrate v out to
get the marginal density of u, this simply gives me the first factor. The conditional
density of v given u = u is the joint divided by the marginal, i.e., it is the second
factor. In other words, by completing the square we wrote the joint density function
in its natural form as the product of a marginal and a conditional density function:
fu,v(u, v) = fu(u) · fv|u(v;u).

From this decomposition one can draw the following conclusions:

• u ∼ N(0, σ2
u) is normal and, by symmetry, v is normal as well. Note that u

(or v) can be chosen to be any nonzero linear combination of x and y. Any
nonzero linear transformation of independent standard normal variables is
therefore univariate normal.

• If ρ = 0 then the joint density function is the product of two independent
univariate normal density functions. In other words, if the variables are
normal, then they are independent whenever they are uncorrelated. For
general distributions only the reverse is true.

• The conditional density of v conditionally on u = u is the second term on
the rhs of (10.3.15), i.e., it is normal too.

• The conditional mean is

(10.3.16) E[v|u = u] = ρ
σv

σu

u,

i.e., it is a linear function of u. If the (unconditional) means are not zero,
then the conditional mean is

(10.3.17) E[v|u = u] = µv + ρ
σv

σu

(u− µu).

Since ρ = cov[u,v]
σuσv

, (10.3.17) can als be written as follows:

(10.3.18) E[v|u = u] = E[v] +
cov[u, v]

var[u]
(u− E[u])

• The conditional variance is the same whatever value of u was chosen: its
value is

(10.3.19) var[v|u = u] = σ2
v(1 − ρ2),
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which can also be written as

(10.3.20) var[v|u = u] = var[v] − (cov[u, v])2

var[u]
.

We did this in such detail because any bivariate normal with zero mean has this
form. A multivariate normal distribution is determined by its means and variances
and covariances (or correlations coefficients). If the means are not zero, then the
densities merely differ from the above by an additive constant in the arguments, i.e.,
if one needs formulas for nonzero mean, one has to replace u and v in the above
equations by u− µu and v − µv. du and dv remain the same, because the Jacobian
of the translation u 7→ u − µu, v 7→ v − µv is 1. While the univariate normal was
determined by mean and standard deviation, the bivariate normal is determined by
the two means µu and µv, the two standard deviations σu and σv, and the correlation
coefficient ρ.

10.3.2. Level Lines of the Normal Density.

Problem 166. 8 points Define the angle δ = arccos(ρ), i.e, ρ = cos δ. In terms
of δ, the covariance matrix (??) has the form

(10.3.21) Ψ =

[
σ2

u σuσv cos δ
σuσv cos δ σ2

v

]

Show that for all φ, the vector

(10.3.22) x =

[
r σu cosφ

r σv cos(φ+ δ)

]

satisfies x>Ψ−1x = r2. The opposite holds too, all vectors x satisfying x>Ψ−1x =
r2 can be written in the form (10.3.22) for some φ, but I am not asking to prove
this. This formula can be used to draw level lines of the bivariate Normal density
and confidence ellipses, more details in (??).

Problem 167. The ellipse in Figure 1 contains all the points x, y for which

(10.3.23)
[
x− 1 y − 1

] [ 0.5 −0.25
−0.25 1

]−1 [
x− 1
y − 1

]
≤ 6

• a. 3 points Compute the probability that a random variable

(10.3.24)

[
x

y

]
∼ N

([1
1

]
,

[
0.5 −0.25

−0.25 1

])

falls into this ellipse. Hint: you should apply equation (10.4.9). Then you will have
to look up the values of a χ2 distribution in a table, or use your statistics software
to get it.
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Figure 1. Level Line for Normal Density

• b. 1 point Compute the standard deviations of x and y, and the correlation
coefficient corr(x,y)
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• c. 2 points The vertical tangents to the ellipse in Figure 1 are at the locations
x = 1±

√
3. What is the probability that [ x

y ] falls between these two vertical tangents?

• d. 1 point The horizontal tangents are at the locations y = 1 ±
√

6. What is
the probability that [ x

y ] falls between the horizontal tangents?

• e. 1 point Now take an arbitrary linear combination u = ax+ by. Write down
its mean and its standard deviation.

• f. 1 point Show that the set of realizations x, y for which u lies less than
√

6
standard deviation away from its mean is

(10.3.25) |a(x − 1) + b(y − 1)| ≤
√

6
√
a2 var[x] + 2ab cov[x, y] + b2 var[y].

The set of all these points forms a band limited by two parallel lines. What is the
probability that [ x

y ] falls between these two lines?

• g. 1 point It is our purpose to show that this band is again tangent to the
ellipse. This is easiest if we use matrix notation. Define

(10.3.26) x =

[
x

y

]
µ =

[
1
1

]
Ψ =

[
0.5 −0.25

−0.25 1

]
a =

[
a
b

]

Equation (10.3.23) in matrix notation says: the ellipse contains all the points for
which

(10.3.27) (x − µ)>Ψ−1(x − µ) ≤ 6.

Show that the band defined by inequality (10.3.25) contains all the points for which

(10.3.28)

(
a>(x − µ)

)2

a>Ψa
≤ 6.

• h. 2 points Inequality (10.3.28) can also be written as:

(10.3.29) (x − µ)>a(a>Ψa)−1a>(x − µ) ≤ 6

or alternatively

(10.3.30)
[
x− 1 y − 1

] [a
b

]([
a b

]
Ψ−1

[
a
b

])−1
[
x− 1
y − 1

] [
a b

]
≤ 6.

Show that the matrix

(10.3.31) ΩΩΩ = Ψ−1 − a(a>Ψa)−1a>

satisfies ΩΩΩΨΩΩΩ = ΩΩΩ. Derive from this that ΩΩΩ is nonnegative definite. Hint: you may
use, without proof, that any symmetric matrix is nonnegative definite if and only if
it can be written in the form RR>.

• i. 1 point As an aside: Show that ΩΩΩΨa = o and derive from this that ΩΩΩ is not
positive definite but only nonnegative definite.
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• j. 1 point Show that the following inequality holds for all x − µ,

(10.3.32) (x − µ)>Ψ−1(x − µ) ≥ (x − µ)>a(a>Ψa)−1a>(x − µ).

In other words, if x lies in the ellipse then it also lies in each band. I.e., the ellipse
is contained in the intersection of all the bands.

• k. 1 point Show: If x−µ = Ψaα with some arbitrary scalar α, then (10.3.32)

is an equality, and if α = ±
√

6/a>Ψa, then both sides in (10.3.32) have the value 6.
I.e., the boundary of the ellipse and the boundary lines of the band intersect. Since
the ellipse is completely inside the band, this can only be the case if the boundary
lines of the band are tangent to the ellipse.

• l. 2 points The vertical lines in Figure 1 which are not tangent to the ellipse
delimit a band which, if extended to infinity, has as much probability mass as the
ellipse itself. Compute the x-coordinates of these two lines.

10.3.3. Miscellaneous Exercises.

Problem 168. Figure 2 shows the level line for a bivariate Normal density which
contains 95% of the probability mass.

• a. 3 points One of the following matrices is the covariance matrix of

[
x

y

]
. Ψ1 =

[
0.62 −0.56
−0.56 1.04

]
, Ψ2 =

[
1.85 1.67
1.67 3.12

]
, Ψ3 =

[
0.62 0.56
0.56 1.04

]
, Ψ4 =

[
1.85 −1.67
1.67 3.12

]
,

Ψ5 =

[
3.12 −1.67
−1.67 1.85

]
, Ψ6 =

[
1.04 0.56
0.56 0.62

]
, Ψ7 =

[
3.12 1.67
1.67 1.85

]
, Ψ8 =

[
0.62 0.81
0.81 1.04

]
,

Ψ9 =

[
3.12 1.67
2.67 1.85

]
, Ψ10 =

[
0.56 0.62
0.62 −1.04

]
. Which is it? Remember that for a uni-

variate Normal, 95% of the probability mass lie within ±2 standard deviations from
the mean. If you are not sure, cross out as many of these covariance matrices as
possible and write down why you think they should be crossed out.

Answer. Covariance matrix must be symmetric, therefore we can cross out 4 and 9. It must
also be nonnegative definite (i.e., it must have nonnegative elements in the diagonal), therefore
cross out 10, and a nonnegative determinant, therefore cross out 8. Covariance must be positive, so
cross out 1 and 5. Variance in x-direction is smaller than in y-direction, therefore cross out 6 and
7. Remains 2 and 3.

Of these it is number 3. By comparison with Figure 1 one can say that the vertical band
between 0.4 and 2.6 and the horizontal band between 3 and -1 roughly have the same probability
as the ellipse, namely 95%. Since a univariate Normal has 95% of its probability mass in an
interval centered around the mean which is 4 standard deviations long, standard deviations must
be approximately 0.8 in the horizontal and 1 in the vertical directions.

Ψ1 is negatively correlated; Ψ2 has the right correlation but is scaled too big; Ψ3 this is it; Ψ4

not symmetric; Ψ5 negatively correlated, and x has larger variance than y; Ψ6 x has larger variance
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than y; Ψ7 too large, x has larger variance than y; Ψ8 not positive definite; Ψ9 not symmetric;
Ψ10 not positive definite.

�

The next Problem constructs a counterexample which shows that a bivariate dis-
tribution, which is not bivariate Normal, can nevertheless have two marginal densities
which are univariate Normal.

Problem 169. Let x and y be two independent standard normal random vari-
ables, and let u and v be bivariate normal with mean zero, variances σ2

u = σ2
v = 1,

and correlation coefficient ρ 6= 0. Let fx,y and fu,v be the corresponding density
functions, i.e.,

fx,y(a, b) =
1

2π
exp(−a

2 + b2

2
) fu,v(a, b) =

1

2π
√

1 − ρ2
exp(−a2 + b2 − 2ρa

b

2(1− ρ2)
).
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Figure 2. Level Line of Bivariate Normal Density, see Problem 168

148 10. MULTIVARIATE NORMAL

Assume the random variables a and b are defined by the following experiment: You
flip a fair coin; if it shows head, then you observe x and y and give a the value
observed on x, and b the value observed of y. If the coin shows tails, then you
observe u and v and give a the value of u, and b the value of v.

• a. Prove that the joint density of a and b is

(10.3.33) fa,b(a, b) =
1

2
fx,y(a, b) +

1

2
fu,v(a, b).

Hint: first show the corresponding equation for the cumulative distribution functions.

Answer. Following this hint:

Fa,b(a, b) = Pr[a ≤ a and b ≤ b] =(10.3.34)

= Pr[a ≤ a and b ≤ b|head]Pr[head] + Pr[a ≤ a and b ≤ b|tail] Pr[tail](10.3.35)

= Fx,y(a, b)
1

2
+ Fu,v(a, b)

1

2
.(10.3.36)

The density function is the function which, if integrated, gives the above cumulative distribution
function. �

• b. Show that the marginal distribution of a and b each is normal.

Answer. You can either argue it out: each of the above marginal distributions is standard
normal, but you can also say integrate b out; for this it is better to use form (10.3.15) for fu,v, i.e.,
write

(10.3.37) fu,v(a, b) =
1√
2π

exp

(
−a

2

2

)
· 1
√

2π
√

1 − ρ2
exp

(
− (b − ρa)2

2(1 − ρ2)

)
.

Then you can see that the marginal is standard normal. Therefore you get a mixture of two
distributions each of which is standard normal, therefore it is not really a mixture any more. �

• c. Compute the density of b conditionally on a = 0. What are its mean and
variance? Is it a normal density?

Answer. Fb|a(b; a) =
fa,b(a,b)

fa(a)
. We don’t need it for every a, only for a = 0. Since fa(0) =

1/
√

2π, therefore

(10.3.38) fb|a=0(b) =
√

2πfa,b(0, b) =
1

2

1√
2π

exp
−b2
2

+
1

2

1
√

2π
√

1 − ρ2
exp

−b2
2(1 − ρ2)

.

It is not normal, it is a mixture of normals with different variances. This has mean zero and variance
1
2
(1 + (1 − ρ2)) = 1 − 1

2
ρ2. �

• d. Are a and b jointly normal?

Answer. Since the conditional distribution is not normal, they cannot be jointly normal. �



10.4. MULTIVARIATE STANDARD NORMAL IN HIGHER DIMENSIONS 149

Problem 170. This is [HT83, 4.8-6 on p. 263] with variance σ2 instead of 1:
Let x and y be independent normal with mean 0 and variance σ2. Go over to polar
coordinates r and φ, which satisfy

x = r cosφ

y = r sinφ.
(10.3.39)

• a. 1 point Compute the Jacobian determinant.

Answer. Express the variables whose density you know in terms of those whose density you
want to know. The Jacobian determinant is

(10.3.40) J =

∣∣∣∣
∂x
∂r

∂x
∂φ

∂y

∂r

∂y

∂φ

∣∣∣∣ =

∣∣∣∣
cos φ −r sinφ
sinφ r cosφ

∣∣∣∣ =
(
(cos φ)2 + (sinφ)2

)
r = r.

�

• b. 2 points Find the joint probability density function of r and φ. Also indicate
the area in (r, φ) space in which it is nonzero.

Answer. fx,y(x, y) = 1
2πσ2 e

−(x2+y2)/2σ2
; therefore fr,φ(r, φ) = 1

2πσ2 re
−r2/2σ2

for 0 ≤ r <

∞ and 0 ≤ φ < 2π. �

• c. 3 points Find the marginal distributions of r and φ. Hint: for one of the
integrals it is convenient to make the substitution q = r2/2σ2.

Answer. fr(r) = 1
σ2 re

−r2/2σ2
for 0 ≤ r < ∞, and fφ(φ) = 1

2π
for 0 ≤ φ < 2π. For the latter

we need 1
2πσ2

∫∞
0

re−r
2/2σ2

dr = 1
2π

, set q = r2/2σ2 , then dq = 1
σ2 r dr, and the integral becomes

1
2π

∫∞
0

e−q dq. �

• d. 1 point Are r and φ independent?

Answer. Yes, because joint density function is the product of the marginals. �

10.4. Multivariate Standard Normal in Higher Dimensions

Here is an important fact about the multivariate normal, which one cannot see in

two dimensions: if the partitioned vector

[
x

y

]
is jointly normal, and every component

of x is independent of every component of y, then the vectors x and y are already
independent. Not surprised? You should be, see Problem 136.

Let’s go back to the construction scheme at the beginning of this chapter. First
we will introduce the multivariate standard normal, which one obtains by applying
only operations (1) and (2), i.e., it is a vector composed of independent univariate
standard normals, and give some properties of it. Then we will go over to the
multivariate normal with arbitrary covariance matrix, which is simply an arbitrary
linear transformation of the multivariate standard normal. We will always carry the
“nuisance parameter” σ2 along.
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Definition 10.4.1. The random vector z is said to have a multivariate standard
normal distribution with variance σ2, written as z ∼ N(o, σ2I), if each element zi is
a standard normal with same variance σ2, and all elements are mutually independent
of each other. (Note that this definition of the standard normal is a little broader
than the usual one; the usual one requires that σ2 = 1.)

The density function of a multivariate standard normal z is therefore the product
of the univariate densities, which gives fx(z) = (2πσ2)−n/2 exp(−z>z/2σ2).

The following property of the multivariate standard normal distributions is basic:

Theorem 10.4.2. Let z be multivariate standard normal p-vector with variance
σ2, and let P be a m × p matrix with PP > = I. Then x = Pz is a multivariate
standard normal m-vector with the same variance σ2, and z>z − x>x ∼ σ2χ2

p−m
independent of x.

Proof. PP > = I means all rows are orthonormal. If P is not square, it
must therefore have more columns than rows, and one can add more rows to get an

orthogonal square matrix, call it T =

[
P

Q

]
. Define y = Tz, i.e., z = T>y. Then

z>z = y>TT>y = y>y, and the Jacobian of the transformation from y to z has ab-
solute value one. Therefore the density function of y is (2πσ2)−n/2 exp(−y>y/2σ2),
which means y is standard normal as well. In other words, every yi is univariate stan-
dard normal with same variance σ2 and yi is independent of yj for i 6= j. Therefore
also any subvector of y, such as x, is standard normal. Since z>z−x>x = y>y−x>x

is the sum of the squares of those elements of y which are not in x, it follows that it
is an independent σ2χ2

p−m. �

Problem 171. Show that the moment generating function of a multivariate stan-
dard normal with variance σ2 is mz(t) = E [exp(t>z)] = exp(σ2t>t/2).

Answer. Proof: The moment generating function is defined as

mz(t) = E[exp(t>z)](10.4.1)

= (2πσ2)n/2
∫

· · ·
∫

exp(− 1

2σ2
z>z) exp(t>z) dz1 · · · dzn(10.4.2)

= (2πσ2)n/2
∫

· · ·
∫

exp(− 1

2σ2
(z − σ2t)>(z − σ2t) +

σ2

2
t>t) dz1 · · · dzn(10.4.3)

= exp(
σ2

2
t>t) since first part of integrand is density function.(10.4.4)

�

Theorem 10.4.3. Let z ∼ N(o, σ2I), and P symmetric and of rank r. A neces-
sary and sufficient condition for q = z>Pz to have a σ2χ2 distribution is P 2 = P .
In this case, the χ2 has r degrees of freedom.
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Proof of sufficiency: If P 2 = P with rank r, then a matrix T exists with P =
T>T and TT> = I . Define x = Tz; it is standard normal by theorem 10.4.2.
Therefore q = z>T>T z =

∑r
i=1 x2.

Proof of necessity by construction of the moment generating function of q =
z>Pz for arbitrary symmetric P with rank r. Since P is symmetric, there exists a
T with TT> = Ir and P = T>ΛT where Λ is a nonsingular diagonal matrix, write
it Λ = diag(λ1, . . . , λr). Therefore q = z>T>ΛTz = x>Λx =

∑r
i=1 λix

2
i where

x = Tz ∼ N(o, σ2Ir). Therefore the moment generating function

E[exp(qt)] = E[exp(t

r∑

i=1

λix
2
i )](10.4.5)

= E[exp(tλ1x
2
1)] · · ·E[exp(tλrx

2
r)](10.4.6)

= (1 − 2λ1σ
2t)−1/2 · · · (1 − 2λrσ

2t)−1/2.(10.4.7)

By assumption this is equal to (1 − 2σ2t)−k/2 with some integer k ≥ 1. Taking
squares and inverses one obtains

(10.4.8) (1 − 2λ1σ
2t) · · · (1 − 2λrσ

2t) = (1 − 2σ2t)k.

Since the λi 6= 0, one obtains λi = 1 by uniqueness of the polynomial roots. Fur-
thermore, this also implies r = k.

From Theorem 10.4.3 one can derive a characterization of all the quadratic forms
of multivariate normal variables with arbitrary covariance matrices that are χ2’s.
Assume y is a multivariate normal vector random variable with mean vector µ and
covariance matrix σ2Ψ, and ΩΩΩ is a symmetric nonnegative definite matrix. Then
(y − µ)>ΩΩΩ(y − µ) ∼ σ2χ2

k iff

(10.4.9) ΨΩΩΩΨΩΩΩΨ = ΨΩΩΩΨ,

and k is the rank of ΨΩΩΩ.
Here are the three best known special cases (with examples):

• Ψ = I (the identity matrix) and ΩΩΩ2 = ΩΩΩ, i.e., the case of theorem 10.4.3.
This is the reason why the minimum value of the SSE has a σ2χ2 distribu-
tion, see (35.0.10).

• Ψ nonsingular and ΩΩΩ = Ψ−1. The quadratic form in the exponent of
the normal density function is therefore a χ2; one needs therefore the χ2

to compute the probability that the realization of a Normal is in a given
equidensity-ellipse (Problem 167).

• Ψ singular and ΩΩΩ = Ψ−, its g-inverse. The multinomial distribution has
a singular covariance matrix, and equation (15.4.2) gives a convenient g-
inverse which enters the equation for Pearson’s goodness of fit test.

Here are, without proof, two more useful theorems about the standard normal:
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Theorem 10.4.4. Let x a multivariate standard normal. Then x>Px is inde-
pendent of x>Qx if and only if PQ = O.

This is called Craig’s theorem, although Craig’s proof in [Cra43] is incorrect.
Kshirsagar [Ksh19, p. 41] describes the correct proof; he and Seber [Seb77] give
Lancaster’s book [Lan69] as basic reference. Seber [Seb77] gives a proof which is
only valid if the two quadratic forms are χ2.

The next theorem is known as James’s theorem, it is a stronger version of
Cochrane’s theorem. It is from Kshirsagar [Ksh19, p. 41].

Theorem 10.4.5. Let x be p-variate standard normal with variance σ2, and

x>x =
∑k

i=1 x>P ix. Then for the quadratic forms x>P ix to be independently dis-
tributed as σ2χ2, any one of the following three equivalent conditions is necessary
and sufficient:

P 2
i = P i for all i(10.4.10)

P iP j = O i 6= j(10.4.11)

k∑

i=1

rank(P i) = p(10.4.12)

10.5. Higher Moments of the Multivariate Standard Normal

For the definition of skewness and kurtosis see question 156

Problem 172. Show that, if z is a standard normal scalar variable, then skew-
ness and kurtosis are both zero: γ1 = γ2 = 0.

Answer. To compute the kurtosis of a standard Normal z ∼ N(0, 1), define u = z3 and
v = exp(−z2/2), therefore v′ = −z exp(−z2/2). Then
(10.5.1)

E[z4] =
1√
2π

∫
z4 exp− z

2

2
dz =

1√
2π

∫
uv′ dz =

1√
2π
uv

∣∣∣
∞

−∞
− 1√

2π

∫
u′v dz = 0+

3√
2π

∫
z2 exp(−z2/2) dz = 3

since the last integral is just the variance of the standard normal.
�

I will give a brief overview in tile notation of the higher moments of the mul-
tivariate standard normal z. All odd moments disappear, and the fourth moments
are

(10.5.2) E
[ z z

z z

]
= + +
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Compared with (9.2.23), the last term, which depends on the kurtosis, is missing.
What remains is a sum of outer products of unit matrices, with every possibility
appearing exactly once. In the present case, it happens to be possible to write down
the four-way arrays in (10.5.2) in terms of Kronecker products and the commutation

matrix K(n,n) introduced in (B.5.21): It is

(10.5.3) E [(zz>) ⊗ (zz>)] = In2 + K(n,n) + (vec[In])(vec[In])>

Compare [Gra83, 10.9.2 on p. 361]. Here is a proof of (10.5.3) in tile notation:

(10.5.4) E
[

Π

z z

z z

Π

]
=

Π

Π

+

Π

Π

+

Π

Π

The first term is In2 due to (B.5.26), the second is K(n,n) due to (B.5.35), and the
third is (vec[In])(vec[In])

> because of (B.5.24). Graybill [Gra83, p. 312] considers
it a justification of the interest of the commutation matrix that it appears in the
higher moments of the standard normal. In my view, the commutation matrix is
ubiquitous only because the Kronecker-notation blows up something as trivial as the
crossing of two arms into a mysterious-sounding special matrix.

It is much easier to work with (10.5.2) without the detour over Kronecker prod-
ucts:

Problem 173. [Gra83, 10.9.10 (1) on p. 366] Show that for symmetric A and
B E[z>Az z>Bz] = 2 tr(AB) + tr(A) tr(B).

Answer. This is (9.2.24) in the case of zero kurtosis, but here is a direct proof based on
(10.5.2):

E
[

A

z z

z z

B

]
=

A

B

+

A

B

+

A

B

�
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If one takes the variance-covariance matrix, which should in tile notation always
be written with a C, so that one knows which arms stick out in which direction, then
the third term in (10.5.2) falls away:

C
[

z z , z z

]
= E

[ z z

z z

]
− E

[
z z

]
E
[

z z

]

= +

The sixth moments of the standard normal, in analogy to the fourth, are the
sum of all the different possible outer products of unit matrices:

(10.5.5) E
[ z z z

z z z

]
= + +

+ + + + +

+ + + + +

+ + + + .

Here is the principle how these were written down: Fix one branch, here the South-
west branch. First combine the Southwest branch with the Northwest one, and then
you have three possibilities to pair up the others as in (10.5.2). Next combine the
Southwest branch with the North branch, and you again have three possibilities for
the others. Etc. This gives 15 possibilities altogether.

This can no longer be written as a Kronecker product, see [Gra83, 10.9.4 (3)
on p. 363]. However (10.5.5) can be applied directly, for instance in order to show
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(10.5.6), which is [Gra83, 10.9.12 (1) on p. 368]:

(10.5.6) E[(z>Az)(z>Bz)(z>Cz)] = tr(A) tr(B) tr(C) + 2 tr(A) tr(BC)

+ 2 tr(B) tr(AC) + 2 tr(C) tr(AB) + 8 tr(ABC).

Problem 174. Assuming that A, B, and C are symmetric matrices, prove
(10.5.6) in tile notation.

Answer.

(10.5.7) E
[

A

z z z

B

z z z

C

]
=

=

A

B

C

+

A

B

C

+

A

B

C

+

+

A

B

C

+

A

B

C

+

A

B

C

+

+

A

B

C

+

A

B

C

+

A

B

C

+
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+

A

B

C

+

A

B

C

+

A

B

C

+

+

A

B

C

+

A

B

C

+

A

B

C

.

These 15 summands are, in order, tr(B) tr(AC), tr(ABC) twice, tr(B) tr(AC), tr(ABC) four
times, tr(A) tr(BC), tr(ABC) twice, tr(A) tr(BC), tr(C) tr(AB) twice, and tr(A) tr(B) tr(C).

�

10.6. The General Multivariate Normal

Definition 10.6.1. The random vector y is multivariate normal if and only if
there is a multivariate standard normal variable z, a nonstochastic matrix C, and a
nonstochastic vector c with y = Cz + c.

In this case, clearly, E [y] = c and V [y] = σ2CC>, where σ2 is the variance of
the standard normal.

We will say: the vector is multivariate normal, and its elements or subvectors

are jointly normal, i.e., x and y are jointly normal if and only if

[
x

y

]
is multivariate

normal. This is not transitive. If x and y are jointly normal and y and z are, then
x and z need not be. And even if all three pairs are jointly normal, this does not
mean they are multivariate normal.

Theorem 10.6.2. The distribution of a multivariate normal variable is fully
determined by its expected value and dispersion matrix. Therefore the notation y ∼
N(θ, σ2ΣΣΣ).

For the proof we will use the following theorem: The distribution of a random
variable y is fully characterized by the univariate distributions of all a>y for all
vectors a. A proof can be found in [Rao73, p. 517].
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Assume u = Cx+ c and v = Dz+d where x and z are standard normal, and u

and v have equal mean and variances, i.e., c = d and CC> = DD>. We will show
that u and v or, equivalently, Cx and Dz are identically distributed, by verifying
that for every vector a, the distribution of a>Cx is the same as the distribution of
a>Dz. There are two cases: either a>C = o> ⇒ a>CC> = o> ⇒ a>DD> =
o> ⇒ a>D = o>, therefore a>Cx and a>Dz have equal distributions degenerate
at zero. Now if a>C 6= o>, then without loss of generality one can restrict oneself
to the a with a>CC>a = 1, therefore also a>DD>a = 1. By theorem 10.4.2, both
a>Cx and a>Dy are standard normal.

Theorem 10.6.3. If

[
x

y

]
is multivariate normal and C[x,y] = O, then x and y

are independent.

Proof. Let µ = E [x] and ν = E [y], and A and B two matrices with AA> =

V[x] and BB> = V [y], and let u and v independent standard normal variables.

Then

[
x

y

]
has the same distribution as

(10.6.1)

[
A O

O B

] [
u

v

]
+

[
µ

ν

]
.

Since u and v are independent, x and y are also independent. �

Problem 175. Show that, if y ∼ Nn(θ, σ
2ΣΣΣ), then

(10.6.2) Dy + d ∼ Nk(Dθ + d, σ2DΣΣΣD>)

Answer. Follows immediately from our definition of a multivariate normal. �

Theorem 10.6.4. Let y ∼ N(θ, σ2ΣΣΣ). Then one can find two matrices B and
D so that z = B(y − θ) is standard normal, and y = Dz + θ.

Proof. According to theorem A.9.1, a T exists with ΣΣΣ = T>ΛT , where Λ is a
positive definite diagonal matrix, and TT> = Ik, where k is the rank of ΣΣΣ. Define

D = T>Λ1/2 and B = Λ−1/2T . Since y is multivariate normal, it can be written
in the form y = Cx + θ for some standard normal x, where CC> = ΣΣΣ. Therefore
z = B(y − θ) = BCx; this is standard normal because x is and
(10.6.3)

BCC>B> = Λ−1/2TCC>T>Λ−1/2 = Λ−1/2TΣΣΣT>Λ−1/2 = Λ−1/2TT>ΛT T>Λ−1/2 = Λ−1/2ΛΛ−1/2 = I .

We still have to show that Dz+θ = y. Plugging in gives Dz+θ = DB(y−θ)+θ =

T>Λ1/2Λ−1/2T (y−θ)+θ = T>T (y−θ)+θ. Now we have to use the fact that with

probability 1, y−θ lies in the range space of ΣΣΣ, i.e., y−θ = ΣΣΣa = T>ΛTa for some
a. This makes Dz + θ = T>T T>ΛTa + θ = T>TT>ΛTa + θ = T >ΛT a + θ =
ΣΣΣa + θ = y. �
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Problem 176. Show that a random variable y with expected value θ and non-
singular covariance matrix σ2ΣΣΣ is multivariate normal iff its density function is

(10.6.4) fy(y) = (2πσ2)−n/2(detΣΣΣ)−1/2 exp
(
−1

2
(y − θ)>ΣΣΣ−1(y − θ)

)
.

Hint: use the matrices B and D from theorem 10.6.4.

Answer. First assume y is multivariate normal. Then by theorem 10.6.4, z = B(y − θ) is
standard normal, i.e., its density function is the product of n univariate standard normal densities:

(10.6.5) fz(z) = (2πσ2)−n/2 exp(− 1

2σ2
z>z).

From this we get the one of y. Since I = B>ΣΣΣB, it follows 1 = det(B>ΣΣΣB) = (det B)2 detΣΣΣ,

therefore J = det B = ±
√

detΣΣΣ, and |J | = |det B| =
√

detΣΣΣ. Since z>z = (y−θ)>B>B(y−θ) =
(y − θ)>ΣΣΣ−1(y − θ), y has the density function (10.6.4).

Conversely, assume we know that y has the density function (10.6.4). Then let us derive from
this the density function of z = B(y − θ). Since ΣΣΣ is nonsingular, one can solve y = Dz + θ.

Since DD> = ΣΣΣ, it follows J = det D = ±
√

detΣΣΣ, and therefore |J | =
√

detΣΣΣ. Furthermore,

(y − θ)>ΣΣΣ−1(y − θ) = z>z, i.e., the density of z is that of a standard normal. Since y is a linear
transformation of z, it is multivariate normal.

�

Problem 177. Show that the moment generating function of a multivariate nor-
mal y ∼ N(θ, σ2ΣΣΣ) is

(10.6.6) my(t) = exp(t>θ + σ2t>ΣΣΣt/2).

Give a proof which is valid for singular as well as nonsingular ΣΣΣ. You may use
the formula for the moment generating function of a multivariate Standard normal
for this proof.

Answer.

(10.6.7)

my(t) = E
[
exp(t>y)

]
= E
[
exp
(
t>(Dz+θ)

)]
= exp(t>θ) E

[
exp
(
t>Dz

)]
= exp(t>θ) exp

(
σ2t>DD>t/2

)
= exp

(
t>θ+σ2t>ΣΣΣt/2

)
.

�

Theorem 10.6.5. y is multivariate normal if and only if a>y is univariate
normal for all a.

Proof. Necessity by (10.6.2). Sufficiency: If a>y is normal, its first and second
moments exist for every a; by one of the early homework problems this means the
whole dispersion matrix of y exists. Say E [y] = θ and V [y] = σ2ΣΣΣ. Then one sees
that a>y has the same distribution as a>u where u ∼ N(θ, σ2ΣΣΣ). This is enough
to establish that y and u have identical joint distributions. �
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Theorem 10.6.6. Let y ∼ N(θ, σ2ΣΣΣ) with possibly singular ΣΣΣ. A necessary and
sufficient condition for

(10.6.8) q = (y − θ)>P (y − θ)

to be distributed like a σ2χ2 is that

(10.6.9) ΣΣΣPΣΣΣPΣΣΣ = ΣΣΣPΣΣΣ.

In this case, the number of degrees of freedom of the σ2χ2 is rank(PΣΣΣ).

Proof: By Theorem 10.6.4, y = Cz + θ for a standard normal z and a C with
CC> = ΣΣΣ. Therefore q = z>C>PCz. By theorem 10.4.3 this is a σ2χ2 iff

(10.6.10) C>P C = C>PCC>PC

Premultiply by C and postmultiply by C> to get (10.6.9). On the other hand,

premultipy (10.6.9) by C>ΣΣΣ− and postmultiply by the transpose to get (10.6.10).

The number of degrees of freedom is the rank of C>PC, which is that of ΣΣΣP .

Problem 178. Assume x1, x2, . . . , xn are independently and identically distributed
as N(θ, σ2). The usual unbiased estimator of σ2 is

(10.6.11) s2 =
1

n− 1

∑

i

(xi − x̄)2.

Look at the alternative estimator

(10.6.12) t2 =
1

n+ 1

∑

i

(xi − x̄)2.

Show that the “mean squared error”

(10.6.13) E[(s2 − σ2)2] > E[(t2 − σ2)2].

Answer. For every estimator θ̂ of a constant parameter θ, MSE[θ̂; θ] = var[θ̂] + (E[θ̂ − θ])2,

i.e., it is variance plus squared bias. The MSE of s2 is therefore equal to its variance, which is 2σ4

n−1
.

The alternative t2 = n−1
n+1

s2; therefore its bias is − 2σ2

n+1
and its variance is

2(n−1)σ4

(n+1)2
, and the MSE

is 2σ4

n+1
. �

Problem 179. The n× 1 vector y and distribution y ∼ N(ιθ, σ2I). Show that
ȳ is independent of q =

∑
(yi − ȳ)2, and that q ∼ σ2χ2

n−1.

Answer. Set z = y− ιθ. Then q =
∑

(zi − z̄)2 and ȳ = z̄+ θ, and the statement follows from

theorem 10.4.2 with P = 1√
n

ι>. �



CHAPTER 11

The Regression Fallacy

Only for the sake of this exercise we will assume that “intelligence” is an innate
property of individuals and can be represented by a real number z. If one picks at
random a student entering the U of U, the intelligence of this student is a random
variable which we assume to be normally distributed with mean µ and standard
deviation σ. Also assume every student has to take two intelligence tests, the first
at the beginning of his or her studies, the other half a year later. The outcomes of
these tests are x and y. x and y measure the intelligence z (which is assumed to be
the same in both tests) plus a random error ε and δ, i.e.,

x = z + ε(11.0.14)

y = z + δ(11.0.15)

Here z ∼ N(µ, τ2), ε ∼ N(0, σ2), and δ ∼ N(0, σ2) (i.e., we assume that both errors
have the same variance). The three variables ε, δ, and z are independent of each
other. Therefore x and y are jointly normal. var[x] = τ 2 + σ2, var[y] = τ2 + σ2,

cov[x,y] = cov[z+ ε, z+ δ] = τ 2 +0+0+0 = τ2. Therefore ρ = τ2

τ2+σ2 . The contour

lines of the joint density are ellipses with center (µ, µ) whose main axes are the lines
y = x and y = −x in the x, y-plane.

Now what is the conditional mean? Since var[x] = var[y], (10.3.17) gives the
line E[y|x=x] = µ + ρ(x − µ), i.e., it is a line which goes through the center of the
ellipses but which is flatter than the line x = y representing the real underlying linear
relationship if there are no errors. Geometrically one can get it as the line which
intersects each ellipse exactly where the ellipse is vertical.

Therefore, the parameters of the best prediction of y on the basis of x are not
the parameters of the underlying relationship. Why not? Because not only y but
also x is subject to errors. Assume you pick an individual by random, and it turns
out that his or her first test result is very much higher than the average. Then it is
more likely that this is an individual which was lucky in the first exam, and his or
her true IQ is lower than the one measured, than that the individual is an Einstein
who had a bad day. This is simply because z is normally distributed, i.e., among the
students entering a given University, there are more individuals with lower IQ’s than
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Einsteins. In order to make a good prediction of the result of the second test one
must make allowance for the fact that the individual’s IQ is most likely lower than
his first score indicated, therefore one will predict the second score to be lower than
the first score. The converse is true for individuals who scored lower than average,
i.e., in your prediction you will do as if a “regression towards the mean” had taken
place.

The next important point to note here is: the “true regression line,” i.e., the
prediction line, is uniquely determined by the joint distribution of x and y. However
the line representing the underlying relationship can only be determined if one has
information in addition to the joint density, i.e., in addition to the observations.
E.g., assume the two tests have different standard deviations, which may be the case
simply because the second test has more questions and is therefore more accurate.
Then the underlying 45◦ line is no longer one of the main axes of the ellipse! To be
more precise, the underlying line can only be identified if one knows the ratio of the
variances, or if one knows one of the two variances. Without any knowledge of the
variances, the only thing one can say about the underlying line is that it lies between
the line predicting y on the basis of x and the line predicting x on the basis of y.

The name “regression” stems from a confusion between the prediction line and
the real underlying relationship. Francis Galton, the cousin of the famous Darwin,
measured the height of fathers and sons, and concluded from his evidence that the
heights of sons tended to be closer to the average height than the height of the
fathers, a purported law of “regression towards the mean.” Problem 180 illustrates
this:

Problem 180. The evaluation of two intelligence tests, one at the beginning
of the semester, one at the end, gives the following disturbing outcome: While the
underlying intelligence during the first test was z ∼ N(100, 20), it changed between
the first and second test due to the learning experience at the university. If w is the
intelligence of each student at the second test, it is connected to his intelligence z

at the first test by the formula w = 0.5z + 50, i.e., those students with intelligence
below 100 gained, but those students with intelligence above 100 lost. (The errors
of both intelligence tests are normally distributed with expected value zero, and the
variance of the first intelligence test was 5, and that of the second test, which had
more questions, was 4. As usual, the errors are independent of each other and of the
actual intelligence.)

• a. 3 points If x and y are the outcomes of the first and second intelligence
test, compute E[x], E[y], var[x], var[y], and the correlation coefficient ρ = corr[x,y].
Figure 1 shows an equi-density line of their joint distribution; 95% of the probability
mass of the test results are inside this ellipse. Draw the line w = 0.5z + 50 into
Figure 1.
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Answer. We know z ∼ N(100, 20); w = 0.5z + 50; x = z + ε; ε ∼ N(0, 4); y = w + δ;
δ ∼ N(0, 5); therefore E[x] = 100; E[y] = 100; var[x] = 20 + 5 = 25; var[y] = 5 + 4 = 9;
cov[x,y] = 10; corr[x,y] = 10/15 = 2/3. In matrix notation

(11.0.16)

[
x

y

]
∼ N
[[100

100

]
,

[
25 10
10 9

]]

The line y = 50 + 0.5x goes through the points (80, 90) and (120, 110). �

• b. 4 points Compute E[y|x=x] and E[x|y=y]. The first is a linear function of
x and the second a linear function of y. Draw the two lines representing these linear
functions into Figure 1. Use (10.3.18) for this.

Answer.

E[y|x=x] = 100 +
10

25
(x− 100) = 60 +

2

5
x(11.0.17)

E[x|y=y] = 100 +
10

9
(y − 100) = −100

9
+

10

9
y.(11.0.18)

80 90 100 110 120

80 90 100 110 120

90

100

110

90

100

110
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Figure 1. Ellipse containing 95% of the probability mass of test
results x and y
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The line y = E[y|x=x] goes through the points (80, 92) and (120, 108) at the edge of Figure 1; it
intersects the ellipse where it is vertical. The line x = E[x|y=y] goes through the points (80, 82) and
(120, 118), which are the corner points of Figure 1; it intersects the ellipse where it is horizontal.
The two lines intersect in the center of the ellipse, i.e., at the point (100, 100).

�

• c. 2 points Another researcher says that w = 6
10z + 40, z ∼ N(100, 100

6 ),

ε ∼ N(0, 50
6 ), δ ∼ N(0, 3). Is this compatible with the data?

Answer. Yes, it is compatible: E[x] = E[z]+E[ε] = 100; E[y] = E[w]+E[δ] = 6
10

100+40 = 100;

var[x] = 100
6

+ 50
6

= 25; var[y] =
(

6
10

)2
var[z] + var[δ] = 63

100
100
6

+ 3 = 9; cov[x,y] = 6
10

var[z] =

10. �

• d. 4 points A third researcher asserts that the IQ of the students really did not
change. He says w = z, z ∼ N(100, 5), ε ∼ N(0, 20), δ ∼ N(0, 4). Is this compatible
with the data? Is there unambiguous evidence in the data that the IQ declined?

Answer. This is not compatible. This scenario gets everything right except the covariance:
E[x] = E[z] + E[ε] = 100; E[y] = E[z] + E[δ] = 100; var[x] = 5 + 20 = 25; var[y] = 5 + 4 = 9;
cov[x,y] = 5. A scenario in which both tests have same underlying intelligence cannot be found.
Since the two conditional expectations are on the same side of the diagonal, the hypothesis that
the intelligence did not change between the two tests is not consistent with the joint distribution
of x and y. The diagonal goes through the points (82, 82) and (118, 118), i.e., it intersects the two
horizontal boundaries of Figure 1. �

We just showed that the parameters of the true underlying relationship cannot
be inferred from the data alone if there are errors in both variables. We also showed
that this lack of identification is not complete, because one can specify an interval
which in the plim contains the true parameter value.

Chapter 53 has a much more detailed discussion of all this. There we will see
that this lack of identification can be removed if more information is available, i.e., if
one knows that the two error variances are equal, or if one knows that the regression
has zero intercept, etc. Question 181 shows that in this latter case, the OLS estimate
is not consistent, but other estimates exist that are consistent.

Problem 181. [Fri57, chapter 3] According to Friedman’s permanent income
hypothesis, drawing at random families in a given country and asking them about
their income y and consumption c can be modeled as the independent observations
of two random variables which satisfy

y = yp + yt,(11.0.19)

c = cp + ct,(11.0.20)

cp = βyp.(11.0.21)

Here yp and cp are the permanent and yt and ct the transitory components of
income and consumption. These components are not observed separately, only their
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sums y and c are observed. We assume that the permanent income yp is random,
with E[yp] = µ 6= 0 and var[yp] = τ2

y. The transitory components yt and ct are

assumed to be independent of each other and of yp, and E[yt] = 0, var[yt] = σ2
y,

E[ct] = 0, and var[ct] = σ2
c. Finally, it is assumed that all variables are normally

distributed.

• a. 2 points Given the above information, write down the vector of expected val-
ues E

[
[ y

c ]
]
and the covariance matrix V

[
[ y

c ]
]
in terms of the five unknown parameters

of the model µ, β, τ2
y, σ2

y, and σ2
c.

Answer.

(11.0.22) E
[[y

c

]]
=

[
µ
βµ

]
and V

[[y
c

]]
=

[
τ2
y + σ2

y βτ2
y

βτ2
y β2τ2

y + σ2
c

]
.

�

• b. 3 points Assume that you know the true parameter values and you observe a
family’s actual income y. Show that your best guess (minimum mean squared error)
of this family’s permanent income yp is

(11.0.23) yp∗ =
σ2

y

τ2
y + σ2

y

µ+
τ2
y

τ2
y + σ2

y

y.

Note: here we are guessing income, not yet consumption! Use (10.3.17) for this!

Answer. This answer also does the math for part c. The best guess is the conditional mean

E[yp|y = 22,000] = E[yp] +
cov[yp,y]

var[y]
(22,000 − E[y])

= 12,000 +
16,000,000

20,000,000
(22,000 − 12,000) = 20,000

or equivalently

E[yp|y = 22,000] = µ +
τ2
y

τ2
y + σ2

y

(22,000 − µ)

=
σ2

y

τ2
y + σ2

y

µ+
τ2
y

τ2
y + σ2

y

22,000

= (0.2)(12,000) + (0.8)(22,000) = 20,000.

�
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• c. 3 points To make things more concrete, assume the parameters are

β = 0.7(11.0.24)

σy = 2,000(11.0.25)

σc = 1,000(11.0.26)

µ = 12,000(11.0.27)

τy = 4,000.(11.0.28)

If a family’s income is y = 22,000, what is your best guess of this family’s permanent
income yp? Give an intuitive explanation why this best guess is smaller than 22,000.

Answer. Since the observed income of 22,000 is above the average of 12,000, chances are
greater that it is someone with a positive transitory income than someone with a negative one. �

• d. 2 points If a family’s income is y, show that your best guess about this
family’s consumption is

(11.0.29) c∗ = β
( σ2

y

τ2
y + σ2

y

µ+
τ2
y

τ2
y + σ2

y

y
)
.

Instead of an exact mathematical proof you may also reason out how it can be obtained
from (11.0.23). Give the numbers for a family whose actual income is 22,000.

Answer. This is 0.7 times the best guess about the family’s permanent income, since the
transitory consumption is uncorrelated with everything else and therefore must be predicted by 0.
This is an acceptable answer, but one can also derive it from scratch:

E[c|y = 22,000] = E[c] +
cov[c,y]

var[y]
(22,000 − E[y])

(11.0.30)

= βµ+
βτ2

y

τ2
y + σ2

y

(22,000 − µ) = 8,400 + 0.7
16,000,000

20,000,000
(22,000 − 12,000) = 14,000(11.0.31)

or = β

(
σ2

y

τ2
y + σ2

y

µ+
τ2
y

τ2
y + σ2

y

22,000

)(11.0.32)

= 0.7
(
(0.2)(12,000) + (0.8)(22,000)

)
= (0.7)(20,000) = 14,000.(11.0.33)

�

The remainder of this Problem uses material that comes later in these Notes:

• e. 4 points From now on we will assume that the true values of the parameters
are not known, but two vectors y and c of independent observations are available.
We will show that it is not correct in this situation to estimate β by regressing c on
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y with the intercept suppressed. This would give the estimator

(11.0.34) β̂ =

∑
ciyi∑
y2
i

Show that the plim of this estimator is

(11.0.35) plim[β̂] =
E[cy]

E[y2]

Which theorems do you need for this proof? Show that β̂ is an inconsistent estimator
of β, which yields too small values for β.

Answer. First rewrite the formula for β̂ in such a way that numerator and denominator each
has a plim: by the weak law of large numbers the plim of the average is the expected value, therefore

we have to divide both numerator and denominator by n. Then we can use the Slutsky theorem
that the plim of the fraction is the fraction of the plims.

β̂ =
1
n

∑
ciyi

1
n

∑
y2
i

; plim[β̂] =
E[cy]

E[y2]
=

E[c] E[y] + cov[c,y]

(E[y])2 + var[y]
=

µβµ+ βτ2
y

µ2 + τ2
y + σ2

y

= β
µ2 + τ2

y

µ2 + τ2
y + σ2

y

.

�

• f. 4 points Give the formulas of the method of moments estimators of the five
paramaters of this model: µ, β, τ 2

y, σ2
y, and σ2

p. (For this you have to express these
five parameters in terms of the five moments E[y], E[c], var[y], var[c], and cov[y, c],
and then simply replace the population moments by the sample moments.) Are these
consistent estimators?

Answer. From (11.0.22) follows E[c] = βE[y], therefore β =
E[c]
E[y]

. This together with

cov[y, c] = βτ2
y gives τ2

y =
cov[y,c]

β
=

cov[y,c] E[y]
E[c]

. This together with var[y] = τ2
y + σ2

y gives

σ2
y = var[y] − τ2

y = var[y] − cov[y,c] E[y]
E[c]

. And from the last equation var[c] = β2τ2
y + σ2

c one get

σ2
c = var[c] − cov[y,c] E[c]

E[y]
. All these are consistent estimators, as long as E[y] 6= 0 and β 6= 0. �

• g. 4 points Now assume you are not interested in estimating β itself, but in
addition to the two n-vectors y and c you have an observation of yn+1 and you want
to predict the corresponding cn+1. One obvious way to do this would be to plug the
method-of moments estimators of the unknown parameters into formula (11.0.29)
for the best linear predictor. Show that this is equivalent to using the ordinary least
squares predictor c∗ = α̂+β̂yn+1 where α̂ and β̂ are intercept and slope in the simple
regression of c on y, i.e.,

β̂ =

∑
(yi − ȳ)(ci − c̄)∑

(yi − ȳ)2
(11.0.36)

α̂ = c̄ − β̂ȳ(11.0.37)

Note that we are regressing c on y with an intercept, although the original model
does not have an intercept.
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Answer. Here I am writing population moments where I should be writing sample moments.
First substitute the method of moments estimators in the denominator in (11.0.29): τ 2

y+σ2
y = var[y].

Therefore the first summand becomes

βσ2
yµ

1

var[y]
=

E[c]

E[y]

(
var[y]− cov[y, c] E[y]

E[c]

)
E[y]

1

var[y]
= E[c]

(
1− cov[y, c] E[y]

var[y] E[c]

)
= E[c]− cov[y, c] E[y]

var[y]

But since
cov[y,c]
var[y]

= β̂ and α̂ + β̂ E[y] = E[c] this expression is simply α̂. The second term is easier

to show:

β
τ2
y

var[y]
y =

cov[y, c]

var[y]
y = β̂y

�

• h. 2 points What is the “Iron Law of Econometrics,” and how does the above
relate to it?

Answer. The Iron Law says that all effects are underestimated because of errors in the inde-
pendent variable. Friedman says Keynesians obtain their low marginal propensity to consume due
to the “Iron Law of Econometrics”: they ignore that actual income is a measurement with error of
the true underlying variable, permanent income. �

Problem 182. This question follows the original article [SW76] much more
closely than [HVdP02] does. Sargent and Wallace first reproduce the usual argument
why “activist” policy rules, in which the Fed “looks at many things” and “leans
against the wind,” are superior to policy rules without feedback as promoted by the
monetarists.

They work with a very stylized model in which national income is represented by
the following time series:

(11.0.38) yt = α+ λyt−1 + βmt + ut

Here yt is GNP, measured as its deviation from “potential” GNP or as unemployment
rate, and mt is the rate of growth of the money supply. The random disturbance ut
is assumed independent of yt−1, it has zero expected value, and its variance var[ut]
is constant over time, we will call it var[u] (no time subscript).

• a. 4 points First assume that the Fed tries to maintain a constant money
supply, i.e., mt = g0 + εt where g0 is a constant, and εt is a random disturbance
since the Fed does not have full control over the money supply. The εt have zero
expected value; they are serially uncorrelated, and they are independent of the ut.
This constant money supply rule does not necessarily make yt a stationary time
series (i.e., a time series where mean, variance, and covariances do not depend on
t), but if |λ| < 1 then yt converges towards a stationary time series, i.e., any initial
deviations from the “steady state” die out over time. You are not required here to
prove that the time series converges towards a stationary time series, but you are
asked to compute E[yt] in this stationary time series.
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• b. 8 points Now assume the policy makers want to steer the economy towards
a desired steady state, call it y∗, which they think makes the best tradeoff between
unemployment and inflation, by setting mt according to a rule with feedback:

(11.0.39) mt = g0 + g1yt−1 + εt

Show that the following values of g0 and g1

g0 = (y∗ − α)/β g1 = −λ/β(11.0.40)

represent an optimal monetary policy, since they bring the expected value of the steady
state E[yt] to y∗ and minimize the steady state variance var[yt].

• c. 3 points This is the conventional reasoning which comes to the result that a
policy rule with feedback, i.e., a policy rule in which g1 6= 0, is better than a policy rule
without feedback. Sargent and Wallace argue that there is a flaw in this reasoning.
Which flaw?

• d. 5 points A possible system of structural equations from which (11.0.38) can
be derived are equations (11.0.41)–(11.0.43) below. Equation (11.0.41) indicates that
unanticipated increases in the growth rate of the money supply increase output, while
anticipated ones do not. This is a typical assumption of the rational expectations
school (Lucas supply curve).

(11.0.41) yt = ξ0 + ξ1(mt − Et−1 mt) + ξ2yt−1 + ut

The Fed uses the policy rule

(11.0.42) mt = g0 + g1yt−1 + εt

and the agents know this policy rule, therefore

(11.0.43) Et−1 mt = g0 + g1yt−1.

Show that in this system, the parameters g0 and g1 have no influence on the time
path of y.

• e. 4 points On the other hand, the econometric estimations which the policy
makers are running seem to show that these coefficients have an impact. During a
certain period during which a constant policy rule g0, g1 is followed, the econome-
tricians regress yt on yt−1 and mt in order to estimate the coefficients in (11.0.38).
Which values of α, λ, and β will such a regression yield?



CHAPTER 12

A Simple Example of Estimation

We will discuss here a simple estimation problem, which can be considered the
prototype of all least squares estimation. Assume we have n independent observations
y1, . . . , yn of a Normally distributed random variable y ∼ N(µ, σ2) with unknown
location parameter µ and dispersion parameter σ2. Our goal is to estimate the
location parameter and also estimate some measure of the precision of this estimator.

12.1. Sample Mean as Estimator of the Location Parameter

The obvious (and in many cases also the best) estimate of the location parameter
of a distribution is the sample mean ȳ = 1

n

∑n
i=1 yi. Why is this a reasonable

estimate?
1. The location parameter of the Normal distribution is its expected value, and

by the weak law of large numbers, the probability limit for n → ∞ of the sample
mean is the expected value.

2. The expected value µ is sometimes called the “population mean,” while ȳ is
the sample mean. This terminology indicates that there is a correspondence between
population quantities and sample quantities, which is often used for estimation. This
is the principle of estimating the unknown distribution of the population by the
empirical distribution of the sample. Compare Problem 63.

3. This estimator is also unbiased. By definition, an estimator t of the parameter
θ is unbiased if E[t] = θ. ȳ is an unbiased estimator of µ, since E[ȳ] = µ.

4. Given n observations y1, . . . , yn, the sample mean is the number a = ȳ which
minimizes (y1 −a)2 +(y2 −a)2 + · · ·+(yn−a)2. One can say it is the number whose
squared distance to the given sample numbers is smallest. This idea is generalized
in the least squares principle of estimation. It follows from the following frequently
used fact:

5. In the case of normality the sample mean is also the maximum likelihood
estimate.
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Problem 183. 4 points Let y1, . . . , yn be an arbitrary vector and α an arbitrary
number. As usual, ȳ = 1

n

∑n
i=1 yi. Show that

(12.1.1)

n∑

i=1

(yi − α)2 =

n∑

i=1

(yi − ȳ)2 + n(ȳ − α)2

Answer.
n∑

i=1

(yi − α)2 =

n∑

i=1

(
(yi − ȳ) + (ȳ − α)

)2
(12.1.2)

=

n∑

i=1

(yi − ȳ)2 + 2

n∑

i=1

(
(yi − ȳ)(ȳ − α)

)
+

n∑

i=1

(ȳ − α)2(12.1.3)

=

n∑

i=1

(yi − ȳ)2 + 2(ȳ − α)

n∑

i=1

(yi − ȳ) + n(ȳ − α)2(12.1.4)

Since the middle term is zero, (12.1.1) follows.
�

Problem 184. 2 points Let y be a n-vector. (It may be a vector of observations
of a random variable y, but it does not matter how the yi were obtained.) Prove that
the scalar α which minimizes the sum

(12.1.5) (y1 − α)2 + (y2 − α)2 + · · · + (yn − α)2 =
∑

(yi − α)2

is the arithmetic mean α = ȳ.

Answer. Use (12.1.1). �

Problem 185. Give an example of a distribution in which the sample mean is
not a good estimate of the location parameter. Which other estimate (or estimates)
would be preferable in that situation?

12.2. Intuition of the Maximum Likelihood Estimator

In order to make intuitively clear what is involved in maximum likelihood esti-
mation, look at the simplest case y = µ + ε, ε ∼ N(0, 1), where µ is an unknown
parameter. In other words: we know that one of the functions shown in Figure 1 is
the density function of y, but we do not know which:

Assume we have only one observation y. What is then the MLE of µ? It is that
µ̃ for which the value of the likelihood function, evaluated at y, is greatest. I.e., you
look at all possible density functions and pick the one which is highest at point y,
and use the µ which belongs this density as your estimate.

2) Now assume two independent observations of y are given, y1 and y2. The
family of density functions is still the same. Which of these density functions do we
choose now? The one for which the product of the ordinates over y1 and y2 gives
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Figure 1. Possible Density Functions for y
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Figure 2. Two observations, σ2 = 1

Figure 3. Two observations, σ2 unknown

the highest value. For this the peak of the density function must be exactly in the
middle between the two observations.

3) Assume again that we made two independent observations y1 and y2 of y, but
this time not only the expected value but also the variance of y is unknown, call it
σ2. This gives a larger family of density functions to choose from: they do not only
differ by location, but some are low and fat and others tall and skinny.

For which density function is the product of the ordinates over y1 and y2 the
largest again? Before even knowing our estimate of σ2 we can already tell what µ̃ is:
it must again be (y1 +y2)/2. Then among those density functions which are centered
over (y1 + y2)/2, there is one which is highest over y1 and y2. Figure 4 shows the
densities for standard deviations 0.01, 0.05, 0.1, 0.5, 1, and 5. All curves, except
the last one, are truncated at the point where the resolution of TEX can no longer
distinguish between their level and zero. For the last curve this point would only be
reached at the coordinates ±25.

4) If we have many observations, then the density pattern of the observations,
as indicated by the histogram below, approximates the actual density function of y

itself. That likelihood function must be chosen which has a high value where the
points are dense, and which has a low value where the points are not so dense.

12.2.1. Precision of the Estimator. How good is ȳ as estimate of µ? To an-
swer this question we need some criterion how to measure “goodness.” Assume your
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Figure 4. Only those centered over the two observations need to be considered

Figure 5. Many Observations

business depends on the precision of the estimate µ̂ of µ. It incurs a penalty (extra
cost) amounting to (µ̂ − µ)2. You don’t know what this error will be beforehand,
but the expected value of this “loss function” may be an indication how good the
estimate is. Generally, the expected value of a loss function is called the “risk,” and
for the quadratic loss function E[(µ̂ − µ)2] it has the name “mean squared error of
µ̂ as an estimate of µ,” write it MSE[µ̂;µ]. What is the mean squared error of ȳ?

Since E[ȳ] = µ, it is E[(ȳ − E[ȳ])2] = var[ȳ] = σ2

n .
Note that the MSE of ȳ as an estimate of µ does not depend on µ. This is

convenient, since usually the MSE depends on unknown parameters, and therefore
one usually does not know how good the estimator is. But it has more important
advantages. For any estimator ỹ of µ follows MSE[ỹ;µ] = var[ỹ] + (E[ỹ] − µ)2. If
ỹ is linear (perhaps with a constant term), then var[ỹ] is a constant which does
not depend on µ, therefore the MSE is a constant if ỹ is unbiased and a quadratic
function of µ (parabola) if ỹ is biased. Since a parabola is an unbounded function,
a biased linear estimator has therefore the disadvantage that for certain values of µ
its MSE may be very high. Some estimators are very good when µ is in one area,
and very bad when µ is in another area. Since our unbiased estimator ȳ has bounded
MSE, it will not let us down, wherever nature has hidden the µ.

On the other hand, the MSE does depend on the unknown σ2. So we have to
estimate σ2.
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12.3. Variance Estimation and Degrees of Freedom

It is not so clear what the best estimator of σ2 is. At least two possibilities are
in common use:

s2
m =

1

n

∑
(yi − ȳ)2(12.3.1)

or

s2
u =

1

n− 1

∑
(yi − ȳ)2.(12.3.2)

Let us compute the expected value of our two estimators. Equation (12.1.1) with
α = E[y] allows us to simplify the sum of squared errors so that it becomes easy to
take expected values:

E[
n∑

i=1

(yi − ȳ)2] =
n∑

i=1

E[(yi − µ)2] − nE[(ȳ − µ)2](12.3.3)

=

n∑

i=1

σ2 − n
σ2

n
= (n− 1)σ2.(12.3.4)

because E[(yi − µ)2] = var[yi] = σ2 and E[(ȳ − µ)2] = var[ȳ] = σ2

n . Therefore, if we

use as estimator of σ2 the quantity

(12.3.5) s2
u =

1

n− 1

n∑

i=1

(yi − ȳ)2

then this is an unbiased estimate.

Problem 186. 4 points Show that

(12.3.6) s2
u =

1

n− 1

n∑

i=1

(yi − ȳ)2

is an unbiased estimator of the variance. List the assumptions which have to be made
about yi so that this proof goes through. Do you need Normality of the individual
observations yi to prove this?

Answer. Use equation (12.1.1) with α = E[y]:

E[

n∑

i=1

(yi − ȳ)2] =

n∑

i=1

E[(yi − µ)2 ] − nE[(ȳ − µ)2 ](12.3.7)

=

n∑

i=1

σ2 − n
σ2

n
= (n− 1)σ2 .(12.3.8)

You do not need Normality for this. �
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For testing, confidence intervals, etc., one also needs to know the probability
distribution of s2

u. For this look up once more Section 5.9 about the Chi-Square
distribution. There we introduced the terminology that a random variable q is
distributed as a σ2χ2 iff q/σ2 is a χ2. In our model with n independent normal
variables yi with same mean and variance, the variable

∑
(yi − ȳ)2 is a σ2χ2

n−1.
Problem 187 gives a proof of this in the simplest case n = 2, and Problem 188 looks

at the case n = 3. But it is valid for higher n too. Therefore s2
u is a σ2

n−1χ
2
n−1. This

is remarkable: the distribution of s2
u does not depend on µ. Now use (5.9.5) to get

the variance of s2
u: it is 2σ4

n−1 .

Problem 187. Let y1 and y2 be two independent Normally distributed variables
with mean µ and variance σ2, and let ȳ be their arithmetic mean.

• a. 2 points Show that

(12.3.9) SSE =
2∑

i−1

(yi − ȳ)2 ∼ σ2χ2
1

Hint: Find a Normally distributed random variable z with expected value 0 and vari-
ance 1 such that SSE = σ2z2.

Answer.

ȳ =
y1 + y2

2
(12.3.10)

y1 − ȳ =
y1 − y2

2
(12.3.11)

y2 − ȳ = −y1 − y2

2
(12.3.12)

(y1 − ȳ)2 + (y2 − ȳ)2 =
(y1 − y2)2

4
+

(y1 − y2)2

4
(12.3.13)

=
(y1 − y2)2

2
= σ2

(
y1 − y2√

2σ2

)2

,(12.3.14)

and since z = (y1 − y2)/
√

2σ2 ∼ N(0, 1), its square is a χ2
1. �

• b. 4 points Write down the covariance matrix of the vector

(12.3.15)

[
y1 − ȳ

y2 − ȳ

]

and show that it is singular.

Answer. (12.3.11) and (12.3.12) give

(12.3.16)

[
y1 − ȳ

y2 − ȳ

]
=

[
1
2

− 1
2

− 1
2

1
2

][
y1

y2

]
= Dy
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and V[Dy] = D V[y]D> = σ2D because V[y] = σ2I and D =

[
1
2

− 1
2

− 1
2

1
2

]
is symmetric and

idempotent. D is singular because its determinant is zero. �

• c. 1 point The joint distribution of y1 and y2 is bivariate normal, why did we
then get a χ2 with one, instead of two, degrees of freedom?

Answer. Because y1 − ȳ and y2 − ȳ are not independent; one is exactly the negative of the
other; therefore summing their squares is really only the square of one univariate normal. �

Problem 188. Assume y1, y2, and y3 are independent N(µ, σ2). Define three
new variables z1, z2, and z3 as follows: z1 is that multiple of ȳ which has variance
σ2. z2 is that linear combination of z1 and y2 which has zero covariance with z1

and has variance σ2. z3 is that linear combination of z1, z2, and y3 which has zero
covariance with both z1 and z2 and has again variance σ2. These properties define
z1, z2, and z3 uniquely up factors ±1, i.e., if z1 satisfies the above conditions, then
−z1 does too, and these are the only two solutions.

• a. 2 points Write z1 and z2 (not yet z3) as linear combinations of y1, y2, and
y3.

• b. 1 point To make the computation of z3 less tedious, first show the following:
if z3 has zero covariance with z1 and z2, it also has zero covariance with y2.

• c. 1 point Therefore z3 is a linear combination of y1 and y3 only. Compute
its coefficients.

• d. 1 point How does the joint distribution of z1, z2, and z3 differ from that
of y1, y2, and y3? Since they are jointly normal, you merely have to look at the
expected values, variances, and covariances.

• e. 2 points Show that z2
1 + z2

2 + z2
3 = y2

1 + y2
2 + y2

3. Is this a surprise?

• f. 1 point Show further that s2
u = 1

2

∑3
i=1(yi − ȳ)2 = 1

2 (z2
2 + z2

3). (There is a

simple trick!) Conclude from this that s2
u ∼ σ2

2 χ
2
2, independent of ȳ.

For a matrix-interpretation of what is happening, see equation (10.4.9) together
with Problem 189.

Problem 189. 3 points Verify that the matrix D = I − 1
nιι> is symmetric and

idempotent, and that the sample covariance of two vectors of observations x and y

can be written in matrix notation as

(12.3.17) sample covariance(x,y) =
1

n

∑
(xi − x̄)(yi − ȳ) =

1

n
x>Dy

In general, one can always find n − 1 normal variables with variance σ2, inde-
pendent of each other and of ȳ, whose sum of squares is equal to

∑
(yi− ȳ)2. Simply
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start with ȳ
√
n and generate n − 1 linear combinations of the yi which are pair-

wise uncorrelated and have variances σ2. You are simply building an orthonormal
coordinate system with ȳ

√
n as its first vector; there are many different ways to do

this.
Next let us show that ȳ and s2

u are statistically independent. This is an ad-
vantage. Assume, hypothetically, ȳ and s2

u were negatively correlated. Then, if the
observed value of ȳ is too high, chances are that the one of s2

u is too low, and a look
at s2

u will not reveal how far off the mark ȳ may be. To prove independence, we will
first show that ȳ and yi − ȳ are uncorrelated:

cov[ȳ,yi − ȳ] = cov[ȳ,yi] − var[ȳ](12.3.18)

= cov[
1

n
(y1 + · · · + yi + · · · + yn),yi] −

σ2

n
= 0(12.3.19)

By normality, ȳ is therefore independent of yi − ȳ for all i. Since all variables in-
volved are jointly normal, it follows from this that ȳ is independent of the vector[
y1 − ȳ · · · yn − ȳ

]>
; therefore it is also independent of any function of this vec-

tor, such as s2
u.

The above calculations explain why the parameter of the χ2 distribution has
the colorful name “degrees of freedom.” This term is sometimes used in a very
broad sense, referring to estimation in general, and sometimes in a narrower sense,
in conjunction with the linear model. Here is first an interpretation of the general use
of the term. A “statistic” is defined to be a function of the observations and of other
known parameters of the problem, but not of the unknown parameters. Estimators
are statistics. If one has n observations, then one can find at most n mathematically
independent statistics; any other statistic is then a function of these n. If therefore
a model has k independent unknown parameters, then one must have at least k
observations to be able to estimate all parameters of the model. The number n− k,
i.e., the number of observations not “used up” for estimation, is called the number
of “degrees of freedom.”

There are at least three reasons why one does not want to make the model such
that it uses up too many degrees of freedom. (1) the estimators become too inaccurate
if one does; (2) if there are no degrees of freedom left, it is no longer possible to make
any “diagnostic” tests whether the model really fits the data, because it always gives
a perfect fit whatever the given set of data; (3) if there are no degrees of freedom left,
then one can usually also no longer make estimates of the precision of the estimates.

Specifically in our linear estimation problem, the number of degrees of freedom
is n − 1, since one observation has been used up for estimating the mean. If one
runs a regression, the number of degrees of freedom is n− k, where k is the number
of regression coefficients. In the linear model, the number of degrees of freedom
becomes immediately relevant for the estimation of σ2. If k observations are used
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up for estimating the slope parameters, then the other n − k observations can be
combined into a n− k-variate Normal whose expected value does not depend on the
slope parameter at all but is zero, which allows one to estimate the variance.

If we assume that the original observations are normally distributed, i.e., yi ∼
NID(µ, σ2), then we know that s2

u ∼ σ2

n−1χ
2
n−1. Therefore E[s2

u] = σ2 and var[s2
u] =

2σ4/(n − 1). This estimate of σ2 therefore not only gives us an estimate of the
precision of ȳ, but it has an estimate of its own precision built in.

Interestingly, the MSE of the alternative estimator s2
m =

∑
(yi−ȳ)2

n is smaller

than that of s2
u, although s2

m is a biased estimator and s2
u an unbiased estimator of

σ2. For every estimator t, MSE[t; θ] = var[t] + (E[t − θ])2, i.e., it is variance plus

squared bias. The MSE of s2
u is therefore equal to its variance, which is 2σ4

n−1 . The

alternative s2
m = n−1

n s2
u has bias −σ2

n and variance 2σ4(n−1)
n2 . Its MSE is (2−1/n)σ4

n .

Comparing that with the formula for the MSE of s2
u one sees that the numerator is

smaller and the denominator is bigger, therefore s2
m has smaller MSE.

Problem 190. 4 points Assume yi ∼ NID(µ, σ2). Show that the so-called Theil
Schweitzer estimator [TS61]

(12.3.20) s2
t =

1

n+ 1

∑
(yi − ȳ)2

has even smaller MSE than s2
u and s2

m as an estimator of σ2.

Answer. s2t = n−1
n+1

s2u; therefore its bias is − 2σ2

n+1
and its variance is

2(n−1)σ4

(n+1)2
, and the

MSE is 2σ4

n+1
. That this is smaller than the MSE of s2m means 2n−1

n2 ≥ 2
n+1

, which follows from

(2n− 1)(n + 1) = 2n2 + n− 1 > 2n2 for n > 1. �

Problem 191. 3 points Computer assignment: Given 20 independent observa-
tions of a random variable y ∼ N(µ, σ2). Assume you know that σ2 = 2. Plot
the density function of s2

u. Hint: In R, the command dchisq(x,df=25) returns the
density of a Chi-square distribution with 25 degrees of freedom evaluated at x. But
the number 25 was only taken as an example, this is not the number of degrees of
freedom you need here. You also do not need the density of a Chi-Square but that
of a certain multiple of a Chi-square. (Use the transformation theorem for density
functions!)

Answer. s2u ∼ 2
19
χ2

19. To express the density of the variable whose density is known by that

whose density one wants to know, say 19
2

s2u ∼ χ2
19. Therefore

(12.3.21) fs2
u
(x) =

19

2
fχ2

19
(
19

2
x).

�
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Figure 6. Densities of Unbiased and Theil Schweitzer Estimators

• a. 2 points In the same plot, plot the density function of the Theil-Schweitzer
estimate s2

t defined in equation (12.3.20). This gives a plot as in Figure 6. Can
one see from the comparison of these density functions that the Theil-Schweitzer
estimator has a better MSE?

Answer. Start with plotting the Theil-Schweitzer plot, because it is higher, and therefore it
will give the right dimensions of the plot. You can run this by giving the command ecmetscript(theilsch).
The two areas between the densities have equal size, but the area where the Theil-Schweitzer density
is higher is overall closer to the true value than the area where the unbiased density is higher. �

Problem 192. 4 points The following problem illustrates the general fact that
if one starts with an unbiased estimator and “shrinks” it a little, one will end up
with a better MSE. Assume E[y] = µ, var(y) = σ2, and you make n independent
observations yi. The best linear unbiased estimator of µ on the basis of these
observations is the sample mean ȳ. Show that, whenever α satisfies

(12.3.22)
nµ2 − σ2

nµ2 + σ2
< α < 1

then MSE[αȳ;µ] < MSE[ȳ;µ]. Unfortunately, this condition depends on µ and σ2

and can therefore not be used to improve the estimate.

Answer. Here is the mathematical relationship:

MSE[αȳ;µ] = E
[
(αȳ − µ)2

]
= E
[
(αȳ − αµ+ αµ− µ)2

]
< MSE[ȳ;µ] = var[ȳ](12.3.23)

α2σ2/n+ (1 − α)2µ2 < σ2/n(12.3.24)

Now simplify it:

(1 − α)2µ2 < (1 − α2)σ2/n = (1 − α)(1 + α)σ2/n(12.3.25)

This cannot be true for α ≥ 1, because for α = 1 one has equality, and for α > 1, the righthand side
is negative. Therefore we are allowed to assume α < 1, and can divide by 1− α without disturbing
the inequality:

(1 − α)µ2 < (1 + α)σ2/n(12.3.26)

µ2 − σ2/n < α(µ2 + σ2/n)(12.3.27)

The answer is therefore

nµ2 − σ2

nµ2 + σ2
< α < 1.(12.3.28)

This the range. Note that nµ2 − σ2 < 0 may be negative. The best value is in the middle of this

range, see Problem 193. �
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Problem 193. [KS79, example 17.14 on p. 22] The mathematics in the following
problem is easier than it looks. If you can’t prove a., assume it and derive b. from
it, etc.

• a. 2 points Let t be an estimator of the nonrandom scalar parameter θ. E[t−θ]
is called the bias of t, and E

[
(t − θ)2

]
is called the mean squared error of t as an

estimator of θ, written MSE[t; θ]. Show that the MSE is the variance plus the squared
bias, i.e., that

(12.3.29) MSE[t; θ] = var[t] +
(
E[t − θ]

)2
.

Answer. The most elegant proof, which also indicates what to do when θ is random, is:

(12.3.30) MSE[t; θ] = E
[
(t − θ)2

]
= var[t − θ] + (E[t − θ])2 = var[t] + (E[t − θ])2.

�

• b. 2 points For the rest of this problem assume that t is an unbiased estimator
of θ with var[t] > 0. We will investigate whether one can get a better MSE if one
estimates θ by a constant multiple at instead of t. Show that

(12.3.31) MSE[at; θ] = a2 var[t] + (a− 1)2θ2.

Answer. var[at] = a2 var[t] and the bias of at is E[at−θ] = (a−1)θ. Now apply (12.3.30). �

• c. 1 point Show that, whenever a > 1, then MSE[at; θ] > MSE[t; θ]. If one
wants to decrease the MSE, one should therefore not choose a > 1.

Answer. MSE[at; θ]−MSE[t; θ] = (a2−1) var[t]+(a−1)2θ2 > 0 since a > 1 and var[t] > 0. �

• d. 2 points Show that

(12.3.32)
d

da
MSE[at; θ]

∣∣∣∣
a=1

> 0.

From this follows that the MSE of at is smaller than the MSE of t, as long as a < 1
and close enough to 1.

Answer. The derivative of (12.3.31) is

(12.3.33)
d

da
MSE[at; θ] = 2a var[t] + 2(a − 1)θ2

Plug a = 1 into this to get 2 var[t] > 0. �

• e. 2 points By solving the first order condition show that the factor a which
gives smallest MSE is

(12.3.34) a =
θ2

var[t] + θ2
.

Answer. Rewrite (12.3.33) as 2a(var[t] + θ2) − 2θ2 and set it zero. �
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• f. 1 point Assume t has an exponential distribution with parameter λ > 0, i.e.,

(12.3.35) ft(t) = λ exp(−λt), t ≥ 0 and ft(t) = 0 otherwise.

Check that ft(t) is indeed a density function.

Answer. Since λ > 0, ft(t) > 0 for all t ≥ 0. To evaluate
∫∞
0

λ exp(−λt) dt, substitute

s = −λt, therefore ds = −λdt, and the upper integration limit changes from +∞ to −∞, therefore

the integral is −
∫ −∞
0

exp(s) ds = 1. �

• g. 4 points Using this density function (and no other knowledge about the
exponential distribution) prove that t is an unbiased estimator of 1/λ, with var[t] =
1/λ2.

Answer. To evaluate
∫∞
0

λt exp(−λt) dt, use partial integration
∫
uv′ dt = uv −

∫
u′v dt

with u = t, u′ = 1, v = − exp(−λt), v′ = λ exp(−λt). Therefore the integral is −t exp(−λt)
∣∣∞
0

+∫∞
0

exp(−λt) dt = 1/λ, since we just saw that
∫∞
0

λ exp(−λt) dt = 1.

To evaluate
∫∞
0

λt2 exp(−λt) dt, use partial integration with u = t2, u′ = 2t, v = − exp(−λt),
v′ = λ exp(−λt). Therefore the integral is −t2 exp(−λt)

∣∣∞
0

+2
∫∞
0

t exp(−λt) dt = 2
λ

∫∞
0

λt exp(−λt) dt =

2/λ2. Therefore var[t] = E[t2] − (E[t])2 = 2/λ2 − 1/λ2 = 1/λ2. �

• h. 2 points Which multiple of t has the lowest MSE as an estimator of 1/λ?

Answer. It is t/2. Just plug θ = 1/λ into (12.3.34).

(12.3.36) a =
1/λ2

var[t] + 1/λ2
=

1/λ2

1/λ2 + 1/λ2
=

1

2
.

�

• i. 2 points Assume t1, . . . , tn are independently distributed, and each of them
has the exponential distribution with the same parameter λ. Which multiple of the
sample mean t̄ = 1

n

∑n
i=1 ti has best MSE as estimator of 1/λ?

Answer. t̄ has expected value 1/λ and variance 1/nλ2. Therefore

(12.3.37) a =
1/λ2

var[t] + 1/λ2
=

1/λ2

1/nλ2 + 1/λ2
=

n

n+ 1
,

i.e., for the best estimator t̃ = 1
n+1

∑
ti divide the sum by n+ 1 instead of n. �

• j. 3 points Assume q ∼ σ2χ2
m (in other words, 1

σ2 q ∼ χ2
m, a Chi-square distri-

bution with m degrees of freedom). Using the fact that E[χ2
m] = m and var[χ2

m] = 2m,
compute that multiple of q that has minimum MSE as estimator of σ2.

Answer. This is a trick question since q itself is not an unbiased estimator of σ2. E[q] = mσ2 ,
therefore q/m is the unbiased estimator. Since var[q/m] = 2σ4/m, it follows from (12.3.34) that
a = m/(m + 2), therefore the minimum MSE multiple of q is q

m
m
m+2

= q

m+2
. I.e., divide q by

m+ 2 instead of m. �
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• k. 3 points Assume you have n independent observations of a Normally dis-
tributed random variable y with unknown mean µ and standard deviation σ2. The
best unbiased estimator of σ2 is 1

n−1

∑
(yi−ȳ)2, and the maximum likelihood extima-

tor is 1
n

∑
(yi− ȳ)2. What are the implications of the above for the question whether

one should use the first or the second or still some other multiple of
∑

(yi − ȳ)2?

Answer. Taking that multiple of the sum of squared errors which makes the estimator un-
biased is not necessarily a good choice. In terms of MSE, the best multiple of

∑
(yi − ȳ)2 is

1
n+1

∑
(yi − ȳ)2.

�

• l. 3 points We are still in the model defined in k. Which multiple of the sample
mean ȳ has smallest MSE as estimator of µ? How does this example differ from the
ones given above? Can this formula have practical significance?

Answer. Here the optimal a = µ2

µ2+(σ2/n)
. Unlike in the earlier examples, this a depends on

the unknown parameters. One can “operationalize” it by estimating the parameters from the data,
but the noise introduced by this estimation can easily make the estimator worse than the simple ȳ.
Indeed, ȳ is admissible, i.e., it cannot be uniformly improved upon. On the other hand, the Stein
rule, which can be considered an operationalization of a very similar formula (the only difference
being that one estimates the mean vector of a vector with at least 3 elements), by estimating µ2

and µ2 + 1
n
σ2 from the data, shows that such an operationalization is sometimes successful. �

We will discuss here one more property of ȳ and s2
u: They together form sufficient

statistics for µ and σ2. I.e., any estimator of µ and σ2 which is not a function of ȳ

and s2
u is less efficient than it could be. Since the factorization theorem for sufficient

statistics holds even if the parameter θ and its estimate t are vectors, we have to
write the joint density of the observation vector y as a product of two functions, one
depending on the parameters and the sufficient statistics, and the other depending
on the value taken by y, but not on the parameters. Indeed, it will turn out that
this second function can just be taken to be h(y) = 1, since the density function can
be rearranged as

fy(y1, . . . , yn;µ, σ
2) = (2πσ2)−n/2 exp

(
−

n∑

i=1

(yi − µ)2/2σ2
)

=(12.3.38)

= (2πσ2)−n/2 exp
(
−
( n∑

i=1

(yi − ȳ)2 − n(ȳ − µ)2
)
/2σ2

)
=(12.3.39)

= (2πσ2)−n/2 exp
(
− (n− 1)s2

u − n(ȳ + µ)2

2σ2

)
.(12.3.40)



CHAPTER 13

Estimation Principles and Classification of
Estimators

13.1. Asymptotic or Large-Sample Properties of Estimators

We will discuss asymptotic properties first, because the idea of estimation is to
get more certainty by increasing the sample size.

Strictly speaking, asymptotic properties do not refer to individual estimators
but to sequences of estimators, one for each sample size n. And strictly speaking, if
one alters the first 10 estimators or the first million estimators and leaves the others
unchanged, one still gets a sequence with the same asymptotic properties. The results
that follow should therefore be used with caution. The asymptotic properties may
say very little about the concrete estimator at hand.

The most basic asymptotic property is (weak) consistency. An estimator tn
(where n is the sample size) of the parameter θ is consistent iff

(13.1.1) plim
n→∞

tn = θ.

Roughly, a consistent estimation procedure is one which gives the correct parameter
values if the sample is large enough. There are only very few exceptional situations
in which an estimator is acceptable which is not consistent, i.e., which does not
converge in the plim to the true parameter value.

Problem 194. Can you think of a situation where an estimator which is not
consistent is acceptable?

Answer. If additional data no longer give information, like when estimating the initial state
of a timeseries, or in prediction. And if there is no identification but the value can be confined to
an interval. This is also inconsistency. �

The following is an important property of consistent estimators:
Slutsky theorem: If t is a consistent estimator for θ, and the function g is con-

tinuous at the true value of θ, then g(t) is consistent for g(θ).
For the proof of the Slutsky theorem remember the definition of a continuous

function. g is continuous at θ iff for all ε > 0 there exists a δ > 0 with the property
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that for all θ1 with |θ1 − θ| < δ follows |g(θ1) − g(θ)| < ε. To prove consistency of
g(t) we have to show that for all ε > 0, Pr[|g(t) − g(θ)| ≥ ε] → 0. Choose for the
given ε a δ as above, then |g(t) − g(θ)| ≥ ε implies |t − θ| ≥ δ, because all those
values of t for with |t − θ| < δ lead to a g(t) with |g(t) − g(θ)| < ε. This logical
implication means that

(13.1.2) Pr[|g(t) − g(θ)| ≥ ε] ≤ Pr[|t − θ| ≥ δ].

Since the probability on the righthand side converges to zero, the one on the lefthand
side converges too.

Different consistent estimators can have quite different speeds of convergence.
Are there estimators which have optimal asymptotic properties among all consistent
estimators? Yes, if one limits oneself to a fairly reasonable subclass of consistent
estimators.

Here are the details: Most consistent estimators we will encounter are asymp-
totically normal, i.e., the “shape” of their distribution function converges towards
the normal distribution, as we had it for the sample mean in the central limit the-
orem. In order to be able to use this asymptotic distribution for significance tests
and confidence intervals, however, one needs more than asymptotic normality (and
many textbooks are not aware of this): one needs the convergence to normality to
be uniform in compact intervals [Rao73, p. 346–351]. Such estimators are called
consistent uniformly asymptotically normal estimators (CUAN estimators)

If one limits oneself to CUAN estimators it can be shown that there are asymp-
totically “best” CUAN estimators. Since the distribution is asymptotically normal,
there is no problem to define what it means to be asymptotically best: those es-
timators are asymptotically best whose asymptotic MSE = asymptotic variance is
smallest. CUAN estimators whose MSE is asymptotically no larger than that of
any other CUAN estimator, are called asymptotically efficient. Rao has shown that
for CUAN estimators the lower bound for this asymptotic variance is the asymptotic
limit of the Cramer Rao lower bound (CRLB). (More about the CRLB below). Max-
imum likelihood estimators are therefore usually efficient CUAN estimators. In this
sense one can think of maximum likelihood estimators to be something like asymp-
totically best consistent estimators, compare a statement to this effect in [Ame94, p.
144]. And one can think of asymptotically efficient CUAN estimators as estimators
who are in large samples as good as maximum likelihood estimators.

All these are large sample properties. Among the asymptotically efficient estima-
tors there are still wide differences regarding the small sample properties. Asymptotic
efficiency should therefore again be considered a minimum requirement: there must
be very good reasons not to be working with an asymptotically efficient estimator.

Problem 195. Can you think of situations in which an estimator is acceptable
which is not asymptotically efficient?
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Answer. If robustness matters then the median may be preferable to the mean, although it
is less efficient. �

13.2. Small Sample Properties

In order to judge how good an estimator is for small samples, one has two
dilemmas: (1) there are many different criteria for an estimator to be “good”; (2)
even if one has decided on one criterion, a given estimator may be good for some
values of the unknown parameters and not so good for others.

If x and y are two estimators of the parameter θ, then each of the following
conditions can be interpreted to mean that x is better than y:

Pr[|x − θ| ≤ |y − θ|] = 1(13.2.1)

E[g(x − θ)] ≤ E[g(y − θ)](13.2.2)

for every continuous function g which is and nonincreasing for x < 0 and nondecreas-
ing for x > 0

E[g(|x − θ|)] ≤ E[g(|y − θ|)](13.2.3)

for every continuous and nondecreasing function g

Pr[{|x − θ| > ε}] ≤ Pr[{|y − θ| > ε}] for every ε(13.2.4)

E[(x − θ)2] ≤ E[(y − θ)2](13.2.5)

Pr[|x − θ| < |y − θ|] ≥ Pr[|x − θ| > |y − θ|](13.2.6)

This list is from [Ame94, pp. 118–122]. But we will simply use the MSE.
Therefore we are left with dilemma (2). There is no single estimator that has

uniformly the smallest MSE in the sense that its MSE is better than the MSE of
any other estimator whatever the value of the parameter value. To see this, simply
think of the following estimator t of θ: t = 10; i.e., whatever the outcome of the
experiments, t always takes the value 10. This estimator has zero MSE when θ
happens to be 10, but is a bad estimator when θ is far away from 10. If an estimator
existed which had uniformly best MSE, then it had to be better than all the constant
estimators, i.e., have zero MSE whatever the value of the parameter, and this is only
possible if the parameter itself is observed.

Although the MSE criterion cannot be used to pick one best estimator, it can be
used to rule out estimators which are unnecessarily bad in the sense that other esti-
mators exist which are never worse but sometimes better in terms of MSE whatever
the true parameter values. Estimators which are dominated in this sense are called
inadmissible.

But how can one choose between two admissible estimators? [Ame94, p. 124]
gives two reasonable strategies. One is to integrate the MSE out over a distribution
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of the likely values of the parameter. This is in the spirit of the Bayesians, although
Bayesians would still do it differently. The other strategy is to choose a minimax
strategy. Amemiya seems to consider this an alright strategy, but it is really too
defensive. Here is a third strategy, which is often used but less well founded theoreti-
cally: Since there are no estimators which have minimum MSE among all estimators,
one often looks for estimators which have minimum MSE among all estimators with
a certain property. And the “certain property” which is most often used is unbiased-
ness. The MSE of an unbiased estimator is its variance; and an estimator which has
minimum variance in the class of all unbiased estimators is called “efficient.”

The class of unbiased estimators has a high-sounding name, and the results
related with Cramer-Rao and Least Squares seem to confirm that it is an important
class of estimators. However I will argue in these class notes that unbiasedness itself
is not a desirable property.

13.3. Comparison Unbiasedness Consistency

Let us compare consistency with unbiasedness. If the estimator is unbiased,
then its expected value for any sample size, whether large or small, is equal to the
true parameter value. By the law of large numbers this can be translated into a
statement about large samples: The mean of many independent replications of the
estimate, even if each replication only uses a small number of observations, gives
the true parameter value. Unbiasedness says therefore something about the small
sample properties of the estimator, while consistency does not.

The following thought experiment may clarify the difference between unbiased-
ness and consistency. Imagine you are conducting an experiment which gives you
every ten seconds an independent measurement, i.e., a measurement whose value is
not influenced by the outcome of previous measurements. Imagine further that the
experimental setup is connected to a computer which estimates certain parameters of
that experiment, re-calculating its estimate every time twenty new observation have
become available, and which displays the current values of the estimate on a screen.
And assume that the estimation procedure used by the computer is consistent, but
biased for any finite number of observations.

Consistency means: after a sufficiently long time, the digits of the parameter
estimate displayed by the computer will be correct. That the estimator is biased,
means: if the computer were to use every batch of 20 observations to form a new
estimate of the parameter, without utilizing prior observations, and then would use
the average of all these independent estimates as its updated estimate, it would end
up displaying a wrong parameter value on the screen.

A biased extimator gives, even in the limit, an incorrect result as long as one’s
updating procedure is the simple taking the averages of all previous estimates. If
an estimator is biased but consistent, then a better updating method is available,
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which will end up in the correct parameter value. A biased estimator therefore is not
necessarily one which gives incorrect information about the parameter value; but it
is one which one cannot update by simply taking averages. But there is no reason to
limit oneself to such a crude method of updating. Obviously the question whether
the estimate is biased is of little relevance, as long as it is consistent. The moral of
the story is: If one looks for desirable estimators, by no means should one restrict
one’s search to unbiased estimators! The high-sounding name “unbiased” for the
technical property E[t] = θ has created a lot of confusion.

Besides having no advantages, the category of unbiasedness even has some in-
convenient properties: In some cases, in which consistent estimators exist, there are
no unbiased estimators. And if an estimator t is an unbiased estimate for the pa-
rameter θ, then the estimator g(t) is usually no longer an unbiased estimator for
g(θ). It depends on the way a certain quantity is measured whether the estimator is
unbiased or not. However consistency carries over.

Unbiasedness is not the only possible criterion which ensures that the values of
the estimator are centered over the value it estimates. Here is another plausible
definition:

Definition 13.3.1. An estimator θ̂ of the scalar θ is called median unbiased for
all θ ∈ Θ iff

(13.3.1) Pr[θ̂ < θ] = Pr[θ̂ > θ] =
1

2

This concept is always applicable, even for estimators whose expected value does
not exist.

Problem 196. 6 points (Not eligible for in-class exams) The purpose of the fol-
lowing problem is to show how restrictive the requirement of unbiasedness is. Some-
times no unbiased estimators exist, and sometimes, as in the example here, unbiased-
ness leads to absurd estimators. Assume the random variable x has the geometric
distribution with parameter p, where 0 ≤ p ≤ 1. In other words, it can only assume
the integer values 1, 2, 3, . . ., with probabilities

(13.3.2) Pr[x = r] = (1 − p)r−1p.

Show that the unique unbiased estimator of p on the basis of one observation of x is
the random variable f(x) defined by f(x) = 1 if x = 1 and 0 otherwise. Hint: Use
the mathematical fact that a function φ(q) that can be expressed as a power series
φ(q) =

∑∞
j=0 ajq

j , and which takes the values φ(q) = 1 for all q in some interval of

nonzero length, is the power series with a0 = 1 and aj = 0 for j 6= 0. (You will need
the hint at the end of your answer, don’t try to start with the hint!)

Answer. Unbiasedness means that E[f(x)] =
∑∞

r=1
f(r)(1 − p)r−1p = p for all p in the unit

interval, therefore
∑∞

r=1
f(r)(1 − p)r−1 = 1. This is a power series in q = 1 − p, which must be
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identically equal to 1 for all values of q between 0 and 1. An application of the hint shows that
the constant term in this power series, corresponding to the value r − 1 = 0, must be = 1, and all
other f(r) = 0. Here older formulation: An application of the hint with q = 1 − p, j = r − 1, and
aj = f(j + 1) gives f(1) = 1 and all other f(r) = 0. This estimator is absurd since it lies on the
boundary of the range of possible values for q. �

Problem 197. As in Question 61, you make two independent trials of a Bernoulli
experiment with success probability θ, and you observe t, the number of successes.

• a. Give an unbiased estimator of θ based on t (i.e., which is a function of t).

• b. Give an unbiased estimator of θ2.

• c. Show that there is no unbiased estimator of θ3.

Hint: Since t can only take the three values 0, 1, and 2, any estimator u which
is a function of t is determined by the values it takes when t is 0, 1, or 2, call them
u0, u1, and u2. Express E[u] as a function of u0, u1, and u2.

Answer. E[u] = u0(1−θ)2 +2u1θ(1−θ)+u2θ2 = u0 +(2u1 −2u0)θ+(u0−2u1 +u2)θ2. This
is always a second degree polynomial in θ, therefore whatever is not a second degree polynomial in θ
cannot be the expected value of any function of t. For E[u] = θ we need u0 = 0, 2u1−2u0 = 2u1 = 1,
therefore u1 = 0.5, and u0 − 2u1 + u2 = −1 + u2 = 0, i.e. u2 = 1. This is, in other words, u = t/2.

For E[u] = θ2 we need u0 = 0, 2u1 − 2u0 = 2u1 = 0, therefore u1 = 0, and u0 − 2u1 +u2 = u2 = 1,
This is, in other words, u = t(t− 1)/2. From this equation one also sees that θ3 and higher powers,
or things like 1/θ, cannot be the expected values of any estimators. �

• d. Compute the moment generating function of t.

Answer.

(13.3.3) E[eλt] = e0 · (1 − θ)2 + eλ · 2θ(1 − θ) + e2λ · θ2 =
(
1 − θ + θeλ

)2

�

Problem 198. This is [KS79, Question 17.11 on p. 34], originally [Fis, p. 700].

• a. 1 point Assume t and u are two unbiased estimators of the same unknown
scalar nonrandom parameter θ. t and u have finite variances and satisfy var[u−t] 6=
0. Show that a linear combination of t and u, i.e., an estimator of θ which can be
written in the form αt + βu, is unbiased if and only if α = 1 − β. In other words,
any unbiased estimator which is a linear combination of t and u can be written in
the form

(13.3.4) t + β(u − t).

• b. 2 points By solving the first order condition show that the unbiased linear
combination of t and u which has lowest MSE is

(13.3.5) θ̂ = t − cov[t,u − t]

var[u − t]
(u − t)
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Hint: your arithmetic will be simplest if you start with (13.3.4).

• c. 1 point If ρ2 is the squared correlation coefficient between t and u− t, i.e.,

(13.3.6) ρ2 =
(cov[t,u − t])2

var[t] var[u − t]

show that var[θ̂] = var[t](1 − ρ2).

• d. 1 point Show that cov[t,u − t] 6= 0 implies var[u − t] 6= 0.

• e. 2 points Use (13.3.5) to show that if t is the minimum MSE unbiased
estimator of θ, and u another unbiased estimator of θ, then

(13.3.7) cov[t,u − t] = 0.

• f. 1 point Use (13.3.5) to show also the opposite: if t is an unbiased estimator
of θ with the property that cov[t,u − t] = 0 for every other unbiased estimator u of
θ, then t has minimum MSE among all unbiased estimators of θ.

There are estimators which are consistent but their bias does not converge to
zero:

(13.3.8) θ̂n =

{
θ with probability 1 − 1

n

n with probability 1
n

Then Pr(
∣∣θ̂n − θ

∣∣ ≥ ε) ≤ 1
n , i.e., the estimator is consistent, but E[θ̂] = θn−1

n + 1 →
θ + 1 6= 0.

Problem 199. 4 points Is it possible to have a consistent estimator whose bias
becomes unbounded as the sample size increases? Either prove that it is not possible
or give an example.

Answer. Yes, this can be achieved by making the rare outliers even wilder than in (13.3.8),
say

(13.3.9) θ̂n =

{
θ with probability 1 − 1

n

n2 with probability 1
n

Here Pr(
∣∣θ̂n − θ

∣∣ ≥ ε) ≤ 1
n

, i.e., the estimator is consistent, but E[θ̂] = θ n−1
n

+ n→ θ + n. �

And of course there are estimators which are unbiased but not consistent: sim-
ply take the first observation x1 as an estimator if E[x] and ignore all the other
observations.
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13.4. The Cramer-Rao Lower Bound

Take a scalar random variable y with density function fy. The entropy of y, if it
exists, is H[y] = −E[log(fy(y))]. This is the continuous equivalent of (3.11.2). The
entropy is the measure of the amount of randomness in this variable. If there is little
information and much noise in this variable, the entropy is high.

Now let y 7→ g(y) be the density function of a different random variable x. In

other words, g is some function which satisfies g(y) ≥ 0 for all y, and
∫ +∞
−∞ g(y) dy = 1.

Equation (3.11.10) with v = g(y) and w = fy(y) gives

(13.4.1) fy(y) − fy(y) log fy(y) ≤ g(y) − fy(y) log g(y).

This holds for every value y, and integrating over y gives 1 − E[log fy(y)] ≤ 1 −
E[log g(y)] or

(13.4.2) E[log fy(y)] ≥ E[log g(y)].

This is an important extremal value property which distinguishes the density function
fy(y) of y from all other density functions: That density function g which maximizes
E[log g(y)] is g = fy, the true density function of y.

This optimality property lies at the basis of the Cramer-Rao inequality, and it
is also the reason why maximum likelihood estimation is so good. The difference
between the left and right hand side in (13.4.2) is called the Kullback-Leibler dis-
crepancy between the random variables y and x (where x is a random variable whose
density is g).

The Cramer Rao inequality gives a lower bound for the MSE of an unbiased
estimator of the parameter of a probability distribution (which has to satisfy cer-
tain regularity conditions). This allows one to determine whether a given unbiased
estimator has a MSE as low as any other unbiased estimator (i.e., whether it is
“efficient.”)

Problem 200. Assume the density function of y depends on a parameter θ,
write it fy(y; θ), and θ◦ is the true value of θ. In this problem we will compare the
expected value of y and of functions of y with what would be their expected value
if the true parameter value were not θ◦ but would take some other value θ. If the
random variable t is a function of y, we write Eθ[t] for what would be the expected
value of t if the true value of the parameter were θ instead of θ◦. Occasionally, we
will use the subscript ◦ as in E◦ to indicate that we are dealing here with the usual
case in which the expected value is taken with respect to the true parameter value θ◦.
Instead of E◦ one usually simply writes E, since it is usually self-understood that one
has to plug the right parameter values into the density function if one takes expected
values. The subscript ◦ is necessary here only because in the present problem, we
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sometimes take expected values with respect to the “wrong” parameter values. The
same notational convention also applies to variances, covariances, and the MSE.

Throughout this problem we assume that the following regularity conditions hold:
(a) the range of y is independent of θ, and (b) the derivative of the density function
with respect to θ is a continuous differentiable function of θ. These regularity condi-
tions ensure that one can differentiate under the integral sign, i.e., for all function
t(y) follows

∫ ∞

−∞

∂

∂θ
fy(y; θ)t(y) dy =

∂

∂θ

∫ ∞

−∞
fy(y; θ)t(y) dy =

∂

∂θ
Eθ[t(y)](13.4.3)

∫ ∞

−∞

∂2

(∂θ)2
fy(y; θ)t(y) dy =

∂2

(∂θ)2

∫ ∞

−∞
fy(y; θ)t(y) dy =

∂2

(∂θ)2
Eθ[t(y)].(13.4.4)

• a. 1 point The score is defined as the random variable

(13.4.5) q(y; θ) =
∂

∂θ
log fy(y; θ).

In other words, we do three things to the density function: take its logarithm, then
take the derivative of this logarithm with respect to the parameter, and then plug the
random variable into it. This gives us a random variable which also depends on the
nonrandom parameter θ. Show that the score can also be written as

(13.4.6) q(y; θ) =
1

fy(y; θ)

∂fy(y; θ)

∂θ

Answer. This is the chain rule for differentiation: for any differentiable function g(θ), ∂
∂θ

log g(θ) =
1
g(θ)

∂g(θ)
∂θ

. �

• b. 1 point If the density function is member of an exponential dispersion family
(6.2.9), show that the score function has the form

(13.4.7) q(y; θ) =
y − ∂b(θ)

∂θ

a(ψ)

Answer. This is a simple substitution: if

(13.4.8) fy(y; θ, ψ) = exp

(
yθ − b(θ)

a(ψ)
+ c(y, ψ)

)
,

then

(13.4.9)
∂ log fy(y; θ, ψ)

∂θ
=

y − ∂b(θ)
∂θ

a(ψ)

�
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• c. 3 points If fy(y; θ◦) is the true density function of y, then we know from
(13.4.2) that E◦[log fy(y; θ◦)] ≥ E◦[log f(y; θ)] for all θ. This explains why the score
is so important: it is the derivative of that function whose expected value is maximized
if the true parameter is plugged into the density function. The first-order conditions
in this situation read: the expected value of this derivative must be zero for the true
parameter value. This is the next thing you are asked to show: If θ◦ is the true
parameter value, show that E◦[q(y; θ◦)] = 0.

Answer. First write for general θ

E◦[q(y; θ)] =

∫ ∞

−∞
q(y; θ)fy(y; θ◦) dy =

∫ ∞

−∞

1

fy(y; θ)

∂fy(y; θ)

∂θ
fy(y; θ◦) dy.(13.4.10)

For θ = θ◦ this simplifies:

E◦[q(y; θ◦)] =

∫ ∞

−∞

∂fy(y; θ)

∂θ

∣∣∣
θ=θ◦

dy =
∂

∂θ

∫ ∞

−∞
fy(y; θ) dy

∣∣∣
θ=θ◦

=
∂

∂θ
1 = 0.(13.4.11)

Here I am writing
∂fy(y;θ)

∂θ

∣∣∣
θ=θ◦

instead of the simpler notation
∂fy(y;θ◦)

∂θ
, in order to emphasize

that one first has to take a derivative with respect to θ and then one plugs θ◦ into that derivative. �

• d. Show that, in the case of the exponential dispersion family,

(13.4.12) E◦[y] =
∂b(θ)

∂θ

∣∣∣
θ=θ◦

Answer. Follows from the fact that the score function of the exponential family (13.4.7) has
zero expected value. �

• e. 5 points If we differentiate the score, we obtain the Hessian

(13.4.13) h(θ) =
∂2

(∂θ)2
log fy(y; θ).

From now on we will write the score function as q(θ) instead of q(y; θ); i.e., we will
no longer make it explicit that q is a function of y but write it as a random variable
which depends on the parameter θ. We also suppress the dependence of h on y; our
notation h(θ) is short for h(y; θ). Since there is only one parameter in the density
function, score and Hessian are scalars; but in the general case, the score is a vector
and the Hessian a matrix. Show that, for the true parameter value θ◦, the negative
of the expected value of the Hessian equals the variance of the score, i.e., the expected
value of the square of the score:

(13.4.14) E◦[h(θ◦)] = −E◦[q
2(θ◦)].
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Answer. Start with the definition of the score

(13.4.15) q(y; θ) =
∂

∂θ
log fy(y; θ) =

1

fy(y; θ)

∂

∂θ
fy(y; θ),

and differentiate the rightmost expression one more time:

h(y; θ) =
∂

(∂θ)
q(y; θ) = − 1

f2
y(y; θ)

(
∂

∂θ
fy(y; θ)

)2

+
1

fy(y; θ)

∂2

∂θ2
fy(y; θ)(13.4.16)

= −q2(y; θ) +
1

fy(y; θ)

∂2

∂θ2
fy(y; θ)(13.4.17)

Taking expectations we get

(13.4.18) E◦[h(y; θ)] = −E◦[q2(y; θ)] +

∫ +∞

−∞

1

fy(y; θ)

(
∂2

∂θ2
fy(y; θ)

)
fy(y; θ◦) dy

Again, for θ = θ◦, we can simplify the integrand and differentiate under the integral sign:

(13.4.19)

∫ +∞

−∞

∂2

∂θ2
fy(y; θ) dy =

∂2

∂θ2

∫ +∞

−∞
fy(y; θ) dy =

∂2

∂θ2
1 = 0.

�

• f. Derive from (13.4.14) that, for the exponential dispersion family (6.2.9),

(13.4.20) var◦[y] =
∂2b(θ)

∂θ2
a(φ)

∣∣∣
θ=θ◦

Answer. Differentiation of (13.4.7) gives h(θ) = − ∂2b(θ)

∂θ2
1

a(φ)
. This is constant and therefore

equal to its own expected value. (13.4.14) says therefore

(13.4.21)
∂2b(θ)

∂θ2

∣∣∣
θ=θ◦

1

a(φ)
= E◦[q2(θ◦)] =

1(
a(φ)

)2 var◦[y]

from which (13.4.20) follows. �

Problem 201.

• a. Use the results from question 200 to derive the following strange and in-
teresting result: for any random variable t which is a function of y, i.e., t = t(y),
follows cov◦[q(θ◦), t] = ∂

∂θ Eθ[t]
∣∣
θ=θ◦

.

Answer. The following equation holds for all θ:

E◦[q(θ)t] =

∫ ∞

−∞

1

fy(y; θ)

∂fy(y; θ)

∂θ
t(y)fy(y; θ◦) dy(13.4.22)
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If the θ in q(θ) is the right parameter value θ◦ one can simplify:

E◦[q(θ◦)t] =

∫ ∞

−∞

∂fy(y; θ)

∂θ

∣∣∣
θ=θ◦

t(y) dy(13.4.23)

=
∂

∂θ

∫ ∞

−∞
fy(y; θ)t(y) dy

∣∣∣
θ=θ◦

(13.4.24)

=
∂

∂θ
Eθ [t]

∣∣∣
θ=θ◦

(13.4.25)

This is at the same time the covariance: cov◦[q(θ◦), t] = E◦[q(θ◦)t]−E◦[q(θ◦)] E◦[t] = E◦[q(θ◦)t],
since E◦[q(θ◦)] = 0. �

Explanation, nothing to prove here: Now if t is an unbiased estimator of θ,
whatever the value of θ, then it follows cov◦[q(θ◦), t] = ∂

∂θθ = 1. From this fol-
lows by Cauchy-Schwartz var◦[t] var◦[q(θ◦)] ≥ 1, or var◦[t] ≥ 1/ var◦[q(θ◦)]. Since
E◦[q(θ◦)] = 0, we know var◦[q(θ◦)] = E◦[q2(θ◦)], and since t is unbiased, we know
var◦[t] = MSE◦[t; θ◦]. Therefore the Cauchy-Schwartz inequality reads

(13.4.26) MSE◦[t; θ
◦] ≥ 1/E◦[q

2(θ◦)].

This is the Cramer-Rao inequality. The inverse of the variance of q(θ◦), 1/ var◦[q(θ◦)] =
1/E◦[q2(θ◦)], is called the Fisher information, written I(θ◦). It is a lower bound for
the MSE of any unbiased estimator of θ. Because of (13.4.14), the Cramer Rao
inequality can also be written in the form

(13.4.27) MSE[t; θ◦] ≥ −1/E◦[h(θ◦)].

(13.4.26) and (13.4.27) are usually written in the following form: Assume y has
density function fy(y; θ) which depends on the unknown parameter θ, and and let
t(y) be any unbiased estimator of θ. Then

(13.4.28) var[t] ≥ 1

E[
(
∂
∂θ log fy(y; θ)

)2
]

=
−1

E[ ∂
2

∂θ2 log fy(y; θ)]
.

(Sometimes the first and sometimes the second expression is easier to evaluate.)
If one has a whole vector of observations then the Cramer-Rao inequality involves

the joint density function:

(13.4.29) var[t] ≥ 1

E[
(
∂
∂θ log fy(y; θ)

)2
]

=
−1

E[ ∂
2

∂θ2 log fy(y; θ)]
.

This inequality also holds if y is discrete and one uses its probability mass function
instead of the density function. In small samples, this lower bound is not always
attainable; in some cases there is no unbiased estimator with a variance as low as
the Cramer Rao lower bound.
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Problem 202. 4 points Assume n independent observations of a variable y ∼
N(µ, σ2) are available, where σ2 is known. Show that the sample mean ȳ attains the
Cramer-Rao lower bound for µ.

Answer. The density function of each yi is

fyi (y) = (2πσ2)−1/2 exp
(
− (y − µ)2

2σ2

)
(13.4.30)

therefore the log likelihood function of the whole vector is

`(y;µ) =

n∑

i=1

log fyi (yi) = −n
2

log(2π) − n

2
log σ2 − 1

2σ2

n∑

i=1

(yi − µ)2(13.4.31)

∂

∂µ
`(y;µ) =

1

σ2

n∑

i=1

(yi − µ)(13.4.32)

In order to apply (13.4.29) you can either square this and take the expected value

E[

(
∂

∂µ
`(y;µ)

)2

] =
1

σ4

∑
E[(yi − µ)2] = n/σ2(13.4.33)

alternatively one may take one more derivative from (13.4.32) to get

∂2

∂µ2
`(y;µ) = − n

σ2
(13.4.34)

This is constant, therefore equal to its expected value. Therefore the Cramer-Rao Lower Bound
says that var[ȳ] ≥ σ2/n. This holds with equality. �

Problem 203. Assume yi ∼ NID(0, σ2) (i.e., normally independently dis-
tributed) with unknown σ2. The obvious estimate of σ2 is s2 = 1

n

∑
y2
i .

• a. 2 points Show that s2 is an unbiased estimator of σ2, is distributed ∼ σ2

n χ
2
n,

and has variance 2σ4/n. You are allowed to use the fact that a χ2
n has variance 2n,

which is equation (5.9.5).
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Answer.

E[y2i ] = var[yi] + (E[yi])
2 = σ2 + 0 = σ2(13.4.35)

zi =
yi

σ
∼ NID(0, 1)(13.4.36)

yi = σzi(13.4.37)

y2i = σ2z2i(13.4.38)

n∑

i=1

y2i = σ2

n∑

i=1

z2i ∼ σ2χ2
n(13.4.39)

1

n

n∑

i=1

y2i =
σ2

n

n∑

i=1

z2i ∼ σ2

n
χ2
n(13.4.40)

var
[ 1

n

n∑

i=1

y2i
]

=
σ4

n2
var[χ2

n] =
σ4

n2
2n =

2σ4

n
(13.4.41)

�

• b. 4 points Show that this variance is at the same time the Cramer Rao lower
bound.

Answer.

`(y, σ2) = log fy(y; σ2) = −1

2
log 2π − 1

2
log σ2 − y2

2σ2
(13.4.42)

∂ log fy

∂σ2
(y; σ2) = − 1

2σ2
+

y2

2σ4
=
y2 − σ2

2σ4
(13.4.43)

Since
y2 − σ2

2σ4
has zero mean, it follows

E[

(
∂ log fy

∂σ2
(y; σ2)

)2

] =
var[y2]

4σ8
=

1

2σ4
.(13.4.44)

Alternatively, one can differentiate one more time:

∂2 log fy

(∂σ2)2
(y; σ2) = − y2

σ6
+

1

2σ4
(13.4.45)

E[
∂2 log fy

(∂σ2)2
(y; σ2)] = −σ

2

σ6
+

1

2σ4
=

1

2σ4
(13.4.46)

(13.4.47)

This makes the Cramer Rao lower bound 2σ4/n. �

Problem 204. 4 points Assume x1, . . . , xn is a random sample of independent
observations of a Poisson distribution with parameter λ, i.e., each of the xi has
probability mass function

(13.4.48) pxi
(x) = Pr[xi = x] =

λx

x!
e−λ x = 0, 1, 2, . . . .
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A Poisson variable with parameter λ has expected value λ and variance λ. (You
are not required to prove this here.) Is there an unbiased estimator of λ with lower
variance than the sample mean x̄?

Here is a formulation of the Cramer Rao Inequality for probability mass func-
tions, as you need it for Question 204. Assume y1, . . . ,yn are n independent ob-
servations of a random variable y whose probability mass function depends on the
unknown parameter θ and satisfies certain regularity conditions. Write the univari-
ate probability mass function of each of the yi as py(y; θ) and let t be any unbiased
estimator of θ. Then

(13.4.49) var[t] ≥ 1

nE[
(
∂
∂θ ln py(y; θ)

)2
]

=
−1

nE[ ∂
2

∂θ2 ln py(y; θ)]
.

Answer. The Cramer Rao lower bound says no.

log px(x;λ) = x log λ− log x! − λ(13.4.50)

∂ log px

∂λ
(x;λ) =

x

λ
− 1 =

x − λ

λ
(13.4.51)

E[

(
∂ log px

∂λ
(x;λ)

)2

] = E[
(x − λ)2

λ2
] =

var[x]

λ2
=

1

λ
.(13.4.52)

Or alternatively, after (13.4.51) do

∂2 log px

∂λ2
(x;λ) = − x

λ2
(13.4.53)

−E[

(
∂2 log px

∂λ2
(x;λ)

)
] =

E[x]

λ2
=

1

λ
.(13.4.54)

Therefore the Cramer Rao lower bound is λ
n

, which is the variance of the sample mean. �

If the density function depends on more than one unknown parameter, i.e., if
it has the form fy(y; θ1, . . . , θk), the Cramer Rao Inequality involves the following
steps: (1) define `(y; θ1, · · · , θk) = log fy(y; θ1, . . . , θk), (2) form the following matrix
which is called the information matrix :
(13.4.55)

I =




−nE[ ∂
2`
∂θ21

] · · · −nE[ ∂2`
∂θ1∂θk

]

...
. . .

...

−nE[ ∂2`
∂θk∂θ1

] · · · −nE[ ∂
2`
∂θ2

k

]


 =




nE[
(
∂`
∂θ1

)2
] · · · nE[ ∂`∂θ1

∂`
∂θk

]
...

. . .
...

nE[ ∂`∂θk

∂`
∂θ1

] · · · nE[
(
∂`
∂θk

)2
]


 ,
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and (3) form the matrix inverse I−1. If the vector random variable t =




t1

...
tn




is an unbiased estimator of the parameter vector θ =



θ1
...
θn


, then the inverse of

the information matrix I−1 is a lower bound for the covariance matrix V [t] in the
following sense: the difference matrix V [t] − I−1 is always nonnegative definite.

From this follows in particular: if iii is the ith diagonal element of I−1, then
var[ti] ≥ iii.

13.5. Best Linear Unbiased Without Distribution Assumptions

If the xi are Normal with unknown expected value and variance, their sample
mean has lowest MSE among all unbiased estimators of µ. If one does not assume
Normality, then the sample mean has lowest MSE in the class of all linear unbiased
estimators of µ. This is true not only for the sample mean but also for all least squares
estimates. This result needs remarkably weak assumptions: nothing is assumed about
the distribution of the xi other than the existence of mean and variance. Problem
205 shows that in some situations one can even dispense with the independence of
the observations.

Problem 205. 5 points [Lar82, example 5.4.1 on p 266] Let y1 and y2 be two
random variables with same mean µ and variance σ2, but we do not assume that they
are uncorrelated; their correlation coefficient is ρ, which can take any value |ρ| ≤ 1.
Show that ȳ = (y1 + y2)/2 has lowest mean squared error among all linear unbiased
estimators of µ, and compute its MSE. (An estimator µ̃ of µ is linear iff it can be
written in the form µ̃ = α1y1 + α2y2 with some constant numbers α1 and α2.)

Answer.

ỹ = α1y1 + α2y2(13.5.1)

var ỹ = α2
1 var[y1] + α2

2 var[y2] + 2α1α2 cov[y1, y2](13.5.2)

= σ2(α2
1 + α2

2 + 2α1α2ρ).(13.5.3)

Here we used (8.1.14). Unbiasedness means α2 = 1 − α1, therefore we call α1 = α and α2 = 1− α:

var[ỹ]/σ2 = α2 + (1 − α)2 + 2α(1 − α)ρ(13.5.4)

Now sort by the powers of α:

= 2α2(1 − ρ) − 2α(1 − ρ) + 1(13.5.5)

= 2(α2 − α)(1 − ρ) + 1.(13.5.6)
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This takes its minimum value where the derivative ∂
∂α

(α2 − α) = 2α − 1 = 0. For the MSE plug

α1 = α2 − 1/2 into (13.5.3) to get σ2

2

(
1 + ρ

)
. �

Problem 206. You have two unbiased measurements with errors of the same
quantity µ (which may or may not be random). The first measurement y1 has mean
squared error E[(y1 − µ)2] = σ2, the other measurement y2 has E[(y1 − µ)2] = τ2.
The measurement errors y1 − µ and y2 − µ have zero expected values (i.e., the
measurements are unbiased) and are independent of each other.

• a. 2 points Show that the linear unbiased estimators of µ based on these two
measurements are simply the weighted averages of these measurements, i.e., they can
be written in the form µ̃ = αy1 + (1− α)y2, and that the MSE of such an estimator
is α2σ2 + (1 − α)2τ2. Note: we are using the word “estimator” here even if µ is
random. An estimator or predictor µ̃ is unbiased if E[µ̃ − µ] = 0. Since we allow µ
to be random, the proof in the class notes has to be modified.

Answer. The estimator µ̃ is linear (more precisely: affine) if it can written in the form

µ̃ = α1y1 + α2y2 + γ(13.5.7)

The measurements themselves are unbiased, i.e., E[yi − µ] = 0, therefore

E[µ̃− µ] = (α1 + α2 − 1) E[µ] + γ = 0(13.5.8)

for all possible values of E[µ]; therefore γ = 0 and α2 = 1 − α1. To simplify notation, we will call
from now on α1 = α, α2 = 1 − α. Due to unbiasedness, the MSE is the variance of the estimation
error

var[µ̃− µ] = α2σ2 + (1 − α)2τ2(13.5.9)

�

• b. 4 points Define ω2 by

1

ω2
=

1

σ2
+

1

τ2
which can be solved to give ω2 =

σ2τ2

σ2 + τ2
.(13.5.10)

Show that the Best (i.e., minimum MSE) linear unbiased estimator (BLUE) of µ
based on these two measurements is

ŷ =
ω2

σ2
y1 +

ω2

τ2
y2(13.5.11)

i.e., it is the weighted average of y1 and y2 where the weights are proportional to the
inverses of the variances.
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Answer. The variance (13.5.9) takes its minimum value where its derivative with respect of
α is zero, i.e., where

∂

∂α

(
α2σ2 + (1 − α)2τ2

)
= 2ασ2 − 2(1 − α)τ2 = 0(13.5.12)

ασ2 = τ2 − ατ2(13.5.13)

α =
τ2

σ2 + τ2
(13.5.14)

In terms of ω one can write

α =
τ2

σ2 + τ2
=
ω2

σ2
and 1 − α =

σ2

σ2 + τ2
=
ω2

τ2
.(13.5.15)

�

• c. 2 points Show: the MSE of the BLUE ω2 satisfies the following equation:

(13.5.16)
1

ω2
=

1

σ2
+

1

τ2

Answer. We already have introduced the notation ω2 for the quantity defined by (13.5.16);
therefore all we have to show is that the MSE or, equivalently, the variance of the estimation error
is equal to this ω2:

(13.5.17) var[µ̃− µ] =
(ω2

σ2

)2
σ2 +

(ω2

τ2

)2
τ2 = ω4

( 1

σ2
+

1

τ2

)
= ω4 1

ω2
= ω2

�

Examples of other classes of estimators for which a best estimator exists are: if
one requires the estimator to be translation invariant, then the least squares estima-
tors are best in the class of all translation invariant estimators. But there is no best
linear estimator in the linear model. (Theil)

13.6. Maximum Likelihood Estimation

This is an excellent and very widely applicable estimation principle. Its main
drawback is its computational complexity, but with modern computing power it
becomes more and more manageable. Another drawback is that it requires a full
specification of the distribution.

Problem 207. 2 points What are the two greatest disadvantages of Maximum
Likelihood Estimation?

Answer. Its high information requirements (the functional form of the density function must
be known), and computational complexity. �

In our discussion of entropy in Section 3.11 we derived an extremal value property
which distinguishes the actual density function fy(y) of a given random variable y

from all other possible density functions of y, i.e., from all other functions g ≥ 0

with
∫ +∞
−∞ g(y) dy = 1. The true density function of y is the one which maximizes
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E[log g(y)]. We showed that this principle can be used to design a payoff scheme
by which it is in the best interest of a forecaster to tell the truth. Now we will see
that this principle can also be used to design a good estimator. Say you have n
independent observations of y. You know the density of y belongs to a given family
F of density functions, but you don’t know which member of F it is. Then form
the arithmetic mean of log f(yi) for all f ∈ F . It converges towards E[log f(y)]. For
the true density function, this expected value is higher than for all the other density
functions. If one does not know which the true density function is, then it is a good
strategy to select that density function f for which the sample mean of the log f(yi)
is largest. This is the maximum likelihood estimator.

Let us interject here a short note about the definitional difference between density
function and likelihood function. If we know µ = µ0, we can write down the density
function as

(13.6.1) fy(y;µ0) =
1√
2π
e−

(y−µ0)2

2 .

It is a function of y, the possible values assumed by y, and the letter µ0 symbolizes
a constant, the true parameter value. The same function considered as a function of
the variable µ, representing all possible values assumable by the true mean, with y
being fixed at the actually observed value, becomes the likelihood function.

In the same way one can also turn probability mass functions px(x) into likelihood
functions.

Now let us compute some examples of the MLE. You make n independent
observations y1, . . . ,yn from a N(µ, σ2) distribution. Write the likelihood function
as

(13.6.2) L(µ, σ2; y1, . . . ,yn) =
n∏

i=1

fy(yi) =
( 1√

2πσ2

)n
e−

1
2σ2

∑
(yi−µ)2 .

Its logarithm is more convenient to maximize:

(13.6.3) ` = lnL(µ, σ2; y1, . . . ,yn) = −n
2

ln 2π − n

2
lnσ2 − 1

2σ2

∑
(yi − µ)2.

To compute the maximum we need the partial derivatives:

∂`

∂µ
=

1

σ2

∑
(yi − µ)(13.6.4)

∂`

∂σ2
= − n

2σ2
+

1

2σ4

∑
(yi − µ)2.(13.6.5)

The maximum likelihood estimators are those values µ̂ and σ̂2 which set these two
partials zero. I.e., at the same time at which we set the partials zero we must put
the hats on µ and σ2. As long as σ̂2 6= 0 (which is the case with probability one),
the first equation determines µ̂:

∑
yi − nµ̂ = 0, i.e., µ̂ = 1

n

∑
yi = ȳ. (This would
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be the MLE of µ even if σ2 were known). Now plug this µ̂ into the second equation
to get n

2 = 1
2σ̂2

∑
(yi − ȳ)2, or σ̂2 = 1

n

∑
(yi − ȳ)2.

Here is another example: t1, . . . , tn are independent and follow an exponential
distribution, i.e.,

ft(t;λ) = λe−λt (t > 0)(13.6.6)

L(t1, . . . , tn;λ) = λne−λ(t1+···+tn)(13.6.7)

`(t1, . . . , tnλ) = n lnλ− λ(t1 + · · · + tn)(13.6.8)

∂`

∂λ
=
n

λ
− (t1 + · · · + tn).(13.6.9)

Set this zero, and write λ̂ instead of λ to get λ̂ = n
t1+···+tn

= 1/t̄.
Usually the MLE is asymptotically unbiased and asymptotically normal. There-

fore it is important to have an estimate of its asymptotic variance. Here we can use
the fact that asymptotically the Cramer Rao Lower Bound is not merely a lower
bound for this variance but is equal to its variance. (From this follows that the max-
imum likelihood estimator is asymptotically efficient.) The Cramer Rao lower bound
itself depends on unknown parameters. In order to get a consistent estimate of the
Cramer Rao lower bound, do the following: (1) Replace the unknown parameters
in the second derivative of the log likelihood function by their maximum likelihood
estimates. (2) Instead of taking expected values over the observed values xi you may
simply insert the sample values of the xi into these maximum likelihood estimates,
and (3) then invert this estimate of the information matrix.

MLE obeys an important functional invariance principle: if θ̂ is the MLE of θ,

then g(θ̂) is the MLE of g(θ). E.g., µ = 1
λ is the expected value of the exponential

variable, and its MLE is x̄.

Problem 208. x1, . . . , xm is a sample from a N(µx, σ
2), and y1, . . . ,yn from a

N(µy, σ
2) with different mean but same σ2. All observations are independent of each

other.

• a. 2 points Show that the MLE of µx, based on the combined sample, is x̄. (By
symmetry it follows that the MLE of µy is ȳ.)

Answer.

`(µx, µy, σ
2) = −m

2
ln 2π − m

2
lnσ2 − 1

2σ2

m∑

i=1

(xi − µx)2(13.6.10)

− n

2
ln 2π − n

2
ln σ2 − 1

2σ2

n∑

j=1

(yj − µy)2

∂`

∂µx

= − 1

2σ2

∑
−2(xi − µx) = 0 for µx = x̄(13.6.11)
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�

• b. 2 points Derive the MLE of σ2, based on the combined samples.

Answer.

∂`

∂σ2
= −m+ n

2σ2
+

1

2σ4

( m∑

i=1

(xi − µx)2 +

n∑

j=1

(yj − µy)2
)

(13.6.12)

σ̂2 =
1

m+ n

( m∑

i=1

(xi − x̄)2 +

n∑

j=1

(yi − ȳ)2
)
.(13.6.13)

�

13.7. Method of Moments Estimators

Method of moments estimators use the sample moments as estimates of the
population moments. I.e., the estimate of µ is x̄, the estimate of the variance σ2 is
1
n

∑
(xi− x̄)2, etc. If the parameters are a given function of the population moments,

use the same function of the sample moments (using the lowest moments which do
the job).

The advantage of method of moments estimators is their computational sim-
plicity. Many of the estimators discussed above are method of moments estimators.
However if the moments do not exist, then method of moments estimators are incon-
sistent, and in general method of moments estimators are not as good as maximum
likelihood estimators.

13.8. M-Estimators

The class of M -estimators maximizes something other than a likelihood func-
tion: it includes nonlinear least squares, generalized method of moments, minimum
distance and minimum chi-squared estimators. The purpose is to get a “robust”
estimator which is good for a wide variety of likelihood functions. Many of these are
asymptotically efficient; but their small-sample properties may vary greatly.

13.9. Sufficient Statistics and Estimation

Weak Sufficiency Principle: If x has a p.d.f. fx(x; θ) and if a sufficient statistic
s(x) exists for θ, then identical conclusions should be drawn from data x1 and x2

which have same value s(x1) = s(x2).
Why? Sufficiency means: after knowing s(x), the rest of the data x can be

regarded generated by a random mechanism not dependent on θ, and are therefore
uninformative about θ.

This principle can be used to improve on given estimators. Without proof we
will state here
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Rao Blackwell Theorem: Let t(x) be an estimator of θ and s(x) a sufficient
statistic for θ. Then one can get an estimator t∗(x) of θ which has no worse a
MSE than t(x) by taking expectations conditionally on the sufficient statistic, i.e.,
t∗(x) = E[t(x)|s(x)].

To recapitulate: t∗(x) is obtained by the following two steps: (1) Compute the
conditional expectation t∗∗(s) = E[t(x)|s(x) = s], and (2) plug s(x) into t∗∗, i.e.,
t∗(x) = t∗∗(s(x)).

A statistic s is said to be complete, if the only real-valued function g defined on
the range of s, which satisfies E[g(s)] = 0 whatever the value of θ, is the function
which is identically zero. If a statistic s is complete and sufficient, then every function
g(s) is the minimum MSE unbiased estimator of its expected value E[g(s)].

If a complete and sufficient statistic exists, this gives a systematic approach to
minimum MSE unbiased estimators (Lehmann Scheffé Theorem): if t is an unbiased
estimator of θ and s is complete and sufficient, then t∗(x) = E[t(x)|s(x)] has lowest
MSE in the class of all unbiased estimators of θ. Problem 209 steps you through the
proof.

Problem 209. [BD77, Problem 4.2.6 on p. 144] If a statistic s is complete
and sufficient, then every function g(s) is the minimum MSE unbiased estimator
of E[g(s)] (Lehmann-Scheffé theorem). This gives a systematic approach to finding
minimum MSE unbiased estimators. Here are the definitions: s is sufficient for θ
if for any event E and any value s, the conditional probability Pr[E|s ≤ s] does not
involve θ. s is complete for θ if the only function g(s) of s, which has zero expected
value whatever the value of θ, is the function which is identically zero, i.e., g(s) = 0
for all s.

• a. 3 points Given an unknown parameter θ, and a complete sufficient statistic
s, how can one find that function of s whose expected value is θ? There is an easy
trick: start with any statistic p with E[p] = θ, and use the conditional expectation
E[p|s]. Argue why this conditional expectation does not depend on the unknown
parameter θ, is an unbiased estimator of θ, and why this leads to the same estimate
regardless which p one starts with.

Answer. You need sufficiency for the first part of the problem, the law of iterated expectations
for the second, and completeness for the third.

Set E = {p ≤ p} in the definition of sufficiency given at the beginning of the Problem to see
that the cdf of p conditionally on s being in any interval does not involve θ, therefore also E[p|s]
does not involve θ.

Unbiasedness follows from the theorem of iterated expectations E
[
E[p|s]

]
= E[p] = θ.

The independence on the choice of p can be shown as follows: Since the conditional expectation
conditionally on s is a function of s, we can use the notation E[p|s] = g1(s) and E[q|s] = g2(s).
From E[p] = E[q] follows by the law of iterated expectations E[g1(s) − g2(s)] = 0, therefore by
completeness g1(s) − g2(s) ≡ 0. �
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• b. 2 points Assume yi ∼ NID(µ, 1) (i = 1, . . . , n), i.e., they are independent
and normally distributed with mean µ and variance 1. Without proof you are allowed
to use the fact that in this case, the sample mean ȳ is a complete sufficient statistic
for µ. What is the minimum MSE unbiased estimate of µ, and what is that of µ2?

Answer. We have to find functions of ȳ with the desired parameters as expected values.
Clearly, ȳ is that of µ, and ȳ2 − 1/n is that of µ2. �

• c. 1 point For a given j, let π be the probability that the j th observation is
nonnegative, i.e., π = Pr[yj ≥ 0]. Show that π = Φ(µ) where Φ is the cumulative
distribution function of the standard normal. The purpose of the remainder of this
Problem is to find a minimum MSE unbiased estimator of π.

Answer.

(13.9.1) π = Pr[yi ≥ 0] = Pr[yi − µ ≥ −µ] = Pr[yi − µ ≤ µ] = Φ(µ)

because yi − µ ∼ N(0, 1). We needed symmetry of the distribution to flip the sign. �

• d. 1 point As a first step we have to find an unbiased estimator of π. It does
not have to be a good one, any ubiased estimator will do. And such an estimator is
indeed implicit in the definition of π. Let q be the “indicator function” for nonnegative
values, satisfying q(y) = 1 if y ≥ 0 and 0 otherwise. We will be working with the
random variable which one obtains by inserting the j th observation yj into q, i.e.,
with q = q(yj). Show that q is an unbiased estimator of π.

Answer. q(yj) has a discrete distribution and Pr[q(yj) = 1] = Pr[yj ≥ 0] = π by (13.9.1) and
therefore Pr[q(yj) = 0] = 1 − π

The expected value is E[q(yj)] = (1 − π) · 0 + π · 1 = π. �

• e. 2 points Given q we can apply the Lehmann-Scheffé theorem: E[q(yj)|ȳ] is
the best unbiased estimator of π. We will compute E[q(yj)|ȳ] in four steps which build
on each other. First step: since for every indicator function follows E[q(yj)|ȳ] =
Pr[yj ≥ 0|ȳ], we need for every given value ȳ, the conditional distribution of yj
conditionally on ȳ = ȳ. (Not just the conditional mean but the whole conditional
distribution.) In order to construct this, we first have to specify exactly the joint
distribution of yj and ȳ:

Answer. They are jointly normal:

(13.9.2)

[
yj
ȳ

]
∼ N

([
µ
µ

]
,

[
1 1/n

1/n 1/n

])

�

• f. 2 points Second step: From this joint distribution derive the conditional dis-
tribution of yj conditionally on ȳ = ȳ. (Not just the conditional mean but the whole
conditional distribution.) For this you will need formula (10.3.18) and (10.3.20).
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Answer. Here are these two formulas: if u and v are jointly normal, then the conditional
distribution of v conditionally on u = u is Normal with mean

(13.9.3) E[v|u = u] = E[v] +
cov[u, v]

var[u]
(u− E[u])

and variance

(13.9.4) var[v|u = u] = var[v]− (cov[u, v])2

var[u]
.

Plugging u = ȳ and v = yj into (10.3.18) and (10.3.20) gives: the conditional distribution of
yj conditionally on ȳ = ȳ has mean

E[yj |ȳ = ȳ] = E[yj ] +
cov[ȳ,yj ]

var[ȳ]
(ȳ − E[ȳ])(13.9.5)

= µ+
1/n

1/n
(ȳ − µ) = ȳ(13.9.6)

and variance

var[yj |ȳ = ȳ] = var[yj ] −
(cov[ȳ,yj ])2

var[ȳ]
(13.9.7)

= 1 − (1/n)2

1/n
= 1 − 1

n
.(13.9.8)

Therefore the conditional distribution of yj conditional on ȳ is N(ȳ, (n − 1)/n). How can this
be motivated? if we know the actual arithmetic mean of the variables, then our best estimate is
that each variable is equal to this arithmetic mean. And this additional knowledge cuts down the
variance by 1/n. �

• g. 2 points The variance decomposition (8.6.6) gives a decomposition of var[yj ]:
give it here:

Answer.

var[yj ] = var
[
E[yj |ȳ]

]
+ E
[
var[yj |ȳ]

]
(13.9.9)

= var[ȳ] + E

[
n− 1

n

]
=

1

n
+
n− 1

n
(13.9.10)

�

• h. Compare the conditional with the unconditional distribution.

Answer. Conditional distribution does not depend on unknown parameters, and it has smaller
variance! �

• i. 2 points Third step: Compute the probability, conditionally on ȳ = ȳ, that
yj ≥ 0.

Answer. If x ∼ N(ȳ, (n−1)/n) (I call it x here instead of yj since we use it not with its familiar
unconditional distribution N(µ, 1) but with a conditional distribution), then Pr[x ≥ 0] = Pr[x− ȳ ≥
−ȳ] = Pr[x − ȳ ≤ ȳ] = Pr

[
(x − ȳ)

√
n/(n− 1) ≤ ȳ

√
n/(n− 1)

]
= Φ(ȳ

√
n/(n− 1)) because

(x − ȳ)
√
n/(n− 1) ∼ N(0, 1) conditionally on ȳ. Again we needed symmetry of the distribution to

flip the sign. �
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• j. 1 point Finally, put all the pieces together and write down E[q(yj)|ȳ], the
conditional expectation of q(yj) conditionally on ȳ, which by the Lehmann-Scheffé
theorem is the minimum MSE unbiased estimator of π. The formula you should come
up with is

(13.9.11) π̂ = Φ(ȳ
√
n/(n− 1)),

where Φ is the standard normal cumulative distribution function.

Answer. The conditional expectation of q(yj) conditionally on ȳ = ȳ is, by part d, simply
the probability that yj ≥ 0 under this conditional distribution. In part i this was computed as

Φ(ȳ
√
n/(n− 1)). Therefore all we have to do is replace ȳ by ȳ to get the minimum MSE unbiased

estimator of π as Φ(ȳ
√
n/(n− 1)). �

Remark: this particular example did not give any brand new estimators, but it can
rather be considered a proof that certain obvious estimators are unbiased and efficient.
But often this same procedure gives new estimators which one would not have been
able to guess. Already when the variance is unknown, the above example becomes
quite a bit more complicated, see [Rao73, p. 322, example 2]. When the variables
have an exponential distribution then this example (probability of early failure) is
discussed in [BD77, example 4.2.4 on pp. 124/5].

13.10. The Likelihood Principle

Consider two experiments whose likelihood functions depend on the same pa-
rameter vector θ. Suppose that for particular realizations of the data y1 and y2,
the respective likelihood functions are proportional to each other, i.e., `1(θ; y1) =
α`2(θ; y2) where α does not depend on θ although it may depend on y1 and y2.
Then the likelihood principle states that identical conclusions should be drawn from
these two experiments about θ.

The likelihood principle is equivalent to the combination of two simpler princi-
ples: the weak sufficiency principle, and the following principle, which seems very
plausible:

Weak Conditonality Principle: Given two possible experiments A and B. A
mixed experiment is one in which one throws a coin and performs A if the coin
shows head and B if it shows tails. The weak conditionality principle states: sup-
pose it is known that the coin shows tails. Then the evidence of the mixed experiment
is equivalent to the evidence gained had one not thrown the coin but performed B
without the possible alternative of A. This principle says therefore that an experi-
ment which one did not do but which one could have performed does not alter the
information gained from the experiment actually performed.

As an application of the likelihood principle look at the following situation:
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Problem 210. 3 points You have a Bernoulli experiment with unknown pa-
rameter θ, 0 ≤ θ ≤ 1. Person A was originally planning to perform this experiment
12 times, which she does. She obtains 9 successes and 3 failures. Person B was
originally planning to perform the experiment until he has reached 9 successes, and
it took him 12 trials to do this. Should both experimenters draw identical conclusions
from these two experiments or not?

Answer. The probability mass function in the first is by (3.7.1)
(
12
9

)
θ9(1 − θ)3, and in the

second it is by (5.1.13)
(
11
8

)
θ9(1− θ)3. They are proportional, the stopping rule therefore does not

matter! �

13.11. Bayesian Inference

Real-life estimation usually implies the choice between competing estimation
methods all of which have their advantages and disadvantages. Bayesian inference
removes some of this arbitrariness.

Bayesians claim that “any inferential or decision process that does not follow from
some likelihood function and some set of priors has objectively verifiable deficiencies”
[Cor69, p. 617]. The “prior information” used by Bayesians is a formalization of
the notion that the information about the parameter values never comes from the
experiment alone. The Bayesian approach to estimation forces the researcher to cast
his or her prior knowledge (and also the loss function for estimation errors) in a
mathematical form, because in this way, unambiguous mathematical prescriptions
can be derived as to how the information of an experiment should be evaluated.

To the objection that these are large information requirements which are often
not satisfied, one might answer that it is less important whether these assumptions
are actually the right ones. The formulation of prior density merely ensures that the
researcher proceeds from a coherent set of beliefs.

The mathematics which the Bayesians do is based on a “final” instead of an “ini-
tial” criterion of precision. In other words, not an estimation procedure is evaluated
which will be good in hypothetical repetitions of the experiment in the average, but
one which is good for the given set of data and the given set of priors. Data which
could have been observed but were not observed are not taken into consideration.

Both Bayesians and non-Bayesians define the probabilistic properties of an ex-
periment by the density function (likelihood function) of the observations, which may
depend on one or several unknown parameters. The non-Bayesian considers these
parameters fixed but unknown, while the Bayesian considers the parameters random,
i.e., he symbolizes his prior information about the parameters by a prior probability
distribution.

An excellent example in which this prior probability distribution is discrete is
given in [Ame94, pp. 168–172]. In the more usual case that the prior distribution
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has a density function, a Bayesian is working with the joint density function of the
parameter values and the data. Like all joint density function, it can be written
as the product of a marginal and conditional density. The marginal density of the
parameter value represents the beliefs the experimenter holds about the parameters
before the experiment (prior density), and the likelihood function of the experiment
is the conditional density of the data given the parameters. After the experiment has
been conducted, the experimenter’s belief about the parameter values is represented
by their conditional density given the data, called the posterior density.

Let y denote the observations, θ the unknown parameters, and f(y,θ) their
joint density. Then

f(y,θ) = f(θ)f(y|θ)(13.11.1)

= f(y)f(θ|y).(13.11.2)

Therefore

f(θ|y) =
f(θ)f(y|θ)

f(y)
.(13.11.3)

In this formula, the value of f(y) is irrelevant. It only depends on y but not on
θ, but y is fixed, i.e., it is a constant. If one knows the posterior density function
of θ up to a constant, one knows it altogether, since the constant is determined by
the requirement that the area under the density function is 1. Therefore (13.11.3) is
usually written as (∝ means “proportional to”)

(13.11.4) f(θ|y) ∝ f(θ)f(y|θ);

here the lefthand side contains the posterior density function of the parameter, the
righthand side the prior density function and the likelihood function representing the
probability distribution of the experimental data.

The Bayesian procedure does not yield a point estimate or an interval estimate,
but a whole probability distribution for the unknown parameters (which represents
our information about these parameters) containing the “prior” information “up-
dated” by the information yielded by the sample outcome.

Of course, such probability distributions can be summarized by various measures
of location (mean, median), which can then be considered Bayesian point estimates.
Such summary measures for a whole probability distribution are rather arbitrary.
But if a loss function is given, then this process of distilling point estimates from
the posterior distribution can once more be systematized. For a concrete decision it
tells us that parameter value which minimizes the expected loss function under the
posterior density function, the so-called “Bayes risk.” This can be considered the
Bayesian analog of a point estimate.
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For instance, if the loss function is quadratic, then the posterior mean is the
parameter value which minimizes expected loss.

There is a difference between Bayes risk and the notion of risk we applied previ-
ously. The frequentist minimizes expected loss in a large number of repetitions of the
trial. This risk is dependent on the unknown parameters, and therefore usually no
estimators exist which give minimum risk in all situations. The Bayesian conditions
on the data (final criterion!) and minimizes the expected loss where the expectation
is taken over the posterior density of the parameter vector.

The irreducibility of absence to presences: the absence of knowledge (or also
the absence of regularity itself) cannot be represented by a probability distribution.
Proof: if I give a certain random variable a neutral prior, then functions of this
random variable have non-neutral priors. This argument is made in [Roy97, p. 174].

Many good Bayesians drift away from the subjective point of view and talk about
a stratified world: their center of attention is no longer the world out there versus
our knowledge of it, but the empirical world versus the underlying systematic forces
that shape it.

Bayesians say that frequentists use subjective elements too; their outcomes de-
pend on what the experimenter planned to do, even if he never did it. This again
comes from [Roy97, p. ??]. Nature does not know about the experimenter’s plans,
and any evidence should be evaluated in a way independent of this.



CHAPTER 14

Interval Estimation

Look at our simplest example of an estimator, the sample mean of an independent
sample from a normally distributed variable. Since the population mean of a normal
variable is at the same time its median, the sample mean will in 50 percent of the
cases be larger than the population mean, and in 50 percent of the cases it will be
smaller. This is a statement about the procedure how the sample mean was obtained,
not about any given observed value of the sample mean. Say in one particular sample
the observed sample mean was 3.5. This number 3.5 is either larger or smaller than
the true mean, there is no probability involved. But if one were to compute sample
means of many different independent samples, then these means would in 50% of the
cases lie above and in 50% of the cases below the population mean. This is why one
can, from knowing how this one given number was obtained, derive the “confidence”
of 50% that the actual mean lies above 3.5, and the same with below. The sample
mean can therefore be considered a one-sided confidence bound, although one usually
wants higher confidence levels than 50%. (I am 95% confident that φ is greater or
equal than a certain value computed from the sample.) The concept of “confidence”
is nothing but the usual concept of probability if one uses an initial criterion of
precision.

The following thought experiment illustrates what is involved. Assume you
bought a widget and want to know whether it is defective or not. The obvious
way (which would correspond to a “final” criterion of precision) would be to open
it up and look if it is defective or not. Now assume we cannot do it: there is no
way telling by just looking at it whether it will work. Then another strategy would
be to go by an “initial” criterion of precision: we visit the widget factory and look
how they make them, how much quality control there is and such. And if we find
out that 95% of all widgets coming out of the same factory have no defects, then we
have the “confidence” of 95% that our particular widget is not defective either.

The matter becomes only slightly more mystified if one talks about intervals.
Again, one should not forget that confidence intervals are random intervals. Besides
confidence intervals and one-sided confidence bounds one can, if one regards several
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parameters simultaneously, also construct confidence rectangles, ellipsoids and more
complicated shapes. Therefore we will define in all generality:

Let y be a random vector whose distribution depends on some vector of unknown
parameters φ ∈ Ω. A confidence region is a prescription which assigns to every
possible value y of y a subset R(y) ⊂ Ω of parameter space, so that the probability
that this subset covers the true value of φ is at least a given confidence level 1 − α,
i.e.,

(14.0.5) Pr
[
R(y) 3 φ0|φ = φ0

]
≥ 1 − α for all φ0 ∈ Ω.

The important thing to remember about this definition is that these regions R(y)
are random regions; every time one performs the experiment one obtains a different
region.

Now let us go to the specific case of constructing an interval estimate for the
parameter µ when we have n independent observations from a normally distributed
population ∼ N(µ, σ2) in which neither µ nor σ2 are known. The vector of ob-
servations is therefore distributed as y ∼ N(ιµ, σ2I), where ιµ is the vector every
component of which is µ.

I will give you now what I consider to be the cleanest argument deriving the
so-called t-interval. It generalizes directly to the F-test in linear regression. It is not
the same derivation which you will usually find, and I will bring the usual derivation
below for comparison. Recall the observation made earlier, based on (12.1.1), that the
sample mean ȳ is that number ȳ = a which minimizes the sum of squared deviations∑

(yi−a)2. (In other words, ȳ is the “least squares estimate” in this situation.) This
least squares principle also naturally leads to interval estimates for µ: we will say
that a lies in the interval for µ if and only if

(14.0.6)

∑
(yi − a)2∑
(yi − ȳ)2

≤ c

for some number c ≥ 1. Of course, the value of c depends on the confidence level,
but the beauty of this criterion here is that the value of c can be determined by the
confidence level alone without knowledge of the true values of µ or σ2.

To show this, note first that (14.0.6) is equivalent to

(14.0.7)

∑
(yi − a)2 −∑(yi − ȳ)2∑

(yi − ȳ)2
≤ c− 1

and then apply the identity
∑

(yi − a)2 =
∑

(yi − ȳ)2 + n(ȳ − a)2 to the numerator
to get the following equivalent formulation of (14.0.6):

(14.0.8)
n(ȳ − a)2∑

(yi − ȳ)2
≤ c− 1
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The confidence level of this interval is the probability that the true µ lies in an
interval randomly generated using this principle. In other words, it is

(14.0.9) Pr
[ n(ȳ − µ)2∑

(yi − ȳ)2
≤ c− 1

]

Although for every known a, the probability that a lies in the confidence interval
depends on the unknown µ and σ2, we will show now that the probability that the
unknown µ lies in the confidence interval does not depend on any unknown parame-
ters. First look at the distribution of the numerator: Since ȳ ∼ N(µ, σ2/n), it follows
(ȳ− µ)2 ∼ (σ2/n)χ2

1. We also know the distribution of the denominator. Earlier we
have shown that the variable

∑
(yi − ȳ)2 is a σ2χ2

n−1. It is not enough to know the
distribution of numerator and denominator separately, we also need their joint distri-
bution. For this go back to our earlier discussion of variance estimation again; there

we also showed that ȳ is independent of the vector
[
y1 − ȳ · · · yn − ȳ

]>
; there-

fore any function of ȳ is also independent of any function of this vector, from which
follows that numerator and denominator in our fraction are independent. Therefore
this fraction is distributed as an σ2χ2

1 over an independent σ2χ2
n−1, and since the

σ2’s cancel out, this is the same as a χ2
1 over an independent χ2

n−1. In other words,
this distribution does not depend on any unknown parameters!

The definition of a F-distribution with k and m degrees of freedom is the distri-
bution of a ratio of a χ2

k/k divided by a χ2
m/m; therefore if we divide the sum of

squares in the numerator by n− 1 we get a F distribution with 1 and n− 1 d.f.:

(14.0.10)
(ȳ − µ)2

1
n

1
n−1

∑
(yi − ȳ)2

∼ F1,n−1

If one does not take the square in the numerator, i.e., works with ȳ − µ instead of
(ȳ − µ)2, and takes square root in the denominator, one obtains a t-distribution:

(14.0.11)
ȳ − µ√

1
n

√
1

n−1

∑
(yi − ȳ)2

∼ tn−1

The left hand side of this last formula has a suggestive form. It can be written as
(ȳ − µ)/sȳ, where sȳ is an estimate of the standard deviation of ȳ (it is the square
root of the unbiased estimate of the variance of ȳ). In other words, this t-statistic
can be considered an estimate of the number of standard deviations the observed
value of ȳ is away from µ.

Now we will give, as promised, the usual derivation of the t-confidence intervals,
which is based on this interpretation. This usual derivation involves the following
two steps:
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(1) First assume that σ2 is known. Then it is obvious what to do; for every
observation y of y construct the following interval:

(14.0.12) R(y) = {u ∈ R : |u− ȳ| ≤ N(α/2)σȳ}.
What do these symbols mean? The interval R (as in region) has y as an argument,
i.e.. it is denotedR(y), because it depends on the observed value y. R is the set of real
numbers. N(α/2) is the upper α/2-quantile of the Normal distribution, i.e., it is that
number c for which a standard Normal random variable z satisfies Pr[z ≥ c] = α/2.
Since by the symmetry of the Normal distribution, Pr[z ≤ −c] = α/2 as well, one
obtains for a two-sided test:

(14.0.13) Pr[|z| ≥ N(α/2)] = α.

From this follows the coverage probability:

Pr[R(y) 3 µ] = Pr[|µ− ȳ| ≤ N(α/2)σȳ](14.0.14)

= Pr[|(µ− ȳ)/σȳ| ≤ N(α/2)] = Pr[|−z| ≤ N(α/2)] = 1 − α(14.0.15)

since z = (ȳ − µ)/σȳ is a standard Normal. I.e., R(y) is a confidence interval for µ
with confidence level 1 − α.

(2) Second part: what if σ2 is not known? Here a seemingly ad-hoc way out
would be to replace σ2 by its unbiased estimate s2. Of course, then the Normal
distribution no longer applies. However if one replaces the normal critical values by
those of the tn−1 distribution, one still gets, by miraculous coincidence, a confidence
level which is independent of any unknown parameters.

Problem 211. If yi ∼ NID(µ, σ2) (normally independently distributed) with µ
and σ2 unknown, then the confidence interval for µ has the form

(14.0.16) R(y) = {u ∈ R : |u− ȳ| ≤ t(n−1;α/2)sȳ}.
Here t(n−q;α/2) is the upper α/2-quantile of the t distribution with n − 1 degrees
of freedom, i.e., it is that number c for which a random variable t which has a t

distribution with n − 1 degrees of freedom satisfies Pr[t ≥ c] = α/2. And sȳ is
obtained as follows: write down the standard deviation of ȳ and replace σ by s. One
can also say sȳ = σȳ

s
σ where σȳ is an abbreviated notation for std. dev[y] =

√
var[y].

• a. 1 point Write down the formula for sȳ.

Answer. Start with σ2
ȳ = var[ȳ] = σ2

n
, therefore σȳ = σ/

√
n, and

(14.0.17) sȳ = s/
√
n =

√∑ (yi − ȳ)2

n(n− 1)

�

• b. 2 points Compute the coverage probability of the interval (14.0.16).
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Table 1. Percentiles of Student’s t Distribution. Table entry x
satisfies Pr[tn ≤ x] = p.

p =
n .750 .900 .950 .975 .990 .995
1 1.000 3.078 6.314 12.706 31.821 63.657
2 0.817 1.886 2.920 4.303 6.965 9.925
3 0.765 1.638 2.354 3.182 4.541 5.841
4 0.741 1.533 2.132 2.776 3.747 4.604
5 0.727 1.476 2.015 2.571 3.365 4.032

Answer. The coverage probability is

Pr[R(y) 3 µ] = Pr[
∣∣µ− ȳ

∣∣ ≤ t(n−1;α/2)sȳ](14.0.18)

= Pr[

∣∣∣µ − ȳ

sȳ

∣∣∣ ≤ t(n−1;α/2) ](14.0.19)

= Pr[

∣∣∣ (µ − ȳ)/σȳ

sȳ/σȳ

∣∣∣ ≤ t(n−1;α/2) ](14.0.20)

= Pr[

∣∣∣ (ȳ − µ)/σȳ

s/σ

∣∣∣ ≤ t(n−1;α/2) ](14.0.21)

= 1 − α,(14.0.22)

because the expression in the numerator is a standard normal, and the expression in the denominator
is the square root of an independent χ2

n−1 divided by n − 1. The random variable between the

absolute signs has therefore a t-distribution, and (14.0.22) follows from (41.4.8).
�

• c. 2 points Four independent observations are available of a normal random
variable with unknown mean µ and variance σ2: the values are −2, −

√
2, +

√
2, and

+2. (These are not the kind of numbers you are usually reading off a measurement
instrument, but they make the calculation easy). Give a 95% confidence interval for
µ. Table 1 gives the percentiles of the t-distribution.

Answer. In our situation

x̄ − µ

s/
√
n

∼ t3(14.0.23)

According to table 1, for b = 3.182 follows

Pr[t3 ≤ b] = 0.975(14.0.24)

therefore

Pr[t3 > b] = 0.025(14.0.25)
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and by symmetry of the t-distribution

Pr[t3 < −b] = 0.025(14.0.26)

Now subtract (14.0.26) from (14.0.24) to get

Pr[−b ≤ t3 ≤ b] = 0.95(14.0.27)

or

Pr[|t3| ≤ b] = 0.95(14.0.28)

or, plugging in the formula for t3,

Pr
[∣∣∣ x̄ − µ

s/
√
n

∣∣∣ ≤ b
]

= .95(14.0.29)

Pr[|x̄ − µ| ≤ bs/
√
n] = .95(14.0.30)

Pr[−bs/√n ≤ µ− x̄ ≤ bs/
√
n] = .95(14.0.31)

Pr[x̄ − bs/
√
n ≤ µ ≤ x̄ + bs/

√
n] = .95(14.0.32)

the confidence interval is therefore
[
x̄ − bs/

√
n, x̄ + bs/

√
n
]
. In our sample, x̄ = 0, s2 = 12

3
= 4,

n = 4, therefore s2/n = 1, therefore also s/
√
n = 1. So the sample value of the confidence interval

is [−3.182,+3.182].
�

Problem 212. Using R, construct 20 samples of 12 observation each from a
N(0, 1) distribution, construct the 95% confidence t-intervals for the mean based on
these 20 samples, plot these intervals, and count how many intervals contain the true
mean.

Here are the commands: stdnorms<-matrix(rnorm(240),nrow=12,ncol=20 gives
a 12 × 20 matrix containing 240 independent random normals. You get the vector
containing the midpoints of the confidence intervals by the assignment midpts <-

apply(stdnorms,2,mean). About apply see [BCW96, p. 130]. The vector contain-
ing the half width of each confidence interval can be obtained by another use of apply:
halfwidth <- (qt(0.975,11)/sqrt(12)) * sqrt(apply(stdnorms,2,var)); To
print the values on the screen you may simply issue the command cbind(midpts-halfwidth,midpts+halfwidth).
But it is much better to plot them. Since such a plot does not have one of the usual
formats, we have to put it together with some low-level commands. See [BCW96,
page 325]. At the very minimum we need the following: frame() starts a new plot.
par(usr = c(1,20, range(c(midpts-halfwidth,midpts+halfwidth)) sets a co-
ordinate system which accommodates all intervals. The 20 confidence intervals are
constructed by segments(1:20, midpts-halfwidth, 1:20, midpts+halfwidth).
Finally, abline(0,0) adds a horizontal line, so that you can see how many intervals
contain the true mean.

The ecmet package has a function confint.segments which draws such plots
automatically. Choose how many observations in each experiment (the argument



14. INTERVAL ESTIMATION 219

n), and how many confidence intervals (the argument rep), and the confidence level
level (the default is here 95%), and then issue, e.g. the command confint.segments(n=50,rep=100,level=.9).

Here is the transcript of the function:

confint.segments <- function(n, rep, level = 95/100)

{

stdnormals <- matrix(rnorm(n * rep), nrow = n, ncol = rep)

midpts <- apply(stdnormals, 2, mean)

halfwidth <- qt(p=(1 + level)/2, df= n - 1) * sqrt(1/n)* sqrt(apply(stdnormals, 2, var))

frame()

x <- c(1:rep, 1:rep)

y <- c(midpts + halfwidth, midpts - halfwidth)

par(usr = c(1, rep, range(y)))

segments(1:rep, midpts - halfwidth, 1:rep, midpts + halfwidth)

abline(0, 0)

invisible(cbind(x,y))

}

This function draws the plot as a “side effect,” but it also returns a matrix with
the coordinates of the endpoints of the plots (without printing them on the screen).
This matrix can be used as input for the identify function. If you do for instance
iddata<-confint.segments(12,20) and then identify(iddata,labels=iddata[,2],
then the following happens: if you move the mouse cursor on the graph near one of
the endpoints of one of the intervals, and click the left button, then it will print on
the graph the coordinate of the bounday of this interval. Clicking any other button of
the mouse gets you out of the identify function.
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Hypothesis Testing

Imagine you are a business person considering a major investment in order to
launch a new product. The sales prospects of this product are not known with
certainty. You have to rely on the outcome of n marketing surveys that measure
the demand for the product once it is offered. If µ is the actual (unknown) rate of
return on the investment, each of these surveys here will be modeled as a random
variable, which has a Normal distribution with this mean µ and known variance 1.
Let y1, y2, . . . , yn be the observed survey results. How would you decide whether to
build the plant?

The intuitively reasonable thing to do is to go ahead with the investment if
the sample mean of the observations is greater than a given value c, and not to do
it otherwise. This is indeed an optimal decision rule, and we will discuss in what
respect it is, and how c should be picked.

Your decision can be the wrong decision in two different ways: either you decide
to go ahead with the investment although there will be no demand for the product,
or you fail to invest although there would have been demand. There is no decision
rule which eliminates both errors at once; the first error would be minimized by the
rule never to produce, and the second by the rule always to produce. In order to
determine the right tradeoff between these errors, it is important to be aware of their
asymmetry. The error to go ahead with production although there is no demand has
potentially disastrous consequences (loss of a lot of money), while the other error
may cause you to miss a profit opportunity, but there is no actual loss involved, and
presumably you can find other opportunities to invest your money.

To express this asymmetry, the error with the potentially disastrous consequences
is called “error of type one,” and the other “error of type two.” The distinction
between type one and type two errors can also be made in other cases. Locking up
an innocent person is an error of type one, while letting a criminal go unpunished
is an error of type two; publishing a paper with false results is an error of type one,
while foregoing an opportunity to publish is an error of type two (at least this is
what it ought to be).
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Such an asymmetric situation calls for an asymmetric decision rule. One needs
strict safeguards against committing an error of type one, and if there are several
decision rules which are equally safe with respect to errors of type one, then one will
select among those that decision rule which minimizes the error of type two.

Let us look here at decision rules of the form: make the investment if ȳ > c.
An error of type one occurs if the decision rule advises you to make the investment
while there is no demand for the product. This will be the case if ȳ > c but µ ≤ 0.
The probability of this error depends on the unknown parameter µ, but it is at most
α = Pr[ȳ > c |µ = 0]. This maximum value of the type one error probability is called
the significance level, and you, as the director of the firm, will have to decide on α
depending on how tolerable it is to lose money on this venture, which presumably
depends on the chances to lose money on alternative investments. It is a serious
shortcoming of the classical theory of hypothesis testing that it does not provide
good guidelines how α should be chosen, and how it should change with sample size.
Instead, there is the tradition to choose α to be either 5% or 1% or 0.1%. Given α,
a table of the cumulative standard normal distribution function allows you to find
that c for which Pr[ȳ > c |µ = 0] = α.

Problem 213. 2 points Assume each yi ∼ N(µ, 1), n = 400 and α = 0.05, and
different yi are independent. Compute the value c which satisfies Pr[ȳ > c |µ = 0] =
α. You shoule either look it up in a table and include a xerox copy of the table with
the entry circled and the complete bibliographic reference written on the xerox copy,
or do it on a computer, writing exactly which commands you used. In R, the function
qnorm does what you need, find out about it by typing help(qnorm).

Answer. In the case n = 400, ȳ has variance 1/400 and therefore standard deviation 1/20 =
0.05. Therefore 20ȳ is a standard normal: from Pr[ȳ > c |µ = 0] = 0.05 follows Pr[20ȳ > 20c |µ =
0] = 0.05. Therefore 20c = 1.645 can be looked up in a table, perhaps use [JHG+88, p. 986], the
row for ∞ d.f.

Let us do this in R. The p-“quantile” of the distribution of the random variable y is defined
as that value q for which Pr[y ≤ q] = p. If y is normally distributed, this quantile is computed
by the R-function qnorm(p, mean=0, sd=1, lower.tail=TRUE). In the present case we need either
qnorm(p=1-0.05, mean=0, sd=0.05) or qnorm(p=0.05, mean=0, sd=0.05, lower.tail=FALSE) which
gives the value 0.08224268.

�

Choosing a decision which makes a loss unlikely is not enough; your decision
must also give you a chance of success. E.g., the decision rule to build the plant if
−0.06 ≤ ȳ ≤ −0.05 and not to build it otherwise is completely perverse, although
the significance level of this decision rule is approximately 4% (if n = 100). In other
words, the significance level is not enough information for evaluating the performance
of the test. You also need the “power function,” which gives you the probability
with which the test advises you to make the “critical” decision, as a function of
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Figure 1. Eventually this Figure will show the Power function of
a one-sided normal test, i.e., the probability of error of type one as
a function of µ; right now this is simply the cdf of a Standard Normal

the true parameter values. (Here the “critical” decision is that decision which might
potentially lead to an error of type one.) By the definition of the significance level, the
power function does not exceed the significance level for those parameter values for
which going ahead would lead to a type 1 error. But only those tests are “powerful”
whose power function is high for those parameter values for which it would be correct
to go ahead. In our case, the power function must be below 0.05 when µ ≤ 0, and
we want it as high as possible when µ > 0. Figure 1 shows the power function for
the decision rule to go ahead whenever ȳ ≥ c, where c is chosen in such a way that
the significance level is 5%, for n = 100.

The hypothesis whose rejection, although it is true, constitutes an error of type
one, is called the null hypothesis, and its alternative the alternative hypothesis. (In the
examples the null hypotheses were: the return on the investment is zero or negative,
the defendant is innocent, or the results about which one wants to publish a research
paper are wrong.) The null hypothesis is therefore the hypothesis that nothing is
the case. The test tests whether this hypothesis should be rejected, will safeguard
against the hypothesis one wants to reject but one is afraid to reject erroneously. If
you reject the null hypothesis, you don’t want to regret it.

Mathematically, every test can be identified with its null hypothesis, which is
a region in parameter space (often consisting of one point only), and its “critical
region,” which is the event that the test comes out in favor of the “critical decision,”
i.e., rejects the null hypothesis. The critical region is usually an event of the form
that the value of a certain random variable, the “test statistic,” is within a given
range, usually that it is too high. The power function of the test is the probability
of the critical region as a function of the unknown parameters, and the significance
level is the maximum (or, if this maximum depends on unknown parameters, any
upper bound) of the power function over the null hypothesis.

Problem 214. Mr. Jones is on trial for counterfeiting Picasso paintings, and
you are an expert witness who has developed fool-proof statistical significance tests
for identifying the painter of a given painting.

• a. 2 points There are two ways you can set up your test.
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a: You can either say: The null hypothesis is that the painting was done by
Picasso, and the alternative hypothesis that it was done by Mr. Jones.

b: Alternatively, you might say: The null hypothesis is that the painting was
done by Mr. Jones, and the alternative hypothesis that it was done by Pi-
casso.

Does it matter which way you do the test, and if so, which way is the correct one.
Give a reason to your answer, i.e., say what would be the consequences of testing in
the incorrect way.

Answer. The determination of what the null and what the alternative hypothesis is depends
on what is considered to be the catastrophic error which is to be guarded against. On a trial, Mr.
Jones is considered innocent until proven guilty. Mr. Jones should not be convicted unless he can be
proven guilty beyond “reasonable doubt.” Therefore the test must be set up in such a way that the
hypothesis that the painting is by Picasso will only be rejected if the chance that it is actually by
Picasso is very small. The error of type one is that the painting is considered counterfeited although
it is really by Picasso. Since the error of type one is always the error to reject the null hypothesis
although it is true, solution a. is the correct one. You are not proving, you are testing. �

• b. 2 points After the trial a customer calls you who is in the process of acquiring
a very expensive alleged Picasso painting, and who wants to be sure that this painting
is not one of Jones’s falsifications. Would you now set up your test in the same way
as in the trial or in the opposite way?

Answer. It is worse to spend money on a counterfeit painting than to forego purchasing a
true Picasso. Therefore the null hypothesis would be that the painting was done by Mr. Jones, i.e.,
it is the opposite way. �

Problem 215. 7 points Someone makes an extended experiment throwing a coin
10,000 times. The relative frequency of heads in these 10,000 throws is a random
variable. Given that the probability of getting a head is p, what are the mean and
standard deviation of the relative frequency? Design a test, at 1% significance level,
of the null hypothesis that the coin is fair, against the alternative hypothesis that
p < 0.5. For this you should use the central limit theorem. If the head showed 4,900
times, would you reject the null hypothesis?

Answer. Let xi be the random variable that equals one when the i-th throw is a head, and
zero otherwise. The expected value of x is p, the probability of throwing a head. Since x2 = x,
var[x] = E[x] − (E[x])2 = p(1 − p). The relative frequency of heads is simply the average of all xi,

call it x̄. It has mean p and variance σ2
x̄ =

p(1−p)
10,000

. Given that it is a fair coin, its mean is 0.5 and

its standard deviation is 0.005. Reject if the actual frequency < 0.5 − 2.326σx̄ = .48857. Another
approach:

(15.0.33) Pr(x̄ ≤ 0.49) = Pr

(
x̄ − 0.5

0.005
≤ −2

)
= 0.0227

since the fraction is, by the central limit theorem, approximately a standard normal random variable.
Therefore do not reject. �
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15.1. Duality between Significance Tests and Confidence Regions

There is a duality between confidence regions with confidence level 1 − α and
certain significance tests. Let us look at a family of significance tests, which all have
a significance level ≤ α, and which define for every possible value of the parameter
φ0 ∈ Ω a critical region C(φ0) for rejecting the simple null hypothesis that the true
parameter is equal to φ0. The condition that all significance levels are ≤ α means
mathematically

(15.1.1) Pr
[
C(φ0)|φ = φ0

]
≤ α for all φ0 ∈ Ω.

Mathematically, confidence regions and such families of tests are one and the
same thing: if one has a confidence region R(y), one can define a test of the null
hypothesis φ = φ0 as follows: for an observed outcome y reject the null hypothesis
if and only if φ0 is not contained in R(y). On the other hand, given a family of tests,
one can build a confidence region by the prescription: R(y) is the set of all those
parameter values which would not be rejected by a test based on observation y.

Problem 216. Show that with these definitions, equations (14.0.5) and (15.1.1)
are equivalent.

Answer. Since φ0 ∈ R(y) iff y ∈ C′(φ0) (the complement of the critical region rejecting that
the parameter value is φ0), it follows Pr[R(y) ∈ φ0|φ = φ0] = 1 − Pr[C(φ0)|φ = φ0] ≥ 1 − α. �

This duality is discussed in [BD77, pp. 177–182].

15.2. The Neyman Pearson Lemma and Likelihood Ratio Tests

Look one more time at the example with the fertilizer. Why are we considering
only regions of the form ȳ ≥ µ0, why not one of the form µ1 ≤ ȳ ≤ µ2, or maybe not
use the mean but decide to build if y1 ≥ µ3? Here the µ1, µ2, and µ3 can be chosen
such that the probability of committing an error of type one is still α.

It seems intuitively clear that these alternative decision rules are not reasonable.
The Neyman Pearson lemma proves this intuition right. It says that the critical
regions of the form ȳ ≥ µ0 are uniformly most powerful, in the sense that every
other critical region with same probability of type one error has equal or higher
probability of committing error of type two, regardless of the true value of µ.

Here are formulation and proof of the Neyman Pearson lemma, first for the
case that both null hypothesis and alternative hypothesis are simple: H0 : θ = θ0,
HA : θ = θ1. In other words, we want to determine on the basis of the observations of
the random variables y1, . . . ,yn whether the true θ was θ0 or θ1, and a determination
θ = θ1 when in fact θ = θ0 is an error of type one. The critical region C is the set of
all outcomes that lead us to conclude that the parameter has value θ1.
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The Neyman Pearson lemma says that a uniformly most powerful test exists in
this situation. It is a so-called likelihood-ratio test, which has the following critical
region:

(15.2.1) C = {y1, . . . , yn : L(y1, . . . , yn; θ1) ≥ kL(y1, . . . , yn; θ0)}.

C consists of those outcomes for which θ1 is at least k times as likely as θ0 (where k
is chosen such that Pr[C|θ0] = α).

To prove that this decision rule is uniformly most powerful, assume D is the crit-
ical region of a different test with same significance level α, i.e., if the null hypothesis
is correct, then C and D reject (and therefore commit an error of type one) with
equally low probabilities α. In formulas, Pr[C|θ0] = Pr[D|θ0] = α. Look at figure 2
with C = U ∪ V and D = V ∪ W. Since C and D have the same significance level, it
follows

Pr[U|θ0] = Pr[W|θ0].(15.2.2)

Also

Pr[U|θ1] ≥ kPr[U|θ0],(15.2.3)

since U ⊂ C and C were chosen such that the likelihood (density) function of the
alternative hypothesis is high relatively to that of the null hypothesis. Since W lies
outside C, the same argument gives

Pr[W|θ1] ≤ kPr[W|θ0].(15.2.4)

Linking those two inequalities and the equality gives

(15.2.5) Pr[W|θ1] ≤ kPr[W|θ0] = kPr[U|θ0] ≤ Pr[U|θ1],

hence Pr[D|θ1] ≤ Pr[C|θ1]. In other words, if θ1 is the correct parameter value, then
C will discover this and reject at least as often as D. Therefore C is at least as
powerful as D, or the type two error probability of C is at least as small as that of
D.

Back to our fertilizer example. To make both null and alternative hypotheses
simple, assume that either µ = 0 (fertilizer is ineffective) or µ = t for some fixed
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Figure 2. Venn Diagram for Proof of Neyman Pearson Lemma ec660.1005

t > 0. Then the likelihood ratio critical region has the form

C = {y1, . . . , yn :
( 1√

2π

)n
e−

1
2 ((y1−t)2+···+(yn−t)2) ≥ k

( 1√
2π

)n
e−

1
2 (y2

1+···+y2
n)}

(15.2.6)

= {y1, . . . , yn : − 1

2
((y1 − t)2 + · · · + (yn − t)2) ≥ ln k − 1

2
(y2

1 + · · · + y2
n)}

(15.2.7)

= {y1, . . . , yn : t(y1 + · · · + yn) −
t2n

2
≥ ln k}

(15.2.8)

= {y1, . . . , yn : ȳ ≥ ln k

nt
+
t

2
}

(15.2.9)

i.e., C has the form ȳ ≥ some constant. The dependence of this constant on k is not
relevant, since this constant is usually chosen such that the maximum probability of
error of type one is equal to the given significance level.

Problem 217. 8 points You have four independent observations y1, . . . , y4 from
an N(µ, 1), and you are testing the null hypothesis µ = 0 against the alternative
hypothesis µ = 1. For your test you are using the likelihood ratio test with critical
region

(15.2.10) C = {y1, . . . , y4 : L(y1, . . . , y4;µ = 1) ≥ 3.633 · L(y1, . . . , y4;µ = 0)}.
Compute the significance level of this test. (According to the Neyman-Pearson

lemma, this is the uniformly most powerful test for this significance level.) Hints:
In order to show this you need to know that ln 3.633 = 1.29, everything else can be
done without a calculator. Along the way you may want to show that C can also be
written in the form C = {y1, . . . , y4 : y1 + · · · + y4 ≥ 3.290}.
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Answer. Here is the equation which determines when y1, . . . , y4 lie in C:

(2π)−2 exp−1

2

(
(y1 − 1)2 + · · · + (y4 − 1)2

)
≥ 3.633 · (2π)−2 exp−1

2

(
y21 + · · · + y24

)
(15.2.11)

−1

2

(
(y1 − 1)2 + · · · + (y4 − 1)2

)
≥ ln(3.633) − 1

2

(
y21 + · · · + y24

)
(15.2.12)

y1 + · · · + y4 − 2 ≥ 1.290(15.2.13)

Since Pr[y1 + · · ·+ y4 ≥ 3.290] = Pr[z = (y1 + · · ·+ y4)/2 ≥ 1.645] and z is a standard normal, one
obtains the significance level of 5% from the standard normal table or the t-table. �

Note that due to the properties of the Normal distribution, this critical region,
for a given significance level, does not depend at all on the value of t. Therefore this
test is uniformly most powerful against the composite hypothesis µ > 0.

One can als write the null hypothesis as the composite hypothesis µ ≤ 0, because
the highest probability of type one error will still be attained when µ = 0. This
completes the proof that the test given in the original fertilizer example is uniformly
most powerful.

Most other distributions discussed here are equally well behaved, therefore uni-
formly most powerful one-sided tests exist not only for the mean of a normal with
known variance, but also the variance of a normal with known mean, or the param-
eters of a Bernoulli and Poisson distribution.

However the given one-sided hypothesis is the only situation in which a uniformly
most powerful test exists. In other situations, the generalized likelihood ratio test has
good properties even though it is no longer uniformly most powerful. Many known
tests (e.g., the F test) are generalized likelihood ratio tests.

Assume you want to test the composite null hypothesis H0 : θ ∈ ω, where ω is
a subset of the parameter space, against the alternative HA : θ ∈ Ω, where Ω ⊃ ω
is a more comprehensive subset of the parameter space. ω and Ω are defined by
functions with continuous first-order derivatives. The generalized likelihood ratio
critical region has the form

(15.2.14) C = {x1, . . . , xn :
supθ∈Ω L(x1, . . . , xn; θ)

supθ∈ω L(x1, . . . , xn; θ)
≥ k}

where k is chosen such that the probability of the critical region when the null
hypothesis is true has as its maximum the desired significance level. It can be shown
that twice the log of this quotient is asymptotically distributed as a χ2

q−s, where q
is the dimension of Ω and s the dimension of ω. (Sometimes the likelihood ratio
is defined as the inverse of this ratio, but whenever possible we will define our test
statistics so that the null hypothjesis is rejected if the value of the test statistic is
too large.)
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In order to perform a likelihood ratio test, the following steps are necessary:
First construct the MLE’s for θ ∈ Ω and θ ∈ ω, then take twice the difference of the
attained levels of the log likelihoodfunctions, and compare with the χ2 tables.

15.3. The Runs Test

[Spr98, pp. 171–175] is a good introductory treatment, similar to the one given
here. More detail in [GC92, Chapter 3] (not in University of Utah Main Library)
and even more in [Bra68, Chapters 11 and 23] (which is in the Library).

Each of your three research assistants has to repeat a certain experiment 9 times,
and record whether each experiment was a success (1) or a failure (0). In all cases, the
experiments happen to have been successful 4 times. Assistant A has the following
sequence of successes and failures: 0, 1, 0, 0, 1, 0, 1, 1, 0,B has 0, 1, 0, 1, 0, 1, 0, 1, 0, and
C has 1, 1, 1, 1, 0, 0, 0, 0, 0.

On the basis of these results, you suspect that the experimental setup used by
B and C is faulty: for C, it seems that something changed over time so that the
first experiments were successful and the latter experiments were not. Or perhaps
the fact that a given experiment was a success (failure) made it more likely that also
the next experiment would be a success (failure). For B, the opposite effect seems
to have taken place.

From the pattern of successes and failures you made inferences about whether
the outcomes were independent or followed some regularity. A mathematical for-
malization of this inference counts “runs” in each sequence of outcomes. A run is a
sucession of several ones or zeros. The first outcome had 7 runs, the second 9, and
the third only 2. Given that the number of successes is 4 and the number of failures
is 5, 9 runs seem too many and 2 runs too few.

The “runs test” (sometimes also called “run test”) exploits this in the following
way: it counts the number of runs, and then asks if this is a reasonable number of
runs to expect given the total number of successes and failures. It rejects whenever
the number of runs is either too large or too low.

The choice of the number of runs as test statistic cannot be derived from a like-
lihood ratio principle, since we did not specify the joint distribution of the outcome
of the experiment. But the above argument says that it will probably detect at least
some of the cases we are interested in.

In order to compute the error of type one, we will first derive the probability
distribution of the number of runs conditionally on the outcome that the number of
successes is 4. This conditional distribution can be computed, even if we do not know
the probability of success of each experiment, as long as their joint distribution has
the following property (which holds under the null hypothesis of statistical indepen-
dence): the probability of a given sequence of failures and successes only depends on
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the number of failures and successes, not on the order in which they occur. Then the
conditional distribution of the number of runs can be obtained by simple counting.

How many arrangements of 5 zeros and 4 ones are there? The answer is
(
9
4

)
=

(9)(8)(7)(6)
(1)(2)(3)(4) = 126. How many of these arrangements have 9 runs? Only one, i.e., the

probability of having 9 runs (conditionally on observing 4 successes) is 1/126. The
probability of having 2 runs is 2/126, since one can either have the zeros first, or the
ones first.

In order to compute the probability of 7 runs, lets first ask: what is the proba-
bility of having 4 runs of ones and 3 runs of zeros? Since there are only 4 ones, each
run of ones must have exactly one element. So the distribution of ones and zeros
must be:

1 − one or more zeros− 1 − one or more zeros− 1 − one or more zeros− 1.

In order to specify the distribution of ones and zeros completely, we must therefore
count how many ways there are to split the sequence of 5 zeros into 3 nonempty
batches. Here are the possibilities:

(15.3.1)

0 0 0 | 0 | 0
0 0 | 0 0 | 0
0 0 | 0 | 0 0
0 | 0 0 0 | 0
0 | 0 0 | 0 0
0 | 0 | 0 0 0

Generally, the number of possibilities is
(
4
2

)
because there are 4 spaces between those

5 zeros, and we have to put in two dividers.
We have therfore 6 possibilities to make 4 runs of zeros and 3 runs of ones. Now

how many possiblities are there to make 3 runs of zeros and 4 runs of ones? There
are 4 ways to split the 5 zeros into 4 batches, and there are 3 ways to split the 4 ones
into 3 batches, represented by the schemes

(15.3.2)

0 0 | 0 | 0 | 0
0 | 0 0 | 0 | 0
0 | 0 | 0 0 | 0
0 | 0 | 0 | 0 0

and
1 1 | 1 | 1
1 | 1 1 | 1
1 | 1 | 1 1

One can combine any of the first with any of the second, i.e., one obtains 12 possi-
bilities. Together the probability of seven runs is therefore 18/126.

One can do the same thing for all other possibilities of runs and will get a
distribution of runs similar to that depicted in the diagram (which is for 7 instead of
9 trials). Mathematically one gets two different formulas according to whether the
number of runs is odd or even: we have a total of m zeros and n ones (it could also
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Figure 3. Distribution of runs in 7 trials, if there are 4 successes
and 3 failures

be the other way round), and r is the number of runs:

Pr[r = 2s+ 1] =

(
m−1
s−1

)(
n−1
s

)
+
(
m−1
s

)(
n−1
s−1

)
(
m+n
m

)(15.3.3)

Pr[r = 2s] = 2

(
m−1
s−1

)(
n−1
s−1

)
(
m+n
m

)(15.3.4)

Some computer programs (StatXact, www.cytel.com) compute these probabilities
exactly or by monte carlo simulation; but there is also an asymptotic test based on
the facts that

E[r] = 1 +
2mn

m+ n
var[r] =

2mn(2mn−m− n)

(m+ n)2(m+ n− 1)
(15.3.5)

and that the standardized number of runs is asymptotically a Normal distribution.
(see [GC92, section 3.2])

We would therefore reject when the observed number of runs is in the tails of
this distribution. Since the exact test statistic is discrete, we cannot make tests
for every arbitrary significance level. In the given example, if the critical region is
{r = 9}, then the significance level is 1/126. If the critical region is {r = 2 or 9},
the significance level is 3/126.

We said before that we could not make precise statements about the power of
the test, i.e., the error of type two. But we will show that it is possible to make
precise statements about the error of type one.

Right now we only have the conditional probability of errors of type one, given
that there are exactly 4 successes in our 9 trials. And we have no information about
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the probability of having indeed four successes, it might be 1 in a million. However in
certain situations, the conditional significance level is exactly what is needed. And
even if the unconditional significance level is needed, there is one way out. If we
were to specify a decision rule for every number of successes in such a way that the
conditional probability of rejecting is the same in all of them, then this conditional
probability is also equal to the unconditional probability. The only problem here
is that, due to discreteness, we can make the probability of type one errors only
approximately equal; but with increasing sample size this problem disappears.

Problem 218. Write approximately 200 x’es and o’s on a piece of paper trying
to do it in a random manner. Then make a run test whether these x’s and o’s were
indeed random. Would you want to run a two-sided or one-sided test?

The law of rare events literature can be considered a generalization of the run
test. For epidemiology compare [Cha96], [DH94], [Gri79], and [JL97].

15.4. Pearson’s Goodness of Fit Test.

Given an experiment with r outcomes, which have probabilities p1, . . . , pr, where∑
pi = 1. You make n independent trials and the ith outcome occurred xi times.

The x1, . . . , xr have the multinomial distribution with parameters n and p1, . . . , pr.
Their mean and covariance matrix are given in equation (8.4.2) above. How do you
test H0 : p1 = p0

1, . . . , pr = p0
r?

Pearson’s Goodness of Fit test uses as test statistic a weighted sum of the squared
deviations of the observed values from their expected values:

(15.4.1)

r∑

i=1

(xi − np0
i )

2

np0
i

.

This test statistic is often called the Chi-Square statistic. It is asymptotically dis-
tributed as a χ2

r−1; reject the null hypothesis when the observed value of this statistic

is too big, the critical region can be read off a table of the χ2.
Why does one get a χ2 distribution in the limiting case? Because the xi them-

selves are asymptotically normal, and certain quadratic forms of normal distributions
are χ2. The matter is made a little complicated by the fact that the xi are linearly
dependent, since

∑
xj = n, and therefore their covariance matrix is singular. There

are two ways to deal with such a situation. One is to drop one observation; one
will not lose any information by this, and the remaining r − 1 observations are well
behaved. (This explains, by the way, why one has a χ2

r−1 instead of a χ2
r.)

We will take an alternative route, namely, use theorems which are valid even
if the covariance matrix is singular. This is preferable because it leads to more
unified theories. In equation (10.4.9), we characterized all the quadratic forms of
multivariate normal variables that are χ2’s. Here it is again: Assume y is a jointly
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normal vector random variable with mean vector µ and covariance matrix σ2Ψ, and
Ω is a symmetric nonnegative definite matrix. Then (y − µ)>Ω(y − µ) ∼ σ2χ2

k iff
ΨΩΨΩΨ = ΨΩΨ and k is the rank of Ω. If Ψ is singular, i.e., does not have an
inverse, and Ω is a g-inverse of Ψ, then condition (10.4.9) holds. A matrix Ω is a
g-inverse of Ψ iff ΨΩΨ = Ψ. Every matrix has at least one g-inverse, but may have
more than one.

Now back to our multinomial distribution. By the central limit theorem, the xi
are asymptotically jointly normal; their mean and covariance matrix are given by
equation (8.4.2). This covariance matrix is singular (has rank r− 1), and a g-inverse
is given by (15.4.2), which has in its diagonal exactly the weighting factors used in
the statistic for the goodness of fit test.

Problem 219. 2 points A matrix Ω is a g-inverse of Ψ iff ΨΩΨ = Ψ. Show
that the following matrix

(15.4.2)
1

n




1
p1

0 · · · 0

0 1
p2

· · · 0
...

...
. . .

...
0 0 · · · 1

pr




is a g-inverse of the covariance matrix of the multinomial distribution given in
(8.4.2).

Answer. Postmultiplied by the g-inverse given in (15.4.2), the covariance matrix from (8.4.2)
becomes
(15.4.3)


p1 − p21 −p1p2 · · · −p1pr
−p2p1 p2 − p22 · · · −p2pr

...
...

. . .
...

−prp1 −prp2 · · · pr − p2r




1

n




1
p1

0 · · · 0

0 1
p2

· · · 0

...
...

. . .
...

0 0 · · · 1
pr


 =




1 − p1 −p1 · · · −p1
−p2 1 − p2 · · · −p2

...
...

. . .
...

−pr −pr · · · 1 − pr


 ,

and if one postmultiplies this again by the covariance matrix, one gets the covariance matrix back:


1 − p1 −p1 · · · −p1
−p2 1 − p2 · · · −p2

...
...

. . .
...

−pr −pr · · · 1 − pr







p1 − p21 −p1p2 · · · −p1pr
−p2p1 p2 − p22 · · · −p2pr

...
...

. . .
...

−prp1 −prp2 · · · pr − p2r


 =




p1 − p21 −p1p2 · · · −p1pr
−p2p1 p2 − p22 · · · −p2pr

...
...

. . .
...

−prp1 −prp2 · · · pr − p2r


 ,

In the left upper corner, matrix multiplication yields the element p1 − 2p21 + p31 + p21(p2 + · · · +

pr) = p1 − 2p21 + p21(p1 + p2 + · · · + pn) = p1 − p21, and the first element in the second row is
−2p1p2 + p1p2(p1 + p2 + · · · + pr) = −p1p2. Since the product matrix is symmetric, this gives all
the typical elements. �

Problem 220. Show that the covariance matrix of the multinomial distribution
given in (8.4.2) has rank n− 1.
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Answer. Use the fact that the rank of Ψ is tr(ΨΨ−), and one sees that the trace of the
matrix on the rhs of (15.4.3) is n− 1. �

From this follows that asymptotically,
∑r

i+1
(xi−npi)

2

npi
has a χ2 distribution with

r − 1 degrees of freedom. This is only asymptotically a χ2; the usual rule is that n
must be large enough so that npi is at least 5 for all i. Others refined this rule: if
r ≥ 5, it is possible to let one of the npi be as small as 1 (requiring the others to be
5 or more) and still get a “pretty good” approximation.

Problem 221. [HC70, pp. 310/11] I throw a die 60 times and get the following
frequencies for the six faces of the die: 13, 19, 11, 8, 5, 4. Test at the 5% significance
level whether the probability of each face is 1

6 .

Answer. The hypothesis must be rejected: observed value is 15.6, critical value 11.1. �

Until now we assumed that the probabilities of the r outcomes p1, . . . , pr are
known. If these probabilities depend on certain unknown parameters, then this
estimation procedure can be extended in an amazingly simple way. In this case we
are allowed to use the observed values of the random sample to compute maximum
likelihood estimates of these parameters, and plug these point estimates (instead of
the known parameter values themselves) into the quadratic form. If we do that, we
have to deduct the number of estimates from the number of degrees of freedom of
the χ2. An example of this is the contingency table:

Assume your sample is categorized according to two criteria:

(15.4.4)
smoker nonsmoker

lung cancer y11 y12

no lung cancer y21 y22

The procedure described would allow us to test whether the data is compabile with

the four cell probabilities being any given set of values
p11 p12

p21 p22
. But the ques-

tion which is most often asked is not whether the data are compatible with a spe-
cific set of cell probabilities, but whether the criteria tabled are independent. I.e.,
whether there are two numbers p and q so that the cell probabilities have the form

pq p(1 − q)
(1 − p)q (1 − p)(1 − q)

. If this is so, then p is the probability of being a smoker,

and q the probability of having lung cancer. Their MLE’s are p̃ = (y11 + y12)/n,
which is usually written as y1./n, and q̃ = (y11 + y21)/n = y.1/n. Therefore the
MLE’s of all four cell probabilities are

(15.4.5)
y1.y.1/n

2 y1.y.2/n
2

y2.y.1/n
2 y2.y.2/n

2.
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Plugging these MLE’s into the formula for the goodness of fit test statistic, we get

(15.4.6)
∑

i,j

(xij − x.ix.j/n)2

x.ix.j/n
∼ χ2

1.

Since there are four cells, i.e., three independent counts, and we estimated two param-
eters, the number of degrees of freedom is 3−2 = 1. Again, this is only asymptotically
a χ2.

15.5. Permutation Tests

Of five subjects, each first pulls a ball out of an urn which contains three black
and two red balls, and does not put this ball back. The result of this ball pulling is
represented by a dummy 5-vector d, where di = 1 if the ith subject pulled a black
ball, and di = 0 if a red ball. Those who pull a black ball receive treatment A, and
those pulling a red ball treatment B. The responses to this treatment are represented
by the random 5-vector y, and the following t-statistic is computed, which we will
encounter again in (42.2.22):

t =
ā − b̄√

s2/na + s2/nb

(15.5.1)

where

na =

n∑

i=1

di = 3(15.5.2)

nb =

n∑

i=1

(1 − di) = 2(15.5.3)

ā =
1

na

∑

i : di=1

yi(15.5.4)

b̄ =
1

nb

∑

i : di=0

yi(15.5.5)

s2 =

∑
i : di=1(yi − ā)2 +

∑
i : di=0(yi − b̄)2

na + nb − 2
(15.5.6)

Assume for example that the observed values of the two random variables d

and y are d = [ 0 0 1 1 1 ] and y = [ 6 12 18 30 54 ]. I.e., the three subjects receiving
treatment A had the results 18, 30, and 54, and the two subjects receiving treatment
B the results 6 and 12. This gives a value of t = 1.81. Does this indicate a significant
difference between A and B?
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The usual approach to answer this question is discussed in chapter/section 42, p.
493. It makes the following assumptions: under the null hypothesis, y ∼ N(ιµ, σ2I)
and under the alternative hypothesis, the means are different under the two treat-
ments but the σ2 is the same. Since the means are asymptotically Normal, t has
asymptotically a t-distribution with 3 degrees of freedom. The probability that the
value of this t is greater than 1.81 is 0.08399529.

The permutation test approach (Fisher’s exact test) uses the same t-statistic as is
familiar from the comparison of two means in a Normal population, but it computes
the significance levels in a different way.

Under the null hypothesis, the treatments have no effect on the outcomes, i.e.,
every other assignment of the subjects to the treatments would have led to the
same outcomes; but the values of the t-statistic would have been different. Going
through all the possibilities, we see that the following other assignments of subjects
to treatments would have been possible:

d1 d2 d3 d4 d5 ā b̄ t

1 1 1 0 0 12 42 –3.00
1 1 0 1 0 16 36 –1.22
1 1 0 0 1 24 24 0.00
1 0 1 1 0 18 33 –0.83
1 0 1 0 1 26 21 0.25
1 0 0 1 1 30 15 0.83
0 1 1 1 0 20 30 –0.52
0 1 1 0 1 28 18 0.52
0 1 0 1 1 32 12 1.22
0 0 1 1 1 34 9 1.81

Since there are 10 possible outcomes, and the outcome observed is the most
extreme of them, the significance level is 0.1. i.e., in this case, the permutation test,
gives less evidence for a treatment effect than the ordinary t-test.

Problem 222. This is an example adapted from [GG95], which is also discussed
in [Spr98, pp. 2/3 and 375–379]. Table 1 contains artificial data about two firms
hiring in the same labor market. For the sake of the argument it is assumed that
both firms receive the exact same number of applications (100), and both firms hire
11 new employees. Table 1 shows how many of the applicants and how many of the
new hires were Minorities.

• a. 3 points Let p1 be the proportion of Minorities hired, and p2 the propor-
tion Majorities hired. Compute the difference p1 − p2 and the odds ratio

(
p1/(1 −

p1)
)/

(p2/(1−p2)
)

for each firm. Which of the two firms seems to discriminate more?
Is the difference of probabilities or the odds ratio the more relevant statistic here?
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Hirings by Two Different Firms with 100 Applications Each
Firm A Firm B

Minority Majority Minority Majority
Hired 1 10 2 9
Not Hired 31 58 46 43
Table 1. Which Firm’s Hiring Policies are More Equitable?

Answer. In firm A, 3.125% of the minority applicants and 14.7% of the Majority applicants
were hired. The difference of the probabilities is 11.581% and the odds ratio is 29

155
= 0.1871.

In firm B, 4.167% of the minority applicants and 17.308% of the majority applicants were hired.
The difference is 13.141% and the odds ratio 43

207
= 0.2077. On both accounts, firm A seems to

discriminate more.
In order to decide which statistic is more relevant we need to know the purpose of the com-

parison. The difference is more relevant if one wants to assess the macroeconomic implications of
discrimination. The odds ratio is more relevant if one wants to know the impact of discrimination
on one individual. �

• b. 1 point Government agencies enforcing discrimination laws traditionally
have been using the selection ratio p1/p2. Compute the selection ratio for both firms.

Answer. In firm A, the selection ratio is 1
32

68
10

= 17
80

= 0.2125. In firm B, it is 13
54

= 0.2407. �

• c. 3 points Statisticians argue that the selection ratio is a flawed measure of
discrimination, see [Gas88, pp. 207–11 of vol. 1]. Demonstrate this by comparing
firm A with firm C which hires 5 out of 32 black and 40 out of 68 white applicants.

Hirings by Two Different Firms with 100 Applications Each

Firm A Firm C
Minority Majority Minority Majority

Hired 1 10 5 40
Not Hired 31 58 27 28

Table 2. Selection Ratio gives Conflicting Verdicts

Answer. In Firm C the selection ratio is 5
32

68
40

= 17
64

= 0.265625. In firm A, the chances

for blacks to be hired is 24% that of whites, and in firm C it is 26%. Firm C seems better. But
if we compare the chances not to get hired we get a conflicting verdict: In firm A the ratio is
31
32

68
58

= 1.1357. In firm C it is 27
32

68
28

= 2.0491. In firm C, the chances not to get hired is twice as
high for Minorities as it is for Whites, in firm A the chances not to get hired are more equal. Here
A seems better.

This illustrates an important drawback of the selection ratio: if we compare the chances of
not being hired instead of those of being hired, we get (1 − p1)/(1 − p2) instead of p1/p2. There
is no simple relationship between these two numbers, indeed (1 − p1)/(1 − p2) is not a function of

p1/p2, although both ratios should express the same concept. This is why one can get conflicting
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information if one looks at the selection ratio for a certain event or the selection ratio for its
complement.

The odds ratio and the differences in probabilities do not give rise to such discrepancies: the
odds ratio for not being hired is just the inverse of the odds ratio for being hired, and the difference
in the probabilities of not being hired is the negative of the difference in the probabilities of being
hired.

As long as p1 and p2 are both close to zero, the odds ratio is approximately equal to the

selection ratio, therefore in this case the selection ratio is acceptable despite the above criticism.
�

• d. 3 points Argue whether Fisher’s exact test, which is a conditional test, is
appropriate in this example.

Answer. The firms do not have control over the number of job applications, and they also do
not have control over how many job openings they have. Here is a situation in which Fisher’s exact
test, which is conditional on the row sums and column sums of the table, is entirely appropriate.
Note that this criterion has nothing to do with sample size. �

• e. 4 points Compute the significance levels for rejecting the null hypothesis of
equal treatment with the one-sided alternative of discrimination for each firm using
Fisher’s exact test. You will get a counterintuitive result. How can you explain this
result?

Answer. The R-commands can be run as ecmet.script(hiring). Although firm A hired a
lower percentage of applicants than firm B, the significance level for discrimination on Fisher’s exact
test is 0.07652 for firm A and 0.03509 for firm B. I.e., in a court of law, firm B might be convicted
of discrimination, but firm A, which hired a lower percentage of its minority applicants, could not.

[Spr98, p. 377] explains this as follows: “the smaller number of minority hirings reduces the
power of Fisher’s exact test applied to firm A relative to the power where there is a surplus of
minority hirings (firm B). This extra power is enough to produce a significant result despite the
higher percentage of promotions among minority hirings (or the higher odds ratio if one makes the
comparison on that basis).”

�

Promotions by Two Different Firms with 100 Employees Each
Firm A Firm B

Minority Majority Minority Majority
Promoted 1 10 2 9
Not Promoted 31 58 46 43

Table 3. Which Firm’s Promotion Policies are More Equitable?

• f. 5 points Now let’s change the example. Table 3 has the same numbers as
Table 1, but now these numbers do not count hirings but promotions from the pool
of existing employees, and instead of the number of applicants, the column totals are
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the total numbers of employees of each firm. Let us first look at the overall race
composition of the employees in each firm. Let us assume that 40% of the population
are minorities, and 32 of the 100 employees of firm A are minorities, and 48 of the
100 employees of firm B are minorities. Is there significant evidence that the firms
discriminated in hiring?

Answer. Assuming that the population is infinite, the question is: if one makes 100 inde-
pendent random drawings from a population that contains 40% minorities, what is the probabil-
ity to end up with 32 or less minorities? The R-command is pbinom(q=32,size=100,prob=0.4)

which is 0.06150391. The other firm has more than 40 black employees; here one might won-
der if there is evidence of discrimination against whites. pbinom(q=48,size=100,prob=0.4) gives
0.9576986 = 1 − 0.0423, i.e., it is significant at the 5% level. But here we should apply a two-sided
test. A one-sided test about discrimination against Blacks can be justified by the assumption “if
there is discrimination at all, it is against blacks.” This assumption cannot be made in the case
of discrimination against Whites. We have to allow for the possibility of discrimination against
Minorities and against Whites; therefore the critical value is at probability 0.975, and the observed
result is not significant.

�

• g. 2 points You want to use Table 3 to investigate whether the firms discrimi-
nated in promotion, and you are considering Fisher’s exact test. Do the arguments
made above with respect to Fisher’s exact still apply?

Answer. No. A conditional test is no longer appropriate here because the proportion of
candidates for promotion is under control of the firms. Firm A not only promoted a smaller
percentage of their minority employees, but it also hired fewer minority workers in the first place.
These two acts should be considered together to gauge the discrimination policies. The above
Sprent-quote [Spr98, p. 377] continues: “There is a timely warning here about the need for care
when using conditional tests when the marginal totals used for conditioning may themselves be
conditional upon a further factor, in this case hiring policy.”

�

15.5.1. Cornfield’s Lemma. In a court, businesses which hire fewer blacks
than whites are asked to explain how they obtained this outcome by nondiscrimina-
tory actions. It is illegal to deny blacks a job because they are black, but it is legal to
deny blacks a job because they have less job experience or lack other qualifications.
The possibility whether some factor x that is relevant for the hiring decision and
that is distributed unevenly between minority and majority applicants could have
explained the observed disparity is assessed by a variant of Cornfield’s lemma proved
in [Gas88, p. 296 in vol. 1].

We need the following definitions:
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p1 chance for a minority applicant without x to get hired
p1rx chance for a minority applicant with x to get hired
p2 chance for a majority applicant without x to get hired
p2rx chance for a majority applicant with x to get hired
f1 proportion of minority applicants who have x

f2 proportion of majority applicants who have x

The probability that a majority group member is hired is p2rxf2 + p2(1 − f2). The
probability that a minority group member is hired is p1rxf1 + p1(1 − f1). The ratio
between those probabilities, i.e., the relative advantage of the majority over the
minority group members, is

(15.5.7) rm =
p2rxf2 + p2(1 − f2)

p1rxf1 + p1(1 − f1)
=
p2

p1

(rx − 1)f2 + 1

(rx − 1)f1 + 1

There is no discrimination, i.e., rm is fully explained by the fact that more whites
have x than blacks, if p1 ≥ p2 and therefore

rm ≤ (rx − 1)f2 + 1

(rx − 1)f1 + 1
(15.5.8)

i.e.,

rm(rx − 1)f1 + rm ≤ (rx − 1)f2 + 1(15.5.9)

which is equivalent to

rmf1 +
rm − 1

rx − 1
≤ f2(15.5.10)

Problem 223. Suppose that 60% of whites are hired, while only 40% of a minor-
ity group are hired. Suppose that a certain type of training or education was related
to the job in question, and it is believed that at least 10% of the minority group had
this training.

• a. 3 points Assuming that persons with this training had twice the chance of
getting the job, which percentage of whites would have had this qualification in order
to explain the disparity in the hiring rates?

Answer. Since 60% of whites are hired and 40% of the minority group, rm = 60/40 = 1.5.
Training is the factor x. Sind persons with training had twice the chance of getting the job, rx = 2.
Since 10% of the minority group had this training, f1 = 0.1. Therefore (15.5.10) implies that at

least 1.5 · 0.1 + 0.5
1

= 65% of whites had to have this qualification in order to explain the observed
disparity in hiring rates. �

• b. 1 point What would this percentage have to be if training tripled (instead of
doubling) one’s chances of getting the job?
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Answer. If training tripled one’s chances of being hired, then the training would explain the
disparity if 1.5 · 0.1 + 0.5

2
= 40% or more of whites had this training. �

Cornfield’s lemma is an example of a retroductive argument, i.e., of inference
from an observed outcome (disparity in hiring rates) to unobserved causes which
might have generated this outcome (disparate distribution of the factor x between
majority and minority).

15.6. The Wald, Likelihood Ratio, and Lagrange Multiplier Tests

Let us start with the generalized Wald test. Assume θ̃ is an asymptotically
normal estimator of θ, whose asymptotic distribution is N(θ,Ψ). Assume further-

more that Ψ̂ is a consistent estimate of Ψ. Then the following statistic is called the
generalized Wald statistic. It can be used for an asymtotic test of the hypothesis
h(θ) = o, where h is a q-vector-valued differentiable function:

(15.6.1) G.W. = h(θ̃)>
{ ∂h

∂θ>

∣∣∣
θ̃
Ψ̂
∂h>

∂θ

∣∣∣
θ̃

}−1

h(θ̃)

Under the null hypothesis, this test statistic is asymptotically distributed as a χ2
q .

To understand this, note that for all θ close to θ̃, h(θ) � h(θ̃) + ∂h
∂θ>

∣∣∣
θ̃
(θ − θ̃).

Taking covariances

(15.6.2)
∂h

∂θ>

∣∣∣
θ̃
Ψ̂
∂h>

∂θ

∣∣∣
θ̃

is an estimate of the covariance matrix of h(θ̃). I.e., one takes h(θ̃) twice and
“divides” it by its covariance matrix.

Now let us make more stringent assumptions. Assume the density fx(x; θ) of
x depends on the parameter vector θ. We are assuming that the conditions are

satisfied which ensure asymptotic normality of the maximum likelihood estimator θ̂

and also of θ̄, the constrained maximum likelihood estimator subject to the constraint
h(θ) = o.

There are three famous tests to test this hypothesis, which asymptotically are
all distributed like χ2

q . The likehihood-ratio test is

(15.6.3) LRT = −2 log
maxh(θ)=o fy(y; θ)

maxθ fy(y; θ)
= 2(log fy(y, θ̂) − log fy(y, θ̄))

It rejects if imposing the constraint reduces the attained level of the likelihood func-
tion too much.

The Wald test has the form

(15.6.4) Wald = −h(θ̂)>
{ ∂h

∂θ>

∣∣∣
θ̂

(∂2 log f(y; θ)

∂θ∂θ>

∣∣∣
θ̂

)−1 ∂h>

∂θ

∣∣∣
θ̂

}−1

h(θ̂)

242 15. HYPOTHESIS TESTING

To understand this formula, note that −
(
E
[
∂2 log f(y;θ)

∂θ∂θ>

])−1

is the Cramer Rao

lower bound, and since all maximum likelihood estimators asymptotically attain the

CRLB, it is the asymptotic covariance matrix of θ̂. If one does not take the expected

value but plugs θ̂ into these partial derivatives of the log likelihood function, one
gets a consistent estimate of the asymtotic covariance matrix. Therefore the Wald
test is a special case of the generalized Wald test.

Finally the score test has the form

(15.6.5) Score = −∂ log f(y; θ)

∂θ>

∣∣∣
θ̄

(∂2 log f(y; θ)

∂θ∂θ>

∣∣∣
θ̄

)−1 ∂ log f(y; θ)>

∂θ

∣∣∣
θ̄

This test tests whether the score, i.e., the gradient of the unconstrained log likelihood
function, evaluated at the constrained maximum likelihood estimator, is too far away
from zero. To understand this formula, remember that we showed in the proof of
the Cramer-Rao lower bound that the negative of the expected value of the Hessian

−E
[
∂2 log f(y;θ)

∂θ∂θ>

]
is the covariance matrix of the score, i.e., here we take the score

twice and divide it by its estimated covariance matrix.



CHAPTER 16

General Principles of Econometric Modelling

[Gre97, 6.1 on p. 220] says: “An econometric study begins with a set of propo-
sitions about some aspect of the economy. The theory specifies a set of precise,
deterministic relationships among variables. Familiar examples are demand equa-
tions, production functions, and macroeconomic models. The empirical investigation
provides estimates of unknown parameters in the model, such as elasticities or the
marginal propensity to consume, and usually attempts to measure the validity of the
theory against the behavior of the observable data.”

[Hen95, p. 6] distinguishes between two extremes: “‘Theory-driven’ approaches,
in which the model is derived from a priori theory and calibrated from data evidence.
They suffer from theory dependence in that their credibility depends on the credi-
bility of the theory from which they arose—when that theory is discarded, so is the
associated evidence.” The other extreme is “‘Data-driven’ approaches, where models
are developed to closely describe the data . . . These suffer from sample dependence in
that accidental and transient data features are embodied as tightly in the model as
permanent aspects, so that extension of the data set often reveal predictive failure.”

Hendry proposes the following useful distinction of 4 levels of knowledge:
A Consider the situation where we know the complete structure of the process

which gernerates economic data and the values of all its parameters. This is the
equivalent of a probability theory course (example: rolling a perfect die), but involves
economic theory and econometric concepts.

B consider a known economic structure with unknown values of the parameters.
Equivalent to an estimation and inference course in statistics (example: independent
rolls of an imperfect die and estimating the probabilities of the different faces) but
focusing on econometrically relevant aspects.

C is “the empirically relevant situation where neither the form of the data-
generating process nor its parameter values are known. (Here one does not know
whether the rolls of the die are independent, or whether the probabilities of the
different faces remain constant.) Model discovery, evaluation, data mining, model-
search procedures, and associated methodological issues.
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D Forecasting the future when the data outcomes are unknown. (Model of money
demand under financial innovation).

The example of Keynes’s consumption function in [Gre97, pp. 221/22] sounds at
the beginning as if it was close to B, but in the further discussion Greene goes more
and more over to C. It is remarkable here that economic theory usually does not yield
functional forms. Greene then says: the most common functional form is the linear
one c = α + βx with α > 0 and 0 < β < 1. He does not mention the aggregation
problem hidden in this. Then he says: “But the linear function is only approximate;
in fact, it is unlikely that consumption and income can be connected by any simple
relationship. The deterministic relationship is clearly inadequate.” Here Greene
uses a random relationship to model a relationship which is quantitatively “fuzzy.”
This is an interesting and relevant application of randomness.

A sentence later Green backtracks from this insight and says: “We are not so
ambitious as to attempt to capture every influence in the relationship, but only those
that are substantial enough to model directly.” The “fuzziness” is not due to a lack
of ambition of the researcher, but the world is inherently quantiatively fuzzy. It is
not that we don’t know the law, but there is no law; not everything that happens in
an economy is driven by economic laws. Greene’s own example, in Figure 6.2, that
during the war years consumption was below the trend line, shows this.

Greene’s next example is the relationship between income and education. This
illustrates multiple instead of simple regression: one must also include age, and then
also the square of age, even if one is not interested in the effect which age has, but
in order to “control” for this effect, so that the effects of education and age will not
be confounded.

Problem 224. Why should a regression of income on education include not only
age but also the square of age?

Answer. Because the effect of age becomes smaller with increases in age. �

Critical Realist approaches are [Ron02] and [Mor02].



CHAPTER 17

Causality and Inference

This chapter establishes the connection between critical realism and Holland and
Rubin’s modelling of causality in statistics as explained in [Hol86] and [WM83, pp.
3–25] (and the related paper [LN81] which comes from a Bayesian point of view). A
different approach to causality and inference, [Roy97], is discussed in chapter/section
2.8. Regarding critical realism and econometrics, also [Dow99] should be mentioned:
this is written by a Post Keynesian econometrician working in an explicitly realist
framework.

Everyone knows that correlation does not mean causality. Nevertheless, expe-
rience shows that statisticians can on occasion make valid inferences about causal-
ity. It is therefore legitimate to ask: how and under which conditions can causal
conclusions be drawn from a statistical experiment or a statistical investigation of
nonexperimental data?

Holland starts his discussion with a description of the “logic of association”
(= a flat empirical realism) as opposed to causality (= depth realism). His model
for the “logic of association” is essentially the conventional mathematical model of
probability by a set U of “all possible outcomes,” which we described and criticized
on p. 6 above.

After this, Rubin describes his own model (developed together with Holland).
Rubin introduces “counterfactual” (or, as Bhaskar would say, “transfactual”) el-
ements since he is not only talking about the value a variable takes for a given
individual, but also the value this variable would have taken for the same individual
if the causing variables (which Rubin also calls “treatments”) had been different.
For simplicity, Holland assumes here that the treatment variable has only two levels:
either the individual receives the treatment, or he/she does not (in which case he/she
belongs to the “control” group). The correlational view would simply measure the
average response of those individuals who receive the treatment, and of those who
don’t. Rubin recognizes in his model that the same individual may or may not be
subject to the treatment, therefore the response variable has two values, one being
the individual’s response if he or she receives the treatment, the other the response
if he or she does not.
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A third variable indicates who receives the treatment. I.e, he has the “causal in-
dicator” s which can take two values, t (treatment) and c (control), and two variables
yt and yc, which, evaluated at individual ω, indicate the responses this individual
would give in case he was subject to the treatment, and in case he was or not.

Rubin defines yt − yc to be the causal effect of treatment t versus the control
c. But this causal effect cannot be observed. We cannot observe how those indi-
viuals who received the treatement would have responded if they had not received
the treatment, despite the fact that this non-actualized response is just as real as
the response which they indeed gave. This is what Holland calls the Fundamental
Problem of Causal Inference.

Problem 225. Rubin excludes race as a cause because the individual cannot do
anything about his or her race. Is this argument justified?

Does this Fundamental Problem mean that causal inference is impossible? Here
are several scenarios in which causal inference is possible after all:

• Temporal stability of the response, and transience of the causal effect.
• Unit homogeneity.
• Constant effect, i.e., yt(ω) − yc(ω) is the same for all ω.
• Independence of the response with respect to the selection process regarding

who gets the treatment.

For an example of this last case, say

Problem 226. Our universal set U consists of patients who have a certain dis-
ease. We will explore the causal effect of a given treatment with the help of three
events, T , C, and S, the first two of which are counterfactual, compare [Hol86].
These events are defined as follows: T consists of all patients who would recover
if given treatment; C consists of all patients who would recover if not given treat-
ment (i.e., if included in the control group). The event S consists of all patients
actually receiving treatment. The average causal effect of the treatment is defined as
Pr[T ] − Pr[C].

• a. 2 points Show that

Pr[T ] = Pr[T |S] Pr[S] + Pr[T |S ′](1 − Pr[S])(17.0.6)

and that

Pr[C] = Pr[C|S] Pr[S] + Pr[C|S ′](1 − Pr[S])(17.0.7)

Which of these probabilities can be estimated as the frequencies of observable outcomes
and which cannot?

Answer. This is a direct application of (2.7.9). The problem here is that for all ω ∈ C, i.e.,

for those patients who do not receive treatment, we do not know whether they would have recovered
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if given treatment, and for all ω ∈ T , i.e., for those patients who do receive treatment, we do not
know whether they would have recovered if not given treatment. In other words, neither Pr[T |S]
nor E[C|S′] can be estimated as the frequencies of observable outcomes. �

• b. 2 points Assume now that S is independent of T and C, because the subjects
are assigned randomly to treatment or control. How can this be used to estimate
those elements in the equations (17.0.6) and (17.0.7) which could not be estimated
before?

Answer. In this case, Pr[T |S] = Pr[T |S′] and Pr[C|S′] = Pr[C|S]. Therefore, the average
causal effect can be simplified as follows:

Pr[T ] − Pr[C] = Pr[T |S]Pr[S] + Pr[T |S′](1 − Pr[S]) − Pr[C|S]Pr[S] + Pr[C|S′](1 − Pr[S])

= Pr[T |S]Pr[S] + Pr[T |S](1 − Pr[S]) − Pr[C|S′] Pr[S] + Pr[C|S′](1 − Pr[S])

= Pr[T |S]− Pr[C|S′](17.0.8)

�

• c. 2 points Why were all these calculations necessary? Could one not have
defined from the beginning that the causal effect of the treatment is Pr[T |S]−Pr[C|S ′]?

Answer. Pr[T |S] − Pr[C|S′] is only the empirical difference in recovery frequencies between
those who receive treatment and those who do not. It is always possible to measure these differences,

but these differences are not necessarily due to the treatment but may be due to other reasons. �

The main message of the paper is therefore: before drawing causal conclusions
one should acertain whether one of these conditions apply which make causal con-
clusions possible.

In the rest of the paper, Holland compares his approach with other approaches.
Suppes’s definitions of causality are interesting:

• If r < s denote two time values, event Cr is a prima facie cause of Es iff
Pr[Es|Cr] > Pr[Es].

• Cr is a spurious cause of Es iff it is a prima facie cause of Es and for some
q < r < s there is an event Dq so that Pr[Es|Cr, Dq] = Pr[Es|Dq] and
Pr[Es|Cr, Dq ] ≥ Pr[Es|Cr].

• Event Cr is a genuine cause of Es iff it is a prima facie but not a spurious
cause.

This is quite different than Rubin’s analysis. Suppes concentrates on the causes of a
given effect, not the effects of a given cause. Suppes has a Popperian falsificationist
view: a hypothesis is good if one cannot falsify it, while Holland has the depth-realist
view which says that the empirical is only a small part of reality, and which looks at
the underlying mechanisms.

Problem 227. Construct an example of a probability field with a spurious cause.
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Granger causality (see chapter/section 67.2.1) is based on the idea: knowing
a cause ought to improve our ability to predict. It is more appropriate to speak
here of “noncausality” instead of causality: a variable does not cause another if
knowing that variable does not improve our ability to predict the other variable.
Granger formulates his theory in terms of a specific predictor, the BLUP, while
Holland extends it to all predictors. Granger works on it in a time series framework,
while Holland gives a more general formulation. Holland’s formulation strips off the
unnecessary detail in order to get at the essence of things. Holland defines: x is not
a Granger cause of y relative to the information in z (which in the timeseries context
contains the past values of y) if and only if x and y are conditionally independent
given z. Problem 40 explains why this can be tested by testing predictive power.



CHAPTER 18

Mean-Variance Analysis in the Linear Model

In the present chapter, the only distributional assumptions are that means and
variances exist. (From this follows that also the covariances exist).

18.1. Three Versions of the Linear Model

As background reading please read [CD97, Chapter 1].
Following [JHG+88, Chapter 5], we will start with three different linear sta-

tistical models. Model 1 is the simplest estimation problem already familiar from
chapter 12, with n independent observations from the same distribution, call them
y1, . . . ,yn. The only thing known about the distribution is that mean and variance
exist, call them µ and σ2. In order to write this as a special case of the “lin-

ear model,” define εi = yi − µ, and define the vectors y =
[
y1 y2 · · · yn

]>
,

ε =
[
ε1 ε2 · · · εn

]>
, and ι =

[
1 1 · · · 1

]>
. Then one can write the model

in the form

(18.1.1) y = ιµ+ ε ε ∼ (o, σ2I)

The notation ε ∼ (o, σ2I) is shorthand for E [ε] = o (the null vector) and V[ε] = σ2I

(σ2 times the identity matrix, which has 1’s in the diagonal and 0’s elsewhere). µ is
the deterministic part of all the yi, and εi is the random part.

Model 2 is “simple regression” in which the deterministic part µ is not constant
but is a function of the nonrandom variable x. The assumption here is that this
function is differentiable and can, in the range of the variation of the data, be ap-
proximated by a linear function [Tin51, pp. 19–20]. I.e., each element of y is a
constant α plus a constant multiple of the corresponding element of the nonrandom
vector x plus a random error term: yt = α + xtβ + εt, t = 1, . . . , n. This can be
written as

(18.1.2)




y1

...
yn


 =



1
...
1


α+



x1

...
xn


β +




ε1

...
εn


 =



1 x1

...
...

1 xn



[
α
β

]
+




ε1

...
εn
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or

(18.1.3) y = Xβ + ε ε ∼ (o, σ2I)

Problem 228. 1 point Compute the matrix product

[
1 2 5
0 3 1

]

4 0
2 1
3 8




Answer.

[
1 2 5
0 3 1

][4 0
2 1
3 8

]
=

[
1 · 4 + 2 · 2 + 5 · 3 1 · 0 + 2 · 1 + 5 · 8
0 · 4 + 3 · 2 + 1 · 3 0 · 0 + 3 · 1 + 1 · 8

]
=

[
23 42
9 11

]

�

If the systematic part of y depends on more than one variable, then one needs
multiple regression, model 3. Mathematically, multiple regression has the same form
(18.1.3), but this time X is arbitrary (except for the restriction that all its columns
are linearly independent). Model 3 has Models 1 and 2 as special cases.

Multiple regression is also used to “correct for” disturbing influences. Let me
explain. A functional relationship, which makes the systematic part of y dependent
on some other variable x will usually only hold if other relevant influences are kept
constant. If those other influences vary, then they may affect the form of this func-
tional relation. For instance, the marginal propensity to consume may be affected
by the interest rate, or the unemployment rate. This is why some econometricians
(Hendry) advocate that one should start with an “encompassing” model with many
explanatory variables and then narrow the specification down by hypothesis tests.
Milton Friedman, by contrast, is very suspicious about multiple regressions, and
argues in [FS91, pp. 48/9] against the encompassing approach.

Friedman does not give a theoretical argument but argues by an example from
Chemistry. Perhaps one can say that the variations in the other influences may have
more serious implications than just modifying the form of the functional relation:
they may destroy this functional relation altogether, i.e., prevent any systematic or
predictable behavior.

observed unobserved
random y ε

nonrandom X β, σ2
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18.2. Ordinary Least Squares

In the model y = Xβ + ε, where ε ∼ (o, σ2I), the OLS-estimate β̂ is defined to

be that value β = β̂ which minimizes

(18.2.1) SSE = (y − Xβ)>(y − Xβ) = y>y − 2y>Xβ + β>X>Xβ.

Problem 184 shows that in model 1, this principle yields the arithmetic mean.

Problem 229. 2 points Prove that, if one predicts a random variable y by a
constant a, the constant which gives the best MSE is a = E[y], and the best MSE one
can get is var[y].

Answer. E[(y − a)2 ] = E[y2] − 2aE[y] + a2. Differentiate with respect to a and set zero to
get a = E[y]. One can also differentiate first and then take expected value: E[2(y − a)] = 0. �

We will solve this minimization problem using the first-order conditions in vector
notation. As a preparation, you should read the beginning of Appendix C about
matrix differentiation and the connection between matrix differentiation and the
Jacobian matrix of a vector function. All you need at this point is the two equations
(C.1.6) and (C.1.7). The chain rule (C.1.23) is enlightening but not strictly necessary
for the present derivation.

The matrix differentiation rules (C.1.6) and (C.1.7) allow us to differentiate
(18.2.1) to get

(18.2.2) ∂SSE/∂β> = −2y>X + 2β>X>X.

Transpose it (because it is notationally simpler to have a relationship between column

vectors), set it zero while at the same time replacing β by β̂, and divide by 2, to get
the “normal equation”

(18.2.3) X>y = X>Xβ̂.

Due to our assumption that all columns of X are linearly independent, X>X has
an inverse and one can premultiply both sides of (18.2.3) by (X>X)−1:

(18.2.4) β̂ = (X>X)−1X>y.

If the columns of X are not linearly independent, then (18.2.3) has more than one
solution, and the normal equation is also in this case a necessary and sufficient

condition for β̂ to minimize the SSE (proof in Problem 232).

Problem 230. 4 points Using the matrix differentiation rules

∂w>x/∂x> = w>(18.2.5)

∂x>Mx/∂x> = 2x>M(18.2.6)
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for symmetric M , compute the least-squares estimate β̂ which minimizes

(18.2.7) SSE = (y − Xβ)>(y − Xβ)

You are allowed to assume that X>X has an inverse.

Answer. First you have to multiply out

(18.2.8) (y − Xβ)>(y − Xβ) = y>y − 2y>Xβ + β>X>Xβ.

The matrix differentiation rules (18.2.5) and (18.2.6) allow us to differentiate (18.2.8) to get

(18.2.9) ∂SSE/∂β> = −2y>X + 2β>X>X.

Transpose it (because it is notationally simpler to have a relationship between column vectors), set

it zero while at the same time replacing β by β̂, and divide by 2, to get the “normal equation”

(18.2.10) X>y = X>Xβ̂.

Since X>X has an inverse, one can premultiply both sides of (18.2.10) by (X>X)−1:

(18.2.11) β̂ = (X>X)−1X>y.

�

Problem 231. 2 points Show the following: if the columns of X are linearly
independent, then X>X has an inverse. (X itself is not necessarily square.) In your
proof you may use the following criteria: the columns of X are linearly independent
(this is also called: X has full column rank) if and only if Xa = o implies a = o.
And a square matrix has an inverse if and only if its columns are linearly independent.

Answer. We have to show that any a which satisfies X>Xa = o is itself the null vector.
From X>Xa = o follows a>X>Xa = 0 which can also be written ‖Xa‖2 = 0. Therefore Xa = o,
and since the columns of X are linearly independent, this implies a = o. �

Problem 232. 3 points In this Problem we do not assume that X has full column
rank, it may be arbitrary.

• a. The normal equation (18.2.3) has always at least one solution. Hint: you
are allowed to use, without proof, equation (A.3.3) in the mathematical appendix.

Answer. With this hint it is easy: β̂ = (X>X)−X>y is a solution. �

• b. If β̂ satisfies the normal equation and β is an arbitrary vector, then

(18.2.12) (y−Xβ)>(y −Xβ) = (y −Xβ̂)>(y−Xβ̂) + (β − β̂)>X>X(β − β̂).

Answer. This is true even if X has deficient rank, and it will be shown here in this general

case. To prove (18.2.12), write (18.2.1) as SSE =
(
(y−Xβ̂)−X(β− β̂)

)>(
(y−Xβ̂)−X(β− β̂)

)
;

since β̂ satisfies (18.2.3), the cross product terms disappear. �

• c. Conclude from this that the normal equation is a necessary and sufficient

condition characterizing the values β̂ minimizing the sum of squared errors (18.2.12).
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Answer. (18.2.12) shows that the normal equations are sufficient. For necessity of the normal

equations let β̂ be an arbitrary solution of the normal equation, we have seen that there is always

at least one. Given β̂, it follows from (18.2.12) that for any solution β∗ of the minimization,

X>X(β∗ − β̂) = o. Use (18.2.3) to replace (X>X)β̂ by X>y to get X>Xβ∗ = X>y. �

It is customary to use the notation Xβ̂ = ŷ for the so-called fitted values, which
are the estimates of the vector of means η = Xβ. Geometrically, ŷ is the orthogonal
projection of y on the space spanned by the columns of X. See Theorem A.6.1 about
projection matrices.

The vector of differences between the actual and the fitted values is called the
vector of “residuals” ε̂ = y − ŷ. The residuals are “predictors” of the actual (but
unobserved) values of the disturbance vector ε. An estimator of a random magnitude
is usually called a “predictor,” but in the linear model estimation and prediction are
treated on the same footing, therefore it is not necessary to distinguish between the
two.

You should understand the difference between disturbances and residuals, and
between the two decompositions

(18.2.13) y = Xβ + ε = Xβ̂ + ε̂

Problem 233. 2 points Assume that X has full column rank. Show that ε̂ =
My where M = I −X(X>X)−1X>. Show that M is symmetric and idempotent.

Answer. By definition, ε̂ = y− Xβ̂ = y − X(X>X)−1Xy =
(
I − X(X>X)−1X

)
y. Idem-

potent, i.e. MM = M :

MM =
(
I − X(X>X)−1X>)(I − X(X>X)−1X>) = I − X(X>X)−1X> − X(X>X)−1X> + X(X>X)−1X>X(X>X)−1X> = I − 2X(X>X)−1X> + X(X>X)−1X> = I − X(X>X)−1X> = M

(18.2.14)

�

Problem 234. Assume X has full column rank. Define M = I−X(X>X)−1X>.

• a. 1 point Show that the space M projects on is the space orthogonal to all
columns in X, i.e., Mq = q if and only if X>q = o.

Answer. X>q = o clearly implies Mq = q. Conversely, Mq = q implies X(X>X)−1X>q =

o. Premultiply this by X> to get X>q = o. �

• b. 1 point Show that a vector q lies in the range space of X, i.e., the space
spanned by the columns of X, if and only if Mq = o. In other words, {q : q = Xa

for some a} = {q : Mq = o}.
Answer. First assume Mq = o. This means q = X(X>X)−1X>q = Xa with a =

(X>X)−1X>q. Conversely, if q = Xa then Mq = MXa = Oa = o. �
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Problem 235. In 2-dimensional space, write down the projection matrix on the
diagonal line y = x (call it E), and compute Ez for the three vectors a = [ 2

1 ],
b = [ 2

2 ], and c = [ 3
2 ]. Draw these vectors and their projections.

Assume we have a dependent variable y and two regressors x1 and x2, each with
15 observations. Then one can visualize the data either as 15 points in 3-dimensional
space (a 3-dimensional scatter plot), or 3 points in 15-dimensional space. In the
first case, each point corresponds to an observation, in the second case, each point
corresponds to a variable. In this latter case the points are usually represented
as vectors. You only have 3 vectors, but each of these vectors is a vector in 15-
dimensional space. But you do not have to draw a 15-dimensional space to draw
these vectors; these 3 vectors span a 3-dimensional subspace, and ŷ is the projection
of the vector y on the space spanned by the two regressors not only in the original
15-dimensional space, but already in this 3-dimensional subspace. In other words,
[DM93, Figure 1.3] is valid in all dimensions! In the 15-dimensional space, each
dimension represents one observation. In the 3-dimensional subspace, this is no
longer true.

Problem 236. “Simple regression” is regression with an intercept and one ex-
planatory variable only, i.e.,

(18.2.15) yt = α+ βxt + εt

Here X =
[
ι x

]
and β =

[
α β

]>
. Evaluate (18.2.4) to get the following formulas

for β̂ =
[
α̂ β̂

]>
:

α̂ =

∑
x2
t

∑
yt −

∑
xt
∑
xtyt

n
∑
x2
t − (

∑
xt)2

(18.2.16)

β̂ =
n
∑
xtyt −

∑
xt
∑

yt

n
∑
x2
t − (

∑
xt)2

(18.2.17)

Answer.

(18.2.18) X>X =

[
ι>

x>

] [
ι x

]
=

[
ι>ι ι>x

x>ι x>x

]
=

[
n

∑
xt∑

xt
∑

x2
t

]

(18.2.19) X>X−1 =
1

n
∑

x2
t − (

∑
xt)2

[ ∑
x2
t −

∑
xt

−
∑

xt n

]

(18.2.20) X>y =

[
ι>y

x>y

]
=

[ ∑
yt∑
xiyt

]

Therefore (X>X)−1X>y gives equations (18.2.16) and (18.2.17). �
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Problem 237. Show that

(18.2.21)

n∑

t=1

(xt − x̄)(yt − ȳ) =

n∑

t=1

xtyt − nx̄ȳ

(Note, as explained in [DM93, pp. 27/8] or [Gre97, Section 5.4.1], that the left
hand side is computationally much more stable than the right.)

Answer. Simply multiply out. �

Problem 238. Show that (18.2.17) and (18.2.16) can also be written as follows:

β̂ =

∑
(xt − x̄)(yt − ȳ)∑

(xt − x̄)2
(18.2.22)

α̂ = ȳ − β̂x̄(18.2.23)

Answer. Using
∑

xi = nx̄ and
∑

yi = nȳ in (18.2.17), it can be written as

(18.2.24) β̂ =

∑
xtyt − nx̄ȳ∑
x2
t − nx̄2

Now apply Problem 237 to the numerator of (18.2.24), and Problem 237 with y = x to the denom-
inator, to get (18.2.22).

To prove equation (18.2.23) for α̂, let us work backwards and plug (18.2.24) into the righthand
side of (18.2.23):

(18.2.25) ȳ − x̄β̂ =
ȳ
∑

x2
t − ȳnx̄2 − x̄

∑
xtyt + nx̄x̄ȳ∑

x2
t − nx̄2

The second and the fourth term in the numerator cancel out, and what remains can be shown to
be equal to (18.2.16). �

Problem 239. 3 points Show that in the simple regression model, the fitted
regression line can be written in the form

(18.2.26) ŷt = ȳ + β̂(xt − x̄).

From this follows in particular that the fitted regression line always goes through the
point x̄, ȳ.

Answer. Follows immediately if one plugs (18.2.23) into the defining equation ŷt = α̂ +

β̂xt. �

Formulas (18.2.22) and (18.2.23) are interesting because they express the regres-
sion coefficients in terms of the sample means and covariances. Problem 240 derives
the properties of the population equivalents of these formulas:
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Problem 240. Given two random variables x and y with finite variances, and
var[x] > 0. You know the expected values, variances and covariance of x and y, and
you observe x, but y is unobserved. This question explores the properties of the Best
Linear Unbiased Predictor (BLUP) of y in this situation.

• a. 4 points Give a direct proof of the following, which is a special case of theorem
27.1.1: If you want to predict y by an affine expression of the form a+bx, you will get
the lowest mean squared error MSE with b = cov[x,y]/ var[x] and a = E[y] − bE[x].

Answer. The MSE is variance plus squared bias (see e.g. problem 193), therefore

(18.2.27) MSE[a+ bx; y] = var[a+ bx − y] + (E[a+ bx − y])2 = var[bx − y] + (a− E[y] + bE[x])2.

Therefore we choose a so that the second term is zero, and then you only have to minimize the first
term with respect to b. Since

(18.2.28) var[bx − y] = b2 var[x] − 2b cov[x,y] + var[y]

the first order condition is

(18.2.29) 2b var[x] − 2 cov[x,y] = 0

�

• b. 2 points For the first-order conditions you needed the partial derivatives
∂
∂a E[(y−a−bx)2] and ∂

∂b E[(y−a−bx)2]. It is also possible, and probably shorter, to

interchange taking expected value and partial derivative, i.e., to compute E
[
∂
∂a (y −

a − bx)2
]

and E
[
∂
∂b (y − a − bx)2

]
and set those zero. Do the above proof in this

alternative fashion.

Answer. E

[
∂
∂a

(y−a−bx)2
]

= −2E[y−a−bx] = −2(E[y]−a−bE[x]). Setting this zero gives

the formula for a. Now E

[
∂
∂b

(y − a − bx)2
]

= −2 E[x(y − a − bx)] = −2(E[xy] − aE[x] − bE[x2]).

Setting this zero gives E[xy] − aE[x]− bE[x2] = 0. Plug in formula for a and solve for b:

(18.2.30) b =
E[xy] − E[x] E[y]

E[x2] − (E[x])2
=

cov[x,y]

var[x]
.

�

• c. 2 points Compute the MSE of this predictor.

Answer. If one plugs the optimal a into (18.2.27), this just annulls the last term of (18.2.27)
so that the MSE is given by (18.2.28). If one plugs the optimal b = cov[x,y]/ var[x] into (18.2.28),
one gets

MSE =
( cov[x,y]

var[x]

)2
var[x] − 2

(cov[x,y])

var[x]
cov[x,y] + var[x](18.2.31)

= var[y] − (cov[x,y])2

var[x]
.(18.2.32)

�
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• d. 2 points Show that the prediction error is uncorrelated with the observed x.

Answer.

(18.2.33) cov[x,y − a− bx] = cov[x,y] − a cov[x, x] = 0

�

• e. 4 points If var[x] = 0, the quotient cov[x,y]/ var[x] can no longer be formed,
but if you replace the inverse by the g-inverse, so that the above formula becomes

(18.2.34) b = cov[x,y](var[x])−

then it always gives the minimum MSE predictor, whether or not var[x] = 0, and
regardless of which g-inverse you use (in case there are more than one). To prove this,
you need to answer the following four questions: (a) what is the BLUP if var[x] = 0?
(b) what is the g-inverse of a nonzero scalar? (c) what is the g-inverse of the scalar
number 0? (d) if var[x] = 0, what do we know about cov[x,y]?

Answer. (a) If var[x] = 0 then x = µ almost surely, therefore the observation of x does not
give us any new information. The BLUP of y is ν in this case, i.e., the above formula holds with
b = 0.

(b) The g-inverse of a nonzero scalar is simply its inverse.
(c) Every scalar is a g-inverse of the scalar 0.
(d) if var[x] = 0, then cov[x,y] = 0.
Therefore pick a g-inverse 0, an arbitrary number will do, call it c. Then formula (18.2.34)

says b = 0 · c = 0. �

Problem 241. 3 points Carefully state the specifications of the random variables
involved in the linear regression model. How does the model in Problem 240 differ
from the linear regression model? What do they have in common?

Answer. In the regression model, you have several observations, in the other model only one.
In the regression model, the xi are nonrandom, only the yi are random, in the other model both
x and y are random. In the regression model, the expected value of the yi are not fully known,
in the other model the expected values of both x and y are fully known. Both models have in
common that the second moments are known only up to an unknown factor. Both models have in
common that only first and second moments need to be known, and that they restrict themselves
to linear estimators, and that the criterion function is the MSE (the regression model minimaxes
it, but the other model minimizes it since there is no unknown parameter whose value one has to
minimax over. But this I cannot say right now, for this we need the Gauss-Markov theorem. Also
the Gauss-Markov is valid in both cases!)

�

Problem 242. 2 points We are in the multiple regression model y = Xβ + ε

with intercept, i.e., X is such that there is a vector a with ι = Xa. Define the
row vector x̄> = 1

nι>X, i.e., it has as its jth component the sample mean of the

jth independent variable. Using the normal equations X>y = X>Xβ̂, show that
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ȳ = x̄>β̂ (i.e., the regression plane goes through the center of gravity of all data
points).

Answer. Premultiply the normal equation by a> to get ι>y − ι>Xβ̂ = 0. Premultiply by
1/n to get the result. �

Problem 243. The fitted values ŷ and the residuals ε̂ are “orthogonal” in two
different ways.

• a. 2 points Show that the inner product ŷ>ε̂ = 0. Why should you expect this
from the geometric intuition of Least Squares?

Answer. Use ε̂ = My and ŷ = (I−M)y: ŷ>ε̂ = y>(I−M)My = 0 because M(I−M) = O.
This is a consequence of the more general result given in problem ??.

�

• b. 2 points Sometimes two random variables are called “orthogonal” if their
covariance is zero. Show that ŷ and ε̂ are orthogonal also in this sense, i.e., show
that for every i and j, cov[ŷi, ε̂j ] = 0. In matrix notation this can also be written

C[ŷ, ε̂] = O.

Answer. C[ŷ, ε̂] = C[(I−M)y,My] = (I−M)V[y]M> = (I−M)(σ2I)M = σ2(I−M)M =
O. This is a consequence of the more general result given in question 300. �

18.3. The Coefficient of Determination

Among the criteria which are often used to judge whether the model is appro-
priate, we will look at the “coefficient of determination” R2, the “adjusted” R̄2, and
later also at Mallow’s Cp statistic. Mallow’s Cp comes later because it is not a final
but an initial criterion, i.e., it does not measure the fit of the model to the given
data, but it estimates its MSE. Let us first look at R2.

A value of R2 always is based (explicitly or implicitly) on a comparison of two
models, usually nested in the sense that the model with fewer parameters can be
viewed as a specialization of the model with more parameters. The value of R2 is
then 1 minus the ratio of the smaller to the larger sum of squared residuals.

Thus, there is no such thing as the R2 from a single fitted model—one must
always think about what model (perhaps an implicit “null” model) is held out as a
standard of comparison. Once that is determined, the calculation is straightforward,
based on the sums of squared residuals from the two models. This is particularly
appropriate for nls(), which minimizes a sum of squares.

The treatment which follows here is a little more complete than most. Some
textbooks, such as [DM93], never even give the leftmost term in formula (18.3.6)
according to which R2 is the sample correlation coefficient. Other textbooks, such
that [JHG+88] and [Gre97], do give this formula, but it remains a surprise: there
is no explanation why the same quantity R2 can be expressed mathematically in
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two quite different ways, each of which has a different interpretation. The present
treatment explains this.

If the regression has a constant term, then the OLS estimate β̂ has a third
optimality property (in addition to minimizing the SSE and being the BLUE): no
other linear combination of the explanatory variables has a higher squared sample
correlation with y than ŷ = Xβ̂.

In the proof of this optimality property we will use the symmetric and idempotent
projection matrix D = I − 1

nιι>. Applied to any vector z, D gives Dz = z − ιz̄,
which is z with the mean taken out. Taking out the mean is therefore a projection,
on the space orthogonal to ι. See Problem 189.

Problem 244. In the reggeom visualization, see Problem 350, in which x1 is
the vector of ones, which are the vectors Dx2 and Dy?

Answer. Dx2 is og, the dark blue line starting at the origin, and Dy is cy, the red line
starting on x1 and going up to the peak. �

As an additional mathematical tool we will need the Cauchy-Schwartz inequality
for the vector product:

(18.3.1) (u>v)2 ≤ (u>u)(v>v)

Problem 245. If Q is any nonnegative definite matrix, show that also

(18.3.2) (u>Qv)2 ≤ (u>Qu)(v>Qv).

Answer. This follows from the fact that any nnd matrix Q can be written in the form Q =
R>R. �

In order to prove that ŷ has the highest squared sample correlation, take any
vector c and look at ỹ = Xc. We will show that the sample correlation of y with
ỹ cannot be higher than that of y with ŷ. For this let us first compute the sample
covariance. By (12.3.17), n times the sample covariance between ỹ and y is

(18.3.3) n times sample covariance(ỹ,y) = ỹ>Dy = c>X>D(ŷ + ε̂εε).

By Problem 246, Dε̂εε = ε̂εε, hence X>Dε̂εε = X>ε̂εε = o (this last equality is

equivalent to the Normal Equation (18.2.3)), therefore (18.3.3) becomes ỹ>Dy =

ỹ>Dŷ. Together with (18.3.2) this gives

(18.3.4)
(
n times sample covariance(ỹ,y)

)2
= (ỹ>Dŷ)2 ≤ (ỹ>Dỹ)(ŷ>Dŷ)

In order to get from n2 times the squared sample covariance to the squared
sample correlation coefficient we have to divide it by n2 times the sample variances
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of ỹ and of y:
(18.3.5)
(
sample correlation(ỹ,y)

)2
=

(ỹ>Dy)2

(ỹ>Dỹ)(y>Dy)
≤ ŷ>Dŷ

y>Dy
=

∑
(ŷj − ¯̂y)2∑
(yj − ȳ)2

=

∑
(ŷj − ȳ)2∑
(yj − ȳ)2

.

For the rightmost equal sign in (18.3.5) we need Problem 247.
If ỹ = ŷ, inequality (18.3.4) becomes an equality, and therefore also (18.3.5)

becomes an equality throughout. This completes the proof that ŷ has the highest
possible squared sample correlation with y, and gives at the same time two different
formulas for the same entity

(18.3.6) R2 =

(∑
(ŷj − ¯̂y)(yj − ȳ)

)2
∑

(ŷj − ¯̂y)2
∑

(yj − ȳ)2
=

∑
(ŷj − ȳ)2∑
(yj − ȳ)2

.

Problem 246. 1 point Show that, if X contains a constant term, then Dε̂εε = ε̂εε.
You are allowed to use the fact that X>ε̂εε = o, which is equivalent to the normal
equation (18.2.3).

Answer. Since X has a constant term, a vector a exists such that Xa = ι, therefore ι>ε̂εε =
a>X>ε̂εε = a>o = 0. From ι>ε̂εε = 0 follows Dε̂εε = ε̂εε. �

Problem 247. 1 point Show that, if X has a constant term, then ¯̂y = ȳ

Answer. Follows from 0 = ι>ε̂εε = ι>y − ι>ŷ. In the visualization, this is equivalent with the
fact that both ocb and ocy are right angles. �

Problem 248. Instead of (18.3.6) one often sees the formula

(18.3.7)

(∑
(ŷj − ȳ)(yj − ȳ)

)2
∑

(ŷj − ȳ)2
∑

(yj − ȳ)2
=

∑
(ŷj − ȳ)2∑
(yj − ȳ)2

.

Prove that they are equivalent. Which equation is better?

The denominator in the righthand side expression of (18.3.6),
∑

(yj − ȳ)2, is
usually called “SST ,” the total (corrected) sum of squares. The numerator

∑
(ŷj−ȳ)2

is usually called “SSR,” the sum of squares “explained” by the regression. In order to
understand SSR better, we will show next the famous “Analysis of Variance” identity
SST = SSR + SSE.

Problem 249. In the reggeom visualization, again with x1 representing the
vector of ones, show that SST = SSR + SSE, and show that R2 = cos2 α where α is
the angle between two lines in this visualization. Which lines?

Answer. ε̂ is the by, the green line going up to the peak, and SSE is the squared length of it.
SST is the squared length of y − ιȳ. Sincer ιȳ is the projection of y on x1, i.e., it is oc, the part of

x1 that is red, one sees that SST is the squared length of cy. SSR is the squared length of cb. The
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analysis of variance identity follows because cby is a right angle. R2 = cos2 α where α is the angle
between bcy in this same triangle.

�

Since the regression has a constant term, the decomposition

(18.3.8) y = (y − ŷ) + (ŷ − ιȳ) + ιȳ

is an orthogonal decomposition (all three vectors on the righthand side are orthogonal
to each other), therefore in particular

(18.3.9) (y − ŷ)>(ŷ − ιȳ) = 0.

Geometrically this follows from the fact that y− ŷ is orthogonal to the column space
of X, while ŷ − ιȳ lies in that column space.

Problem 250. Show the decomposition 18.3.8 in the reggeom-visualization.

Answer. From y take the green line down to b, then the light blue line to c, then the red line
to the origin. �

This orthogonality can also be explained in terms of sequential projections: in-
stead of projecting y on x1 directly I can first project it on the plane spanned by x1

and x2, and then project this projection on x1.
From (18.3.9) follows (now the same identity written in three different notations):

(y − ιȳ)>(y − ιȳ) = (y − ŷ)>(y − ŷ) + (ŷ − ιȳ)>(ŷ − ιȳ)(18.3.10)
∑

t

(yt − ȳ)2 =
∑

t

(yt − ŷt)
2 +

∑

t

(ŷt − ȳ)2(18.3.11)

SST = SSE + SSR(18.3.12)

Problem 251. 5 points Show that the “analysis of variance” identity SST =
SSE + SSR holds in a regression with intercept, i.e., prove one of the two following
equations:

(y − ιȳ)>(y − ιȳ) = (y − ŷ)>(y − ŷ) + (ŷ − ιȳ)>(ŷ − ιȳ)(18.3.13)
∑

t

(yt − ȳ)2 =
∑

t

(yt − ŷt)
2 +

∑

t

(ŷt − ȳ)2(18.3.14)

Answer. Start with

(18.3.15) SST =
∑

(yt − ȳ)2 =
∑

(yt − ŷt + ŷt − ȳ)2

and then show that the cross product term
∑

(yt−ŷt)(ŷt−ȳ) =
∑

ε̂t(ŷt−ȳ) = ε̂εε>(Xβ̂−ι 1
n

ι>y) = 0

since ε̂εε>X = o> and in particular, since a constant term is included, ε̂εε>ι = 0.

�
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From the so-called “analysis of variance” identity (18.3.12), together with (18.3.6),
one obtains the following three alternative expressions for the maximum possible cor-
relation, which is called R2 and which is routinely used as a measure of the “fit” of
the regression:

(18.3.16) R2 =

(∑
(ŷj − ¯̂y)(yj − ȳ)

)2
∑

(ŷj − ¯̂y)2
∑

(yj − ȳ)2
=

SSR

SST
=

SST − SSE

SST

The first of these three expressions is the squared sample correlation coefficient be-
tween ŷ and y, hence the notation R2. The usual interpretation of the middle
expression is the following: SST can be decomposed into a part SSR which is “ex-
plained” by the regression, and a part SSE which remains “unexplained,” and R2

measures that fraction of SST which can be “explained” by the regression. [Gre97,
pp. 250–253] and also [JHG+88, pp. 211/212] try to make this notion plausible.
Instead of using the vague notions “explained” and “unexplained,” I prefer the fol-
lowing reading, which is based on the third expression for R2 in (18.3.16): ιȳ is the
vector of fitted values if one regresses y on a constant term only, and SST is the SSE

in this “restricted” regression. R2 measures therefore the proportionate reduction in
the SSE if one adds the nonconstant regressors to the regression. From this latter
formula one can also see that R2 = cos2 α where α is the angle between y − ιȳ and
ŷ − ιȳ.

Problem 252. Given two data series x and y. Show that the regression of y

on x has the same R2 as the regression of x on y. (Both regressions are assumed to
include a constant term.) Easy, but you have to think!

Answer. The symmetry comes from the fact that, in this particular case, R2 is the squared
sample correlation coefficient between x and y. Proof: ŷ is an affine transformation of x, and
correlation coefficients are invariant under affine transformations (compare Problem 254). �

Problem 253. This Problem derives some relationships which are valid in simple
regression yt = α + βxt + εt but their generalization to multiple regression is not
obvious.

• a. 2 points Show that

(18.3.17) R2 = β̂2

∑
(xt − x̄)2∑
(yt − ȳ)2

Hint: show first that ŷt − ȳ = β̂(xt − x̄).

Answer. From ŷt = α̂ + β̂xt and ȳ = α̂ + β̂x̄ follows ŷt − ȳ = β̂(xt − x̄). Therefore

(18.3.18) R2 =

∑
(ŷt − ȳ)2∑
(yt − ȳ)2

= β̂2

∑
(xt − x̄)2∑
(yt − ȳ)2

�
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• b. 2 points Furthermore show that R2 is the sample correlation coefficient
between y and x, i.e.,

(18.3.19) R2 =

(∑
(xt − x̄)(yt − ȳ)

)2

∑
(xt − x̄)2

∑
(yt − ȳ)2

.

Hint: you are allowed to use (18.2.22).

Answer.

(18.3.20) R2 = β̂2

∑
(xt − x̄)2∑
(yt − ȳ)2

=

(∑
(xt − x̄)(yt − ȳ)

)2∑
(xt − x̄)2

(∑
(xt − x̄)2

)2∑
(yt − ȳ)2

which simplifies to (18.3.19). �

• c. 1 point Finally show that R2 = β̂xyβ̂yx, i.e., it is the product of the two
slope coefficients one gets if one regresses y on x and x on y.

If the regression does not have a constant term, but a vector a exists with ι =
Xa, then the above mathematics remains valid. If a does not exist, then the identity
SST = SSR + SSE no longer holds, and (18.3.16) is no longer valid. The fraction
SST−SSE

SST
can assume negative values. Also the sample correlation coefficient between

ŷ and y loses its motivation, since there will usually be other linear combinations of
the columns of X that have higher sample correlation with y than the fitted values
ŷ.

Equation (18.3.16) is still puzzling at this point: why do two quite different
simple concepts, the sample correlation and the proportionate reduction of the SSE,
give the same numerical result? To explain this, we will take a short digression about
correlation coefficients, in which it will be shown that correlation coefficients always
denote proportionate reductions in the MSE. Since the SSE is (up to a constant
factor) the sample equivalent of the MSE of the prediction of y by ŷ, this shows
that (18.3.16) is simply the sample equivalent of a general fact about correlation
coefficients.

But first let us take a brief look at the Adjusted R2.

18.4. The Adjusted R-Square

The coefficient of determination R2 is often used as a criterion for the selection
of regressors. There are several drawbacks to this. [KA69, Chapter 8] shows that
the distribution function of R2 depends on both the unknown error variance and the
values taken by the explanatory variables; therefore the R2 belonging to different
regressions cannot be compared.
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A further drawback is that inclusion of more regressors always increases the
R2. The adjusted R̄2 is designed to remedy this. Starting from the formula R2 =
1 − SSE/SST , the “adjustment” consists in dividing both SSE and SST by their
degrees of freedom:

(18.4.1) R̄2 = 1 − SSE/(n− k)

SST/(n− 1)
= 1 − (1 −R2)

n− 1

n− k
.

For given SST , i.e., when one looks at alternative regressions with the same dependent
variable, R̄2 is therefore a declining function of s2, the unbiased estimator of σ2.
Choosing the regression with the highest R̄2 amounts therefore to selecting that
regression which yields the lowest value for s2.

R̄2 has the following interesting property: (which we note here only for reference,
because we have not yet discussed the F-test:) Assume one adds i more regressors:
then R̄2 increases only if the F statistic for these additional regressors has a value
greater than one. One can also say: s2 decreases only if F > 1. To see this, write
this F statistic as

F =
(SSEk − SSEk+i)/i

SSEk+i/(n− k − i)
=
n− k − i

i

( SSEk

SSEk+i
− 1
)

(18.4.2)

=
n− k − i

i

( (n− k)s2
k

(n− k − i)s2
k+i

− 1
)

(18.4.3)

=
(n− k)s2

k

is2
k+i

− n− k

i
+ 1(18.4.4)

=
(n− k)

i

( s2
k

s2
k+i

− 1
)

+ 1(18.4.5)

From this the statement follows.
Minimizing the adjusted R̄2 is equivalent to minimizing the unbiased variance

estimator s2; it still does not penalize the loss of degrees of freedom heavily enough,
i.e., it still admits too many variables into the model.

Alternatives minimize Amemiya’s prediction criterion or Akaike’s information
criterion, which minimize functions of the estimated variances and n and k. Akaike’s
information criterion minimizes an estimate of the Kullback-Leibler discrepancy,
which was discussed on p. 188.



CHAPTER 19

Digression about Correlation Coefficients

19.1. A Unified Definition of Correlation Coefficients

Correlation coefficients measure linear association. The usual definition of the
simple correlation coefficient between two variables ρxy (sometimes we also use the
notation corr[x,y]) is their standardized covariance

(19.1.1) ρxy =
cov[x,y]

√
var[x]

√
var[y]

.

Because of Cauchy-Schwartz, its value lies between −1 and 1.

Problem 254. Given the constant scalars a 6= 0 and c 6= 0 and b and d arbitrary.
Show that corr[x,y] = ± corr[ax + b, cy + d], with the + sign being valid if a and c
have the same sign, and the − sign otherwise.

Answer. Start with cov[ax + b, cy + d] = ac cov[x,y] and go from there. �

Besides the simple correlation coefficient ρxy between two scalar variables y and
x, one can also define the squared multiple correlation coefficient ρ2

y(x) between one

scalar variable y and a whole vector of variables x, and the partial correlation coef-
ficient ρ12.x between two scalar variables y1 and y2, with a vector of other variables
x “partialled out.” The multiple correlation coefficient measures the strength of a
linear association between y and all components of x together, and the partial corre-
lation coefficient measures the strength of that part of the linear association between
y1 and y2 which cannot be attributed to their joint association with x. One can also
define partial multiple correlation coefficients. If one wants to measure the linear as-
sociation between two vectors, then one number is no longer enough, but one needs
several numbers, the “canonical correlations.”

The multiple or partial correlation coefficients are usually defined as simple cor-
relation coefficients involving the best linear predictor or its residual. But all these
correlation coefficients share the property that they indicate a proportionate reduc-
tion in the MSE. See e.g. [Rao73, pp. 268–70]. Problem 255 makes this point for
the simple correlation coefficient:
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Problem 255. 4 points Show that the proportionate reduction in the MSE of
the best predictor of y, if one goes from predictors of the form y∗ = a to predictors
of the form y∗ = a+ bx, is equal to the squared correlation coefficient between y and
x. You are allowed to use the results of Problems 229 and 240. To set notation, call
the minimum MSE in the first prediction (Problem 229) MSE[constant term; y], and
the minimum MSE in the second prediction (Problem 240) MSE[constant term and
x; y]. Show that
(19.1.2)

MSE[constant term; y] − MSE[constant term and x; y]

MSE[constant term; y]
=

(cov[y, x])2

var[y] var[x]
= ρ2

yx.

Answer. The minimum MSE with only a constant is var[y] and (18.2.32) says that MSE[constant
term and x;y] = var[y]−(cov[x,y])2/ var[x]. Therefore the difference in MSE’s is (cov[x,y])2/ var[x],
and if one divides by var[y] to get the relative difference, one gets exactly the squared correlation
coefficient. �

Multiple Correlation Coefficients. Now assume x is a vector while y remains a
scalar. Their joint mean vector and dispersion matrix are

(19.1.3)

[
x

y

]
∼
[
µ

ν

]
, σ2

[
ΩΩΩxx ωωωxy

ωωω>
xy ωyy

]
.

By theorem ??, the best linear predictor of y based on x has the formula

(19.1.4) y∗ = ν +ωωω>
xyΩΩΩ−

xx(x − µ)

y∗ has the following additional extremal value property: no linear combination b>x

has a higher squared correlation with y than y∗. This maximal value of the squared
correlation is called the squared multiple correlation coefficient

(19.1.5) ρ2
y(x) =

ωωω>
xyΩΩΩ−

xxωωωxy

ωyy

The multiple correlation coefficient itself is the positive square root, i.e., it is always
nonnegative, while some other correlation coefficients may take on negative values.

The squared multiple correlation coefficient can also defined in terms of propor-
tionate reduction in MSE. It is equal to the proportionate reduction in the MSE of
the best predictor of y if one goes from predictors of the form y∗ = a to predictors
of the form y∗ = a+ b>x, i.e.,

(19.1.6) ρ2
y(x) =

MSE[constant term; y] − MSE[constant term and x; y]

MSE[constant term; y]

There are therefore two natural definitions of the multiple correlation coefficient.
These two definitions correspond to the two formulas for R2 in (18.3.6).
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Partial Correlation Coefficients. Now assume y =
[
y1 y2

]>
is a vector with

two elements and write

(19.1.7)




x

y1

y2


 ∼




µ

ν1
ν2


 , σ2



ΩΩΩxx ωωωy1 ωωωy2

ωωω>
y1 ω11 ω12

ωωω>
y2 ω21 ω22


 .

Let y∗ be the best linear predictor of y based on x. The partial correlation coefficient
ρ12.x is defined to be the simple correlation between the residuals corr[(y1−y∗

1), (y2−
y∗

2)]. This measures the correlation between y1 and y2 which is “local,” i.e., which
does not follow from their association with x. Assume for instance that both y1 and
y2 are highly correlated with x. Then they will also have a high correlation with
each other. Subtracting y∗

i from yi eliminates this dependency on x, therefore any
remaining correlation is “local.” Compare [Krz88, p. 475].

The partial correlation coefficient can be defined as the relative reduction in the
MSE if one adds y2 to x as a predictor of y1:
(19.1.8)

ρ2
12.x =

MSE[constant term and x; y2] − MSE[constant term, x, and y1; y2]

MSE[constant term and x; y2]
.

Problem 256. Using the definitions in terms of MSE’s, show that the following
relationship holds between the squares of multiple and partial correlation coefficients:

(19.1.9) 1 − ρ2
2(x,1) = (1 − ρ2

21.x)(1 − ρ2
2(x))

Answer. In terms of the MSE, (19.1.9) reads
(19.1.10)
MSE[constant term, x, and y1;y2]

MSE[constant term;y2]
=

MSE[constant term, x, and y1; y2]

MSE[constant term and x;y2]

MSE[constant term and x;y2]

MSE[constant term;y2]
.

�

From (19.1.9) follows the following weighted average formula:

(19.1.11) ρ2
2(x,1) = ρ2

2(x) + (1 − ρ2
2(x))ρ

2
21.x

An alternative proof of (19.1.11) is given in [Gra76, pp. 116/17].
Mixed cases: One can also form multiple correlations coefficients with some of

the variables partialled out. The dot notation used here is due to Yule, [Yul07]. The
notation, definition, and formula for the squared correlation coefficient is

ρ2
y(x).z =

MSE[constant term and z; y] − MSE[constant term, z, and x; y]

MSE[constant term and z; y]

(19.1.12)

=
ωωω>

xy.zΩΩΩ
−
xx.zωωωxy.z

ωyy.z
(19.1.13)
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19.2. Correlation Coefficients and the Associated Least Squares Problem

One can define the correlation coefficients also as proportionate reductions in
the objective functions of the associated GLS problems. However one must reverse
predictor and predictand, i.e., one must look at predictions of a vector x by linear
functions of a scalar y.

Here it is done for multiple correlation coefficients: The value of the GLS objec-
tive function if one predicts x by the best linear predictor x∗, which is the minimum
attainable when the scalar observation y is given and the vector x can be chosen
freely, as long as it satisfies the constraint x = µ + ΩΩΩxxq for some q, is
(19.2.1)

SSE[y; best x] = min
xs.t....

[
(x − µ)> (y − ν)>

] [ΩΩΩxx ωωωxy

ωωω>
xy ωyy

]− [
x − µ

y − ν

]
= (y−ν)>ω−

yy(y−ν).

On the other hand, the value of the GLS objective function when one predicts x

by the best constant x = µ is
(19.2.2)

SSE[y; x = µ] =
[
o> (y − ν)>

] [ΩΩΩ−
xx + ΩΩΩ−

xxωωωxyω
−
yy.xωωω

>
xyΩΩΩ−

xx −ΩΩΩ−
xxωωωxyω

−
yy.x

−ω−
yy.xωωω

>
xyΩΩΩ−

xx ω−
yy.x

][
o

y − ν

]
=

(19.2.3) = (y − ν)>ω−
yy.x(y − ν).

The proportionate reduction in the objective function is

(19.2.4)
SSE[y; x = µ] − SSE[y; best x]

SSE[y; x = µ]
=

(y − ν)2/ωyy.x − (y − ν)2/ωyy

(y − ν)2/ωyy.x
=

(19.2.5) =
ωyy − ωyy.x

ωyy

= ρ2
y(x) = 1 − ωyy.x

ωyy

= 1 − 1

ωyyωyy

= ρ2
y(x)

19.3. Canonical Correlations

Now what happens with the correlation coefficients if both predictor and predic-
tand are vectors? In this case one has more than one correlation coefficient. One first
finds those two linear combinations of the two vectors which have highest correlation,
then those which are uncorrelated with the first and have second highest correlation,
and so on. Here is the mathematical construction needed:

Let x and y be two column vectors consisting of p and q scalar random variables,
respectively, and let

(19.3.1) V[

[
x

y

]
] = σ2

[
ΩΩΩxx ΩΩΩxy

ΩΩΩyx ΩΩΩyy

]
,
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where ΩΩΩxx and ΩΩΩyy are nonsingular, and let r be the rank of ΩΩΩxy. Then there exist
two separate transformations

(19.3.2) u = Lx, v = My

such that

(19.3.3) V[

[
u

v

]
] = σ2

[
Ip Λ

Λ> Iq

]

where Λ is a (usually rectangular) diagonal matrix with only r diagonal elements
positive, and the others zero, and where these diagonal elements are sorted in de-
scending order.

Proof: One obtains the matrix Λ by a singular value decomposition of ΩΩΩ−1/2
xx ΩΩΩxyΩΩΩ−1/2

yy =

A, say. Let A = P>ΛQ be its singular value decomposition with fully orthogonal

matrices, as in equation (A.9.8). Define L = PΩΩΩ−1/2
xx and M = QΩΩΩ−1/2

yy . There-

fore LΩΩΩxxL> = I , MΩΩΩyyM> = I , and LΩΩΩxyM> = PΩΩΩ−1/2
xx ΩΩΩxyΩΩΩ−1/2

yy Q> =

PAQ> = Λ.
The next problems show how one gets from this the maximization property of

the canonical correlation coefficients:

Problem 257. Show that for every p-vector l and q-vector m,

(19.3.4)
∣∣∣corr(l>x,m>y)

∣∣∣ ≤ λ1

where λ1 is the first (and therefore biggest) diagonal element of Λ. Equality in
(19.3.4) holds if l = l1, the first row in L, and m = m1, the first row in M .

Answer: If l or m is the null vector, then there is nothing to prove. If neither of
them is a null vector, then one can, without loss of generality, multiply them with
appropriate scalars so that p = (L−1)>l and q = (M−1)>m satisfy p>p = 1 and
q>q = 1. Then
(19.3.5)

V[

[
l>x

m>y

]
] = V [

[
p>Lx

q>My

]
] = V [

[
p> o>

o> q>

][
u

v

]
] = σ2

[
p> o>

o> q>

] [
Ip Λ

Λ> Iq

] [
p o

o q

]
= σ2

[
p>p p>Λq

q>Λp q>q

]

Since the matrix at the righthand side has ones in the diagonal, it is the correlation
matrix, i.e., p>Λq = corr(l>x,m>y). Therefore (19.3.4) follows from Problem 258.

Problem 258. If
∑
p2
i =

∑
q2i = 1, and λi ≥ 0, show that |∑ piλiqi| ≤ maxλi.

Hint: first get an upper bound for |∑ piλiqi| through a Cauchy-Schwartz-type argu-
ment.

Answer. (
∑

piλiqi)
2 ≤
∑

p2iλi
∑

q2i λi ≤ (max λi)
2. �
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Problem 259. Show that for every p-vector l and q-vector m such that l>x is
uncorrelated with l>1 x, and m>y is uncorrelated with m>

1 y,

(19.3.6)
∣∣∣corr(l>x,m>y)

∣∣∣ ≤ λ2

where λ2 is the second diagonal element of Λ. Equality in (19.3.6) holds if l = l2,
the second row in L, and m = m2, the second row in M .

Answer. If l or m is the null vector, then there is nothing to prove. If neither of them is a
null vector, then one can, without loss of generality, multiply them with appropriate scalars so that
p = (L−1)>l and q = (M−1)>m satisfy p>p = 1 and q>q = 1. Now write e1 for the first unit
vector, which has a 1 as first component and zeros everywhere else:

(19.3.7) cov[l>x, l>1 x] = cov[p>Lx,e>
1 Lx] = p>Λe1 = p>e1λ1.

This covariance is zero iff p1 = 0. Furthermore one also needs the following, directly from the proof
of Problem 257:
(19.3.8)

V[

[
l>x

m>y

]
] = V[

[
p>Lx

q>My

]
] = V[

[
p> o>

o> q>

][
u

v

]
] = σ2

[
p> o>

o> q>

][
Ip Λ

Λ> Iq

][
p o

o q

]
= σ2

[
p>p p>Λq

q>Λp q>q

]

Since the matrix at the righthand side has ones in the diagonal, it is the correlation matrix, i.e.,
p>Λq = corr(l>x,m>y). Equation (19.3.6) follows from Problem 258 if one lets the subscript i
start at 2 instead of 1. �

Problem 260. (Not eligible for in-class exams) Extra credit question for good
mathematicians: Reformulate the above treatment of canonical correlations without
the assumption that ΩΩΩxx and ΩΩΩyy are nonsingular.

19.4. Some Remarks about the Sample Partial Correlation Coefficients

The definition of the partial sample correlation coefficients is analogous to that of
the partial population correlation coefficients: Given two data vectors y and z, and
the matrix X (which includes a constant term), and let M = I−X(X>X)−1X> be
the “residual maker” with respect to X. Then the squared partial sample correlation
is the squared simple correlation between the least squares residuals:

(19.4.1) r2zy.X =
(z>My)2

(z>Mz)(y>My)

Alternatively, one can define it as the proportionate reduction in the SSE. Although
X is assumed to incorporate a constant term, I am giving it here separately, in order
to show the analogy with (19.1.8):
(19.4.2)

r2zy.X =
SSE[constant term and X; y] − SSE[constant term, X, and z; y]

SSE[constant term and X; y]
.
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[Gre97, p. 248] considers it unintuitive that this can be computed using t-statistics.
Our approach explains why this is so. First of all, note that the square of the t-
statistic is the F-statistic. Secondly, the formula for the F-statistic for the inclusion
of z into the regression is
(19.4.3)

t2 = F =
SSE[constant term and X; y] − SSE[constant term, X, and z; y]

SSE[constant term, X, and z; y]/(n− k − 1)

This is very similar to the formula for the squared partial correlation coefficient.
From (19.4.3) follows

(19.4.4) F + n− k − 1 =
SSE[constant term and X ; y](n− k − 1)

SSE[constant term, X, and z; y]

and therefore

(19.4.5) r2zy.X =
F

F + n− k − 1

which is [Gre97, (6-29) on p. 248].
It should also be noted here that [Gre97, (6-36) on p. 254] is the sample equiv-

alent of (19.1.11).



CHAPTER 20

Numerical Methods for computing OLS Estimates

20.1. QR Decomposition

One precise and fairly efficient method to compute the Least Squares estimates
is the QR decomposition. It amounts to going over to an orthonormal basis in R[X].
It uses the following mathematical fact:

Every matrix X, which has full column rank, can be decomposed in the product
of two matrices QR, where Q has the same number of rows and columns as X, and
is “suborthogonal” or “incomplete orthogonal,” i.e., it satisfies Q>Q = I . The other
factor R is upper triangular and nonsingular.

To construct the least squares estimates, make a QR decomposition of the matrix
of explanatory variables X (which is assumed to have full column rank). With
X = QR, the normal equations read

X>Xβ̂ = X>y(20.1.1)

R>Q>QRβ̂ = R>Q>y(20.1.2)

R>Rβ̂ = R>Q>y(20.1.3)

Rβ̂ = Q>y(20.1.4)

This last step can be made because R is nonsingular. (20.1.4) is a triangular system of
equations, which can be solved easily. Note that it is not necessary for this procedure
to compute the matrix X>X, which is a big advantage, since this computation is
numerically quite unstable.

Problem 261. 2 points You have a QR-decomposition X = QR, where Q>Q =

I, and R is upper triangular and nonsingular. For an estimate of V[β̂] you need

(X>X)−1. How can this be computed without computing X>X? And why would

you want to avoid computing X>X?

Answer. X>X = R>Q>QR = R>R, its inverse is therefore R−1R−1>. �
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Problem 262. Compute the QR decomposition of

(20.1.5) X =




1 1 2
1 5 −2
1 1 0
1 5 −4




Answer.

(20.1.6) Q =
1

2




1 −1 1
1 1 1
1 −1 −1
1 1 −1


 R = 2

[
1 3 −1
0 2 −2
0 0 1

]

How to get it? We need a decomposition

(20.1.7)
[
x1 x2 x3

]
=
[
q1 q2 q3

]
[
r11 r12 r13
0 r22 r23
0 0 r33

]

where q>
1 q1 = q>

2 q2 = q>
3 q3 = 1 and q>

1 q2 = q>
1 q3 = q>

2 q3 = 0. First column: x1 = q1r11 and

q1 must have unit length. This gives q>
1 =

[
1/2 1/2 1/2 1/2

]
and r11 = 2. Second column:

(20.1.8) x2 = q1r12 + q2r22

and q>
1 q2 = 0 and q>

2 q2 = 1. Premultiply (20.1.8) by q>
1 to get q>

1 x2 = r12, i.e., r12 = 6.

Thus we know q2r22 = x2 − q1 · 6 =
[
−2 2 −2 2

]>
. Now we have to normalize it, to get

q2 =
[
−1/2 1/2 −1/2 1/2

]
and r22 = 4. The rest remains a homework problem. But I am

not sure if my numbers are right. �

Problem 263. 2 points Compute trace and determinant of




1 3 −1
0 2 −2
0 0 1


. Is

this matrix symmetric and, if so, is it nonnegative definite? Are its column vectors
linearly dependent? Compute the matrix product

(20.1.9)




1 −1 1
1 1 1
1 −1 −1
1 1 −1







1 3 −1
0 2 −2
0 0 1




20.2. The LINPACK Implementation of the QR Decomposition

This is all we need, but numerically it is possible to construct, without much
additional computing time, all the information which adds the missing orthogonal
columns to Q. In this way Q is square and R is conformable with X . This is
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sometimes called the “complete” QR-decomposition. In terms of the decomposition
above, we have now

(20.2.1) X =
[
Q S

] [R
O

]

For every matrix X one can find an orthogonal matrix Q such that Q>X has
zeros below the diagonal, call that matrix R. Alternatively one may say: every
matrix X can be written as the product of two matrices QR, where R is conformable
with X and has zeros below the diagonal, and Q is orthogonal.

To prove this, and also for the numerical procedure, we will build Q> as the
product of several orthogonal matrices, each converting one column of X into one
with zeros below the diagonal.

First note that for every vector v, the matrix I − 2
v>v

vv> is orthogonal. Given
X, let x be the first column of X. If x = o, then go on to the next column.

Otherwise choose v =




x11 + σ
√

x>x

x21

...
xn1


, where σ = 1 if x11 ≥ 0 and σ = −1

otherwise. (Mathematically, either σ − +1 or σ = −1 would do; but if one gives σ
the same sign as x11, then the first element of v gets largest possible absolute value,
which improves numerical accuracy.) Then

v>v = (x2
11 + 2σx11

√
x>x + x>x) + x2

21 + · · · + x2
n1(20.2.2)

= 2(x>x + σx11

√
x>x)(20.2.3)

v>x = x>x + σx11

√
x>x(20.2.4)

therefore 2v>x/v>v = 1, and

(20.2.5) (I − 2

v>v
vv>)x = x − v =




−σ
√

x>x

0
...
0


 .

Premultiplication of X by I− 2
v>v

vv> gets therefore the first column into the desired
shape. By the same principle one can construct a second vector w, which has a zero
in the first place, and which annihilates all elements below the second element in the
second column of X, etc. These successive orthogonal transformations will convert
X into a matrix which has zeros below the diagonal; their product is therefore Q>.

The LINPACK implementation of this starts with X and modifies its elements in
place. For each column it generates the corresponding v vector and premultipies the
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matrix by I − 2
v>v

vv>. This generates zeros below the diagonal. Instead of writing
the zeros into that matrix, it uses the “free” space to store the vector v. There is
almost enough room; the first nonzero element of v must be stored elsewhere. This
is why the QR decomposition in Splus has two main components: qr is a matrix
like a, and qraux is a vector of length ncols(a).

LINPACK does not use or store exactly the same v as given here, but uses

u = v/(σ
√

x>x) instead. The normalization does not affect the resulting orthogonal
transformation; its advantage is that the leading element of each vector, that which
is stored in qraux, is at the same time equal u>u/2. In other words, qraux doubles
up as the divisor in the construction of the orthogonal matrices.

In Splus type help(qr). At the end of the help file a program is given which
shows how the Q might be constructed from the fragments qr and qraux.



CHAPTER 21

About Computers

21.1. General Strategy

With the fast-paced development of computer hardware and software, anyone
who uses computers profesionally needs a strategy about how to allocate their time
and money for hardware and software.

21.1.1. Operating System. In my view, there are two alternatives today:
either do everything in Microsoft Windows and other commercial software, or use
GNU/Linux, the free unix operating system together with the free software built on
top of it, see www.linux.org, in addition to Microsoft Windows. I will argue here for
the second route. It is true, GNU/Linux has a steeper learning curve than Windows,
but this also means that you have a more powerful tool, and serious efforts are under
way to make GNU/Linux more and more user friendly. Windows, on the other hand,
has the following disadvantages:

• Microsoft Windows and the other commercial software are expensive.
• The philosophy of Microsoft Windows is to keep the user in the dark about

how the computer is working, i.e., turn the computer user into a passive
consumer. This severely limits the range of things you can do with your
computer. The source code of the programs you are using is usually unavail-
able, therefore you never know exactly what you are doing and you cannot
modify the program for your own uses. The unavailability of source code
also makes the programs more vulnerable to virus attacks and breakins.
In Linux, the user is the master of the computer and can exploit its full
potential.

• You spend too much time pointing and clicking. In GNU/Linux and other
unix systems, it is possible to set up menus too,m but everything that can
be done through a menu can also be done on the command line or through
a script.

• Windows and the commercial software based on it are very resource-hungry;
they require powerful computers. Computers which are no longer fast and
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big enough to run the latest version of Windows are still very capable to
run Linux.

• It is becoming more and more apparent that free software is more stable
and of higher quality than commercial software. Free software is developed
by programmers throughout the world who want good tools for themselves.

• Most Linux distributions have excellent systems which allows the user to
automatically download always the latest versions of the software; this au-
tomates the tedious task of software maintenance, i.e., updating and fitting
together the updates.

Some important software is not available on Linux or is much better on Windows.
Certain tasks, like scanning, voice recognition, and www access, which have mass
markets, are better done on Microsoft Windows than on Linux. Therefore you will
probably not be able to eliminate Microsoft Windows completely; however it is pos-
sible to configure your PC so that you can run MS-Windows and Linux on it, or
to have a Linux machine be the network server for a network which has Windows
machines on it (this is more stable, faster, and cheaper than Windows NT).

There are several versions of Linux available, and the one which is most inde-
pendent of commercial interests, and which is one of the most quality-conscious dis-
tributions, in my view, is Debian GNU/Linux, http://www.debian.org. The Linux
route is more difficult at the beginning but will pay off in the long run, and I recom-
mend it especially if you are going to work outside the USA. The Salt Lake Linux
Users Group http://www.sllug.org/index.html meets on the third Wednesday of
every month, usually on the University of Utah campus.

In order to demonstrate the usefulness of Linux I loaded Debian GNU/Linux on
an old computer with one of the early Pentium processors, which became available at
the Econ Department because it was too slow for Windows 98. It is by the window
in the Econ Computer Lab. When you log onto this computer you are in the X-
windows system. In Linux and other unix systems, the mouse usually has 3 buttons:
left, right, and middle. The mouse which comes with the computer in the computer
lab has 2 bottons: left and right, but if you press both buttons simultaneously you
get the same effect as pressing the middle button on a unix mouse.

If the cursor is in front of the background, then you will get 3 different menus by
pressing the different mouse buttons. The left mouse button gives you the different
programs, if you press both buttons at the same time you can perform operations on
the windows, and the right button gives you a list of all open windows.

Another little tidbit you need to know about unix systems is this: There are no
drives as in Microsoft Dos or Windows, but all files are in one hierarchical directory
tree. Instead of a backslash \ you have a forward slash /. In order to use the floppy
disk, you have to insert the disk in the disk drive and then give the command mount

/floppy. Then the disk is accessible to you as the contents of the directory /floppy.
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Before taking the disk out you should give the command umount /floppy. You can
do this only if /floppy is not the current directory.

In order to remotely access X-windows from Microsoft-Windows, you have to go
through the following steps.

• click on the exceed icon which is in the network-neighborhood folder.
• then open a telnet session to the unix station you want to access.
• at the unix station give the who -l command so that you know the id of the

machine from which you are telnetting from; assume it is econlab9.econ.utah.edu.
• then give the command (if you are in a bash shell as you probably will be

if it is linux)
DISPLAY=econlab9.econ.utah.edu:0; export DISPLAY

or, if it is the C-shell:
setenv DISPLAY econlab9.econ.utah.edu:0

DISPLAY=buc-17.econ.utah.edu:0; export DISPLAY

Something else: if I use the usual telnet program which comes with windows, in
order to telnet into a unix machine, and then I try to edit a file using emacs, it does
not work, it seems that some of the key sequences used by emacs make telnet hang.
Therefore I use a different telnet program, Teraterm Pro, with downloading instruc-
tions at http://www.egr.unlv.ecu/stock answers/remote access/install ttssh.html.

21.1.2. Application Software. I prefer learning a few pieces of software well
instead of learning lots of software superficially. Therefore the choice of software is
an especially important question.

I am using the editor emacs for reading mail, for writing papers which are then
printed in TEX, for many office tasks, such as appointment calendar, address book,
etc., for browsing the www, and as a frontend for running SAS or R/Splus and also
the shell and C. Emacs shows that free software can have unsurpassed quality. The
webpage for GNU is www.gnu.org.

With personal computers becoming more and more powerful, emacs and much
of the Gnu-software is available not only on unix systems but also on Windows. As
a preparation to a migration to Linux, you may want to install these programs on
Microsoft Windows first. On the other hand, netscape and wordperfect are now both
available for free on Linux.

Besides emacs I am using the typesetting system TEX, or, to be precise, the TEX-
macro-package AMS-LATEX. This is the tool which mathematicians use to write their
articles and books, and many econometrics and statistics textbooks was written using
TEX. Besides its math capabilities, another advantage of TEX is that it supports
many different alphabets and languages.

For statistical software I recommend the combination of SAS and Splus, and it
is easy to have a copy of the GNU-version of Splus, called R, on your computer. R is
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not as powerful as Splus, but it is very similar, in the simple tasks almost identical.
There is also a GNU version of SPSS in preparation.

21.1.3. Other points. With modern technology it is easy to keep everything
you ever write, all your class notes, papers, book excerpts, etc. It will just take
one or perhaps a handful of CD-roms to have it available, and it allows you greater
continuity in your work.

In my view, windowing systems are overrated: they are necessary for web brows-
ing or graphics applications, but I am still using character-based terminals most of
the time. I consider them less straining on the eye, and in this way I also have world-
wide access to my unix account through telnet. Instead of having several windows
next to each other I do my work in several emacs buffers which I can display at will
(i.e., the windows are on top of each other, but if necessary I can also display them
side by side on the screen).

In an earlier version of these notes, in 1995, I had written the following:

I do not consider it desirable to have a computer at home in which
I buy and install all the software for myself. The installation of the
regular updates, and then all the adjustments that are necesary so
that the new software works together again like the old software
did, is a lot of work, which should be centralized. I keep all
my work on a unix account at the university. In this way it is
accessible to me wherever I go, and it is backed up regularly.

In the meanwhile, I changed my mind about that. After switching to Debian
GNU/Linux, with its excellent automatic updating of the software, I realized how
outdated the unix workstations at the Econ Department have become. My Linux
workstations have more modern software than the Sun stations. In my own situa-
tion as a University Professor, there is an additional benefit if I do my work on my
own Linux workstation at home: as long as I am using University computers, the
University will claim copyright for the software which I develop, even if I do it on
my own time. If I have my own Linux workstation at home, it is more difficult for
the University to appropriate work which they do not pay for.

21.2. The Emacs Editor

You can use emacs either on a character-based terminal or in X-windows. On a
character-based terminal you simply type emacs. In a windows setting, it is probably
available in one of the menus, but you can also get into it by just typing emacs & in
one of the x-terminal windows. The ampersand means that you are running emacs
in the “background.” This is sufficient since emacs opens its own window. If you
issue the command without the ampersand, then the X-terminal window from which
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you invoked local will not accept any other commands, i.e., will be useless, until
you leave emacs again.

The emacs commands which you have to learn first are the help commands.
They all start with a C-h, i.e., control-h: type h while holding the control button
down. The first thing you may want to do at a quiet moment is go through the emacs
tutorial: get into emacs and then type C-h t and then follow instructions. Another
very powerful resource at your fingertip is emacs-info. To get into it type C-h i. It
has information pages for you to browse through, not only about emacs itself, but
also a variety of other subjects. The parts most important for you is the Emacs menu
item, which gives the whole Emacs-manual, and the ESS menu item, which explains
how to run Splus and SAS from inside emacs.

Another important emacs key is the “quit” command C-g. If you want to abort a
command, this will usually get you out. Also important command is the changing of
the buffer, C-x b. Usually you will have many buffers in emacs, and switch between
them if needed. The command C-x C-c terminates emacs.

Another thing I recommend you to learn is how to send and receive electronic
mail from inside emacs. To send mail, give the command C-x m. Then fill out address
and message field, and send it by typing C-c C-c. In order to receive mail, type M-x

rmail. There are a few one-letter commands which allow you to move around in
your messages: n is next message, p is previous message, d is delete the message, r
means: reply to this message.

21.3. How to Enter and Exit SAS

From one of the computers on the Econ network, go into the Windows menu and
double-click on the SAS icon. It will give you two windows, the command window
on the bottom and a window for output on the top. Type your commands into the
command window, and click on the button with the runner on it in order to submit
the commands.

If you log on to the workstation marx or keynes, the first command you have
to give is openwin in order to start the X-window-system. Then go to the local

window and give the command sas &. The ampersand means that sas is run in the
background; if you forget it you won’t be able to use the local window until you
exist sas again. As SAS starts up, it creates 3 windows, and you have to move those
windows where you want them and then click the left mouse button.

From any computer with telnet access, get into the DOS prompt and then type
telnet marx.econ.utah.edu. Then sign on with your user-id and your password,
and then issue the command sas. Over telnet, those SAS commands which use
function keys etc. will probably not work, and you have to do more typing. SAS over
telnet is more feasible if you use SAS from inside emacs for instance.
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The book [Ell95] is a simple introduction into SAS written by an instructor of
the University of Utah and used by Math 317/318.

21.4. How to Transfer SAS Data Sets Between Computers

The following instructions work even if the computers have different operating
systems. In order to transfer all SAS data files in the /home/econ/ehrbar/sas

directory on smith to your own computer, you have to first enter SAS on smith and
give the following commands:

libname ec7800 ’/home/econ/ehrbar/ec7800/sasdata’;

proc cport L=ec7800;

run;

This creates a file in the directory you were in when you started SAS (usually
your home directory) by the name sascat.dat. Then you must transport the file
sascat.dat to your own computer. If you want to put it onto your account on the
novell network, you must log to your novell account and ftp from there to smith

and get the file this way. For this you have to login to your account and then
cd ehrbar/ec7800/sasdata. and then first give the command binary because it
is a binary file, and then get sascat.dat. Or you can download it from the www
by http://www.cc.utah.edu/ ehrbar/sascat.dat. but depending on your web
browser it may not arrive in the right format. And the following SAS commands
deposit the data sets into your directory sasdata on your machine:

libname myec7800 ’mysasdata’;

proc cimport L=myec7800;

run;
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21.5. Instructions for Statistics 5969, Hans Ehrbar’s Section

21.5.1. How to Download and Install the free Statistical Package R.
The main archive for R is at http://cran.r-project.org, and the mirror for the
USA is at http://cran.us.r-project.org. Here are instructions, current as of May
30, 2001, how to install R on a Microsoft Windows machine: click on “Download R

for Windows”; this leads you into a directory; go to the subdirectory “base” and
from there download the two file SetupR.exe. I.e., from Microsoft Internet Explorer
right-click on the above link and choose the menu option: “save target as.” It will
ask you where to save it; the default will probably be a file of the same name in the
“My Documents” folder, which is quite alright.

The next step is to run SetupR.exe. For this it close Internet Explorer and any
other applications that may be running on your computer. Then go into the Start
Menu, click on “Run”, and then click on “Browse” and find the file SetupR.exe in
the “My Documents” folder, and press OK to run it.

It may be interesting for you to read the license, which is the famous and influ-
ential GNU Public License.

Then you get to a screen “Select Destination Directory”. It is ok to choose the
default C:\Program Files\R\rw1023, click on Next.

Then it asks you to select the components to install, again the default is fine,
but you may choose more or fewer components.

Under “Select Start Menu Folder” again select the default.
You may also want to install wget for windows from http://www.stats.ox.ac.

uk/pub/Rtools/wget.zip. Interesting is also the FAQ at http://www.stats.ox.

ac.uk/pub/R/rw-FAQ.html.

21.5.2. The text used in Stat 5969. This text is the R-manual called “An
Introduction to R” version 1.2.3 which you will have on your computer as a pdf
file after installing R. If you used all the defaults above, the path is C:\Program
Files\R\rw1023\doc\manual\R-intro.pdf. This manual is also on the www at
http://cran.us.r-project.org/doc/manuals/R-intro.pdf.

21.5.3. Syllabus for Stat 5969. Wednesday June 13: Your reading assign-
ment for June 13 is some background reading about the GNU-Project and the con-
cept of Free Software. Please read http://www.fsf.org/gnu/thegnuproject.html.
There will be a mini quiz on Wednesday testing whether you have read it. In class
we will go through the Sample Session pp. 80–84 in the Manual, and then discuss
the basics of the R language, chapters 1–6 of the Manual. The following homework
problems apply these basic language features:
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Problem 264. 3 points In the dataset LifeCycleSavings, which R-command
returns a vector with the names of all countries for which the savings rate is smaller
than 10 percent.

Answer. row.names(LifeCycleSavings)[LifeCycleSavings$sr < 10]. �

Problem 265. 6 points x <- 1:26; names(x) <- letters; vowels <- c("a",

"e", "i", "o", "u’’) Which R-expression returns the subvector of x correspond-
ing to all consonants?

Answer. x[-x[vowels]] �

Problem 266. 4 points x is a numerical vector. Construct the vector of first
differences of x, whose ith element is xi−xi−1 (i > 2), and whose first element is NA.
Do not use the function diff(x) but the tools described in Section 2.7 of R-intro.

Answer. x-c(NA, x[-1]) or c(NA, x[-1]-x[-length(x)]) �

Problem 267. 2 points x is a vector with missing values. which R-expression
replaces all missing values by 0?

Answer. x[is.na(x)] <- 0 or ifelse(is.na(x), 0, x. �

Problem 268. 2 points Use paste to get the character vector "1999:1" "1999:2"

"1999:3" "1999:4"

Answer. paste(1999, 1:4, sep=":") �

Problem 269. 5 points Do the exercise described on the middle of p. 17, i.e.,
compute the 95 percent confidence limits for the state mean incomes. You should be
getting the following intervals:

act nsw nt qld sa tas vic wa
63.56 68.41 112.68 65.00 63.72 66.85 70.56 60.71
25.44 46.25 -1.68 42.20 46.28 54.15 41.44 43.79

Answer. state <- c("tas", "sa", "qld", "nsw", "nsw", "nt", "wa", "wa", "qld", "vic",

"nsw", "vic", "qld", "qld", "sa", "tas", "sa", "nt", "wa", "vic", "qld", "nsw", "nsw", "wa",

"sa", "act", "nsw", "vic", "vic", "act"); statef <- factor(state); incomes <- c(60, 49,

40, 61, 64, 60, 59, 54, 62, 69, 70, 42, 56, 61, 61, 61, 58, 51, 48, 65, 49, 49, 41, 48,

52, 46, 59, 46, 58, 43); incmeans <- tapply(incomes, statef, mean); stderr <- function(x)

sqrt(var(x)/length(x)); incster <- tapply(incomes, statef, stderr); sampsize <- tapply(incomes,

statef, length); Use 2-tail 5 percent, each tail has 2.5 percent: critval <- qt(0.975,sampsize-1);

conflow <- incmeans - critval * incster; confhigh <- incmeans + critval * incster; To print
the confidence intervals use rbind(confhigh, conflow) which gives the following output:

act nsw nt qld sa tas vic wa
confhigh 63.55931 68.41304 112.677921 65.00034 63.7155 66.8531 70.5598 60.70747
conflow 25.44069 46.25363 -1.677921 42.19966 46.2845 54.1469 41.4402 43.79253
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�

Problem 270. 4 points Use the cut function to generate a factor from the
variable ddpi in the data frame LifeCycleSavings. This factor should have the
three levels low for values ddpi ≤ 3, medium for values 3 < ddpi ≤ 6, and high for
the other values.

Answer. cut(LifeCycleSavings$ddpi, c(0,3,6,20), c("low", "medium", "high")) �

Monday June 18: graphical procedures, chapter 12. Please read this chapter
before coming to class, there will be a mini quiz again. For the following homework
it is helpful to do demo(graphics) and to watch closely which commands were used
there.

Problem 271. 5 points The data frame LifeCycleSavings has some egregious
outliers. Which plots allow you to identify those? Use those plots to determine which
of the data you consider outliers.

Answer. Do pairs(LifeCycleSavings) and look for panels which have isolated points. In
order to see which observation this is, do attach(LifeCycleSavings), then plot(sr,ddpi), then
identify(sr,ddpi). You see that 49 is clearly an outlier, and perhaps 47 and 23. Looking at some
other panels in the scatter plot matrix you will find that 49 always stands out, with also 47 and
44. �

Problem 272. 5 points x <- 1:40 + rnorm(40) + c(1,3,0,-4) Assume x is
quarterly data. Make a plot of x in which each of the seasons is marked by a hollow
dot filled in with a different color.

Answer. plot(x, type="n"); lines(x, lty="dotted"); points(x, bg=c("tan", "springgreen",

"tomato", "orange"), pch= 21) �

Wednesday June 20: More language features, chapters 6–10, and the beginning
of statistical models, chapter 11. A Mini Quiz will check that you read chapters 6–10
before coming to class. Homework is an estimation problem.

Monday June 25: Mini Quiz about chapter 11. We will finish chapter 11. After
this session you will have a take-home final exam for this part of the class, using the
features of R. It will be due on Monday, July 2nd, at the beginning of class.

If you have installed wget in a location R can find it in (I think no longer
necessary).
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In unix, it is possible to start R or Splus just by typing R or Splus, whether
you are in the X-windows system or on a character-based terminal.

But for serious work I prefer to run it from inside the editor emacs. Emacs
provides a very convenient front end for Splus and SAS (and other languages will be
added in the future). After entering Emacs, all you have to do is type M-x S (for
Splus version 5 which we have on our workstations) or M-x SAS (for SAS). Here M-x

means meta-x. On the workstations, the meta-key is the key to the left of the space
bar. It works like the control key. Hold down this key and then type x. If you telnet
in from your own computer, you need a two-key sequence for all meta-characters:
first type the escape-key, then release it and then type x. If you do M-x S or M-x

SAS, emacs will ask you: “from which directory?” This is the directory to which you
would have cd’d before starting up Splus or SAS. Just type a return as a response,
in this way your home directory will be the default directory. Then you can type
and submit the Splus-commands given below from inside emacs.

Here are some common procedures for Splus: To dump a function into an edit
buffer do C-c C-d, to compile it do C-c C-l, for parsing errors C-x ‘, for help about
R/Splus C-c C-v, and for help on ess C-h i, and then m ESS.

The interface with SAS is at this point less well developed than that with Splus.
You have to write a file with your SAS-commands in it, typically it is called myfile.sas.
The file name extension should conventionally be sas, and if it is, emacs will help
you writing the SAS code with the proper indentation. Say you have such a sas file
in your current buffer and you want to submit it to SAS. First do M-x SAS to start
SAS. This creates some other windows but your cursor should stay in the original
window with the sas-file. Then to C-c C-b to submit the whole buffer to SAS.

There are some shortcuts to switch between the buffers: C-c C-t switches you
into *SAS.lst* which lists the results of your computation.

For further work you may have to create a region in your buffer; go to the
beginning of the region and type C-@ (emacs will respond with the message in the
minibuffer: “mark set”), and then go to the end of the region. Before using the
region for editing, it is always good to do the command C-x C-x (which puts the
cursor where the mark was and the marker where the cursor was) to make sure the
region is what you want it to be. There is apparently a bug in many emacs versions
where the point jumps by a word when you do it the first time, but when you correct
it then it will stay. Emacs may also be configured in such a way that the region
becomes inactive if other editing is done before it is used; the command C-x C-x

re-activates the region. Then type C-c C-r to submit the region to the SAS process.
In order to make high resolution gs-plots, you have to put the following two lines

into your batch files. For interactive use on X-terminals you must comment them
out again (by putting /* in front and */ after them).
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filename grafout ’temp.ps’;

goptions device=ps gsfname=grafout gsfmode=append gaccess=sasgastd;

The emacs interface for Splus is much more sophisticated. Here are some com-
mands to get you started. Whenever you type a command on the last line starting
with > and hit return, this command will be submitted to Splus. The key combi-
nation M-p puts the previous command on the last line with the prompt; you may
then edit it and resubmit it simply by typing the return key (the cursor does not
have to be at the end of the line to do this). Earlier commands can be obtained
by repeated M-p, and M-n will scroll the commands in the other direction. C-c C-v

will display the help files for any object of your choice in a split screen. This is easy
to remember, the two keys are right next to each other, and you will probably use
this key sequence a lot. You can use the usual emacs commands to switch between
buffers. Inside S-mode there is name completion for all objects, by just typing the
tab key. There are very nice commands which allow you to write and debug your
own Splus-functions. The command C-c C-d “dumps” a Splus-object into a sep-
arate buffer, so that you can change it with the editor. Then when you are done,
type C-c C-l to “load” the new code. This will generate a new Splus-object, and if
this is successful, you no longer need the special edit buffer. These are well designed
powerful tools, but you have to study them, by accessing the documentation about
S-mode in Emacs-info. They cannot be learned by trial and error, and they cannot
be learned in one or two sessions.

If you are sitting at the console, then you must give the command openwin()

to tell Splus to display high resolution graphs in a separate window. You will get a
postscript printout simply by clicking the mouse on the print button in this window.

If you are logged in over telnet and access Splus through emacs, then it is possible
to get some crude graphs on your screen after giving the command printer(width=79).
Your plotting commands will not generate a plot until you give the command show()

in order to tell Splus that now is the time to send a character-based plot to the screen.
Splus has a very convenient routine to translate SAS-datasets into Splus-datasets.

Assume there is a SAS dataset cobbdoug in the unix directory /home/econ/ehrbar/ec7800/sasdata,
i.e., this dataset is located in a unix file by the name /home/econ/ehrbar/ec7800/sasdata/cobbdoug.ssd02.
Then the Splus-command mycobbdoug <- sas.get("/home/econ/ehrbar/ec7800/sasdata",

"cobbdoug") will create a Splus-dataframe with the same data in it.
In order to transfer Splus-files from one computer to another, use the data.dump

and data.restore commands.
To get out of Splus again, issue the command C-c C-q. It will ask you if you

want all temporary files and buffers deleted, and you should answer yes. This will
not delete the buffer with your Splus-commands in it. If you want a record of your
Splus-session, you should save this buffer in a file, by giving the command C-x C-s

(it will prompt you for a filename).
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By the way, it is a good idea to do your unix commands through an emacs buffer
too. In this way you have a record of your session and you have easier facilities
to recall commands, which are usually the same as the commands you use in your
*S*-buffer. To do this you have to give the command M-x shell.

Books on Splus include the “Blue book” [BCW96] which unfortunately does
not discuss some of the features recently introduced into S, and the “White book”
[CH93] which covers what is new in the 1991 release of S. The files book.errata and
model.errata in the directory /usr/local/splus-3.1/doc/ specify known errors
in the Blue and White book.

Textbooks for using Splus include [VR99] which has an url www.stats.oz.ac.uk/pub/MASS3/
[Spe94], [Bur98] (downloadable for free from the internet), and [Eve94].

R has now a very convenient facility to automatically download and update
packages from CRAN. Look at the help page for update.packages.

21.6. The Data Step in SAS

We will mainly discuss here how to create new SAS data sets from already
existing data sets. For this you need the set and merge statements.

Assume you have a dataset mydata which includes the variable year, and you
want to run a regression procedure only for the years 1950–59. This you can do by
including the following data step before running the regression:

data fifties;

set mydata;

if 1950 <= year <= 1959;

This works because the data step executes every command once for every obser-
vation. When it executes the set statement, It starts with the first observation and
includes every variable from the data set mydata into the new data set fifties; but
if the expression 1950 <= year <= 1959 is not true, then it throws this observation
out again.

Another example is: you want to transform some of the variables in your data
set. For instance you want to get aggregate capital stock, investment, and output
for all industries. Then you might issue the commands:

data aggregate;

set ec781.invconst;

kcon00=sum(of kcon20-kcon39);

icon00=sum(of icon20-icon39);

ocon00=sum(of ocon20-ocon39);

keep kcon00, icon00, ocon00, year;

The keep statement tells SAS to drop all the other variables, otherwise all variables
in ec781.invconst would also be in aggregate.
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Assume you need some variables from ec781.invconstand some from ec781.invmisc.
Let us assume both have the same variable year. Then you can use the merge state-
ment:

data mydata;

merge ec781.invcost ec781.invmisc;

by year;

keep kcon20, icon20, ocon20, year, prate20, primeint;

For this step it is sometimes necessary to rename variables before merging. This can
be done by the rename option.

The by statement makes sure that the years in the different datasets do not get
mixed up. This allows you to use the merge statement also to get variables from the
Citybase, even if the starting end ending years are not the same as in our datasets.

An alternative, but not so good method would be to use two set statements:

data mydata;

set ec781.invcost;

set ec781.invmisc;

keep kcon20, icon20, ocon20, year, prate20, primeint;

If the year variable is in both datasets, SAS will first take the year from invconst,
and overwrite it with the year data from invmisc, but it will not check whether the
years match. Since both datasets start and stop with the same year, the result will
still be correct.

If you use only one set statement with two datasets as arguments, the result
will not be what you want. The following is therefore wrong:

data mydata;

set ec781.invcost ec781.invmisc;

keep kcon20, icon20, ocon20, year, prate20, primeint;

Here SAS first reads all observations from the first dataset and then all observations
from the second dataset. Those variables in the first dataset which are not present
in the second dataset get missing values for the second dataset, and vice versa. So
you would end up with the variable year going twice from 1947 to 1985, and the
variables kcon20 having 39 missing values at the end, and prate having 39 missing
values at the beginning.

People who want to use some Citibase data should include the following options
on the proc citibase line: beginyr=47 endyr=85. If their data starts later, they
will add missing values at the beginning, but the data will still be lined up with your
data.

The retain statement tells SAS to retain the value of the variable from one loop
through the data step to the next (instead of re-initializing it as a missing value.)
The variable monthtot initially contains a missing value; if the data set does not
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start with a January, then the total value for the first year will be a missing value,
since adding something to a missing value gives a missing value again. If the dataset
does not end with a December, then the (partial) sum of the months of the last year
will not be read into the new data set.

The variable date which comes with the citibase data is a special data type.
Internally it is the number of days since Jan 1, 1960, but it prints in several formats
directed by a format statement which is automatically given by the citibase proce-
dure. In order to get years, quarters, or months, use year(date), qtr(date), or
month(date). Therefore the conversion of monthly to yearly data would be now:

data annual;

set monthly;

retain monthtot;

if month(date)=1 then monthtot=0;

monthtot=monthtot+timeser;

if month(date)=12 then output;

yr=year(date);

keep yr monthtot;



CHAPTER 22

Specific Datasets

22.1. Cobb Douglas Aggregate Production Function

Problem 273. 2 points The Cobb-Douglas production function postulates the
following relationship between annual output qt and the inputs of labor `t and capital
kt:

(22.1.1) qt = µ`βt k
γ
t exp(εt).

qt, `t, and kt are observed, and µ, β, γ, and the εt are to be estimated. By the
variable transformation xt = log qt, yt = log `t, zt = log kt, and α = logµ, one
obtains the linear regression

(22.1.2) xt = α+ βyt + γzt + εt

Sometimes the following alternative variable transformation is made: ut = log(qt/`t),
vt = log(kt/`t), and the regression

(22.1.3) ut = α+ γvt + εt

is estimated. How are the regressions (22.1.2) and (22.1.3) related to each other?

Answer. Write (22.1.3) as

xt − yt = α+ γ(zt − yt) + εt(22.1.4)

and collect terms to get

xt = α+ (1 − γ)yt + γzt + εt(22.1.5)

From this follows that running the regression (22.1.3) is equivalent to running the regression (22.1.2)
with the constraint β + γ = 1 imposed. �

The assumption here is that output is the only random variable. The regression
model is based on the assumption that the dependent variables have more noise in
them than the independent variables. One can justify this by the argument that
any noise in the independent variables will be transferred to the dependent variable,
and also that variables which affect other variables have more steadiness in them
than variables which depend on others. This justification often has merit, but in the
specific case, there is much more measurement error in the labor and capital inputs
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than in the outputs. Therefore the assumption that only the output has an error
term is clearly wrong, and problem 275 below will look for possible alternatives.

Problem 274. Table 1 shows the data used by Cobb and Douglas in their original
article [CD28] introducing the production function which would bear their name.
output is “Day’s index of the physical volume of production (1899 = 100)” described
in [DP20], capital is the capital stock in manufacturing in millions of 1880 dollars
[CD28, p. 145], labor is the “probable average number of wage earners employed in
manufacturing” [CD28, p. 148], and wage is an index of the real wage (1899–1908
= 100).

year 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910

output 100 101 112 122 124 122 143 152 151 126 155 159

capital 4449 4746 5061 5444 5806 6132 6626 7234 7832 8229 8820 9240

labor 4713 4968 5184 5554 5784 5468 5906 6251 6483 5714 6615 6807

wage 99 98 101 102 100 99 103 101 99 94 102 104

year 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922

output 153 177 184 169 189 225 227 223 218 231 179 240

capital 9624 10067 10520 10873 11840 13242 14915 16265 17234 18118 18542 19192

labor 6855 7167 7277 7026 7269 8601 9218 9446 9096 9110 6947 7602

wage 97 99 100 99 99 104 103 107 111 114 115 119

Table 1. Cobb Douglas Original Data

• a. A text file with the data is available on the web at www.econ.utah.edu/
ehrbar/data/cobbdoug.txt, and a SDML file (XML for statistical data which can be
read by R, Matlab, and perhaps also SPSS) is available at www.econ.utah.edu/ehrbar/
data/cobbdoug.sdml. Load these data into your favorite statistics package.

Answer. In R, you can simply issue the command cobbdoug <- read.table("http://www.

econ.utah.edu/ehrbar/data/cobbdoug.txt", header=TRUE). If you run R on unix, you can also
do the following: download cobbdoug.sdml from the www, and then first issue the command
library(StatDataML) and then readSDML("cobbdoug.sdml"). When I tried this last, the XML pack-
age necessary for StatDataML was not available on windows, but chances are it will be when you
read this.

In SAS, you must issue the commands

data cobbdoug;

infile ’cobbdoug.txt’;

input year output capital labor;

run;

But for this to work you must delete the first line in the file cobbdoug.txt which contains the

variable names. (Is it possible to tell SAS to skip the first line?) And you may have to tell SAS
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the full pathname of the text file with the data. If you want a permanent instead of a temporary
dataset, give it a two-part name, such as ecmet.cobbdoug.

Here are the instructions for SPSS: 1) Begin SPSS with a blank spreadsheet. 2) Open up a file
with the following commands and run:

SET

BLANKS=SYSMIS

UNDEFINED=WARN.

DATA LIST

FILE=’A:\Cbbunst.dat’ FIXED RECORDS=1 TABLE /1 year 1-4 output 5-9 capital

10-16 labor 17-22 wage 23-27 .

EXECUTE.

This files assume the data file to be on the same directory, and again the first line in the data file
with the variable names must be deleted. Once the data are entered into SPSS the procedures
(regression, etc.) are best run from the point and click environment.

�

• b. The next step is to look at the data. On [CD28, p. 150], Cobb and Douglas
plot capital, labor, and output on a logarithmic scale against time, all 3 series
normalized such that they start in 1899 at the same level =100. Reproduce this graph
using a modern statistics package.

• c. Run both regressions (22.1.2) and (22.1.3) on Cobb and Douglas’s original
dataset. Compute 95% confidence intervals for the coefficients of capital and labor
in the unconstrained and the cconstrained models.

Answer. SAS does not allow you to transform the data on the fly, it insists that you first
go through a data step creating the transformed data, before you can run a regression on them.
Therefore the next set of commands creates a temporary dataset cdtmp. The data step data cdtmp

includes all the data from cobbdoug into cdtemp and then creates some transformed data as well.
Then one can run the regressions. Here are the commands; they are in the file cbbrgrss.sas in
your data disk:

data cdtmp;

set cobbdoug;

logcap = log(capital);

loglab = log(labor);

logout = log(output);

logcl = logcap-loglab;

logol = logout-loglab;

run;

proc reg data = cdtmp;

model logout = logcap loglab;

run;

proc reg data = cdtmp;

model logol = logcl;

run;
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Careful! In R, the command lm(log(output)-log(labor) ~ log(capital)-log(labor), data=cobbdoug)

does not give the right results. It does not complain but the result is wrong nevertheless. The right
way to write this command is lm(I(log(output)-log(labor)) ~ I(log(capital)-log(labor)), data=cobbdoug).

�

• d. The regression results are graphically represented in Figure 1. The big
ellipse is a joint 95% confidence region for β and γ. This ellipse is a level line of the
SSE. The vertical and horizontal bands represent univariate 95% confidence regions
for β and γ separately. The diagonal line is the set of all β and γ with β + γ = 1,
representing the constraint of constant returns to scale. The small ellipse is that level
line of the SSE which is tangent to the constraint. The point of tangency represents
the constrained estimator. Reproduce this graph (or as much of this graph as you
can) using your statistics package.

Remark: In order to make the hand computations easier, Cobb and Douglass
reduced the data for capital and labor to index numbers (1899=100) which were
rounded to integers, before running the regressions, and Figure 1 was constructed
using these rounded data. Since you are using the nonstandardized data, you may
get slightly different results.
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Figure 1. Coefficients of capital (vertical) and labor (horizon-
tal), dependent variable output, unconstrained and constrained,
1899–1922

Answer. lines(ellipse.lm(cbbfit, which=c(2, 3))) �
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Problem 275. In this problem we will treat the Cobb-Douglas data as a dataset
with errors in all three variables. See chapter 53.4 and problem 476 about that.

• a. Run the three elementary regressions for the whole period, then choose at
least two subperiods and run it for those. Plot all regression coefficients as points
in a plane, using different colors for the different subperiods (you have to normalize
them in a special way that they all fit on the same plot).

Answer. Here are the results in R:

> outputlm<-lm(log(output)~log(capital)+log(labor),data=cobbdoug)

> capitallm<-lm(log(capital)~log(labor)+log(output),data=cobbdoug)

> laborlm<-lm(log(labor)~log(output)+log(capital),data=cobbdoug)

> coefficients(outputlm)

(Intercept) log(capital) log(labor)

-0.1773097 0.2330535 0.8072782

> coefficients(capitallm)

(Intercept) log(labor) log(output)

-2.72052726 -0.08695944 1.67579357

> coefficients(laborlm)

(Intercept) log(output) log(capital)

1.27424214 0.73812541 -0.01105754

#Here is the information for the confidence ellipse:

> summary(outputlm,correlation=T)

Call:

lm(formula = log(output) ~ log(capital) + log(labor), data = cobbdoug)

Residuals:

Min 1Q Median 3Q Max

-0.075282 -0.035234 -0.006439 0.038782 0.142114

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.17731 0.43429 -0.408 0.68721

log(capital) 0.23305 0.06353 3.668 0.00143 **

log(labor) 0.80728 0.14508 5.565 1.6e-05 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.05814 on 21 degrees of freedom

Multiple R-Squared: 0.9574,Adjusted R-squared: 0.9534

F-statistic: 236.1 on 2 and 21 degrees of freedom,p-value: 3.997e-15

Correlation of Coefficients:

(Intercept) log(capital)

log(capital) 0.7243
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log(labor) -0.9451 -0.9096

#Quantile of the F-distribution:

> qf(p=0.95, df1=2, df2=21)

[1] 3.4668

�

• b. The elementary regressions will give you three fitted equations of the form

output = α̂1 + β̂12labor+ β̂13capital+ residual1(22.1.6)

labor = α̂2 + β̂21output+ β̂23capital+ residual2(22.1.7)

capital = α̂3 + β̂31output+ β̂32labor+ residual3.(22.1.8)

In order to compare the slope parameters in these regressions, first rearrange them
in the form

−output+ β̂12labor+ β̂13capital+ α̂1 + residual1 = 0(22.1.9)

β̂21output− labor+ β̂23capital+ α̂2 + residual2 = 0(22.1.10)

β̂31output+ β̂32labor− capital+ α̂3 + residual3 = 0(22.1.11)

This gives the following table of coefficients:

output labor capital intercept
−1 0.8072782 0.2330535 −0.1773097

0.73812541 −1 −0.01105754 1.27424214
1.67579357 −0.08695944 −1 −2.72052726

Now divide the second and third rows by the negative of their first coefficient, so that
the coefficient of output becomes −1:

out labor capital intercept
−1 0.8072782 0.2330535 −0.1773097
−1 1/0.73812541 0.01105754/0.73812541 −1.27424214/0.73812541
−1 0.08695944/1.67579357 1/1.67579357 2.72052726/1.67579357

After performing the divisions the following numbers are obtained:

output labor capital intercept
−1 0.8072782 0.2330535 −0.1773097
−1 1.3547833 0.014980570 −1.726322
−1 0.05189149 0.59673221 1.6234262

These results can also be re-written in the form given by Table 2.
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Figure 2. Coefficients of capital (vertical) and labor (horizon-
tal), dependent variable output, 1899–1922

Slope of output Slope of output
Intercept wrt labor wrt capital

Regression of output
on labor and capital

Regression of labor on
output and capital

Regression of capital
on output and labor

Table 2. Comparison of coefficients in elementary regressions

Fill in the values for the whole period and also for several sample subperiods.
Make a scatter plot of the contents of this table, i.e., represent each regression result
as a point in a plane, using different colors for different sample periods.

Problem 276. Given a univariate problem with three variables all of which have
zero mean, and a linear constraint that the coefficients of all variables sum to 0. (This
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qoutput all errors

qlabor all errors

qcapital all errors
......................................................................................................................................................

qoutput no error, crs

Figure 3. Coefficient of capital (vertical) and labor (horizontal)
in the elementary regressions, dependent variable output, 1899–1922

is the model apparently appropriate to the Cobb-Douglas data, with the assumption
of constant returns to scale, after taking out the means.) Call the observed variables
x, y, and z, with underlying systematic variables x∗, y∗, and z∗, and errors u, v,
and w.

• a. Write this model in the form (53.3.1).

Answer.

[
x∗ y∗ z∗

]
[

−1
β

1 − β

]
= 0

[
x y z

]
=
[
x∗ y∗ z∗

]
+
[
u v w

]
or

x∗ = βy∗ + (1 − β)z∗

x = x∗ + u

y = y∗ + v

z = z∗ + w.

(22.1.12)

�

• b. The moment matrix of the systematic variables can be written fully in terms
of σ2

y∗, σ2
z∗ , σy∗z∗ , and the unknown parameter β. Write out the moment matrix

and therefore the Frisch decomposition.

Answer. The moment matrix is the middle matrix in the following Frisch decomposition:

(22.1.13)

[
σ2

x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

]
=
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(22.1.14)

=

[
β2σ2

y∗ + 2β(1 − β)σy∗z∗ + (1 − β)2σ2
z∗

βσ2
y∗ + (1 − β)σy∗z∗ βσy∗z∗ + (1 − β)σ2

z∗

βσ2
y∗ + (1 − β)σy∗z∗ σ2

y∗ σy∗z∗

βσy∗z∗ + (1 − β)σ2
z∗

σ2
y∗ σ2

z∗

]
+

[
σ2

u 0 0
0 σ2

v 0
0 0 σ2

w

]
.

�

• c. Show that the unknown parameters are not yet identified. However, if one
makes the additional assumption that one of the three error variances σ2

u, σ2
v, or σ2

w

is zero, then the equations are identified. Since the quantity of output presumably
has less error than the other two variables, assume σ2

u = 0. Under this assumption,
show that

(22.1.15) β =
σ2

x − σxz

σxy − σxz

and this can be estimated by replacing the variances and covariances by their sample
counterparts. In a similar way, derive estimates of all other parameters of the model.

Answer. Solving (22.1.14) one gets from the yz element of the covariance matrix

σy∗z∗ = σyz(22.1.16)

and from the xz element

σ2
z∗ =

σxz − βσyz

1 − β
(22.1.17)

Similarly, one gets from the xy element:

σ2
y∗ =

σxy − (1 − β)σyz

β
(22.1.18)

Now plug (22.1.16), (22.1.17), and (22.1.18) into the equation for the xx element:

σ2
x = β(σxy − (1 − β)σyz) + 2β(1 − β)σyz + (1 − β)(σxz − βσyz) + σ2

u(22.1.19)

= βσxy + (1 − β)σxz + σ2
u(22.1.20)

Since we are assuming σ2
u = 0 this last equation can be solved for β:

β =
σ2

x − σxz

σxy − σxz

(22.1.21)

If we replace the variances and covariances by the sample variances and covariances, this gives an
estimate of β.

�

• d. Evaluate these formulas numerically. In order to get the sample means and
the sample covariance matrix of the data, you may issue the SAS commands

proc corr cov nocorr data=cdtmp;

var logout loglab logcap;

run;
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These commands are in the file cbbcovma.sas on the disk.

Answer. Mean vector and covariance matrix are

(22.1.22)

[
LOGOUT

LOGLAB

LOGCAP

]
∼
([5.07734

4.96272
5.35648

]
,

[
0.0724870714 0.0522115563 0.1169330807
0.0522115563 0.0404318579 0.0839798588
0.1169330807 0.0839798588 0.2108441826

])

Therefore equation (22.1.15) gives

(22.1.23) β̂ =
0.0724870714 − 0.1169330807

0.0522115563 − 0.1169330807
= 0.686726861149148

In Figure 3, the point (β̂, 1−β̂) is exactly the intersection of the long dotted line with the constraint.
�

• e. The fact that all 3 points lie almost on the same line indicates that there may
be 2 linear relations: log labor is a certain coefficient times log output, and log capital
is a different coefficient times log output. I.e., y∗ = δ1 + γ1x

∗ and z∗ = δ2 + γ2x
∗.

In other words, there is no substitution. What would be the two coefficients γ1 and
γ2 if this were the case?

Answer. Now the Frisch decomposition is

(22.1.24)

[
σ2

x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

]
= σ2

x∗

[
1 γ1 γ2
γ1 γ2

1 γ1γ2
γ2 γ1γ2 γ2

2

]
+

[
σ2

u 0 0
0 σ2

v 0
0 0 σ2

w

]
.

Solving this gives (obtain γ1 by dividing the 32-element by the 31-element, γ2 by dividing the
32-element by the 12-element, σ2

x∗ by dividing the 21-element by γ1, etc.

γ1 =
σyz

σxy

=
0.0839798588

0.1169330807
= 0.7181873452513939

γ2 =
σyz

σxz

=
0.0839798588

0.0522115563
= 1.608453467992104

σ2
x∗ =

σyxσxz

σyz

=
0.0522115563 · 0.1169330807

0.0839798588
= 0.0726990758

σ2
u = σ2

x − σyxσxz

σyz

= 0.0724870714 − 0.0726990758 = −0.000212

σ2
v = σ2

y − σxyσyz

σxz

σ2
w = σ2

z − σxzσzy

σxy

(22.1.25)

This model is just barely rejected by the data since it leads to a slightly negative variance for U. �

• f. The assumption that there are two linear relations is represented as the
light-blue line in Figure 3. What is the equation of this line?

Answer. If y = γ1x and z = γ2x then the equation x = β1y + β2z holds whenever β1γ1 +
β2γ2 = 1. This is a straight line in the β1, β2-plane, going through the points and (0, 1/γ2) =

(0, 0.0522115563
0.0839798588

= 0.6217152189353289) and (1/γ1 , 0) = ( 0.1169330807
0.0839798588

= 1.3923943475361023, 0).
This line is in the figure, and it is just a tiny bit on the wrong side of the dotted line connecting

the two estimates. �
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22.2. Houthakker’s Data

For this example we will use Berndt’s textbook [Ber91], which discusses some
of the classic studies in the econometric literature.

One example described there is the estimation of a demand function for electric-
ity [Hou51], which is the first multiple regression with several variables run on a
computer. In this exercise you are asked to do all steps in exercise 1 and 3 in chapter
7 of Berndt, and use the additional facilities of R to perform other steps of data
analysis which Berndt did not ask for, such as, for instance, explore the best subset
of regressors using leaps and the best nonlinear transformation using avas, do some
diagnostics, search for outliers or influential observations, and check the normality
of residuals by a probability plot.

Problem 277. 4 points The electricity demand date from [Hou51] are avail-
able on the web at www.econ.utah.edu/ehrbar/data/ukelec.txt. Import these
data into your favorite statistics package. For R you need the command ukelec <-

read.table("http://www.econ.utah.edu/ehrbar/data/ukelec.txt"). Make a
scatterplot matrix of these data using e.g. pairs(ukelec) and describe what you
see.

Answer. inc and cap are negatively correlated. cap is capacity of rented equipment and not
equipment owned. Apparently customers with higher income buy their equipment instead of renting
it.

gas6 and gas8 are very highly correlated. mc4, mc6, and mc8 are less hightly correlated, the
corrlation between mc6 and mc8 is higher than that between mc4 and mc6. It seem electicity prices
have been coming down.

kwh, inc, and exp are strongly positively correlated.
the stripes in all the plots which have mc4, mc6, or mc8 in them come from the fact that the

marginal cost of electricity is a round number.
electricity prices and kwh are negatively correlated.
There is no obvious positive correlation between kwh and cap or expen and cap.
Prices of electricity and gas are somewhat positively correlated, but not much.
When looking at the correlations of inc with the other variables, there are several outliers which

could have a strong “leverage” effect.
in 1934, those with high income had lower electricity prices than those with low income. This

effect dissipated by 1938.
No strong negative correlations anywhere.
cust negatively correlated with inc, because rich people live in smaller cities?

�

If you simply type ukelec in R, it will print the data on the screen. The variables
have the following meanings:

cust Average number of consumers with two-part tariffs for electricity in 1937–
38, in thousands. Two-part tariff means: they pay a fixed monthly sum plus a certain
“running charge” times the number of kilowatt hours they use.
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inc Average income of two-part consumers, in pounds per year. (Note that one
pound had 240 pence at that time.)

mc4 The running charge (marginal cost) on domestic two-part tariffs in 1933–34,
in pence per KWH. (The marginal costs are the costs that depend on the number of
kilowatt hours only, it is the cost of one additional kilowatt hour.

mc6 The running charge (marginal cost) on domestic two-part tariffs in 1935–36,
in pence per KWH

mc8 The running charge (marginal cost) on domestic two-part tariffs in 1937–38,
in pence per KWH

gas6 The marginal price of gas in 1935–36, in pence per therm
gas8 The marginal price of gas in 1937–38, in pence per therm
kwh Consumption on domestic two-part tariffs per consumer in 1937–38, in kilo-

watt hours
cap The average holdings (capacity) of heavy electric equipment bought on hire

purchase (leased) by domestic two-part consumers in 1937–38, in kilowatts
expen The average total expenditure on electricity by two-part consumers in

1937–38, in pounds
The function summary(ukelec) displays summary statistics about every vari-

able.
Since every data frame in R is a list, it is possible to access the variables in ukelec

by typing ukelec$mc4 etc. Try this; if you type this and then a return, you will get
a listing of mc4. In order to have all variables available as separate objects and save
typing ukelec$ all the time, one has to “mount” the data frame by the command
attach(ukelec). After this, the individual data series can simply be printed on the
screen by typing the name of the variable, for instance mc4, and then the return key.

Problem 278. 2 points Make boxplots of mc4, mc6, and mc6 in the same graph
next to each other, and the same with gas6 and gas8.

Problem 279. 2 points How would you answer the question whether marginal
prices of gas vary more or less than those of electricity (say in the year 1936)?

Answer. Marginal gas prices vary a little more than electricity prices, although electricity
was the newer technology, and although gas prices are much more stable over time than the elec-
tricity prices. Compare sqrt(var(mc6))/mean(mc6) with sqrt(var(gas6))/mean(gas6). You get
0.176 versus 0.203. Another way would be to compute max(mc6)/min(mc6) and compare with
max(gas6)/min(gas6): you get 2.27 versus 2.62. In any case this is a lot of variation. �

Problem 280. 2 points Make a plot of the (empirical) density function of mc6
and gas6 and interpret the results.

Problem 281. 2 points Is electricity a big share of total income? Which com-
mand is better: mean(expen/inc) or mean(expen)/mean(inc)? What other options
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are there? Actually, there is a command which is clearly better than at least one of
the above, can you figure out what it is?

Answer. The proportion is small, less than 1 percent. The two above commands give 0.89%
and 0.84%. The command sum(cust*expen) / sum(cust*inc) is better than mean(expen) / mean(inc),
because each component in expen and inc is the mean over many households, the number of house-
holds given by cust. mean(expen) is therefore an average over averages over different popula-
tion sizes, not a good idea. sum(cust*expen) is total expenditure in all households involved, and
sum(cust*inc) is total income in all households involved. sum(cust*expen) / sum(cust*inc) gives
the value 0.92%. Another option is median(expen/inc) which gives 0.91%. A good way to answer
this question is to plot it: plot(expen,inc). You get the line where expenditure is 1 percent of
income by abline(0,0.01). For higher incomes expenditure for electricity levels off and becomes a
lower share of income. �

Problem 282. Have your computer compute the sample correlation matrix of
the data. The R-command is cor(ukelec)

• a. 4 points Are there surprises if one looks at the correlation matrix?

Answer. Electricity consumption kwh is slightly negatively correlated with gas prices and
with the capacity. If one takes the correlation matrix of the logarithmic data, one gets the expected
positive signs.

marginal prices of gas and electricity are positively correlated in the order of 0.3 to 0.45.
higher correlation between mc6 and mc8 than between mc4 and mc6.
Correlation between expen and cap is negative and low in both matrices, while one should

expect positive correlation. But in the logarithmic matrix, mc6 has negative correlation with expen,
i.e., elasticity of electricity demand is less than 1.

In the logarithmic data, cust has higher correlations than in the non-logarithmic data, and it
is also more nearly normally distributed.

inc has negative correlation with mc4 but positive correlation with mc6 and mc8. (If one looks
at the scatterplot matrix this seems just random variations in an essentially zero correlation).

mc6 and expen are positively correlated, and so are mc8 and expen. This is due to the one
outlier with high expen and high income and also high electricity prices.

The marginal prices of electricity are not strongly correlated with expen, and in 1934, they are
negatively correlated with income.

From the scatter plot of kwh versus cap it seems there are two datapoints whose removal
might turn the sign around. To find out which they are do plot(kwh,cap) and then use the identify
function: identify(kwh,cap,labels=row.names(ukelec)). The two outlying datapoints are Halifax
and Wallase. Wallase has the highest income of all towns, namely, 1422, while Halifax’s income of
352 is close to the minimum, which is 279. High income customers do not lease their equipment
but buy it. �

• b. 3 points The correlation matrix says that kwh is negatively related with cap,
but the correlation of the logarithm gives the expected positive sign. Can you explain
this behavior?

Answer. If one plots the date using plot(cap,kwh) one sees that the negative correlation
comes from the two outliers. In a logarithmic scale, these two are no longer so strong outliers.

�
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Problem 283. Berndt on p. 338 defines the intramarginal expenditure f <-

expen-mc8*kwh/240. What is this, and what do you find out looking at it?

After this preliminary look at the data, let us run the regressions.

Problem 284. 6 points Write up the main results from the regressions which in
R are run by the commands

houth.olsfit <- lm(formula = kwh ~ inc+I(1/mc6)+gas6+cap)

houth.glsfit <- lm(kwh ~ inc+I(1/mc6)+gas6+cap, weight=cust)

houth.olsloglogfit <- lm(log(kwh) ~

log(inc)+log(mc6)+log(gas6)+log(cap))

Instead of 1/mc6 you had to type I(1/mc6) because the slash has a special meaning
in formulas, creating a nested design, therefore it had to be “protected” by applying
the function I() to it.

If you then type houth.olsfit, a short summary of the regression results will be
displayed on the screen. There is also the command summary(houth.olsfit), which
gives you a more detailed summary. If you type plot(houth.olsfit) you will get a
series of graphics relevant for this regression.

Answer. All the expected signs.
Gas prices do not play a great role in determining electricity consumption, despite the “cook-

ers” Berndt talks about on p. 337. Especially the logarithmic regression makes gas prices highly
insignificant!

The weighted estimation has a higher R2. �

Problem 285. 2 points The output of the OLS regression gives as standard
error of inc the value of 0.18, while in the GLS regression it is 0.20. For the other
variables, the standard error as given in the GLS regression is lower than that in the
OLS regression. Does this mean that one should use for inc the OLS estimate and
for the other variables the GLS estimates?

Problem 286. 5 points Show, using the leaps procedure om R or some other
selection of regressors, that the variables Houthakker used in his GLS-regression are
the “best” among the following: inc, mc4, mc6, mc8, gas6, gas8, cap using ei-
ther the Cp statistic or the adjusted R2. (At this stage, do not transform the variables
but just enter them into the regression untransformed, but do use the weights, which
are theoretically well justified).

To download the leaps package, use install.packages("leaps", lib="C:/Documents

and Settings/420lab.420LAB/My Documents") and to call it up, use library(leaps,
lib.loc="C:/Documents and Settings/420lab.420LAB/My Documents"). If the
library ecmet is available, the command ecmet.script(houthsel) runs the follow-
ing script:
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library(leaps)

data(ukelec)

attach(ukelec)

houth.glsleaps<-leaps(x=cbind(inc,mc4,mc6,mc8,gas6,gas8,cap),

y=kwh, wt=cust, method="Cp",

nbest=5, strictly.compatible=F)

ecmet.prompt("Plot Mallow’s Cp against number of regressors:")

plot(houth.glsleaps$size, houth.glsleaps$Cp)

ecmet.prompt("Throw out all regressions with a Cp > 50 (big gap)")

plot(houth.glsleaps$size[houth.glsleaps$Cp<50],

houth.glsleaps$Cp[houth.glsleaps$Cp<50])

ecmet.prompt("Cp should be roughly equal the number of regressors")

abline(0,1)

cat("Does this mean the best regression is overfitted?")

ecmet.prompt("Click at the points to identify them, left click to quit")

## First construct the labels

lngth <- dim(houth.glsleaps$which)[1]

included <- as.list(1:lngth)

for (ii in 1:lngth)

included[[ii]] <- paste(

colnames(houth.glsleaps$which)[houth.glsleaps$which[ii,]],

collapse=",")

identify(x=houth.glsleaps$size, y=houth.glsleaps$Cp, labels=included)

ecmet.prompt("Now use regsubsets instead of leaps")

houth.glsrss<- regsubsets.default(x=cbind(inc,mc4,mc6,mc8,gas6,gas8,cap),

y=kwh, weights=cust, method="exhaustive")

print(summary.regsubsets(houth.glsrss))

plot.regsubsets(houth.glsrss, scale="Cp")

ecmet.prompt("Now order the variables")

houth.glsrsord<- regsubsets.default(x=cbind(inc,mc6,cap,gas6,gas8,mc8,mc4),

y=kwh, weights=cust, method="exhaustive")

print(summary.regsubsets(houth.glsrsord))

plot.regsubsets(houth.glsrsord, scale="Cp")

Problem 287. Use avas to determine the “best” nonlinear transformations of
the explanatory and the response variable. Since the weights are theoretically well
justified, one should do it for the weighted regression. Which functions do you think
one should use for the different regressors?

Problem 288. 3 points Then, as a check whether the transformation interferred
with data selection, redo leaps, but now with the transformed variables. Show that
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the GLS-regression Houthakker actually ran is the “best” regression among the fol-
lowing variables: inc, 1/mc4, 1/mc6, 1/mc8, gas6, gas8, cap using either the
Cp statistic or the adjusted R2.

Problem 289. Diagnostics, the identification of outliers or influential observa-
tions is something which we can do easily with R, although Berndt did not ask for it.
The command houth.glsinf<-lm.influence(houth.glsfit) gives you the build-
ing blocks for many of the regression disgnostics statistics. Its output is a list if three

objects: A matrix whose rows are all the the least squares estimates β̂(i) when the
ith observation is dropped, a vector with all the s(i), and a vector with all the hii.
A more extensive function is influence.measures(houth.glsfit), it has Cook’s
distance and others.

In order to look at the residuals, use the command plot(resid(houth.glsfit),

type="h") or plot(rstandard(houth.glsfit), type="h") or plot(rstudent(houth.glsfit),
type="h"). To add the axis do abline(0,0). If you wanted to check the residuals
for normality, you would use qqnorm(rstandard(houth.glsfit)).

Problem 290. Which commands do you need to plot the predictive residuals?

Problem 291. 4 points Although there is good theoretical justification for using
cust as weights, one might wonder if the data bear this out. How can you check this?

Answer. Do plot(cust, rstandard(houth.olsfit)) and plot(cust, rstandard(houth.glsfit)).
In the first plot, smaller numbers of customers have larger residuals, in the second plot this is miti-
gated. Also the OLS plot has two terrible outliers, which are brought more into range with GLS. �

Problem 292. The variable cap does not measure the capacity of all electrical
equipment owned by the households, but only those appliances which were leased from
the Electric Utility company. A plot shows that people with higher income do not
lease as much but presumably purchase their appliances outright. Does this mean the
variable should not be in the regression?

22.3. Long Term Data about US Economy

The dataset uslt is described in [DL91]. Home page of the authors is www.cepremap.cnrs.fr/~levy/.
uslt has the variables kn, kg (net and gross capital stock in current $), kn2, kg2 (the
same in 1982$), hours (hours worked), wage (hourly wage in current dollars), gnp,
gnp2, nnp, inv2 (investment in 1982 dollars), r (profit rate (nnp−wage×hours)/kn),
u (capacity utilization), kne, kge, kne2, kge2, inve2 (capital stock and investment
data for equipment), kns, kgs, kns2, kgs2, invs2 (the same for structures).

Capital stock data were estimated separately for structures and equipment and
then added up, i.e., kn2 = kne2 + kns2 etc. Capital stock since 1925 has been
constructed from annual investment data, and prior to 1925 the authors of the series
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apparently went the other direction: they took someone’s published capital stock
estimates and constructed investment from it. In the 1800s, only a few observations
were available, which were then interpolated. The capacity utilization ratio is equal
to the ratio of gnp2 to its trend, i.e., it may be negative.

Here are some possible commands for your R-session: data(uslt)makes the data
available; uslt.clean<-na.omit(uslt) removes missing values; this dataset starts
in 1869 (instead of 1805). attach(uslt.clean) makes the variables in this dataset
available. Now you can plot various series, for instance plot((nnp-hours*wage)/nnp,
type="l") plots the profit share, or plot(gnp/gnp2, kg/kg2, type="l") gives you
a scatter plot of the price level for capital goods versus that for gnp. The command
plot(r, kn2/hours, type="b") gives both points and dots; type = "o" will have
the dots overlaid the line. After the plot you may issue the command identify(r,

kn2/hours, label=1869:1989) and then click with the left mouse button on the
plot those data points for which you want to have the years printed.

If you want more than one timeseries on the same plot, you may do matplot(1869:1989,
cbind(kn2,kns2), type="l"). If you want the y-axis logarithmic, say matplot(1869:1989,
cbind(gnp/gnp2,kns/kns2,kne/kne2), type="l", log="y").

Problem 293. Computer assignment: Make a number of such plots on the
screen, and import the most interesting ones into your wordprocessor. Each class
participant should write a short paper which shows the three most insteresting plots,
together with a written explanation why these plots seem interesting.

To use pairs or xgobi, you should carefully select the variables you want to in-
clude, and then you need the following preparations: usltsplom <- cbind(gnp2=gnp2,

kn2=kn2, inv2=inv2, hours=hours, year=1869:1989)dimnames(usltsplom)[[1]]

<- paste(1869:1989) The dimnames function adds the row labels to the matrix, so
that you can see which year it is. pairs(usltsplom) or library(xgobi) and then
xgobi(usltsplom)

You can also run regressions with commands of the following sort: lm.fit <-

lm(formula = gnp2 ~ hours + kne2 + kns2). You can also fit a “generalized ad-
ditive model” with the formula gam.fit <- gam(formula = gnp2 ~ s(hours) +

s(kne2) + s(kns2)). This is related to the avas command we talked about in
class. It is discussed in [CH93].

22.4. Dougherty Data

We have a new dataset, in both SAS and Splus, namely the data described in
[Dou92].

There are more data than in the tables at the end of the book; prelcosm for
instance is the relative price of cosmetics, it is 100*pcosm/ptpe, but apparently
truncated at 5 digits.
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22.5. Wage Data

The two datasets used in [Ber91, pp. 191–209] are available in R as the data
frames cps78 and cps85. In R on unix, the data can be downloaded by cps78

<- readSDML("http://www.econ.utah.edu/ehrbar/data/cps78.sdml"), and the
corresponding for cps85. The original data provided by Berndt contain many dummy
variables. The data frames in R have the same data coded as “factor” variables
instead of dummies. These “factor” variables automatically generate dummies when
included in the model statement.

cps78 consists of 550 randomly selected employed workers from the May 1978
current population survey, and cps85 consists of 534 randomly selected employed
workers from the May 1985 current population survey. These are surveys of 50,000
households conducted monthly by the U.S. Department of Commerce. They serve
as the basis for the national employment and unemployment statistics. Data are
collected on a number of individual characteristics as well as employment status.
The present extracts were performed by Leslie Sundt of the University of Arizona.

ed = years of education
ex = years of labor market experience (= age− ed− 6, or 0 if this is a negative

number).
lnwage = natural logarithm of average hourly earnings
age = age in years
ndep = number of dependent children under 18 in household (only in cps78).
region has levels North, South
race has levels Other, Nonwhite, Hispanic. Nonwhite is mainly the Blacks, and

Other is mainly the Non-Hispanic Whites.
gender has levels Male, Female
marr has levels Single, Married
union has levels Nonunion, Union
industry has levels Other, Manuf, and Constr
occupation has levels Other, Manag, Sales, Cler, Serv, and Prof
Here is a log of my commands for exercises 1 and 2 in [Ber91, pp. 194–197].

> cps78 <- readSDML("http://www.econ.utah.edu/ehrbar/data/cps78.sdml")

> attach(cps78)

> ###Exercise 1a (2 points) in chapter V of Berndt, p. 194

> #Here is the arithmetic mean of hourly wages:

> mean(exp(lnwage))

[1] 6.062766

> #Here is the geometric mean of hourly wages:

> #(Berndt’s instructions are apparently mis-formulated):

> exp(mean(lnwage))
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[1] 5.370935

> #Geometric mean is lower than arithmetic, due to Jensen’s inequality

> #if the year has 2000 hours, this gives an annual wage of

> 2000*exp(mean(lnwage))

[1] 10741.87

> #What are arithmetic mean and standard deviation of years of schooling

> #and years of potential experience?

> mean(ed)

[1] 12.53636

> sqrt(var(ed))

[1] 2.772087

> mean(ex)

[1] 18.71818

> sqrt(var(ex))

[1] 13.34653

> #experience has much higher standard deviation than education, not surprising.

> ##Exercise 1b (1 point) can be answered with the two commands

> table(race)

Hisp Nonwh Other

36 57 457

> table(race, gender)

gender

race Female Male

Hisp 12 24

Nonwh 28 29

Other 167 290

> #Berndt also asked for the sample means of certain dummy variables;

> #This has no interest in its own right but was an intermediate

> #step in order to compute the numbers of cases as above.

> ##Exercise 1c (2 points) can be answered using tapply

> tapply(ed,gender,mean)

Female Male

12.76329 12.39942

> #now the standard deviation:

> sqrt(tapply(ed,gender,var))

Female Male

2.220165 3.052312

> #Women do not have less education than men; it is about equal,

> #but their standard deviation is smaller

> #Now the geometric mean of the wage rate:
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> exp(tapply(lnwage,gender,mean))

Female Male

4.316358 6.128320

> #Now do the same with race

> ##Exercise 1d (4 points)

> detach()

> ##This used to be my old command:

> cps85 <- read.table("~/dpkg/ecmet/usr/share/ecmet/usr/lib/R/library/ecmet/data/cps85.txt", header=TRUE)

> #But this should work for everyone (perhaps only on linux):

> cps85 <- readSDML("http://www.econ.utah.edu/ehrbar/data/cps85.sdml")

> attach(cps85)

> mean(exp(lnwage))

[1] 9.023947

> sqrt(var(lnwage))

[1] 0.5277335

> exp(mean(lnwage))

[1] 7.83955

> 2000*exp(mean(lnwage))

[1] 15679.1

> 2000*exp(mean(lnwage))/1.649

[1] 9508.248

> #real wage has fallen

> tapply(exp(lnwage), gender, mean)

Female Male

7.878743 9.994794

> tapply(exp(lnwage), gender, mean)/1.649

Female Male

4.777891 6.061125

> #Compare that with 4.791237 6.830132 in 1979:

> #Male real wages dropped much more than female wages

> ##Exercise 1e (3 points)

> #using cps85

> w <- mean(lnwage); w

[1] 2.059181

> s <- sqrt(var(lnwage)); s

[1] 0.5277335

> lnwagef <- factor(cut(lnwage, breaks = w+s*c(-4,-2,-1,0,1,2,4)))

> table(lnwagef)

lnwagef

(-0.0518,1] (1,1.53] (1.53,2.06] (2.06,2.59] (2.59,3.11] (3.11,4.17]
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3 93 174 180 72 12

> ks.test(lnwage, "pnorm")

One-sample Kolmogorov-Smirnov test

data: lnwage

D = 0.8754, p-value = < 2.2e-16

alternative hypothesis: two.sided

> ks.test(lnwage, "pnorm", mean=w, sd =s)

One-sample Kolmogorov-Smirnov test

data: lnwage

D = 0.0426, p-value = 0.2879

alternative hypothesis: two.sided

> #Normal distribution not rejected

>

> #If we do the same thing with

> wage <- exp(lnwage)

> ks.test(wage, "pnorm", mean=mean(wage), sd =sqrt(var(wage)))

One-sample Kolmogorov-Smirnov test

data: wage

D = 0.1235, p-value = 1.668e-07

alternative hypothesis: two.sided

> #This is highly significant, therefore normality rejected

>

> #An alternative, simpler way to answer question 1e is by using qqnorm

> qqnorm(lnwage)

> qqnorm(exp(lnwage))

> #Note that the SAS proc univariate rejects that wage is normally distributed

> #but does not reject that lnwage is normally distributed.

> ###Exercise 2a (3 points), p. 196

> summary(lm(lnwage ~ ed, data = cps78))
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Call:

lm(formula = lnwage ~ ed, data = cps78)

Residuals:

Min 1Q Median 3Q Max

-2.123168 -0.331368 -0.007296 0.319713 1.594445

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.030445 0.092704 11.115 < 2e-16 ***

ed 0.051894 0.007221 7.187 2.18e-12 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.469 on 548 degrees of freedom

Multiple R-Squared: 0.08613,Adjusted R-squared: 0.08447

F-statistic: 51.65 on 1 and 548 degrees of freedom,p-value: 2.181e-12

> #One year of education increases wages by 5 percent, but low R^2.

> #Mincer (5.18) had 7 percent for 1959

> #Now we need a 95 percent confidence interval for this coefficient

> 0.051894 + 0.007221*qt(0.975, 548)

[1] 0.06607823

> 0.051894 - 0.007221*qt(0.975, 548)

[1] 0.03770977

> ##Exercise 2b (3 points): Include union participation

> summary(lm(lnwage ~ union + ed, data=cps78))

Call:

lm(formula = lnwage ~ union + ed, data = cps78)

Residuals:

Min 1Q Median 3Q Max

-2.331754 -0.294114 0.001475 0.263843 1.678532

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.859166 0.091630 9.376 < 2e-16 ***

unionUnion 0.305129 0.041800 7.300 1.02e-12 ***

ed 0.058122 0.006952 8.361 4.44e-16 ***
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---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4481 on 547 degrees of freedom

Multiple R-Squared: 0.1673,Adjusted R-squared: 0.1642

F-statistic: 54.93 on 2 and 547 degrees of freedom,p-value: 0

> exp(0.058)

[1] 1.059715

> exp(0.305129)

[1] 1.3568

> # Union members have 36 percent higher wages

> # The test whether union and nonunion members have the same intercept

> # is the same as the test whether the union dummy is 0.

> # t-value = 7.300 which is highly significant,

> # i.e., they are different.

> #The union variable is labeled unionUnion, because

> #it is labeled 1 for Union and 0 for Nonun. Check with the command

> contrasts(cps78$union)

Union

Nonun 0

Union 1

> #One sees it also if one runs

> model.matrix(lnwage ~ union + ed, data=cps78)

(Intercept) union ed

1 1 0 12

2 1 1 12

3 1 1 6

4 1 1 12

5 1 0 12

> #etc, rest of output flushed

> #and compares this with

> cps78$union[1:5]

[1] Nonun Union Union Union Nonun

Levels: Nonun Union

> #Consequently, the intercept for nonunion is 0.8592

> #and the intercept for union is 0.8592+0.3051=1.1643.

> #Can I have a different set of dummies constructed from this factor?

> #We will first do
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> ##Exercise 2e (2 points)

> contrasts(union)<-matrix(c(1,0),nrow=2,ncol=1)

> #This generates a new contrast matrix

> #which covers up that in cps78

> #Note that I do not say "data=cps78" in the next command:

> summary(lm(lnwage ~ union + ed))

Call:

lm(formula = lnwage ~ union + ed)

Residuals:

Min 1Q Median 3Q Max

-2.331754 -0.294114 0.001475 0.263843 1.678532

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.164295 0.090453 12.872 < 2e-16 ***

union1 -0.305129 0.041800 -7.300 1.02e-12 ***

ed 0.058122 0.006952 8.361 4.44e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4481 on 547 degrees of freedom

Multiple R-Squared: 0.1673,Adjusted R-squared: 0.1642

F-statistic: 54.93 on 2 and 547 degrees of freedom,p-value: 0

> #Here the coefficients are different,

> #but it is consistent with the above result.

> ##Ecercise 2c (2 points): If I want to have two contrasts from this one dummy, I have to do

> contrasts(union,2)<-matrix(c(1,0,0,1),nrow=2,ncol=2)

> #The additional argument 2

> #specifies different number of contrasts than it expects

> #Now I have to supress the intercept in the regression

> summary(lm(lnwage ~ union + ed - 1))

Call:

lm(formula = lnwage ~ union + ed - 1)

Residuals:

Min 1Q Median 3Q Max
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-2.331754 -0.294114 0.001475 0.263843 1.678532

Coefficients:

Estimate Std. Error t value Pr(>|t|)

union1 0.859166 0.091630 9.376 < 2e-16 ***

union2 1.164295 0.090453 12.872 < 2e-16 ***

ed 0.058122 0.006952 8.361 4.44e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4481 on 547 degrees of freedom

Multiple R-Squared: 0.9349,Adjusted R-squared: 0.9345

F-statistic: 2617 on 3 and 547 degrees of freedom,p-value: 0

> #actually it was unnecessary to construct the contrast matrix.

> #If we regress with a categorical variable without

> #an intercept, R will automatically use dummies for all levels:

> lm(lnwage ~ union + ed - 1, data=cps85)

Call:

lm(formula = lnwage ~ union + ed - 1, data = cps85)

Coefficients:

unionNonunion unionUnion ed

0.9926 1.2909 0.0778

> ##Exercise 2d (1 point) Why is it not possible to include two dummies plus

> # an intercept? Because the two dummies add to 1,

> # you have perfect collinearity

> ###Exercise 3a (2 points):

> summary(lm(lnwage ~ ed + ex + I(ex^2), data=cps78))

> #All coefficients are highly significant, but the R^2 is only 0.2402

> #Returns to experience are positive and decline with increase in experience

> ##Exercise 3b (2 points):

> summary(lm(lnwage ~ gender + ed + ex + I(ex^2), data=cps78))

> contrasts(cps78$gender)

> #We see here that gender is coded 0 for female and 1 for male;
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> #by default, the levels in a factor variable occur in alphabetical order.

> #Intercept in our regression = 0.1909203 (this is for female),

> #genderMale has coefficient = 0.3351771,

> #i.e., the intercept for women is 0.5260974

> #Gender is highly significant

> ##Exercise 3c (2 points):

> summary(lm(lnwage ~ gender + marr + ed + ex + I(ex^2), data=cps78))

> #Coefficient of marr in this is insignificant

> ##Exercise 3d (1 point) asks to construct a variable which we do

> #not need when we use factor variables

> ##Exercise 3e (3 points): For interaction term do

> summary(lm(lnwage ~ gender * marr + ed + ex + I(ex^2), data=cps78))

Call:

lm(formula = lnwage ~ gender * marr + ed + ex + I(ex^2), data = cps78)

Residuals:

Min 1Q Median 3Q Max

-2.45524 -0.24566 0.01969 0.23102 1.42437

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1893919 0.1042613 1.817 0.06984 .

genderMale 0.3908782 0.0467018 8.370 4.44e-16 ***

marrSingle 0.0507811 0.0557198 0.911 0.36251

ed 0.0738640 0.0066154 11.165 < 2e-16 ***

ex 0.0265297 0.0049741 5.334 1.42e-07 ***

I(ex^2) -0.0003161 0.0001057 -2.990 0.00291 **

genderMale:marrSingle -0.1586452 0.0750830 -2.113 0.03506 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3959 on 543 degrees of freedom

Multiple R-Squared: 0.3547,Adjusted R-squared: 0.3476

F-statistic: 49.75 on 6 and 543 degrees of freedom,p-value: 0

> #Being married raises the wage for men by 13% but lowers it for women by 3%

> ###Exercise 4a (5 points):

> summary(lm(lnwage ~ union + gender + race + ed + ex + I(ex^2), data=cps78))
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Call:

lm(formula = lnwage ~ union + gender + race + ed + ex + I(ex^2),

data = cps78)

Residuals:

Min 1Q Median 3Q Max

-2.41914 -0.23674 0.01682 0.21821 1.31584

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1549723 0.1068589 1.450 0.14757

unionUnion 0.2071429 0.0368503 5.621 3.04e-08 ***

genderMale 0.3060477 0.0344415 8.886 < 2e-16 ***

raceNonwh -0.1301175 0.0830156 -1.567 0.11761

raceOther 0.0271477 0.0688277 0.394 0.69342

ed 0.0746097 0.0066521 11.216 < 2e-16 ***

ex 0.0261914 0.0047174 5.552 4.43e-08 ***

I(ex^2) -0.0003082 0.0001015 -3.035 0.00252 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3845 on 542 degrees of freedom

Multiple R-Squared: 0.3924,Adjusted R-squared: 0.3846

F-statistic: 50.01 on 7 and 542 degrees of freedom,p-value: 0

> exp(-0.1301175)

[1] 0.8779923

> #Being Hispanic lowers wages by 2.7%, byut being black lowers them

> #by 12.2 %

> #At what level of ex is lnwage maximized?

> #exeffect = 0.0261914 * ex -0.0003082 * ex^2

> #derivative = 0.0261914 - 2 * 0.0003082 * ex

> #derivative = 0 for ex=0.0261914/(2*0.0003082)

> 0.0261914/(2*0.0003082)

[1] 42.49091

> # age - ed - 6 = 42.49091
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> # age = ed + 48.49091

> # for 8, 12, and 16 years of schooling the max earnings

> # are at ages 56.5, 60.5, and 64.5 years

> ##Exercise 4b (4 points) is a graph, not done here

> ##Exercise 4c (5 points)

> summary(lm(lnwage ~ gender + union + race + ed + ex + I(ex^2) + I(ed*ex), data=cps78))

Call:

lm(formula = lnwage ~ gender + union + race + ed + ex + I(ex^2) +

I(ed * ex), data = cps78)

Residuals:

Min 1Q Median 3Q Max

-2.41207 -0.23922 0.01463 0.21645 1.32051

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0396495 0.1789073 0.222 0.824693

genderMale 0.3042639 0.0345241 8.813 < 2e-16 ***

unionUnion 0.2074045 0.0368638 5.626 2.96e-08 ***

raceNonwh -0.1323898 0.0830908 -1.593 0.111673

raceOther 0.0319829 0.0691124 0.463 0.643718

ed 0.0824154 0.0117716 7.001 7.55e-12 ***

ex 0.0328854 0.0095716 3.436 0.000636 ***

I(ex^2) -0.0003574 0.0001186 -3.013 0.002704 **

I(ed * ex) -0.0003813 0.0004744 -0.804 0.421835

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3846 on 541 degrees of freedom

Multiple R-Squared: 0.3932,Adjusted R-squared: 0.3842

F-statistic: 43.81 on 8 and 541 degrees of freedom,p-value: 0

> #Maximum earnings ages must be computed as before

> ##Exercise 4d (4 points) not done here

> ##Exercise 4e (6 points) not done here

> ###Exercise 5a (3 points):

> #Naive approach to estimate impact of unionization on wages:

> summary(lm(lnwage ~ gender + union + race + ed + ex + I(ex^2), data=cps78))
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Call:

lm(formula = lnwage ~ gender + union + race + ed + ex + I(ex^2),

data = cps78)

Residuals:

Min 1Q Median 3Q Max

-2.41914 -0.23674 0.01682 0.21821 1.31584

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1549723 0.1068589 1.450 0.14757

genderMale 0.3060477 0.0344415 8.886 < 2e-16 ***

unionUnion 0.2071429 0.0368503 5.621 3.04e-08 ***

raceNonwh -0.1301175 0.0830156 -1.567 0.11761

raceOther 0.0271477 0.0688277 0.394 0.69342

ed 0.0746097 0.0066521 11.216 < 2e-16 ***

ex 0.0261914 0.0047174 5.552 4.43e-08 ***

I(ex^2) -0.0003082 0.0001015 -3.035 0.00252 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3845 on 542 degrees of freedom

Multiple R-Squared: 0.3924,Adjusted R-squared: 0.3846

F-statistic: 50.01 on 7 and 542 degrees of freedom,p-value: 0

> # What is wrong with the above? It assumes that unions

> # only affect the intercept, everything else is the same

> ##Exercise 5b (2 points)

> tapply(lnwage, union, mean)

Nonun Union

1.600901 1.863137

> tapply(ed, union, mean)

Nonun Union

12.76178 12.02381

> table(gender, union)

union

gender Nonun Union

Female 159 48
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Male 223 120

> table(race, union)

union

race Nonun Union

Hisp 29 7

Nonwh 35 22

Other 318 139

> 7/(7+29)

[1] 0.1944444

> 22/(22+35)

[1] 0.3859649

> 139/(318+139)

[1] 0.3041575

> #19% of Hispanic, 39% of Nonwhite, and 30% of other (white) workers

> #in the sample are in unions

> ##Exercise 5c (3 points)

> summary(lm(lnwage ~ gender + race + ed + ex + I(ex^2), data=cps78, subset=union == "Union"))

Call:

lm(formula = lnwage ~ gender + race + ed + ex + I(ex^2), data = cps78,

subset = union == "Union")

Residuals:

Min 1Q Median 3Q Max

-2.3307 -0.1853 0.0160 0.2199 1.1992

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9261456 0.2321964 3.989 0.000101 ***

genderMale 0.2239370 0.0684894 3.270 0.001317 **

raceNonwh -0.3066717 0.1742287 -1.760 0.080278 .

raceOther -0.0741660 0.1562131 -0.475 0.635591

ed 0.0399500 0.0138311 2.888 0.004405 **

ex 0.0313820 0.0098938 3.172 0.001814 **

I(ex^2) -0.0004526 0.0002022 -2.239 0.026535 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3928 on 161 degrees of freedom

Multiple R-Squared: 0.2019,Adjusted R-squared: 0.1721
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F-statistic: 6.787 on 6 and 161 degrees of freedom,p-value: 1.975e-06

> summary(lm(lnwage ~ gender + race + ed + ex + I(ex^2), data=cps78, subset=union == "Nonun"))

Call:

lm(formula = lnwage ~ gender + race + ed + ex + I(ex^2), data = cps78,

subset = union == "Nonun")

Residuals:

Min 1Q Median 3Q Max

-1.39107 -0.23775 0.01040 0.23337 1.29073

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0095668 0.1193399 -0.080 0.9361

genderMale 0.3257661 0.0397961 8.186 4.22e-15 ***

raceNonwh -0.0652018 0.0960570 -0.679 0.4977

raceOther 0.0444133 0.0761628 0.583 0.5602

ed 0.0852212 0.0075554 11.279 < 2e-16 ***

ex 0.0253813 0.0053710 4.726 3.25e-06 ***

I(ex^2) -0.0002841 0.0001187 -2.392 0.0172 *

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3778 on 375 degrees of freedom

Multiple R-Squared: 0.4229,Adjusted R-squared: 0.4137

F-statistic: 45.8 on 6 and 375 degrees of freedom,p-value: 0

> #Are union-nonunion differences larger for females than males?

> #For this look at the intercepts for males and females in

> #the two regressions. Say for white males and females:

> 0.9261456-0.0741660+0.2239370

[1] 1.075917

> 0.9261456-0.0741660

[1] 0.8519796

> -0.0095668+0.0444133+0.3257661

[1] 0.3606126

> -0.0095668+0.0444133

[1] 0.0348465

> 1.075917-0.3606126
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[1] 0.7153044

> 0.8519796-0.0348465

[1] 0.8171331

>

> #White Males White Females

> #Union 1.075917 0.8519796

> #Nonunion 0.3606126 0.0348465

> #Difference 0.7153044 0.8171331

> #Difference is greater for women

> ###Exercise 6a (5 points)

> summary(lm(lnwage ~ gender + union + race + ed + ex + I(ex^2)))

Call:

lm(formula = lnwage ~ gender + union + race + ed + ex + I(ex^2))

Residuals:

Min 1Q Median 3Q Max

-2.41914 -0.23674 0.01682 0.21821 1.31584

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.1549723 0.1068589 1.450 0.14757

genderMale 0.3060477 0.0344415 8.886 < 2e-16 ***

unionUnion 0.2071429 0.0368503 5.621 3.04e-08 ***

raceNonwh -0.1301175 0.0830156 -1.567 0.11761

raceOther 0.0271477 0.0688277 0.394 0.69342

ed 0.0746097 0.0066521 11.216 < 2e-16 ***

ex 0.0261914 0.0047174 5.552 4.43e-08 ***

I(ex^2) -0.0003082 0.0001015 -3.035 0.00252 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.3845 on 542 degrees of freedom

Multiple R-Squared: 0.3924,Adjusted R-squared: 0.3846

F-statistic: 50.01 on 7 and 542 degrees of freedom,p-value: 0

> #To test whether Nonwh and Hisp have same intercept

> #one might generate a contrast matrix which collapses those

> #two and then run it and make an F-test
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> #or make a contrast matrix which has this difference as one of

> #the dummies and use the t-test for that dummy

> ##Exercise 6b (2 points)

> table(race)

race

Hisp Nonwh Other

36 57 457

> tapply(lnwage, race, mean)

Hisp Nonwh Other

1.529647 1.513404 1.713829

> tapply(lnwage, race, ed)

Error in get(x, envir, mode, inherits) : variable "ed" was not found

> tapply(ed, race, mean)

Hisp Nonwh Other

10.30556 11.71930 12.81400

> table(gender, race)

race

gender Hisp Nonwh Other

Female 12 28 167

Male 24 29 290

> #Blacks, almost as many women than men, hispanic twice as many men,

> #Whites in between

>

> #Additional stuff:

> #There are two outliers in cps78 with wages of less than $1 per hour,

> #Both service workers, perhaps waitresses who did not report her tips?

> #What are the commands for extracting certain observations

> #by certain criteria and just print them? The split command.

>

> #Interesting to do

> loess(lnwage ~ ed + ex, data=cps78)

> #loess is appropriate here because there are strong interation terms

> #How can one do loess after taking out the effects of gender for instance?

> #Try the following, but I did not try it out yet:

> gam(lnwage ~ lo(ed,ex) + gender, data=cps78)

> #I should put more plotting commands in!



CHAPTER 23

The Mean Squared Error as an Initial Criterion of
Precision

The question how “close” two random variables are to each other is a central
concern in statistics. The goal of statistics is to find observed random variables which
are “close” to the unobserved parameters or random outcomes of interest. These ob-
served random variables are usually called “estimators” if the unobserved magnitude
is nonrandom, and “predictors” if it is random. For scalar random variables we will

use the mean squared error as a criterion for closeness. Its definition is MSE[φ̂;φ]

(read it: mean squared error of φ̂ as an estimator or predictor, whatever the case
may be, of φ):

(23.0.1) MSE[φ̂;φ] = E[(φ̂− φ)2]

For our purposes, therefore, the estimator (or predictor) φ̂ of the unknown parameter

(or unobserved random variable) φ is no worse than the alternative φ̃ if MSE[φ̂;φ] ≤
MSE[φ̃;φ]. This is a criterion which can be applied before any observations are
collected and actual estimations are made; it is an “initial” criterion regarding the
expected average performance in a series of future trials (even though, in economics,
usually only one trial is made).

23.1. Comparison of Two Vector Estimators

If one wants to compare two vector estimators, say φ̂ and φ̃, it is often impossible

to say which of two estimators is better. It may be the case that φ̂1 is better than

φ̃1 (in terms of MSE or some other criterion), but φ̂2 is worse than φ̃2. And even if

every component φi is estimated better by φ̂i than by φ̃i, certain linear combinations

t>φ of the components of φ may be estimated better by t>φ̃ than by t>φ̂.

Problem 294. 2 points Construct an example of two vector estimators φ̂ and

φ̃ of the same random vector φ =
[
φ1 φ2

]>
, so that MSE[φ̂i;φi] < MSE[φ̃i;φi] for

i = 1, 2 but MSE[φ̂1 + φ̂2;φ1 +φ2] > MSE[φ̃1 + φ̃2;φ1 +φ2]. Hint: it is easiest to use
an example in which all random variables are constants. Another hint: the geometric
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analog would be to find two vectors in a plane φ̂ and φ̃. In each component (i.e.,

projection on the axes), φ̂ is closer to the origin than φ̃. But in the projection on

the diagonal, φ̃ is closer to the origin than φ̂.

Answer. In the simplest counterexample, all variables involved are constants: φ =
[

0
0

]
,

φ̂ =
[

1
1

]
, and φ̃ =

[
−2
2

]
.

�

One can only then say unambiguously that the vector φ̂ is a no worse estimator
than φ̃ if its MSE is smaller or equal for every linear combination. Theorem 23.1.1

will show that this is the case if and only if the MSE-matrix of φ̂ is smaller, by a
nonnegative definite matrix, than that of φ̃. If this is so, then theorem 23.1.1 says
that not only the MSE of all linear transformations, but also all other nonnegative
definite quadratic loss functions involving these vectors (such as the trace of the
MSE-matrix, which is an often-used criterion) are minimized. In order to formulate
and prove this, we first need a formal definition of the MSE-matrix. We write MSE
for the matrix and MSE for the scalar mean squared error. The MSE-matrix of φ̂

as an estimator of φ is defined as

(23.1.1) MSE [φ̂; φ] = E [(φ̂ − φ)(φ̂ − φ)>] .

Problem 295. 2 points Let θ be a vector of possibly random parameters, and θ̂

an estimator of θ. Show that

(23.1.2) MSE [θ̂; θ] = V[θ̂ − θ] + (E [θ̂ − θ])(E [θ̂ − θ])>.

Don’t assume the scalar result but make a proof that is good for vectors and scalars.

Answer. For any random vector x follows

E [xx>] = E
[
(x − E [x] + E [x])(x − E [x] + E [x])>

]

= E
[
(x − E [x])(x − E [x])>

]
− E
[
(x − E [x])E [x]>

]
− E
[
E [x](x − E [x])>

]
+ E
[
E [x]E [x]>

]

= V[x]− O − O + E [x]E [x]>.

Setting x = θ̂ − θ the statement follows. �

If θ is nonrandom, formula (23.1.2) simplifies slightly, since in this case V [θ̂−θ] =

V [θ̂]. In this case, the MSE matrix is the covariance matrix plus the squared bias

matrix. If θ is nonrandom and in addition θ̂ is unbiased, then the MSE-matrix
coincides with the covariance matrix.

Theorem 23.1.1. Assume φ̂ and φ̃ are two estimators of the parameter φ

(which is allowed to be random itself). Then conditions (23.1.3), (23.1.4), and
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(23.1.5) are equivalent:

For every constant vector t, MSE[t>φ̂; t>φ] ≤ MSE[t>φ̃; t>φ](23.1.3)

MSE [φ̃; φ] −MSE [φ̂; φ] is a nonnegative definite matrix(23.1.4)

For every nnd Θ, E
[
(φ̂ − φ)>Θ(φ̂ − φ)

]
≤ E

[
(φ̃ − φ)>Θ(φ̃ − φ)

]
.(23.1.5)

Proof. Call MSE [φ̃; φ] = σ2Ξ and MSE [φ̂; φ] = σ2ΩΩΩ. To show that (23.1.3)

implies (23.1.4), simply note that MSE[t>φ̂; t>φ] = σ2t>ΩΩΩt and likewise MSE[t>φ̃; t>φ] =
σ2t>Ξt. Therefore (23.1.3) is equivalent to t>(Ξ −ΩΩΩ)t ≥ 0 for all t, which is the
defining property making Ξ−ΩΩΩ nonnegative definite.

Here is the proof that (23.1.4) implies (23.1.5):

E[(φ̂ − φ)>Θ(φ̂ − φ)] = E[tr
(
(φ̂ − φ)>Θ(φ̂ − φ)

)
] =

= E[tr
(
Θ(φ̂ − φ)(φ̂ − φ)>

)
] = tr

(
Θ E [(φ̂ − φ)(φ̂ − φ)>]

)
= σ2 tr

(
ΘΩΩΩ

)

and in the same way

E[(φ̃ − φ)>Θ(φ̃ − φ)] = σ2 tr
(
ΘΞ

)
.

The difference in the expected quadratic forms is therefore σ2 tr
(
Θ(Ξ − ΩΩΩ)

)
. By

assumption, Ξ − ΩΩΩ is nonnegative definite. Therefore, by theorem A.5.6 in the
Mathematical Appendix, or by Problem 296 below, this trace is nonnegative.

To complete the proof, (23.1.5) has (23.1.3) as a special case if one sets Θ =
tt>. �

Problem 296. Show that if Θ and ΣΣΣ are symmetric and nonnegative definite,
then tr(ΘΣΣΣ) ≥ 0. You are allowed to use that tr(AB) = tr(BA), that the trace of a
nonnegative definite matrix is ≥ 0, and Problem 129 (which is trivial).

Answer. Write Θ = RR>; then tr(ΘΣΣΣ) = tr(RR>ΣΣΣ) = tr(R>ΣΣΣR) ≥ 0. �

Problem 297. Consider two very simple-minded estimators of the unknown

nonrandom parameter vector φ =
[
φ1

φ2

]
. Neither of these estimators depends on any

observations, they are constants. The first estimator is φ̂ = [ 11
11 ], and the second is

φ̃ = [ 12
8 ].

• a. 2 points Compute the MSE-matrices of these two estimators if the true
value of the parameter vector is φ = [ 10

10 ]. For which estimator is the trace of the
MSE matrix smaller?
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Answer. φ̂ has smaller trace of the MSE-matrix.

φ̂ − φ =

[
1
1

]

MSE [φ̂;φ] = E [(φ̂ − φ)(φ̂ − φ)>]

= E [

[
1
1

][
1 1

]
] = E [

[
1 1
1 1

]
] =

[
1 1
1 1

]

φ̃ − φ =

[
2
−2

]

MSE [φ̃;φ] =

[
4 −4
−4 4

]

Note that both MSE-matrices are singular, i.e., both estimators allow an error-free look at certain
linear combinations of the parameter vector. �

• b. 1 point Give two vectors g = [ g1g2 ] and h =
[
h1

h2

]
satisfying MSE[g>φ̂; g>φ] <

MSE[g>φ̃; g>φ] and MSE[h>φ̂; h>φ] > MSE[h>φ̃; h>φ] (g and h are not unique;
there are many possibilities).

Answer. With g =
[

1
−1

]
and h =

[
1
1

]
for instance we get g>φ̂ − g>φ = 0, g>φ̃ − g>φ =

4, h>φ̂; h>φ = 2, h>φ̃; h>φ = 0, therefore MSE[g>φ̂; g>φ] = 0, MSE[g>φ̃; g>φ] = 16,

MSE[h>φ̂;h>φ] = 4, MSE[h>φ̃;h>φ] = 0. An alternative way to compute this is e.g.

MSE [h>φ̃;h>φ] =
[
1 −1

][ 4 −4
−4 4

][
1
−1

]
= 16

�

• c. 1 point Show that neither MSE [φ̂; φ] − MSE [φ̃; φ] nor MSE [φ̃; φ] −
MSE [φ̂; φ] is a nonnegative definite matrix. Hint: you are allowed to use the
mathematical fact that if a matrix is nonnegative definite, then its determinant is
nonnegative.

Answer.

(23.1.6) MSE[φ̃;φ] −MSE[φ̂;φ] =

[
3 −5
−5 3

]

Its determinant is negative, and the determinant of its negative is also negative. �



CHAPTER 24

Sampling Properties of the Least Squares
Estimator

The estimator β̂ was derived from a geometric argument, and everything which
we showed so far are what [DM93, p. 3] calls its numerical as opposed to its statistical

properties. But β̂ has also nice statistical or sampling properties. We are assuming
right now the specification given in (18.1.3), in which X is an arbitrary matrix of full
column rank, and we are not assuming that the errors must be Normally distributed.
The assumption that X is nonrandom means that repeated samples are taken with
the same X-matrix. This is often true for experimental data, but not in econometrics.
The sampling properties which we are really interested in are those where also the X-
matrix is random; we will derive those later. For this later derivation, the properties
with fixed X-matrix, which we are going to discuss presently, will be needed as an
intermediate step. The assumption of fixed X is therefore a preliminary technical
assumption, to be dropped later.

In order to know how good the estimator β̂ is, one needs the statistical properties

of its “sampling error” β̂ − β. This sampling error has the following formula:

β̂ − β = (X>X)−1X>y − (X>X)−1X>Xβ =

= (X>X)−1X>(y − Xβ) = (X>X)−1X>ε(24.0.7)

From (24.0.7) follows immediately that β̂ is unbiased, since E [(X>X)−1X>ε] = o.
Unbiasedness does not make an estimator better, but many good estimators are

unbiased, and it simplifies the math.
We will use the MSE-matrix as a criterion for how good an estimator of a vector

of unobserved parameters is. Chapter 23 gave some reasons why this is a sensible
criterion (compare [DM93, Chapter 5.5]).
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24.1. The Gauss Markov Theorem

Returning to the least squares estimator β̂, one obtains, using (24.0.7), that

MSE [β̂; β] = E [(β̂ − β)(β̂ − β)>] = (X>X)−1X> E [εε>]X(X>X)−1 =

= σ2(X>X)−1.(24.1.1)

This is a very simple formula. Its most interesting aspect is that this MSE matrix
does not depend on the value of the true β. In particular this means that it is
bounded with respect to β, which is important for someone who wants to be assured
of a certain accuracy even in the worst possible situation.

Problem 298. 2 points Compute the MSE-matrix MSE [ε̂; ε] = E [(ε̂ − ε)(ε̂ −
ε)>] of the residuals as predictors of the disturbances.

Answer. Write ε̂ − ε = Mε − ε = (M − I)ε = −X(X>X)−1X>ε; therefore MSE [ε̂; ε] =

E [X(X>X)−1X>εε>X(X>X)−1X = σ2X(X>X)−1X>. Alternatively, start with ε̂ − ε =

y − ŷ − ε = Xβ − ŷ = X(β − β̂). This allows to use MSE[ε̂; ε] = X MSE [β̂;β]X> =

σ2X(X>X)−1X>. �

Problem 299. 2 points Let v be a random vector that is a linear transformation
of y, i.e., v = Ty for some constant matrix T . Furthermore v satisfies E [v] = o.
Show that from this follows v = T ε̂. (In other words, no other transformation of y

with zero expected value is more “comprehensive” than ε. However there are many
other transformation of y with zero expected value which are as “comprehensive” as
ε).

Answer. E [v] = TXβ must be o whatever the value of β. Therefore TX = O, from which
follows TM = T . Since ε̂ = My, this gives immediately v = T ε̂. (This is the statistical implication
of the mathematical fact that M is a deficiency matrix of X.) �

Problem 300. 2 points Show that β̂ and ε̂ are uncorrelated, i.e., cov[β̂i, ε̂j ] =

0 for all i, j. Defining the covariance matrix C[β̂, ε̂] as that matrix whose (i, j)

element is cov[β̂i, ε̂j ], this can also be written as C[β̂, ε̂] = O. Hint: The covariance

matrix satisfies the rules C[Ay,Bz] = A C[y, z]B> and C[y,y] = V [y]. (Other rules
for the covariance matrix, which will not be needed here, are C[z,y] = (C[y, z])>,

C[x + y, z] = C[x, z] + C[y, z], C[x,y + z] = C[x,y] + C[x, z], and C[y, c] = O if c is
a vector of constants.)

Answer. A = (X>X)−1X> and B = I−X(X>X)−1X>, therefore C[β̂, ε̂] = σ2(X>X)−1X>(I−
X(X>X)−1X>) = O. �

Problem 301. 4 points Let y = Xβ +ε be a regression model with intercept, in

which the first column of X is the vector ι, and let β̂ the least squares estimator of
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β. Show that the covariance matrix between ȳ and β̂, which is defined as the matrix
(here consisting of one row only) that contains all the covariances

(24.1.2) C[ȳ, β̂] ≡
[
cov[ȳ, β̂1] cov[ȳ, β̂2] · · · cov[ȳ, β̂k]

]

has the following form: C[ȳ, β̂] = σ2

n

[
1 0 · · · 0

]
where n is the number of ob-

servations. Hint: That the regression has an intercept term as first column of the
X-matrix means that Xe(1) = ι, where e(1) is the unit vector having 1 in the first
place and zeros elsewhere, and ι is the vector which has ones everywhere.

Answer. Write both ȳ and β̂ in terms of y, i.e., ȳ = 1
n

ι>y and β̂ = (X>X)−1X>y. There-
fore
(24.1.3)

C[ȳ, β̂] =
1

n
ι> V [y]X(X>X)−1 =

σ2

n
ι>X(X>X)−1 =

σ2

n
e(1)>X>X(X>X)−1 =

σ2

n
e(1)>.

�

Theorem 24.1.1. Gauss-Markov Theorem: β̂ is the BLUE (Best Linear Unbi-
ased Estimator) of β in the following vector sense: for every nonrandom coefficient

vector t, t>β̂ is the scalar BLUE of t>β, i.e., every other linear unbiased estimator

φ̃ = a>y of φ = t>β has a bigger MSE than t>β̂.

Proof. Write the alternative linear estimator φ̃ = a>y in the form

φ̃ =
(
t>(X>X)−1X> + c>

)
y(24.1.4)

then the sampling error is

φ̃− φ =
(
t>(X>X)−1X> + c>

)
(Xβ + ε) − t>β

=
(
t>(X>X)−1X> + c>

)
ε + c>Xβ.(24.1.5)

By assumption, the alternative estimator is unbiased, i.e., the expected value of this
sampling error is zero regardless of the value of β. This is only possible if c>X = o>.
But then it follows

MSE[φ̃;φ] = E[(φ̃ − φ)2] = E[
(
t>(X>X)−1X> + c>

)
εε>(X(X>X)−1t + c

)
] =

= σ2
(
t>(X>X)−1X> + c>

)(
X(X>X)−1t + c

)
= σ2t>(X>X)−1t + σ2c>c,

Here we needed again c>X = o>. Clearly, this is minimized if c = o, in which case

φ̃ = t>β̂. �

Problem 302. 4 points Show: If β̃ is a linear unbiased estimator of β and β̂ is

the OLS estimator, then the difference of the MSE-matrices MSE [β̃; β]−MSE [β̂; β]
is nonnegative definite.
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Answer. (Compare [DM93, p. 159].) Any other linear estimator β̃ of β can be written

as β̃ =
(
(X>X)−1X> + C

)
y. Its expected value is E [β̃] = (X>X)−1X>Xβ + CXβ. For

β̃ to be unbiased, regardless of the value of β, C must satisfy CX = O. But then it follows

MSE[β̃;β] = V[β̃] = σ2
(
(X>X)−1X> + C

)(
X(X>X)−1 + C>

)
= σ2(X>X)−1 + σ2CC>, i.e.,

it exceeds the MSE-matrix of β̂ by a nonnegative definite matrix. �

24.2. Digression about Minimax Estimators

Theorem 24.1.1 is a somewhat puzzling property of the least squares estimator,
since there is no reason in the world to restrict one’s search for good estimators
to unbiased estimators. An alternative and more enlightening characterization of

β̂ does not use the concept of unbiasedness but that of a minimax estimator with
respect to the MSE. For this I am proposing the following definition:

Definition 24.2.1. φ̂ is the linear minimax estimator of the scalar parameter φ
with respect to the MSE if and only if for every other linear estimator φ̃ there exists
a value of the parameter vector β0 such that for all β1

(24.2.1) MSE[φ̃;φ|β = β0] ≥ MSE[φ̂;φ|β = β1]

In other words, the worst that can happen if one uses any other φ̃ is worse than

the worst that can happen if one uses φ̂. Using this concept one can prove the
following:

Theorem 24.2.2. β̂ is a linear minimax estimator of the parameter vector β

in the following sense: for every nonrandom coefficient vector t, t>β̂ is the linear
minimax estimator of the scalar φ = t>β with respect to the MSE. I.e., for every
other linear estimator φ̃ = a>y of φ one can find a value β = β0 for which φ̃ has a

larger MSE than the largest possible MSE of t>β̂.

Proof: as in the proof of Theorem 24.1.1, write the alternative linear estimator
φ̃ in the form φ̃ =

(
t>(X>X)−1X> + c>

)
y, so that the sampling error is given by

(24.1.5). Then it follows
(24.2.2)

MSE[φ̃;φ] = E[(φ̃−φ)2] = E[
((

t>(X>X)−1X>+c>
)
ε+c>Xβ

)(
ε>(X(X>X)−1t+c

)
+β>X>c

)
]

(24.2.3) = σ2
(
t>(X>X)−1X> + c>

)(
X(X>X)−1t + c

)
+ c>Xββ>X>c

Now there are two cases: if c>X = o>, then MSE[φ̃;φ] = σ2t>(X>X)−1t+σ2c>c.
This does not depend on β and if c 6= o then this MSE is larger than that for c = o.
If c>X 6= o>, then MSE[φ̃;φ] is unbounded, i.e., for any finite number ω one one

can always find a β0 for which MSE[φ̃;φ] > ω. Since MSE[φ̂;φ] is bounded, a β0

can be found that satisfies (24.2.1).
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If we characterize the BLUE as a minimax estimator, we are using a consistent
and unified principle. It is based on the concept of the MSE alone, not on a mix-
ture between the concepts of unbiasedness and the MSE. This explains why the
mathematical theory of the least squares estimator is so rich.

On the other hand, a minimax strategy is not a good estimation strategy. Nature
is not the adversary of the researcher; it does not maliciously choose β in such a way
that the researcher will be misled. This explains why the least squares principle,
despite the beauty of its mathematical theory, does not give terribly good estimators
(in fact, they are inadmissible, see the Section about the Stein rule below).

β̂ is therefore simultaneously the solution to two very different minimization
problems. We will refer to it as the OLS estimate if we refer to its property of
minimizing the sum of squared errors, and as the BLUE estimator if we think of it
as the best linear unbiased estimator.

Note that even if σ2 were known, one could not get a better linear unbiased
estimator of β.

24.3. Miscellaneous Properties of the BLUE

Problem 303.

• a. 1 point Instead of (18.2.22) one sometimes sees the formula

(24.3.1) β̂ =

∑
(xt − x̄)yt∑
(xt − x̄)2

.

for the slope parameter in the simple regression. Show that these formulas are math-
ematically equivalent.

Answer. Equivalence of (24.3.1) and (18.2.22) follows from
∑

(xt− x̄) = 0 and therefore also

ȳ
∑

(xt − x̄) = 0. Alternative proof, using matrix notation and the matrix D defined in Problem

189: (18.2.22) is x>D>Dy

x>D>Dx
and (24.3.1) is x>Dy

x>D>Dx
. They are equal because D is symmetric and

idempotent.
�

• b. 1 point Show that

(24.3.2) var[β̂] =
σ2

∑
(xi − x̄)2

Answer. Write (24.3.1) as

(24.3.3) β̂ =
1∑

(xt − x̄)2

∑
(xt − x̄)yt ⇒ var[β̂] =

1(∑
(xt − x̄)2

)2
∑

(xt − x̄)2σ2

�

• c. 2 points Show that cov[β̂, ȳ] = 0.
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Answer. This is a special case of problem 301, but it can be easily shown here separately:

cov[β̂, ȳ] = cov

[∑
s
(xs − x̄)ys∑
t
(xt − x̄)2

,
1

n

∑

j

yj

]
=

1

n
∑

t
(xt − x̄)2

cov

[∑

s

(xs − x̄)ys,
∑

j

yj

]
=

=
1

n
∑

t
(xt − x̄)2

∑

s

(xs − x̄)σ2 = 0.

�

• d. 2 points Using (18.2.23) show that

(24.3.4) var[α̂] = σ2
( 1

n
+

x̄2

∑
(xi − x̄)2

)

Problem 304. You have two data vectors xi and yi (i = 1, . . . , n), and the true
model is

(24.3.5) yi = βxi + εi

where xi and εi satisfy the basic assumptions of the linear regression model. The
least squares estimator for this model is

(24.3.6) β̃ = (x>x)−1x>y =

∑
xiyi∑
x2
i

• a. 1 point Is β̃ an unbiased estimator of β? (Proof is required.)

Answer. First derive a nice expression for β̃ − β:

β̃ − β =

∑
xiyi∑
x2
i

−
∑

x2
i β∑
x2
i

=

∑
xi(yi − xiβ)∑

x2
i

=

∑
xiεi∑
x2
i

since yi = βxi + εi

E[β̃ − β] = E

[∑
xiεi∑
x2
i

]

=

∑
E[xiεi]∑
x2
i

=

∑
xi E[εi]∑
x2
i

= 0 since E εi = 0.

�

• b. 2 points Derive the variance of β̃. (Show your work.)
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Answer.

var β̃ = E[β̃ − β]2

= E

(∑
xiεi∑
x2
i

)2

=
1

(
∑

x2
i )

2
E[
∑

xiεi]
2

=
1

(
∑

x2
i )

2

(
E
∑

(xiεi)
2 + 2 E

∑

i<j

(xiεi)(xjεj)

)

=
1

(
∑

x2
i )

2

∑
E[xiεi]

2 since the εi’s are uncorrelated, i.e., cov[εi, εj ] = 0 for i 6= j

=
1

(
∑

x2
i )

2
σ2
∑

x2
i since all εi have equal variance σ2

=
σ2∑
x2
i

.

�

Problem 305. We still assume (24.3.5) is the true model. Consider an alter-
native estimator:

(24.3.7) β̂ =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2

i.e., the estimator which would be the best linear unbiased estimator if the true model
were (18.2.15).

• a. 2 points Is β̂ still an unbiased estimator of β if (24.3.5) is the true model?
(A short but rigorous argument may save you a lot of algebra here).
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Answer. One can argue it: β̂ is unbiased for model (18.2.15) whatever the value of α or β,
therefore also when α = 0, i.e., when the model is (24.3.5). But here is the pedestrian way:

β̂ =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
=

∑
(xi − x̄)yi∑
(xi − x̄)2

since
∑

(xi − x̄)ȳ = 0

=

∑
(xi − x̄)(βxi + εi)∑

(xi − x̄)2
since yi = βxi + εi

= β

∑
(xi − x̄)xi∑
(xi − x̄)2

+

∑
(xi − x̄)εi∑
(xi − x̄)2

= β +

∑
(xi − x̄)εi∑
(xi − x̄)2

since
∑

(xi − x̄)xi =
∑

(xi − x̄)2

E β̂ = E β + E

∑
(xi − x̄)εi∑
(xi − x̄)2

= β +

∑
(xi − x̄) E εi∑

(xi − x̄)2
= β since E εi = 0 for all i, i.e., β̂ is unbiased.

�

• b. 2 points Derive the variance of β̂ if (24.3.5) is the true model.

Answer. One can again argue it: since the formula for var β̂ does not depend on what the
true value of α is, it is the same formula.

var β̂ = var

(
β +

∑
(xi − x̄)εi∑
(xi − x̄)2

)
(24.3.8)

= var

(∑
(xi − x̄)εi∑
(xi − x̄)2

)
(24.3.9)

=

∑
(xi − x̄)2 var εi

(
∑

(xi − x̄)2)2
since cov[εiεj ] = 0(24.3.10)

=
σ2

∑
(xi − x̄)2

.(24.3.11)

�

• c. 1 point Still assuming (24.3.5) is the true model, would you prefer β̂ or the

β̃ from Problem 304 as an estimator of β?

Answer. Since β̃ and β̂ are both unbiased estimators, if (24.3.5) is the true model, the pre-

ferred estimator is the one with the smaller variance. As I will show, var β̃ ≤ var β̂ and, therefore,

β̃ is preferred to β̂. To show

var β̂ =
σ2∑

(xi − x̄)2
≥ σ2∑

x2
i

= var β̃(24.3.12)

one must show
∑

(xi − x̄)2 ≤
∑

x2
i(24.3.13)
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which is a simple consequence of (12.1.1). Thus var β̂ ≥ var β̃; the variances are equal only if x̄ = 0,

i.e., if β̃ = β̂. �

Problem 306. Suppose the true model is (18.2.15) and the basic assumptions
are satisfied.

• a. 2 points In this situation, β̃ =

∑
xiyi∑
x2

i

is generally a biased estimator of β.

Show that its bias is

(24.3.14) E[β̃ − β] = α
nx̄∑
x2
i

Answer. In situations like this it is always worth while to get a nice simple expression for the
sampling error:

β̃ − β =

∑
xiyi∑
x2
i

− β(24.3.15)

=

∑
xi(α+ βxi + εi)∑

x2
i

− β since yi = α+ βxi + εi(24.3.16)

= α

∑
xi∑
x2
i

+ β

∑
x2
i∑
x2
i

+

∑
xiεi∑
x2
i

− β(24.3.17)

= α

∑
xi∑
x2
i

+

∑
xiεi∑
x2
i

(24.3.18)

E[β̃ − β] = Eα

∑
xi∑
x2
i

+ E

∑
xiεi∑
x2
i

(24.3.19)

= α

∑
xi∑
x2
i

+

∑
xi E εi∑
x2
i

(24.3.20)

= α

∑
xi∑
x2
i

+ 0 = α
nx̄∑
x2
i

(24.3.21)

This is 6= 0 unless x̄ = 0 or α = 0. �

• b. 2 points Compute var[β̃]. Is it greater or smaller than

(24.3.22)
σ2

∑
(xi − x̄)2

which is the variance of the OLS estimator in this model?
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Answer.

var β̃ = var

[∑
xiyi∑
x2
i

]
(24.3.23)

=
1(∑
x2
i

)2 var[
∑

xiyi](24.3.24)

=
1(∑
x2
i

)2
∑

x2
i var[yi](24.3.25)

=
σ2

(∑
x2
i

)2
∑

x2
i since all yi are uncorrelated and have equal variance σ2(24.3.26)

=
σ2

∑
x2
i

.(24.3.27)

This variance is smaller or equal because
∑

x2
i ≥
∑

(xi − x̄)2 . �

• c. 5 points Show that the MSE of β̃ is smaller than that of the OLS estimator
if and only if the unknown true parameters α and σ2 satisfy the equation

(24.3.28)
α2

σ2
(

1
n + x̄2∑

(xi−x̄)2

) < 1

Answer. This implies some tedious algebra. Here it is important to set it up right.

MSE[β̃; β] =
σ2

∑
x2
i

+

(
αnx̄∑
x2
i

)2

≤ σ2

∑
(xi − x̄)2

(
αnx̄∑
x2
i

)2

≤ σ2

∑
(xi − x̄)2

− σ2

∑
x2
i

=
σ2
(∑

x2
i −
∑

(xi − x̄)2
)

∑
(xi − x̄)2

∑
x2
i

=
σ2nx̄2

∑
(xi − x̄)2

∑
x2
i

α2n∑
x2
i

=
α2

1
n

∑
(xi − x̄)2 + x̄2

≤ σ2∑
(xi − x̄)2

α2

σ2
(

1
n

+ x̄2∑
(xi−x̄)2

) ≤ 1

Now look at this lefthand side; it is amazing and surprising that it is exactly the population
equivalent of the F-test for testing α = 0 in the regression with intercept. It can be estimated by
replacing α2 with α̂2 and σ2 with s2 (in the regression with intercept). Let’s look at this statistic.
If α = 0 it has a F-distribution with 1 and n− 2 degrees of freedom. If α 6= 0 it has what is called
a noncentral distribution, and the only thing we needed to know so far was that it was likely to
assume larger values than with α = 0. This is why a small value of that statistic supported the
hypothesis that α = 0. But in the present case we are not testing whether α = 0 but whether the
constrained MSE is better than the unconstrained. This is the case of the above inequality holds,
the limiting case being that it is an equality. If it is an equality, then the above statistic has a F

distribution with noncentrality parameter 1/2. (Here all we need to know that: if z ∼ N(µ, 1) then
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z2 ∼ χ2
1 with noncentrality parameter µ2/2. A noncentral F has a noncentral χ2 in numerator and

a central one in denominator.) The testing principle is therefore: compare the observed value with
the upper α point of a F distribution with noncentrality parameter 1/2. This gives higher critical
values than testing for α = 0; i.e., one may reject that α = 0 but not reject that the MSE of the
contrained estimator is larger. This is as it should be. Compare [Gre97, 8.5.1 pp. 405–408] on
this. �

From the Gauss-Markov theorem follows that for every nonrandom matrix R,

the BLUE of φ = Rβ is φ̂ = Rβ̂. Furthermore, the best linear unbiased predictor

(BLUP) of ε = y − Xβ is the vector of residuals ε̂ = y − Xβ̂.

Problem 307. Let ε̃ = Ay be a linear predictor of the disturbance vector ε in
the model y = Xβ + ε with ε ∼ (o, σ2I).

• a. 2 points Show that ε̃ is unbiased, i.e., E[ε̃ − ε] = o, regardless of the value
of β, if and only if A satisfies AX = O.

Answer. E [Ay − ε] = E [AXβ + Aε − ε] = AXβ + o − o. This is = o for all β if and only if
AX = O �

• b. 2 points Which unbiased linear predictor ε̃ = Ay of ε minimizes the MSE-
matrix E [(ε̃− ε)(ε̃− ε)>]? Hint: Write A = I −X(X>X)−1X> + C. What is the
minimum value of this MSE-matrix?

Answer. Since AX = O, the prediction error Ay− ε = AXβ + Aε− ε = (A− I)ε; therefore
one minimizes σ2(A− I)(A− I)> s. t. AX = O. Using the hint, C must also satisfy CX = O, and

(A − I)(A − I)> = (C − X(X>X)−1X>)(C> − X(X>X)−1X>) = X(X>X)−1X> + CC>,

therefore one must set C = O. Minimum value is σ2X(X>X)−1X>.
�

• c. How does this best predictor relate to the OLS estimator β̂?

Answer. It is equal to the residual vector ε̂ = y − Xβ̂. �

Problem 308. This is a vector generalization of problem 198. Let β̂ the BLUE
of β and β̃ an arbitrary linear unbiased estimator of β.

• a. 2 points Show that C[β̂ − β̃, β̂] = O.

Answer. Say β̃ = B̃y; unbiasedness means B̃X = I. Therefore

C[β̂ − β̃, β̂] = C[
(
(X>X)−1X> − B̃

)
y, (X>X)−1X>y]

=
(
(X>X)−1X> − B̃

)
V[y]X(X>X)−1

= σ2
(
(X>X)−1X> − B̃

)
X(X>X)−1

= σ2
(
(X>X)−1 − (X>X)−1

)
= O.

�

• b. 2 points Show that MSE [β̃; β] = MSE [β̂; β] + V [β̃ − β̂]

340 24. SAMPLING PROPERTIES OF THE LEAST SQUARES ESTIMATOR

Answer. Due to unbiasedness, MSE = V, and the decomposition β̃ = β̂ + (β̃ − β̂) is an

uncorrelated sum. Here is more detail: MSE [β̃;β] = V[β̃] = V[β̂ + β̃ − β̂] = V[β̂] + C[β̂, β̃ − β̂] +

C[β̃ − β̂, β̂] + V[β̃ − β̂] but the two C-terms are the null matrices. �

Problem 309. 3 points Given a simple regression yt = α+ βxt + εt, where the
εt are independent and identically distributed with mean µ and variance σ2. Is it
possible to consistently estimate all four parameters α, β, σ2, and µ? If yes, explain
how you would estimate them, and if no, what is the best you can do?

Answer. Call ε̃t = εt − µ, then the equation reads yt = α+ µ+ βxt + ε̃t, with well behaved
disturbances. Therefore one can estimate α + µ, β, and σ2 . This is also the best one can do; if
α+ µ are equal, the yt have the same joint distribution. �

Problem 310. 3 points The model is y = Xβ + ε but all rows of the X-matrix
are exactly equal. What can you do? Can you estimate β? If not, are there any linear
combinations of the components of β which you can estimate? Can you estimate σ2?

Answer. If all rows are equal, then each column is a multiple of ι. Therefore, if there are more
than one column, none of the individual components of β can be estimated. But you can estimate
x>β (if x is one of the row vectors of X) and you can estimate σ2. �

Problem 311. This is [JHG+88, 5.3.32]: Consider the log-linear statistical
model

(24.3.29) yt = αxβt exp εt = zt exp εt

with “well-behaved” disturbances εt. Here zt = αxβt is the systematic portion of yt,
which depends on xt. (This functional form is often used in models of demand and
production.)

• a. 1 point Can this be estimated with the regression formalism?

Answer. Yes, simply take logs:

(24.3.30) log yt = logα+ β log xt + εt

�

• b. 1 point Show that the elasticity of the functional relationship between xt and
zt

(24.3.31) η =
∂zt/zt
∂xt/xt

does not depend on t, i.e., it is the same for all observations. Many authors talk
about the elasticity of yt with respect to xt, but one should really only talk about the
elasticity of zt with respect to xt, where zt is the systematic part of yt which can be
estimated by ŷt.
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Answer. The systematic functional relationship is log zt = logα+ β log xt; therefore

(24.3.32)
∂ log zt

∂zt
=

1

zt

which can be rewritten as

(24.3.33)
∂zt

zt
= ∂ log zt;

The same can be done with xt; therefore

(24.3.34)
∂zt/zt

∂xt/xt
=
∂ log zt

∂ log xt
= β

What we just did was a tricky way to take a derivative. A less tricky way is:

(24.3.35)
∂zt

∂xt
= αβxβ−1

t = βzt/xt

Therefore

(24.3.36)
∂zt

∂xt

xt

zt
= β

�

Problem 312.

• a. 2 points What is the elasticity in the simple regression yt = α+ βxt + εt?

Answer.

(24.3.37) ηt =
∂zt/zt

∂xt/xt
=
∂zt

∂xt

xt

zt
=
βxt

zt
=

βxt

α+ βxt

This depends on the observation, and if one wants one number, a good way is to evaluate it at
x̄. �

• b. Show that an estimate of this elasticity evaluated at x̄ is h = β̂x̄
ȳ

.

Answer. This comes from the fact that the fitted regression line goes through the point x̄, ȳ.
If one uses the other definition of elasticity, which Greene uses on p. 227 but no longer on p. 280,
and which I think does not make much sense, one gets the same formula:

(24.3.38) ηt =
∂yt/yt

∂xt/xt
=
∂yt

∂xt

xt

yt
=
βxt

yt

This is different than (24.3.37), but if one evaluates it at the sample mean, both formulas give the

same result β̂x̄
ȳ

. �

• c. Show by the delta method that the estimator

(24.3.39) h =
β̂x̄

ȳ

of the elasticity in the simple regression model has the estimated asymptotic variance

(24.3.40) s2
[
−h
ȳ

x̄(1−h)
ȳ

] [1 x̄
x̄ x̄2

]−1
[ −h

ȳ
x̄(1−h)

ȳ

]
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• d. Compare [Gre97, example 6.20 on p. 280]. Assume

(24.3.41)
1

n
(X>X) =

[
1 x̄
x̄ x̄2

]
→ Q =

[
1 q
q r

]

where we assume for the sake of the argument that q is known. The true elasticity
of the underlying functional relationship, evaluated at lim x̄, is

(24.3.42) η =
qβ

α+ qβ

Then

(24.3.43) h =
qβ̂

α̂ + qβ̂

is a consistent estimate for η.

A generalization of the log-linear model is the translog model, which is a second-
order approximation to an unknown functional form, and which allows to model
second-order effects such as elasticities of substitution etc. Used to model production,
cost, and utility functions. Start with any function v = f(u1, . . . , un) and make a
second-order Taylor development around u = o:

(24.3.44) v = f(o) +
∑

ui
∂f

∂ui

∣∣
u=o

+
1

2

∑

i,j

uiuj
∂2f

∂ui∂uj

∣∣
u=o

Now say v = log(y) and ui = log(xi), and the values of f and its derivatives at o are
the coefficients to be estimated:

(24.3.45) log(y) = α+
∑

βi logxi +
1

2

∑

i,j

γij logxi logxj + ε

Note that by Young’s theorem it must be true that γkl = γlk.
The semi-log model is often used to model growth rates:

(24.3.46) log yt = x>
t β + εt

Here usually one of the columns of X is the time subscript t itself; [Gre97, p. 227]
writes it as

(24.3.47) log yt = x>
t β + tδ + εt

where δ is the autonomous growth rate. The logistic functional form is appropriate
for adoption rates 0 ≤ yt ≤ 1: the rate of adoption is slow at first, then rapid as the
innovation gains popularity, then slow again as the market becomes saturated:

(24.3.48) yt =
exp(x>

t β + tδ + εt)

1 + exp(x>
t β + tδ + εt)
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This can be linearized by the logit transformation:

(24.3.49) logit(yt) = log
yt

1 − yt
= x>

t β + tδ + εt

Problem 313. 3 points Given a simple regression yt = αt + βxt which deviates
from an ordinary regression in two ways: (1) There is no disturbance term. (2) The
“constant term” αt is random, i.e., in each time period t, the value of αt is obtained
by an independent drawing from a population with unknown mean µ and unknown
variance σ2. Is it possible to estimate all three parameters β, σ2, and µ, and to
“predict” each αt? (Here I am using the term “prediction” for the estimation of a
random parameter.) If yes, explain how you would estimate it, and if not, what is
the best you can do?

Answer. Call εt = αt − µ, then the equation reads yt = µ + βxt + εt, with well behaved
disturbances. Therefore one can estimate all the unknown parameters, and predict αt by µ̂+εt. �

24.4. Estimation of the Variance

The formulas in this section use g-inverses (compare (A.3.1)) and are valid even
if not all columns of X are linearly independent. q is the rank if X. The proofs are
not any more complicated than in the case that X has full rank, if one keeps in mind
identity (A.3.3) and some other simple properties of g-inverses which are tacitly used
at various places. Those readers who are only interested in the full-rank case should
simply substitute (X>X)−1 for (X>X)− and k for q (k is the number of columns
of X).

SSE, the attained minimum value of the Least Squares objective function, is a
random variable too and we will now compute its expected value. It turns out that

(24.4.1) E[SSE] = σ2(n− q)

Proof. SSE = ε̂>ε̂, where ε̂ = y − Xβ̂ = y − X(X>X)−X>y = My,

with M = I − X(X>X)−X>. From MX = O follows ε̂ = M (Xβ + ε) =
Mε. Since M is idempotent and symmetric, it follows ε̂>ε̂ = ε>Mε, therefore
E[ε̂>ε̂] = E[tr ε>Mε] = E[trMεε>] = σ2 trM = σ2 tr(I − X(X>X)−X>) =

σ2(n− tr(X>X)−X>X) = σ2(n− q). �

Problem 314.

• a. 2 points Show that

SSE = ε>Mε where M = I − X(X>X)−X>(24.4.2)

Answer. SSE = ε̂>ε̂, where ε̂ = y − Xβ̂ = y − X(X>X)−X>y = My where M =

I − X(X>X)−X>. From MX = O follows ε̂ = M(Xβ + ε) = Mε. Since M is idempotent and
symmetric, it follows ε̂>ε̂ = ε>Mε. �
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• b. 1 point Is SSE observed? Is ε observed? Is M observed?

• c. 3 points Under the usual assumption that X has full column rank, show that

(24.4.3) E[SSE] = σ2(n− k)

Answer. E[ε̂>ε̂] = E[tr ε>Mε] = E[trMεε>] = σ2 tr M = σ2 tr(I − X(X>X)−X>) =

σ2(n− tr(X>X)−X>X) = σ2(n− k). �

Problem 315. As an alternative proof of (24.4.3) show that SSE = y>My and
use theorem 9.2.1.

From (24.4.3) follows that SSE/(n− q) is an unbiased estimate of σ2. Although
it is commonly suggested that s2 = SSE/(n − q) is an optimal estimator of σ2, this
is a fallacy. The question which estimator of σ2 is best depends on the kurtosis of
the distribution of the error terms. For instance, if the kurtosis is zero, which is the
case when the error terms are normal, then a different scalar multiple of the SSE,
namely, the Theil-Schweitzer estimator from [TS61]

(24.4.4) σ̂2
TS =

1

n− q + 2
y>My =

1

n− q + 2

n∑

i=1

ε̂2
i ,

is biased but has lower MSE than s2. Compare problem 191. The only thing one
can say about s2 is that it is a fairly good estimator which one can use when one
does not know the kurtosis (but even in this case it is not the best one can do).

24.5. Mallow’s Cp-Statistic as Estimator of the Mean Squared Error

Problem 316. We will compute here the MSE-matrix of ŷ as an estimator of

E [y] in a regression which does not use the correct X-matrix. For this we assume
that y = η+ε with ε ∼ (o, σ2I). η = E [y] is an arbitrary vector of constants, and we
do not assume that η = Xβ for some β, i.e., we do not assume that X contains all
the necessary explanatory variables. Regression of y on X gives the OLS estimator

β̂ = (X>X)−X>y.

• a. 2 points Show that the MSE matrix of ŷ = Xβ̂ as estimator of η is

(24.5.1) MSE [Xβ̂; η] = σ2X(X>X)−X> + Mηη>M

where M = I − X(X>X)−X>.

• b. 1 point Formula (24.5.1) for the MSE matrix depends on the unknown σ2

and η and is therefore useless for estimation. If one cannot get an estimate of the
whole MSE matrix, an often-used second best choice is its trace. Show that

(24.5.2) trMSE [Xβ̂; η] = σ2q + η>Mη.

where q is the rank of X.
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• c. 3 points If an unbiased estimator of the true σ2 is available (call it s2), then
an unbiased estimator of the righthand side of (24.5.2) can be constructed using this
s2 and the SSE of the regression SSE = y>My. Show that

(24.5.3) E[SSE − (n− 2q)s2] = σ2q + η>Mη.

Hint: use equation (9.2.1). If one does not have an unbiased estimator s2 of σ2, one
usually gets such an estimator by regressing y on an X matrix which is so large that
one can assume that it contains the true regressors.

The statistic

(24.5.4) Cp =
SSE

s2
+ 2q − n

is called Mallow’s Cp statistic. It is a consistent estimator of trMSE [Xβ̂; η]/σ2. If
X contains all necessary variables, i.e., η = Xβ for some β, then (24.5.2) becomes

trMSE [Xβ̂; η] = σ2q, i.e., in this case Cp should be close to q. Therefore the
selection rule for regressions should be here to pick that regression for which the
Cp-value is closest to q. (This is an explanation; nothing to prove here.)

If one therefore has several regressions and tries to decide which is the right one,
it is recommended to plot Cp versus q for all regressions, and choose one for which
this value is small and lies close to the diagonal. An example of this is given in
problem 286.

24.6. Optimality of Variance Estimators

Regarding the estimator of σ2, [Ati62] has the following result regarding mini-
mum variance unbiased estimators:

Theorem 24.6.1. Assume y = Xβ + ε where

E[εi] = 0(24.6.1)

E[εiεj ] = σ2 if i = j and 0 otherwise

(24.6.2)

E[εiεjεk] =

{
σ3γ1 if i = j = k

0 otherwise

(24.6.3)

E[εiεjεkεl] =





σ4(γ2 + 3) if i = j = k = l

σ4 if i = j 6= k = l or i = k 6= j = l or i = l 6= j = k

0 otherwise.

(24.6.4)
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(Here γ1 is the skewness and γ2 the kurtosis of εi.) This is for instance satisfied
whenever all εi are independent drawings from the same population with E[εi] = 0
and equal variances var[εi] = σ2.

If either γ2 = 0 (which is for instance the case when ε is normally distributed),

or if X is such that all diagonal elements of X(X>X)−X> are equal, then the
minimum MSE estimator in the class of unbiased estimators of σ2, whatever the
mean or dispersion matrix of β or its covariance matrix with ε may be, and which
can be written in the form y>Ay with a nonnegative definite A, is

(24.6.5) s2 =
1

n− q
y>(I − X(X>X)−X>)y,

and

(24.6.6) E[(s2 − σ2)2] = var[s2] = σ4
( 2

n− q
+
γ2

n

)
.

Proof: For notational convenience we will look at unbiased estimators of the
form y>Ay of (n − q)σ2, and at the end divide by n − q. If β is nonrandom, then

E[y>Ay] = σ2 tr A + β>X>AXβ, and the estimator is unbiased iff X>AX = O

and tr A = n−q. Since A is assumed nonnegative definite, X>AX = O is equivalent
to AX = O. From AX = O follows y>Ay = ε>Aε, therefore the distribution of
β no longer matters and (9.2.27) simplifies to

(24.6.7) var[ε>Aε] = σ4(γ2a
>a + 2 tr(A2))

Now take an arbitrary nonnegative definite A with AX = O and trA = n−q. Write
it in the form A = M + D, where M = I − X(X>X)−X>, and correspondingly
a = m + d. The condition AX = O is equivalent to AM = A or, expressed in D

instead of A, (M + D)M = M + D, which simplifies to DM = D. Furthermore,
trA = n − q translates into trD = 0. Hence A2 = M + 2D + D2, and tr A2 =
n− q + trD2. Plugged into (24.6.7) this gives

var[ε>Aε] = σ4
(
γ2(m

>m + 2m>d + d>d) + 2(n− q + tr D2)
)

(24.6.8)

= var[ε>Mε] + σ4
(
γ2(2m>d + d>d) + 2 trD2

)
(24.6.9)

= var[ε>Mε] + σ4
(
γ2

(
2
∑

i

miidii +
∑

i

d2
ii

)
+ 2

∑

i,j

d2
ij

)
.(24.6.10)

The minimization of this variance is easy if γ2 = 0; then it follows D = O. The
other case where one can easily do it is if X is such that the diagonal elements of
M are all equal; then the first of the three summation terms is a multiple of tr D,
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which is zero, and one obtains

(24.6.11) var[ε>Aε] = var[ε>Mε] + σ4
(
(γ2 + 2)

∑

i

d2
ii + 2

∑

i,j: i6=j
d2
ij

)
.

Since γ2 + 2 ≥ 0 always, this is again minimized if D = O. If all diagonal elements
of M are equal, they must have the value (n − q)/n, since tr M = n− q. therefore
m>m = (n− q)2/n, from which the formula for the MSE follows.

Problem 317. Show that, if A is not nnd, then X>AX = O does not neces-
sarily imply AX = O.

Answer. Counterexample: A =

[
1 0
0 −1

]
and x =

[
1
1

]
. �



CHAPTER 25

Variance Estimation: Should One Require
Unbiasedness?

There is an imperfect analogy between linear estimation of the coefficients and
quadratic estimation of the variance in the linear model. This chapter sorts out the
principal commonalities and differences, a task obscured by the widespread but un-
warranted imposition of the unbiasedness assumption. It is based on an unpublished
paper co-authored with Peter Ochshorn.

We will work in the usual regression model

(25.0.12) y = Xβ + ε,

where y is a vector of n observations, X is nonstochastic with rank r < n, and the
disturbance vector ε satisfies E [ε] = o and E [εε>] = σ2I . The nonstochastic vector
β and scalar σ2 > 0 are the parameters to be estimated. The usual estimator of σ2

is

(25.0.13) s2 =
1

n− r
y>My =

1

n− r

n∑

i=1

ε̂2
i

where M = I−X(X>X)−X> and ε̂ = My. If X has full rank, then ε̂ = y−Xβ̂,

where β̂ is the least squares estimator of β. Just as β̂ is the best (minimum mean
square error) linear unbiased estimator of β, it has been shown in [Ati62], see also
[Seb77, pp. 52/3], that under certain additional assumptions, s2 is the best unbiased
estimator of σ2 which can be written in the form y>Ay with a nonnegative definite
A. A precise formulation of these additional assumptions will be given below; they
are, for instance, satisfied if X = ι, the vector of ones, and the εi are i.i.d. But they
are also satisfied for arbitrary X if ε is normally distributed. (In this last case, s2 is
best in the larger class of all unbiased estimators.)

This suggests an analogy between linear and quadratic estimation which is, how-
ever, by no means perfect. The results just cited pose the following puzzles:

• Why is s2 not best nonnegative quadratic unbiased for arbitrary X-matrix
whenever the εi are i.i.d. with zero mean? What is the common logic behind
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the two disparate alternatives, that either restrictions on X or restrictions
on the distribution of the εi can make s2 optimal?

• It comes as a surprise that, again under the assumption of normality, a
very simple modification of s2, namely, the Theil-Schweitzer estimator from
[TS61]

(25.0.14) σ̂2 =
1

n− r + 2
y>My =

1

n− r + 2

n∑

i=1

ε̂2
i ,

which is biased, has lower mean square error (MSE) than s2.
• It is unclear why it is necessary to require ex ante that A is nonnegative

definite. Wouldn’t estimators which can yield negative values for σ2 be
automatically inferior to nonnegative ones?

We will show that these puzzles can be resolved if one replaces the requirement of
unbiasedness by that of bounded MSE. (This is particularly satisfying since such
a replacement is also called for in the case of linear estimators.) Then puzzle (2)
disappears: the Theil-Schweitzer estimator is no longer an oddity but it is the best
bounded MSE quadratic estimator of σ2 when the kurtosis is zero. And puzzle (3)
disappears as well: nonnegativity is only necessary because unbiasedness alone does
not imply bounded MSE. Under this approach it becomes evident that there are
two important disanalogies between linear and quadratic estimation: whereas the

best bounded MSE linear estimator β̂ of β is (a) unbiased and (b) does not depend
on the nuisance parameter σ2, the best quadratic bounded MSE estimator of σ2

is (a) biased and (b) depends on a fourth-order nuisance parameter, the kurtosis
of the disturbances. This, again, helps to dispel the false suggestiveness of puzzle
(1). The main assumption is distributional. If the kurtosis is known, then the best
nonnegative quadratic unbiased estimator exists. However it is uninteresting, since
the (biased) best bounded MSE quadratic estimator is better. The class of unbiased
estimators only then becomes interesting when the kurtosis is not known: for certain
X-matrices, the best nonnegative quadratic unbiased estimator does not depend on
the kurtosis.

However even if the kurtosis is not known, this paper proposes to use as estimate
of σ2 the maximum value which one gets when one applies the best bonded mean
squared error estimator for all possible values of the kurtosis.

25.1. Setting the Framework Straight

The assumption of unbiasedness has often been criticized. Despite its high-
sounding name, there are no good reasons that one should confine one’s search for
good estimators to unbiased ones. Many good estimators are unbiased, but the
property of unbiasedness has no bearing on how good an estimator is. In many cases
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unbiased estimators do not exist or are not desirable. It is indeed surprising that the
powerful building of least squares theory seems to rest on such a flimsy assumption
as unbiasedness.

G. A. Barnard, in [Bar63], noted this and proposed to replace unbiasedness by
bounded MSE, a requirement which can be justified by the researcher following an
“insurance strategy”: no bad surprises regarding the MSE of the estimator, what-
ever the value of the true β. Barnard’s suggestion has not found entrance into the
textbooks—and indeed, since linear estimators in model (25.0.12) are unbiased if and
only if they have bounded MSE, it might be considered an academic question.

It is usually not recognized that even in the linear case, the assumption of
bounded MSE serves to unify the theory. Christensen’s monograph [Chr87] treats,
as we do here in chapter 27, best linear prediction on the basis of known first and
second moments in parallel with the regression model. Both models have much in
common, but there is one result which seems to set them apart: best linear predic-
tors exist in one, but only best linear unbiased predictors in the other [Chr87, p.
226]. If one considers bounded MSE to be one of the basic assumptions, this seeming
irregularity is easily explained: If the first and second moments are known, then ev-
ery linear predictor has bounded MSE, while in the regression model only unbiased
linear estimators do.

One might still argue that no real harm is done with the assumption of unbiased-
ness, because in the linear case, the best bounded MSE estimators or predictors turn
out to be unbiased. This last defense of unbiasedness falls if one goes from linear to
quadratic estimation. We will show that the best bounded MSE quadratic estimator
is biased.

As in the the linear case, it is possible to derive these results without fully specify-
ing the distributions involved. In order to compute the MSE of linear estimators, one
needs to know the first and second moments of the disturbances, which is reflected
in the usual assumption ε ∼ (o, σ2I). For the MSE of quadratic estimators, one also
needs information about the third and fourth moments. We will therefore derive
optimal quadratic estimators of σ2 based on the following assumptions regarding the
first four moments, which are satisfied whenever the εi are independently identically
distributed:
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Assumption. A vector of n observations y = Xβ + ε is available, where εi
satisfy

E[εi] = 0(25.1.1)

E[εiεj ] =

{
σ2 > 0 if i = j

0 otherwise
(25.1.2)

E[εiεjεk] =

{
σ3γ1 if i = j = k

0 otherwise

(25.1.3)

E[εiεjεkεl] =





σ4(γ2 + 3) if i = j = k = l

σ4 if i = j 6= k = l or i = k 6= j = l or i = l 6= j = k

0 otherwise.

(25.1.4)

Here γ1 is the skewness and γ2 the kurtosis of εi. They are allowed to range within
their natural limits

(25.1.5) 0 ≤ γ2
1 ≤ γ2 + 2.

Problem 318. Show that the condition (25.1.5), γ2
1 ≤ γ2 + 2, always holds.

Answer.

(25.1.6) (σ3γ1)2 = (E[ε3])2 =
(
cov[ε, ε2]

)2 ≤ var[ε] var[ε2] = σ6(γ2 + 2)

�

The concept of bounded MSE which is appropriate here requires the bound to be
independent of the true value of β, but it may depend on the “nuisance parameters”
σ2, γ1, and γ2:

Definition 25.1.1. The mean square error E[(θ̂ − θ)2] of the estimator θ̂ of a
scalar parameter θ in the linear model (25.0.12) will be said to be bounded (with

respect to β) if a finite number b exists with E[(θ̂−θ)2] ≤ b regardless of the true value
of β. This bound b may depend on the known nonstochastic X and the distribution
of ε, but not on β.

25.2. Derivation of the Best Bounded MSE Quadratic Estimator of the
Variance

Theorem 25.2.1. If the estimator σ̃2 of σ2 in the regression model (25.0.12) is
quadratic, i.e., if it has the form σ̃2 = y>Ay with a symmetric A, then its mean
square error E[(y>Ay−σ2)2] is bounded (with respect to β) if and only if AX = O.
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Proof: Clearly, the condition AX = O is sufficient. It implies y>Ay = ε>Aε,
which therefore only depends on the distribution of ε, not on the value of β. To
show necessity, note that bounded MSE means both bounded variance and bounded
squared bias. The variance depends on skewness and kurtosis; writing a for the
vector of diagonal elements of A, it is

(25.2.1) var[y>Ay] = 4σ2β>X>A2Xβ+4σ3γ1β
>X>Aa+σ4

(
γ2a

>a+2 tr(A2)
)
.

This formula can be found e.g. in [Seb77, pp. 14–16 and 52]. If AX 6= O, then

a vector δ exists with δ>X>A2Xδ > 0; therefore, for the sequence β = jδ, the
variance is a quadratic polynomial in j, which is unbounded as j → ∞.

The following ingredients are needed for the best bounded MSE quadratic esti-
mator of σ2:

Theorem 25.2.2. We will use the letter τ to denote the vector whose ith com-
ponent is the square of the ith residual τ i = ε̂2

i . Then

(25.2.2) E [τ ] = σ2m

where m is the diagonal vector of M = I − X(X>X)−X>. Furthermore,

(25.2.3) V [τ ] = σ4ΩΩΩ where ΩΩΩ = γ2Q
2 + 2Q + mm>,

Q is the matrix with qij = m2
ij , i.e., its elements are the squares of the elements of

M , and γ2 is the kurtosis.

Here is a proof in tile notation: from (9.2.23) follows

(25.2.4) E
[

∆

ε̂ ε̂

ε̂ ε̂

∆

]
= E

[

∆

M M

ε ε

ε ε

M M

∆

]
=
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= σ4

∆

M M

M M

∆

+ σ4

∆

M M

M M

∆

+ σ4

∆

M M

M M

∆

+ γ2σ
4

∆

M M

∆

M M

∆

These m and ΩΩΩ play an important and, to me, surprising role in the estimator of σ2:

Theorem 25.2.3. The best bounded MSE quadratic estimator of σ2 is

(25.2.5) σ̂2 = m>ΩΩΩ−
τ

where m and ΩΩΩ are defined as in Theorem 25.2.2. Other ways to write it are

(25.2.6) σ̂2y>MΛMy =
∑

i

λiε̂
2
i

where λ = ΩΩΩ−m or any other vector satisfying

(25.2.7) ΩΩΩλ = m,

and Λ is the diagonal matrix with λ in the diagonal. The MSE of estimator (25.2.6)
is

(25.2.8) E[(σ̂2 − σ2)2] = σ4(1 − m>ΩΩΩ−m).

The estimator is negatively biased; its bias is

(25.2.9) E[σ̂2 − σ2] = −σ2(1 − m>ΩΩΩ−m).

The estimator (25.2.6) is therefore independent of the skewness of the distur-
bances, but it depends on their kurtosis. For zero kurtosis, it reduces to the Theil-
Schweitzer estimator (25.0.14).

In order to prove theorem 25.2.3, one needs somewhat different matrix-algebraic
tricks than those familiar from linear estimators. The problem at hand can be
reduced to a minimum trace problem as defined in Rao [Rao73, pp. 65–66], and
part of the following proof draws on a private communication of C. R. Rao regarding
consistency of equation (1f.3.4) in [Rao73, p. 65].
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Proof of theorem 25.2.3: Take an alternative estimator of the form σ̃2 = y>Ay

where A is symmetric with AX = O. Since the MSE is variance plus squared bias,
it follows, using (25.2.1) and E[y>Ay] = σ2 tr A + β>X>AXβ, that

(25.2.10) MSE = E[(σ̃2 − σ2)2] = σ4(tr A − 1)2 + σ4γ2a
>a + 2σ4 tr(A2)

where a = diag A. We will first prove the following property of a: every vector u

with Qu = o satisfies a>u = 0. Let U be the diagonal matrix with u in the diagonal,
and note that Qu = o implies 0 = u>Qu. Writing V = MU gives vij = mijuj ,

therefore u>Qu =
∑
i,j uiqijuj =

∑
i,j vijvji = tr(MUMU ). Since M2 = M ,

tr(MUMU ) = 0 implies tr(MUMUM ) = 0, and since M is nonnegative definite,
it follows MUMUM = O, and therefore already MUM = O. Since AX =
O = X>A implies A = MAM , one can write a>u = tr(AU ) = tr(MAMU ) =
tr(AMUM) = 0.

This property of a can also be formulated as: there exists a vector λ with a =
Qλ. Let Λ be the diagonal matrix with λ in the diagonal, and write A = MΛM +
D. Then DX = O and D has zeros in the diagonal, therefore tr(MΛMD) =
tr(ΛMDM ) = tr(ΛD) = 0, since ΛD still has zeros in the diagonal. Therefore

tr(A2) = tr(MΛMΛ) + tr(D2) = λ>Qλ + tr(D2). Regarding Q observe that
m = diag M can be written m = Qι, where ι is the vector of ones, therefore
trA = ι>Qλ = m>λ. Using all this in (25.2.10) gives

(25.2.11)
1

σ4
MSE = (m>λ − 1)2 + γ2λ

>Q2λ + 2λ>Qλ + 2 tr(D2).

Define ΣΣΣ = (γ2+2)Q2+2(Q−Q2). It is the sum of two nonnegative definite matrices:

γ2 + 2 ≥ 0 by (25.1.5), and Q − Q2 is nonnegative definite because λ>(Q − Q2)λ
is the sum of the squares of the offdiagonal elements of MΛM . Therefore ΣΣΣ is
nonnegative definite and it follows m = (ΣΣΣ + mm>)(ΣΣΣ + mm>)−m. (To see this,

take any P with ΣΣΣ = PP> and apply the identity T = TT >(TT>)−T , proof e.g.
in [Rao73, p. 26], to the partitioned matrix T =

[
P m

]
.)

Writing ΩΩΩ = ΣΣΣ + mm>, one verifies therefore

(25.2.12)
1

σ4
MSE = (λ −ΩΩΩ−

m)>ΩΩΩ(λ −ΩΩΩ−
m) − m>ΩΩΩ−

m + 1 + 2 tr(D2).

Clearly, this is minimized by D = O and any λ with ΩΩΩ(λ−ΩΩΩ−
m) = o, which gives

(25.2.7).

25.3. Unbiasedness Revisited

Unbiasedness of the estimator y>Ay is equivalent to the two mathematical
conditions trA = 1 and X>AX = O. This is not strong enough to ensure that
the estimation error is a function of ε alone. In [Hsu38], the first treatment of best
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quadratic estimation of σ2, P. L. Hsu added therefore the condition that the MSE
be independent of the value of β.

But why should the data analyst be particulary interested in estimates whose
MSE is independent of β? The research following up on Hsu tried to get rid of this
assumption again. C. R. Rao, in [Rao52], replaced independence of the MSE by the
assumption that A be nonnegative definite. We argue that this was unfortunate, for
the following two reasons:

• Although one can often read that it is “natural” to require A to be non-
negative definite (see for instance [Ati62, p. 84]), we disagree. Of course,
one should expect the best estimator to be nonnegative, but is perplexing
that one should have to assume it. We already noted this in puzzle (3) at
the beginning.

• In the light of theorem 25.2.1, Hsu’s additional condition is equivalent to
the requirement of bounded MSE. It is therefore not as poorly motivated as
it was at first assumed to be. Barnard’s article [Bar63], arguing that this
assumption is even in the linear case more meaningful than unbiasedness,
appeared eleven years after Rao’s [Rao52]. If one wanted to improve on
Hsu’s result, one should therefore discard the condition of unbiasedness,
not that of bounded MSE.

Even the mathematical proof based on unbiasedness and nonnegative definiteness
suggests that the condition AX = O, i.e., bounded MSE, is the more fundamental
assumption. Nonnegative definitenes of A is used only once, in order to get from
the condition X>AX = O implied by unbiasedness to AX = O. Unbiasedness
and a nonnegative definite A together happen to imply bounded MSE, but neither
condition separately should be considered “natural” in the present framework.

The foregoing discussion seems to be academic, since the best bounded MSE
estimator depends on γ2, which is rarely known. But it does not depend on it very
much. I have not yet researched it fully, but it seems to be a concave function with a
maximum somewhere. If one uses the estimate of σ2 in order to assess the precision
of some estimates, this maximum value may provide a conservative estimate which is
still smaller than the unbiased estimate of σ2. here these notes are still incomplete;
I would like to know more about this maximum value, and it seems this would be
the estimator which one should recommend.

If the requirement of unbiasedness has any redeeming qualities, they come from
an unexpected yet remarkable fact. In some special cases one does not need to know
the kurtosis if one restricts oneself to unbiased estimators of σ2. In order to rederive
this (known) result in our framework, we will first give a formula for Hsu’s estimator.
We obtain it from estimator (25.2.6) by multiplying it with the appropriate constant
which makes it unbiased.
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Theorem 25.3.1. The best bounded MSE quadratic unbiased estimator of σ2,
which is at the same time the best nonnegative quadratic unbiased estimator of σ2,
is

(25.3.1) ˆ̂σ2 = y>MΘMy =
∑

i

θiε̂
2
i

where Θ is a diagonal matrix whose diagonal vector θ satisfies the two conditions
that

(25.3.2) ΩΩΩθ is proportional to m,

and that

(25.3.3) m>θ = 1

(for instance one may use θ = λ 1
m>λ

.) M , m, ΩΩΩ, and λ are the same as in theorem
25.2.3. The MSE of this estimator is

(25.3.4) E[(ˆ̂σ2 − σ2)2] = σ4(
1

m>λ
− 1).

We omit the proof, which is very similar to that of theorem 25.2.3. In the general
case, estimator (25.3.1) depends on the kurtosis, just as estimator (25.2.6) does. But
if X is such that all diagonal elements of M are equal, a condition which Atiqullah
in [Ati62] called “quadratically balanced,” then it does not! Since tr M = n − r,
equality of the diagonal elements implies m = n−r

n ι. And since m = Qι, any vector
proportional to ι satisfies (25.3.2), i.e., one can find solutions of (25.3.2) without
knowing the kurtosis. (25.3.3) gives θ = ι 1

n−r , i.e., the resulting estimator is none

other than the unbiased s2 defined in (25.0.13).
The property of unbiasedness which makes it so popular in the classroom—it is

easy to check—gains here objective relevance. For the best nonnegative quadratic
unbiased estimator one needs to know ΩΩΩ only up to a scalar factor, and in some
special cases the unknown kurtosis merges into this arbitrary multiplicator.

25.4. Summary

If one replaces the requirement of unbiasedness by that of bounded MSE, one
can not only unify some known results in linear estimation and prediction, but one
also obtains a far-reaching analogy between linear estimation of β and quadratic
estimation of σ2. The most important dissimilarity is that, whereas one does not
have to know the nuisance parameter σ2 in order to write down the best linear
bounded MSE estimator of β, the best quadratic bounded MSE estimator of σ2

depends on an additional fourth order nuisance parameter, namely, the kurtosis.
In situations in which the kurtosis is known, one should consider the best quadratic
bounded MSE estimator (25.2.6) of σ2 to be the quadratic analog of the least squares
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estimator β̂. It is a linear combination of the squared residuals, and if the kurtosis is
zero, it specializes to the Theil-Schweitzer estimator (25.0.14). Regression computer
packages, which require normality for large parts of their output, should therefore
provide the Theil-Schweitzer estimate as a matter of course.

If the kurtosis is not known, one can always resort to s2. It is unbiased and
consistent, but does not have any optimality properties in the general case. If the
design matrix is “quadratically balanced,” s2 can be justified better: in this case s2

has minimum MSE in the class of nonnegative quadratic unbiased estimators (which
is a subclass of all bounded MSE quadratic estimators).

The requirement of unbiasedness for the variance estimator in model (25.0.12)
is therefore not as natural as is often assumed. Its main justification is that it may
help to navigate around the unknown nuisance parameter “kurtosis.”



CHAPTER 26

Nonspherical Positive Definite Covariance Matrix

The so-called “Generalized Least Squares” model specifies y = Xβ + ε with
ε ∼ (o, σ2Ψ) where σ2 is an unknown positive scalar, and Ψ is a known positive
definite matrix.

This is simply the OLS model in disguise. To see this, we need a few more
facts about positive definite matrices. Ψ is nonnegative definite if and only if a Q

exists with Ψ = QQ>. If Ψ is positive definite, this Q can be chosen square and
nonsingular. Then P = Q−1 satisfies P>PΨ = P >PQQ> = I , i.e., P>P = Ψ−1,
and also PΨP > = PQQ>P> = I . Premultiplying the GLS model by P gives
therefore a model whose disturbances have a spherical covariance matrix:

(26.0.1) Py = PXβ + P ε Pε ∼ (o, σ2I)

The OLS estimate of β in this transformed model is

(26.0.2) β̂ = (X>P>PX)−1X>P>Py = (X>Ψ−1X)−1X>Ψ−1y.

This β̂ is the BLUE of β in model (26.0.1), and since estimators which are linear

in Py are also linear in y and vice versa, β̂ is also the BLUE in the original GLS
model.

Problem 319. 2 points Show that

(26.0.3) β̂ − β = (X>Ψ−1X)−1X>Ψ−1ε

and derive from this that β̂ is unbiased and that MSE [β̂; β] = σ2(X>Ψ−1X)−1.

Answer. Proof of (26.0.3) is very similar to proof of (24.0.7). �

The objective function of the associated least squares problem is

β = β̂ minimizes (y − Xβ)>Ψ−1(y − Xβ).(26.0.4)

The normal equations are

(26.0.5) X>Ψ−1Xβ̂ = X>Ψ−1y
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If X has full rank, then X>Ψ−1X is nonsingular, and the unique β̂ minimizing
(26.0.4) is

(26.0.6) β̂ = (X>Ψ−1X)−1X>Ψ−1y

Problem 320. [Seb77, p. 386, 5] Show that if Ψ is positive definite and X has

full rank, then also X>Ψ−1X is positive definite. You are allowed to use, without
proof, that the inverse of a positive definite matrix is also positive definite.

Answer. From X>Ψ−1Xa = o follows a>X>Ψ−1Xa = 0, and since Ψ−1 is positive defi-
nite, it follows Xa = o, and since X has full column rank, this implies a = o. �

Problem 321. Show that (26.0.5) has always at least one solution, and that the
general solution can be written as

(26.0.7) β̂ = (X>Ψ−1X)−X>Ψ−1y + Uγ

where X ⊥ U and γ is an arbitrary vector. Show furthermore that, if β̂ is a solution
of (26.0.5), and β is an arbitrary vector, then
(26.0.8)

(y−Xβ)>Ψ−1(y−Xβ) = (y−Xβ̂)>Ψ−1(y−Xβ̂)+(β− β̂)>X>Ψ−1X(β− β̂).

Conclude from this that (26.0.5) is a necessary and sufficient condition characterizing

the values β̂ minimizing (26.0.4).

Answer. One possible solution of (26.0.5) is β̂ = (X>Ψ−1X)−X>Ψ−1y. Since the normal
equations are consistent, (26.0.7) can be obtained from equation (A.4.1), using Problem 574. To

prove (26.0.8), write (26.0.4) as
(
(y − Xβ̂) − X(β − β̂)

)>
Ψ−1

(
(y − Xβ̂) − X(β − β̂)

)
; since

β̂ satisfies (26.0.5), the cross product terms disappear. Necessity of the normal equations: for

any solution β of the minimization, X>Ψ−1X(β − β̂) = o. This together with (26.0.5) gives

X>Ψ−1Xβ = X>Ψ−1y. �

The least squares objective function of the transformed model, which β = β̂

minimizes, can be written

(26.0.9) (P y − PXβ)>(P y − PXβ) = (y − Xβ)>Ψ−1(y − Xβ),

and whether one writes it in one form or the other, 1/(n − k) times the minimum
value of that GLS objective function is still an unbiased estimate of σ2.

Problem 322. Show that the minimum value of the GLS objective function can
be written in the form y>My where M = Ψ−1 − Ψ−1X(X>Ψ−1X)−1X>Ψ−1.
Does MX = O still hold? Does M 2 = M or a similar simple identity still hold?
Show that M is nonnegative definite. Show that E[y>My] = (n− k)σ2.



26. NONSPHERICAL COVARIANCE MATRIX 361

Answer. In (y−Xβ̂)>Ψ−1(y−Xβ̂) plug in β̂ = (X>Ψ−1X)−1X>Ψ−1y and multiply out
to get y>My. Yes, MX = O holds. M is no longer idempotent, but it satisfies MΨM = M .
One way to show that it is nnd would be to use the first part of the question: for all z, z>Mz =

(z − Xβ̂)>(z − Xβ̂), and another way would be to use the second part of the question: M nnd
because MΨM = M . To show expected value, show first that y>My = εMε, and then use those
tricks with the trace again. �

The simplest example of Generalized Least Squares is that where Ψ is diagonal
(heteroskedastic data). In this case, the GLS objective function (y−Xβ)>Ψ−1(y−
Xβ) is simply a weighted least squares, with the weights being the inverses of the
diagonal elements of Ψ. This vector of inverse diagonal elements can be specified
with the optional weights argument in R, see the help-file for lm. Heteroskedastic
data arise for instance when each data point is an average over a different number
of individuals.

If one runs OLS on the original instead of the transformed model, one gets an

estimator, we will calle it here β̂OLS , which is still unbiased. The estimator is usually
also consistent, but no longer BLUE. This not only makes it less efficient than the
GLS, but one also gets the wrong results if one relies on the standard computer
printouts for significance tests etc. The estimate of σ2 generated by this regression
is now usually biased. How biased it is depends on the X-matrix, but most often
it seems biased upwards. The estimated standard errors in the regression printouts
not only use the wrong s, but they also insert this wrong s into the wrong formula

σ2(X>X)−1 instead of σ2(XΨ−1X)−1 for V[β̂].

Problem 323. In the generalized least squares model y = Xβ + ε with ε ∼
(o, σ2Ψ), the BLUE is

(26.0.10) β̂ = (X>Ψ−1X)−1X>Ψ−1y.

We will write β̂OLS for the ordinary least squares estimator

(26.0.11) β̂OLS = (X>X)−1X>y

which has different properties now since we do not assume ε ∼ (o, σ2I) but ε ∼
(o, σ2Ψ).

• a. 1 point Is β̂OLS unbiased?

• b. 2 points Show that, still under the assumption ε ∼ (o, σ2Ψ), V [β̂OLS ] −
V[β̂] = V[β̂OLS − β̂]. (Write down the formulas for the left hand side and the right
hand side and then show by matrix algebra that they are equal.) (This is what one
should expect after Problem 198.) Since due to unbiasedness the covariance matrices

are the MSE-matrices, this shows that MSE [β̂OLS ; β]−MSE [β̂; β] is nonnegative
definite.
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Answer. Verify equality of the following two expressions for the differences in MSE matrices:

V[β̂OLS] − V [β̂] = σ2
(
(X>X)−1X>ΨX(X>X)−1 − (X>Ψ−1X)−1

)
=

= σ2
(

(X>X)−1X> − (X>Ψ−1X)−1X>Ψ−1
)
Ψ

(
X(X>X)−1 −Ψ−1X(X>Ψ−1X)−1

)

�

Examples of GLS models are discussed in chapters 57 and 58.



CHAPTER 27

Best Linear Prediction

Best Linear Prediction is the second basic building block for the linear model,
in addition to the OLS model. Instead of estimating a nonrandom parameter β

about which no prior information is available, in the present situation one predicts
a random variable z whose mean and covariance matrix are known. Most models to
be discussed below are somewhere between these two extremes.

Christensen’s [Chr87] is one of the few textbooks which treat best linear predic-
tion on the basis of known first and second moments in parallel with the regression
model. The two models have indeed so much in common that they should be treated
together.

27.1. Minimum Mean Squared Error, Unbiasedness Not Required

Assume the expected values of the random vectors y and z are known, and their
joint covariance matrix is known up to an unknown scalar factor σ2 > 0. We will
write this as

(27.1.1)

[
y

z

]
∼
[
µ

ν

]
, σ2

[
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]
, σ2 > 0.

y is observed but z is not, and the goal is to predict z on the basis of the observation
of y.

There is a unique predictor of the form z∗ = B∗y+b∗ (i.e., it is linear with a con-
stant term, the technical term for this is “affine”) with the following two properties:
it is unbiased, and the prediction error is uncorrelated with y, i.e.,

(27.1.2) C[z∗ − z,y] = O.

The formulas for B∗ and b∗ are easily derived. Unbiasedness means ν = B∗µ + b∗,
the predictor has therefore the form

(27.1.3) z∗ = ν + B∗(y − µ).

Since

(27.1.4) z∗ − z = B∗(y − µ) − (z − ν) =
[
B∗ −I

] [y − µ

z − ν

]
,
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the zero correlation condition (27.1.2) translates into

(27.1.5) B∗ΩΩΩyy = ΩΩΩzy,

which, due to equation (A.5.13) holds for B∗ = ΩΩΩzyΩΩΩ−
yy. Therefore the predictor

(27.1.6) z∗ = ν + ΩΩΩzyΩΩΩ−
yy(y − µ)

satisfies the two requirements.
Unbiasedness and condition (27.1.2) are sometimes interpreted to mean that z∗

is an optimal predictor. Unbiasedness is often naively (but erroneously) considered
to be a necessary condition for good estimators. And if the prediction error were
correlated with the observed variable, the argument goes, then it would be possible to
improve the prediction. Theorem 27.1.1 shows that despite the flaws in the argument,
the result which it purports to show is indeed valid: z∗ has the minimum MSE of
all affine predictors, whether biased or not, of z on the basis of y.

Theorem 27.1.1. In situation (27.1.1), the predictor (27.1.6) has, among all
predictors of z which are affine functions of y, the smallest MSE matrix. Its MSE
matrix is

(27.1.7) MSE [z∗; z] = E [(z∗ − z)(z∗ − z)>] = σ2(ΩΩΩzz −ΩΩΩzyΩΩΩ−
yyΩΩΩyz) = σ2ΩΩΩzz.y.

Proof. Look at any predictor of the form z̃ = B̃y+ b̃. Its bias is d̃ = E [z̃−z] =

B̃µ + b̃ − ν, and by (23.1.2) one can write

E [(z̃ − z)(z̃ − z)>] = V [(z̃ − z)] + d̃d̃
>

(27.1.8)

= V
[[

B̃ −I
] [y

z

]]
+ d̃d̃

>
(27.1.9)

= σ2
[
B̃ −I

] [ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

] [
B̃

>

−I

]
+ d̃d̃

>
.(27.1.10)

This MSE-matrix is minimized if and only if d∗ = o and B∗ satisfies (27.1.5). To see

this, take any solution B∗ of (27.1.5), and write B̃ = B∗+D̃. Since, due to theorem

A.5.11, ΩΩΩzy = ΩΩΩzyΩΩΩ−
yyΩΩΩyy, it follows ΩΩΩzyB∗> = ΩΩΩzyΩΩΩ−

yyΩΩΩyyB∗> = ΩΩΩzyΩΩΩ−
yyΩΩΩyz.

Therefore

MSE [z̃; z] = σ2
[
B∗ + D̃ −I

] [ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

][
B∗> + D̃

>

−I

]
+ d̃d̃

>

= σ2
[
B∗ + D̃ −I

]
[

ΩΩΩyyD̃
>

−ΩΩΩzz.y + ΩΩΩzyD̃
>

]
+ d̃d̃

>
(27.1.11)

= σ2(ΩΩΩzz.y + D̃ΩΩΩyyD̃
>

) + d̃d̃
>
.(27.1.12)
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The MSE matrix is therefore minimized (with minimum value σ2ΩΩΩzz.y) if and only

if d̃ = o and D̃ΩΩΩyy = O which means that B̃, along with B∗, satisfies (27.1.5). �

Problem 324. Show that the solution of this minimum MSE problem is unique
in the following sense: if B∗

1 and B∗
2 are two different solutions of (27.1.5) and y

is any feasible observed value y, plugged into equations (27.1.3) they will lead to the
same predicted value z∗.

Answer. Comes from the fact that every feasible observed value of y can be written in the
form y = µ + ΩΩΩyyq for some q, therefore B∗

i y = B∗
iΩΩΩyyq = ΩΩΩzyq. �

The matrix B∗ is also called the regression matrix of z on y, and the unscaled
covariance matrix has the form

(27.1.13) ΩΩΩ =

[
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]
=

[
ΩΩΩyy ΩΩΩyyX>

XΩΩΩyy XΩΩΩyyX> + ΩΩΩzz.y

]

Where we wrote here B∗ = X in order to make the analogy with regression clearer.
A g-inverse is

(27.1.14) ΩΩΩ− =

[
ΩΩΩ−

yy + X>ΩΩΩ−
zz.yX −X>ΩΩΩ−

zz.y

−X>ΩΩΩ−
zz.y ΩΩΩ−

zz.y

]

and every g-inverse of the covariance matrix has a g-inverse of ΩΩΩzz.y as its zz-
partition. (Proof in Problem 592.)

If ΩΩΩ =

[
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]
is nonsingular, 27.1.5 is also solved by B∗ = −(ΩΩΩzz)−ΩΩΩzy

where ΩΩΩzz and ΩΩΩzy are the corresponding partitions of the inverse ΩΩΩ−1. See Problem
592 for a proof. Therefore instead of 27.1.6 the predictor can also be written

(27.1.15) z∗ = ν −
(
ΩΩΩzz

)−1
ΩΩΩzy(y − µ)

(note the minus sign) or

(27.1.16) z∗ = ν −ΩΩΩzz.yΩΩΩzy(y − µ).

Problem 325. This problem utilizes the concept of a bounded risk estimator,
which is not yet explained very well in these notes. Assume y, z, µ, and ν are
jointly distributed random vectors. First assume ν and µ are observed, but y and z

are not. Assume we know that in this case, the best linear bounded MSE predictor
of y and z is µ and ν, with prediction errors distributed as follows:

(27.1.17)

[
y − µ

z − ν

]
∼
[
o

o

]
, σ2

[
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]
.

This is the initial information. Here it is unnecessary to specify the unconditional
distributions of µ and ν, i.e., E [µ] and E [ν] as well as the joint covariance matrix
of µ and ν are not needed, even if they are known.
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Then in a second step assume that an observation of y becomes available, i.e.,
now y, ν, and µ are observed, but z still isn’t. Then the predictor

(27.1.18) z∗ = ν + ΩΩΩzyΩΩΩ−
yy(y − µ)

is the best linear bounded MSE predictor of z based on y, µ, and ν.

• a. Give special cases of this specification in which µ and ν are constant and
y and z random, and one in which µ and ν and y are random and z is constant,
and one in which µ and ν are random and y and z are constant.

Answer. If µ and ν are constant, they are written µ and ν. From this follows µ = E [y] and

ν = E [z] and σ2

[
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]
= V[

[
y

rx

]
] and every linear predictor has bounded MSE . Then the

proof is as given earlier in this chapter. But an example in which µ and ν are not known constants
but are observed random variables, and y is also a random variable but z is constant, is (28.0.26).
Another example, in which y and z both are constants and µ and ν random, is constrained least
squares (29.4.3). �

• b. Prove equation 27.1.18.

Answer. In this proof we allow all four µ and ν and y and z to be random. A linear
predictor based on y, µ, and ν can be written as z̃ = By + Cµ + Dν + d, therefore z̃ − z =
B(y−µ) + (C + B)µ + (D − I)ν − (z− ν) + d. E [z̃− z] = o + (C + B) E [µ] + (D − I) E [ν]− o + d.
Assuming that E [µ] and E [ν] can be anything, the requirement of bounded MSE (or simply the
requirement of unbiasedness, but this is not as elegant) gives C = −B and D = I, therefore
z̃ = ν + B(y − µ) + d, and the estimation error is z̃ − z = B(y − µ) − (z − ν) + d. Now continue
as in the proof of theorem 27.1.1. I must still carry out this proof much more carefully! �

Problem 326. 4 points According to (27.1.2), the prediction error z∗ − z is
uncorrelated with y. If the distribution is such that the prediction error is even
independent of y (as is the case if y and z are jointly normal), then z∗ as defined
in (27.1.6) is the conditional mean z∗ = E [z|y], and its MSE-matrix as defined in
(27.1.7) is the conditional variance V[z|y].

Answer. From independence follows E [z∗ − z|y] = E [z∗ − z], and by the law of iterated
expectations E [z∗ − z] = o. Rewrite this as E [z|y] = E [z∗|y]. But since z∗ is a function of y,

E [z∗|y] = z∗. Now the proof that the conditional dispersion matrix is the MSE matrix:

V[z|y] = E [(z − E [z|y])(z − E [z|y])>|y] = E [(z − z∗)(z − z∗)>|y]

= E [(z − z∗)(z − z∗)>] = MSE [z∗; z].
(27.1.19)

�

Problem 327. Assume the expected values of x, y and z are known, and their
joint covariance matrix is known up to an unknown scalar factor σ2 > 0.

(27.1.20)




x

y

z


 ∼




λ

µ

ν


 , σ2




ΩΩΩxx ΩΩΩxy ΩΩΩxz

ΩΩΩ>
xy ΩΩΩyy ΩΩΩyz

ΩΩΩ>
xz ΩΩΩ>

yz ΩΩΩzz


 .
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x is the original information, y is additional information which becomes available,
and z is the variable which we want to predict on the basis of this information.

• a. 2 points Show that y∗ = µ + ΩΩΩ>
xyΩΩΩ−

xx(x − λ) is the best linear predictor

of y and z∗ = ν + ΩΩΩ>
xzΩΩΩ

−
xx(x − λ) the best linear predictor of z on the basis of the

observation of x, and that their joint MSE-matrix is

E
[ [y∗ − y

z∗ − z

] [
(y∗ − y)> (z∗ − z)>

]]
= σ2

[
ΩΩΩyy −ΩΩΩ>

xyΩΩΩ−
xxΩΩΩxy ΩΩΩyz −ΩΩΩ>

xyΩΩΩ−
xxΩΩΩxz

ΩΩΩ>
yz −ΩΩΩ>

xzΩΩΩ
−
xxΩΩΩxy ΩΩΩzz −ΩΩΩ>

xzΩΩΩ
−
xxΩΩΩxz

]

which can also be written

= σ2

[
ΩΩΩyy.x ΩΩΩyz.x

ΩΩΩ>
yz.x ΩΩΩzz.x

]
.

Answer. This part of the question is a simple application of the formulas derived earlier. For
the MSE-matrix you first get

σ2
([

ΩΩΩyy ΩΩΩyz

ΩΩΩ>
yz ΩΩΩzz

]
−
[
ΩΩΩ>

xy

ΩΩΩ>
xz

]
ΩΩΩ−

xx

[
ΩΩΩxy ΩΩΩxz

])

�

• b. 5 points Show that the best linear predictor of z on the basis of the obser-
vations of x and y has the form

(27.1.21) z∗∗ = z∗ + ΩΩΩ>
yz.xΩΩΩ−

yy.x(y − y∗)

This is an important formula. All you need to compute z∗∗ is the best estimate
z∗ before the new information y became available, the best estimate y∗ of that new
information itself, and the joint MSE matrix of the two. The original data x and
the covariance matrix (27.1.20) do not enter this formula.

Answer. Follows from

z∗∗ = ν +
[
ΩΩΩ>

xz ΩΩΩ>
yz

][ΩΩΩxx ΩΩΩxy

ΩΩΩ>
xy ΩΩΩyy

]− [
x − λ

y − µ

]
=

Now apply (A.8.2):

= ν +
[
ΩΩΩ>

xz ΩΩΩ>
yz

][ΩΩΩ−
xx + ΩΩΩ−

xxΩΩΩxyΩΩΩ−
yy.xΩΩΩ

>
xyΩΩΩ−

xx −ΩΩΩ−
xxΩΩΩxyΩΩΩ−

yy.x

−ΩΩΩ−
yy.xΩΩΩ

>
xyΩΩΩ−

xx ΩΩΩ−
yy.x

][
x − λ

y − µ

]
=

= ν +
[
ΩΩΩ>

xz ΩΩΩ>
yz

][ΩΩΩ−
xx(x − λ) + ΩΩΩ−

xxΩΩΩxyΩΩΩ−
yy.x(y∗ − µ) −ΩΩΩ−

xxΩΩΩxyΩΩΩ−
yy.x(y − µ)

−ΩΩΩ−
yy.x(y∗ − µ) + ΩΩΩ−

yy.x(y − µ)

]
=

= ν +
[
ΩΩΩ>

xz ΩΩΩ>
yz

][ΩΩΩ−
xx(x − λ) −ΩΩΩ−

xxΩΩΩxyΩΩΩ−
yy.x(y − y∗)

+ΩΩΩ−
yy.x(y − y∗)

]
=

= ν + ΩΩΩ>
xzΩΩΩ−

xx(x − λ) −ΩΩΩ>
xzΩΩΩ−

xxΩΩΩxyΩΩΩ−
yy.x(y − y∗) + ΩΩΩ>

yzΩΩΩ
−
yy.x(y − y∗) =

= z∗ +
(
ΩΩΩ>

yz −ΩΩΩ>
xzΩΩΩ−

xxΩΩΩxy

)
ΩΩΩ−

yy.x(y − y∗) = z∗ + ΩΩΩ>
yz.xΩΩΩ−

yy.x(y − y∗)
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�

Problem 328. Assume x, y, and z have a joint probability distribution, and the
conditional expectation E [z|x,y] = α∗ + A∗x + B∗y is linear in x and y.

• a. 1 point Show that E [z|x] = α∗ + A∗x + B∗E [y|x]. Hint: you may use the
law of iterated expectations in the following form: E [z|x] = E

[
E [z|x,y]

∣∣x
]
.

Answer. With this hint it is trivial: E [z|x] = E
[
α∗+A∗x+B∗y

∣∣x] = α∗+A∗x+B∗E[y|x]. �

• b. 1 point The next three examples are from [CW99, pp. 264/5]: Assume
E[z|x,y] = 1 + 2x + 3y, x and y are independent, and E[y] = 2. Compute E[z|x].

Answer. According to the formula, E[z|x] = 1+2x+3E[y|x], but since x and y are independent,
E[y|x] = E[y] = 2; therefore E[z|x] = 7+2x. I.e., the slope is the same, but the intercept changes. �

• c. 1 point Assume again E[z|x,y] = 1 + 2x+ 3y, but this time x and y are not
independent but E[y|x] = 2 − x. Compute E[z|x].

Answer. E[z|x] = 1+2x+3(2−x) = 7−x. In this situation, both slope and intercept change,
but it is still a linear relationship. �

• d. 1 point Again E[z|x,y] = 1+2x+3y, and this time the relationship between
x and y is nonlinear: E[y|x] = 2 − ex. Compute E[z|x].

Answer. E[z|x] = 1 + 2x + 3(2 − ex) = 7 + 2x − 3ex. This time the marginal relationship
between x and y is no longer linear. This is so despite the fact that, if all the variables are included,
i.e., if both x and y are included, then the relationship is linear. �

• e. 1 point Assume E[f(z)|x,y] = 1 + 2x + 3y, where f is a nonlinear function,
and E[y|x] = 2 − x. Compute E[f(z)|x].

Answer. E[f(z)|x] = 1 + 2x + 3(2 − x) = 7 − x. If one plots z against x and z, then the plots

should be similar, though not identical, since the same transformation f will straighten them out.
This is why the plots in the top row or right column of [CW99, p. 435] are so similar. �

Connection between prediction and inverse prediction: If y is observed and z

is to be predicted, the BLUP is z∗ − ν = B∗(y − µ) where B∗ = ΩΩΩzyΩΩΩ−
yy. If z

is observed and y is to be predicted, then the BLUP is y∗ − µ = C∗(z − ν) with

C∗ = ΩΩΩyzΩΩΩ
−
zz. B∗ and C∗ are connected by the formula

(27.1.22) ΩΩΩyyB∗> = C∗ΩΩΩzz.

This relationship can be used for graphical regression methods [Coo98, pp. 187/8]:
If z is a scalar, it is much easier to determine the elements of C∗ than those of
B∗. C∗ consists of the regression slopes in the scatter plot of each of the observed
variables against z. They can be read off easily from a scatterplot matrix. This
works not only if the distribution is Normal, but also with arbitrary distributions as
long as all conditional expectations between the explanatory variables are linear.
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Problem 329. In order to make relationship (27.1.22) more intuitive, assume x

and ε are Normally distributed and independent of each other, and E[ε] = 0. Define
y = α+ βx + ε.

• a. Show that α+ βx is the best linear predictor of y based on the observation
of x.

Answer. Follows from the fact that the predictor is unbiased and the prediction error is
uncorrelated with x. �

• b. Express β in terms of the variances and covariances of x and y.

Answer. cov[x,y] = β var[x], therefore β =
cov[x,y]
var[x]

�

• c. Since x and y are jointly normal, they can also be written x = γ + δy + ω
where ω is independent of y. Express δ in terms of the variances and covariances of
x and y, and show that var[y]β = γ var[x].

Answer. δ =
cov[x,y]
var[y]

. �

• d. Now let us extend the model a little: assume x1, x2, and ε are Normally
distributed and independent of each other, and E[ε] = 0. Define y = α + β1x1 +
β2x2 + ε. Again express β1 and β2 in terms of variances and covariances of x1, x2,
and y.

Answer. Since x1 and x2 are independent, one gets the same formulas as in the univariate case:

from cov[x1,y] = β1 var[x1] and cov[x2, y] = β2 var[x2] follows β1 =
cov[x1,y]
var[x1]

and β2 =
cov[x2,y]
var[x2]

. �

• e. Since x1 and y are jointly normal, they can also be written x1 = γ1+δ1y+ω1,
where ω1 is independent of y. Likewise, x2 = γ2 + δ2y+ω2, where ω2 is independent
of y. Express δ1 and δ2 in terms of the variances and covariances of x1, x2, and y,
and show that

(27.1.23)

[
δ1
δ2

]
var[y] =

[
var[x1] 0

0 var[x2]

] [
β1

β2

]

This is (27.1.22) in the present situation.

Answer. δ1 =
cov[x1,y]

var[y]
and δ2 =

cov[x2,y]
var[y]

. �

27.2. The Associated Least Squares Problem

For every estimation problem there is an associated “least squares” problem. In
the present situation, z∗ is that value which, together with the given observation y,
“blends best” into the population defined by µ, ν and the dispersion matrix ΩΩΩ, in
the following sense: Given the observed value y, the vector z∗ = ν +ΩΩΩzyΩΩΩ−

yy(y−µ)
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is that value z for which

[
y

z

]
has smallest Mahalanobis distance from the population

defined by the mean vector

[
µ

ν

]
and the covariance matrix σ2

[
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]
.

In the case of singular ΩΩΩzz, it is only necessary to minimize among those z

which have finite distance from the population, i.e., which can be written in the form

z = ν + ΩΩΩzzq for some q. We will also write r = rank
[

ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]
. Therefore, z∗

solves the following “least squares problem:”
(27.2.1)

z = z∗ min. 1
rσ2

[
y − µ

z − ν

]> [
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]− [
y − µ

z − ν

]
s. t. z = ν + ΩΩΩzzq for some q.

To prove this, use (A.8.2) to invert the dispersion matrix:

(27.2.2)

[
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]−
=

[
ΩΩΩ−

yy + ΩΩΩ−
yyΩΩΩyzΩΩΩ

−
zz.yΩΩΩzyΩΩΩ−

yy −ΩΩΩ−
yyΩΩΩyzΩΩΩ

−
zz.y

−ΩΩΩ−
zz.yΩΩΩzyΩΩΩ−

yy ΩΩΩ−
zz.y

]
.

If one plugs z = z∗ into this objective function, one obtains a very simple expression:
(27.2.3)

(y−µ)>
[
I ΩΩΩ−

yyΩΩΩyz

] [ΩΩΩ−
yy + ΩΩΩ−

yyΩΩΩyzΩΩΩ
−
zz.yΩΩΩzyΩΩΩ−

yy −ΩΩΩ−
yyΩΩΩyzΩΩΩ

−
zz.y

−ΩΩΩ−
zz.yΩΩΩzyΩΩΩ−

yy ΩΩΩ−
zz.y

] [
I

ΩΩΩzyΩΩΩ−
yy

]
(y−µ) =

(27.2.4) = (y − µ)>ΩΩΩ−
yy(y − µ).

Now take any z of the form z = ν + ΩΩΩzzq for some q and write it in the form
z = z∗ + ΩΩΩzzd, i.e., [

y − µ

z − ν

]
=

[
y − µ

z∗ − ν

]
+

[
o

ΩΩΩzzd

]
.

Then the cross product terms in the objective function disappear:

(27.2.5)
[
o> d>ΩΩΩzz

] [ΩΩΩ−
yy + ΩΩΩ−

yyΩΩΩyzΩΩΩ
−
zz.yΩΩΩzyΩΩΩ−

yy −ΩΩΩ−
yyΩΩΩyzΩΩΩ−

zz.y

−ΩΩΩ−
zz.yΩΩΩzyΩΩΩ−

yy ΩΩΩ−
zz.y

] [
I

ΩΩΩzyΩΩΩ−
yy

]
(y−µ) =

=
[
o> d>ΩΩΩzz

] [ΩΩΩ−
yy

O

]
(y − µ) = 0

Therefore this gives a larger value of the objective function.

Problem 330. Use problem 579 for an alternative proof of this.

From (27.2.1) follows that z∗ is the mode of the normal density function, and
since the mode is the mean, this is an alternative proof, in the case of nonsingular
covariance matrix, when the density exists, that z∗ is the normal conditional mean.
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27.3. Prediction of Future Observations in the Regression Model

For a moment let us go back to the model y = Xβ+ε with spherically distributed
disturbances ε ∼ (o, σ2I). This time, our goal is not to estimate β, but the situation
is the following: For a new set of observations of the explanatory variables X0 the
values of the dependent variable y0 = X0β + ε0 have not yet been observed and we

want to predict them. The obvious predictor is y∗
0 = X0β̂ = X0(X

>X)−1X>y.
Since

(27.3.1) y∗
0 − y0 = X0(X

>X)−1X>y − y0 =

= X0(X
>X)−1X>Xβ+X0(X

>X)−1X>ε−X0β−ε0 = X0(X
>X)−1X>ε−ε0

one sees that E[y∗
0 − y0] = o, i.e., it is an unbiased predictor. And since ε and ε0

are uncorrelated, one obtains

MSE [y∗
0; y0] = V[y∗

0 − y0] = V [X0(X
>X)−1X>ε] + V [ε0](27.3.2)

= σ2(X0(X
>X)−1X>

0 + I).(27.3.3)

Problem 331 shows that this is the Best Linear Unbiased Predictor (BLUP) of y0

on the basis of y.

Problem 331. The prediction problem in the Ordinary Least Squares model can
be formulated as follows:

(27.3.4)

[
y

y0

]
=

[
X

X0

]
β +

[
ε

ε0

]
E [

[
ε

ε0

]
] =

[
o

o

]
V[

[
ε

ε0

]
] = σ2

[
I O

O I

]
.

X and X0 are known, y is observed, y0 is not observed.

• a. 4 points Show that y∗
0 = X0β̂ is the Best Linear Unbiased Predictor (BLUP)

of y0 on the basis of y, where β̂ is the OLS estimate in the model y = Xβ + ε.

Answer. Take any other predictor ỹ0 = B̃y and write B̃ = X0(X>X)−1X>+D. Unbiased-

ness means E [ỹ0 − y0] = X0(X
>X)−1X>Xβ + DXβ − X0β = o, from which follows DX = O.

Because of unbiasedness we know MSE[ỹ0;y0] = V[ỹ0 − y0]. Since the prediction error can be

written ỹ0 − y =
[
X0(X>X)−1X> + D −I

][ y

y0

]
, one obtains

V[ỹ0 − y0] =
[
X0(X

>X)−1X> + D −I
]
V[

[
y

y0

]
]

[
X(X>X)−1X>

0 + D>

−I

]

= σ2
[
X0(X

>X)−1X> + D −I
][X(X>X)−1X>

0 + D>

−I

]

= σ2
(
X0(X>X)−1X> + D

)(
X0(X

>X)−1X> + D
)>

+ σ2I

= σ2
(
X0(X>X)−1X>

0 + DD> + I
)
.

This is smallest for D = O. �
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• b. 2 points From our formulation of the Gauss-Markov theorem in Theorem

24.1.1 it is obvious that the same y∗
0 = X0β̂ is also the Best Linear Unbiased Es-

timator of X0β, which is the expected value of y0. You are not required to re-

prove this here, but you are asked to compute MSE [X0β̂; X0β] and compare it with
MSE [y∗

0; y0]. Can you explain the difference?

Answer. Estimation error and MSE are

X0β̂ − X0β = X0(β̂ − β) = X0(X>X)−1X>ε due to (??)

MSE [X0β̂;X0β] = V [X0β̂ − X0β] = V[X0(X
>X)−1X>ε] = σ2X0(X

>X)−1X>
0 .

It differs from the prediction MSE matrix by σ2I, which is the uncertainty about the value of the
new disturbance ε0 about which the data have no information. �

[Gre97, p. 369] has an enlightening formula showing how the prediction intervals
increase if one goes away from the center of the data.

Now let us look at the prediction problem in the Generalized Least Squares
model

(27.3.5)

[
y

y0

]
=

[
X

X0

]
β +

[
ε

ε0

]
E
[

ε

ε0

]
=

[
o

o

]
V
[

ε

ε0

]
= σ2

[
Ψ C

C> Ψ0

]
.

X and X0 are known, y is observed, y0 is not observed, and we assume Ψ is positive

definite. If C = O, the BLUP of y0 is X0β̂, where β̂ is the BLUE in the model
y = Xβ + ε. In other words, all new disturbances are simply predicted by zero. If
past and future disturbances are correlated, this predictor is no longer optimal.

In [JHG+88, pp. 343–346] it is proved that the best linear unbiased predictor
of y0 is

(27.3.6) y∗
0 = X0β̂ + C>Ψ−1(y − Xβ̂).

where β̂ is the generalized least squares estimator of β, and that its MSE-matrix
MSE [y∗

0; y0] is

(27.3.7) σ2
(
Ψ0−C>Ψ−1C+(X0−C>Ψ−1X)(X>Ψ−1X)−1(X>

0 −X>Ψ−1C)
)
.

Problem 332. Derive the formula for the MSE matrix from the formula of
the predictor, and compute the joint MSE matrix for the predicted values and the
parameter vector.



27.3. PREDICTION OF FUTURE OBSERVATIONS IN THE REGRESSION MODEL 373

Answer. The prediction error is, using (26.0.3),

y∗
0 − y0 = X0β̂ − X0β + X0β − y0 + C>Ψ−1(y − Xβ + Xβ − Xβ̂)(27.3.8)

= X0(β̂ − β) − ε0 + C>Ψ−1(ε − X(β̂ − β))(27.3.9)

= C>Ψ−1ε + (X0 − C>Ψ−1X)(β̂ − β) − ε0(27.3.10)

=
[
C>Ψ−1 + (X0 − C>Ψ−1X)(X>Ψ−1X)−1X>Ψ−1 −I

][ ε

ε0

]
(27.3.11)

The MSE-matrix is therefore E [(y∗
0 − y0)(y∗

0 − y0)>] =

(27.3.12) = σ2
[
C>Ψ−1 + (X0 − C>Ψ−1X)(X>Ψ−1X)−1X>Ψ−1 −I

]
[

Ψ C

C> Ψ0

][
Ψ−1C + Ψ−1X(X>Ψ−1X)−1(X>

0 − X>Ψ−1C)
−I

]

and the joint MSE matrix with the sampling error of the parameter vector β̂ − β is

(27.3.13) σ2

[
C>Ψ−1 + (X0 − C>Ψ−1X)(X>Ψ−1X)−1X>Ψ−1 −I

(X>Ψ−1X)−1X>Ψ−1 O

]

[
Ψ C

C> Ψ0

][
Ψ−1C + Ψ−1X(X>Ψ−1X)−1(X>

0 − X>Ψ−1C) Ψ−1X(X>Ψ−1X)−1

−I O

]
=

(27.3.14) = σ2

[
C>Ψ−1 + (X0 − C>Ψ−1X)(X>Ψ−1X)−1X>Ψ−1 −I

(X>Ψ−1X)−1X>Ψ−1 O

]

[
X(X>Ψ−1X)−1(X>

0 − X>Ψ−1C) X(X>Ψ−1X)−1

C>Ψ−1C + C>Ψ−1X(X>Ψ−1X)−1(X>
0 − X>Ψ−1C) − Ψ0 C>Ψ−1X(X>Ψ−1X)−1

]

If one multiplies this out, one gets
(27.3.15)[
Ψ0 − C>Ψ−1C + (X0 − C>Ψ−1X)(X>Ψ−1X)−1(X>

0 − X>Ψ−1C) (X0 − C>Ψ−1X)(X>Ψ−1X)−1

(X>Ψ−1X)−1(X>
0 − X>Ψ−1C) (X>Ψ−1X)−1

]

The upper left diagonal element is as claimed in (27.3.7). �

The strategy of the proof given in ITPE is similar to the strategy used to obtain
the GLS results, namely, to transform the data in such a way that the disturbances
are well behaved. Both data vectors y and y0 will be transformed, but this trans-
formation must have the following additional property: the transformed y must be
a function of y alone, not of y0. Once such a transformation is found, it is easy to
predict the transformed y0 on the basis of the transformed y, and from this one also
obtains a prediction of y0 on the basis of y.

Here is some heuristics in order to understand formula (27.3.6). Assume for a
moment that β was known. Then you can apply theorem ?? to the model

(27.3.16)

[
y

y0

]
∼
[

Xβ

X0β

]
, σ2

[
Ψ C

C> Ψ0

]
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to get y∗
0 = X0β + C>Ψ−1(y − Xβ) as best linear predictor of y0 on the basis of

y. According to theorem ??, its MSE matrix is σ2(Ψ0 − C>Ψ−1C). Since β is

not known, replace it by β̂, which gives exactly (27.3.6). This adds MSE [X0β̂ +

C>Ψ−1(y−Xβ̂); X0β+C>Ψ−1(y−Xβ)] to the MSE-matrix, which gives (27.3.7).

Problem 333. Show that

(27.3.17) MSE [X0β̂ + C>Ψ−1(y − Xβ̂); X0β + C>Ψ−1(y − Xβ)] =

= σ2(X0 − C>Ψ−1X)(X>Ψ−1X)−1(X>
0 − X>Ψ−1C).

Answer. What is predicted is a random variable, therefore the MSE matrix is the covariance

matrix of the prediction error. The prediction error is (X0−C>Ψ−1)(β̂−β), its covariance matrix

is therefore σ2(X0 − C>Ψ−1X)(X>Ψ−1X)−1(X>
0 − X>Ψ−1C). �

Problem 334. In the following we work with partitioned matrices. Given the
model

(27.3.18)

[
y

y0

]
=

[
X

X0

]
β+

[
ε

ε0

]
E[

[
ε

ε0

]
] =

[
o

o

]
V [

[
ε

ε0

]
] = σ2

[
Ψ C

C> Ψ0

]
.

X has full rank. y is observed, y0 is not observed. C is not the null matrix.

• a. Someone predicts y0 by y∗
0 = X0β̂, where β̂ = (X>Ψ−1X)−1X>Ψ−1y is

the BLUE of β. Is this predictor unbiased?

Answer. Yes, since E [y0] = X0β, and E [β̂] = β. �

• b. Compute the MSE matrix MSE [X0β̂; y0] of this predictor. Hint: For any

matrix B, the difference By − y0 can be written in the form
[
B −I

] [ y

y0

]
. Hint:

For an unbiased predictor (or estimator), the MSE matrix is the covariance matrix
of the prediction (or estimation) error.

Answer.

E[(By − y0)(By − y0)
>] = V [By − y0](27.3.19)

= V
[[

B −I
][ y

y0

]]
(27.3.20)

= σ2
[
B −I

][ Ψ C

C> Ψ0

][
B>

−I

]
(27.3.21)

= σ2
(
BΨB> − C>B> − CB + Ψ0

)
.(27.3.22)

Now one must use B = X0(X
>Ψ−1X)−1X>Ψ−1. One ends up with

(27.3.23)

MSE[X0β̂; y0] = σ2
(

X0(X>Ψ−1X)−1X>
0 −C>Ψ−1X(X>Ψ−1X)−1X>

0 −X0(X>Ψ−1X)−1X>Ψ−1C+Ψ0

)
.

�
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• c. Compare its MSE-matrix with formula (27.3.7). Is the difference nonneg-
ative definite?

Answer. To compare it with the minimum MSE matrix, it can also be written as
(27.3.24)

MSE[X0β̂;y0] = σ2
(
Ψ0+(X0−C>Ψ−1X)(X>Ψ−1X)−1(X>

0 −X>Ψ−1C)−C>Ψ−1X(X>Ψ−1X)−1X>Ψ−1C

)
.

i.e., it exceeds the minimum MSE matrix by C>(Ψ−1 − Ψ−1X(X>Ψ−1X)−1X>Ψ−1)C . This
is nnd because the matrix in parentheses is M = MΨM , refer here to Problem 322. �



CHAPTER 28

Updating of Estimates When More Observations
become Available

The theory of the linear model often deals with pairs of models which are nested
in each other, one model either having more data or more stringent parameter re-
strictions than the other. We will discuss such nested models in three forms: in
the remainder of the present chapter 28 we will see how estimates must be updated
when more observations become available, in chapter 29 how the imposition of a
linear constraint affects the parameter estimates, and in chapter 30 what happens if
one adds more regressors.

Assume you have already computed the BLUE β̂ on the basis of the observations
y = Xβ+ε, and afterwards additional data y0 = X0β+ε0 become available. Then

β̂ can be updated using the following principles:
Before the new observations became available, the information given in the orig-

inal dataset not only allowed to estimate β by β̂, but also yielded a prediction

y∗
0 = X0β̂ of the additional data. The estimation error β̂ − β and the prediction

error y∗
0 −y0 are unobserved, but we know their expected values (the zero vectors),

and we also know their joint covariance matrix up to the unknown factor σ2. After
the additional data have become available, we can compute the actual value of the
prediction error y∗

0−y0. This allows us to also get a better idea of the actual value of
the estimation error, and therefore we can get a better estimator of β. The following
steps are involved:

(1) Make the best prediction y∗
0 of the new data y0 based on y.

(2) Compute the joint covariance matrix of the prediction error y∗
0 − y0 of the

new data by the old (which is observed) and the sampling error in the old regression

β̂ − β (which is unobserved).

(3) Use the formula for best linear prediction (??) to get a predictor z∗ of β̂−β.

(4) Then
ˆ̂
β = β̂ − z∗ is the BLUE of β based on the joint observations y and

y0.
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(5) The sum of squared errors of the updated model minus that of the basic

model is the standardized prediction error SSE∗ − SSE = (y∗
0 − y0)

>ΩΩΩ−1(y∗
0 − y0)

where SSE∗ = (y − X
ˆ̂
β)>(y − X

ˆ̂
β) V [y∗

0 − y0] = σ2ΩΩΩ.
In the case of one additional observation and spherical covariance matrix, this

procedure yields the following formulas:

Problem 335. Assume β̂ is the BLUE on the basis of the observation y =
Xβ + ε, and a new observation y0 = x>

0 β + ε0 becomes available. Show that the
updated estimator has the form

(28.0.25)
ˆ̂
β = β̂ + (X>X)−1x0

y0 − x>
0 β̂

1 + x>
0 (X>X)−1x0

.

Answer. Set it up as follows:

(28.0.26)

[
y0 − x>

0 β̂

β − β̂

]
∼
[
0
o

]
, σ2

[
x>

0 (X>X)−1x0 + 1 x>
0 (X>X)−1

(X>X)−1x0 (X>X)−1

]

and use (27.1.18). By the way, if the covariance matrix is not spherical but is

[
Ψ c

c> ψ0

]
we get

from (27.3.6)

(28.0.27) y∗
0 = x>

0 β̂ + c>Ψ−1(y − Xβ̂)

and from (27.3.15)

(28.0.28)

[
y0 − y∗

0

β − β̂

]
∼
[
0
o

]
, σ2

[
ψ0 − c>Ψ−1c + (x>

0 − c>Ψ−1X)(X>Ψ−1X)−1(x0 − X>Ψ−1c) (x>
0 − c>Ψ−1X)(X>Ψ−1X)−1

(X>Ψ−1X)−1(x0 − X>Ψ−1c) (X>Ψ−1X)−1

]

�

• a. Show that the residual ˆ̂ε0 from the full regression is the following nonrandom

multiple of the “predictive” residual y0 − x>
0 β̂:

(28.0.29) ˆ̂ε0 = y0 − x>
0

ˆ̂
β =

1

1 + x>
0 (X>X)−1x0

(y0 − x>
0 β̂)

Interestingly, this is the predictive residual divided by its relative variance (to stan-
dardize it one would have to divide it by its relative standard deviation). Compare
this with (31.2.9).

Answer. (28.0.29) can either be derived from (28.0.25), or from the following alternative
application of the updating principle: All the information which the old observations have for the

estimate of x>
0 β is contained in ŷ0 = x>

0 β̂. The information which the updated regression, which
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includes the additional observation, has about x>
0 β can therefore be represented by the following

two “observations”:

(28.0.30)

[
ŷ0

y0

]
=

[
1
1

]
x>

0 β +

[
δ1

δ2

] [
δ1

δ2

]
∼
([

0
0

]
, σ2

[
x>

0 (X>X)−1x0 0
0 1

])

This is a regression model with two observations and one unknown parameter, x>
0 β, which has a

nonspherical error covariance matrix. The formula for the BLUE of x>
0 β in model (28.0.30) is

ˆ̂y0 =

([
1 1

][x>
0 (X>X)−1x0 0

0 1

]−1 [
1
1

])−1 [
1 1

][x>
0 (X>X)−1x0 0

0 1

]−1 [
ŷ0

y0

](28.0.31)

=
1

1 + 1
x>

0
(X>X)−1x0

( ŷ0

x>
0 (X>X)−1x0

+ y0

)
(28.0.32)

=
1

1 + x>
0 (X>X)−1x0

(ŷ0 + x>
0 (X>X)−1x0y0).(28.0.33)

Now subtract (28.0.33) from y0 to get (28.0.29).
�

Using (28.0.29), one can write (28.0.25) as

ˆ̂
β = β̂ + (X>X)−1x0

ˆ̂ε0(28.0.34)

Later, in (32.4.1), one will see that it can also be written in the form

ˆ̂
β = β̂ + (Z>Z)−1x0(y0 − x>

0 β̂)(28.0.35)

where Z =

[
X

x>
0

]
.

Problem 336. Show the following fact which is point (5) in the above updating
principle in this special case: If one takes the squares of the standardized predictive
residuals, one gets the difference of the SSE for the regression with and without the
additional observation y0

(28.0.36) SSE∗ − SSE =
(y0 − x>

0 β̂)2

1 + x>
0 (X>X)−1x0

Answer. The sum of squared errors in the old regression is SSE = (y − Xβ̂)>(y − Xβ̂); the

sum of squared errors in the updated regression is SSE∗ = (y−X
ˆ̂
β)>(y−X

ˆ̂
β)+ˆ̂ε0

2. From (28.0.34)

follows

(28.0.37) y − X
ˆ̂
β = y − Xβ̂ − X(X>X)−1x0

ˆ̂ε0.

If one squares this, the cross product terms fall away: (y−X
ˆ̂
β)>(y−X

ˆ̂
β) = (y−Xβ̂)>(y−Xβ̂)+

ˆ̂ε0x>
0 (X>X)−1x0

ˆ̂ε0. Adding ˆ̂ε0
2 to both sides gives SSE∗ = SSE + ˆ̂ε0

2(1 + x>
0 (X>X)−1x0). Now

use (28.0.29) to get (28.0.36). �



CHAPTER 29

Constrained Least Squares

One of the assumptions for the linear model was that nothing is known about
the true value of β. Any k-vector γ is a possible candidate for the value of β. We
used this assumption e.g. when we concluded that an unbiased estimator B̃y of β

must satisfy B̃X = I . Now we will modify this assumption and assume we know
that the true value β satisfies the linear constraint Rβ = u. To fix notation, assume
y be a n × 1 vector, u a i × 1 vector, X a n × k matrix, and R a i × k matrix.
In addition to our usual assumption that all columns of X are linearly independent
(i.e., X has full column rank) we will also make the assumption that all rows of R

are linearly independent (which is called: R has full row rank). In other words, the
matrix of constraints R does not include “redundant” constraints which are linear
combinations of the other constraints.

29.1. Building the Constraint into the Model

Problem 337. Given a regression with a constant term and two explanatory
variables which we will call x and z, i.e.,

(29.1.1) yt = α+ βxt + γzt + εt

• a. 1 point How will you estimate β and γ if it is known that β = γ?

Answer. Write

(29.1.2) yt = α+ β(xt + zt) + εt

�

• b. 1 point How will you estimate β and γ if it is known that β + γ = 1?

Answer. Setting γ = 1 − β gives the regression

(29.1.3) yt − zt = α+ β(xt − zt) + εt

�

• c. 3 points Go back to a. If you add the original z as an additional regressor
into the modified regression incorporating the constraint β = γ, then the coefficient
of z is no longer an estimate of the original γ, but of a new parameter δ which is a
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linear combination of α, β, and γ. Compute this linear combination, i.e., express δ
in terms of α, β, and γ. Remark (no proof required): this regression is equivalent to
(29.1.1), and it allows you to test the constraint.

Answer. It you add z as additional regressor into (29.1.2), you get yt = α+β(xt+zt)+δzt+εt.
Now substitute the right hand side from (29.1.1) for y to get α+ βxt + γzt + εt = α+ β(xt + zt) +
δzt + εt. Cancelling out gives γzt = βzt + δzt, in other words, γ = β + δ. In this regression,
therefore, the coefficient of z is split into the sum of two terms, the first term is the value it should
be if the constraint were satisfied, and the other term is the difference from that. �

• d. 2 points Now do the same thing with the modified regression from part b
which incorporates the constraint β + γ = 1: include the original z as an additional
regressor and determine the meaning of the coefficient of z.

What Problem 337 suggests is true in general: every constrained Least Squares
problem can be reduced to an equivalent unconstrained Least Squares problem with
fewer explanatory variables. Indeed, one can consider every least squares problem to
be “constrained” because the assumption E [y] = Xβ for some β is equivalent to a
linear constraint on E [y]. The decision not to include certain explanatory variables
in the regression can be considered the decision to set certain elements of β zero,
which is the imposition of a constraint. If one writes a certain regression model as
a constrained version of some other regression model, this simply means that one is
interested in the relationship between two nested regressions.

Problem 273 is another example here.

29.2. Conversion of an Arbitrary Constraint into a Zero Constraint

This section, which is nothing but the matrix version of Problem 337, follows
[DM93, pp. 16–19]. By reordering the elements of β one can write the constraint
Rβ = u in the form

(29.2.1)
[
R1 R2

] [β1

β2

]
≡ R1β1 + R2β2 = u

where R1 is a nonsingular i× i matrix. Why can that be done? The rank of R is i,
i.e., all the rows are linearly independent. Since row rank is equal to column rank,
there are also i linearly independent columns. Use those for R1. Using this same
partition, the original regression can be written

(29.2.2) y = X1β1 + X2β2 + ε

Now one can solve (29.2.1) for β1 to get

(29.2.3) β1 = R−1
1 u − R−1

1 R2β2



29.3. LAGRANGE APPROACH TO CONSTRAINED LEAST SQUARES 383

Plug (29.2.3) into (29.2.2) and rearrange to get a regression which is equivalent to
the constrained regression:

(29.2.4) y − X1R
−1
1 u = (X2 − X1R

−1
1 R2)β2 + ε

or

(29.2.5) y∗ = Z2β2 + ε

One more thing is noteworthy here: if we add X1 as additional regressors into
(29.2.5), we get a regression that is equivalent to (29.2.2). To see this, define the
difference between the left hand side and right hand side of (29.2.3) as γ1 = β1 −
R−1

1 u+R−1
1 R2β2; then the constraint (29.2.1) is equivalent to the “zero constraint”

γ1 = o, and the regression

(29.2.6) y −X1R
−1
1 u = (X2 −X1R

−1
1 R2)β2 + X1(β1 −R−1

1 u + R−1
1 R2β2) + ε

is equivalent to the original regression (29.2.2). (29.2.6) can also be written as

(29.2.7) y∗ = Z2β2 + X1γ1 + ε

The coefficient of X1, if it is added back into (29.2.5), is therefore γ1.

Problem 338. [DM93] assert on p. 17, middle, that

(29.2.8) R[X1,Z2] = R[X1,X2].

where Z2 = X2 − X1R
−1
1 R2. Give a proof.

Answer. We have to show

(29.2.9) {z : z = X1γ + X2δ} = {z : z = X1α + Z2β}

First ⊂: given γ and δ we need a α and β with

(29.2.10) X1γ + X2δ = X1α + (X2 − X1R−1
1 R2)β

This can be accomplished with β = δ and α = γ + R−1
1 R2δ. The other side is even more trivial:

given α and β, multiplying out the right side of (29.2.10) gives X1α + X2β − X1R−1
1 R2β, i.e.,

δ = β and γ = α − R−1
1 R2β. �

29.3. Lagrange Approach to Constrained Least Squares

The constrained least squares estimator is that k × 1 vector β =
ˆ̂
β which mini-

mizes SSE = (y − Xβ)>(y − Xβ) subject to the linear constraint Rβ = u.
Again, we assume that X has full column and R full row rank.
The Lagrange approach to constrained least squares, which we follow here, is

given in [Gre97, Section 7.3 on pp. 341/2], also [DM93, pp. 90/1]:
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The Constrained Least Squares problem can be solved with the help of the
“Lagrange function,” which is a function of the k×1 vector β and an additional i×1
vector λ of “Lagrange multipliers”:

(29.3.1) L(β,λ) = (y − Xβ)>(y − Xβ) + (Rβ − u)>λ

λ can be considered a vector of “penalties” for violating the constraint. For every
possible value of λ one computes that β = β̃ which minimizes L for that λ (This is
an unconstrained minimization problem.) It will turn out that for one of the values

λ = λ∗, the corresponding β =
ˆ̂
β satisfies the constraint. This

ˆ̂
β is the solution of

the constrained minimization problem we are looking for.

Problem 339. 4 points Show the following: If β =
ˆ̂
β is the unconstrained

minimum argument of the Lagrange function

(29.3.2) L(β,λ∗) = (y − Xβ)>(y − Xβ) + (Rβ − u)>λ∗

for some fixed value λ∗, and if at the same time
ˆ̂
β satisfies R

ˆ̂
β = u, then β =

ˆ̂
β

minimizes (y − Xβ)>(y − Xβ) subject to the constraint Rβ = u.

Answer. Since
ˆ̂
β minimizes the Lagrange function, we know that

(y − Xβ̃)>(y − Xβ̃) + (Rβ̃ − u)>λ∗ ≥ (y − X
ˆ̂
β)>(y − X

ˆ̂
β) + (R

ˆ̂
β − u)>λ∗(29.3.3)

for all β̃. Since by assumption,
ˆ̂
β also satisfies the constraint, this simplifies to:

(y − Xβ̃)>(y − Xβ̃) + (Rβ̃ − u)>λ∗ ≥ (y − X
ˆ̂
β)>(y − X

ˆ̂
β).(29.3.4)

This is still true for all β̃. If we only look at those β̃ which satisfy the constraint, we get

(y − Xβ̃)>(y − Xβ̃) ≥ (y − X
ˆ̂
β)>(y − X

ˆ̂
β).(29.3.5)

This means,
ˆ̂
β is the constrained minimum argument.

�

Instead of imposing the constraint itself, one imposes a penalty function which
has such a form that the agents will “voluntarily” heed the constraint. This is
a familiar principle in neoclassical economics: instead of restricting pollution to a
certain level, tax the polluters so much that they will voluntarily stay within the
desired level.

The proof which follows now not only derives the formula for
ˆ̂
β but also shows

that there is always a λ∗ for which
ˆ̂
β satisfies R

ˆ̂
β = u.

Problem 340. 2 points Use the simple matrix differentiation rules ∂(w>β)/∂β> =

w> and ∂(β>Mβ)/∂β> = 2β>M to compute ∂L/∂β> where

(29.3.6) L(β) = (y − Xβ)>(y − Xβ) + (Rβ − u)>λ
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Answer. Write the objective function as y>y− 2y>Xβ + β>X>Xβ + λ>Rβ − λ>u to get
(29.3.7). �

Our goal is to find a
ˆ̂
β and a λ∗ so that (a) β =

ˆ̂
β minimizes L(β,λ∗) and (b)

R
ˆ̂
β = u. In other words,

ˆ̂
β and λ∗ together satisfy the following two conditions:

(a) they must satisfy the first order condition for the unconstrained minimization of

L with respect to β, i.e.,
ˆ̂
β must annul

(29.3.7) ∂L/∂β> = −2y>X + 2β>X>X + λ∗>R,

and (b)
ˆ̂
β must satisfy the constraint (29.3.9).

(29.3.7) and (29.3.9) are two linear matrix equations which can indeed be solved

for
ˆ̂
β and λ∗. I wrote (29.3.7) as a row vector, because the Jacobian of a scalar

function is a row vector, but it is usually written as a column vector. Since this
conventional notation is arithmetically a little simpler here, we will replace (29.3.7)
with its transpose (29.3.8). Our starting point is therefore

2X>X
ˆ̂
β = 2X>y − R>λ∗(29.3.8)

R
ˆ̂
β − u = o(29.3.9)

Some textbook treatments have an extra factor 2 in front of λ∗, which makes the
math slightly smoother, but which has the disadvantage that the Lagrange multiplier
can no longer be interpreted as the “shadow price” for violating the constraint.

Solve (29.3.8) for
ˆ̂
β to get that

ˆ̂
β which minimizes L for any given λ∗:

(29.3.10)
ˆ̂
β = (X>X)−1X>y − 1

2
(X>X)−1R>λ∗ = β̂ − 1

2
(X>X)−1R>λ∗

Here β̂ on the right hand side is the unconstrained OLS estimate. Plug this formula

for
ˆ̂
β into (29.3.9) in order to determine that value of λ∗ for which the corresponding

ˆ̂
β satisfies the constraint:

(29.3.11) Rβ̂ − 1

2
R(X>X)−1R>λ∗ − u = o.

Since R has full row rank and X full column rank, R(X>X)−1R> has an inverse
(Problem 341). Therefore one can solve for λ∗:

(29.3.12) λ∗ = 2
(
R(X>X)−1R>)−1

(Rβ̂ − u)

If one substitutes this λ∗ back into (29.3.10), one gets the formula for the constrained
least squares estimator:

(29.3.13)
ˆ̂
β = β̂ − (X>X)−1R>(R(X>X)−1R>)−1

(Rβ̂ − u).
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Problem 341. If R has full row rank and X full column rank, show that
R(X>X)−1R> has an inverse.

Answer. Since it is nonnegative definite we have to show that it is positive definite. b>R(X>X)−1R>b =

0 implies b>R = o> because (X>X)−1 is positive definite, and this implies b = o because R has
full row rank. �

Problem 342. Assume ε ∼ (o, σ2Ψ) with a nonsingular Ψ and show: If one
minimizes SSE = (y−Xβ)>Ψ−1(y−Xβ) subject to the linear constraint Rβ = u,

the formula for the minimum argument
ˆ̂
β is the following modification of (29.3.13):

(29.3.14)
ˆ̂
β = β̂ − (X>Ψ−1X)−1R>(R(X>Ψ−1X)−1R>)−1

(Rβ̂ − u)

where β̂ = (X>Ψ−1X)−1X>Ψ−1y. This formula is given in [JHG+88, (11.2.38)
on p. 457]. Remark, which you are not asked to prove: this is the best linear unbiased
estimator if ε ∼ (o, σ2Ψ) among all linear estimators which are unbiased whenever
the true β satisfies the constraint Rβ = u.)

Answer. Lagrange function is

L(β,λ) = (y − Xβ)>Ψ−1(y − Xβ) + (Rβ − u)>λ

= y>y − 2y>Ψ−1Xβ + β>X>Ψ−1Xβ + λ>Rβ − λ>u

Jacobian is

∂L/∂β> = −2y>Ψ−1X + 2β>X>Ψ−1X + λ>R,

Transposing and setting it zero gives

(29.3.15) 2X>Ψ−1X
ˆ̂
β = 2X>Ψ−1y − R>λ∗

Solve (29.3.15) for
ˆ̂
β:

(29.3.16)
ˆ̂
β = (X>Ψ−1X)−1X>Ψ−1y − 1

2
(X>Ψ−1X)−1R>λ∗ = β̂ − 1

2
(X>Ψ−1X)−1R>λ∗

Here β̂ is the unconstrained GLS estimate. Plug
ˆ̂
β into the constraint (29.3.9):

(29.3.17) Rβ̂ − 1

2
R(X>Ψ−1X)−1R>λ∗ − u = o.

Since R has full row rank and X full column rank and Ψ is nonsingular, R(X>Ψ−1X)−1R> still
has an inverse. Therefore

(29.3.18) λ∗ = 2
(
R(X>Ψ−1X)−1R>)−1

(Rβ̂ − u)

Now substitute this λ∗ back into (29.3.16):

(29.3.19)
ˆ̂
β = β̂ − (X>Ψ−1X)−1R>(R(X>Ψ−1X)−1R>)−1

(Rβ̂ − u).

�
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29.4. Constrained Least Squares as the Nesting of Two Simpler Models

The imposition of a constraint can also be considered the addition of new in-
formation: a certain linear transformation of β, namely, Rβ, is observed without
error.

Problem 343. Assume the random β ∼ (β̂, σ2(X>X)−1) is unobserved, but
one observes Rβ = u.

• a. 2 points Compute the best linear predictor of β on the basis of the observation
u. Hint: First write down the joint means and covariance matrix of u and β.

Answer.

(29.4.1)

[
u

β

]
∼
([

Rβ̂

β̂

]
, σ2

[
R(X>X)−1R> R(X>X)−1

(X>X)−1R> (X>X)−1

])
.

Therefore application of formula (??) gives

(29.4.2) β∗ = β̂ + (X>X)−1R>(R(X>X)−1R>)−1
(u − Rβ̂).

�

• b. 1 point Look at the formula for the predictor you just derived. Have you
seen this formula before? Describe the situation in which this formula is valid as a
BLUE-formula, and compare the situation with the situation here.

Answer. Of course, constrained least squares. But in contrained least squares, β is nonrandom

and β̂ is random, while here it is the other way round. �

In the unconstrained OLS model, i.e., before the “observation” of u = Rβ, the

best bounded MSE estimators of u and β are Rβ̂ and β̂, with the sampling errors
having the following means and variances:

(29.4.3)

[
u − Rβ̂

β − β̂

]
∼
([

o

o

]
, σ2

[
R(X>X)−1R> R(X>X)−1

(X>X)−1R> (X>X)−1

])

After the observation of u we can therefore apply (27.1.18) to get exactly equation

(29.3.13) for
ˆ̂
β. This is probably the easiest way to derive this equation, but it derives

constrained least squares by the minimization of the MSE-matrix, not by the least
squares problem.

29.5. Solution by Quadratic Decomposition

An alternative purely algebraic solution method for this constrained minimiza-
tion problem rewrites the OLS objective function in such a way that one sees imme-
diately what the constrained minimum value is.
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Start with the decomposition (18.2.12) which can be used to show optimality of
the OLS estimate:

(y − Xβ)>(y − Xβ) = (y − Xβ̂)>(y − Xβ̂) + (β − β̂)>X>X(β − β̂).

Split the second term again, using β̂− ˆ̂
β = (X>X)−1R>(R(X>X)−1R>)−1

(Rβ̂−
u):

(β − β̂)>X>X(β − β̂) =
(
β − ˆ̂

β − (β̂ − ˆ̂
β)
)>

X>X
(
β − ˆ̂

β − (β̂ − ˆ̂
β)
)

= (β − ˆ̂
β)>X>X(β − ˆ̂

β)

− 2(β − ˆ̂
β)>X>X(X>X)−1R>(R(X>X)−1R>)−1

(Rβ̂ − u)

+ (β̂ − ˆ̂
β)>X>X(β̂ − ˆ̂

β).

The cross product terms can be simplified to −2(Rβ−u)>
(
R(X>X)−1R>)−1

(Rβ̂−
u), and the last term is (Rβ̂ − u)>

(
R(X>X)−1R>)−1

(Rβ̂ − u). Therefore the
objective function for an arbitrary β can be written as

(y − Xβ)>(y − Xβ) = (y − Xβ̂)>(y − Xβ̂)

+ (β − ˆ̂
β)>X>X(β − ˆ̂

β)

− 2(Rβ − u)>
(
R(X>X)−1R>)−1

(Rβ̂ − u)

+ (Rβ̂ − u)>
(
R(X>X)−1R>)−1

(Rβ̂ − u)

The first and last terms do not depend on β at all; the third term is zero whenever

β satisfies Rβ = u; and the second term is minimized if and only if β =
ˆ̂
β, in which

case it also takes the value zero.

29.6. Sampling Properties of Constrained Least Squares

Again, this variant of the least squares principle leads to estimators with desirable

sampling properties. Note that
ˆ̂
β is an affine function of y. We will compute E [

ˆ̂
β−β]

and MSE [
ˆ̂
β; β] not only in the case that the true β satisfies Rβ = u, but also in

the case that it does not. For this, let us first get a suitable representation of the
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sampling error:

ˆ̂
β − β = (β̂ − β) + (

ˆ̂
β − β̂) =

= (β̂ − β) − (X>X)−1R>(R(X>X)−1R>)−1
R(β̂ − β)(29.6.1)

−(X>X)−1R>(R(X>X)−1R>)−1
(Rβ − u).

The last term is zero if β satisfies the constraint. Now use (24.0.7) twice to get

ˆ̂
β − β = WX>ε−(X>X)−1R>(R(X>X)−1R>)−1

(Rβ − u)(29.6.2)

where

W = (X>X)−1 − (X>X)−1R>(R(X>X)−1R>)−1
R(X>X)−1.(29.6.3)

If β satisfies the constraint, (29.6.2) simplifies to
ˆ̂
β − β = WX>ε. In this case,

therefore,
ˆ̂
β is unbiased and MSE [

ˆ̂
β; β] = σ2W (Problem 344). Since (X>X)−1 −

W is nonnegative definite, MSE [
ˆ̂
β; β] is smaller than MSE [β̂; β] by a nonnegative

definite matrix. This should be expected, since
ˆ̂
β uses more information than β̂.

Problem 344.

• a. Show that WX>XW = W (i.e., X>X is a g-inverse of W ).

Answer. This is a tedious matrix multiplication. �

• b. Use this to show that MSE [
ˆ̂
β; β] = σ2W .

(Without proof:) The Gauss-Markov theorem can be extended here as follows:
the constrained least squares estimator is the best linear unbiased estimator among
all linear (or, more precisely, affine) estimators which are unbiased whenever the true
β satisfies the constraint Rβ = u. Note that there are more estimators which are
unbiased whenever the true β satisfies the constraint than there are estimators which
are unbiased for all β.

If Rβ 6= u, then
ˆ̂
β is biased. Its bias is

(29.6.4) E [
ˆ̂
β − β] = −(X>X)−1R>(R(X>X)−1R>)−1

(Rβ − u).
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Due to the decomposition (23.1.2) of the MSE matrix into dispersion matrix plus
squared bias, it follows

(29.6.5) MSE [
ˆ̂
β; β] = σ2W+

+ (X>X)−1R>(R(X>X)−1R>)−1
(Rβ − u) ·

· (Rβ − u)>
(
R(X>X)−1R>)−1

R(X>X)−1.

Even if the true parameter does not satisfy the constraint, it is still possible
that the constrained least squares estimator has a better MSE matrix than the
unconstrained one. This is the case if and only if the true parameter values β and
σ2 satisfy

(29.6.6) (Rβ − u)>
(
R(X>X)−1R>)−1(Rβ − u) ≤ σ2.

This equation, which is the same as [Gre97, (8-27) on p. 406], is an interesting
result, because the obvious estimate of the lefthand side in (29.6.6) is i times the
value of the F-test statistic for the hypothesis Rβ = u. To test for this, one has to
use the noncentral F-test with parameters i, n− k, and 1/2.

Problem 345. 2 points This Problem motivates Equation (29.6.6). If
ˆ̂
β is a

better estimator of β than β̂, then R
ˆ̂
β = u is also a better estimator of Rβ than

Rβ̂. Show that this latter condition is not only necessary but already sufficient,

i.e., if MSE [Rβ̂; Rβ] −MSE [u; Rβ] is nonnegative definite then β and σ2 satisfy
(29.6.6). You are allowed to use, without proof, theorem A.5.9 in the mathematical
Appendix.

Answer. We have to show

(29.6.7) σ2R(X>X)−1R> − (Rβ − u)(Rβ − u)>

is nonnegative definite. Since ΩΩΩ = σ2R(X>X)−1R> has an inverse, theorem A.5.9 immediately
leads to (29.6.6). �

29.7. Estimation of the Variance in Constrained OLS

Next we will compute the expected value of the minimum value of the constrained

OLS objective funtion, i.e., E[ˆ̂ε>ˆ̂ε] where ˆ̂ε = y − X
ˆ̂
β, again without necessarily

making the assumption that Rβ = u:

(29.7.1) ˆ̂ε = y − X
ˆ̂
β = ε̂ + X(X>X)−1R>(R(X>X)−1R>)−1

(Rβ̂ − u).

Since X>ε̂ = o, it follows

(29.7.2) ˆ̂ε>ˆ̂ε = ε̂>ε̂ + (Rβ̂ − u)>
(
R(X>X)−1R>)−1

(Rβ̂ − u).
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Now note that E [Rβ̂−u] = Rβ−u and V [Rβ̂−u] = σ2R(X>X)−1R>. Therefore

use (9.2.1) in theorem 9.2.1 and tr
((

R(X>X)−1R>)(R(X>X)−1R>)−1
)

= i to

get

(29.7.3) E[(Rβ̂ − u)>
(
R(X>X)−1R>)−1

(Rβ̂ − u)] =

= σ2i+(Rβ − u)>
(
R(X>X)−1R>)−1

(Rβ − u)

Since E[ε̂>ε̂] = σ2(n− k), it follows

(29.7.4) E[ˆ̂ε>ˆ̂ε] = σ2(n+ i− k)+(Rβ − u)>
(
R(X>X)−1R>)−1

(Rβ − u).

In other words, ˆ̂ε
>ˆ̂ε/(n + i − k) is an unbiased estimator of σ2 if the constraint

holds, and it is biased upwards if the constraint does not hold. The adjustment of
the degrees of freedom is what one should expect: a regression with k explanatory
variables and i constraints can always be rewritten as a regression with k− i different
explanatory variables (see Section 29.2), and the distribution of the SSE does not
depend on the values taken by the explanatory variables at all, only on how many
there are. The unbiased estimate of σ2 is therefore

(29.7.5) ˆ̂σ2 = ˆ̂ε>ˆ̂ε/(n+ i− k)

Here is some geometric intuition: y = Xβ̂ + ε̂ is an orthogonal decomposi-
tion, since ε̂ is orthogonal to all columns of X. From orthogonality follows y>y =

β̂>X>Xβ̂ + ε̂>ε̂. If one splits up y = X
ˆ̂
β + ˆ̂ε, one should expect this to be or-

thogonal as well. But this is only the case if u = o. If u 6= o, one first has to shift
the origin of the coordinate system to a point which can be written in the form Xβ0

where β0 satisfies the constraint:

Problem 346. 3 points Assume
ˆ̂
β is the constrained least squares estimate, and

β0 is any vector satisfying Rβ0 = u. Show that in the decomposition

(29.7.6) y − Xβ0 = X(
ˆ̂
β − β0) + ˆ̂ε

the two vectors on the righthand side are orthogonal.

Answer. We have to show (
ˆ̂
β − β0)

>X>ˆ̂ε = 0. Since ˆ̂ε = y − X
ˆ̂
β = y − Xβ̂ + X(β̂ − ˆ̂

β) =

ε̂ + X(β̂ − ˆ̂
β), and we already know that X>ε̂ = o, it is necessary and sufficient to show that

(
ˆ̂
β − β0)>X>X(β̂ − ˆ̂

β) = 0. By (29.3.13),

(
ˆ̂
β − β0)>X>X(β̂ − ˆ̂

β) = (
ˆ̂
β − β0)>X>X(X>X)−1R>(R(X>X)−1R>)−1

(Rβ̂ − u)

= (u − u)>
(
R(X>X)−1R>)−1

(Rβ̂ − u) = 0.

�
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If u = o, then one has two orthogonal decompositions: y = ŷ+ε̂, and y = ˆ̂y+ˆ̂ε.
And if one connects the footpoints of these two orthogonal decompositions, one
obtains an orthogonal decomposition into three parts:

Problem 347. Assume
ˆ̂
β is the constrained least squares estimator subject to

the constraint Rβ = o, and β̂ is the unconstrained least squares estimator.

• a. 1 point With the usual notation ŷ = Xβ̂ and ˆ̂y = X
ˆ̂
β, show that

(29.7.7) y = ˆ̂y + (ŷ − ˆ̂y) + ε̂

Point out these vectors in the reggeom simulation.

Answer. In the reggeom-simulation, y is the purple line; X
ˆ̂
β is the red line starting at the

origin, one could also call it ˆ̂y; X(β̂ − ˆ̂
β) = ŷ − ˆ̂y is the light blue line, and ε̂ is the green line

which does not start at the origin. In other words: if one projects y on a plane, and also on a line
in that plane, and then connects the footpoints of these two projections, one obtains a zig-zag line
with two right angles. �

• b. 4 points Show that in (29.7.7) the three vectors ˆ̂y, ŷ− ˆ̂y, and ε̂ are orthog-
onal. You are allowed to use, without proof, formula (29.3.13):

Answer. One has to verify that the scalar products of the three vectors on the right hand

side of (29.7.7) are zero. ˆ̂y
>

ε̂ =
ˆ̂
β
>

X>ε̂ = 0 and (ŷ − ˆ̂y)>ε̂ = (β̂ − ˆ̂
β)>X>ε̂ = 0 follow from

X>ε̂ = o; geometrically on can simply say that ŷ and ˆ̂y are in the space spanned by the columns

of X, and ε̂ is orthogonal to that space. Finally, using (29.3.13) for β̂ − ˆ̂
β,

ˆ̂y
>

(ŷ − ˆ̂y) =
ˆ̂
β
>

X>X(β̂ − ˆ̂
β) =

=
ˆ̂
β
>

X>X(X>X)−1R>(R(X>X)−1R>)−1
Rβ̂ =

=
ˆ̂
β
>

R>(R(X>X)−1R>)−1
Rβ̂ = 0

because
ˆ̂
β satisfies the constraint R

ˆ̂
β = o, hence

ˆ̂
β
>

R> = o>. �

Problem 348.

• a. 3 points In the model y = β+ε, where y is a n×1 vector, and ε ∼ (o, σ2I),

subject to the constraint ι>β = 0, compute
ˆ̂
β, ˆ̂ε, and the unbiased estimate ˆ̂σ

2
. Give

general formulas and the numerical results for the case y> =
[
−1 0 1 2

]
. All

you need to do is evaluate the appropriate formulas and correctly count the number
of degrees of freedom.

Answer. The unconstrained least squares estimate of β is β̂ = y, and since X = I, R = ι>,

and u = 0, the constrained LSE has the form
ˆ̂
β = y − ι(ι>ι)−1(ι>y) = y − ιȳ by (29.3.13). If

y> = [−1, 0, 1, 2] this gives
ˆ̂
β
>

= [−1.5,−0.5, 0.5, 1.5]. The residuals in the constrained model are
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therefore ˆ̂ε = ιȳ, i.e., ˆ̂ε = [0.5, 0.5, 0.5, 0.5]. Since one has n observations, n parameters and 1

constraint, the number of degrees of freedom is 1. Therefore ˆ̂σ
2

= ˆ̂ε
>ˆ̂ε/1 = nȳ2 which is = 1 in our

case. �

• b. 1 point Can you think of a practical situation in which this model might be
appropriate?

Answer. This can occur if one measures data which theoretically add to zero, and the mea-
surement errors are independent and have equal standard deviations. �

• c. 2 points Check your results against a SAS printout (or do it in any other
statistical package) with the data vector y> = [−1 0 1 2 ]. Here are the sas commands:

data zeromean;

input y x1 x2 x3 x4;

cards;

-1 1 0 0 0

0 0 1 0 0

1 0 0 1 0

2 0 0 0 1

;

proc reg;

model y= x1 x2 x3 x4 /

noint;

restrict x1+x2+x3+x4=0;

output out=zerout

residual=ehat;

run;

proc print data=zerout;

run;

Problem 349. Least squares estimates of the coefficients of a linear regression
model often have signs that are regarded by the researcher to be ‘wrong’. In an ef-
fort to obtain the ‘right’ signs, the researcher may be tempted to drop statistically
insignificant variables from the equation. [Lea75] showed that such attempts neces-
sarily fail: there can be no change in sign of any coefficient which is more significant
than the coefficient of the omitted variable. The present exercise shows this, using
a different proof than Leamer’s. You will need the formula for the constrained least
squares estimator subject to one linear constraint r>β = u, which is

(29.7.8)
ˆ̂
β = β̂ − V r

(
r>V r

)−1
(r>β̂ − u).

where V = (X>X)−1.
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• a. In order to assess the sensitivity of the estimate of any linear combination
of the elements of β, φ = t>β, due to imposition of the constraint, it makes sense

to divide the change t>β̂ − t>
ˆ̂
β by the standard deviation of t>β̂, i.e., to look at

(29.7.9)
t>(β̂ − ˆ̂

β)

σ

√
t>(X>X)−1t

.

Such a standardization allows you to compare the sensitivity of different linear com-

binations. Show that that linear combination of the elements of β̂ which is affected
most if one imposes the constraint r>β = u is the constraint t = r itself. If this

value is small, then no other linear combination of the elements of β̂ will be affected
much by the imposition of the constraint either.

Answer. Using (29.7.8) and equation (32.4.1) one obtains

max
t

(t>(β̂ − ˆ̂
β))2

σ2t>(X>X)−1t
=

(β̂ − ˆ̂
β)>X>X(β̂ − ˆ̂

β)

σ2
=

=
(r>β̂ − u)>

(
r>(X>X)−1r

)−1
(r>β̂ − u)

σ2
=

(r>β̂ − u)2

σ2r>(X>X)−1r

�

29.8. Inequality Restrictions

With linear inequality restrictions, it makes sense to have R of deficient rank,
these are like two different half planes in the same plane, and the restrictions define
a quarter plane, or a triangle, etc.

One obvious approach would be: compute the unrestricted estimator, see what
restrictions it violates, and apply these restrictions with equality. But this equality
restricted estimator may then suddenly violate other restrictions.

One brute force approach would be: impose all combinations of restrictions and
see if the so partially restricted parameter satisfies the other restrictions too; and
among those that do, choose the one with the lowest SSE.

[Gre97, 8.5.3 on pp. 411/12] has good discussion. The inequality restricted
estimator is biased, unless the true parameter value satisfies all inequality restrictions

with equality. It is always a mixture between the unbiased β̂ and some restricted
estimator which is biased if this condition does not hold.

Its variance is always smaller than that of β̂ but, incredibly, its MSE will some-

times be larger than that of β̂. Don’t understand how this comes about.
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29.9. Application: Biased Estimators and Pre-Test Estimators

The formulas about Constrained Least Squares which were just derived suggest
that it is sometimes advantageous (in terms of MSE) to impose constraints even if
they do not really hold. In other words, one should not put all explanatory vari-
ables into a regression which have an influence, but only the main ones. A logical
extension of this idea is the common practice of first testing whether some variables
have significant influence and dropping the variables if they do not. These so-called
pre-test estimators are very common. [DM93, Chapter 3.7, pp. 94–98] says some-
thing about them. Pre-test estimation this seems a good procedure, but the graph
regarding MSE shows it is not: the pre-test estimator never has lowest MSE, and it
has highest MSE exactly in the area where it is most likely to be applied.



CHAPTER 30

Additional Regressors

A good detailed explanation of the topics covered in this chapter is [DM93, pp.
19–24]. [DM93] use the addition of variables as their main paradigm for going from
a more restrictive to a less restrictive model.

In this chapter, the usual regression model is given in the form

(30.0.1) y = X1β1 + X2β2 + ε =
[
X1 X2

] [β1

β2

]
+ ε = Xβ + ε, ε ∼ (o, σ2I)

where X =
[
X1 X2

]
has full column rank, and the coefficient vector is β =

[
β1

β2

]
.

We take a sequential approach to this regression. First we regress y on X1

alone, which gives the regression coefficient
ˆ̂
β1. This by itself is an inconsistent

estimator of β1, but we will use it as a stepping stone towards the full regression.
We make use of the information gained by the regression on X1 in our computation
of the full regression. Such a sequential approach may be appropriate in the following
situations:

• If regression on X1 is much simpler than the combined regression, for in-
stance if X1 contains dummy or trend variables, and the dataset is large.
Example: model (64.3.4).

• If we want to fit the regressors in X2 by graphical methods and those in
X1 by analytical methods (added variable plots).

• If we need an estimate of β2 but are not interested in an estimate of β1.
• If we want to test the joint significance of the regressors in X2, while X1

consists of regressors not being tested.

If one regresses y on X1, one gets y = X1
ˆ̂
β1+ˆ̂ε. Of course,

ˆ̂
β1 is an inconsistent

estimator of β1, since some explanatory variables are left out. And ˆ̂ε is orthogonal
to X1 but not to X2.

The iterative “backfitting” method proceeds from here as follows: it regresses ˆ̂ε
on X2, which gives another residual, which is again orthogonal on X2 but no longer
orthogonal on X1. Then this new residual is regressed on X1 again, etc.
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Problem 350. The purpose of this Problem is to get a graphical intuition of the
issues in sequential regression. Make sure the stand-alone program xgobi is installed
on your computer (in Debian GNU-Linux do apt-get install xgobi), and the R-
interface xgobi is installed (the R-command is simply install.packages("xgobi"),
or, on a Debian system the preferred argument is install.packages("xgobi", lib

= "/usr/lib/R/library")). You have to give the commands library(xgobi) and
then reggeom(). This produces a graph in the XGobi window which looks like [DM93,
Figure 3b on p. 22]. If you switch from the XYPlot view to the Rotation view, you
will see the same lines rotating 3-dimensionally, and you can interact with this graph.
You will see that this graph shows the dependent variable y, the regression of y on
x1, and the regression of y on x1 and x2.

• a. 1 point In order to show that you have correctly identified which line is y,
please answer the following two questions: Which color is y: red, yellow, light blue,
dark blue, green, purple, or white? If it is yellow, also answer the question: Is it that
yellow line which is in part covered by a red line, or is it the other one? If it is red,
green, or dark blue, also answer the question: Does it start at the origin or not?

• b. 1 point Now answer the same two questions about x1.

• c. 1 point Now answer the same two questions about x2.

• d. 1 point Now answer the same two questions about ˆ̂ε, the residual in the
regression of y on x1.

• e. Now assume x1 is the vector of ones. The R2 of this regression is a ratio
of the squared lengths of two of the lines in the regression. Which lines?

• f. 2 points If one regresses ˆ̂ε on x2, one gets a decomposition ˆ̂ε = h + k,
where h is a multiple of x2 and k orthogonal to x2. This is the next step in the
backfitting algorithm. Draw this decomposition into the diagram. The points are
already invisibly present. Therefore you should use the line editor to connect the
points. You may want to increase the magnification scale of the figure for this. (In
my version of XGobi, I often lose lines if I try to add more lines. This seems to be
a bug which will probably be fixed eventually.) Which label does the corner point of
the decomposition have? Make a geometric argument that the new residual k is no
longer orthogonal to x2.

• g. 1 point The next step in the backfitting procedure is to regress k on x1.
The corner point for this decomposition is again invisibly in the animation. Iden-
tify the two endpoints of the residual in this regression. Hint: the R-command
example(reggeom) produces a modified version of the animation in which the back-
fitting prodecure is highlighted. The successive residuals which are used as regressors
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are drawn in dark blue, and the quickly improving approximations to the fitted value
are connected by a red zig-zag line.

• h. 1 point The diagram contains the points for two more backfitting steps.
Identify the endpoints of both residuals.

• i. 2 points Of the five cornerpoints obtained by simple regressions, c, p, q, r,
and s, three lie on one straight line, and the other two on a different straight line,
with the intersection of these straight lines being the corner point in the multiple
regression of y on x1 and x2. Which three points are on the same line, and how can
these two lines be characterized?

• j. 1 point Of the lines cp, pq, qr, and rs, two are parallel to x1, and two
parallel to x2. Which two are parallel to x1?

• k. 1 point Draw in the regression of y on x2.

• l. 3 points Which two variables are plotted against each other in an added-
variable plot for x2?

Here are the coordinates of some of the points in this animation:

x1 x2 y ŷ ˆ̂y
5 -1 3 3 3
0 4 3 3 0
0 0 4 0 0

In the dataset which R submits to XGobi, all coordinates are multiplied by 1156,
which has the effect that all the points included in the animation have integer coor-
dinates.

Problem 351. 2 points How do you know that the decomposition
[

3
3
4

]
=
[

3
0
0

]
+

[
0
3
4

]
is y = ˆ̂y + ˆ̂ε in the regression of y =

[
3
3
4

]
on x1 =

[
5
0
0

]
?

Answer. Besides the equation y = ˆ̂y + ˆ̂ε we have to check two things: (1) ˆ̂y is a linear

combination of all the explanatory variables (here: is a multiple of x1), and (2) ˆ̂ε is orthogonal to
all explanatory variables. Compare Problem ??. �

Problem 352. 3 points In the same way, check that the decomposition
[

3
3
4

]
=

[
3
3
0

]
+
[

0
0
4

]
is y = ŷ + ε in the regression of y =

[
3
3
4

]
on x1 =

[
5
0
0

]
and x2 =

[−1
4
0

]
.

Answer. Besides the equation y = ˆ̂y + ˆ̂ε we have to check two things: (1) ˆ̂y is a linear
combination of all the explanatory variables. Since both x1 and x2 have zero as third coordinate,
and they are linearly independent, they span the whole plane, therefore ŷ, which also has the

third coordinate zero, is their linear combination. (2) ˆ̂ε is orthogonal to both explanatory variables

because its only nonzero coordinate is the third. �
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The residuals ˆ̂ε in the regression on x1 are y − ˆ̂y =
[

3
3
4

]
−
[

3
0
0

]
=
[

0
3
4

]
. This

vector is clearly orthogonal to x1 =
[

3
0
0

]
. Now let us regress ˆ̂ε =

[
0
3
4

]
on x2 =

[−1
4
0

]
.

Say h is the vector of fitted values and k the residual vector in this regression. We
saw in problem 350 that this is the next step in backfitting, but k is not the same
as the residual vector ε̂ in the multiple regression, because k is not orthogonal to
x1. In order to get the correct residual in the joint regression and also the correct

coefficient of x2, one must regress ˆ̂ε only on that part of x2 which is orthogonal to
x1. This regressor is the dark blue line starting at the origin.

In formulas: One gets the correct ε̂ and β̂2 by regressingx ˆ̂ε = M1y not on X2

but on M 1X2, where M 1 = I − X1(X
>
1 X1)

−1X>
1 is the matrix which forms the

residuals under the regression on X1. In other words, one has to remove the influence
of X1 not only from the dependent but also the independent variables. Instead of

regressing the residuals ˆ̂ε = M1y on X2, one has to regress them on what is new
about X2 after we know X1, i.e., on what remains of X2 after taking out the effect

of X1, which is M 1X2. The regression which gets the correct β̂2 is therefore

(30.0.2) M1y = M1X2β̂2 + ε̂

In formulas, the correct β̂2 is

(30.0.3) β̂2 = (X>
2 M 1X2)

−1X>
2 M1y.

This regression also yields the correct covariance matrix. (The only thing which
is not right is the number of degrees of freedom). The regression is therefore fully

representative of the additional effect of x2, and the plot of ˆ̂ε against M 1X2 with

the fitted line drawn (which has the correct slope β̂2) is called the “added variable
plot” for X2. [CW99, pp. 244–246] has a good discussion of added variable plots.

Problem 353. 2 points Show that in the model (30.0.1), the estimator β̂2 =

(X>
2 M 1X2)

−1X>
2 M1y is unbiased. Compute MSE [β̂2; β2].

Answer. β̂2−β2 = (X>
2 M1X2)−1X>

2 M1(X1β1+X2β2+ε)−β2 = (X>
2 M1X2)−1X>

2 M1ε;

therefore MSE [β̂2; β2] = σ2(X>
2 M1X2)−1X>

2 M1M>
1 X2(X>

2 M1X2)−1 = σ2(X>
2 M1X2)−1.

�

In order to get an estimate of β̂1, one can again do what seems intuitive, namely,

regress y − X2β̂2 on X1. This gives

(30.0.4) β̂1 = (X>
1 X1)

−1X>
1 (y − X2β̂2).

This regression also gives the right residuals, but not the right estimates of the
covariance matrix.
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Problem 354. The three Figures in [DM93, p. 22] can be seen in XGobi if
you use the instructions in Problem 350. The purple line represents the dependent
variable y, and the two yellow lines the explanatory variables x1 and x2. (x1 is the
one which is in part red.) The two green lines represent the unconstrained regression

y = ŷ + ε̂, and the two red lines the constrained regression y = ˆ̂y + ˆ̂ε where y is
only regressed on x1. The two dark blue lines, barely visible against the dark blue
background, represent the regression of x2 on x1.

• a. The first diagram which XGobi shows on startup is [DM93, diagram (b)
on p. 22]. Go into the Rotation view and rotate the diagram in such a way that the
view is [DM93, Figure (a)]. You may want to delete the two white lines, since they
are not shown in Figure (a).

• b. Make a geometric argument that the light blue line, which represents ŷ− ˆ̂y =

X(β̂− ˆ̂
β), is orthogonal on the green line ε̂ (this is the green line which ends at the

point y, i.e., not the green line which starts at the origin).

Answer. The light blue line lies in the plane spanned by x1 and x2, and ε̂ is orthogonal to
this plane. �

• c. Make a geometric argument that the light blue line is also orthogonal to the

red line ˆ̂y emanating from the origin.

Answer. This is a little trickier. The red line ˆ̂ε is orthogonal to x1, and the green line ε̂ is

also orthogonal to x1. Together, ε̂ and ˆ̂ε span therefore the plane orthogonal to x1. Since the light

blue line lies in the plane spanned by ε̂ and ˆ̂ε, it is orthogonal to x1. �

Question 354 shows that the decomposition y = ˆ̂y + (ŷ − ˆ̂y) + ε̂ is orthogonal,

i.e., all 3 vectors ˆ̂y, ŷ − ˆ̂y, and ε̂ are orthogonal to each other. This is (29.7.6) in
the special case that u = o and therefore β0 = o.

One can use this same animation also to show the following: If you first project
the purple line on the plane spanned by the yellow lines, you get the green line in the
plane. If you then project that green line on x1, which is a subspace of the plane,
then you get the red section of the yellow line. This is the same result as if you
had projected the purple line directly on x1. A matrix-algebraic proof of this fact is
given in (A.6.3).

The same animation allows us to verify the following:

• In the regression of y on x1, the coefficient is
ˆ̂
β1, and the residual is ˆ̂ε.

• In the regression of y on x1 and x2, the coefficients are β̂1, β̂2, and the
residual is ε̂.

• In the regression of y on x1 and M 1x2, the coefficients are
ˆ̂
β1, β̂2, and the

residual is ε̂. The residual is ε̂ because the space spanned by the regressors
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is the same as in the regression on x1 and x2, and ε̂ only depends on that
space.

• In the regression of y on M 1x2, the coefficient is β̂2, because the regres-
sor I am leaving out is orthogonal to M 1x2. The residual contains the

contribution of the left-out variable, i.e., it is ε̂ + β̂1x1.

• But in the regression of ˆ̂ε = M1y on M1x2, the coefficient is β̂2 and the
residual ε̂.

This last statement is (30.0.3).
Now let us turn to proving all this mathematically. The “brute force” proof, i.e.,

the proof which is conceptually simplest but has to plow through some tedious math-
ematics, uses (18.2.4) with partitioned matrix inverses. For this we need (30.0.5).

Problem 355. 4 points This is a simplified version of question 593. Show the
following, by multiplying X>X with its alleged inverse: If X =

[
X1 X2

]
has full

column rank, then (X>X)−1 is the following partitioned matrix:
(30.0.5)[
X>

1 X1 X>
1 X2

X>
2 X1 X>

2 X2

]−1

=

[
(X>

1 X1)
−1 + K>

1 X2(X
>
2 M1X2)

−1X>
2 K1 −K>

1 X2(X
>
2 M1X2)

−1

−(X>
2 M1X2)

−1X>
2 K1 (X>

2 M 1X2)
−1

]

where M 1 = I − X1(X
>
1 X1)

−1X>
1 and K1 = X1(X

>
1 X1)

−1.

From (30.0.5) one sees that the covariance matrix in regression (30.0.3) is the
lower left partition of the covariance matrix in the full regression (30.0.1).

Problem 356. 6 points Use the usual formula β̂ = (X>X)−1X>y together
with (30.0.5) to prove (30.0.3) and (30.0.4).

Answer. (18.2.4) reads here
(30.0.6)[

β̂1

β̂2

]
=

[
(X>

1 X1)−1 + K>
1 X2(X

>
2 M1X2)−1X>

2 K1 −K>
1 X2(X>

2 M1X2)−1

−(X>
2 M1X2)−1X>

2 K1 (X>
2 M1X2)−1

][
X>

1 y

X>
2 y

]
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Since M1 = I − K1X>
1 , one can simplify

β̂2 = −(X>
2 M1X2)−1X>

2 K1X>
1 y + (X>

2 M1X2)
−1X>

2 y

(30.0.7)

= (X>
2 M1X2)

−1X>
2 My

(30.0.8)

β̂1 = (X>
1 X1)−1X>

1 y + K>
1 X2(X>

2 M1X2)
−1X>

2 K1X>
1 y − K>

1 X2(X
>
2 M1X2)

−1X>
2 y

(30.0.9)

= K>
1 y − K>

1 X2(X>
2 M1X2)−1X>

2 (I − K1X>
1 )y

(30.0.10)

= K>
1 y − K>

1 X2(X>
2 M1X2)−1X>

2 M1y

(30.0.11)

= K>
1 (y − X2β̂2)

(30.0.12)

�

[Gre97, pp. 245–7] follow a different proof strategy: he solves the partitioned
normal equations

(30.0.13)

[
X>

1 X1 X>
1 X2

X>
2 X1 X>

2 X2

] [
β̂1

β̂2

] [
X>

1 y

X>
2 y

]

directly, without going through the inverse. A third proof strategy, used by [Seb77,
pp. 65–72], is followed in Problems 358 and 359.

Problem 357. 5 points [Gre97, problem 18 on p. 326]. The following matrix
gives the slope in the simple regression of the column variable on the row variable:

(30.0.14)

y x1 x2

1 0.03 0.36 y

0.4 1 0.3 x1

1.2 0.075 1 x2

For example, if y is regressed on x1, the slope is 0.4, but if x1 is regressed on y, the
slope is 0.03. All variables have zero means, so the constant terms in all regressions
are zero. What are the two slope coefficients in the multiple regression of y on x1

and x2? Hint: Use the partitioned normal equation as given in [Gre97, p. 245] in
the special case when each of the partitions of X has only one colum.

Answer.

(30.0.15)

[
x>

1 x1 x>
1 x2

x>
2 x1 x>

2 x2

][
β̂1

β̂2

]
=

[
x>

1 y

x>
2 y

]

The first row reads

(30.0.16) β̂1 + (x>
1 x1)−1x>

1 x2β̂2 = (x>
1 x1)

−1x>
1 y
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which is the upper line of [Gre97, (6.24) on p, 245], and in our numbers this is β̂1 = 0.4 − 0.3β̂2.
The second row reads

(30.0.17) (x>
2 x2)−1x>

2 x1β̂1 + β̂2 = (x>
2 x2)

−1x>
2 y

or in our numbers 0.075β̂2 + β̂2 = 1.2. Plugging in the formula for β̂1 gives 0.075 · 0.4 − 0.075 ·
0.3β̂2 + β̂2 = 1.2. This gives β̂2 = 1.17/0.9775 = 1.196931 = 1.2 roughly, and β̂1 = 0.4 − 0.36 =

0.0409207 = 0.041 roughly. �

Problem 358. Derive (30.0.3) and (30.0.4) from the first order conditions for
minimizing

(30.0.18) (y − X1β1 − X2β2)
>(y − X1β1 − X2β2).

Answer. Start by writing down the OLS objective function for the full model. Perhaps we
can use the more sophisticated matrix differentiation rules?
(30.0.19)

(y−X1β1−X2β2)
>(y−X1β1−X2β2) = y>y+β>

1 X>
1 X1β1+β>

2 X>
2 X2β2−2y>X1β1−2y>X2β2+2β>

2 X>
2 X1β1.

Taking partial derivatives with respect to β>
1 and β>

2 gives

2β>
1 X>

1 X1 − 2y>X1 + 2β>
2 X>

2 X1 or, transposed 2X>
1 X1β1 − 2X>

1 y + 2X>
1 X2β2

(30.0.20)

2β>
2 X>

2 X2 − 2y>X>
2 + 2β>

1 X>
1 X2 or, transposed 2X>

2 X2β2 − 2X>
2 y + 2X>

2 X1β1

(30.0.21)

Setting them zero and replacing β1 by β̂1 and β2 by β̂2 gives

X>
1 X1β̂1 = X>

1 (y − X2β̂2)(30.0.22)

X>
2 X2β̂2 = X>

2 (y − X1β̂1).(30.0.23)

Premultiply (30.0.22) by X1(X>
1 X1)−1:

X1β̂1 = X1(X
>
1 X1)−1X>

1 (y − X2β̂2).(30.0.24)

Plug this into (30.0.23):

X>
2 X2β̂2 = X>

2

(
y − X1(X>

1 X1)
−1X>

1 y + X1(X>
1 X1)

−1X>
1 X2β̂2

)
(30.0.25)

X>
2 M1X2β̂2 = X>

2 M1y.(30.0.26)

(30.0.26) is the normal equation of the regression of M1y on M1X2; it immediately implies (30.0.3).

Once β̂2 is known, (30.0.22) is the normal equation of the regression of y − X2β̂2 on X1, which
gives (30.0.4). �

Problem 359. Using (30.0.3) and (30.0.4) show that the residuals in regression
(30.0.1) are identical to those in the regression of M 1y on M1X2.
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Answer.

ε̂ = y − X1β̂1 − X2β̂2(30.0.27)

= y − X1(X
>
1 X1)−1X>

1 (y − X2β̂2) − X2β̂2(30.0.28)

= M1y − M1X2β̂2.(30.0.29)

�

Problem 360. The following problem derives one of the main formulas for
adding regressors, following [DM93, pp. 19–24]. We are working in model (30.0.1).

• a. 1 point Show that, if X has full column rank, then X>X, X>
1 X1, and

X>
2 X2 are nonsingular. Hint: A matrix X has full column rank if Xa = o implies

a = o.

Answer. From X>Xa = o follows a>X>Xa = 0 which can also be written ‖Xa‖ = 0.

Therefore Xa = o, and since the columns are linearly independent, it follows a = o. X>
1 X1 and

X>
2 X2 are nonsingular because, along with X, also X1 and X2 have full column rank. �

• b. 1 point Define M = I−X(X>X)−1X> and M1 = I−X1(X
>
1 X1)

−1X>
1 .

Show that both M and M 1 are projection matrices. (Give the definition of a projec-
tion matrix.) Which spaces do they project on? Which space is bigger?

Answer. A projection matrix is symmetric and idempotent. That MM = M is easily verified.
M projects on the orthogonal complement of the column space of X, and M 1 on that of X1. I.e.,
M1 projects on the larger space. �

• c. 2 points Prove that M 1M = M and that MX1 = O as well as MX2 = O.
You will need each these equationse below. What is their geometric meaning?

Answer. X1 =
[
X1 X2

] [I

O

]
= XA, say. Therefore M1M = (I−XA(A>X>XA)−1A>X>)M =

M because X>M = O. Geometrically this means that the space on which M projects is a subspace
of the space on which M1 projects. To show that MX2 = O note that X2 can be written in the

form X2 = XB, too; this time, B =

[
O

I

]
. MX2 = O means geometrically that M projects on a

space that is orthogonal to all columns of X2. �

• d. 2 points Show that M 1X2 has full column rank.

Answer. If M1X2b = o, then X2b = X1a for some a. We showed this in Problem 234.

Therefore
[
X1 X2

][−a

b

]
=

[
o

o

]
, and since

[
X1 X2

]
has full column rank, it follows

[
−a

b

]
=

[
o

o

]
, in particular b = o.

�

406 30. ADDITIONAL REGRESSORS

• e. 1 point Here is some more notation: the regression of y on X1 and X2 can
also be represented by the equation

(30.0.30) y = X1β̂1 + X2β̂2 + ε̂

The difference between (30.0.1) and (30.0.30) is that (30.0.30) contains the parameter
estimates, not their true values, and the residuals, not the true disturbances. Explain
the difference between residuals and disturbances, and between the fitted regression
line and the true regression line.

• f. 1 point Verify that premultiplication of (30.0.30) by M 1 gives

(30.0.31) M1y = M1X2β̂2 + ε̂

Answer. We need M1X1 = O and M1ε̂ = M1My = My = ε̂ (or this can also besseen

because X>
1 ε̂ = o). �

• g. 2 points Prove that (30.0.31) is the fit which one gets if one regresses M 1y

on M1X2. In other words, if one runs OLS with dependent variable M 1y and

explanatory variables M 1X2, one gets the same β̂2 and ε̂ as in (30.0.31), which are

the same β̂2 and ε̂ as in the complete regression (30.0.30).

Answer. According to Problem ?? we have to check X>
2 M1ε̂ = X>

2 M1My = X>
2 My =

Oy = o. �

• h. 1 point Show that V [β̂2] = (X2M1X2)
−1. Are the variance estimates

and confidence intervals valid, which the computer automatically prints out if one
regresses M 1y on M1X2?

Answer. Yes except for the number of degrees of freedom. �

• i. 4 points If one premultiplies (30.0.1) by M 1, one obtains

(30.0.32) M1y = M1X2β2 + M1ε, M1ε ∼ (o, σ2M 1)

Although the covariance matrix of the disturbance M 1ε in (30.0.32) is no longer

spherical, show that nevertheless the β̂2 obtained by running OLS on (30.0.32) is the
BLUE of β2 based on the information given in (30.0.32) (i.e., assuming that M 1y

and M1X2 are known, but not necessarily M 1, y, and X2 separately). Hint: this
proof is almost identical to the proof that for spherically distributed disturbances the
OLS is BLUE (e.g. given in [DM93, p. 159]), but you have to add some M 1’s to
your formulas.

Answer. Any other linear estimator γ̃ of β2 can be written as γ̃ =
(
(X>

2 M1X2)−1X>
2 +

C
)
M1y. Its expected value is E[γ̃] = (X>

2 M1X2)−1X>
2 M1X2β2 + CM1X2β2. For γ̃ to be un-

biased, regardless of the value of β2, C must satisfy CM1X2 = O. From this follows MSE [γ̃;β2] =

V[γ̃] = σ2
(
(X>

2 M1X2)−1X>
2 +C

)
M1

(
X2(X>

2 M1X2)−1+C>
)

= σ2(X>
2 M1X2)−1+σ2CM1C>,

i.e., it exceeds the MSE-matrix of β̂ by a nonnegative definite matrix. Is it unique? The formula
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for the BLUE is not unique, since one can add any C with CM1C> = O or equivalently CM1 = O

or C = AX for some A. However such a C applied to a dependent variable of the form M 1y will
give the null vector, therefore the values of the BLUE for those values of y which are possible are
indeed unique.

�

• j. 1 point Once β̂2 is known, one can move it to the left hand side in (30.0.30)
to get

(30.0.33) y − X2β̂2 = X1β̂1 + ε̂

Prove that one gets the right values of β̂1 and of ε̂ if one regresses y−X2β̂2 on X1.

Answer. The simplest answer just observes that X>
1 ε̂ = o. Or: The normal equation for this

pseudo-regression is X>
1 y − X>

1 X2β̂2 = X>
1 X1β̂1, which holds due to the normal equation for

the full model. �

• k. 1 point Does (30.0.33) also give the right covariance matrix for β̂1?

Answer. No, since y − X2β̂2 has a different covariance matrix than σ2I. �

This following Problems gives some applications of the results in Problem 360.
You are allowed to use the results of Problem 360 without proof.

Problem 361. Assume your regression involves an intercept, i.e., the matrix of
regressors is

[
ι X

]
, where X is the matrix of the “true” explanatory variables with

no vector of ones built in, and ι the vector of ones. The regression can therefore be
written

(30.0.34) y = ια+ Xβ + ε.

• a. 1 point Show that the OLS estimate of the slope parameters β can be obtained
by regressing y on X without intercept, where y and X are the variables with their

means taken out, i.e., y = Dy and X = DX, with D = I − 1
nιι>.

Answer. This is called the “sweeping out of means.” It follows immediately from (30.0.3).
This is the usual procedure to do regression with a constant term: in simple regression yi =
α+ βxi + εi, (30.0.3) is equation (18.2.22):

(30.0.35) β̂ =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
.

�

• b. Show that the OLS estimate of the intercept is α̂ = ȳ − x̄>β̂ where x̄> is
the row vector of column means of X, i.e., x̄> = 1

nι>X.
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Answer. This is exactly (30.0.4). Here is a more specific argument: The intercept α̂ is obtained

by regressing y−Xβ̂ on ι. The normal equation for this second regression is ι>y− ι>Xβ̂ = ι>ια̂.
If ȳ is the mean of y, and x̄> the row vector consisting of means of the colums of X, then this gives

ȳ = x̄>β̂ + α̂. In the case of simple regression, this was derived earlier as formula (18.2.23). �

• c. 2 points Show that MSE [β̂; β] = σ2(X>X)−1. (Use the formula for β̂.)

Answer. Since [
ι>

X>

] [
ι X

]
=

[
n nx̄>

x̄n X>X

]
,(30.0.36)

it follows by Problem 593

(

[
ι>

X>

] [
ι X

]
)−1 =

[
1/n+ x̄>(X>X)−1x̄ −x̄>(X>X)−1

−(X>X)−1x̄ (X>X)−1

]
(30.0.37)

In other words, one simply does as if the actual regressors had been the data with their means
removed, and then takes the inverse of that design matrix. The only place where on has to be
careful is the number of degrees of freedom. See also Seber [Seb77, section 11.7] about centering
and scaling the data. �

• d. 3 points Show that ŷ − ιȳ = Xβ̂.

Answer. First note that X = X + 1
n

ιι>X = X + ιx̄> where x̄> is the row vector of means

of X. By definition, ŷ = ια̂ + Xβ̂ = ια̂ + Xβ̂ + ιx̄>β̂ = ι(α̂ + x̄>β̂) + Xβ̂ = ιȳ + Xβ̂. �

• e. 2 points Show that R2 =
y>X(X>X)−1X>y

y>y

Answer.

(30.0.38) R2 =
(ŷ − ȳι)>(ŷ − ȳι)

y>y
=

β̂>X>Xβ̂

y>y

and now plugging in the formula for β̂ the result follows. �

• f. 3 points Now, split once more X =
[
X1 x2

]
where the second partition

x2 consists of one column only, and X is, as above, the X matrix with the column

means taken out. Conformably, β̂ =

[
β̂1

β̂2

]
. Show that

(30.0.39) var[β̂2] =
σ2

x>x

1

(1 −R2
2·)

where R2
2· is the R2 in the regression of x2 on all other variables in X. This is in

[Gre97, (9.3) on p. 421]. Hint: you should first show that var[β̂2] = σ2/x>
2 M1x2

where M1 = I−X1(X
>
1 X1)

−1X>
1 . Here is an interpretation of (30.0.39) which you

don’t have to prove: σ2/x>x is the variance in a simple regression with a constant
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term and x2 as the only explanatory variable, and 1/(1−R2
2·) is called the variance

inflation factor.

Answer. Note that we are not talking about the variance of the constant term but that of all
the other terms.

(30.0.40) x>
2 M1x2 = x>

2 x2 + x>
2 X1(X

>
1 X1)−1X>

1 x2 = x>
2 x2

(
1 +

x>
2 X1(X>

1 X1)
−1X>

1 x2

x>
2 x2

)

and since the fraction is R2
2·, i.e., it is the R2 in the regression of x2 on all other variables in X, we

get the result. �

30.1. Selection of Regressors

One problem often arising in practical statistical work is to select, from a given
pool of regressors, those regressions with one, two, etc. regressors which have the best
fit. Such routines are used very often in practical work, but they have been somewhat
shunned in the econometrics text books, since these methods are considered suspect
in the classical frequentist regression approach. This is a nice example of theory-
practice inconsistency due to the weakness of this classical approach. Recently,
some very good books about this subject have appeared, for instance [Mil90] and
[MT98].

This is a discussion of the leaps procedure in Splus. Its purpose is to select,
from a given pool of regressors, those regressions with one, two, etc. regressors which
have the best fit. One may also ask for the sets of size nbest of best regressions.

It uses a procedure proposed in a paper titled “Regression by Leaps and Bounds”
[FW74]. As the title says, the SSE of regression with more variables are used as
bounds for the SSE of regressions with some of those variables omitted, in order to
be able to leap ahead in the list and not to have to examine all regressions.

The paper computes the SSE of these regressions by sweeping. As discussed
above, this is a procedure which can do or undo regressions. If you start with the
sum of squares and cross products matrix, sweeping will introduce regressors, and if
you start with the inverse of the SSCP matrix, sweeping will remove regressors.

Look at the example with five regressors in table 2 of that article. The regressors
are ordered, perhaps by value of t statistic, in such a way that the most promising
ones come first. Regressions on subsets containing the first four regressors will be
built up in the “Product Traverse” by introducing regressors one by one. By contrast,
all regressions on subsets of variables which contain the fifth variable will be gained
by eliminating regressors from the full set. Why this inverse procedure? The hope is
that certain regressions with more variables (among them the “least promising” fifth
variable) have such a high SSE that it will become superfluous to run the regressions
with subsets of these variables, since one knows that they cannot be better than
other regressions already performed.
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The idea is therefore to compute some good regression with few variables and
some bad regressions with many variables; and if the bad regressions with many
variables have a too large SSE compared with the good regressions, one does not
have to examine the subsets of these bad regressions. The precise implementation is
more a piece of engineering than mathematics. Let’s just go through their example.
Stage 0 must always be done. In it, the following regressions are performed:

Product Traverse Inverse Traverse
Regressors SSE Regressors SSE

1 668 2345 660
12 615 1345 605

123 612 1245 596
1234 592 1235 596

Note that in the product traverse the procedure is lexicographical, i.e., the lowest
placed regressors are introduced first, since they promise to have the lowest SSE. In
the inverse traverse, the regressions on all four-variable sets which include the fifth
variable are generated. Our excerpt of table 2 does not show how these regressions
were computed; from the full table one can see that the two regressions shown in each
row are generated by a sweep on the same pivot index. In the “product traverse,” the
source matrix of each sweep operation is the result of the previous regression. For
the inverse traverse, the source is in each of these four regressions the same, namely,
the inverse of the SSCP matrix, but different regressors are eliminated by the sweep.

Now we are at the beginning of stage 1. Is it necessary to perform the sweep which
generates regression 124? No other regression will be derived from 124, therefore we
only have to look at regression 124 itself, not any subsets of these three variables. It
would not necessary to perform this regression if the regression with variables 1245
(596) had a higher SSE than the best three-variable regression run so far, which is
123, whose SSE is 612. Since 596 is not higher than 612, we must run the regression.
It gives

Product Traverse Inverse Traverse

Regressors SSE Regressors SSE

124 615 125 597

First regression of stage 2. It is only necessary to run the regression on 13 if the
best two-variable regression so far is not better than the regression 1345 (605). The
only two-variable regression we have so far is that on 12 (615), and since 615 > 605,
we have to perform sweep 13.

Product Traverse Inverse Traverse

Regressors SSE Regressors SSE

13 641 145 618
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Second regression in stage 2. Is it necessary to run the regression on 134? The
SSE of 1345 is 605, and the best three-variable regression so far is 125 with 519,
therefore it is not necessary to run 134, which necessarily must give a SSE higher
than 605. (If one does run it, its SSE is indeed 612).

Stage 3: do we have to perform the sweep 14? The best two-variable regression
right now is 12 (615), which is better than the 618 of 145, therefore no point in
running 14.

By continuing this procedure one can gain substantial advantages over methods
in which all regressions must be performed. In the given example, only 7 out of the
15 possible regressions must be run.



CHAPTER 31

Residuals: Standardized, Predictive, “Studentized”

31.1. Three Decisions about Plotting Residuals

After running a regression it is always advisable to look at the residuals. Here
one has to make three decisions.

The first decision is whether to look at the ordinary residuals

(31.1.1) ε̂i = yi − x>
i β̂

(x>
i is the ith row of X), or the “predictive” residuals, which are the residuals

computed using the OLS estimate of β gained from all the other data except the

data point where the residual is taken. If one writes β̂(i) for the OLS estimate
without the ith observation, the defining equation for the ith predictive residual,
which we call ε̂i(i), is

(31.1.2) ε̂i(i) = yi − x>
i β̂(i).

The second decision is whether to standardize the residuals or not, i.e., whether
to divide them by their estimated standard deviations or not. Since ε̂ = My, the
variance of the ith ordinary residual is

(31.1.3) var[ε̂i] = σ2mii = σ2(1 − hii),

and regarding the predictive residuals it will be shown below, see (31.2.9), that

(31.1.4) var[ε̂i(i)] =
σ2

mii
=

σ2

1 − hii
.

Here

(31.1.5) hii = x>
i (X>X)−1xi.

(Note that xi is the ith row of X written as a column vector.) hii is the ith diagonal

element of the “hat matrix” H = X(X>X)−1X>, the projector on the column
space of X. This projector is called “hat matrix” because ŷ = Hy, i.e., H puts the
“hat” on y.
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Problem 362. 2 points Show that the ith diagonal element of the “hat matrix”
H = X(X>X)−1X> is x>

i (X>X)−1xi where xi is the ith row of X written as a
column vector.

Answer. In terms of ei, the n-vector with 1 on the ith place and 0 everywhere else, xi =
X>ei, and the ith diagonal element of the hat matrix is e>

i Hei = e>
i Xi(X

>X)−1X>ei =

x>
i (X>X)−1xi. �

Problem 363. 2 points The variance of the ith disturbance is σ2. Is the variance
of the ith residual bigger than σ2, smaller than σ2, or equal to σ2? (Before doing the
math, first argue in words what you would expect it to be.) What about the variance
of the predictive residual? Prove your answers mathematically. You are allowed to
use (31.2.9) without proof.

Answer. Here is only the math part of the answer: ε̂ = My. Since M = I −H is idempotent
and symmetric, we get V[My] = σ2M , in particular this means var[ε̂i] = σ2mii where mii is the
ith diagonal elements of M . Then mii = 1−hii. Since all diagonal elements of projection matrices
are between 0 and 1, the answer is: the variances of the ordinary residuals cannot be bigger than
σ2. Regarding predictive residuals, if we plug mii = 1 − hii into (31.2.9) it becomes

ε̂i(i) =
1

mii
ε̂i therefore var[ε̂i(i)] =

1

m2
ii

σ2mii =
σ2

mii
(31.1.6)

which is bigger than σ2. �

Problem 364. Decide in the following situations whether you want predictive
residuals or ordinary residuals, and whether you want them standardized or not.

• a. 1 point You are looking at the residuals in order to check whether the asso-
ciated data points are outliers and do perhaps not belong into the model.

Answer. Here one should use the predictive residuals. If the ith observation is an outlier
which should not be in the regression, then one should not use it when running the regression. Its
inclusion may have a strong influence on the regression result, and therefore the residual may not
be as conspicuous. One should standardize them. �

• b. 1 point You are looking at the residuals in order to assess whether there is
heteroskedasticity.

Answer. Here you want them standardized, but there is no reason to use the predictive
residuals. Ordinary residuals are a little more precise than predictive residuals because they are
based on more observations. �

• c. 1 point You are looking at the residuals in order to assess whether the
disturbances are autocorrelated.

Answer. Same answer as for b. �

• d. 1 point You are looking at the residuals in order to assess whether the
disturbances are normally distributed.
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Answer. In my view, one should make a normal QQ-plot of standardized residuals, but one
should not use the predictive residuals. To see why, let us first look at the distribution of the
standardized residuals before division by s. Each ε̂i/

√
1 − hii is normally distributed with mean

zero and standard deviation σ. (But different such residuals are not independent.) If one takes a
QQ-plot of those residuals against the normal distribution, one will get in the limit a straight line
with slope σ. If one divides every residual by s, the slope will be close to 1, but one will again
get something approximating a straight line. The fact that s is random does not affect the relation

of the residuals to each other, and this relation is what determines whether or not the QQ-plot
approximates a straight line.

But Belsley, Kuh, and Welsch on [BKW80, p. 43] draw a normal probability plot of the
studentized, not the standardized, residuals. They give no justification for their choice. I think it
is the wrong choice.

�

• e. 1 point Is there any situation in which you do not want to standardize the
residuals?

Answer. Standardization is a mathematical procedure which is justified when certain con-
ditions hold. But there is no guarantee that these conditions acutally hold, and in order to get
a more immediate impression of the fit of the curve one may want to look at the unstandardized
residuals. �

The third decision is how to plot the residuals. Never do it against y. Either
do it against the predicted ŷ, or make several plots against all the columns of the
X-matrix.

In time series, also a plot of the residuals against time is called for.
Another option are the partial residual plots, see about this also (30.0.2). Say

β̂[h] is the estimated parameter vector, which is estimated with the full model, but
after estimation we drop the h-th parameter, and X[h] is the X-matrix without
the hth column, and xh is the hth column of the X-matrix. Then by (30.0.4), the
estimate of the hth slope parameter is the same as that in the simple regression of

y − X[h]β̂[h] on xh. The plot of y − X[h]β̂[h] against xh is called the hth partial
residual plot.

To understand this better, start out with a regression yi = α + βxi + γzi + εi;
which gives you the fitted values yi = α̂+β̂xi+γ̂zi+ε̂i. Now if you regress yi−α̂−β̂xi
on xi and zi then the intercept will be zero and the estimated coefficient of xi will
be zero, and the estimated coefficient of zi will be γ̂, and the residuals will be ε̂i.
The plot of yi − α̂ − β̂xi versus zi is the partial residuals plot for z.

31.2. Relationship between Ordinary and Predictive Residuals

In equation (31.1.2), the ith predictive residuals was defined in terms of β̂(i),
the parameter estimate from the regression of y on X with the ith observation left
out. We will show now that there is a very simple mathematical relationship between
the ith predictive residual and the ith ordinary residual, namely, equation (31.2.9).
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(It is therefore not necessary to run n different regressions to get the n predictive
residuals.)

We will write y(i) for the y vector with the ith element deleted, and X(i) is the
matrix X with the ith row deleted.

Problem 365. 2 points Show that

X(i)>X(i) = X>X − xix
>
i(31.2.1)

X(i)>y(i) = X>y − xiyi.(31.2.2)

Answer. Write (31.2.2) as X>y = X(i)>y(i) + xiyi, and observe that with our definition of

xi as column vectors representing the rows of X, X> =
[
x1 · · · xn

]
. Therefore

(31.2.3) X>y =
[
x1 . . . xn

]



y1

...
yn


 = x1y1 + · · · + xnyn.

�

An important stepping stone towards the proof of (31.2.9) is equation (31.2.8),
which gives a relationship between hii and

(31.2.4) hii(i) = x>
i (X(i)>X(i))−1xi.

ŷi(i) = x>
i β̂(i) has variance σ2hii(i). The following problems give the steps neces-

sary to prove (31.2.8). We begin with a simplified version of theorem A.8.2 in the
Mathematical Appendix:

Theorem 31.2.1. Let A be a nonsingular k × k matrix, δ 6= 0 a scalar, and b a
k × 1 vector with b>A−1b + δ 6= 0. Then

(31.2.5)
(
A +

bb>

δ

)−1

= A−1 − A−1bb>A−1

δ + b>A−1b
.

Problem 366. Prove (31.2.5) by showing that the product of the matrix with its
alleged inverse is the unit matrix.

Problem 367. As an application of (31.2.5) show that
(31.2.6)

(X>X)−1 +
(X>X)−1xix

>
i (X>X)−1

1 − hii
is the inverse of X(i)>X(i).

Answer. This is (31.2.5), or (A.8.20), with A = X>X, b = xi, and δ = −1.

�
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Problem 368. Using (31.2.6) show that

(31.2.7) (X(i)>X(i))−1xi =
1

1 − hii
(X>X)−1xi,

and using (31.2.7) show that hii(i) is related to hii by the equation

(31.2.8) 1 + hii(i) =
1

1 − hii

[Gre97, (9-37) on p. 445] was apparently not aware of this relationship.

Problem 369. Prove the following mathematical relationship between predictive
residuals and ordinary residuals:

(31.2.9) ε̂i(i) =
1

1 − hii
ε̂i

which is the same as (28.0.29), only in a different notation.

Answer. For this we have to apply the above mathematical tools. With the help of (31.2.7)
(transpose it!) and (31.2.2), (31.1.2) becomes

ε̂i(i) = yi − x>
i (X(i)>X(i))−1X(i)>y(i)

= yi −
1

1 − hii
x>
i (X>X)−1(X>y − xiyi)

= yi −
1

1 − hii
x>
i β̂ +

1

1 − hii
x>
i (X>X)−1xiyi

= yi

(
1 +

hii

1 − hii

)
− 1

1 − hii
x>
i β̂

=
1

1 − hii
(yi − x>

i β̂)

This is a little tedious but simplifies extremely nicely at the end. �

The relationship (31.2.9) is so simple because the estimation of ηi = x>
i β can be

done in two steps. First collect the information which the n− 1 observations other
than the ith contribute to the estimation of ηi = x>

i β is contained in ŷi(i). The
information from all observations except the ith can be written as

(31.2.10) ŷi(i) = ηi + δi δi ∼ (0, σ2hii(i))

Here δi is the “sampling error” or “estimation error” ŷi(i)−ηi from the regression of
y(i) on X(i). If we combine this compound “observation” with the ith observation
yi, we get

(31.2.11)

[
ŷi(i)
yi

]
=

[
1
1

]
ηi +

[
δi
εi

] [
δi
εi

]
∼
([

0
0

]
, σ2

[
hii(i) 0

0 1

])

This is a regression model similar to model (18.1.1), but this time with a nonspherical
covariance matrix.
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Problem 370. Show that the BLUE of ηi in model (31.2.11) is

(31.2.12) ŷi = (1 − hii)ŷi(i) + hiiyi = ŷi(i) + hiiε̂i(i)

Hint: apply (31.2.8). Use this to prove (31.2.9).

Answer. As shown in problem 206, the BLUE in this situation is the weighted average of the
observations with the weights proportional to the inverses of the variances. I.e., the first observation
has weight

(31.2.13)
1/hii(i)

1/hii(i) + 1
=

1

1 + hii(i)
= 1 − hii.

Since the sum of the weights must be 1, the weight of the second observation is hii.
Here is an alternative solution, using formula (26.0.2) for the BLUE, which reads here

ŷi =

([
1 1

] [ hii
1−hii

0

0 1

]−1 [
1
1

])−1 [
1 1

][ hii
1−hii

0

0 1

]−1 [
ŷi(i)
yi

]
=

= hii
[
1 1

][ 1−hii
hii

0

0 1

][
ŷi(i)
yi

]
= (1 − hii)ŷi(i) + hiiyi.

Now subtract this last formula from yi to get yi − ŷi = (1 − hii)(yi − ŷi(i)), which is (31.2.9). �

31.3. Standardization

In this section we will show that the standardized predictive residual is what is
sometimes called the “studentized” residual. It is recommended not to use the term
“studentized residual” but say “standardized predictive residual” instead.

The standardization of the ordinary residuals has two steps: every ε̂i is divided
by its “relative” standard deviation

√
1 − hii, and then by s, an estimate of σ, the

standard deviation of the true disturbances. In formulas,

(31.3.1) the ith standardized ordinary residual =
ε̂i

s
√

1 − hii
.

Standardization of the ith predictive residual has the same two steps: first divide
the predictive residual (31.2.9) by the relative standard deviation, and then divide by
s(i). But a look at formula (31.2.9) shows that the ordinary and the predictive resid-
ual differ only by a nonrandom factor. Therefore the first step of the standardization
yields exactly the same result whether one starts with an ordinary or a predictive
residual. Standardized predictive residuals differ therefore from standardized ordi-
nary residuals only in the second step:

(31.3.2) the ith standardized predictive residual =
ε̂i

s(i)
√

1− hii
.

Note that equation (31.3.2) writes the standardized predictive residual as a function
of the ordinary residual, not the predictive residual. The standardized predictive
residual is sometimes called the “studentized” residual.
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Problem 371. 3 points The ith predictive residual has the formula

(31.3.3) ε̂i(i) =
1

1 − hii
ε̂i

You do not have to prove this formula, but you are asked to derive the standard
deviation of ε̂i(i), and to derive from it a formula for the standardized ith predictive
residual.

This similarity between these two formulas has lead to widespread confusion.
Even [BKW80] seem to have been unaware of the significance of “studentization”;
they do not work with the concept of predictive residuals at all.

The standardized predictive residuals have a t-distribution, because they are
a normally distributed variable divided by an independent χ2 over its degrees of
freedom. (But note that the joint distribution of all standardized predictive residuals
is not a multivariate t.) Therefore one can use the quantiles of the t-distribution to
judge, from the size of these residuals, whether one has an extreme observation or
not.

Problem 372. Following [DM93, p. 34], we will use (30.0.3) and the other
formulas regarding additional regressors to prove the following: If you add a dummy
variable which has the value 1 for the ith observation and the value 0 for all other
observations to your regression, then the coefficient estimate of this dummy is the ith
predictive residual, and the coefficient estimate of the other parameters after inclusion

of this dummy is equal to β̂(i). To fix notation (and without loss of generality),
assume the ith observation is the last observation, i.e., i = n, and put the dummy
variable first in the regression:

(31.3.4)

[
y(n)
yn

]
=

[
o X(n)
1 x>

n

][
α
β

]
+

[
ε̂(i)
ε̂n

]
or y =

[
en X

] [α
β

]
+ ε

• a. 2 points With the definition X1 = en =

[
o

1

]
, write M1 = I−X1(X

>
1 X1)

−1X>
1

as a 2 × 2 partitioned matrix.

Answer.

(31.3.5) M1 =

[
I o

o> 1

]
−
[
o

1

] [
o> 1

]
=

[
I o

o> 0

]
;

[
I o

o> 0

][
z(i)
zi

]
=

[
z(i)
0

]

i.e., M1 simply annulls the last element. �

• b. 2 points Either show mathematically, perhaps by evaluating (X>
2 M 1X2)

−1X>
2 M1y,

or give a good heuristic argument (as [DM93] do), that regressing M 1y on M 1X

gives the same parameter estimate as regressing y on X with the nth observation
dropped.
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Answer. (30.0.2) reads here

(31.3.6)

[
y(n)

0

]
=

[
X(n)
o>

]
β̂(i) +

[
ε̂(i)
0

]

in other words, the estimate of β is indeed β̂(i), and the first n − 1 elements of the residual are
indeed the residuals one gets in the regression without the ith observation. This is so ugly because
the singularity shows here in the zeros of the last row, usually it does not show so much. But this
way one also sees that it gives zero as the last residual, and this is what one needs to know!

To have a mathematical proof that the last row with zeros does not affect the estimate, evaluate
(30.0.3)

β̂2 = (X>
2 M1X2)

−1X>
2 M1y

=

([
X(n)> xn

] [ I o

o> 0

][
X(n)
x>
n

])−1 [
X(n)> xn

][ I o

o> 0

][
y(n)
yn

]

= (X(n)>X(n))−1X(n)>y(n) = β̂(n)

�

• c. 2 points Use the fact that the residuals in the regression of M 1y on M1X

are the same as the residuals in the full regression (31.3.4) to show that α̂ is the nth
predictive residual.

Answer. α̂ is obtained from that last row, which reads yn = α̂+x>
n β̂(i), i.e., α̂ is the predictive

residual. �

• d. 2 points Use (30.0.3) with X1 and X2 interchanged to get a formula for α̂.

Answer. α̂ = (X>
1 MX1)−1X>

1 My = 1
mnn

ε̂n = 1
1−hnn

ε̂n, here M = I − X(X>X)−1X>.

�

• e. 2 points From (30.0.4) follows that also β̂2 = (X>
2 X2)

−1X>
2 (y − X1β̂1).

Use this to prove

(31.3.7) β̂ − β̂(i) = (X>X)−1xiε̂i
1

1 − hii

which is [DM93, equation (1.40) on p. 33].

Answer. For this we also need to show that one gets the right β̂(i) if one regresses y − enα̂,

or, in other words y− enε̂n(n), on X. In other words, β̂(n) = (X>X)−1X>(y − enε̂n(n)), which
is exactly (32.4.1). �



CHAPTER 32

Regression Diagnostics

“Regression Diagnostics” can either concentrate on observations or on variables.
Regarding observations, it looks for outliers or influential data in the dataset. Re-
garding variables, it checks whether there are highly collinear variables, or it keeps
track of how much each variable contributes to the MSE of the regression. Collinear-
ity is discussed in [DM93, 6.3] and [Gre97, 9.2]. Regression diagnostics needs five
to ten times more computer resources than the regression itself, and often relies on
graphics, therefore it has only recently become part of the standard procedures.

Problem 373. 1 point Define multicollinearity.

• a. 2 points What are the symptoms of multicollinearity?

• b. 2 points How can one detect multicollinearity?

• c. 2 points How can one remedy multicollinearity?

32.1. Missing Observations

First case: data on y are missing. If you use a least squares predictor then this
will not give any change in the estimates and although the computer will think it is
more efficient it isn’t.

What other schemes are there? Filling in the missing y by the arithmetic mean
of the observed y does not give an unbiased estimator.

General conclusion: in a single-equation context, filling in missing y not a good
idea.

Now missing values in the X-matrix.
If there is only one regressor and a constant term, then the zero order filling in

of x̄ “results in no changes and is equivalent with dropping the incomplete data.”
The alternative: filling it with zeros and adding a dummy for the data with

missing observation amounts to exactly the same thing.
The only case where filling in missing data makes sense is: if you have multiple

regression and you can predict the missing data in the X matrix from the other data
in the X matrix.
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32.2. Grouped Data

If single observations are replaced by arithmetic means of groups of observations,
then the error variances vary with the size of the group. If one takes this into
consideration, GLS still has good properties, although having the original data is of
course more efficient.

32.3. Influential Observations and Outliers

The following discussion focuses on diagnostics regarding observations. To be
more precise, we will investigate how each single observation affects the fit established
by the other data. (One may also ask how the addition of any two observations affects
the fit, etc.)

32.3.1. The “Leverage”. The ith diagonal element hii of the “hat matrix”
is called the “leverage” of the ith observation. The leverage satisfies the following
identity

(32.3.1) ŷi = (1 − hii)ŷi(i) + hiiyi

hii is therefore is the weight which yi has in the least squares estimate ŷi of ηi = x>
i β,

compared with all other observations, which contribute to ŷi through ŷi(i). The
larger this weight, the more strongly this one observation will influence the estimate
of ηi (and if the estimate of ηi is affected, then other parameter estimates may be
affected too).

Problem 374. 3 points Explain the meanings of all the terms in equation (32.3.1)
and use that equation to explain why hii is called the “leverage” of the ith observa-
tion. Is every observation with high leverage also “influential” (in the sense that its
removal would greatly change the regression estimates)?

Answer. ŷi is the fitted value for the ith observation, i.e., it is the BLUE of ηi, of the expected
value of the ith observation. It is a weighted average of two quantities: the actual observation yi
(which has ηi as expected value), and ŷi(i), which is the BLUE of ηi based on all the other
observations except the ith. The weight of the ith observation in this weighted average is called the
“leverage” of the ith observation. The sum of all leverages is always k, the number of parameters
in the regression. If the leverage of one individual point is much greater than k/n, then this point
has much more influence on its own fitted value than one should expect just based on the number
of observations,

Leverage is not the same as influence; if an observation has high leverage, but by accident
the observed value yi is very close to ŷi(i), then removal of this observation will not change the
regression results much. Leverage is potential influence. Leverage does not depend on any of the
observations, one only needs the X matrix to compute it. �

Those observations whose x-values are away from the other observations have
“leverage” and can therefore potentially influence the regression results more than the
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others. hii serves as a measure of this distance. Note that hii only depends on the X-
matrix, not on y, i.e., points may have a high leverage but not be influential, because
the associated yi blends well into the fit established by the other data. However,
regardless of the observed value of y, observations with high leverage always affect

the covariance matrix of β̂.

(32.3.2) hii =
det(X>X) − det(X(i)>X(i))

det(X>X)
,

where X(i) is the X-matrix without the ith observation.

Problem 375. Prove equation (32.3.2).

Answer. Since X>(i)X(i) = X>X − xix
>
i , use theorem A.7.3 with W = X>X, α = −1,

and d = xi. �

Problem 376. Prove the following facts about the diagonal elements of the so-
called “hat matrix” H = X(X>X)−1X>, which has its name because Hy = ŷ,
i.e., it puts the hat on y.

• a. 1 point H is a projection matrix, i.e., it is symmetric and idempotent.

Answer. Symmetry follows from the laws for the transposes of products: H> = (ABC)> =

C>B>A> = H where A = X, B = (X>X)−1 which is symmetric, and C = X>. Idempotency

X(X>X)−1X>X(X>X)−1X> = X(X>X)−1X>. �

• b. 1 point Prove that a symmetric idempotent matrix is nonnegative definite.

Answer. If H is symmetric and idempotent, then for arbitrary g, g>Hg = g>H>Hg =
‖Hg‖2 ≥ 0. But g>Hg ≥ 0 for all g is the criterion which makes H nonnegative definite. �

• c. 2 points Show that

(32.3.3) 0 ≤ hii ≤ 1

Answer. If ei is the vector with a 1 on the ith place and zeros everywhere else, then e>
i Hei =

hii. From H nonnegative definite follows therefore that hii ≥ 0. hii ≤ 1 follows because I − H is
symmetric and idempotent (and therefore nonnegative definite) as well: it is the projection on the
orthogonal complement. �

• d. 2 points Show: the average value of the hii is
∑
hii/n = k/n, where k is

the number of columns of X. (Hint: for this you must compute the trace trH.)

Answer. The average can be written as

1
n

tr(H) = 1
n

tr(X(X>X)−1X>) = 1
n

tr(X>X(X>X)−1) = 1
n

tr(Ik) = k
n
.

Here we used tr BC = trCB (Theorem A.1.2). �

• e. 1 point Show that 1
nιι> is a projection matrix. Here ι is the n-vector of

ones.
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• f. 2 points Show: If the regression has a constant term, then H − 1
nιι> is a

projection matrix.

Answer. If ι, the vector of ones, is one of the columns of X (or a linear combination

of these columns), this means there is a vector a with ι = Xa. From this follows Hιι> =

X(X>X)−1X>Xaι> = Xaι> = ιι>. One can use this to show that H − 1
n

ιι> is idempotent:

(H − 1
n

ιι>)(H − 1
n

ιι>) = HH − H 1
n

ιι> − 1
n

ιι>H + 1
n

ιι> 1
n

ιι> = H − 1
n

ιι> − 1
n

ιι> + 1
n

ιι> =

H − 1
n

ιι>. �

• g. 1 point Show: If the regression has a constant term, then one can sharpen
inequality (32.3.3) to 1/n ≤ hii ≤ 1.

Answer. H − ιι>/n is a projection matrix, therefore nonnegative definite, therefore its diag-
onal elements hii − 1/n are nonnegative. �

• h. 3 points Why is hii called the “leverage” of the ith observation? To get full
points, you must give a really good verbal explanation.

Answer. Use equation (31.2.12). Effect on any other linear combination of β̂ is less than the
effect on ŷi. Distinguish from influence. Leverage depends only on X matrix, not on y. �

hii is closely related to the test statistic testing whether the xi comes from the
same multivariate normal distribution as the other rows of the X-matrix. Belsley,
Kuh, and Welsch [BKW80, p. 17] say those observations i with hii > 2k/n, i.e.,
more than twice the average, should be considered as “leverage points” which might
deserve some attention.

32.4. Sensitivity of Estimates to Omission of One Observation

The most straightforward approach to sensitivity analysis is to see how the esti-
mates of the parameters of interest are affected if one leaves out the ith observation.
In the case of linear regression, it is not necessary for this to run n different re-
gressions, but one can derive simple formulas for the changes in the parameters of
interest. Interestingly, the various sensitivity measures to be discussed below only
depend on the two quantities hii and ε̂i.

32.4.1. Changes in the Least Squares Estimate. Define β̂(i) to be the
OLS estimate computed without the ith observation, and ε̂i(i) = 1

1−hii
ε̂i the ith

predictive residual. Then

(32.4.1) β̂ − β̂(i) = (X>X)−1xiε̂i(i)

Problem 377. Show (32.4.1) by methods very similar to the proof of (31.2.9)
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Answer. Here is this brute-force proof, I think from [BKW80]: Let y(i) be the y vector with

the ith observation deleted. As shown in Problem 365, X>(i)y(i) = X>y − xiyi. Therefore by
(31.2.6)

β̂(i) = (X>(i)X(i))−1X>(i)y(i) =

(
(X>X)−1 +

(X>X)−1xix
>
i (X>X)−1

1 − hii

)(
X>y − xiyi

)
=

= β̂ − (X>X)−1xiyi +
1

1 − hii
(X>X)−1xix

>
i β̂ − hii

1 − hii
(X>X)−1xiyi

= β̂ − 1

1 − hii
(X>X)−1xiyi +

1

1 − hii
(X>X)−1xix

>
i β̂ = β̂ − 1

1 − hii
(X>X)−1xiε̂i

�

To understand (32.4.1), note the following fact which is interesting in its own

right: β̂(i), which is defined as the OLS estimator if one drops the ith observation,
can also be obtained as the OLS estimator if one replaces the ith observation by the
prediction of the ith observation on the basis of all other observations, i.e., by ŷi(i).
Writing y((i)) for the vector y whose ith observation has been replaced in this way,
one obtains

(32.4.2) β̂ = (X>X)−1X>y; β̂(i) = (X>X)−1X>y((i)).

Since y − y((i)) = eiε̂i(i) and xi = X>ei (32.4.1) follows.

The quantities hii, β̂(i)−β̂, and s2(i) are computed by the R-function lm.influence.
Compare [CH93, pp. 129–131].

32.4.2. Scaled Measures of Sensitivity. In order to assess the sensitivity of
the estimate of any linear combination of the elements of β, φ = t>β, it makes sense

to divide the change in t>β̂ due to omission of the ith observation by the standard

deviation of t>β̂, i.e., to look at

(32.4.3)
t>(β̂ − β̂(i))

σ
√

t>(X>X)−1t

.

Such a standardization makes it possible to compare the sensitivity of different

linear combinations, and to ask: Which linear combination of the elements of β̂ is
affected most if one drops the ith observation? Interestingly and, in hindsight, per-
haps not surprisingly, the linear combination which is most sensitive to the addition
of the ith observation, is t = xi.

For a mathematical proof we need the following inequality, which is nothing but
the Cauchy-Schwartz inequality in disguise:

Theorem 32.4.1. If ΩΩΩ is positive definite symmetric, then

(32.4.4) max
g

(g>x)2

g>ΩΩΩg
= x>ΩΩΩ−1x.
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If the denominator in the fraction on the lefthand side is zero, then g = o and
therefore the numerator is necessarily zero as well. In this case, the fraction itself
should be considered zero.

Proof: As in the derivation of the BLUE with nonsperical covariance matrix, pick
a nonsingular Q with ΩΩΩ = QQ>, and define P = Q−1. Then it follows PΩΩΩP> = I .
Define y = Px and h = Q>g. Then h>y = g>x, h>h = g>ΩΩΩg, and y>y =
x>ΩΩΩ−1

x. Therefore (32.4.4) follows from the Cauchy-Schwartz inequality (h>y)2 ≤
(h>h)(y>y).

Using Theorem 32.4.1 and equation (32.4.1) one obtains

(32.4.5) max
t

(t>(β̂ − β̂(i)))2

σ2t>(X>X)−1t
=

1

σ2
(β̂ − β̂(i))>X>X(β̂ − β̂(i)) =

=
1

σ2
x>
i (X>X)−1X>X(X>X)−1xiε̂

2
i (i) =

hii
σ2

ε̂2
i (i)

Now we will show that the linear combination which attains this maximum, i.e.,
which is most sensitive to the addition of the ith observation, is t = xi. If one
premultiplies (32.4.1) by x>

i one obtains

(32.4.6) ŷi − ŷi(i) = x>
i β̂ − x>

i β̂(i) =
hii

1 − hii
ε̂i = hiiε̂i(i)

If one divides (32.4.6) by the standard deviation of ŷi, i.e., if one applies the con-
struction (32.4.3), one obtains

(32.4.7)
ŷi − ŷi(i)

σ
√
hii

=

√
hii
σ

ε̂i(i) =

√
hii

σ(1 − hii)
ε̂i

If ŷi changes only little (compared with the standard deviation of ŷi) if the ith

observation is removed, then no other linear combination of the elements of β̂ will
be affected much by the omission of this observation either.

The righthand side of (32.4.7), with σ estimated by s(i), is called by [BKW80]
and many others DFFITS (which stands for DiFference in FIT, Standardized). If
one takes its square, divides it by k, and estimates σ2 by s2 (which is more consistent

than using s2(i), since one standardizes by the standard deviation of t>β̂ and not

by that of t>β̂(i)), one obtains Cook’s distance [Coo77]. (32.4.5) gives an equation

for Cook’s distance in terms of β̂ − β̂(i):
(32.4.8)

Cook’s distance =
(β̂ − β̂(i))>X>X(β̂ − β̂(i))

ks2
=

hii
ks2

ε̂2
i (i) =

hii
ks2(1 − hii)2

ε̂2
i

Problem 378. Can you think of a situation in which an observation has a small
residual but a large “influence” as measured by Cook’s distance?
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Answer. Assume “all observations are clustered near each other while the solitary odd ob-
servation lies a way out” as Kmenta wrote in [Kme86, p. 426]. If the observation happens to lie
on the regression line, then it can be discovered by its influence on the variance-covariance matrix
(32.3.2), i.e., in this case only the hii count. �

Problem 379. The following is the example given in [Coo77]. In R, the com-
mand data(longley)makes the data frame longley available, which has the famous
Longley-data, a standard example for a highly multicollinear dataset. These data
are also available on the web at www.econ.utah.edu/ehrbar/data/longley.txt.
attach(longley) makes the individual variables available as R-objects.

• a. 3 points Look at the data in a scatterplot matrix and explain what you
see. Later we will see that one of the observations is in the regression much more
influential than the rest. Can you see from the scatterplot matrix which observation
that might be?

Answer. In linux, you first have to give the command x11() in order to make the graphics win-
dow available. In windows, this is not necessary. It is important to display the data in a reasonable
order, therefore instead of pairs(longley) you should do something like attach(longley) and then
pairs(cbind(Year, Population, Employed, Unemployed, Armed.Forces, GNP, GNP.deflator)). Put
Year first, so that all variables are plotted against Year on the horizontal axis.

Population vs. year is a very smooth line.
Population vs GNP also quite smooth.
You see the huge increase in the armed forced in 1951 due to the Korean War, which led to a

(temporary) drop in unemployment and a (not so temporary) jump in the GNP deflator.
Otherwise the unemployed show the stop-and-go scenario of the fifties.
unemployed is not correlated with anything.
One should expect a strong negative correlation between employed and unemployed, but this

is not the case. �

• b. 4 points Run a regression of the model Employed ~ GNP.deflator + GNP

+ Unemployed + Armed.Forces + Population + Year and discuss the result.

Answer. To fit a regression run longley.fit <- lm(Employed ~ GNP + Unemployed + Armed.Forces

+ Population + Year). You can see the regression results by typing summary(longley.fit).
Armed forces and unemployed are significant and have negative sign, as expected.
GNP and Population are insignificant and have negative sign too, this is not expected. GNP,

Population and Year are highly collinear.
�

• c. 3 points Make plots of the ordinary residuals and the standardized residuals
against time. How do they differ? In R, the commands are plot(Year, residuals(longley.fit),

type="h", ylab="Ordinary Residuals in Longley Regression"). In order to
get the next plot in a different graphics window, so that you can compare them,
do now either x11() in linux or windows() in windows, and then plot(Year,

rstandard(longley.fit), type="h", ylab="Standardized Residuals in Longley

Regression").

428 32. REGRESSION DIAGNOSTICS

Answer. You see that the standardized residuals at the edge of the dataset are bigger than
the ordinary residuals. The datapoints at the edge are better able to attract the regression plane
than those in the middle, therefore the ordinary residuals are “too small.” Standardization corrects
for this. �

• d. 4 points Make plots of the predictive residuals. Apparently there is no special
command in R to do this, therefore you should use formula (31.2.9). Also plot the
standardized predictive residuals, and compare them.

Answer. The predictive residuals are plot(Year, residuals(longley.fit)/(1-hatvalues(longley.fit)),

type="h", ylab="Predictive Residuals in Longley Regression"). The standardized predictive
residuals are often called studentized residuals, plot(Year, rstudent(longley.fit), type="h",

ylab="Standardized predictive Residuals in Longley Regression").
A comparison shows an opposite effect as with the ordinary residuals: the predictive residuals

at the edge of the dataset are too large, and standardization corrects this.
Specific results: standardized predictive residual in 1950 smaller than that in 1962, but pre-

dictive residual in 1950 is very close to 1962.
standardized predictive residual in 1951 smaller than that in 1956, but predictive residual in

1951 is larger than in 1956.
Largest predictive residual is 1951, but largest standardized predictive residual is 1956.

�

• e. 3 points Make a plot of the leverage, i.e., the hii-values, using plot(Year,

hatvalues(longley.fit), type="h", ylab="Leverage in Longley Regression"),
and explain what leverage means.

• f. 3 points One observation is much more influential than the others; which
is it? First look at the plots for the residuals, then look also at the plot for leverage,
and try to guess which is the most influential observation. Then do it the right way.
Can you give reasons based on your prior knowledge about the time period involved
why an observation in that year might be influential?

Answer. The “right” way is to use Cook’s distance: plot(Year, cooks.distance(longley.fit),

type="h", ylab="Cook’s Distance in Longley Regression")

One sees that 1951 towers above all others. It does not have highest leverage, but it has
second-highest, and a bigger residual than the point with the highest leverage.

1951 has the largest distance of .61. The second largest is the last observation in the dataset,
1962, with a distance of .47, and the others have .24 or less. Cook says: removal of 1951 point will

move the least squares estimate to the edge of a 35% confidence region around β̂. This point is
probably so influential because 1951 was the first full year of the Korean war. One would not be
able to detect this point from the ordinary residuals, standardized or not! The predictive residuals
are a little better; their maximum is at 1951, but several other residuals are almost as large. 1951
is so influential because it has an extremely high hat-value, and one of the highest values for the
ordinary residuals! �

At the end don’t forget to detach(longley) if you have attached it before.
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32.4.3. Changes in the Sum of Squared Errors. For the computation of
s2(i) from the regression results one can take advantage of the following simple
relationship between the SSE for the regression with and without the ith observation:

(32.4.9) SSE − SSE(i) =
ε̂2
i

1 − hii

Problem 380. Use (32.4.9) to derive the following formula for s2(i):

(32.4.10) s2(i) =
1

n− k − 1

(
(n− k)s2 − ε̂2

i

1− hii

)

Answer. This merely involves re-writing SSE and SSE(i) in terms of s2 and s2(i).

(32.4.11) s2(i) =
SSE(i)

n− 1 − k
=

1

n− k − 1

(
SSE − ε̂2

i

1 − hii

)

�

Proof of equation (32.4.9):

SSE(i) =
∑

j : j 6=i
(yj − x>

j β̂(i))2 =
∑

j : j 6=i

(
yj − x>

j β̂ − x>
j (β̂(i) − β̂)

)2

=
∑

j : j 6=i

(
ε̂j +

hji
1 − hii

ε̂i

)2

=
∑

j

(
ε̂j +

hji
1 − hii

ε̂i

)2

−
( 1

1 − hii
ε̂i

)2

=
∑

j

ε̂2
j +

2ε̂i

1 − hii

∑

j

hij ε̂j +
( ε̂i

1 − hii

)2∑

j

h2
ji −

( ε̂i

1 − hii

)2

In the last line the first term is SSE. The second term is zero because H ε̂ = o.
Furthermore, hii =

∑
j h

2
ji because H is symmetric and idempotent, therefore the

sum of the last two items is −ε̂2
i /(1− hii).

Note that every single relationship we have derived so far is a function of ε̂i and
hii.

Problem 381. 3 points What are the main concepts used in modern “Regression
Diagnostics”? Can it be characterized to be a careful look at the residuals, or does it
have elements which cannot be inferred from the residuals alone?

Answer. Leverage (sometimes it is called “potential”) is something which cannot be inferred
from the residuals, it does not depend on y at all. �
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Problem 382. An observation in a linear regression model is “influential” if
its omission causes large changes to the regression results. Discuss how you would
ascertain in practice whether a given observation is influential or not.

• a. What is meant by leverage? Does high leverage necessarily imply that an
observation is influential?

Answer. Leverage is potential influence. It only depends of X, not on y. It is the distance
of the observation from the center of gravity of all observations. Whether this is actual influence
depends on the y-values. �

• b. How are the concepts of leverage and influence affected by sample size?

• c. What steps would you take when alerted to the presence of an influential
observation?

Answer. Make sure you know whether the results you rely on are affected if that influential
observation is dropped. Try to find out why this observation is influential (e.g. in the Longley data
the observations in the year when the Korean War started are influential). �

• d. What is a “predictive residual” and how does it differ from an ordinary
residual?

• e. Discuss situations in which one would want to deal with the “predictive”
residuals rather than the ordinary residuals, and situations in which one would want
residuals standardized versus situations in which it would be preferable to have the
unstandardized residuals.

Problem 383. 6 points Describe what you would do to ascertain that a regression
you ran is correctly specified?

Answer. Economic theory behind that regression, size and sign of coefficients, plot residuals
versus predicted values, time, and every independent variable, run all tests: F-test, t-tests, R2 ,
DW, portmanteau test, forecasting, multicollinearity, influence statistics, overfitting to see if other
variables are significant, try to defeat the result by using alternative variables, divide time period into
subperiods in order to see if parameters are constant over time, pre-test specification assumptions.

�



CHAPTER 33

Regression Graphics

The “regression” referred to in the title of this chapter is not necessarily linear
regression. The population regression can be defined as follows: The random scalar
y and the random vector x have a joint distribution, and we want to know how
the conditional distribution of y|x = x depends on the value x. The distributions
themselves are not known, but we have datasets and we use graphical means to
estimate the distributions from these datasets.

Problem 384. Someone said on an email list about statistics: if you cannot see
an effect in the data, then there is no use trying to estimate it. Right or wrong?

Answer. One argument one might give is the curse of dimensionality. Also higher moments
of the distribution, kurtosis etc., cannot be seen very cleary with the plain eye. �

33.1. Scatterplot Matrices

One common graphical method to explore a dataset is to make a scatter plot of
each data series against each other and arrange these plots in a matrix. In R, the
pairs function does this. Scatterplot matrices should be produced in the preliminary
stages of the investigation, but the researcher should not think he or she is done after
having looked at the scatterplot matrices.

In the construction of scatter plot matrices, it is good practice to change the
signs of some of the variables in order to make all correlations positive if this is
possible.

[BT99, pp. 17–20] gives a good example of what kinds of things can be seen from
looking at scatterplot matrices. The data for this book are available at http://biometrics.ag.uq.edu.au/software.htm

Problem 385. 5 points Which inferences about the datasets can you draw from
looking at the scatterplot matrix in [BT99, Exhibit 3.2, p. 14]?

Answer. The discussion on [BT99, p. 19?] distinguishes three categories. First the univariate
phenomena:

• yield is more concentrated for local genotypes (•) than for imports (◦);
• the converse is true for protein % but not as pronounced;
• oil % and seed size are lower for local genotypes (•); regarding seed size, the heaviest • is ligher

than the lightest ◦;
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• height and lodging are greater for local genotypes.

Bivariate phenomena are either within-group or between-group phenomena or both.:

• negative relationship of protein % and oil % (both within • and ◦);
• positive relationship of oil % and seed size (both within • and ◦ and also between these groups);
• negative relationship, between groups, of seed size and height;
• positive relationship of height and lodging (within ◦ and between groups);
• negative relationship of oil % and lodging (between groups and possibly within •);
• negative relationship of seed size and lodging (between groups);
• positive relationship of height and lodging (between groups).

The between group pehnomena are, of course, not due to an interaction between the groups, but
they are the consequence of univariate phenomena. As a third category, the authors point out
unusual individual points:

• 1 high ◦ for yield;
• 1 high • (still lower than all the ◦s) for seed size;
• 1 low ◦ for lodging;
• 1 low • for protein % and oil % in combination.

�

[Coo98, Figure 2.8 on p. 29] shows a scatterplot matrix of the “horse mussel”
data, originally from [Cam89]. This graph is also available at www.stat.umn.edu/
RegGraph/graphics/Figure 2.8.gif. Horse mussels, (Atrinia), were sampled from
the Marlborough Sounds. The five variables are L = Shell length in mm, W = Shell
width in mm, H = Shell height in mm, S = Shell mass in g, and M = Muscle mass
in g. M is the part of the mussel that is edible.

Problem 386. 3 points In the mussel data set, M is the “response” (according
to [Coo98]). Is it justified to call this variable the “response” and the other variables
the explanatory variables, and if so, how would you argue for it?

Answer. This is one of the issues which is not sufficiently discussed in the literature. It would
be justified if the dimensions and weight of the shell were exogenous to the weight of the edible part
of the mussel. I.e., if the mussel first grows the shell, and then it fills this shell wish muscle, and
the dimensions of the shell affect how big the muscle can grow, but the muscle itself does not have

an influence on the dimensions of the shell. If this is the case, then it makes sense to look at the
distribution of M conditionally on the other variables, i.e., ask the question: given certain weights
and dimensions of the shell, what is the nature of the mechanism by which the muscle grows inside
this shell. But if muscle and shell grow together, both affected by the same variables (temperature,
nutrition, daylight, etc.), then the conditional distribution is not informative. In this case, the joint
distribution is of interest. �

In order to get this dataset into R, you simply say data(mussels), after having
said library(ecmet). Then you need the command pairs(mussels) to get
the scatterplot matrix. Also interesting is pairs(log(mussels)), especially since
the log transformation is appropriate if one explains volume and weight by length,
height, and width.
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The scatter plot of M versusH shows a clear curvature; but one should not jump
to the conclusion that the regression is not linear. Cook brings another example with
constructed data, in which the regression function is clearly linear, without error
term, and in which nevertheless the scatter plot of the response versus one of the
predictors shows a similar curvature as in the mussel data.

Problem 387. Cook’s constructed dataset is available as dataset reggra29 in
the ecmet package. Make a scatterplot matrix of the plot, then load it into XGobi

and convince yourself that y depends linearly on x1 and x2.

Answer. You need the commands data(reggra29) and then pairs(reggra29) to get the scat-
terplot matrix. Before you can access xgobi from R, you must give the command library(xgobi).
Then xgobi(reggra29). The dependency is y = 3 + x1 + elemx2/2. �

Problem 388. 2 points Why can the scatter plot of the dependent variable
against one of the independent variables be so misleading?

Answer. Because the included independent variable becomes a proxy for the excluded vari-
able. The effect of the excluded variable is mistaken to come from the included variable. Now if the
included and the excluded variable are independent of each other, then the omission of the excluded
variable increases the noise, but does not have a systematic effect. But if there is an empirical
relationship between the included and the excluded variable, then this translates into a spurious
relationship between included and dependent variables. The mathematics of this is discussed in
Problem 328. �

Problem 389. Would it be possible in the scatter plot in [Coo98, p. 217] to
reverse the signs of some of the variables in such a way that all correlations are
positive?

Answer. Yes, you have to reverse the signs of 6Below and AFDC. Here are the instructions
how to do the scatter plots: in arc, go to the load menu. (Ignore the close and the menu boxes,
they don’t seem to work.) Then type the path into the long box, /usr/share/ecmet/xlispstat and
press return. This gives me only one option, Minneapolis-schools.lsp. I have to press 3 times
on this until it jumps to the big box, then I can press enter on the big box to load the data. This
gives me a bigger menu. Go to the MPLSchools menu, and to the add variable option. You have
to type in 6BelNeg = (- 6Below), then enter, then AFDCNeg = (- AFDC), and finally BthPtsNeg =

(- BthPts). Then go to the Graph&Fit menu, and select scatterplot matrix. Then you have to be
careful about the order: first select AFDCNeg, in the left box and double click so that it jumps
over to the right box. Then select HS, then BthPtsNeg, then 6BelNeg, then 6Above. Now the
scatterplot matrix will be oriented all in 1 direction. �

33.2. Conditional Plots

In order to account for the effect of excluded variables in a scatter plot, the
function coplot makes scatter plots in which the excluded variable is conditioned
upon. The graphics demo has such a conditioning plot; here is the code (from the
file /usr/lib/R/demos/graphics/graphics.R):
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data(quakes)

coplot(long ~ lat | depth, data=quakes, pch=21)

33.3. Spinning

An obvious method to explore a more than two-dimensional structure graphically
is to look at plots of y against various linear combinations of x. Many statistical
software packages have the ability to do so, but one of the most powerful ones is
XGobi. Documentation about xgobi, which is more detailed than the help(xgobi)

in R/Splus can be obtained by typing man xgobi while in unix. A nice brief docu-
mentation is [Rip96]. The official manual is is [SCB91] and [BCS96].

XGobi can be used as a stand-alone program or it can be invoked from inside R

or Splus. In R, you must give the command library(xgobi) in order to make the
function xgobi accessible.

The search for “interesting” projections of the data into one-, two-, or 3-dimensional
spaces has been automated in projection pursuit regression programs. The basic ref-
erence is [FS81], but there is also the much older [FT74].

The most obvious graphical regression method consists in slicing or binning the
data, and taking the mean of the data in each bin. But if you have too many
explanatory variables, this local averaging becomes infeasible, because of the “curse
of dimensionality.” Consider a dataset with 1000 observations and 10 variables, all
between 0 and 1. In order to see whether the data are uniformly distributed or
whether they have some structure, you may consider splitting up the 10-dimensional
unit cube into smaller cubes and counting the number of datapoints in each of these
subcubes. The problem here is: if one makes those subcubes large enough that they
contain more than 0 or 1 observations, then their coordinate lengths are not much
smaller than the unit hypercube itself. Even with a side length of 1/2, which would
be the largest reasonable side length, one needs 1024 subcubes to fill the hypercube,
therefore the average number of data points is a little less than 1. By projecting
instead of taking subspaces, projection pursuit regression does not have this problem
of data scarcity.

Projection pursuit regression searches for an interesting and informative projec-
tion of the data by maximizing a criterion function. A logical candidate would for
instance be the variance ratio as defined in (8.6.7), but there are many others.

About grand tours, projection pursuit guided tours, and manual tours see [CBCH97]
and [CB97].

Problem 390. If you run XGobi from the menu in Debian GNU/Linux, it uses
prim7, which is a 7-dimensional particle physics data set used as an example in
[FT74].
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The following is from the help page for this dataset: There are 500 observations
taken from a high energy particle physics scattering experiment which yields four
particles. The reaction can be described completely by 7 independent measurements.
The important features of the data are short-lived intermediate reaction stages which
appear as protuberant “arms” in the point cloud.

The projection pursuit guided tour is the tool to use to understand this data set.
Using all 7 variables turn on projection pursuit and optimize with the Holes index
until a view is found that has a triangle and two arms crossing each other off one
edge (this is very clear once you see it but the Holes index has a tendency to get stuck
in another local maximum which doesn’t have much structure). Brush the arms with
separate colours and glyphs. Change to the Central Mass index and optimize. As new
arms are revealed brush them and continue. When you have either run out of colours
or time turn off projection pursuit and watch the data touring. Then it becomes
clear that the underlying structure is a triangle with 5 or 6 arms (some appear to be
1-dimensional, some 2-dimensional) extending from the vertices.

33.4. Sufficient Plots

A different approach, which is less ad-hoc than projection pursuit, starts with
the theory of conditional independence, see Section 2.10.3. A theoretical exposition
of this approach is [Coo98] with web-site www.stat.umn.edu/RegGraph. This web
site has the data and several short courses based on the book. Especially the file
www.stat.umn.edu/RegGraph/papers/interface.pdf is a nice brief introduction.
A more practically-oriented book, which teaches the software especially developed
for this approach, is [CW99].

For any graphical procedure exploring linear combinations of the explanatory
variables, the structural dimension d of a regression is relevant: it is the smallest
number of distinct linear combinations of the predictors required to characterize the
conditional distribution of y|x.

If the data follow a linear regression then their structural dimension is 1. But
even if the regression is nonlinear but can be written in the form

(33.4.1) y|x ∼ g(β>x) + σ(β>x)ε

with ε independent of x, this is also a population with structural dimension of 1. If
t is a monotonic transformation, then

t(y)|x ∼ g(β>x) + σ(β>x)ε

is an even more general model with structural dimension 1.
If

(33.4.2) y|x =

{
β>

1 x + ε if x1 ≥ 0

β>
2 x + ε if x1 < 0
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with β1 and β2 linearly independent, then the structural dimension is 2, since one
needs 2 different linear combinations of x to characterize the distribution of y. If

(33.4.3) y|x = ‖x‖2 + ε

then this is a very simple relationship between x and y, but the structural dimension
is k, the number of dimensions of x, since the relationship is not intrinsically linear.

Problem 391. [FS81, p. 818] Show that the regression function consisting of
the interaction term between x1 and x2 only φ(x) = x1x2 has structural dimension

2, i.e., it can be written in the form φ(x) =
∑2

m=1 sm(αmx) where sm are smooth
functions of one variable.

Answer.

(33.4.4) α1 =
1√
2

[
1
1
o

]
α2 =

1√
2

[
1
−1
o

]
s1(z) =

z2

2
s2(z) = − z

2

2

�

Problem 392. [Coo98, p. 62] In the rubber data, mnr is the dependent variable
y, and temp and dp form the two explanatory variables x1 and x2. Look at the data
using XGgobi or some other spin program. What is the structural dimension of the
data set?

The rubber data are from [Woo72], and they are also discussed in [Ric, p. 506].
mnr is modulus of natural rubber, temp the temperature in degrees Celsius, and dp

Dicumyl Peroxide in percent.

Answer. The data are a plane that has been distorted by twisting and stretching. Since one
needs a different view to get the best fit of the points in the upper-right corner than for the points
in the lower-left corner, the structural dimension must be 2. �

If one looks at the scatter plots of y against all linear combinations of components
of x, and none of them show a relationship (either linear or nonlinear), then the
structural dimension is zero.

Here are the instruction how to do graphical regression on the mussel data. Select
the load menu (take the cursor down a little until it is black, then go back up), then
press the Check Data Dir box, then double click ARCG so that it jumps into the
big box. Then Update/Open File will give you a long list of selections, where you
will find mussels.lsp. Double click on this so that it jumps into the big box, and
then press on the Update/Open File box. Now for the Box-Cox transformation I
first have to go to scatterplot matrices, then click on transformations, then to find

normalizing transformations. It you just select the 4 predictors and then press
the OK button, there will be an error message; apparently the starting values were
not good enough. Try again, using marginal Box-Cox Starting Values. This will
succeed, and the LR test for all transformations logs has a p-value of .14. Therefore
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choose the log transform for all the predictors. (If we include all 5 variables, the
LR test for all transformations to be log transformations has a p-value of 0.000.)
Therefore transform the 4 predictor variables only to logs. There you see the very
linear relationship between the predictors, and you see that all the scatter plots
with the response are very similar. This is a sign that the structural dimension is 1
according to [CW99, pp. 435/6]. If that is the case, then a plot of the actual against
the fitted values is a sufficient summary plot. For this, run the Fit Linear LS menu
option, and then plot the dependent variable against the fitted value. Now the next
question might be: what transformation will linearize this, and a log curve seems to
fit well.



CHAPTER 34

Asymptotic Properties of the OLS Estimator

A much more detailed treatment of the contents of this chapter can be found in
[DM93, Chapters 4 and 5].

Here we are concerned with the consistency of the OLS estimator for large sam-
ples. In other words, we assume that our regression model can be extended to
encompass an arbitrary number of observations. First we assume that the regressors
are nonstochastic, and we will make the following assumption:

(34.0.5) Q = lim
n→∞

1

n
X>X exists and is nonsingular.

Two examples where this is not the case. Look at the model yt = α+βt+εt. Here

X =




1 1
1 2
1 3
...

...
1 n



. Therefore X>X =

[
1 + 1 + 1 + · · · + 1 1 + 2 + 3 + · · · + n
1 + 2 + 3 + · · · + n 1 + 4 + 9 + · · · + n2

]
=

[
n n(n+ 1)/2

n(n+ 1)/2 n(n+ 1)(2n+ 1)/6

]
, and 1

nX>X →
[

1 ∞
∞ ∞

]
. Here the assumption

(34.0.5) does not hold, but one can still prove consistency and asymtotic normality,
the estimators converge even faster than in the usual case.

The other example is the model yt = α + βλt + εt with a known λ with −1 <
λ < 1. Here

X>X =

[
1 + 1 + · · · + 1 λ+ λ2 + · · · + λn

λ+ λ2 + · · · + λn λ2 + λ4 + · · · + λ2n

]
=

=

[
n (λ − λn+1)/(1 − λ)

(λ− λn+1)/(1 − λ) (λ2 − λ2n+2)/(1 − λ2)

]
.

Therefore 1
nX>X →

[
1 0
0 0

]
, which is singular. In this case, a consistent estimate of

λ does not exist: future observations depend on λ so little that even with infinitely
many observations there is not enough information to get the precise value of λ.
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We will show that under assumption (34.0.5), β̂ and s2 are consistent. However
this assumption is really too strong for consistency. A weaker set of assumptions
is the Grenander conditions, see [Gre97, p. 275]. To write down the Grenander
conditions, remember that presently X depends on n (in that we only look at the
first n elements of y and first n rows of X), therefore also the column vectors xj also
depend of n (although we are not indicating this here). Therefore x>

j xj depends on

n as well, and we will make this dependency explicit by writing x>
j xj = d2

nj . Then

the first Grenander condition is limn→∞ d2
nj = +∞ for all j. Second: for all i and

k, limn→∞ maxi=1···n xij/d2
nj = 0 (here is a typo in Greene, he leaves the max out).

Third: Sample correlation matrix of the columns of X minus the constant term
converges to a nonsingular matrix.

Consistency means that the probability limit of the estimates converges towards

the true value. For β̂ this can be written as plimn→∞ β̂n = β. This means by

definition that for all ε > 0 follows limn→∞ Pr[|β̂n − β| ≤ ε] = 1.
The probability limit is one of several concepts of limits used in probability

theory. We will need the following properties of the plim here:
(1) For nonrandom magnitudes, the probability limit is equal to the ordinary

limit.
(2) It satisfies the Slutsky theorem, that for a continuous function g,

(34.0.6) plim g(z) = g(plim(z)).

(3) If the MSE-matrix of an estimator converges towards the null matrix, then
the estimator is consistent.

(4) Kinchine’s theorem: the sample mean of an i.i.d. distribution is a consistent
estimate of the population mean, even if the distribution does not have a population
variance.

34.1. Consistency of the OLS estimator

For the proof of consistency of the OLS estimators β̂ and of s2 we need the
following result:

(34.1.1) plim
1

n
X>ε = o.

I.e., the true ε is asymptotically orthogonal to all columns of X. This follows imme-
diately from MSE [o; X>ε/n] = E [X>εε>X/n2] = σ2X>X/n2, which converges
towards O.

In order to prove consistency of β̂ and s2, transform the formulas for β̂ and s2

in such a way that they are written as continuous functions of terms each of which
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converges for n→ ∞, and then apply Slutsky’s theorem. Write β̂ as

β̂ = β + (X>X)−1X>ε = β +
(X>X

n

)−1 X>ε

n
(34.1.2)

plim β̂ = β + lim
(X>X

n

)−1

plim
X>ε

n
(34.1.3)

= β + Q−1o = β.(34.1.4)

Let’s look at the geometry of this when there is only one explanatory variable.
The specification is therefore y = xβ+ε. The assumption is that ε is asymptotically
orthogonal to x. In small samples, it only happens by sheer accident with probability
0 that ε is orthogonal to x. Only ε̂ is. But now let’s assume the sample grows
larger, i.e., the vectors y and x become very high-dimensional observation vectors,
i.e. we are drawing here a two-dimensional subspace out of a very high-dimensional
space. As more and more data are added, the observation vectors also become
longer and longer. But if we divide each vector by

√
n, then the lengths of these

normalized lenghts stabilize. The squared length of the vector ε/
√
n has the plim of

σ2. Furthermore, assumption (34.0.5) means in our case that plimn→∞
1
nx>x exists

and is nonsingular. This is the squared length of 1√
n
x. I.e., if we normalize the

vectors by dividing them by
√
n, then they do not get longer but converge towards

a finite length. And the result (34.1.1) plim 1
nx>ε = 0 means now that with this

normalization, ε/
√
n becomes more and more orthogonal to x/

√
n. I.e., if n is large

enough, asymptotically, not only ε̂ but also the true ε is orthogonal to x, and this

means that asymptotically β̂ converges towards the true β.

For the proof of consistency of s2 we need, among others, that plim ε>ε
n = σ2,

which is a consequence of Kinchine’s theorem. Since ε̂>ε̂ = ε>Mε it follows

ε̂>ε̂

n− k
=

n

n− k
ε>
(I

n
− X

n

(X>X

n

)−1 X>

n

)
ε =

=
n

n− k

(ε>ε

n
− ε>X

n

(X>X

n

)−1 X>ε

n

)
→ 1 ·

(
σ2 − o>Q−1o

)
.

34.2. Asymptotic Normality of the Least Squares Estimator

To show asymptotic normality of an estimator, multiply the sampling error by√
n, so that the variance is stabilized.

We have seen plim 1
nX>ε = o. Now look at 1√

n
X>εn. Its mean is o and its co-

variance matrix σ2 X>X
n . Shape of distribution, due to a variant of the Central Limit

Theorem, is asymptotically normal: 1√
n
X>εn → N(o, σ2Q). (Here the convergence

is convergence in distribution.)
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We can write
√
n(β̂n−β) =

(
X>X
n

)−1

( 1√
n
X>εn). Therefore its limiting covari-

ance matrix is Q−1σ2QQ−1 = σ2Q−1, Therefore
√
n(β̂n−β) → N(o, σ2Q−1) in dis-

tribution. One can also say: the asymptotic distribution of β̂ is N(β, σ2(X>X)−1).

From this follows
√
n(Rβ̂n − Rβ) → N(o, σ2RQ−1R>), and therefore

(34.2.1) n(Rβ̂n − Rβ)
(
RQ−1R>)−1

(Rβ̂n − Rβ) → σ2χ2
i .

Divide by s2 and replace in the limiting case Q by X>X/n and s2 by σ2 to get

(34.2.2)
(Rβ̂n − Rβ)

(
R(X>X)−1R>)−1

(Rβ̂n − Rβ)

s2
→ χ2

i

in distribution. All this is not a proof; the point is that in the denominator, the
distribution is divided by the increasingly bigger number n− k, while in the numer-
ator, it is divided by the constant i; therefore asymptotically the denominator can
be considered 1.

The central limit theorems only say that for n→ ∞ these converge towards the
χ2, which is asymptotically equal to the F distribution. It is easily possible that
before one gets to the limit, the F-distribution is better.

Problem 393. Are the residuals y − Xβ̂ asymptotically normally distributed?

Answer. Only if the disturbances are normal, otherwise of course not! We can show that√
n(ε − ε̂) =

√
nX(β̂ − β) ∼ N(o, σ2XQX>). �

Now these results also go through if one has stochastic regressors. [Gre97, 6.7.7]
shows that the above condition (34.0.5) with the lim replaced by plim holds if xi
and εi are an i.i.d. sequence of random variables.

Problem 394. 2 points In the regression model with random regressors y = Xβ+
ε, you only know that plim 1

nX>X = Q is a nonsingular matrix, and plim 1
nX>ε = o.

Using these two conditions, show that the OLS estimate is consistent.

Answer. β̂ = (X>X)−1X>y = β + (X>X)−1X>ε due to (24.0.7), and

plim(X>X)−1X>ε = plim(
X>X

n
)−1 X>ε

n
= Qo = o.

�



CHAPTER 35

Least Squares as the Normal Maximum Likelihood
Estimate

Now assume ε is multivariate normal. We will show that in this case the OLS
estimator β̂ is at the same time the Maximum Likelihood Estimator. For this we
need to write down the density function of y. First look at one yt which is yt ∼

N(x>
t β, σ2), where X =




x>
1
...

x>
n


, i.e., xt is the tth row of X. It is written as a

column vector, since we follow the “column vector convention.” The (marginal)
density function for this one observation is

(35.0.3) fyt
(yt) =

1√
2πσ2

e−(yt−x>

t β)2/2σ2

.

Since the yi are stochastically independent, their joint density function is the product,
which can be written as

(35.0.4) fy(y) = (2πσ2)−n/2 exp
(
− 1

2σ2
(y − Xβ)>(y − Xβ)

)
.

To compute the maximum likelihood estimator, it is advantageous to start with
the log likelihood function:

(35.0.5) log fy(y; β, σ2) = −n
2

log 2π − n

2
logσ2 − 1

2σ2
(y − Xβ)>(y − Xβ).

Assume for a moment that σ2 is known. Then the MLE of β is clearly equal to

the OLS β̂. Since β̂ does not depend on σ2, it is also the maximum likelihood

estimate when σ2 is unknown. β̂ is a linear function of y. Linear transformations
of normal variables are normal. Normal distributions are characterized by their
mean vector and covariance matrix. The distribution of the MLE of β is therefore

β̂ ∼ N(β, σ2(X>X)−1).
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If we replace β in the log likelihood function (35.0.5) by β̂, we get what is called
the log likelihood function with β “concentrated out.”

(35.0.6) log fy(y; β = β̂, σ2) = −n
2

log 2π − n

2
logσ2 − 1

2σ2
(y − Xβ̂)>(y − Xβ̂).

One gets the maximum likelihood estimate of σ2 by maximizing this “concentrated”
log likelihoodfunction. Taking the derivative with respect to σ2 (consider σ2 the
name of a variable, not the square of another variable), one gets

(35.0.7)
∂

∂σ2
log fy(y; β̂) = −n

2

1

σ2
+

1

2σ4
(y − Xβ̂)>(y − Xβ̂)

Setting this zero gives

(35.0.8) σ̃2 =
(y − Xβ̂)>(y − Xβ̂)

n
=

ε̂>ε̂

n
.

This is a scalar multiple of the unbiased estimate s2 = ε̂>ε̂/(n − k) which we
had earlier.

Let’s look at the distribution of s2 (from which that of its scalar multiples follows
easily). It is a quadratic form in a normal variable. Such quadratic forms very often
have χ2 distributions.

Now recall equation 10.4.9 characterizing all the quadratic forms of multivariate
normal variables that are χ2’s. Here it is again: Assume y is a multivariate normal
vector random variable with mean vector µ and covariance matrix σ2Ψ, and ΩΩΩ is a
symmetric nonnegative definite matrix. Then (y − µ)>ΩΩΩ(y − µ) ∼ σ2χ2

k iff

(35.0.9) ΨΩΩΩΨΩΩΩΨ = ΨΩΩΩΨ,

and k is the rank of ΨΩΩΩ.
This condition is satisfied in particular if Ψ = I (the identity matrix) and

ΩΩΩ2 = ΩΩΩ, and this is exactly our situation.

(35.0.10) σ̂2 =
(y − Xβ̂)>(y − Xβ̂)

n− k
=

ε>(I − X(X>X)−1X>)ε

n− k
=

ε>Mε

n− k

where M2 = M and rankM = n − k. (This last identity because for idempotent
matrices, rank = tr, and we computed its tr above.) Therefore s2 ∼ σ2χ2

n−k/(n−k),
from which one obtains again unbiasedness, but also that var[s2] = 2σ4/(n − k), a
result that one cannot get from mean and variance alone.

Problem 395. 4 points Show that, if y is normally distributed, s2 and β̂ are
independent.

Answer. We showed in question 300 that β̂ and ε̂ are uncorrelated, therefore in the normal

case independent, therefore β̂ is also independent of any function of ε̂, such as σ̂2. �
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Problem 396. Computer assignment: You run a regression with 3 explanatory
variables, no constant term, the sample size is 20, the errors are normally distributed
and you know that σ2 = 2. Plot the density function of s2. Hint: The command
dchisq(x,df=25) returns the density of a Chi-square distribution with 25 degrees of
freedom evaluated at x. But the number 25 was only taken as an example, this is not
the number of degrees of freedom you need here.

• a. In the same plot, plot the density function of the Theil-Schweitzer estimate.
Can one see from the comparison of these density functions why the Theil-Schweitzer
estimator has a better MSE?

Answer. Start with the Theil-Schweitzer plot, because it is higher. > x <- seq(from = 0, to

= 6, by = 0.01) > Density <- (19/2)*dchisq((19/2)*x, df=17) > plot(x, Density, type="l",

lty=2) > lines(x,(17/2)*dchisq((17/2)*x, df=17)) > title(main = "Unbiased versus Theil-Schweitzer

Variance Estimate, 17 d.f.") �

Now let us derive the maximum likelihood estimator in the case of nonspherical
but positive definite covariance matrix. I.e., the model is y = Xβ+ε, ε ∼ N(o, σ2Ψ).
The density function is

(35.0.11) fy(y) = (2πσ2)−n/2 |detΨ|−1/2 exp
(
− 1

2σ2
(y − Xβ)>Ψ−1(y − Xβ)

)
.

Problem 397. Derive (35.0.11) as follows: Take a matrix P with the property
that P ε has covariance matrix σ2I. Write down the joint density function of Pε.
Since y is a linear transformation of ε, one can apply the rule for the density function
of a transformed random variable.

Answer. Write Ψ = QQ> with Q nonsingular and define P = Q−1 and v = Pε. Then

V[v] = σ2PQQ>P> = σ2I, therefore

(35.0.12) fv(v) = (2πσ2)−n/2 exp

(
− 1

2σ2
v>v

)
.

For the transformation rule, write v, whose density function you know, as a function of y, whose
density function you want to know. v = P (y − Xβ); therefore the Jacobian matrix is ∂v/∂y> =
∂(Py − PXβ)/∂y> = P , or one can see it also element by element

(35.0.13)




∂v1
∂y1

· · · ∂v1
∂yn

.

..
. . .

.

..
∂vn

∂y1
· · · ∂vn

∂yn


 = P ,

therefore one has to do two things: first, substitute P (y − Xβ) for v in formula (35.0.12), and
secondly multiply by the absolute value of the determinant of the Jacobian. Here is how to ex-
press the determinant of the Jacobian in terms of Ψ: From Ψ−1 = (QQ>)−1 = (Q>)−1Q−1 =

(Q−1)>Q−1 = P>P follows (det P )2 = (det Ψ)−1, hence |det P | =
√

det Ψ. �
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From (35.0.11) one obtains the following log likelihood function:
(35.0.14)

log fy(y) = −n
2

ln 2π − n

2
lnσ2 − 1

2
ln det[Ψ] − 1

2σ2
(y − Xβ)>Ψ−1(y − Xβ).

Here, usually not only the elements of β are unknown, but also Ψ depends on
unknown parameters. Instead of concentrating out β, we will first concentrate out
σ2, i.e., we will compute the maximum of this likelihood function over σ2 for any
given set of values for the data and the other parameters:

∂

∂σ2
log fy(y) = −n

2

1

σ2
+

(y − Xβ)>Ψ−1(y − Xβ)

2σ4
(35.0.15)

σ̃2 =
(y − Xβ)>Ψ−1(y − Xβ)

n
.(35.0.16)

Whatever the value of β or the values of the unknown parameters in Ψ, σ̃2 is the
value of σ2 which, together with the given β and Ψ, gives the highest value of the
likelihood function. If one plugs this σ̃2 into the likelihood function, one obtains the
so-called “concentrated likelihood function” which then only has to be maximized
over β and Ψ:
(35.0.17)

log fy(y; σ̃2) = −n
2

(1 + ln 2π − lnn) − n

2
ln(y − Xβ)>Ψ−1(y − Xβ) − 1

2
ln det[Ψ]

This objective function has to be maximized with respect to β and the parameters

entering Ψ. If Ψ is known, then this is clearly maximized by the β̂ minimizing
(26.0.9), therefore the GLS estimator is also the maximum likelihood estimator.

If Ψ depends on unknown parameters, it is interesting to compare the maxi-
mum likelihood estimator with the nonlinear least squares estimator. The objective
function minimized by nonlinear least squares is (y − Xβ)>Ψ−1(y − Xβ), which
is the sum of squares of the innovation parts of the residuals. These two objective

functions therefore differ by the factor (det[Ψ])
1
n , which only matters if there are

unknown parameters in Ψ. Asymptotically, the objective functions are identical.
Using the factorization theorem for sufficient statistics, one also sees easily that

σ̂2 and β̂ together form sufficient statistics for σ2 and β. For this use the identity

(y − Xβ)>(y − Xβ) = (y − Xβ̂)>(y − Xβ̂) + (β − β̂)>X>X(β − β̂)

= (n− k)s2 + (β − β̂)>X>X(β − β̂).(35.0.18)

Therefore the observation y enters the likelihood function only through the two
statistics β̂ and s2. The factorization of the likelihood function is therefore the trivial
factorization in which that part which does not depend on the unknown parameters
but only on the data is unity.
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Problem 398. 12 points The log likelihood function in the linear model is given
by (35.0.5). Show that the inverse of the information matrix is

(35.0.19)

[
σ2(X>X)−1 o

o> 2σ4/n

]

The information matrix can be obtained in two different ways. Its typical element
has the following two forms:

(35.0.20) E[
∂ ln `

∂θi

∂ ln `

∂θk
] = −E[

∂2 ln `

∂θi∂θk
],

or written as matrix derivatives

(35.0.21) E [
∂ ln `

∂θ

∂ ln `

∂θ> ] = −E[
∂2 ln `

∂θ∂θ> ].

In our case θ =

[
β

σ2

]
. The expectation is taken under the assumption that the

parameter values are the true values. Compute it both ways.

Answer. The log likelihood function can be written as

(35.0.22) ln ` = −n
2

ln 2π − n

2
lnσ2 − 1

2σ2
(y>y − 2y>Xβ + β>X>Xβ).

The first derivatives were already computed for the maximum likelihood estimators:

∂

∂β> ln ` = − 1

2σ2
(2y>X + 2β>X>X) =

1

σ2
(y − Xβ)>X =

1

σ2
ε>X(35.0.23)

∂

∂σ2
ln ` = − n

2σ2
+

1

2σ4
(y − Xβ)>(y − Xβ) = − n

2σ2
+

1

2σ4
ε>ε(35.0.24)

By the way, one sees that each of these has expected value zero, which is a fact that is needed to
prove consistency of the maximum likelihood estimator.

The formula with only one partial derivative will be given first, although it is more tedious:

By doing ∂
∂β>

(
∂

∂β>

)>
we get a symmetric 2 × 2 partitioned matrix with the diagonal elements

(35.0.25) E [
1

σ4
X>εε>X] =

1

σ2
X>X

and

(35.0.26) E[
(
− n

2σ2
+

1

2σ4
ε>ε
)2

] = var[− n

2σ2
+

1

2σ4
ε>ε] = var[

1

2σ4
ε>ε] =

1

4σ8
2nσ4 =

n

2σ4

One of the off-diagonal elements is ( n
2σ4 + 1

2σ6 ε>ε)ε>X. Its expected value is zero: E [ε] = o,

and also E [εε>ε] = o since its ith component is E[εi
∑

j
ε2
j ] =

∑
j
E[εiε2

j ]. If i 6= j , then εi is

independent of ε2
j , therefore E[εiε

2
j ] = 0 ·σ2 = 0. If i = j, we get E[ε3

i ] = 0 since εi has a symmetric

distribution.
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It is easier if we differentiate once more:

∂2

∂β∂β> ln ` = − 1

σ2
X>X(35.0.27)

∂2

∂β∂σ2
ln ` = − 1

σ4
X>(y − Xβ) = − 1

σ4
X>ε(35.0.28)

∂2

(∂σ2)2
ln ` =

n

2σ4
− 1

σ6
(y − Xβ)>(y − Xβ) =

n

2σ4
− 1

σ6
ε>ε(35.0.29)

This gives the top matrix in [JHG+88, (6.1.24b)]:

(35.0.30)

[
− 1
σ2 X>X − 1

σ4 (X>y − X>Xβ)

− 1
σ4 (X>y − X>Xβ)> n

2σ4 − 1
σ6 (y − Xβ)>(y − Xβ)

]

Now assume that β and σ2 are the true values, take expected values, and reverse the sign. This
gives the information matrix

(35.0.31)

[
σ−2X>X o

o> n/(2σ4)

]

For the lower righthand side corner we need that E[(y − Xβ)>(y − Xβ)] = E[ε>ε] = nσ2 .
Taking inverses gives (35.0.19), which is a lower bound for the covariance matrix; we see that

s2 with var[s2] = 2σ4/(n− k) does not attain the bound. However one can show with other means
that it is nevertheless efficient. �



CHAPTER 36

Bayesian Estimation in the Linear Model

The model is y = Xβ + ε with ε ∼ N(o, σ2I). Both y and β are random. The
distribution of β, called the “prior information,” is β ∼ N(ν, τ 2A−1). (Bayesians
work with the precision matrix, which is the inverse of the covariance matrix). Fur-
thermore β and ε are assumed independent. Define κ2 = σ2/τ2. To simplify matters,
we assume that κ2 is known.

Whether or not the probability is subjective, this specification implies that y

and β are jointly Normal and

(36.0.32)

[
y

β

]
∼
[
Xν

ν

]
, τ2

[
XA−1X> + κ2I XA−1

A−1X> A−1

]
.

We can use theorem ?? to compute the best linear predictor
ˆ̂
β(y) of β on the

basis of an observation of y. Due to Normality,
ˆ̂
β is at the same time the conditional

mean or “posterior mean”
ˆ̂
β = E [β|y], and the MSE-matrix is at the same time

the variance of the posterior distribution of β given y MSE [
ˆ̂
β; β] = V [

ˆ̂
β|y]. A

proof is given as answer to Question ??. Since one knows mean and variance of the
posterior distribution, and since the posterior distribution is normal, the posterior
distribution of β given y is known. This distribution is what the Bayesians are
after. The posterior distribution combines all the information, prior information
and sample information, about β.

According to (??), this posterior mean can be written as

(36.0.33)
ˆ̂
β = ν + B∗(y − Xν)

where B∗ is the solution of the “normal equation” (??) which reads here

(36.0.34) B∗(XA−1X> + κ2I) = A−1X>

The obvious solution of (36.0.34) is B∗ = A−1X>(XA−1X> + κ2I)−1, and
according to (??), the MSE-matrix of the predictor is

τ2(A−1 − A−1X>(XA−1X> + κ2I)−1XA−1)
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These formulas are correct, but the Bayesians use mathematically equivalent formulas
which have a simpler and more intuitive form. The solution of (36.0.34) can also be
written as

B∗ = (X>X + κ2A)−1X>,(36.0.35)

and (36.0.33) becomes

ˆ̂
β = (X>X + κ2A)−1(X>y + κ2Aν)(36.0.36)

= (X>X + κ2A)−1(X>Xβ̂ + κ2Aν)(36.0.37)

where β̂ = (X>X)−1X>y is the OLS estimate. Bayesians are interested in
ˆ̂
β be-

cause this is the posterior mean. The MSE-matrix, which is the posterior covariance
matrix, can also be written as

(36.0.38) MSE [
ˆ̂
β; β] = σ2(X>X + κ2A)−1

Problem 399. Show that B∗ as defined in (36.0.35) satisfies (36.0.34), that
(36.0.33) with this B∗ becomes (36.0.36), and that (36) becomes (36.0.38).

Answer. (36.0.35) in the normal equation (36.0.34) gives

(36.0.39)

(X>X + κ2A)−1X>(XA−1X> + κ2I) = (X>X + κ2A)−1(X>XA−1X> + κ2X>) =

= (X>X + κ2A)−1(X>X + κ2A)A−1X> = A−1X>.

Now the solution formula:

ˆ̂
β = ν + (X>X + κ2A)−1X>(y − Xν)(36.0.40)

= (X>X + κ2A)−1
(

(X>X + κ2A)ν + X>y − X>Xν

)
(36.0.41)

= (X>X + κ2A)−1(X>y + κ2Aν).(36.0.42)

For the formula of the MSE matrix one has to check that (36) times the inverse of (36.0.38) is the
identity matrix, or that

(36.0.43)

(
A−1 − A−1X>(XA−1X + κ2I)−1XA−1

)(
X>X + κ2A

)
= κ2I

Multiplying out gives

(36.0.44)

A−1X>X+κ2I−A−1X>(XA−1X+κ2I)−1XA−1X>X−κ2A−1X>(XA−1X+κ2I)−1X =

= A−1X>X + κ2I − A−1X>(XA−1X + κ2I)−1(XA−1X + κ2I)X = κ2I

�
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The formula (36.0.37) can be given two interpretations, neither of which is nec-
essarily Bayesian. First interpretation: It is a matrix weighted average of the OLS
estimate and ν, with the weights being the respective precision matrices. If ν = o,

then the matrix weighted average reduces to
ˆ̂
β = (X>X + κ2A)−1X>y, which has

been called a “shrinkage estimator” (Ridge regression), since the “denominator” is

bigger: instead of “dividing by” X>X (strictly speaking, multiplying by (X>X)−1),

one “divides” by X>X + κ2A. If ν 6= o then the OLS estimate β̂ is “shrunk” not
in direction of the origin but in direction of ν.

Second interpretation: It is as if, in addition to the data y = Xβ + ε, also an
independent observation ν = β + δ with δ ∼ N(o, τ 2A−1) was available, i.e., as if
the model was

(36.0.45)

[
y

ν

]
=

[
X

I

]
β +

[
ε

δ

]
with

[
ε

δ

]
∼
[
o

o

]
, τ2

[
σ2I O

O A−1

]
.

The Least Squares objective function minimized by the GLS estimator β =
ˆ̂
β in

(36.0.45) is:

(36.0.46) (y − Xβ)>(y − Xβ) + κ2(β − ν)>A(β − ν).

In other words,
ˆ̂
β is chosen such that at the same time X

ˆ̂
β is close to y and

ˆ̂
β

close to ν.

Problem 400. Show that the objective function (36.0.46) is, up to a constant
factor, the natural logarithm of the product of the prior density and the likelihood
function. (Assume σ2 and τ2 known). Note: if z ∼ N(θ, σ2ΣΣΣ) with nonsingular
covariance matrix σ2ΣΣΣ, then its density function is

(36.0.47) fz(z) = (2πσ2)−n/2 |detΣΣΣ|−1/2 exp
(
− 1

2σ2
(z − θ)>ΣΣΣ−1(z − θ)

)
.

Answer. Prior density (2πτ2)−k/2 |det A|−1/2 exp

(
− (β−ν)>A(β−ν)

2τ2

)
; likelihood function (2πσ2)−n/2 exp

(
− (y−Xβ)>(y−Xβ)

2σ2

)
;

the posterior density is then proportional to the product of the two:

(36.0.48) posterior ∝ exp

(
− (y − Xβ)>(y − Xβ) + κ2(β − ν)>A(β − ν)

2σ2

)
.

�

Although frequentist and Bayesian approaches lead here to identical formulas,
the interpretation is quite different. The BLUE/BLUP looks for best performance
in repeated samples if y, while the Bayesian posterior density function is the best
update of the prior information about β by information coming from this one set of
observations.

Here is a textbook example of how Bayesians construct the parameters of their
prior distribution:
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Problem 401. As in Problem 274, we will work with the Cobb-Douglas pro-
duction function, which relates output Q to the inputs of labor L and capital K as
follows:

(36.0.49) Qt = µKβ
t L

γ
t exp(εt).

Setting yt = logQt, xt = logKt, zt = logLt, and α = logµ. one obtains the
linear regression

(36.0.50) yt = α+ βxt + γzt + εt

Assume that the prior information about β, γ, and the returns to scale β + γ is
such that

(36.0.51) E[β] = E[γ] = 0.5 E[β + γ] = 1.0

(36.0.52) Pr[0.9 < β + γ < 1.1] = 0.9

(36.0.53) Pr[0.2 < β < 0.8] = Pr[0.2 < γ < 0.8] = 0.9

About α assume that the prior information is such that

(36.0.54) E[α] = 5.0, Pr[−10 < α < 20] = 0.9

and that our prior knowledge about α is not affected by (is independent of) our
prior knowledge concerning β and γ. Assume that σ2 is known and that it has the
value σ2 = 0.09. Furthermore, assume that our prior views about α, β, and γ can
be adequately represented by a normal distribution. Compute from this the prior

distribution of the vector β =
[
α β γ

]>
.

Answer. This is [JHG+88, p. 288–290]. �

Here is my personal opinion what to think of this. I always get uneasy when I
see graphs like [JHG+88, Figure 7.2 on p. 283]. The prior information was specified
on pp. 277/8: the marginal propensity to consume is with high probability between
0.75 and 0.95, and there is a 50-50 chance that it lies above or below 0.85. The least
squares estimate of the MPC is 0.9, with a reasonable confidence interval. There is
no multicollinearity involved, since there is only one explanatory variable. I see no
reason whatsoever to take issue with the least squares regression result, it matches
my prior information perfectly. However the textbook tells me that as a Bayesian I
have to modify what the data tell me and take the MPC to be 0.88. This is only
because of the assumption that the prior information is normal.

I think the Bayesian procedure is inappropriate here because the situation is so
simple. Bayesian procedures have the advantage that they are coherent, and therefore
can serve as a guide in complex estimation situations, when the researcher is tempted
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to employ ad-hoc procedures which easily become incoherent. The advantage of a
Bayesian procedure is therefore that it prevents the researcher from stepping on his
own toes too blatantly. In the present textbook situation, this advantage does not
hold. On the contrary, the only situation where the researcher may be tempted
to do something which he does not quite understand is in the above eliciation of
prior information. It often happens that prior information gained in this way is self-
contradictory, and the researcher is probably not aware what his naive assumptions
about the variances of three linear combinations of two parameters imply for the
correlation between them!

I can think of two justifications of Bayesian approaches. In certain situations
the data are very insensitive, without this being a priori apparent. Widely different
estimates give an almost as good fit to the data as the best one. In this case the
researcher’s prior information may make a big difference and it should be elicited.

Another justification of the Bayesian approach is the following: In many real-
life situations the data manipulation and estimation which is called for is so complex
that the researcher no longer knows what he is doing. In such a situation, a Bayesian
procedure can serve as a guideline. The prior density may not be right, but at least
everything is coherent.



CHAPTER 37

OLS With Random Constraint

A Bayesian considers the posterior density the full representation of the informa-
tion provided by sample and prior information. Frequentists have discoveered that
one can interpret the parameters of this density as estimators of the key unknown
parameters, and that these estimators have good sampling properties. Therefore
they have tried to re-derive the Bayesian formulas from frequentist principles.

If β satisfies the constraint Rβ = u only approximately or with uncertainty, it
has therefore become customary to specify

(37.0.55) Rβ = u + η, η ∼ (o, τ 2Φ), η and ε uncorrelated.

Here it is assumed τ2 > 0 and Φ positive definite.
Both interpretations are possible here: either u is a constant, which means nec-

essarily that β is random, or β is as usual a constant and u is random, coming from
whoever happened to do the research (this is why it is called “mixed estimation”).

It is the correct procedure in this situation to do GLS on the model

(37.0.56)

[
y

u

]
=

[
X

R

]
β +

[
ε

−η

]
with

[
ε

−η

]
∼
([

o

o

]
, σ2

[
I O

O 1
κ2 I

])
.

Therefore

(37.0.57)
ˆ̂
β = (X>X + κ2R>R)−1(X>y + κ2R>u).

where κ2 = σ2/τ2.

This
ˆ̂
β is the BLUE if in repeated samples β and u are drawn from such distri-

butions that Rβ−u has mean o and variance τ 2I , but E [β] can be anything. If one

considers both β and u fixed, then
ˆ̂
β is a biased estimator whose properties depend

on how close the true value of Rβ is to u.

Under the assumption of constant β and u, the MSE matrix of
ˆ̂
β is smaller

than that of the OLS β̂ if and only if the true parameter values β, u, and σ2 satisfy

(37.0.58) (Rβ − u)>
(

2

κ2
I + R(X>X)−1R>

)−1

(Rβ − u) ≤ σ2.

455

456 37. OLS WITH RANDOM CONSTRAINT

This condition is a simple extension of (29.6.6).

An estimator of the form
ˆ̂
β = (X>X + κ2I)−1X>y, where κ2 is a constant, is

called “ordinary ridge regression.” Ridge regression can be considered the imposition
of a random constraint, even though it does not hold—again in an effort to trade
bias for variance. This is similar to the imposition of a constraint which does not
hold. An explantation of the term “ridge” given by [VU81, p. 170] is that the ridge
solutions are near a ridge in the likelihood surface (at a point where the ridge is close
to the origin). This ridge is drawn in [VU81, Figures 1.4a and 1.4b].

Problem 402. Derive from (37.0.58) the well-known formula that the MSE of
ordinary ridge regression is smaller than that of the OLS estimator if and only if the
true parameter vector satisfies

(37.0.59) β>( 2

κ2
I + (X>X)−1

)−1
β ≤ σ2.

Answer. In (37.0.58) set u = o and R = I. �

Whatever the true values of β and σ2, there is always a κ2 > 0 for which (37.0.59)
or (37.0.58) holds. The corresponding statement for the trace of the MSE-matrix
has been one of the main justifications for ridge regression in [HK70b] and [HK70a],
and much of the literature about ridge regression has been inspired by the hope that
one can estimate κ2 in such a way that the MSE is better everywhere. This is indeed
done by the Stein-rule.

Ridge regression is reputed to be a good estimator when there is multicollinearity.

Problem 403. (Not eligible for in-class exams) Assume E[y] = µ, var(y) = σ2,
and you make n independent observations yi. Then the best linear unbiased estimator
of µ on the basis of these observations is the sample mean ȳ. For which range of
values of α is MSE[αȳ;µ] < MSE[ȳ;µ]? Unfortunately, this value depends on µ and
can therefore not be used to improve the estimate.

Answer.

MSE[αȳ;µ] = E
[
(αȳ − µ)2

]
= E
[
(αȳ − αµ+ αµ− µ)2

]
< MSE[ȳ;µ] = var[ȳ](37.0.60)

α2σ2/n+ (1 − α)2µ2 < σ2/n(37.0.61)

Now simplify it:

(1 − α)2µ2 < (1 − α2)σ2/n = (1 − α)(1 + α)σ2/n(37.0.62)

This cannot be true for α ≥ 1, because for α = 1 one has equality, and for α > 1, the righthand side
is negative. Therefore we are allowed to assume α < 1, and can divide by 1− α without disturbing
the inequality:

(1 − α)µ2 < (1 + α)σ2/n(37.0.63)

µ2 − σ2/n < α(µ2 + σ2/n)(37.0.64)
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The answer is therefore

nµ2 − σ2

nµ2 + σ2
< α < 1.(37.0.65)

�

Problem 404. (Not eligible for in-class exams) Assume y = Xβ + ε with ε ∼
(o, σ2I). If prior knowledge is available that Pβ lies in an ellipsoid centered around
p, i.e., (Pβ − p)>Φ−1(P β − p) ≤ h for some known positive definite symmetric
matrix Φ and scalar h, then one might argue that the SSE should be mimimized only
for those β inside this ellipsoid. Show that this inequality constrained mimimization
gives the same formula as OLS with a random constraint of the form κ2(Rβ −u) ∼
(o, σ2I) (where R and u are appropriately chosen constants, while κ2 depends on
y. You don’t have to compute the precise values, simply indicate how R, u, and κ2

should be determined.)

Answer. Decompose Φ−1 = C>C where C is square, and define R = CP and u = Cp. The
mixed estimator β = β∗ minimizes

(y − Xβ)>(y − Xβ) + κ4(Rβ − u)>(Rβ − u)(37.0.66)

= (y − Xβ)>(y − Xβ) + κ4(Pβ − p)>Φ−1(P β − p)(37.0.67)

Choose κ2 such that β∗ = (X>X + κ4P>Φ−1P )−1(X>y + κ4P>Φ−1p) satisfies the inequality
constraint with equality, i.e., (Pβ∗ − p)>Φ−1(Pβ∗ − p) = h. �

Answer. Now take any β that satisfies (Pβ − p)>Φ−1(Pβ − p) ≤ h. Then

(y − Xβ∗)>(y − Xβ∗) = (y − Xβ∗)>(y − Xβ∗) + κ4(Pβ∗ − p)>Φ−1(Pβ∗ − p) − κ4h

(37.0.68)

(because β∗ satisfies the inequality constraint with equality)

≤ (y − Xβ)>(y − Xβ) + κ4(Pβ − p)>Φ−1(Pβ − p) − κ4h(37.0.69)

(because β∗ minimizes (37.0.67))

≤ (y − Xβ)>(y − Xβ)(37.0.70)

(because β satisfies the inequality constraint). Therefore β = β∗ minimizes the inequality con-
strained problem. �



CHAPTER 38

Stein Rule Estimators

Problem 405. We will work with the regression model y = Xβ + ε with ε ∼
N(o, σ2I), which in addition is “orthonormal,” i.e., the X-matrix satisfies X>X =
I.

• a. 0 points Write down the simple formula for the OLS estimator β̂ in this
model. Can you think of situations in which such an “orthonormal” model is appro-
priate?

Answer. β̂ = X>y. Sclove [Scl68] gives as examples: if one regresses on orthonormal poly-
nomials, or on principal components. I guess also if one simply needs the means of a random
vector. It seems the important fact here is that one can order the regressors; if this is the case then
one can always make the Gram-Schmidt orthonormalization, which has the advantage that the jth
orthonormalized regressor is a linear combination of the first j ordered regressors. �

• b. 0 points Assume one has Bayesian prior knowledge that β ∼ N(o, τ 2I), and
β independent of ε. In the general case, if prior information is β ∼ N(ν, τ 2A−1),

the Bayesian posterior mean is β̂M = (X>X + κ2A)−1(X>y + κ2Aν) where κ2 =

σ2/τ2. Show that in the present case β̂M is proportional to the OLS estimate β̂ with

proportionality factor (1 − σ2

τ2+σ2 ), i.e.,

(38.0.71) β̂M = β̂(1 − σ2

τ2 + σ2
).

Answer. The formula given is (36.0.36), and in the present case, A−1 = I. One can also view
it as a regression with a random constraint Rβ ∼ (o, τ 2I) where R = I, which is mathematically
the same as considering the know mean vector, i.e., the null vector, as additional observations. In
either case one gets
(38.0.72)

β̂M = (X>X +κ2A)−1X>y = (X>X +κ2R>R)−1X>y = (I +
σ2

τ2
I)−1X>y = β̂(1− σ2

τ2 + σ2
),

i.e., it shrinks the OLS β̂ = X>y. �

• c. 0 points Formula (38.0.71) can only be used for estimation if the ratio
σ2/(τ2 + σ2) is known. This is usually not the case, but it is possible to estimate
both σ2 and τ2 + σ2 from the data. The use of such estimates instead the actual
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values of σ2 and τ2 in the Bayesian formulas is sometimes called “empirical Bayes.”

Show that E[β̂>β̂] = k(τ2 + σ2), and that E[y>y − β̂>β̂] = (n − k)σ2, where n is
the number of observations and k is the number of regressors.

Answer. Since y = Xβ + ε ∼ N(o, σ2XX> + τ2I), it follows β̂ = X>y ∼ N(o, (σ2 + τ2)I)

(where we now have a k-dimensional identity matrix), therefore E[β̂>β̂] = k(σ2+τ2). Furthermore,
since My = Mε regardless of whether β is random or not, σ2 can be estimated in the usual

manner from the SSE: (n − k)σ2 = E[ε̂>ε̂] = E[ε̂>ε̂] = E[y>My] = E[y>y − β̂>β̂] because

M = I − XX>. �

• d. 0 points If one plugs the unbiased estimates of σ2 and τ2 +σ2 from part (c)
into (38.0.71), one obtains a version of the so-called “James and Stein” estimator

(38.0.73) β̂JS = β̂(1 − c
y>y − β̂>β̂

β̂>β̂
).

What is the value of the constant c if one follows the above instructions? (This
estimator has become famous because for k ≥ 3 and c any number between 0 and
2(n − k)/(n − k + 2) the estimator (38.0.73) has a uniformly lower MSE than the

OLS β̂, where the MSE is measured as the trace of the MSE-matrix.)

Answer. c = k
n−k . I would need a proof that this is in the bounds. �

• e. 0 points The existence of the James and Stein estimator proves that the
OLS estimator is “inadmissible.” What does this mean? Can you explain why the
OLS estimator turns out to be deficient exactly where it ostensibly tries to be strong?
What are the practical implications of this?

The properties of this estimator were first discussed in James and Stein [JS61],
extending the work of Stein [Ste56].

Stein himself did not introduce the estimator as an “empirical Bayes” estimator,
and it is not certain that this is indeed the right way to look at it. Especially this
approach does not explain why the OLS cannot be uniformly improved upon if k ≤ 2.
But it is a possible and interesting way to look at it. If one pretends one has prior
information, but does not really have it but “steals” it from the data, this “fraud”
can still be successful.

Another interpretation is that these estimators are shrunk versions of unbiased
estimators, and unbiased estimators always get better if one shrinks them a little.
The only problem is that one cannot shrink them too much, and in the case of the
normal distribution, the amount by which one has to shrink them depends on the
unknown parameters. If one estimates the shrinkage factor, one usually does not
know if the noise introduced by this estimated factor is greater or smaller than the
savings. But in the case of the Stein rule, the noise is smaller than the savings.
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Problem 406. 0 points Return to the “orthonormal” model y = Xβ + ε with
ε ∼ N(o, σ2I) and X>X = I. With the usual assumption of nonrandom β (and
no prior information about β), show that the F-statistic for the hypothesis β = o is

F = β̂>β̂/k

(y>y−β̂>β̂)/(n−k) .

Answer. SSEr = y>y, SSEu = y>y − β̂>β̂ as shown above, number of constraints is k. Use
equation . . . for the test statistic. �

• a. 0 points Now look at the following “pre-test estimator”: Your estimate of
β is the null vector o if the value of the F-statistic for the test β = o is equal to or

smaller than 1, and your estimate of β is the OLS estimate β̂ if the test statistic has
a value bigger than 1. Mathematically, this estimator can be written in the form

(38.0.74) β̂PT = I(F )β̂,

where F is the F statistic derived in part (1) of this question, and I(F ) is the “indicator
function” for F > 1, i.e., I(F ) = 0 if F ≤ 1 and I(F ) = 1 if F > 1. Now modify
this pre-test estimator by using the following function I(F ) instead: I(F ) = 0 if
F ≤ 1 and I(F ) = 1 − 1/F if F > 1. This is no longer an indicator function,
but can be considered a continuous approximation to one. Since the discontinuity is
removed, one can expect that it has, under certain circumstances, better properties
than the indicator function itself. Write down the formula for this modified pre-test
estimator. How does it differ from the Stein rule estimator (38.0.73) (with the value
for c coming from the empirical Bayes approach)? Which estimator would you expect
to be better, and why?

Answer. This modified pre-test estimator has the form

(38.0.75) β̂JS+ =

{
o if 1 − cy>y−β̂>β̂

β̂>β̂
< 0

β̂(1 − cy>y−β̂>β̂

β̂>β̂
) otherwise

It is equal to the Stein-rule estimator (38.0.73) when the estimated shrinkage factor (1−c y>y−β̂>β̂

β̂>β̂
)

is positive, but the shrinkage factor is set 0 instead of turning negative. This is why it is commonly
called the “positive part” Stein-rule estimator. Stein conjectured early on, and Baranchik [Bar64]
showed that it is uniformly better than the Stein rule estimator: �

• b. 0 points Which lessons can one draw about pre-test estimators in general
from this exercise?

Stein rule estimators have not been used very much, they are not equivariant
and the shrinkage seems arbitrary. Discussing them here brings out two things: the
formulas for random constraints etc. are a pattern according to which one can build
good operational estimators. And some widely used but seemingly ad-hoc procedures
like pre-testing may have deeper foundations and better properties than the halfways
sophisticated researcher may think.

462 38. STEIN RULE ESTIMATORS

Problem 407. 6 points Why was it somewhat a sensation when Charles Stein
came up with an estimator which is uniformly better than the OLS? Discuss the Stein
rule estimator as empirical Bayes, shrinkage estimator, and discuss the “positive
part” Stein rule estimator as a modified pretest estimator.



CHAPTER 39

Random Regressors

Until now we always assumed that X was nonrandom, i.e., the hypothetical
repetitions of the experiment used the same X matrix. In the nonexperimental
sciences, such as economics, this assumption is clearly inappropriate. It is only
justified because most results valid for nonrandom regressors can be generalized to
the case of random regressors. To indicate that the regressors are random, we will
write them as X.

39.1. Strongest Assumption: Error Term Well Behaved Conditionally
on Explanatory Variables

The assumption which we will discuss first is that X is random, but the classical
assumptions hold conditionally on X, i.e., the conditional expectation E [ε|X] = o,
and the conditional variance-covariance matrix V [ε|X] = σ2I . In this situation, the
least squares estimator has all the classical properties conditionally on X, for instance

E [β̂|X] = β, V [β̂|X] = σ2(X>X)−1, E[s2|X] = σ2, etc.
Moreover, certain properties of the Least Squares estimator remain valid uncon-

ditionally. An application of the law of iterated expectations shows that the least

squares estimator β̂ is still unbiased. Start with (24.0.7):

β̂ − β = (X>X)−1X>ε(39.1.1)

E [β̂ − β|X] = E [(X>X)−1X>ε|X] = (X>X)−1X> E [ε|X] = o.(39.1.2)

E [β̂ − β] = E
[
E [β̂ − β|X]

]
= o.(39.1.3)

Problem 408. 1 point In the model with random explanatory variables X you
are considering an estimator β̃ of β. Which statement is stronger: E [β̃] = β, or

E [β̃|X] = β. Justify your answer.

Answer. The second statement is stronger. The first statement follows from the second by
the law of iterated expectations. �

Problem 409. 2 points Assume the regressors X are random, and the classical
assumptions hold conditionally on X, i.e., E [ε|X] = o and V [ε|X] = σ2I. Show that
s2 is an unbiased estimate of σ2.
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Answer. From the theory with nonrandom explanatory variables follows E[s2|X] = σ2. There-

fore E[s2] = E
[
E[s2|X]

]
= E[σ2] = σ2. In words: if the expectation conditional on X does not

depend on X, then it is also the unconditional expectation. �

The law of iterated expectations can also be used to compute the unconditional

MSE matrix of β̂:

MSE [β̂; β] = E [(β̂ − β)(β̂ − β)>](39.1.4)

= E
[
E [(β̂ − β)(β̂ − β)>|X]

]
(39.1.5)

= E [σ2(X>X)−1](39.1.6)

= σ2 E [(X>X)−1].(39.1.7)

Problem 410. 2 points Show that s2(X>X)−1 is unbiased estimator of MSE [β̂; β].

Answer.

E [s2(X>X)−1] = E
[
E [s2(X>X)−1|X]

]
(39.1.8)

= E [σ2(X>X)−1](39.1.9)

= σ2 E [(X>X)−1](39.1.10)

= MSE [β̂;β] by (39.1.7).(39.1.11)

�

The Gauss-Markov theorem generalizes in the following way: Say β̃ is an esti-
mator, linear in y, but not necessarily in X, satisfying E [β̃|X] = β (which is stronger

than unbiasedness); then MSE [β̃; β] ≥ MSE [β̂; β]. Proof is immediate: we know

by the usual Gauss-Markov theorem that MSE [β̃; β|X] ≥ MSE [β̂; β|X], and taking

expected values will preserve this inequality: E
[
MSE [β̃; β|X]

]
≥ E

[
MSE [β̂; β|X]

]
,

but this expected value is exactly the unconditional MSE .
The assumption E [ε|X] = o can also be written E [y|X] = Xβ, and V[ε|X] = σ2I

can also be written as V[y|X] = σ2I . Both of these are assumptions about the
conditional distribution y|X = X for all X. This suggests the following broadening
of the regression paradigm: y and X are jointly distributed random variables, and one
is interested how y|X = X depends on X. If the expected value of this distribution
depends linearly, and the variance of this distribution is constant, then this is the
linear regression model discussed above. But the expected value might also depend
on X in a nonlinear fashion (nonlinear least squares), and the variance may not be
constant—in which case the intuition that y is some function of X plus some error
term may no longer be appropriate; y may for instance be the outcome of a binary
choice, the probability of which depends on X (see chapter 69.2; the generalized
linear model).
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39.2. Contemporaneously Uncorrelated Disturbances

In many situations with random regressors, the condition E [ε|X] = o is not
satisfied. Instead, the columns of X are contemporaneously uncorrelated with ε, but
they may be correlated with past values of ε. The main example here is regression
with a lagged dependent variable. In this case, OLS is no longer unbiased, but
asymptotically it still has all the good properties, it is asymptotically normal with the
covariance matrix which one would expect. Asymptotically, the computer printout
is still valid. This is a very important result, which is often used in econometrics,
but most econometrics textbooks do not even start to prove it. There is a proof in
[Kme86, pp. 749–757], and one in [Mal80, pp. 535–539].

Problem 411. Since least squares with random regressors is appropriate when-
ever the disturbances are contemporaneously uncorrelated with the explanatory vari-
ables, a friend of yours proposes to test for random explanatory variables by checking
whether the sample correlation coefficients between the residuals and the explanatory
variables is significantly different from zero or not. Is this an appropriate statistic?

Answer. No. The sample correlation coefficients are always zero! �

39.3. Disturbances Correlated with Regressors in Same Observation

But if ε is contemporaneously correlated with X, then OLS is inconsistent. This
can be the case in some dynamic processes (lagged dependent variable as regres-
sor, and autocorrelated errors, see question 506), when there are, in addition to the
relation which one wants to test with the regression, other relations making the right-
hand side variables dependent on the lefthand side variable, or when the righthand
side variables are measured with errors. This is usually the case in economics, and
econometrics has developed the technique of simultaneous equations estimation to
deal with it.

Problem 412. 3 points What does one have to watch out for if some of the
regressors are random?



CHAPTER 40

The Mahalanobis Distance

Everything in this chapter is unpublished work, presently still in draft form. The
aim is to give a motivation for the least squares objective function in terms of an
initial measure of precision. The case of prediction is mathematically simpler than
that of estimation, therefore this chapter will only discuss prediction. We assume
that the joint distribution of y and z has the form

[
y

z

]
∼
[
X

W

]
β, σ2

[
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]
,

σ2 > 0, otherwise unknown

β unknown as well.
(40.0.1)

y is observed but z is not and has to be predicted. But assume we are not interested
in the MSE since we do the experiment only once. We want to predict z in such a
way that, whatever the true value of β, the predicted value z∗ “blends in” best with
the given data y.

There is an important conceptual difference between this criterion and the one
based on the MSE . The present criterion cannot be applied until after the data are
known, therefore it is called a “final” criterion as opposed to the “initial” criterion
of the MSE . See Barnett [Bar82, pp. 157–159] for a good discussion of these issues.

How do we measure the degree to which a given data set “blend in,” i.e., are not
outliers for a given distribution? Hypothesis testing uses this criterion. The most
often-used testing principle is: reject the null hypothesis if the observed value of a
certain statistic is too much an outlier for the distribution which this statistic would
have under the null hypothesis. If the statistic is a scalar, and if under the null
hypothesis this statistic has expected value µ and standard deviation σ, then one
often uses an estimate of |x− µ| /σ, the number of standard deviations the observed
value is away from the mean, to measure the “distance” of the observed value x from
the distribution (µ, σ2). The Mahalanobis distance generalizes this concept to the
case that the test statistic is a vector random variable.

40.1. Definition of the Mahalanobis Distance

Since it is mathematically more convenient to work with the squared distance
than with the distance itself, we will make the following thought experiment to
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motivate the Mahalanobis distance. How could one generalize the squared scalar
distance (y − µ)2/σ2 for the distance of a vector value y from the distribution of
the vector random variable y ∼ (µ, σ2ΩΩΩ)? If all yi have same variance σ2, i.e., if
ΩΩΩ = I , one might measure the squared distance of y from the distribution (µ, σ2ΩΩΩ)
by 1

σ2 maxi(yi−µi)2, but since the maximum from two trials is bigger than the value
from one trial only, one should divide this perhaps by the expected value of such
a maximum. If the variances are different, say σ2

i , one might want to look a the
number of standard deviations which the “worst” component of y is away from what
would be its mean if y were an observation of y, i.e., the squared distance of the

obsrved vector from the distribution would be maxi
(yi−µi)

2

σ2
i

, again normalized by its

expected value.
The principle actually used by the Mahalanobis distance goes only a small step

further than the examples just cited. It is coordinate-free, i.e., any linear combi-
nations of the elements of y are considered on equal footing with these elements
themselves. In other words, it does not distinguish between variates and variables.
The distance of a given vector value from a certain multivariate distribution is defined
to be the distance of the “worst” linear combination of the elements of this vector
from the univariate distribution of this linear combination, normalized in such a way
that the expected value of this distance is 1.

Definition 40.1.1. Given a random n-vector y which has expected value and a
nonsingular covariance matrix. The squared “Mahalanobis distance” or “statistical
distance” of the observed value y from the distribution of y is defined to be

(40.1.1) MHD[y; y] =
1

n
max

g

(
g>y − E[g>y]

)2

var[g>y]
.

If the denominator var[g>y] is zero, then g = o, therefore the numerator is zero as
well. In this case the fraction is defined to be zero.

Theorem 40.1.2. Let y be a vector random variable with E [y] = µ and V[y] =
σ2ΩΩΩ, σ2 > 0 and ΩΩΩ positive definite. The squared Mahalanobis distance of the value
y from the distribution of y is equal to

(40.1.2) MHD[y; y] =
1

nσ2
(y − µ)>ΩΩΩ−1(y − µ)

Proof. (40.1.2) is a simple consequence of (32.4.4). It is also somewhat intuitive
since the righthand side of (40.1.2) can be considered a division of the square of y−µ

by the covariance matrix of y. �

The Mahalanobis distance is an asymmetric measure; a large value indicates a
bad fit of the hypothetical population to the observation, while a value of, say, 0.1
does not necessarily indicate a better fit than a value of 1.
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Problem 413. Let y be a random n-vector with expected value µ and nonsin-
gular covariance matrix σ2ΩΩΩ. Show that the expected value of the Mahalobis distance
of the observations of y from the distribution of y is 1, i.e.,

(40.1.3) E
[
MHD[y; y]

]
= 1

Answer.

(40.1.4)

E[
1

nσ2
(y−µ)>ΩΩΩ−1(y−µ)] = E[tr

1

nσ2
ΩΩΩ−1(y−µ)(y−µ)>] tr(

1

nσ2
ΩΩΩ−1σ2ΩΩΩ) =

1

n
tr(I) = 1.

�

(40.1.2) is, up to a constant factor, the quadratic form in the exponent of the
normal density function of y. For a normally distributed y, therefore, all observations
located on the same density contour have equal distance from the distribution.

The Mahalanobis distance is also defined if the covariance matrix of y is singular.
In this case, certain nonzero linear combinations of the elements of y are known with
certainty. Certain vectors can therefore not possibly be realizations of y, i.e., the set
of realizations of y does not fill the whole R

n.

Problem 414. 2 points The random vector y =
[

y1
y2
y3

]
has mean

[
1
2
−3

]
and

covariance matrix 1
3

[
2 −1 −1
−1 2 −1
−1 −1 2

]
. Is this covariance matrix singular? If so, give a

linear combination of the elements of y which is known with certainty. And give a
value which can never be a realization of y. Prove everything you state.

Answer. Yes, it is singular;

(40.1.5)

[
2 −1 −1
−1 2 −1
−1 −1 2

][
1
1
1

]
=

[
0
0
0

]

I.e., y1+y2+y3 = 0 because its variance is 0 and its mean is zero as well since [ 1 1 1 ]

[
1
2
−3

]
= 0. �

Definition 40.1.3. Given a vector random variable y which has a mean and
a covariance matrix. A value y has infinite statistical distance from this random
variable, i.e., it cannot possibly be a realization of this random variable, if a vector
of coefficients g exists such that var[g>y] = 0 but g>y 6= g> E [y]. If such a g does
not exist, then the squared Mahalanobis distance of y from y is defined as in (40.1.1),
with n replaced by rank[ΩΩΩ]. If the denominator in (40.1.1) is zero, then it no longer
necessarily follows that g = o but it nevertheless follows that the numerator is zero,
and the fraction should in this case again be considered zero.

If ΩΩΩ is singular, then the inverse ΩΩΩ−1 in formula (40.1.2) must be replaced by a
“g-inverse.” A g-inverse of a matrix A is any matrix A− which satisfies AA−A = A.
G-inverses always exist, but they are usually not unique.
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Problem 415. a is a scalar. What is its g-inverse a−?

Theorem 40.1.4. Let y be a random variable with E [y] = µ and V [y] = σ2ΩΩΩ,
σ2 > 0. If it is not possible to express the vector y in the form y = µ+ΩΩΩa for some
a, then the squared Mahalanobis distance of y from the distribution of y is infinite,
i.e., MHD[y; y] = ∞; otherwise

(40.1.6) MHD[y; y] =
1

σ2 rank[ΩΩΩ]
(y − µ)>ΩΩΩ−(y − µ)

Now we will dicuss how a given observation vector can be extended by additional
observations in such a way that the Mahalanobis distance of the whole vector from
its distribution is minimized.

40.2. The Conditional Mahalanobis Distance

Now let us assume that after the observation of y additional observations become
available. I.e., the scenario now is

(40.2.1)

[
y

z

]
∼
[
µ

ν

]
, σ2

[
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]
, σ2 > 0.

Assume and

(40.2.2) rank[ΩΩΩyy] = p and rank

[
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]
= r.

In this case we define the conditional Mahalanobis distance of an observation z given
the prior observation y to be
(40.2.3)

MHD[z; y, z|y] =
1

(r − p)σ2

([
y − µ

z − ν

]> [
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]− [
y − µ

z − ν

]
−(y−µ)>ΩΩΩ−

yy(y−µ)
)

This is again a nonnegative measure whose expected value is 1, and if the underlying
distribution is Normal, this is the same as the Mahalanobis distance of z in its
distribution conditionally on y = y.

40.3. First Scenario: Minimizing relative increase in Mahalanobis
distance if distribution is known

We start with a situation where the expected values of the random vectors y and
z are known, and their joint covariance matrix is known up to an unknown scalar
factor σ2 > 0. We will write this as

(40.3.1)

[
y

z

]
∼
[
µ

ν

]
, σ2

[
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]
, σ2 > 0.
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ΩΩΩyy has rank p and
[

ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]
has rank r. Since σ2 is not known, one cannot

compute the Mahalanobis distance of the observed and/or conjectured values y and z

from their distribution. But if one works with the relative increase in the Mahalanobis
distance if z is added to y, then σ2 cancels out. In order to measure how well the
conjectured value z fits together with the observed y we will therefore divide the
Mahalanobis distance of the vector composed of y and z from its distribution by the
Mahalanobis distance of y alone from its distribution:

(40.3.2)

1
rσ2

[
y − µ

z − ν

]> [
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]− [
y − µ

z − ν

]

1
pσ2 (y − µ)>ΩΩΩ−

yy(y − µ)
.

This relative measure is independent of σ2, and if y is observed but z is not, one can
predict z by that value z∗ which minimizes this relative contribution.

An equivalent criterion which leads to mathematically simpler formulas is to
divide the conditional Mahalanobis distance of z given y by the Mahalanobis distance
of y from y:

(40.3.3)

1
(r−p)σ2

([
y − µ

z − ν

]> [
ΩΩΩyy ΩΩΩyz

ΩΩΩzy ΩΩΩzz

]− [
y − µ

z − ν

]
− (y − µ)>ΩΩΩ−

yy(y − µ)
)

1
pσ2 (y − µ)>ΩΩΩ−

yy(y − µ)
.

We already solved this minimization problem in chapter ??. By (??), the mini-
mum value of this relative contribution is zero, and the value of z which minimizes
this relative contribution is the same as the value of the best linear predictor of z,
i.e., the value assumed by the linear predictor which minimizes the MSE among all
linear predictors.

40.4. Second Scenario: One Additional IID Observation

In the above situation, we could minimize the relative increase in the Maha-
lanobis distance (instead of selecting its minimax value) because all parameters of
the underlying distribution were known. The simplest situation in which they are
not known, and therefore we must resort to minimizing the relative increase in the
Mahalanobis distance for the most unfavorable value of this unknown parameter,
is the following: A vector y of n i.i.d. observations is given with unknown mean µ
and variance σ2 > 0. The squared Mahalanobis distance of these data from their
population is 1

nσ2 (y − ιµ)>(y − ιµ). it depends on the unknown µ and σ2. How
can we predict a n+ 1st observation in such a way as to minimize the worst possible
relative increase in this Mahalanobis distance?
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Minimizing the maximum possible relative increase in the Mahalanobis distance
due to yn+1 is the same as minimizing

(40.4.1) q =
(µ− yn+1)

2

(ιµ− y)>(ιµ− y)/n

We will show that the prediction yn+1 = ȳ is the solution to this minimax problem,
and that the minimax value of q is q = 1.

We will show that (1) for yn+1 = ȳ, q ≤ 1 for all values of µ, but one can find
µ for which q is arbitrarily close to 1, and (2) if yn+1 6= ȳ, then q > 1 for certain
values of µ.

In the proof of step (1), the case y1 = y2 = · · · = yn must be treated separately.
If this condition holds (which is always the case if n = 1, but otherwise it is a special
case occurring with zero probability), and someone predicts yn+1 by a value different
from the value taken by all previous realizations of y, i.e., if y1 = y2 = · · · = yn 6=
yn+1, then q is unbounded and becomes infinite if µ takes the same value as the
observed yi. If, on the other hand, y1 = y2 = · · · = yn+1, then q = 1 if µ does not
take the same value as the yi, and q is a 1+0/0 undefined value otherwise, but by
continuity we can say q = 1 for all µ. Therefore yn+1 = ȳ is the best predictor in
this special case.

Now turn to the regular case in which not all observed yi are equal. Re-write q

as

(40.4.2) q =
(µ− yn+1)

2

(ιȳ − y)>(ιȳ − y)/n+ (µ− ȳ)2

If yn+1 = ȳ, then

(40.4.3) q =
(µ− ȳ)2

(ιȳ − y)>(ιȳ − y)/n+ (µ− ȳ)2
≤ 1,

and it gets arbitrarily close to 1 for large absolute values of µ. Therefore the supre-
mum associated with yn+1 = ȳ, which we claim to be the predictor which gives the
lowest supremum, is 1.

For step (2) of the proof we have to show: if yn+1 is not equal to ȳ, then q can
assume values larger than 1. To show this, we will find for a given y and yn+1 that
parameter value µ for which this relative increase is highest, and the value of the
highest relative increase.

Look at the µ defined by either one of the following equations

µ− ȳ = − (ιȳ − y)>(ιȳ − y)/n

yn+1 − ȳ
(40.4.4)



40.5. THIRD SCENARIO: ONE ADDITONAL OBSERVATION IN A REGRESSION MODEL473

or equivalently

µ− yn+1 = − (yn+1 − ȳ)2 + (ιȳ − y)>(ιȳ − y)/n

yn+1 − ȳ
(40.4.5)

With this µ, equation (40.4.2) for q becomes

q =

((yn+1−ȳ)2+(ιȳ−y)>(ιȳ−y)/n)
2

(yn+1−ȳ)2

(ιȳ − y)>(ιȳ − y)/n+ ((ιȳ−y)>(ιȳ−y)/n)2

(yn+1−ȳ)2

(40.4.6)

=

(
(yn+1 − ȳ)2 + (ιȳ − y)>(ιȳ − y)/n

)2

(yn+1 − ȳ)2(ιȳ − y)>(ιȳ − y)/n+
(
(ιȳ − y)>(ιȳ − y)/n

)2(40.4.7)

=
1

(ιȳ − y)>(ιȳ − y)/n

(
(yn+1 − ȳ)2 + (ιȳ − y)>(ιȳ − y)/n

)2

(yn+1 − ȳ)2 + (ιȳ − y)>(ιȳ − y)/n
(40.4.8)

=
(yn+1 − ȳ)2 + (ιȳ − y)>(ιȳ − y)/n

(ιȳ − y)>(ιȳ − y)/n
=

(yn+1 − ȳ)2

(ιȳ − y)>(ιȳ − y)/n
+ 1(40.4.9)

which is clearly greater than 1. This concludes the proof that ȳ minimaxes the
relative increase in the Mahalanobis distance over all values of µ and σ2.

40.5. Third Scenario: one additonal observation in a Regression Model

Our third scenario starts with an observation y of the random n-vector y ∼
(Xβ, σ2I), where the nonrandom X has full column rank, and the parameters β

and σ2 > 0 are unknown. The squared Mahalanobis distance of this observation
from its population is

(40.5.1) MHD[y; y] = MHD
[
y; (Xβ, σ2In)

]
=

1

nσ2
(y − Xβ)>(y − Xβ)

If an n+1st observation yn+1 becomes available, associated with the row of regressor
values x>

n+1, then the Mahalanobis distance of the total vector is

MHD
[[ y

yn+1

]
;

[
y

yn+1

]]
= MHD

[[ y

yn+1

]
;
([ X

x>
n+1

]
β, σ2In+1

)]
=

(40.5.2)

=
1

(n+ 1)σ2

(
(y − Xβ)>(y − Xβ) + (yn+1 − x>

n+1β)2
)

(40.5.3)

and the conditional Mahalanobis distance is

MHD[yn+1; yn+1|y] = (yn+1 − x>
n+1β)2

(40.5.4)
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Both Mahalanobis distances (40.5.1) and (40.5.4) are unknown since they depend on
the unknown parameters. However we will show here that whatever the true value
of the parameters, the ratio of the conditional divided by the original Mahalanobis
distance is never greater than
(40.5.5)

MHD[yn+1; yn+1|y]

MHD[y; y]
≤ n

k

(
x>
n+1(X

>X)−1xn+1 +
(x>
n+1β̂ − yn+1)

2

(β̂ − β)>X>X(β̂ − β)

)
.

Equation (40.5.5) is the ratio of these distances in the worst case. From it one sees
immediately that that value of yn+1 which minimizes the maximum possible ratio
of the conditional Mahalanobis distance divided by the old, this maximum taken over
all possible values of β and σ2, is exactly the OLS predicted value of yn+1 on the
basis of the given data.

Leaving out the degrees of freedom n and k we have to find the minimax value
of

(40.5.6) q =
(yn+1 − x>

n+1β)2

(y − Xβ)>(y − Xβ)

We will show that the OLS prediction yn+1 = x>
n+1β̂ is the solution to this minimax

problem, and that the minimax value of q is q = x>
n+1(X

>X)−1xn+1.

This proof will proceed in two steps. (1) For yn+1 = x>
n+1β̂, q ≤ x>

n+1(X
>X)−1xn+1

for all values of β, and whatever g-inverse was used in (40.5.6), but one can find β

for which q is arbitrarily close to x>
n+1(X

>X)−1xn+1. (2) If yn+1 6= x>
n+1β̂, then

q > x>
n+1(X

>X)−1xn+1 for certain values of β, and again independent of the choice
of g-inverse in (40.5.6).

In the proof of step (1), the case y = Xβ̃ for some β̃ must be treated separately.
If this condition holds (which is always the case if rankX = n, but otherwise it only
occurs with zero probability), and someone predicts yn+1 by a value different than

x>
n+1β̃, then q is unbounded as the true β approaches β → β̃.

If, on the other hand, yn+1 is predicted by yn+1 = x>
n+1β̃, then

(40.5.7) q =

(
x>
n+1(β̃ − β)

)2

(β̃ − β)>X>X(β̃ − β)
≤ x>

n+1(X
>X)−1xn+1

if β 6= β̃ (with equality holding if β̂ − β = λ(X>X)−1xn+1 for some λ 6= 0), and

q = 0 if β = β̃.
Now turn to the regular case in which the vector y cannot be written in the form

y = Xβ̃ for any β̃. Re-write (40.5.6) as

(40.5.8) q =
(yn+1 − x>

n+1β)2

(y − Xβ̂)>(y − Xβ̂) + (β̂ − β)>X>X(β̂ − β)
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If yn+1 = x>
n+1β̂, then

(40.5.9)

q =

(
x>
n+1(β̂ − β)

)2

(y − Xβ̂)>(y − Xβ̂) + (β̂ − β)>X>X(β̂ − β)
≤

(
x>
n+1(β̂ − β)

)2

(β̂ − β)>X>X(β̂ − β)
≤ x>

n+1(X
>X)−1xn+1

One gets arbitrarily close to x>
n+1(X

>X)−1xn+1 for β̂−β = λ(X>X)−1xn+1 and
λ sufficiently large.

For step (2) of the proof we have to show: if yn+1 is not equal to x>
n+1β̂, then q

can assume values larger than x>
n+1(X

>X)−1xn+1. To show this, we will find for a

given y and yn+1 that parameter value β̃ for which this relative increase is highest,
and the value of the highest relative increase.

Here is the rough draft for the continuation of this proof. Here I am solving the
first order condition and I am not 100 percent sure whether it is a global maximum.
For the derivation which follows this won’t matter, but I am on the lookout for a
proof that it is. After I am done with this, this need not even be in the proof, all
that needs to be in the proof is that this highest value (wherever I get it from) gives

a value of q that is greater than nx>
n+1(X

>X)−1xn+1.

Since there is no β̃ with y = Xβ̃, the quadratic form b2 = (y−Xβ̂)>(y−Xβ̂)
is positive. The relative increase can therefore be written in the form

(40.5.10) q = n
(ζ − a)2

b2 + ξ2
= n

u

v

where ζ = x>
n+1β, a = yn+1, and ξ2 = (β̂ − β)>X>X(β̂ − β). Hence ∂ξ2

∂β> =

−2(β̂−β)>X>X =: −2α>. To get the highest relative increase, we need the roots
of

(40.5.11)
(u
v

)′
=
u′v − v′u

v2

Here, in a provisional notation which will be replaced by matrix differentiation
eventually, the prime represents the derivative with respect to βi. I will call −2αi =
∂ξ2

∂βi
. Since the numerator is always positive, we only have to look for the roots of

u′v− v′u = 2xn+1,i(ζ −a)(b2 + ξ2)+2αi(ζ −a)2. Here it is in matrix differentiation:

(40.5.12)
∂u

∂β
v − ∂v

∂β
u =

∂ζ

∂β
2(ζ − a)(b2 + ξ2) − ∂ξ2

∂β
(ζ − a)2 = 0

One root is ζ = a, which is clearly a minimum, not a maximum. Division by 2ζ − a
gives

(40.5.13) xn+1(b
2 + ξ2) + (X>X)(β̂ − β)(ζ − a) = 0
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(40.5.14) (X>X)−1xn+1(b
2 + ξ2) = −(β̂ − β)(ζ − a)

In other words,

(40.5.15) β̂ − β = −γ(X>X)−1xn+1 where γ =
b2 + ξ2

ζ − a
.

One can express ξ2 and ζ in terms of γ:

(40.5.16) ξ2 = γ2x>
n+1(X

>X)−1xn+1

and

(40.5.17) ζ = x>
n+1β̂ + γx>

n+1(X
>X)−1xn+1

Therefore the defining identity for γ becomes

(40.5.18) γ =
b2 + ξ2

ζ − a
=

b2 + γ2x>
n+1(X

>X)−1xn+1

x>
n+1β̂ − yn+1 + γx>

n+1(X
>X)−1xn+1

or equivalently

(40.5.19) γ(x>
n+1β̂−yn+1)+γ2x>

n+1(X
>X)−1xn+1 = b2 +γ2x>

n+1(X
>X)−1xn+1

The terms with γ2 fall out and one obtains

(40.5.20) γ =
b2

x>
n+1β̂ − yn+1

.

The worst β is

(40.5.21) β = β̂ − (X>X)−1xn+1
(y − Xβ̂)>(y − Xβ̂)

yn+1 − x>
n+1β̂

.

Now I should start from here and prove it new, and also do the proof that all other
values of β give better q.

(40.5.16) and (40.5.17) into (40.5.10) gives

(40.5.22) q =

(
x>
n+1β̂ − yn+1 + γx>

n+1(X
>X)−1xn+1

)2

b2 + γ2x>
n+1(X

>X)−1xn+1

,

and using b2 = γ(x>
n+1β̂ − yn+1) one gets

(40.5.23)

q =
1

γ

(
x>
n+1β̂ − yn+1 + γx>

n+1(X
>X)−1xn+1

)2

x>
n+1β̂ − yn+1 + γx>

n+1(X
>X)−1xn+1

=
x>
n+1β̂ − yn+1

γ
+x>

n+1(X
>X)−1xn+1

=
(x>
n+1β̂ − yn+1)

2

b2
+ x>

n+1(X
>X)−1xn+1
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This is clearly bigger than x>
n+1(X

>X)−1xn+1. This is what he had to show.
By the way, the excess of this q over the minimum value is proportional to

the F-statistic for the test whether the n + 1st observation comes from the same
value β. (The only difference is that numerator and denominator are not divided
by their degrees of freedom). This gives a new interpretation of the F-test, and also
of the F-confidence regions (which will be more striking if we predict more than
one observation). F-confidence regions are conjectured observations for which the
minimax value of the Mahalanobis ratio stays below a certain bound.

Now the proof that it is the worst β. Without loss of generality we can write
and β as follows in terms of a δ:

(40.5.24) β = β̂ − γ(X>X)−1(xn+1 + δ) where γ =
(y − Xβ̂)>(y − Xβ̂)

yn+1 − x>
n+1β̂

(this is a sign change from above). Then

(40.5.25) (β̂ − β)>X>X(β̂ − β) = γ2(xn+1 + δ)>(X>X)−1(xn+1 + δ)

and

(40.5.26) yn+1 − x>
n+1β = yn+1 − x>

n+1β̂ + γx>
n+1(X

>X)−1(xn+1 + δ)

therefore we get

(40.5.27) q =

(
yn+1 − x>

n+1β̂ + γx>
n+1(X

>X)−1(xn+1 + δ)
)2

(y − Xβ̂)>(y − Xβ̂) + γ2(xn+1 + δ)>(X>X)−1(xn+1 + δ)
.

We have to show that the maximum value

(40.5.28)
(x>
n+1β̂ − yn+1)

2

(y − Xβ̂)>(y − Xβ̂)
+ x>

n+1(X
>X)−1xn+1

is bigger than this, i.e., we have to show
(40.5.29)

(x>
n+1β̂ − yn+1)

2

(y − Xβ̂)>(y − Xβ̂)
+x>

n+1(X
>X)−1xn+1 ≥

(
yn+1 − x>

n+1β̂ + γx>
n+1(X

>X)−1(xn+1 + δ)
)2

(y − Xβ̂)>(y − Xβ̂) + γ2(xn+1 + δ)>(X>X)−1(xn+1 + δ)

Since the denominator on the right hand side is positive, we can multiply both

sides with it. Using the notation b2 = (y − Xβ̂)>(y − Xβ̂) and the identities
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γ2 (x>

n+1β̂−yn+1)
2

b2 = b2 and γ(x>
n+1β̂ − yn+1) = b2 we get

(40.5.30)

(x>
n+1β̂−yn+1)

2 + b2x>
n+1(X

>X)−1xn+1 + b2(xn+1 + δ)>(X>X)−1(xn+1 + δ)+

+ γ2(xn+1 + δ)>(X>X)−1(xn+1 + δ)x>
n+1(X

>X)−1xn+1 ≥
≥ (yn+1−x>

n+1β̂)2+2b2x>
n+1(X

>X)−1(xn+1+δ)+γ2
(
x>
n+1(X

>X)−1(xn+1+δ)
)2

or

(40.5.31) b2x>
n+1(X

>X)−1xn+1 + b2(xn+1 + δ)>(X>X)−1(xn+1 + δ)+

+ γ2(xn+1 + δ)>(X>X)−1(xn+1 + δ)x>
n+1(X

>X)−1xn+1−
− 2b2x>

n+1(X
>X)−1(xn+1 + δ) − γ2

(
x>
n+1(X

>X)−1(xn+1 + δ)
)2 ≥ 0

Collecting terms we get
(40.5.32)

b2δ>(X>X)−1δ+γ2
(
δ>(X>X)−1δx>

n+1(X
>X)−1xn+1−(x>

n+1(X
>X)−1δ)2

)
≥ 0

which certainly holds. These steps can be reversed, which concludes the proof.



CHAPTER 41

Interval Estimation

We will first show how the least squares principle can be used to construct
confidence regions, and then we will derive the properties of these confidence regions.

41.1. A Basic Construction Principle for Confidence Regions

The least squares objective function, whose minimum argument gave us the
BLUE, naturally allows us to generate confidence intervals or higher-dimensional
confidence regions. A confidence region for β based on y = Xβ+ε can be constructed
as follows:

• Draw the OLS estimate β̂ into k-dimensional space; it is the vector which

minimizes SSE = (y − Xβ̂)>(y − Xβ̂).

• For every other vector β̃ one can define the sum of squared errors associ-
ated with that vector as SSE

β̃
= (y − Xβ̃)>(y − Xβ̃). Draw the level

hypersurfaces (if k = 2: level lines) of this function. These are ellipsoids

centered on β̂.
• Each of these ellipsoids is a confidence region for β. Different confidence

regions differ by their coverage probabilities.
• If one is only interested in certain coordinates of β and not in the others, or

in some other linear transformation β, then the corresponding confidence
regions are the corresponding transformations of this ellipse. Geometrically
this can best be seen if this transformation is an orthogonal projection; then
the confidence ellipse of the transformed vector Rβ is also a projection or
“shadow” of the confidence region for the whole vector. Projections of the
same confidence region have the same confidence level, independent of the
direction in which this projection goes.

The confidence regions for β with coverage probability π will be written here
as Bβ;π or, if we want to make its dependence on the observation vector y explicit,
Bβ;π(y). These confidence regions are level lines of the SSE, and mathematically,
it is advantageous to define these level lines by their level relative to the minimum
level, i.e., as as the set of all β̃ for which the quotient of the attained SSE

β̃
=
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(y − Xβ̃)>(y − Xβ̃) divided by the smallest possible SSE = (y − Xβ̂)>(y − Xβ̂)
is smaller or equal a given number. In formulas,

(41.1.1) β̃ ∈ Bβ;π(y) ⇐⇒ (y − Xβ̃)>(y − Xβ̃)

(y − Xβ̂)>(y − Xβ̂)
≤ cπ;n−k,k

It will be shown below, in the discussion following (41.2.1), that cπ;n−k,k only depends
on π (the confidence level), n − k (the degrees of freedom in the regression), and k
(the dimension of the confidence region).

To get a geometric intuition of this principle, look at the case k = 2, in which
the parameter vector β has only two components. For each possible value β̃ of the
parameter vector, the associated sum of squared errors is SSE

β̃
= (y − Xβ̃)>(y −

Xβ̃). This a quadratic function of β̃, whose level lines form concentric ellipses as
shown in Figure 1. The center of these ellipses is the unconstrained least squares
estimate. Each of the ellipses is a confidence region for β for a different confidence
level.

If one needs a confidence region not for the whole vector β but, say, for i linearly
independent linear combinations Rβ (here R is a i× k matrix with full row rank),
then the above principle applies in the following way: the vector ũ lies in the con-
fidence region for Rβ generated by y for confidence level π, notation BRβ;π, if and

only if there is a β̃ in the confidence region (41.1.1) (with the parameters adjusted

to reflect the dimensionality of ũ) which satisfies Rβ̃ = ũ:
(41.1.2)

ũ ∈ BRβ;π(y) ⇐⇒ exist β̃ with ũ = Rβ̃ and
(y − Xβ̃)>(y − Xβ̃)

(y − Xβ̂)>(y − Xβ̂)
≤ cπ;n−k,i

Problem 416. Why does one have to change the value of c when one goes over
to the projections of the confidence regions?

Answer. Because the projection is a many-to-one mapping, and vectors which are not in the
original ellipsoid may still end up in the projection. �

Again let us illustrate this with the 2-dimensional case in which the confidence
region for β is an ellipse, as drawn in Figure 1, called Bβ;π(y). Starting with this
ellipse, the above criterion defines individual confidence intervals for linear combina-
tions u = r>β by the rule: ũ ∈ Br>β;π(y) iff a β̃ ∈ Bβ(y) exists with r>β̃ = ũ. For
r = [ 1

0 ], this interval is simply the projection of the ellipse on the horizontal axis,
and for r = [ 0

1 ] it is the projection on the vertical axis.
The same argument applies for all vectors r with r>r = 1. The inner product

of two vectors is the length of the first vector times the length of the projection
of the second vector on the first. If r>r = 1, therefore, r>β̃ is simply the length
of the orthogonal projection of β̃ on the line generated by the vector r. Therefore
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the confidence interval for r>β is simply the projection of the ellipse on the line
generated by r. (This projection is sometimes called the “shadow” of the ellipse.)

The confidence region for Rβ can also be defined as follows: ũ lies in this

confidence region if and only if the “best”
ˆ̂
β which satisfies R

ˆ̂
β = ũ lies in the

confidence region (41.1.1), this best
ˆ̂
β being, of course, the constrained least squares

estimate subject to the constraint Rβ = ũ, whose formula is given by (29.3.13).
The confidence region for Rβ consists therefore of all ũ for which the constrained

least squares estimate
ˆ̂
β = β̂− (X>X)−1R>(R(X>X)−1R>)−1

(Rβ̂− ũ) satisfies
condition (41.1.1):

(41.1.3) ũ ∈ BRβ(y) ⇐⇒ (y − X
ˆ̂
β)>(y − X

ˆ̂
β)

(y − Xβ̂)>(y − Xβ̂)
≤ cπ;n−k,i

One can also write it as

(41.1.4) ũ ∈ BRβ(y) ⇐⇒ SSEconstrained

SSEunconstrained
≤ cπ;n−k,i

i.e., those ũ are in the confidence region which, if imposed as a constraint on the
regression, will not make the SSE too much bigger.
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Figure 1. Confidence Ellipse with “Shadows”

In order to transform (41.1.3) into a mathematically more convenient form, write
it as

ũ ∈ BRβ;π(y) ⇐⇒ (y − X
ˆ̂
β)>(y − X

ˆ̂
β) − (y − Xβ̂)>(y − Xβ̂)

(y − Xβ̂)>(y − Xβ̂)
≤ cπ;n−k,i − 1
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and then use (29.7.2) to get
(41.1.5)

ũ ∈ BRβ;π(y) ⇐⇒ (Rβ̂ − ũ)>
(
R(X>X)−1R>)−1

(Rβ̂ − ũ)

(y − Xβ̂)>(y − Xβ̂)
≤ cπ;n−k,i − 1

This formula has the great advantage that
ˆ̂
β no longer appears in it. The condition

whether ũ belongs to the confidence region is here formulated in terms of β̂ alone.

Problem 417. Using (18.2.12), show that (41.1.1) can be rewritten as

(41.1.6) β̃ ∈ Bβ;π(y) ⇐⇒ (β̂ − β̃)>X>X(β̂ − β̃)

(y − Xβ̂)>(y − Xβ̂)
≤ cπ;n−k,k − 1

Verify that this is the same as (41.1.5) in the special case R = I.

Problem 418. You have run a regression with intercept, but you are not inter-
ested in the intercept per se but need a joint confidence region for all slope parameters.
Using the notation of Problem 361, show that this confidence region has the form

(41.1.7) β̃ ∈ Bβ;π(y) ⇐⇒ (β̂ − β̃)>X>X(β̂ − β̃)

(y − Xβ̂)>(y − Xβ̂)
≤ cπ;n−k,k−1 − 1

I.e., we are sweeping the means out of both regressors and dependent variables, and
then we act as if the regression never had an intercept and use the formula for the
full parameter vector (41.1.6) for these transformed data (except that the number of
degrees of freedom n−k still reflects the intercept as one of the explanatory variables).

Answer. Write the full parameter vector as

[
α
β

]
and R =

[
o I

]
. Use (41.1.5) but instead

of ũ write β̃. The only tricky part is the following which uses (30.0.37):
(41.1.8)

R(X>X)−1R> =
[
o I

][1/n+ x̄>(X>X)−1x̄ −x̄>(X>X)−1

−(X>X)−1x̄ (X>X)−1

][
o>

I

]
= (X>X)−1

The denominator is (y − ια̂ − Xβ̂)>(y − ια̂ − Xβ̂), but since α̂ = ȳ − x̄>β̂, see problem 242, this

denominator can be rewritten as (y − Xβ̂)>(y − Xβ̂). �

Problem 419. 3 points We are in the simple regression yt = α + βxt + εt. If
one draws, for every value of x, a 95% confidence interval for α + βx, one gets a
“confidence band” around the fitted line, as shown in Figure 2. Is the probability
that this confidence band covers the true regression line over its whole length equal
to 95%, greater than 95%, or smaller than 95%? Give a good verbal reasoning for
your answer. You should make sure that your explanation is consistent with the fact
that the confidence interval is random and the true regression line is fixed.
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Figure 2. Confidence Band for Regression Line

41.2. Coverage Probability of the Confidence Regions

The probability that any given known value ũ lies in the confidence region
(41.1.3) depends on the unknown β. But we will show now that the “coverage prob-
ability” of the region, i.e., the probability with which the confidence region contains
the unknown true value u = Rβ, does not depend on any unknown parameters.

To get the coverage probability, we must substitute ũ = Rβ (where β is the true
parameter value) in (41.1.5). This gives
(41.2.1)

Rβ ∈ BRβ;π(y) ⇐⇒ (Rβ̂ − Rβ)>
(
R(X>X)−1R>)−1

(Rβ̂ − Rβ)

(y − Xβ̂)>(y − Xβ̂)
≤ cπ;n−k,i − 1

Let us look at numerator and denominator separately. Under the Normality assump-

tion, Rβ̂ ∼ N(Rβ, σ2R(X>X)−1R>). Therefore, by (10.4.9), the distribution of
the numerator of (41.2.1) is

(41.2.2) (Rβ̂ − Rβ)>
(
R(X>X)−1R>)−1

(Rβ̂ − Rβ) ∼ σ2χ2
i .

This probability distribution only depends on one unknown parameter, namely, σ2.

Regarding the denominator, remember that, by (24.4.2), (y − Xβ̂)>(y − Xβ̂) =
ε>Mε, and if we apply (10.4.9) to this we can see that

(41.2.3) (y − Xβ̂)>(y − Xβ̂) ∼ σ2χ2
n−k

Furthermore, numerator and denominator are independent. To see this, look first

at β̂ and ε̂. By Problem 300 they are uncorrelated, and since they are also jointly

Normal, it follows that they are independent. If β̂ and ε̂ are independent, any

functions of β̂ are independent of any functions of ε̂. The numerator in the test
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statistic (41.2.1) is a function of β̂ and the denominator is a function of ε̂; therefore
they are independent, as claimed. Lastly, if we divide numerator by denominator,
the unknown “nuisance parameter” σ2 in their probability distributions cancels out,
i.e., the distribution of the quotient is fully known.

To sum up: if ũ is the true value ũ = Rβ, then the test statistic in (41.2.1)
can no longer be observed, but its distribution is is known; it is a χ2

i divided by an
independent χ2

n−k. Therefore, for every value c, the probability that the confidence
region (41.1.5) contains the true Rβ can be computed, and conversely, for any desired
coverage probability, the appropriate critical value c can be computed. As claimed,
this critical value only depends on the confidence level π and n− k and i.

41.3. Conventional Formulas for the Test Statistics

In order to get this test statistic into the form in which it is conventionally
tabulated, we must divide both numerator and denominator of (41.1.5) by their
degrees of freedom, to get a χ2

i /i divided by an independent χ2
n−k/(n − k). This

quotient is called a F-distribution with i and n− k degrees of freedom.

The F-distribution is defined as Fi,j =
χ2

i /i

χ2
j
/j

instead of the seemingly simpler

formula
χ2

i

χ2
j

, because the division by the degrees of freedom makes all F-distributions

and the associated critical values similar; an observed value below 4 is insignificant,
but greater values may be signficant depending on the number of parameters.

Therefore, instead of , the condition deciding whether a given vector ũ lies in the
confidence region for Rβ with confidence level π = 1 − α is formulated as follows:
(41.3.1)

(SSEconstrained − SSEunconstrained)/number of constraints

SSEunconstr./(numb. of obs. − numb. of coeff. in unconstr. model)
≤ F(i,n−k;α)

Here the constrained SSE is the SSE in the model estimated with the constraint
Rβ = ũ imposed, and F(i,n−k;α) is the upper α quantile of the F distribution with i
and n − k degrees of freedom, i.e., it is that scalar c for which a random variable F

which has a F distribution with i and n− k degrees of freedom satisfies Pr[F ≥ c] = α.

41.4. Interpretation in terms of Studentized Mahalanobis Distance

The division of numerator and denominator by their degrees of freedom also gives
us a second intuitive interpretation of the test statistic in terms of the Mahalanobis
distance, see chapter 40. If one divides the denominator by its degrees of freedom,
one gets an unbiased estimate of σ2

(41.4.1) s2 =
1

n− k
(y − Xβ̂)>(y − Xβ̂).
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Therefore from (41.1.5) one gets the following alternative formula for the joint con-
fidence region B(y) for the vector parameter u = Rβ for confidence level π = 1−α:
(41.4.2)

ũ ∈ BRβ;1−α(y) ⇐⇒ 1

s2
(Rβ̂ − ũ)>

(
R(X>X)−1R>)−1

(Rβ̂ − ũ) ≤ iF(i,n−k;α)

Here β̂ is the least squares estimator of β, and s2 = (y−Xβ̂)>(y−Xβ̂)/(n−k) the

unbiased estimator of σ2. Therefore Σ̂ = s2(X>X)−1 is the estimated covariance

matrix as available in the regression printout. Therefore V̂ = s2R(X>X)−1R>

is the estimate of the covariance matrix of Rβ̂. Another way to write (41.4.2) is
therefore

(41.4.3) B(y) = {ũ ∈ R
i : (Rβ̂ − ũ)>V̂−1(Rβ̂ − ũ) ≤ iF(i,n−k;α)}.

This formula allows a suggestive interpretation. whether ũ lies in the confidence

region or not depends on the Mahalanobis distance of the actual value of Rβ̂ would

have from the distribution which Rβ̂ would have if the true parameter vector were
to satisfy the constraint Rβ = ũ. It is not the Mahalanobis distance itself but only
an estimate of it because σ2 is replaced by its unbiased estimate s2.

These formulas are also useful for drawing the confidence ellipses. The r which
you need in equation (10.3.22) in order to draw the confidence ellipse is r =

√
iF(i,n−k;α).

This is the same as the local variable mult in the following S-function to draw this
ellipse: its arguments are the center point (a 2-vector d), the estimated covariance
matrix (a 2 × 2 matrix C), the degrees of freedom in the denominator of the F-
distribution (the scalar df), and the confidence level (the scalar level between 0
and 1 which defaults to 0.95 if not specified).

confelli <-

function(b, C, df, level = 0.95, xlab = "", ylab = "", add=T, prec=51)

# Plot an ellipse with "covariance matrix" C, center b, and P-content

# level according the F(2,df) distribution.

# Sent to S-NEWS on May 19, 1999 by Roger Koenker

# Department of Economics

# University of Illinois

# Champaign, IL 61820

# url: http://www.econ.uiuc.edu

# email roger@ysidro.econ.uiuc.edu

# vox: 217-333-4558

# fax: 217-244-6678.

# Included in the ecmet package with his permission.
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{

d <- sqrt(diag(C))

dfvec <- c(2, df)

phase <- acos(C[1, 2]/(d[1] * d[2]))

angles <- seq( - (PI), PI, len = prec)

mult <- sqrt(dfvec[1] * qf(level, dfvec[1], dfvec[2]))

xpts <- b[1] + d[1] * mult * cos(angles)

ypts <- b[2] + d[2] * mult * cos(angles + phase)

if(add) lines(xpts, ypts)

else plot(xpts, ypts, type = "l", xlab = xlab, ylab = ylab)

}

The mathematics why this works is in Problem 166.

Problem 420. 3 points In the regression model y = Xβ + ε you observe y and
the (nonstochastic) X and you construct the following confidence region B(y) for
Rβ, where R is a i× k matrix with full row rank:
(41.4.4)

B(y) = {u ∈ R
i : (Rβ̂ − u)>(R(X>X)−1R>)−1(Rβ̂ − u) ≤ is2F(i,n−k;α)}.

Compute the probability that B contains the true Rβ.

Answer.

(41.4.5) Pr[B(y) 3 Rβ] = Pr[(Rβ̂ − Rβ)>(R(X>X)−1R>)−1(Rβ̂ − Rβ) ≤ iF(i,n−k;α)s
2] =

(41.4.6) = Pr[
(Rβ̂ − Rβ)>(R(X>X)−1R>)−1(Rβ̂ − Rβ)/i

s2
≤ F(i,n−k;α)] = 1 − α

�

This interpretation with the Mahalanobis distance is commonly used for the
construction of t-Intervals. A t-interval is a special case of the above confidence
region for the case i = 1. The confidence interval with confidence level 1− α for the
scalar parameter u = r>β, where r 6= o is a vector of constant coefficients, can be
written as

(41.4.7) B(y) = {u ∈ R : |u− r>β̂| ≤ t(n−k;α/2)sr>β̂
}.

What do those symbols mean? β̂ is the least squares estimator of β. t(n−k;α/2) is
the upper α/2-quantile of the t distribution with n − k degrees of freedom, i.e., it
is that scalar c for which a random variable t which has a t distribution with n− k
degrees of freedom satisfies Pr[t ≥ c] = α/2. Since by symmetry Pr[t ≤ −c] = α/2
as well, one obtains the inequality relevant for a two-sided test:

(41.4.8) Pr[|t| ≥ t(n−k;α/2)] = α.

Finally, s
r>β̂

is the estimated standard deviation of r>β̂.
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It is computed by the following three steps: First write down the variance of

r>β̂:

(41.4.9) var[r>β̂] = σ2r>(X>X)−1r.

Secondly, replace σ2 by its unbiased estimator s2 = (y−Xβ̂)>(y−Xβ̂)/(n−k),
and thirdly take the square root. This gives s

r>β̂
= s

√
r>(X>X)−1r.

Problem 421. Which element(s) on the right hand side of (41.4.7) depend(s)
on y?

Answer. β̂ depends on y, and also s
r>β̂

depends on y through s2. �

Let us verify that the coverage probability, i.e., the probability that the confi-
dence interval constructed using formula (41.4.7) contains the true value r>β, is, as
claimed, 1 − α:

Pr[B(y) 3 r>β] = Pr[
∣∣∣r>β − r>β̂

∣∣∣ ≤ t(n−k;α/2)sr>β̂
]

(41.4.10)

= Pr
[∣∣r>(X>X)−1X>ε

∣∣ ≤ t(n−k;α/2)s
√

r>(X>X)−1r
]

(41.4.11)

= Pr[

∣∣∣∣∣∣
r>(X>X)−1X>ε

s

√
r>(X>X)−1r

∣∣∣∣∣∣
≤ t(n−k;α/2)](41.4.12)

= Pr[

∣∣∣∣∣∣
r>(X>X)−1X>ε

σ
√

r>(X>X)−1r

/ s

σ

∣∣∣∣∣∣
≤ t(n−k;α/2)] = 1 − α,(41.4.13)

This last equality holds because the expression left of the big slash is a standard
normal, and the expression on the right of the big slash is the square root of an
independent χ2

n−k divided by n−k. The random variable between the absolute signs
has therefore a t-distribution, and (41.4.13) follows from (41.4.8).

In R, one obtains t(n−k;α/2) by giving the command qt(1-alpha/2,n-p). Here
qt stands for t-quantile [BCW96, p. 48]. One needs 1-alpha/2 instead of alpha/2
because it is the usual convention for quantiles (or cumulative distribution functions)
to be defined as lower quantiles, i.e., as the probabilities of a random variable being
≤ a given number, while test statistics are usually designed in such a way that the
significant values are the high values, i.e., for testing one needs the upper quantiles.

There is a basic duality between confidence intervals and hypothesis tests. Chap-
ter 42 is therefore a discussion of the same subject under a slightly different angle:



CHAPTER 42

Three Principles for Testing a Linear Constraint

We work in the model y = Xβ + ε with normally distributed errors ε ∼
N(o, σ2I). There are three basic approaches to test the null hypothesis Rβ = u. In
the linear model, these three approaches are mathematically equivalent, but if one
goes over to nonlinear least squares or maximum likelihood estimators, they lead to
different (although asymptotically equivalent) tests.

(1) (“Wald Criterion”) Compute the vector of OLS estimates β̂, and reject the

null hypothesis if Rβ̂ is “too far away” from u. For this criterion one only needs the
unconstrained estimator, not the constrained one.

(2) (“Likelihood Ratio Criterion”) Estimate the model twice: once with the
constraint Rβ = u, and once without the constraint. Reject the null hypothesis if
the model with the constraint imposed has a much worse fit than the model without
the constraint.

(3) (“Lagrange Multiplier Criterion”) This third criterion is based on the con-
strained estimator only. It has two variants. In its “score test” variant, one rejects
the null hypothesis if the vector of derivatives of the unconstrained least squares

objective function, evaluated at the constrained estimate
ˆ̂
β, is too far away from o.

In the variant which has given this Criterion its name, one rejects if the vector of
Lagrange multipliers needed for imposing the constraint is too far away from o.

Many textbooks inadvertently and implicitly distinguish between (1) and (2)
as follows: they introduce the t-test for one parameter by principle (1), and the
F-test for several parameters by principle (2). Later, the student is surprised to
find out that the t-test and the F-test in one dimension are equivalent, i.e., that
the difference between t-test and F-test has nothing to do with the dimension of
the parameter vector to be tested. Some textbooks make the distinction between
(1) and (2) explicit. For instance [Chr87, p. 29ff] distinguishes between “testing
linear parametric functions” and “testing models.” However the distinction between
all 3 principles has been introduced into the linear model only after the discovery
that these three principles give different but asymptotically equivalent tests in the
Maximum Likelihood estimation. Compare [DM93, Chapter 3.6] about this.
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42.1. Mathematical Detail of the Three Approaches

(1) For the “Wald criterion” we must specify what it means that Rβ̂ is “too
far away” from u. The Mahalanobis distance gives such a criterion: If the true β

satisfies Rβ = u, then Rβ̂ ∼ (u, σ2R(X>X)−1R>), and the Mahalanobis distance

of the observed value of Rβ̂ from this distribution is a logical candidate for the Wald
criterion. The only problem is that σ2 is not known, therefore we have to use the
“studentized” Mahalanobis distance in which σ2 is replaced by s2. Conventionally,
in the conterxt of linear regression, the Mahalanobis distance is also divided by the
number of degrees of freedom; this normalizes its expected value to 1. Replacing σ2

by s2 and dividing by i gives the test statistic

(42.1.1)
1

i

(Rβ̂ − u)>
(
R(X>X)−1R>)−1

(Rβ̂ − u)

s2
.

(2) Here are the details for the second approach, the “goodness-of-fit criterion.”
In order to compare the fit of the models, we look at the attained SSE’s. Of course,
the constrained SSEr is always larger than the unconstrained SSEu, even if the true
parameter vector satisfies the constraint. But if we divide SSEr by its degrees of
freedom n+ i− k, it is an unbiased estimator of σ2 if the constraint holds and it is
biased upwards if the constraint does not hold. The unconstrained SSEu, divided by
its degrees of freedom, on the other hand, is always an unbiased estimator of σ2. If
the constraint holds, the SSE’s divided by their respective degrees of freedom should
give roughly equal numbers. According to this, a feasible test statistic would be

(42.1.2)
SSEr/(n+ i− k)

SSEu/(n− k)

and one would reject if this is too much > 1. The following variation of this is more
convenient, since its distribution does not depend on n, k and i separately, but only
through n− k and i.

(42.1.3)
(SSEr − SSEu)/i

SSEu/(n− k)

It still has the property that the numerator is an unbiased estimator of σ2 if the con-
straint holds and biased upwards if the constraint does not hold, and the denominator
is always an unbiased estimator. Furthermore, in this variation, the numerator and
denominator are independent random variables. If this test statistic is much larger
than 1, then the constraints are incompatible with the data and the null hypothesis
must be rejected. The statistic (42.1.3) can also be written as
(42.1.4)

(SSEconstrained − SSEunconstrained)/number of constraints

SSEunconstrained/(numb. of observations− numb. of coefficients in unconstr. model)
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The equivalence of formulas (42.1.1) and (42.1.4) is a simple consequence of (29.7.2).
(3) And here are the details about the score test variant of the Lagrange multi-

plier criterion: The Jacobian of the least squares objective function is

(42.1.5)
∂

∂β> (y − Xβ)>(y − Xβ) = −2(y − Xβ)>X.

This is a row vector consisting of all the partial derivatives. Taking its transpose,
in order to get a column vector, and plugging the constrained least squares estimate
ˆ̂
β into it gives −2X>(y − X

ˆ̂
β). Again we need the Mahalanobis distance of this

observed value from the distribution which the random variable

(42.1.6) −2X>(y − X
ˆ̂
β)

has if the true β satisfies Rβ = u. If this constraint is satisfied,
ˆ̂
β is unbi-

ased, therefore (42.1.6) has expected value zero. Furthermore, if one premulti-

plies (29.7.1) by X> one gets X>(y − X
ˆ̂
β) = R>(R(X>X)−1R>)−1

(Rβ̂ − u),

therefore V [X>(y − X
ˆ̂
β)] = R>(R(X>X)−1R>)−1

R; and now one can see that
1
σ2 (X>X)−1 is a g-inverse of this covariance matrix. Therefore the Malahalanobis
distance of the observed value from the distribution is

(42.1.7)
1

σ2
(y − X

ˆ̂
β)>X(X>X)−1X>(y − X

ˆ̂
β)

The Lagrange multiplier statistic is based on the restricted estimator alone. If one
wanted to take this principle seriously one would have to to replace σ2 by the unbiased
estimate from the restricted model to get the “score form” of the Lagrange Multiplier
Test statistic. But in the linear model this leads to it that the denominator in the
test statistic is no longer independent of the numerator, and since the test statistic as
a function of the ratio of the constrained and unconstrained estimates of σ2 anyway,
one will only get yet another monotonic transformation of the same test statistic.
If one were to use the unbiased estimate from the unrestricted model, one would
exactly get the Wald statistic back, as one can verify using (29.3.13).

This same statistic can also be motivated in terms of the Lagrange multipliers,
and this is where this testing principle has its name from, although the applications
usually use the score form. According to (29.3.12), the Lagrange multiplier is λ =

2
(
R(X>X)−1R>)−1

(Rβ̂ − u). If the constraint holds, then E [λ] = o, and V[λ] =

4σ2
(
R(X>X)−1R>)−1

. The Mahalanobis distance of the observed value from this
distribution is

(42.1.8) λ>(V [λ])−1λ =
1

4σ2
λ>R(X>X)−1R>λ

Using (29.7.1) one can verify that this is the same as (42.1.7).
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Problem 422. Show that (42.1.7) is equal to the righthand side of (42.1.8).

Problem 423. 10 points Prove that ˆ̂ε
>ˆ̂ε − ε̂>ε̂ can be written alternatively in

the following five ways:

ˆ̂ε
>ˆ̂ε − ε̂>ε̂ = (β̂ − ˆ̂

β)>X>X(β̂ − ˆ̂
β)(42.1.9)

= (Rβ̂ − u)>(R(X>X)−1R>)−1(Rβ̂ − u)(42.1.10)

=
1

4
λ>R(X>X)−1R>λ(42.1.11)

= ˆ̂ε
>

X(X>X)−1X>ˆ̂ε(42.1.12)

= (ˆ̂ε − ε̂)>(ˆ̂ε − ε̂)(42.1.13)

Furthermore show that

X>X is σ2 times a g-inverse of V [β̂ − ˆ̂
β](42.1.14)

(R(X>X)−1R>)−1 is σ2 times the inverse of V [Rβ̂ − u](42.1.15)

1

4
R(X>X)−1R> is σ2 times the inverse of V [λ](42.1.16)

(X>X)−1 is σ2 times a g-inverse of V [X>(y − X
ˆ̂
β)](42.1.17)

I is σ2 times a g-inverse of V [ˆ̂ε − ε̂](42.1.18)

and show that −2X>(y−X
ˆ̂
β) is the gradient of the SSE objective function evaluated

at
ˆ̂
β. By the way, one should be a little careful in interpreting (42.1.12) because

X(X>X)−1X> is not σ2 times the g-inverse of V [ˆ̂ε].

Answer.

(42.1.19) ˆ̂εεε = y − X
ˆ̂
β = Xβ̂ + ε̂εε − X

ˆ̂
β = X(β̂ − ˆ̂

β) + ε̂εε,

and since X>ε̂εε = o, the righthand decomposition is an orthogonal decomposition. This gives
(42.1.9) above:

(42.1.20) ˆ̂εεε>ˆ̂εεε = (β̂ − ˆ̂
β)>X>X(β̂ − ˆ̂

β) + ε̂εε>ε̂εε,

Using (29.3.13) one obtains V [β̂ − ˆ̂
β] = σ2(X>X)−1R>

(
R(X>X)−1R>

)−1
R(X>X)−1. This is

a singular matrix, and one verifies immediately that 1
σ2 X>X is a g-inverse of it.

To obtain (42.1.10), which is (29.7.2), one has to plug (29.3.13) into (42.1.20). Clearly, V[Rβ̂−
u] = σ2R(X>X)−1R>.

For (42.1.11) one needs the formula for the Lagrange multiplier (29.3.12).
�

The test statistic defined alternatively either by (42.1.1) or (42.1.4) or (42.1.7)
or (42.1.8) has the following nice properties:
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• E(SSEu) = E(ε̂>ε̂) = σ2(n− k), which holds whether or not the constraint
is true. Furthermore it was shown earlier that

(42.1.21) E(SSEr − SSEu) = σ2i+ (Rβ − u)>(R(X>X)−1R>)−1(Rβ − u),

i.e., this expected value is equal to σ2i if the constraint is true, and larger
otherwise. If one divides SSEu and SSEr−SSEu by their respective degrees
of freedom, as is done in (42.1.4), one obtains therefore: the denominator is
always an unbiased estimator of σ2, regardless of whether the null hypoth-
esis is true or not. The numerator is an unbiased estimator of σ2 when the
null hypothesis is correct, and has a positive bias otherwise.

• If the distribution of ε is normal, then numerator and denominator are

independent. The numerator is a function of β̂ and the denominator one

of ε̂, and β̂ and ε̂ are independent.
• Again under assumption of normality, numerator and denominator are dis-

tributed as σ2χ2 with i and n − k degrees of freedom, divided by their
respective degrees of freedom. If one divides them, the common factor σ2

cancels out, and the ratio has a F distribution. Since both numerator and
denominator have the same expected value σ2, the value of this F distri-
bution should be in the order of magnitude of 1. If it is much larger than
that, the null hypothesis is to be rejected. (Precise values in the F-tables).

42.2. Examples of Tests of Linear Hypotheses

Some tests can be read off directly from the computer printouts. One example is
the t-tests for an individual component of β. The situation is y = Xβ+ε, where β =[
β1 · · · βk

]>
, and we want to test βj = u. Here R = ej = [ 0 ··· 0 1 0 ··· 0 ], with the

1 on the jth place, and u is the 1-vector u, and i = 1. Therefore R(X>X)−1R> =

djj , the jth diagonal element of (X>X)−1, and (42.1.1) becomes

(42.2.1)
(β̂j − u)2

s2djj
∼ F1,n−k when H is true.

This is the square of a random variable which has a t-distribution:

(42.2.2)
β̂j − u

s
√
djj

∼ tn−k when H is true.

This latter test statistic is simply β̂j−u divided by the estimated standard deviation

of β̂j .
If one wants to test that a certain linear combination of the parameter values is

equal to (or bigger than or smaller than) a given value, say r>β = u, one can use a
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t-test as well. The test statistic is, again, simply r>β̂ − u divided by the estimated

standard deviation of r>β̂:

(42.2.3)
r>β̂ − u

s

√
r>(X>X)−1r

∼ tn−k when H is true.

By this one can for instance also test whether the sum of certain regression coefficients
is equal to 1, or whether two regression coefficients are equal to each other (but not
the hypothesis that three coefficients are equal to each other).

Many textbooks use the Wald criterion to derive the t-test, and the Likelihood-
Ratio criterion to derive the F-test. Our approach showed that the Wald criterion
can be used for simultaneous testing of several hypotheses as well. The t-test is
equivalent to an F-test if only one hypothesis is tested, i.e., if R is a row vector. The
only difference is that with the t-test one can test one-sided hypotheses, with the
F-test one cannot.

Next let us discuss the test for the existence of a relationship, “the” F-test which
every statistics package performs automatically whenever the regression has a con-
stant term: it is the test whether all the slope parameters are zero, such that only
the intercept may take a nonzero value.

Problem 424. 4 points In the model y = Xβ + ε with intercept, show that the
test statistic for testing whether all the slope parameters are zero is

(42.2.4)
(y>Xβ̂ − nȳ2)/(k − 1)

(y>y − y>Xβ̂)/(n− k)

This is [Seb77, equation (4.26) on p. 110]. What is the distribution of this test
statistic if the null hypothesis is true (i.e., if all the slope parameters are zero)?

Answer. The distribution is ∼ Fk−1,n−k . (42.2.4) is most conveniently derived from (42.1.4).
In the constrained model, which has only a constant term and no other explanatory variables, i.e.,
y = ιµ+ε, the BLUE is µ̂ = ȳ. Therefore the constrained residual sum of squares SSEconst. is what
is commonly called SST (“total” or, more precisely, “corrected total” sum of squares):

SSEconst. = SST = (y − ιȳ)>(y − ιȳ) = y>(y − ιȳ) = y>y − nȳ2

(42.2.5)

while the unconstrained residual sum of squares is what is usually called SSE:

SSEunconst. = SSE = (y − Xβ̂)>(y − Xβ̂) = y>(y − Xβ̂) = y>y − y>Xβ̂.

(42.2.6)

This last equation because X>(y − Xβ̂) = X>ε̂ = o. A more elegant way is perhaps

SSEunconst. = SSE = ε̂>ε̂ = y>M>My = y>My = y>y − y>X(X>X)−1X>y = y>y − y>Xβ̂

(42.2.7)
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According to (18.3.12) we can write SSR = SST − SSE, therefore the F-statistic is

(42.2.8)
SSR/(k − 1)

SSE/(n− k)
=

(y>Xβ̂ − nȳ2)/(k − 1)

(y>y − y>Xβ̂)/(n− k)
∼ Fk−1,n−k if H0 is true.

�

Problem 425. 2 points Can one compute the value of the F-statistic testing
for the existence of a relationship if one only knows the coefficient of determination
R2 = SSR/SST , the number of observations n, and the number of regressors (counting
the constant term as one of the regressors) k?

Answer.

(42.2.9) F =
SSR/(k − 1)

SSE/(n− k)
=
n− k

k− 1

SSR

SST − SSR
=
n− k

k − 1

R2

1 − R2
.

�

Other, similar F-tests are: the F-test that all among a number of additional
variables have the coefficient zero, the F-test that three or more coefficients are
equal. One can use the t-test for testing whether two coefficients are equal, but not
for three. It may be possible that the t-test for β1 = β2 does not reject and the t-test
for β2 = β3 does not reject either, but the t-test for β1 = β3 does reject!

Problem 426. 4 points [Seb77, exercise 4b.5 on p. 109/10] In the model y =
β + ε with ε ∼ N(o, σ2I) and subject to the constraint ι>β = 0, which we had in
Problem 348, compute the test statistic for the hypothesis β1 = β3.

Answer. In this problem, the “unconstrained” model for the purposes of testing is already
constrained, it is subject to the constraint ι>β = 0. The “constrained” model has the additional

constraint Rβ =
[
1 0 −1 0 · · · 0

]


β1

.

..
βk


 = 0. In Problem 348 we computed the “uncon-

strained” estimates β̂ = y − ιȳ and s2 = nȳ2 = (y1 + · · · + yn)2/n. You are allowed to use this

without proving it again. Therefore Rβ̂ = y1 − y3; its variance is 2σ2, and the F test statistic

is
n(y1−y3)2

2(y1+···+yn)2
∼ F1,1. The “unconstrained” model had 4 parameters subject to one constraint,

therefore it had 3 free parameters, i.e.,k = 3, n = 4, and j = 1. �

Another important F-test is the “Chow test” named by its popularizer Chow
[Cho60]: it tests whether two regressions have equal coefficients (assuming that the
disturbance variances are equal). For this one has to run three regressions. If the
first regression has n1 observations and sum of squared error SSE1, and the second
regression n2 observations and SSE2, and the combined regression (i.e., the restricted
model) has SSEr, then the test statistic is

(42.2.10)
(SSEr − SSE1 − SSE2)/k

(SSE1 + SSE2)/(n1 + n2 − 2k)
.
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If n2 < k, the second regression cannot be run by itself. In this case, the uncon-
strained model has “too many” parameters: they give an exact fit for the second
group of observations SSE2 = 0, and in addition not all parameters are identified.
In effect this second regression has only n2 parameters. These parameters can be
considered dummy variables for every observation, i.e., this test can be interpreted
to be a test whether the n2 additional observations come from the same population
as the n1 first ones. The test statistic becomes

(42.2.11)
(SSEr − SSE1)/n2

SSE1/(n1 − k)
.

This latter is called the “predictive Chow test,” because in its Wald version it looks
at the prediction errors involving observations in the second regression.

The following is a special case of the Chow test, in which one can give a simple
formula for the test statistic.

Problem 427. Assume you have n1 observations uj ∼ N(µ1, σ
2) and n2 obser-

vations vj ∼ N(µ2, σ
2), all independent of each other, and you want to test whether

µ1 = µ2. (Note that the variances are known to be equal).

• a. 2 points Write the model in the form y = Xβ + ε.

Answer.

(42.2.12)

[
u

v

]
=

[
ι1µ1 + ε1

ι2µ2 + ε2

]
=

[
ι1 o

o ι2

][
µ1

µ2

]
+

[
ε1

ε2

]
.

here ι1 and ι2 are vectors of ones of appropriate lengths. �

• b. 2 points Compute (X>X)−1 in this case.

Answer.

X>X =

[
ι>1 o>

o> ι>2

][
ι1 o

o ι2

]
=

[
n1 0
0 n2

]
(42.2.13)

(X>X)−1 =

[
1
n1

0

0 1
n2

]
(42.2.14)

�

• c. 2 points Compute β̂ = (X>X)−1X>y in this case.

Answer.

X>y =

[
ι>1 o>

o> ι>2

][
u

v

]
=

[∑n1

i=1
ui∑n2

j=1
vj

]
(42.2.15)

β̂ = (X>X)−1X>y =

[
1
n1

0

0 1
n2

][∑n1

i=1
ui∑n2

j=1
vj

]
=

[
ū

v̄

]
(42.2.16)

�
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• d. 3 points Compute SSE = (y−Xβ̂)>(y−Xβ̂) and s2, the unbiased estimator
of σ2, in this case.

Answer.

y − Xβ̂ =

[
u

v

]
−
[
ι1 o

o ι2

][
ū

v̄

]
=

[
u − ι1ū

v − ι2ū

]
(42.2.17)

SSE =

n1∑

i=1

(ui − ū)2 +

n2∑

j=1

(vj − v̄)2(42.2.18)

s2 =

∑n1

i=1
(ui − ū)2 +

∑n2

j=1
(vj − v̄)2

n1 + n2 − 2
(42.2.19)

�

• e. 1 point Next, the hypothesis µ1 = µ2 must be written in the form Rβ = u.
Since in the present case R has just has one row, it should be written as a row-vector
R = r>, and since the vector u has only one component, it should be written as a
scalar u, i.e., the hypothesis should be written in the form r>β = u. What are r and
u in our case?

Answer. Since β =

[
µ1

µ2

]
, the constraint can be written as

[
1 −1

][µ1

µ2

]
= 0 i.e., r =

[
1
−1

]
and u = 0(42.2.20)

�

• f. 2 points Compute the standard deviation of r>β̂.

Answer. First compute the variance and then take the square root.

(42.2.21) var[r>β̂] = σ2r>(X>X)−1r = σ2
[
1 −1

][ 1
n1

0

0 1
n2

][
1
−1

]
= σ2

( 1

n1
+

1

n2

)

One can also see this without matrix algebra. var[ū = σ2 1
n1

, var[v̄ = σ2 1
n2

, and since ū and v̄ are

independent, the variance of the difference is the sum of the variances. �

• g. 2 points Use (42.2.3) to derive the formula for the t-test.

Answer. The test statistic is ū − v̄ divided by its estimated standard deviation, i.e.,

(42.2.22)
ū − v̄

s

√
1
n1

+ 1
n2

∼ tn1+n2−2 when H is true.

�

Problem 428. [Seb77, exercise 4d-3] Given n + 1 observations yj from a
N(µ, σ2). After the first n observations, it is suspected that a sudden change in the
mean of the distribution occurred, i.e., that yn+1 ∼ N(ν, σ2) with ν 6= µ. We will
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use here three different approaches to derive the same test statistic for testing the
hypothesis that the n+1st observation has the same population mean as the previous
observations, i.e., that ν = µ, against the two-sided alternative. The formulas for
this statistic should be given in terms of the observations yi. It is recommended to

use the notation ȳ = 1
n

∑n
i=1 yi and ¯̄y = 1

n+1

∑n+1
j=1 yj.

• a. 3 points First you should derive this statistic by testing whether ν − µ = 0
(the “Wald principle”). For this you must compute the BLUE of ν − µ and its
standard deviation and construct the t statistic from this.

Answer. BLUE of µ is ȳ = 1
n

∑n

i=1
yi, and that of ν is yn+1. BLUE of ν − µ is ȳ − yn+1.

Because of independence var[ȳ − yn+1] = var[ȳ] + var[yn+1] = σ2((1/n) + 1) = σ2(n + 1)/n.

Standard deviation is σ
√

(n+ 1)/n.

For the denominator in the t-statistic you need the s2 from the unconstrained regression, which
is

(42.2.23) s2 =
1

n− 1

n∑

j=1

(yj − ȳ)2

What happened to the (n + 1)st observation here? It always has a zero residual. And the factor

1/(n− 1) should really be written 1/(n + 1 − 2): there are n+ 1 observations and 2 parameters.
Divide ȳ−yn+1 by its standard deviation and replace σ by s (the square root of s2) to get the

t statistic

(42.2.24)
ȳ − yn+1

s
√

1 + 1
n

�

• b. 2 points One can interpret this same formula also differently (and this is
why this test is sometimes called the “predictive” Chow test). Compute the Best
Linear Unbiased Predictor of yn+1 on the basis of the first n observations, call it
ˆ̂y(n + 1)n+1. Show that the predictive residual yn+1 − ˆ̂y(n + 1)n+1, divided by the

square root of MSE[ˆ̂y(n + 1)n+1; yn+1], with σ replaced by s (based on the first n
observations only), is equal to the above t statistic.

Answer. BLUP of yn+1 based on first n observations is ȳ again. Since it is unbiased,
MSE[ȳ;yn+1] = var[ȳ − yn+1] = σ2(n+ 1)/n. From now on everything is as in part a. �

• c. 6 points Next you should show that the above two formulas are identical
to the statistic based on comparing the SSEs of the constrained and unconstrained
models (the likelihood ratio principle). Give a formula for the constrained SSEr, the
unconstrained SSEu, and the F-statistic.

Answer. According to the Likelihood Ratio principle, one has to compare the residual sums of
squares in the regressions under the assumption that the mean did not change with that under the

assumption that the mean changed. If the mean did not change (constrained model), then ¯̄y is the
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OLS of µ. In order to make it easier to derive the difference between constrained and unconstrained
SSE, we will write the constrained SSE as follows:

SSEr =

n+1∑

j=1

(yj − ¯̄y)2 =

n+1∑

j=1

y2j − (n+ 1)¯̄y2 =

n+1∑

j=1

y2j − 1

n+ 1
(nȳ + yn+1)2

If one allows the mean to change (unconstrained model), then ȳ is the BLUE of µ, and yn+1 is the
BLUE of ν.

SSEu =

n∑

j=1

(yj − ȳ)2 + (yn+1 − yn+1)
2 =

n∑

j=1

y2j − nȳ2.

Now subtract:

SSEr − SSEu = y2n+1 + nȳ2 − 1

n+ 1
(nȳ + yn+1)

2

= y2n+1 + nȳ2 − 1

n+ 1
(n2ȳ2 + 2nȳyn+1 + y2n+1)

= (1 − 1

n+ 1
)y2n+1 + (n− n2

n+ 1
)ȳ2 − n

n+ 1
2ȳyn+1

=
n

n+ 1
(yn+1 − ȳ)2.

Interestingly, this depends on the first n observations only through ȳ.
Since the unconstrained model has n+ 1 observations and 2 parameters, the test statistic is

(42.2.25)
SSEr − SSEu

SSEu/(n+ 1 − 2)
=

n
n+1

(yn+1 − ȳ)2∑n

1
(yj − ȳ)2/(n − 1)

=
(yn+1 − ȳ)2 n(n− 1)∑n

1
(yj − ȳ)2 (n+ 1)

∼ F1,n−1

This is the square of the t statistic (42.2.24). �

42.2.1. Goodness of Fit Test.

Problem 429. [Seb77, pp. 117–119] Given a regression model with k indepen-
dent variables. There are n observations of the vector of independent variables, and
for each of these n values there is not one but r > 1 different replicated observations
of the dependent variable. This model can be written

(42.2.26) ymq =

k∑

j=1

xmjβj + εmq or ymq = x>
mβ + εmq ,

where m = 1, . . . , n, j = 1, . . . , k, q = 1, . . . , r, and x>
m is the mth row of the X-

matrix. For simplicity we assume that r does not depend on m, each observation of
the independent variables has the same number of repetitions. We also assume that
the n× k matrix X has full column rank.

• a. 2 points In this model it is possible to test whether the regression line is in
fact a straight line. If it is not a straight line, then each observation of the dependent
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variables xm has a different coefficient vector βm associated with it, i.e., the model
is

(42.2.27) ymq =

k∑

j=1

xmjβmj + εmq or ymq = x>
mβm + εmq .

This unconstrained model does not have enough information to estimate any of the
individual coefficients βmj. Explain how it is nevertheless still possible to compute
SSEu.

Answer. Even though the individual coefficients βmj are not identified, their linear combina-

tion ηm = x>
mβm =

∑k

j=1
xmjβmj is identified; one unbiased estimator, although by far not the

best one, is any individual observation ymq . This linear combination is all one needs to compute
SSEu, the sum of squared errors in the unconstrained model. �

• b. 2 points Writing your estimate of ηm = x>
mβm as η̃m, give the formula of the

sum of squared errors of this estimate, and by taking the first order conditions, show
that the unconstrained least squares estimate of ηm is η̂m = ȳm· for m = 1, . . . , n,
where ȳm· = 1

r

∑r
q=1 ymq (i.e., the dot in the subscript indicates taking the mean).

Answer. If we know the η̃m the sum of squared errors no longer depents on the independent
observations xm but is simply

(42.2.28) SSEu =
∑

m,q

(ymq − η̃m)2

First order conditions are

(42.2.29)
∂

∂η̃h

∑

m,q

(ymq − η̃m)2 =
∂

∂η̃h

∑

q

(yhq − η̃h)2 = −2
∑

q

(yhq − η̃h) = 0

�

• c. 1 point The sum of squared errors associated with this least squares estimate
is the unconstrained sum of squared errors SSEu. How would you set up a regression
with dummy variables which would give you this SSEu?

Answer. The unconstrained model should be regressed in the form ymq = ηm + εmq . I.e.,
string out the matrix Y as a vector and for each column of Y introduce a dummy variable which is
= 1 if the given observation was originally in this colum. �

• d. 2 points Next turn to the constrained model (42.2.26). If X has full column

rank, then it is fully identified. Writing β̃j for your estimates of βj , give a formula
for the sum of squared errors of this estimate. By taking the first order conditions,

show that the estimate β̂ is the same as the estimate in the model without replicated
observations

(42.2.30) zm =

k∑

j=1

xmjβj + εm,
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where zm = ȳm· as defined above.

• e. 2 points If SSEc is the SSE in the constrained model (42.2.26) and SSEb the
SSE in (42.2.30), show that SSEc = r · SSEb + SSEu.

Answer. For every m we have
∑

q
(ymq − x>

mβ̂)2 =
∑

q
(ymq − ȳm·)2 + r(ym· − x>

mβ̂)2;

therefore SSEc =
∑

m,q
(ymq − ȳm·)2 + r

∑
m

(ym· − x>
mβ̂)2; �

• f. 3 points Write down the formula of the F-test in terms of SSEu and SSEc
with a correct accounting of the degrees of freedom, and give this formula also in
terms of SSEu and SSEb.

Answer. Unconstrained model has n parameters, and constrained model has k parameters;
the number of additional “constraints” is therefore n− k. This gives the F-statistic

(42.2.31)
(SSEc − SSEu)/(n − k)

SSEu/n(r − 1)
=
rSSEb/(n− k)

SSEu/n(r − 1)

�

42.3. The F-Test Statistic is a Function of the Likelihood Ratio

Problem 430. The critical region of the generalized likelihood ratio test can be
written as

(42.3.1) C = {y1, . . . , yn :
supθ∈Ω `(y1, . . . , yn; θ1, . . . , θk)

supθ∈ω `(y1, . . . , yn; θ1, . . . , θk)
≥ k},

where ω refers to the null and Ω to the alternative hypothesis (it is assumed that the
hypotheses are nested, i.e., ω ⊂ Ω). In other words, one rejects the hypothesis if the
maximal achievable likelihood level with the restriction imposed is much lower than

that without the restriction. If θ̂ is the unrestricted and
ˆ̂
θ the restricted maximum

likelihood estimator, then the test statistic is

(42.3.2) LR = 2(log `(y, θ̂) − log `(y,
ˆ̂
θ)) → χ2

i

where i is the number of restrictions. In this exercise we are proving that the F-test
in the linear model is equivalent to the generalized likelihood ratio test. (You should
assume here that both β and σ2 are unknown.) All this is in [Gre97, p. 304].

• a. 1 point Since we only have constraints on β and not on σ2, it makes sense
to first compute the concentrated likelihood function with σ2 concentrated out. Derive
the formula for this concentrated likelihood function which is given in [Gre97, just
above (6.88)].

Answer.

(42.3.3) Concentrated log `(y;β) = −n

2

(
1 + log 2π + log

1

n
(y − Xβ)>(y − Xβ)

)

�
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• b. 2 points In the case of a linear restriction, show that LR is connected with
the F-statistic F as follows:

(42.3.4) LR = n log
(
1 +

i

n− k
F
)

Answer. LR = −n
(

log 1
n

ε̂>ε̂ − log 1
n

ˆ̂ε
>ˆ̂ε

)
= n log

ˆ̂ε
> ˆ̂ε

ε̂> ε̂
In order to connect this with the F

statistic note that

(42.3.5) F =
n− k

i

( ˆ̂ε
>ˆ̂ε

ε̂>ε̂
− 1

)

�

42.4. Tests of Nonlinear Hypotheses

Make linear approximation, need Jacobian for this. Here is an example where a
nonlinear hypothesis arises naturally:

Problem 431. [Gre97, Example 7.14 on p. 361]: The model

(42.4.1) Ct = α+ βYt + γCt−1 + εt

has different long run and short run propensities to consume. Give formulas for both.

Answer. Short-run is β; to compute the long run propensity, which would prevail in the
stationary state when Ct = Ct−1, write C∞ = α+βY∞+γC∞+ε∞ or C∞(1−γ) = α+βY∞+ε∞
or C∞ = α/(1 − γ) + β/(1 − γ)Y∞ + εt/(1 − γ). Therefore long run propensity is δ = β/(1 − γ).

�

42.5. Choosing Between Nonnested Models

Throwing all regressors into the same regression is a straightforward way out but
not very good. J-test (the J comes from “joint”) is better: throw the predicted values
of one of the two models as a regressor into the other model and test whether this
predicted value has a nonzero coefficient. Here is more detail: if the null hypothesis
is that model 1 is right, then throw the predicted value of model 2 into model 1
and test the null hypothesis that the coefficient of this predicted value is zero. If
Model 1 is right, then this additional regressor leaves all other estimators unbiased,
and the true coefficient of the additional regressor is 0. If Model 2 is right, then
asymptotically, this additional regressor should be the only regressor in the combined
model with a nonzero coefficient (its coefficient is = 1 asymptotically, and all the
other regressors should have coefficient zero.) Whenever nonnested hypotheses are
tested, is is possible that both hypotheses are rejected, or that neither hypothesis is
rejected by this criterion.



CHAPTER 43

Multiple Comparisons in the Linear Model

Due to the isomorphism of tests and confidence intervals, we will keep this whole
discussion in terms of confidence intervals.

43.1. Rectangular Confidence Regions

Assume you are interested in two linear combinations of β at the same time, i.e.,
you want separate confidence intervals for them. If you use the Cartesian product
(or the intersection, depending on how you look at it) of the individual confidence
intervals, the confidence level of this rectangular confidence region will of necessity
be different that of the individual intervals used to form this region. If you want the
joint confidence region to have confidence level 95%, then the individual confidence
intervals must have a confidence level higher than 95%, i.e., they must be be wider.

There are two main approaches for compute the confidence levels of the indi-
vidual intervals, one very simple one which is widely applicable but which is only
approximate, and one more specialized one which is precise in some situations and
can be taken as an approximation in others.

43.1.1. Bonferroni Intervals. To derive the first method, the Bonferroni in-
tervals, assume you have individual confidence intervals Ri for parameter φi. In order

to make simultaneous inferences about the whole parameter vector φ =



φ1
...
φi


 you

take the Cartesian product R1×R2×· · ·×Ri; it is defined by



φ1
...
φi


 ∈ R1×R2×· · ·×Ri

if and only if φi ∈ Ri for all i.
Usually it is difficult to compute the precise confidence level of such a rectan-

gular set. If one cannot be precise, it is safer to understate the confidence level.
The following inequality from elementary probability theory, called the Bonferroni
inequality, gives a lower bound for the confidence level of this Cartesian prod-
uct: Given i events Ei with Pr[Ei] = 1 − αi; then Pr[

⋂
Ei] ≥ 1 −∑αi. Proof:
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Pr[
⋂
Ei] = 1 − Pr[

⋃
E′
i] ≥ 1 −∑Pr[E′

i]. The so-called Bonferroni bounds therefore
have the individual levels 1 − α/i. Instead of γj = α/i one can also take any other
γi ≥ 0 with

∑
γi = α. For small α and small i this is an amazingly precise method.

43.1.2. The Multivariate t Distribution. Let z ∼ N(o, σ2Ψ) where Ψ is
positive definite and has ones in the diagonal:

(43.1.1) Ψ =




1 ρ12 ρ13 · · · ρ1i

ρ12 1 ρ23 · · · ρ2i

ρ13 ρ23 1 · · · ρ3i

...
...

...
. . .

...
ρ1i ρ2i ρ3i · · · 1




Let s2 ∼ σ2

ν χ
2
ν be independent of z. Then t = z/s has a multivariate t distribution

with ν degrees of freedom. This is clearly what one needs for simultaneous t intervals,
since this is the joint distribution of the statistics used to construct t intervals. Each
ti has a t distribution. For certain special cases of Ψ, certain quantiles of this joint
distribution have been calculated and tabulated. This allows to compute the precise
confidence levels of multiple t intervals in certain situations.

Problem 432. Show that the correlation coefficient between ti and tj is ρij But
give a verbal argument that the ti are not independent, even if the ρij = 0, i.e. zi
are independent. (This means, one cannot get the quantiles of their maxima from
individual quantiles.)

Answer. First we have E[tj ] = E[zj ] E[ 1
s
] = 0, since zj and s are independent. Therefore

(43.1.2)

cov[ti, tj ] = E[titj ] = E[E[titj ]|s] = E[E[
1

s2
zizj |s]] = E[

1

s2
E[zizj |s]] = E[

1

s2
E[zizj ]] = E[

σ2

s2
]ρij .

In particular, var[ti] = E[σ
2

s2 ], and the statement follows. �

43.1.3. Studentized Maximum Modulus and Related Intervals. Look
at the special case where all ρij are equal, call them ρ. Then the following quantiles
have been tabulated by [HH71], and reprinted in [Seb77, pp. 404–410], where they
are called uαi,ν,ρ:

(43.1.3) Pr[
(

max
j=1,...,i

|ti|
)
≤ uαi,ν,ρ] = 1− α,

where t =




t1

...
ti


 is a multivariate equicorrelated t with ν degrees of freedom and

correlation coefficient ρ.
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If one needs only two joint confidence intervals, i.e., if i = 2, then there are only
two off-diagonal elements in the dispersion matrix, which must be equal by symmetry.
A 2 × 2 dispersion matrix is therefore always “equicorrelated.” The values of the
uα2,n−k,ρ can therefore be used to compute simultaneous confidence intervals for any
two parameters in the regression model. For ρ one must use the actual correlation
coefficient between the OLS estimates of the respective parameters, which is known
precisely.

Problem 433. In the model y = Xβ + ε, with ε ∼ (o, σ2I), give a formula

for the correlation coefficient between g>β̂ and h>β̂, where g and h are arbitrary
constant vectors.

Answer. This is in Seber, [Seb77, equation (5.7) on p. 128].

(43.1.4) ρ = g>(X>X)−1h/
√

(g>(X>X)−1g)(h>(X>X)−1h)

�

But in certain situations, those equicorrelated quantiles can also be applied for
testing more than two parameters. The most basic situation in which this is the
case is the following: you have n × m observations yij = µi + εij , and the εij ∼
NID(0, σ2). Then the equicorrelated t quantiles allow you to compute precise joint
confidence intervals for all µi. Define s2 =

∑
i,j(yij − ȳi·)2/(n(m − 1)), and define

z by zi = (ȳi· − µi)
√
m. These zi are normal with mean zero and dispersion matrix

σ2I , and they are independent of s2. Therefore one gets confidence intervals

(43.1.5) µi ∈ ȳi· ± uαn,n(m−1),0s/
√
m.

This simplest example is a special case of “orthogonal regression,” in which X>X

is a diagonal matrix. One can do the same procedure also in other cases of orthogonal
regression, such as a regression with orthogonal polynomials as explanatory variables.

Now return to the situation of the basic example, but assume that the first row of
the matrix Y of observations is the reference group, and one wants to know whether
the means of the other groups are significantly different than that first group. Give
the first row the subscript i = 0. Then use zi = (ȳi· − ȳ0·)

√
m/

√
2, i = 1, . . . , n.

One obtains again the multivariate t, this time ρ = 1/2. Miller calls these intervals
“many-one intervals.”

Problem 434. Assume again we are in the situation of our basic example, re-
vert to counting i from 1 to n. Construct simultaneous confidence intervals for the
difference between the individual means and the grand mean.

Answer. One uses

(43.1.6) zi =

(
ȳi· − ȳ·· − (µi − µ)

)/√
n− 1

mn
,
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where ȳ·· is the grand sample mean and µ its population counterpart. Since ȳ·· = 1
n

∑
ȳi·. one

obtains cov[ȳi·, ȳ··] = 1
n

var[ȳi·] = σ2

mn
. Therefore var[ȳi·− ȳ··] = σ2

(
1
m

− 2
mn

+ 1
mn

)
= σ2

(
n−1
mn

)
.

And the correlation coefficient is 1/(n − 1). �

43.1.4. Studentized Range. This is a famous example, it is not in Seber
[Seb77], but we should at least know what it is. Just as the projected F intervals
are connected with the name of Scheffé, these intervals are connected with the name
of Tukey. Again in the situation of our basic example one uses ȳi· − ȳk· to build
confidence intervals for µi − µk for all pairs i, k : i 6= k. This is no longer the
equicorrelated case. (Such simultaneous confidence intervals are useful if one knows
that one will compare means, but one does not know a priori which means.)

Problem 435. Again in our basic example, define

z =
1√
2




ȳ1· − ȳ2·
ȳ1· − ȳ3·
ȳ1· − ȳ4·
ȳ2· − ȳ3·
ȳ2· − ȳ4·
ȳ3· − ȳ4·



.

Compute the correlation matrix of z.

Answer. Write z = 1√
2
Aȳ, therefore V[z] = σ2

2m
AA> where

(43.1.7)

A =




1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1




V[z] =
1

2m
AA> =

1

2m




2 1 1 −1 −1 0
1 2 1 1 0 −1
1 1 2 0 1 1
−1 1 0 2 1 −1
−1 0 1 1 2 1
0 −1 1 −1 1 2




�

43.2. Relation between F-test and t-tests.

Assume you have constructed the t-intervals for several different linear combina-
tions of the two parameters β1 and β2. In the (β1, β2)-plane, each of these intervals
can be represented by a band delimited by parallel straight lines. If one draws many
of these bands, their intersection becomes an ellipse, which has the same shape as
the joint F-confidence region for β1 and β2, but it is smaller, i.e., it comes from an
F-test for a lower significance level α

The F-test, say for β1 = β2 = 0, is therefore equivalent not to two but to infinitely
many t-tests, one for each linear combination of β1 and β2, but each of these t tests
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has a higher confidence level than that of the F test. This is the right way how to
look at the F test.

What are situations in which one would want to obtain a F-confidence region in
order to get information about many different linear combinations of the parameters
at the same time?

For instance, one examines a regression output and looks at all parameters and
computes linear combinations of parameters of interest, and believes they are sig-
nificant if their t-tests reject. This whole procedure is sometimes considered as a
misuse of statistics, “data-snooping,” but Scheffé argued it was justified if one raises
the significance level to that of the F test implied by the infinitely many t tests of all
linear combinations of β.

Or one looks at only certain kinds of linear combinations, for instance, at all
contrasts, i.e., linear combinations whose coefficients sum to zero. This is a very
thorough way to ascertain that all parameters are equal.

Or if one wants to draw a confidence band around the whole regression line.

Problem 436. Someone fits a regression with 18 observations, one explanatory
variable and a constant term, and then draws around each point of the regression line
a standard 95% t interval. What is the probability that the band created in this way
covers the true regression line over its entire length? Note: the Splus commands
qf(1-alpha,df1,df2) and qt(1-alpha/2,df) give quantiles, and the commands
pf(critval,df1,df2) and pt(critval,df) give the cumulative distribution func-
tion of F and t distributions.

Answer. Instead of n = 18 and k = 2 we do it for arbitrary n and k. We need a α such that

t(n−k;0.025) =
√

2F(k,n−k;α)(43.2.1)

1

2
(t(n−k;0.025))

2 = F(k,n−k;α)(43.2.2)

1 − α = Pr[Fk,n−k ≤ 1

2
(t(n−k;0.025))

2](43.2.3)

The Splus command is obsno<-18; conflev<-pf((qt(0.975,obsno-2)^2/2,2,obsno-2). The value
is 0.8620989. �

Problem 437. 6 points Which options do you have if you want to test more
than one hypothesis at the same time? Describe situations in which one F-test is
better than two t-tests (i.e., in which an elliptical confidence region is better than
a rectangular one). Are there also situations in which you might want two t-tests
instead of one F-test?

In the one-dimensional case this confidence region is identical to the t-interval.
But if one draws for i = 2 the confidence ellipse generated by the F-test and the two
intervals generated by the t-tests into the same diagram, one obtains the picture as
in figure 5.1 of Seber [Seb77], p. 131. In terms of hypothesis testing this means:
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there are values for which the F test does not reject but one or both t tests reject,
and there are values for which one or both t-tests fail to reject but the F-test rejects.
The reason for this confusing situation is that one should not compare t tests and F

tests at the same confidence level. The relationship between those testing procedures
becomes clear if one compares the F test at a given confidence level to t tests at a
certain higher confidence level.

We need the following math for this. For a positive definite Ψ and arbitrary x

it follows from (A.5.6) that

(43.2.4) x>Ψ−1x = max
g : g 6=o

(g>x)2

g>Ψg
.

Applying this to the situation here we have

(43.2.5) (u − Rβ̂)>(R(X>X)−1R>)−1(u − Rβ̂) = max
g : g 6=o

(g>u − g>Rβ̂)2

g>R(X>X)−1R>g
.

Now the maximum of a set is smaller or equal to iF(i,n−q;α)s
2 if and only if each

element of this set is smaller or equal. Therefore the F-confidence region (41.4.3) can
also be written as

R(y) = {u ∈ R
i :

(g>u − g>Rβ̂)2

g>R(X>X)−1R>g
≤ iF(i,n−q;α)s

2 for all g 6= o}

(43.2.6)

= {u ∈ R
i : (g>u − g>Rβ̂)2 ≤ iF(i,n−q;α)s

2g>R(X>X)−1R>g for all g}
(43.2.7)

= {u ∈ R
i : |g>u − g>Rβ̂| ≤

√
iF(i,n−q;α)sg>Rβ̂

for all g}
(43.2.8)

=
⋂

g

{u ∈ R
i : |g>u − g>Rβ̂| ≤

√
iF(i,n−q;α)sg>Rβ̂

}.
(43.2.9)

It is sufficient to take the intersection over all g with unit length. What does each
of these regions intersected look like? First note that the i× 1 vector u lies in that
region if and only if g>u lies in a t-interval for g>Rβ, whose confidence level is no
longer α but is γ = Pr[|t| ≤ √

iF(i,n−q;α)], where t is distributed as a t with n − q
degrees of freedom. Geometrically, in Seber [Seb77]’s figure 5.1, these confidence
regions can be represented by all the bands tangent to the ellipse.

Taking only the vertical and the horizontal band tangent to the ellipse, one has
now the following picture: if one of the t-tests rejects, then the F-test rejects too.
But it may be possible that the F-test rejects but neither of the two t-tests rejects.
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In this case, there must be some other linear combination of the two variables for
which the t test rejects.

Another example for simultaneous t-tests, this time derived from Hotelling’s T 2,
is given in Johnson and Wichern [JW88, chapter 5]. It is very similar to the above;
we will do here only the large-sample development:

43.3. Large-Sample Simultaneous Confidence Regions

Assume every row yi of the n × p matrix Y is an independent drawing from a
population with mean µ and dispersion matrix ΣΣΣ. If n is much larger than p, then
one can often do all tests regarding the unknown µ in terms of the sample mean ȳ,
which one may assume to be normally distributed, and whose true dispersion matrix
may be assumed to be know and to be equal to the sample dispersion matrix of the
yi, divided by n.

Therefore it makes sense to look at the following model (the y in this model is
equal to the ȳ in the above model, and the ΣΣΣ in this model is equal to S/n, or any
other consistent estimate, for that matter, in the above model):

Assume y ∼ N(µ,ΣΣΣ) with unknown µ and known ΣΣΣ. We allow ΣΣΣ to be singular,
i.e., there may be some nonzero linear combinations g>y which have zero variance.
Let q be the rank of ΣΣΣ. Then a simultaneous 1 − α confidence region for all linear
combinations of µ is

(43.3.1) g>µ ∈ g>y ±
√
χ2
q
(α)
√

g>ΣΣΣg

where χ2
q
(α)

is the upper α-quantile of the χ2 distribution with q degrees of freedom,

i.e., Pr[χ2
q ≥ χ2

q
(α)

] = α.

Proof: For those g with var[g>y] = 0, i.e., g>ΣΣΣg = 0, the confidence interval
has 100 percent coverage probability (despite its zero length); therefore we only have
to worry about those g with g>ΣΣΣg 6= 0:

Pr[g>µ ∈ g>y ±
√
χ2
q
(α)
√

g>ΣΣΣg for all g ] =(43.3.2)

= Pr[g>µ ∈ g>y ±
√
χ2
q
(α)
√

g>ΣΣΣg for all g with g>ΣΣΣg 6= 0 ] =(43.3.3)

= Pr[
(g>(µ − y))2

g>ΣΣΣg
≤ χ2

q
(α)

for all g with g>ΣΣΣg 6= 0 ] =(43.3.4)

= Pr[ max
g : g>ΣΣΣg 6=0

(g>(µ − y))2

g>ΣΣΣg
≤ χ2

q
(α)

] =(43.3.5)

= Pr[(y − µ)>ΣΣΣ−(y − µ) ≤ χ2
q
(α)

] = 1 − α(43.3.6)
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One can apply the maximization theorem here because y − µ can be written in the
form ΣΣΣu for some u.

Now as an example let’s do Johnson and Wichern, example 5.7 on pp. 194–197.
In a survey, people in a city are asked which bank is their primary savings bank. The
answers are collected as rows in the Y matrix. The columns correspond to banks A,
B, C, D, to some other bank, and to having no savings. Each row has exactly one 1 in
the column corresponding to the respondent’s primary savings bank, zeros otherwise.
The people with no savings will be ignored, i.e., their rows will be trimmed from the
matrix together with the last column. After this trimming, Y has 5 columns, and
there are 355 respondents in these five categories. It is assumed that the rows of Y

are independent, which presupposes sampling with replacement, i.e., the sampling is
done in such a way that theoretically the same people might be asked twice (or the
sample is small compared with the population). The probability distribution of each
of these rows, say here the ith row, is the multinomial distribution whose parameters
form the p-vector p (of nonnegative elements adding up to 1). Its means, variances,
and covariances can be computed according to the rules for discrete distributions:

E[yij ] = 1(pj) + 0(1 − pj) = pj(43.3.7)

var[yij ] = E[y2
ij ] − (E[yij ])

2 = pj − p2
j = pj(1 − pj) because y2

ij = yij(43.3.8)

cov[yij ,yik] = E[yijyik ] − E[yij ] E[yik ] = −pjpk because yijyik = 0

(43.3.9)

The pi can be estimated by the ith sample means. From these sample means one
also obtains an estimate S of the dispersion matrix of the rows of Y . This estimate
is singular (as is the true dispersion matrix), it has rank r − 1, since every row of
the Y-matrix adds up to 1. Provided n− r is large, which means here that np̂k ≥ 20
for each category k, one can use the normal asymptotics, and gets as simultaneous
confidence interval for all linear combinations

(43.3.10) g>p ∈ g>p̂ ±
√
χ2
r−1

(α)

√
g>Sg

n

A numerical example illustrating the width of these confidence intervals is given in
[JW88, p. 196].



CHAPTER 44

Sample SAS Regression Output

dep variable: wagerate

analysis of variance

sum of mean

source df squares square F value prob>F

model 6 1553.90611 258.98435 20.931 0.0001

error 547 6768.00436 12.37295129

c total 553 8321.91046

root mse 3.517521 R-square 0.1867

dep mean 4.817097 adj R-sq 0.1778

c.v. 73.02159

parameter estimates

parameter standard t for H0:

variable df estimate error parameter=0 prob>|t|

intercep 1 0.36435820 1.21195551 0.301 0.7638

age 1 -0.01661574 0.02937263 -0.566 0.5718

educatn 1 0.41699451 0.05107535 8.164 0.0001

xperienc 1 0.02981372 0.02958059 1.008 0.3140

gender 1 -1.73266849 0.41844140 -4.141 0.0001

white 1 0.33807525 0.84295802 0.401 0.6885

black 1 -0.19974753 0.87184661 -0.229 0.8189

Table 1. Sample SAS regression output

Table 1 is the output of a SAS run. The dependent variable is the y variable,
here it has the name wagerate. “Analysis” is the same as “decomposition,” and
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“variance” is here the sample variance or, say better, the sum of squares. “Analysis of
variance” is a decomposition of the “corrected total” sum of squares

∑n
j=1(yj− ȳ)2 =

8321.91046 into its “explained” part
∑n
j=1(ŷj− ȳ)2 = 1553.90611, the sum of squares

whose “source” is the “model,” and its “unexplained” part, the sum of squared
“errors”

∑n
j=1(yj− ŷj)2, which add up to 6768.00436 here. The “degrees of freedom”

are a dimensionality constant; the d.f. of the corrected total sum of squares (SST)
is the number of observations minus 1, while the d.f. of the SSE is the number of
observations minus the number of parameters (intercept and slope parameters) in the
regression. The d.f. of the sum of squares due to the model consists in the number
of slope parameters (not counting the intercept) in the model.

The “mean squares” are the corresponding sum of squares divided by their de-
grees of freedom. This “mean sum of squares due to error” should not be con-

fused with the “mean squared error” of an estimator θ̂ of θ, defined as MSE[θ̂; θ] =

E[(θ̂ − θ)2]. One can think of the mean sum of squares due to error as the sample
analog of the MSE[ŷ; y]; it is as the same time an unbiased estimate of the distur-
bance variance σ2. The mean sum of squares explained by the model is an unbiased
estimate of σ2 if all slope coefficients are zero, and is larger otherwise. The F value
is the mean sum of squares explained by the model divided by the mean sume of
squares due to error, this is the value of the test statistic for the F-test that all slope
parameters are zero. The p-value prob > F gives the probability of getting an even
larger F-value when the null hypothesis is true, i.e., when all parameters are indeed
zero. To reject the null hypothesis at significance level α, this p-value must be smaller
than α.

The root mse is the square root of the mean sum of squares due to error, it is an
estimate of σ. The dependent mean is simply ȳ. The “coefficient of variation” (c.v.)
is 100 times root mse divided by dependent mean. The R-square is ss(model)

divided by ss(c. total), and the adjusted R-square is R̄2 = 1 − SSE/(n−k)
SST/(n−1) .

For every parameter, including the intercept, the estimated value is printed, and
next to it the estimate of its standard deviation. The next column has the t-value,
which is the estimated value divided by its estimated standard deviation. This is
the test statistic for the null hypothesis that this parameter is zero. The prob>|t|

value indicates the significance for the two-sided test.

Problem 438. What does the c stand for in c total in Table 1?

Problem 439. 4 points Using the sample SAS regression output in Table 1,
test at the 5% significance level that the coefficient of gender is −1.0, against the
alternative that it is < −1.0.
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Answer. -1.73266849-(-1)=-.73266849 must be divided by 0.41844140, which gives -1.7509465,
and then we must look it up in the t-table or, since there are so many observations, the normal ta-
ble. It is a one-sided test, therefore the critical value is -1.645, therefore reject the null hypothesis.

�

Problem 440. Here is part of the analysis of variance table printed out by the
SAS regression procedure: If you don’t have a calculator, simply give the answers in

SUM OF MEAN

SOURCE DF SQUARES SQUARE

MODEL 4 1529.68955 382.42239

ERROR 549 6792.22092 12.37198710

C TOTAL 553 8321.91046

expressions like
√

1529.68955/7 etc.

• a. 1 point The SSE of this regression is

• b. 2 points The estimated standard deviation of the disturbance is

• c. 1 point Besides a constant term, the regression has explanatory

variables.

• d. 1 point The dataset has observations.

• e. 3 points Make an F test of the null hypothesis that the slope parameters of all
the explanatory variables are zero, at the 5% significance level. The observed value

of the F statistic is is , and the critical value is in this case.

Answer. Pr[F4,∞ > 3.32] = 0.01; Pr[F4,∞ > 2.37] = 0.05. The observed F value is 382.42/12.372=30.910,
which is significant up to the level 0.0001, therefore reject H0. �

• f. Here is the printout of the analysis of variance table after additional explana-
tory variables were included in the above regression (i.e., the dependent variable is
the same, and the set of explanatory variables contains all variables used in the above
regression, plus some additional ones).

• g. 1 point There were additional variables.
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SUM OF MEAN

SOURCE DF SQUARES SQUARE

MODEL 6 1553.90611 258.98435

ERROR 547 6768.00436 12.37295129

C TOTAL 553 8321.91046

• h. 3 points Make an F test at the 5% significance level of the null hypothesis
that all additional variables (i.e., those variables not included in the first regression)

had slope coefficients zero. The value of the test statistic is (show how you

derived it), and the critical value is

Answer. Therefore you cannot reject. �

Answer. SSEu = 6768.0, SSEr = 6792.2, and the number of restrictions is 2. The F-statistic
is therefore

(44.0.11)
(6792.2 − 6768.0)/2

6768.0/547
= 0.9779(0.97861?) < 3.00 = F.005;2,547

Therefore you cannot reject the null hypothesis. �
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Flexible Functional Form

So far we have assumed that the mean of the dependent variable is a linear func-
tion of the explanatory variables. In this chaper, this assumption will be relaxed. We
first discuss the case where the explanatory variables are categorical variables. For
categorical variables (gender, nationality, occupations, etc.), the concept of linearity
does not make sense, and indeed, it is customary to fit arbitrary numerical functions
of these categorical variables. One can do this also if one has numerical variables
which assume only a limited number of values (such as the number of people in a
household). As long as there are repeated observations for each level of these vari-
ables, it is possible to introduce a different dummy variables for every level, and in
this way also allow arbitrary functions. Linear restrictions between the coefficients
of these dummies can be interpreted as the selection of more restricted functional
spaces.

45.1. Categorical Variables: Regression with Dummies and Factors

If the explanatory variables are categorical then it is customary to fit arbitrary
functions of these variables. This can be done with the use of dummy variables, or
by the use of variables coded as “factors.” If there are more than two categories,
you need several several regressors taking only the values 0 and 1, which is why they
are called “dummy variables.” One regressor with several levels 0,1,2, etc. is too
restrictive. The “factor” data type in R allows to code several levels in one variable,
which will automatically be expanded into a set of dummy variables. Therefore let
us first discuss dummy variables.

If one has a categorical variable which has j possible outcomes, the simplest and
most obvious thing to do would be to generate j regressors into the equation, each
taking the value 1 if the observation has this level, and the value 0 otherwise. But if
one does this, one has to leave the intercept out of the regression, otherwise one gets
perfect multicollinearity. Usually in practice one keeps the intercept and omits one
of the dummy variables. This makes it a little more difficult to interpret the dummy
variables.
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Problem 441. In the intermediate econometrics textbook [WW79], the follow-
ing regression line is estimated:

(45.1.1) bt = 0.13 + .068yt + 0.23wt + ε̂t,

where bt is the public purchase of Canadian government bonds (in billion $), yt is
the national income, and wt is a dummy variable with the value wt = 1 for the war
years 1940–45, and zero otherwise.

• a. 1 point This equation represents two regression lines, one for peace and
one for war, both of which have the same slope, but which have different intercepts.
What is the intercept of the peace time regression, and what is that of the war time
regression line?

Answer. In peace, wt = 0, therefore the regression reads bt = 0.13 + .068yt + ε̂t, therefore
the intercept is .13. In war, wt = 1, therefore bt = 0.13 + .068yt + 0.23 + ε̂t, therefore the intercept

is .13 + .23 = .36. �

• b. 1 point What would the estimated equation have been if, instead of wt,
they had used a variable pt with the values pt = 0 during the war years, and pt = 1
otherwise? (Hint: the coefficient for pt will be negative, because the intercept in peace
times is below the intercept in war times).

Answer. Now the intercept of the whole equation is the intercept of the war regression line,
which is .36, and the coefficient of pt is the difference between peace and war intercepts, which is
-.23.

(45.1.2) bt = .36 + .068yt − .23pt + ε̂t.

�

• c. 1 point What would the estimated equation have been if they had thrown in
both wt and pt, but left out the intercept term?

Answer. Now the coefficient of wt is the intercept in the war years, which is .36, and the
coefficient of pt is the intercept in the peace years, which is .13.

(45.1.3) bt = .36wt + .13pt + .068yt + ε̂t?

�

• d. 2 points What would the estimated equation have been, if bond sales and
income had been measured in millions of dollars instead of billions of dollars? (1
billion = 1000 million.)

Answer. From bt = 0.13+ .068yt+0.23wt+ ε̂t follows 1000bt = 130+ .068 · 1000yt+230wt+
1000ε̂t, or

(45.1.4) b
(m)
t = 130 + .068y

(m)
t + 230wt + ε̂

(m)
t ,

where b
(m)
t is bond sales in millions (i.e., b

(m)
t = 1000bt), and y

(m)
t is national income in millions

(i.e., y
(m)
t = 1000yt). �
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Problem 442. 5 points Assume you run a time series regression y = Xβ + ε,
but you have reason to believe that the values of the parameter β are not equal in all
time periods t. What would you do?

Answer. Include dummies, run separate regressions for subperiods, use a varying parameter
model. �

There are various ways to set it up. Threshold effects might be represented by
the following dummies:

(45.1.5)




ι o o o

ι ι o o

ι ι ι o

ι ι ι ι




In the example in Problem 441, the slope of the numerical variables does not
change with the levels of the categorical variables, in other words, there is no in-
teraction between those variables, but each variable makes a separate contribution
to the response variable. The presence of interaction can be modeled by including
products of the dummy variables with the response variable with whom interaction
exists.

How do you know the interpretation of the coefficients of a given set of dummies?
Write the equation for every category separately. E.g. [Gre97, p. 383]: Winter
y = β1 + β5x, Spring y = β1 + β2 + β5x Summer y = β1 + β3 + β5x, Autumn
y = β1 + β4 + β5x. I.e. the overall intercept β1 is the intercept in Winter, the
coefficient for the first seasonal dummy β2 is the difference between Spring and
Winter, that for the second dummy β3 difference between Summer and Winter, and
β4 the difference between Autumn and Winter.

If the slope differs too, do

(45.1.6)

[
ι o x o

ι ι x x

]
=
[
ι d x d ∗ x

]

where ∗ denotes the Hadamard product of two matrices (their element-wise multi-
plication). This last term is called an interaction term.

An alternative to using dummy variables is to use factor variables. If one includes
a factor variable into a regression formula, the statistical package converts it into a
set of dummies. Look at Section 22.5 for an example how to use factor variables
instead of dummies in R.

45.2. Flexible Functional Form for Numerical Variables

Here the issue is: how to find the right transformation of the explanatory vari-
ables before running the regression? Each of the methods to be discussed has a
smoothing parameter.
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To fix notation, assume for now that only one explanatory variable x is given and
you want to estimate the model y = f(x)+ε with the usual assumption ε ∼ o, σ2I .
But whereas the regression model specified that f is an affine function, we allow f
to be an element of an appropriate larger function space. The size of this space is
characterized by a so-called smoothing parameter.

45.2.1. Polynomial Regression. The most frequently used method is poly-
nomial regression, i.e., one chooses f to be a polynomial of order m (i.e. it has m
terms, including the constant term) or degree m−1 (i.e. the highest power is xm−1).
f(x) = θ0 + θ1x+ · · · + θm−1x

m−1.
Motivation: This is a seamless generalization of ordinary least squares, since

affine functions are exactly polynomials of degree 1 (order 2). Taylor’s theorem says
that any f ∈ Wm[a, b] can be approximated by a polynomial of order m (degree
m− 1) plus a remainder term which can be written as an integral involving the mth
derivative, see [Eub88, (3.5) on p. 90]. The Weierstrass Approximation Theorem say
that any continuous function over a closed and bounded interval can be uniformly
approximated by polynomials of sufficiently high degree.

Here one has to decide what degree to use, the degree of the polynomial plays
here the role of the smoothing parameter.

Some practical hints:
For higher degree polynomials don’t use the “power basis” 1, x, x2, . . . , xm−1, but

there are two reasonable choices. Either one can use Legendre polynomials [Eub88,
(3.10) and (3.11) on p. 54], which are obtained from the power basis by Gram-
Schmidt orthonormalization over the interval [a, b]. This does not make the design
matrix orthogonal, but at least one should expect it not to be too ill-conditioned,
and the roots and the general shape of Legendre polynomials is well-understood. As
the second main choice one may also select polynomials that make the design-matrix
itself exactly orthonormal. The Splus-function poly does that.

The jth Legendre polynomial has exactly j real roots in the interval [Dav75,
Chapter X], [Sze59, Chapter III]. The orthogonal polynomials probably have a sim-
ilar property. This gives another justification for using polynomial regession, which
is similar to the justification one sometimes reads for using Fourier-series: The data
have high-frequency and low-frequency components, and one wants to filter out the
low-frequency components.

In practice, polynomials do not always give a good fit. There are better alterna-
tives available, which will be discussed in turn.

45.2.2. The Box-Cox Transformation. An early attempt used in Economet-
rics was to use a family of functions which is not as complete as the polynomials but
which ecompasses many functional forms encountered in Economics. These functions
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are only defined for x > 0 and have the form

(45.2.1) B(x, λ) =

{
xλ−1
λ if λ 6= 0

ln(x) if λ = 0

[DM93, p. 484] have a plot with the curves for λ = 1.5, 1, 0.5, 0, −0.5, and −1.
They point out some serious disadvantage of this transformation: if λ 6= 0, B(x, λ)
is bounded eihter from below or above. For λ < 0, B(x, λ) cannot be greater than
−1/λ, and for λ > 0, it cannot be less than −1/λ.

About the Box-Cox transformation read [Gre97, 10.4]

45.2.3. Kernel Estimates. For nonparametric estimates look at [Loa99], it
has the R-package locfit.

Figure 1.1 is a good example: it is actuarial data, which are roughly fitted by
a straight line, but a better idea of the accelerations and decelerations can be very
useful for a life insurance company.

Chapter 1 gives a historical overview: Spencer’s rule from 1904 was designed for
computational convenience (for hand-calculations), and it reproduces polynomials
up to the 3rd degree. Figure 2.1 illustrates how local regression is done. Pp. 18/19:
emphasis on fitted values, not on the parameter estimates. There are two important
parameters: the bandwidth and the degree of the polynomial. To see the effects
of bandwidth, see the plots on p. 21: using our data we can do plots of the sort
plot(locfit(r~year,data=uslt,alpha=0.1,deg=3),get.data=T) and then vary
alpha and deg.

Problem 443. What kind of smoothing would be best for the time series of the
variable r (profit rate) in dataset uslt?

Problem 444. Locally constant smooths are not good at the edges, and also not
at the maxima and minima of the data. Why not?

The kernel estimator can be considered a local fit of a constant. Straight lines
are better, and cubic parabolas even better. Quadratic ones not as good.

The birth rate data which require smoothing with a varying bandwidth are
interesting, see Simonoff p. 157, description in the text on p. 158.

45.2.4. Regression Splines. About the word “spline,” [Wah90, p. vii] writes:
“The mechanical spline is a thin reedlike strip that was used to draw curves needed
in the fabrication of cross sections of ships’ hulls. Ducks or weights were placed on
the strip to force it to go through given points, and the free portion of the strip
would assume a position in space that minimized the bending energy.”

One of the drawbacks of polynomial regression is that its fit is global. One
method to provide for local fits is to fit a piecewise polynomial. A spline is a piecewise
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polynomial of order m (degree m − 1) spliced together at given “knots” so that all
derivatives coincide up to and including the m − 2nd one. Polynomial splines are
generalizations of polynomials: whereas one can characterize polynomials of order m
(degree m− 1) as functions whose m− 1st derivative is constant, polynomial splines
are functions whose m− 1st derivative is piecewise constant. This is the smoothest
way to put different polynomials together. Compare the Splus-function bs.

If one starts with a cubic spline, i.e., a spline of order 4, and postulates in
addition that the 2nd derivative is zero outside the boundary points, one obtains
what is called a “natural cubic spline”; compare the Splus-function ns. There is
exactly one natural spline going through n datapoints.

One has to choose the order and the location of the knots. The most popular
are cubic splines, and higher orders do not seem to add much, therefore it is more
important to concentrate on a good selection of the knots. here are some guidelines
how to choose knots, taken from [Eub88, p. 357]:

For m = 2, linear splines, place knots at points where the data exhibit a change
in slope.

For m = 3, quadratic splines, locate knots near local maxima, minima or inflec-
tion points in the data.

For m = 4, cubic splines, arrange the knots so that they are close to inflexion
points in the data and not more than one extreme point (maximum or minimum)
and one inflection point occurs between any two knots.

It is also possible to determine the number of knots and select their location so
as to optimize the fit. But this is a hairy minimization problem; [Eub88, p. 362]
gives some shortcuts.

Extensions: Sometime one wants knots which are not so smooth, this can be
obtained by letting several knots coincide. Or one wants polynomials of different
degrees in the different segments.

[Gre97, pp. 389/90] has a nice example for a linear spline. Each of 3 different
age groups has a different slope and a different intercept: t < t∗, t∗ ≤ t < t∗∗, and
t∗∗ ≤ t. These age groups are coded by the matrix D consisting of two dummy

variables, one for t ≥ t∗ and one for t ≥ t∗∗. I.e, D =
[
d(1) d(2)

]
where d

(1)
j = 1

if age tj ≥ t∗ and d
(2)
j = 1 if tj ≥ t∗∗. Throwing D into the regression allows for

different intercepts in these different age groups.
In order to allow for the slopes with respect to t to vary too, we need a matrix

E, again consisting of 2 columns, so that ej1 = tj if tj ≥ t∗ and 0 otherwise; and
ej2 = tj if if tj ≥ t∗∗, and 0 otherwise. Each column of E is the corresponding

column of D element-wise multiplied with t, i.e., E =
[
d(1) ∗ t d(2) ∗ t

]
.

If one then writes the model as y = Dγ + Eδ + Xβ one gets an unconstrained
model with 3 different slopes and 3 different intercepts. Assume for example there
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are 3 observations in the first age group, 2 in the second, and 4 in the third, then
(45.2.2)

D =
[
d(1) d(2)

]
=




0 0
0 0
0 0
1 0
1 0
1 1
1 1
1 1
1 1




E =
[
d(1) ∗ t d(2) ∗ t

]
=




0 0
0 0
0 0
t4 0
t5 0
t6 t6
t7 t7
t8 t8
t9 t9




X =
[
ι t x

]
=




1 t1 x1

1 t2 x2

1 t3 x3

1 t4 x4

1 t5 x5

1 t6 x6

1 t7 x7

1 t8 x8

1 t9 x9




Written column by column:

(45.2.3) y = β1 + β2t + β3x + γ1d
(1) + δ1d

(1) ∗ t + γ2d
(2) + δ2d

(2) ∗ t + ε

This is how [Gre97, equation (8.3) on p. 389] should be understood. The jth
observation has the form

(45.2.4) yj = β1 + β2tj + β3xj + γ1d
(1)
j + δ1d

(1)
j tj + γ2d

(2)
j + δ2d

(2)
j tj + εj

An observation at the year t∗ has, according to the formula for ≥ t∗, the form

(45.2.5) y∗ = β1 + β2t∗ + β3x∗ + γ1 + δ1t∗ + ε∗

but had the formula for < t∗ still applied, the equation would have been

(45.2.6) y∗ = β1 + β2t∗ + β3x∗ + ε∗

For these two equations to be equal, which means that the two regression lines
intersect at x∗, we have to impose the constraint γ1 + δ1t∗ = 0

Similarly, an observation at the year t∗∗ has, according to the formula for ≥ t∗∗,
the form

(45.2.7) y∗∗ = β1 + β2t∗∗ + β3x∗∗ + γ1 + γ2 + δ1t∗∗ + δ2t∗∗ + ε∗∗

but had the formula for < t∗∗ still applied, it would have been

(45.2.8) y∗∗ = β1 + β2t∗∗ + β3x∗∗ + γ1 + δ1t∗∗ + ε∗∗

Again equality of these two representations requires γ2 + δ2t∗∗ = 0.
These two constraints can be written as

(45.2.9)

[
γ1

γ2

]
= −

[
t∗ 0
0 t∗∗

] [
δ1
δ2

]
or γ = −Wδ, where W =

[
t∗ 0
0 t∗∗

]
.
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Plugging this into y = Dγ + Eδ + Xβ gives y = −DWδ + Eδ + Xβ = Fδ + Xβ

where F is a dummy matrix of the form

(45.2.10) F = E − DW =




0 0
0 0
0 0

t4 − t∗ 0
t5 − t∗ 0
t6 − t∗ t6 − t∗∗
t7 − t∗ t7 − t∗∗
t8 − t∗ t8 − t∗∗
t9 − t∗ t9 − t∗∗




=




0 0
0 0
0 0
1 0
2 0
3 1
4 2
5 3
6 4




Since each column is a continuous function of time without jumps, it is clear that
the fitted values are also continuous functions of time.

Here are a few remarks about intrinsically linear functions, following [Gre97,
(8.4) on p. 390]; Say y is the vector of observations of the dependent variable, and Z

is the data matrix of the explanatory variables, for instance in the above example Z

would contain only t, x, and perhaps a categorical variable denoting the different age
groups. In the above example this categorical variable can be formed as a function
of t; but in other dummy variable settings such a categorical variable is necessary.
Now the regressand is not necessarily y but may be a transformation g(y), and the
k regressors have the form fi(Z) where the functions fi are linearly independent.

For instance f1(Z) =
[
z11 z21 . . .

]>
may pick out the first column of Z, and

f2(Z) =
[
z2
11 z2

21 . . .
]>

the square of the first column. The functions g and fi
define the relationship between the given economic variables and the variables in the
regression. [Gre97, Definition 81 on p. 396] says something about the relationship
between the parameters of interest and the regression coefficients: if the k regression
coefficients β1, . . . , βk can be written as k one-to-one possibly nonlinear functions of
the k underlying parameters θ1, . . . , θk, then the model is intrinsically linear in θ.

[Gre97, p. 391/2] brings the example of a regression with an interaction term:

(45.2.11) y = ιβ1 + sβ2 + wβ3 + s ∗ wβ4 + ε

Say the underlying parameters of interest are ∂ E[yt]
∂st

= β2 +β4wt,
∂ E[yt]
∂wt

= β3 +β4st,

and the second derivative ∂2 E[yt]
∂st∂wt

= β4. Here the first parameter of interest depends
on the value of the explanatory variables, and one has to select a value; usually one
takes the mean or some other central value, but for braking distance some extreme
value may be more interesting.

[Gre97, example 8.4 on p. 396] is a maximum likelihood model that can also
be estimated as an intrinsically linear regression model. I did not find the reference
where he discussed this earlier, perhaps I have to look in the earlier edition. Here
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maximum likelihood is far better. Greene asks why and answers: least squares does
not use one of the sufficient statistics.

[Gre97, example 8.5 on p. 397/8] starts with a CES production function, then
makes a Taylor development, and this Taylor development is an intrinsically linear
regression of the 4 parameters involved. Greene computes the Jacobian matrix nec-
essary to get the variances. He compares that with doing nonlinear least squares on
the production function directly, and gets widely divergent parameter estimates.

45.2.5. Smoothing Splines. This seems the most promising approach. If one
estimates a function by a polynomial of order m or degree m − 1, then this means
that one sets the mth derivative zero. An approximation to a polynomial would
be a function whose mth derivative is small. We will no longer assume that the
fitting functions are themselves polynomials, but we will assume that f ∈ Wm[a, b]
which means f itself and its derivatives up to and including the m − 1st derivative
are absolutely continuous over a closed and bounded interval [a, b], and the mth
derivative is square integrable over [a, b].

If we allow such a general f , then the estimation criterion can no longer be
the minimization of the sum of squared errors, because in this case one could simply
choose an interpolant of the data, i.e., a f which satisfies f(xi) = yi for all i. Instead,
the estimation criterion must be a constrained or penalized least squares criterion
(analogous to OLS with an exact or random linear constraint) which has a penalty for
the mth order derivative. The idea of smoothing splines is to minimize the objective
function

(45.2.12)
(
y − f(x)

)>(
y − f(x)

)
+ λ

∫ b

a

(
f (m)(x)

)2
dx

Of course, only the values which f takes on the observed xi are relevant; but for
each sequence of observations there is one polynomial which minimizes this objective
function, and this is a natural spline with the observed values as breakpoints.

45.2.6. Local regression, Kernel Operators. A different approach is to run
locally weighted regressions. Here the response surface at a given value of the in-
dependent variable is estimated by a linear regressions which only encompasses the
points in the neighborhood of the independent variable. Splus command loess.

If this local regression only has an intercept, it is also known as a “kernel
smoother.” But locally linear smoothers perform better at the borders of the sample
than locally constant ones.
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45.3. More than One Explanatory Variable: Backfitting

Until now we restricted the discussion to the case of one explanatory variable.
The above discussion can be extended to smooth functions of several explanatory
variables, but this numerically very complex, and the results are hard to interpret.

But in many real-life situations one has to do with several additive effects without
interaction. This is much easier to estimate and to interpret.

One procedure here is “projection pursuit regression” [FS81]. Denoting the ith
row of X with xi, the model is

(45.3.1) yi =

k∑

j=1

fj(α
>
j xi) + εi,

which can also be written as

(45.3.2) y =

k∑

j=1

fj(Xαj) + ε

Here one estimates k arbitrary functions of certain linear combinations of the ex-
planatory variables α>

j xi along with the linear combinations themselves. This is
implemented in Splus in the function ppreg.

The matter will be easier if one already knows that the columns of the X-matrix
are the relevant variables and only their transformation has to be estimated. This
gives the additive model

(45.3.3) y =
k∑

j=1

fj(xj) + ε,

where xj is the jth column of X. The beauty is that one can specify here different
univariate smoothing techniques for the individual variables and then combine it all
into a joint fit by the method of back-substitution. Back-substitution is an iterative
procedure by which one obtains the joint fit by an iteration only involving fits on one

explanatory variable each. One starts with some initial set of functions f
(0)
i and then,

cycling through j = 1, . . . , k, 1, . . . , k, . . . one fits the residual y −∑k 6=j fk(xk) as a
function of xj . This looks like a crude heuristic device, but it has a deep theoretical
justification.

If the fitting procedure, with respect to the jth explanatory variable, can be
written as ŷj = Sjxj (but the more common notation is to write it f j = Sjxj),
then this backfitting works because the joint fit y = f 1 + · · · + fk + ε̂ is a solution



45.3. MORE THAN ONE EXPLANATORY VARIABLE: BACKFITTING 525

of the equation

(45.3.4)




I S1 S1 · · · S1

S2 I S2 · · · S2

S3 S3 I · · · S3

...
...

...
. . .

...
Sk Sk Sk · · · I







f 1

f 2

f 3
...

fk




=




S1y

S2y

S3y
...

Sky



,

and the iteration is known as a numerical iteration procedure to solve this system of
equations, called the Gauss-Seidel algorithm.

In the case of an OLS fit, in which one estimates k parameters β̂j , j = 1, . . . , k,

so that f j = xjβ̂j , the univariate projection functions are Sj = xj(x
>
j xj)

−1x>
j ,

therefore the estimation equation reads
(45.3.5)


I x1(x
>
1 x1)

−1x>
1 x1(x

>
1 x1)

−1x>
1 · · · x1(x

>
1 x1)

−1x>
1

x2(x
>
2 x2)

−1x>
2 I x2(x

>
2 x2)

−1x>
2 · · · x2(x

>
2 x2)

−1x>
2

x3(x
>
3 x3)

−1x>
3 x3(x

>
3 x3)

−1x>
3 I · · · x3(x

>
3 x3)

−1x>
3

...
...

...
. . .

...
xk(x

>
k xk)

−1x>
k xk(x

>
k xk)

−1x>
k xk(x

>
k xk)

−1x>
k · · · I







x1β̂1

x2β̂2

x3β̂3

...

xkβ̂k




=




x1(x
>
1 x1)

−1x>
1 y

x2(x
>
2 x2)

−1x>
2 y

x3(x
>
3 x3)

−1x>
3 y

...
xk(x

>
k xk)

−1x>
k y



.

It can be shown that this equation is equivalent to the OLS normal equations.



CHAPTER 46

Transformation of the Response Variable

So far we have concentrated on transformations of the predictor variables. If
one transforms the response variable then one will also get different variances and
covariances of the error terms. We will first discuss a procedure which treats the
predictor variables and the response variables symmetrically, and then we will look
at transformations of the response variable which give justice to the special position
the response variable has in the regression model.

46.1. Alternating Least Squares and Alternating Conditional
Expectations

In this section we will discuss a technique realized in the ace procedure of Splus.
The classic reference is [BF85] (although they emphasize too much a certain imple-
mentation, the use of fast smoothers, instead of giving the general theory). a good
survey is [HT90, Chapter 7], and [Buj90] has some interesting meta-analysis: he
points out that this methodology is related to canonical correlation, optimal scoring,
dual scaling, reciprocal averaging, simultaneous linear regression, alternating least
squares, correspondence analysis, nonlinear multivariate analysis, and homogeneity
analysis. This is why some of the pathologies of ACE arise. He cites [VdBDL83]
as a central basic article.

46.1.1. ACE with one response and just one predictor variable. As-
sume x and y are two random variables (but they may also be categorical variables
or random vectors). Their maximal correlation corr∗[x,y] is the maximal value of
corr[φ(x), θ(y)], where φ and θ are two real-valued mappings of the space in which
x and y are defined, with 0 < var[φ(x)] < ∞ and 0 < var[θ(y)] < ∞. The maximal
correlation has the following three properties:

• 0 ≤ corr∗[x,y] ≤ 1. (Note that the usual correlation coefficient is between
−1 and 1.)

• corr∗[x,y] = 0 if and only if x and y are independent.
• corr∗[x,y] = 1 if and only if two functions u and v exist with u(x) = v(y)

and var[u(x)] = var[v(y)] > 0.
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The functions φ and θ can be understood to describe the functional, as opposed to
the stochastic, relationship between the variables.

If the two variables are jointly normal, then their correlation coefficient is at the
same time their maximal correlation. (But the jointly normal is not the only distribu-
tion with this property, see [Buj90].) If you start with two jointly normal variables,
it is therefore not possible to find transformations of each variable separately which

increase their correlation. This can also be formulated as follows: If
[
x y

]>
has a

bivariate normal distribution, and φ and θ are two functions of one variable each,
with 0 < var[φ(x)] < ∞ and 0 < var[θ(y)] < ∞, then corr[φ(x), θ(y)] ≤ corr[x,y].
Proof in [KS79, section 33.44]. Often therefore the φ and θ which give the highest
correlation between two variables are very similar to those univariate transformations
which make each variable separately as normal as possible.

Note that such transformations can be applied to categorical variables too. Say
you have two categorical random variables. Knowing their joint distribution amounts
to knowing for every cell, i.e., for every pair of possible outcomes of these categories,
the probability that this cell is reached. The sample equivalent would be a contin-
gency table. Then one can ask: which “scores” does one have to assign to the levels
of each of the two categories so that the resulting real-valued random variables have
maximal correlation? This can be solved by an eigenvalue problem. This is discussed
in [KS79, sections 33.47–49].

How can one find the optimal θ and ψ in the continuous case? Since correlation
coefficients are invariant under affine transformations, such optimal transformations
are unique only up to a constant coefficient and an intercept. Here without proof the
following procedure, called “alternative conditional expectations:” let φ1 and θ1 be
the identical functions φ1(x) = x and θ1(y) = y. Then do recursively for i = 2, . . .
the following: φi(x) = E[θi−1(y)|x] and θi(y) = E[φi(x)|y]. Remember that E[y|x]
is a function of x, and this function will be φ2(x). In order to prevent this recursion
to become an increasingly steep or flat line, one does not exactly use this recursion
but rescales one of the variables, say θ, after each step so that it has zero mean and
unit variance.

46.1.2. ACE with more than 2 Variables. How can that be generalized to
a multivariate situation? Let us look at the case where y remains a scalar but x

is a k-vector. One can immediately speak of their maximal correlation again if one
maximizes over functions φ of one variable and θ of k variables. In the case of joint
normality, the above result generalizes to the following: the optimal φ can be chosen
to be the identity, and the optimal θ is linear; it can be cvhosen to be the best linear
predictor.

In the case of several variables, one can also ask for second-best and third-best
etc. solutions, which are required to be uncorrelated with the better solutions and
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maximize the correlation subject to this constraint. They can in principle already be
defined if both variables are univariate, but in this case they are usually just simple
polynomials in the best solutions. In the multivariate case, these next-best solutions
may be of interest of their own. Not only the optimal but also these next-best
transformations give rise to linear regressions (Buja and Kass, Comment to [BF85],
p. 602).

46.1.3. Restrictions of the Functions over which to Maximize. If one
looks at several variables, this procedure of maximizing the correlation is also inter-
esting if one restricts the classes of functions to maximize.

The linear (or, to be more precise, affine) counterpart of maximal correlation
is already known to us. The best linear predictor can be characterized as that
linear combination of the components of x which has maximal correlation with y.
The maximum value of this correlation coefficient is called the multiple correlation
coefficient.

An in-between step between the set of all functions and the set of all linear
functions is the one realized in the ace procedure in Splus. It uses all those functions
of k variables with can be written as linear combinations or, without loss of generality,
as sums of functions of one variable each. Therefore one wants functions φ1, . . . , φk
and θ which maximize the correlation of φ1(x1) + · · · + φk(xk) with θ(y). This can
again be done by “backfitting,” which is a simple recursive algorithm using only
bivariate conditional expectations at every step. Each step does the following: for
the given best estimates of φ1, . . . , φi−1, φi+1, · · · , φk and θ one gets the best estimate
of φi as φi(xi) = E[θ(y) −∑j : j 6=i φj(xj)|xi].

If one does not know the joint distributions but has samples then one can replace
the conditonal expectations by a “Smoother” using the datapoints. One such pro-
cedure is the function supsmu in Splus, described in [HT90, p. 70]. Functions will
not be given in closed form but one gets their graph by plotting the untransformed
against the transformed variables.

46.1.4. Cautions About the ace Procedure. There are certain features
which one should be aware of before using this procedure.

First, this is a procedure which treats both variables symmetrically. The regres-
sion model between the variables is not a fixed point. If the variables satisfy the
regression specification y = β>x + ε with ε independent of the vector x, then the
optimal transformations will not be the simple multiples of the components of β,
although they will usually be close to them. This symmetry makes ace more appro-
priate for general multivariate models, like correlation analysis, than for regression.
The avas procedure, which will be discussed next, is a modification of ace which
seems to work better for regression.

530 46. TRANSFORMATION OF THE RESPONSE VARIABLE

Secondly, there are situations in which the functions of x and y which have
highest correlation are not very interesting functions.

Here is an example in which the function with the highest correlation may be
uninteresting. If y and one of the xi change sign together, one gets correlation of 1
by predicting the sign of y by the sign of xi and ignoring all other components of x.

Here is another example in which the function with the highest correlation may

be uninteresting. Let
[
x y

]>
be a mixture consisting of

(46.1.1)
[
x y

]>
=





[
x′ y′

]>
with probability 1 − α

[
x′′ y′′

]>
with probability α

where x′ and y′ are independent random variables which have density functions,
while x′′ and y′′ are discrete, and let Dx′′ and Dy′′ be the supports of them, i.e., the
finite sets of values which these variables are able to assume. One would expect the
maximal correlation to converge toward zero if α→ 0, but in reality, as long as α > 0
the maximum correlation is always equal to one, even if x′′ and y′′ are independent
of each other. The functions which achieve this are the indicator functions φ = I [x ∈
Dx′′ ] and θ = I [y ∈ Dy′′ ]. In other words, the functions which have the highest
correlations may be uninteresting. But in this case it is clear that one should also
look for the second and third choices. This is one of the remedies proposed in [BF85].

Another potential source of trouble is that the optimal functions are not always
uniquely determined. Or sometimes, the eigenvalues of optimal and next-best so-
lutions cross each other, i.e., in a continuous modification of the data one will get
abrupt changes in the optimal transformations. All this is alleviated if one not only
looks at the optimal functions, but also the second-best solutions.

An automated procedure such as ace may lead to strange results due to errors
in setting up the problem, errors which one would easily catch if one had to do it
by hand. This is not a particularity of ace itself but a danger of any automated
procedure. (E.g., people run regressions without looking at the data.) The example
Prebibon and Vardi in their comment to [BF85] on p. 600 is interesting: If the
plot consists of two parallel regression lines, one would, if one did it by hand, never
dream of applying a transformation, but one would look for the additional variable
distinguishing the two regimes. An automatic application of ace gives a zig-zag line,
see figure 2 on p. 600.

Of course, ace makes all significance levels in the ensuing regression invalid.
Tradeoff between parametric and nonparametric methods.
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46.2. Additivity and Variance Stabilizing Transformations (avas)

This is a modification of ace which seems to be more appropriate for regression,
although it does not have the nice theoretical foundation which ace has in the theory
of maximal correlation. [Tib88] is main source about the avas method.

Again let’s discuss the simplest case with two variables first. Assume x and y

are such that there exist two functions φ and θ so that one can write

(46.2.1) θ(y) = φ(x) + ε

where E[ε] = 0 and ε independent of x. Then our purpose is to find these functions.
ace does not really do that because the correlation is not necessarily maximized by
these transformations. But from (46.2.1) follow the following two necessary, but not
sufficient conditions:

E[θ(y)|x] = φ(x)(46.2.2)

var[θ(y)|φ(x)] = constant.(46.2.3)

There is nothing natural about these conditions other than that they can be imple-
mented numerically and that their iteration usually finds the stationary values.

The following iterative procedure corresponds to this: let φ1 and θ1 be the iden-
tical functions φ1(x) = x and θ1(y) = y. Then do recursively for i = 2, . . . the
following: The transformation involving x is the same as in the ACE procedure:
φi(x) = E[θi−1(y)|x]. But the transformation of y is different: θi(y) is a transforma-
tion of θi−1(y) which attempts to make var[θi(y)|φi(x) = u] independent of u. You
need three steps to construct it:

• Compute vi(u) = var[θi−1(y)|φi(x) = u].

• Compute hi(t) =
∫ t
0

du√
vi(u)

. In other words, it is a function whose derivative

is h′i(t) = 1√
vi(t)

.

• Set θi(y) = hi(θi−1(y)).

We want to show that this transformation indeed stabilizes the variance. Let us
first see how one can (asymptotically) obtain the variance of h(z): let u = E[z],
make Taylor development of h around u: h(z) = h(u) + h′(u)(z − u), therefore
asymptotically var[h(z)] = (h′(u))2 var[z].

To apply this for our purposes, pick a certain value of u. Make a Taylor devel-
opment of θi(y) = hi(θi−1(y)) around E[θi−1(y)|φi(x) = u] = u, which reads θi(y) =
hi(u)+h

′
i(u)(θi−1(y)−u). Therefore var[θi(y)|φi(x) = u] = (h′i(u))

2var[θi−1(y)|φi(x) =
u] = 1

vi(u)vi(u) = 1. This asymptotic expression for the variance is independent of

the u chosen.
In this procedure, therefore, only the transformations of the independent vari-

ables are designed to achieve linearity. Those of the dependent variables are designed
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to equalize the variance. This is a rule of thumb one should always consider in se-
lecting transformations: It makes sense to use transformations of the y axis to get
homoskedasticity, and then transformations of the x axis for straightening out the
regression line.

In the case of several predictor variables, the same “backfitting” procedure is
used which ace uses.

Again this is not exactly the iterative procedure chosen; in order to avoid am-
biguity in the result, the avas procedure normalizes at each step the function θ so
that it has zero mean and unit variance.

46.3. Comparing ace and avas

Note the following differences between ace and avas: (1) in avas, the tranfor-
mation of the dependent variable θ is by construction a strictly increasing function,
while the ace θ is not necessarily monotone. (2) If the joint density function of x

and y is concentrated in the first and third quadrant only, say, then ace just uses
the sign of x to predict the sign of y with correlation one. This “collapsing” does
not happen withe avas, which fits the two areas separately. (3) In the two regression
lines case where ace gave a Z-shaped function, avas gives a linear function, i.e., it
takes the mean over both regression lines. One might wonder which is better.

Both methods find certain transformations which satisfy certain mathematical
criteria. These criteria may not always be the ones one is most interested in, but
in many cases they are. These transformations are not given in a closed form but
the transformed values of the given data are computed by a numerical procedure.
Their suggested use is to plot the transformed against the untransformed data in
order to see which transformations the data ask for, and let this be a guide for
choosing simple analytical transformations (log, square root, polynomials, etc.) If
these transformations give funny results, this may be a diagnostic tool regarding the
model.

Problem 445. 8 points What does one have to pay attention to if one transforms
data in a regression equation? Discuss methods in which the data decide about the
functional form of the transformation.



CHAPTER 47

Density Estimation

[Sim96] is a very encompassing text. A more elementary introduction with
good explanations is [WJ95]. This also has some plots with datasets relevant to
economics, see pp. 1, 11, and there is a R and Splus-package called KernSmooth

associated with it (but this package does not contain the datasets). A more applied
book is [BA97], which goes together with the R and Splus-package sm.

47.1. How to Measure the Precision of a Density Estimator

Let f̂ be the estimated density and f the true density. Then for every fixed value
u, the estimation error at u is f̂(u)− f(u). This is a random variable which depends

on u as a nonrandom parameter. Its expected value is the bias at u E[f̂(u) − f(u)],

and the expected value of its square is the MSE at u E
[(

f̂(u) − f(u)
)2]

. This is a
measure of the precision of the density estimate at point u only.

The overall deviation of the estimated density from the true density can be

measured by the integrated squared error (ISE)
∫ +∞
u=−∞

(
f̂(u) − f(u)

)2
du, This is a

random variable; for each observation vector, it gives a different number. The mean
integrated squared error (MISE) is the expected value of the ISE, and at the same
time (as long as integration and formation of the expected value can be interchanged)

it is the integral of the MSE at u over all us: MISE=
∫ +∞
u=−∞

(
f̂(u) − f(u)

)2
du =

∫ +∞
u=−∞ E

[(
f̂(u) − f(u)

)2]
du. The asymptotic value of this is called AMISE.

The MSE is the variance plus the squared bias. In density estimation, bias arises
if one overmoothes, and variance increases if one undersmoothes.

47.2. The Histogram

Histograms are density estimates. They are easy to understand, easy to con-
struct, and do not require advanced graphical tools.

Here the number of bins is important. Too few bins lead to oversmoothing,
too many to undersmoothing. [Sim96, p. 16] has some math how to compute the
MISE of a histogram, and which bin size is optimal. If the underlying distribution
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is Normal, the optimal bin width is

h = 3.491σn−1/3

This is often used also for non-Normal distributions, but if these distributions are
bimodal, then one needs narrower bins. The R/S-function dpih (which stands for Di-
rect Plug In Histogram) in the library KernSmooth uses more sophisticated methods
to select an optimal bin width.

Also the anchor positions can have a big impact on the appearance of a histogram.
To demonstrate this, cd /usr/share/ecmet/xlispstat/anchor-position then do
xlispstat, then (load "fde"), then (fde-demo), and pick animate anchor-moving.

Regarding the labeling on the vertical axis of a histogram there is a naive and a
more sophisticated approach. The naive approach gives the number of data points in
each bin. The preferred, more sophisticated approach is to divide the total number
of points in each bin by the overall size of the dataset and by the bin width. In
this way one gets the relative frequency density. With this normalization, the total
area under the histogram is 1 and the histogram is directly comparable with other
estimates of the probability density function.

47.3. The Frequency Polygon

Derived from histogram by connecting the mid-points of each bin. Gives a better
approximation to the actual density. Now the optimal bin width for a Normal is

h = 2.15σn−1/5

Dominates the histogram, and is not really more difficult to construct. Simonoff
argues that one should never draw histograms, only frequency polygons.

47.4. Kernel Densities

For every observation draw a standard Normal with that point as the mode, and
then add them up. An illustration is sm.script(sp build). It can also be a Normal
with variance different than 1; the greater the variance, the smoother the density
estimate. Instead of the Normal density one can also take other smoothing kernels,

i.e., functions k with
∫ +∞
u=−∞ k(u) du = 1 and

∫ +∞
u=−∞ uk(u) du = 0. An often-used

kernel is the Triweight kernel 35
32 (1 − x2)3 for |x| ≤ 1 and 0 otherwise, but these

kernel functions may also assume negative values (in which case they are no longer
densities). The choice of the functional form of the kernel is much less important than
the bandwidth, i.e., the variance of the kernel (if interpreted as a density function)

µ2 =
∫ +∞
u=−∞ u2k(u) du = 1,
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Problem 446. If u 7→ k(u) is the kernel, and x =
[
x1 · · · xn

]>
the data

vector, then f̂(u) = 1
n

∑n
i=1 k(u− xi) is the kernel estimate of the density at u.

• a. 3 points Compute the mean of the kernel estimator at u.

Answer. E[̂f(u)] = 1
n

∑n

i=1
E[k(u− xi)] but since all xi are assumed to come from the same

distribution, it follows E[̂f(u)] = E[k(u− x)] =
∫ +∞
x=−∞ k(u− x)f(x) dx. �

• b. 4 points Assuming the xi are independent, show that

(47.4.1) var[f̂(u)] =
1

n

(∫ +∞

x=−∞
k2(u− x)f(x) dx −

(∫ +∞

x=−∞
k(u− x)f(x) dx

)2)
.

Answer.

var[̂f(u)] =
1

n2

n∑

i=1

var[k(u− xi)](47.4.2)

=
1

n
var[k(u− x)](47.4.3)

=
1

n

(
E
[(
k(u− x)

)2]−(E[k(u− x)]
)2)

(47.4.4)

=
1

n

(∫ +∞

x=−∞
k2(u− x)f(x) dx−

(∫ +∞

x=−∞
k(u− x)f(x) dx

)2)
.(47.4.5)

�

47.5. Transformational Kernel Density Estimators

This approach transforms the data first, then estimates a density of the trans-
formed data, and then re-transforms this density to the original scale. For instance
the income distribution can use this, see [WJ95, p. 11].

47.6. Confidence Bands

The variance of a density estimate is usually easier to compute than the bias. One
method to get a confidence band is to draw additional curves with 2 estimated point-
wise standard deviations above and below the plot. This makes the assumption that
the bias is 0. Therefore it is not really usable for inference, but it may give some idea
whether certain features of the plot should be taken seriously. sm.script(air band)

Another approach is bootstrapping. sm.script(air boot). The expected value of

the bootstrapped density functions is f̂ (and not f ; therefore bootstrapping will not
reveal the bias but it does reveal the variance of the density estimate.
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47.7. Other Approaches to Density Estimation

Variable bandwidth methods
Nearest Neighbor methods
Orthogonal Series Methods: project the data on an orthogonal base and only

use the first few terms. Advantage: here one actually knows the functional form of
the estimated density. See [BA97, pp. 19–21].

47.8. Two-and Three-Dimensional Densities

sm.script(air dens) and sm.script(air imag) give different representations
of a two-dimensional density; sm.script(air cont) gives the evolution over time
(dotted line is first, dashed second, and solid line third).

sm.script(mag scat) is the plot of a dataset containing 3-dimensional direc-
tions (longitude and latitude). Here is a kernel function and a smoothed representa-
tion of this dataset: sm.script(mag dens).

Problem 447. Write a function that translates the latitude and longitude data
of the magrem dataset into a 3-dimensional dataset which can be loaded into xgobi.

Here is a 3-dimensional rendering of the geyser data: provide.data(geys3d)

and then xgobi(geys3d). The script which draws a 3-dimensional density contour
does not work right now: sm.script(geys td).

47.9. Other Characterizations of Distributions

Instead of the density function one can also give smoothed versions of the em-

pirical cumulative distribution function, or of the hazard function f(u)
1−F (u) .

47.10. Quantile-Quantile Plots

The QQ-plot is a plot of the quantile functions, as defined in (3.4.14), of two
different distributions against each other.

The graph of a cumulative distribution function is given in Figure 1, and the
corresponding quantile function is given in Figure 2. The bullets on the beginning
of the lines in the cumulative distribution function indicate that the line includes its
infimum but not its supremum. The quantile function has the bullets at the end of
the lines.

The “theoretical QQ plot” of two distributions which have distribution functions
F1 and F2 and quantile functions F−1

1 and F−1
2 is the set of all (x1, x2) ∈ R

2 for

which there exists a p such that x1 = F−1
1 (p) and x2 = F−1

2 (p).
If both distributions are continuous and strictly increasing, then the theoretical

QQ-plot is continuous as well. If the cumulative distribution functions have hori-
zontal straight line segments, then the theoretical QQ-plot has gaps. If one of the
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two distribution functions is a step function and the other is continuous, then the
theoretical QQ-plot is a step function; and if both distribution functions are step
functions, then the theoretical QQ-plot consists of isolated points.

Here is a practical instruction how to construct a QQ plot from the given cumu-
lative distribution functions: Draw the cumulative distribution functions of the two
distributions which you want to compare into the same diagram. Then, for every
value p between 0 and 1 plot the abscisse of the intersection of the horizontal line
with height p with the first cumulative distribution function against the abscisse of
its intersection with the second. If there are horizontal line segments in these dis-
tribution functions, then the suprema of these line segments should be used. If the
cumulative distribution functions is a step function stepping over p, then the value
at which the step occurs should be used.

If the QQ-plot is a straight line, then the two distributions are either identical, or
the underlying random variables differ only by a scale factor. The plots have special
sensitivity regarding differences in the tail areas of the two distributions.

Problem 448. Let F1 be the cumulative distribution function of random variable
x1, and F2 that of the variable x2 whose distribution is the same as that of αx1, where
α is a positive constant. Show that the theoretical QQ plot of these two distributions
is contained in the straight line q2 = αq1.

Answer. (x1, x2) ∈ QQ-plot ⇐⇒ a p exists with x1 = F−1
1 (p) = inf{u : Pr[x1 ≤ u] ≥ p}

and x2 = F−1
2 (p) = inf{u : Pr[x2 ≤ u] ≥ p} = inf{u : Pr[αx1 ≤ u] ≥ p}. Write v = u/α, i.e.,

u = αv; then x2 = inf{αv : Pr[αx1 ≤ αv] ≥ p} = inf{αv : Pr[x1 ≤ v] ≥ p} = α inf{v : Pr[x1 ≤ v] ≥
p} = αx1.

�

In other words, if one makes a QQ plot of a normal with mean zero and variance 2
on the vertical axis against a normal with mean zero and variance 1 on the horizontal
axis, one gets a straight line with slope 2. This makes such plots so valuable, since
visual inspection can easily discriminate whether a curve is a straight line or not. To
repeat, QQ plots have the great advantage that one only needs to know the correct
distribution up to a scale factor!

QQ-plots can not only be used to compare two probability measures, but an
important application is to decide whether a given sample comes from a given distri-
bution by plotting the quantile function of the empirical distribution of the sample,
compare (3.4.17). against the quantile function of the given cumulative distribution
function. Since empirical cumulative distribution functions and quantile functions
are step functions, the resulting theoretical QQ plot is also a step function.

In order to make it easier to compare this QQ plot with a straight line, one
usually does not draw the full step function but one chooses one point on the face of
each step, so that the plot contains one point per observation. This is like plotting
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the given sample against a very regular sample from the given distribution. Where
on the face of each step should one choose these points? One wants to choose that
ordinate where the first step in an empirical cumulative distribution function should
usually be.

It is a mathematically complicated problem to compute for instance the “usual
location” (say, the “expected value”) of the smallest of 50 normally distributed vari-
ables. But there is one simple method which gives roughly the right locations inde-
pendently of the distribution used. Draw the cumulative distribution function (cdf)
which you want to test against, and then draw between the zero line and the line
p = 1 n parallel lines which divide the unit strip into n + 1 equidistant strips. The
intersection points of these n lines with the cdf will roughly give the locations where
the smallest, second smallest, etc., of a sample of n normally distributed observations
should be found.

For a mathematical justification of this, make the following thought experiment.
Assume you have n observations from a uniform distribution on the unit interval.
Where should you expect the smallest observation to be? The answer is given by the
simple result that the expected value of the smallest observation is 1/(n + 1), the
expected value of the second-smallest observation is 2/(n+ 1), etc. In other words,
in the average, the n observations, cut the unit interval into n+ 1 intervals of equal
distance.

Therefore we do know where the first step of an empirical cumulative distribution
function of a uniform random variable should be, and it is a very simple formula.
But this can be transferred to the general case by the following fact: if one plugs any
random variable into its cumulative distribution, one obtains a uniform distribution!
These locations will therefore give, strictly speaking, the usual values of the smallest,
second smallest etc. observation of Fx(x), but the usual values for x itself cannot be
far from this.

If one plots the data on the vertical axis versus the standard normal on the
horizontal axis (the default for the R-function qqnorm), then an S-shaped plot in-
dicates a light-tailed distribution, an inverse S says that the distribution is heavy-
tailed (try qqnorm(rt(25,df=1)) as an example), a C is left-skewed, and an inverse
C, a J, is right-skewed. A right-skewed, or positively skewed, distribution is one
which has a long right tail, like the lognormal qqnorm(rlnorm(25)) or chisquare
qqnorm(rchisq(25,df=3)).

The classic reference which everyone has read and which explains it all is [Gum58,
pp. 28–34 and 46/47]. Also [WG68] is useful, many examples.

47.11. Testing for Normality

[Vas76] is a test for Normality based on entropy.



CHAPTER 48

Measuring Economic Inequality

48.1. Web Resources about Income Inequality

• UNU/Wider-UNDP World Income Inequality Database (4500 Gini-coefficients)
www.wider.unu.edu/wiid/wiid.htm

• Luxembourg Income Study (detailed household surveys) http://lissy.ceps.lu
• World Bank site on Inequality, Poverty, and Socio-economic Performance

http://www.worldbank.org/poverty/inequal/index.htm
• World Bank Data on Poverty and Inequality http://www.worldbank.org/poverty/data/index.htm
• World Bank Living Standard Measurement Surveys http://www.worldbank.org/lsms/
• University of Texas Inequality Project (Theil indexes on manufacturing and

industrial wages for 71 countries) http://utip.gov.utexas.edu/
• MacArthur Network on the Effects of Inequality on Economic Performance,

Institute of International Studies, University of California, Berkeley. http://globetrotter.berkeley.edu/macarthur/inequality/
• Inter-American Development Bank site on Poverty and Inequality http://www.iadb.org/sds/document.cfm/5/ENGLISH

48.2. Graphical Representations of Inequality

See [Cow77] (there is now a second edition out, but our library only has this
one):

• Pen’s Parade: Suppose that everyone’s height is proportional to his or her
income. Line everybody in the population up in order of height. Then the
curve which their heights draws out is “Pen’s Parade.” It is the empirical
quantile function of the sample. It highlights the presence of any extremely
large income and to a certain extent abnormally small incomes. But the
information on middle income receivers is not so obvious.

• Histogram or other estimates of the underlying density function. Suppose
you are looking down on a field. On one side, there is a long straight fence
marked off with income categories: the physical distance between any two
points directly corresponds to the income differences they represent. Get
the whole population to come into the field and line up in the strip of land
marked off by the piece of fence corresponding to their income bracket. The

539

540 48. MEASURING ECONOMIC INEQUALITY

shape you will see is a histogram of the income distribution. This shows
more clearly what is happening in the middle income ranges. But perhaps
it is not so readily apparent what is happening in the upper tail. This
can be remedied by taking the distribution of the logarithm of income, i.e.,
arrange the income markers on the fence in such a way that equal physical
distances mean equal income ratios.

• Lorenz curve: Line up everybody in ascending order and let them parade
by. You have a big “cake” representing the overall sum of incomes. As each
person passes, hand him or her his or her share of the cake, i.e., a piece of
cake representing the proportion of income that person receives. Make a
diagram indicating how much of the cake has been handed out, versus the
number of people that have passed by. This gives the Lorenz curve. The
derivative of the Lorenz curve is Pen’s parade. The mean income is that
point at which the slope is parallel to the diagonal. A straight line means
total equality.

48.3. Quantitative Measures of Income Inequality

Some ot the above graphical representations are suggestive of quantitative mea-
sures, other quantitative measures arose from different considerations:

• Relative mean deviation: draw into Pen’s parade a horizontal line at the
average income, and use as measure of inequality the area between the
Parade curve and this horizontal line, divided by the total area under the
Parade curve.

• Gini coefficient: the area between the Lorenz curve and the diagonal line,
times 2 (so that a Gini coefficient of 100% would mean: one person owns
everything, and a Gini of 0 means total equality.

• Theil’s entropy measure: Say xi is person i’s income, x̄ is the average
income, and n the population count. Then the person’s income share is
si = xi

nx̄
. The entropy of this income distribution, according to (3.11.2),

but with natural logarithms instead of base 2, is

(48.3.1)

n∑

i=1

si ln
1
si

and the maximum possible entropy, obtained if income distribution is equal,
is

(48.3.2)
n∑

i=1

1
n lnn = lnn
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Subtract the actual entropy of the income distribution from this maximal
entropy to get Theil’s measure

(48.3.3)
1

n

n∑

i=1

xi

x̄
ln
(

xi

x̄

)

• Coefficient of variation (standard deviation divided by mean).
• Herfindahl’s index

(48.3.4)

n∑

i=1

s2
i =

1

n2

n∑

i=1

(
xi

x̄

)2

• The following distance-function related inequality measure generalizes both
Theil’s and (up to an affine transformation) Herfindahl’s indices: choose
β ≥ 0 and set h(s) = ln s if β = 0 and h(s) = − 1

β s
β otherwise and define

(48.3.5)
1

1 + β

( n∑

i=1

1
nh(

1
n ) −

n∑

i=1

sih(si)
)

which can also be written as

(48.3.6)
1

1 + β

n∑

i=1

si
(
h( 1

n ) − h(si)
)

i.e., the difference of the overall measure from the smallest possible measure
is at the same time the weighted average of the differences of h(si) from
h( 1

n ).

Problem 449. Show that (48.3.3) is the difference between (48.3.1) and (48.3.2)

Answer.

(48.3.7)

lnn−
n∑

i=1

xi

nx̄
ln
nx̄

xi
= lnn− 1

n

n∑

i=1

xi

x̄

(
lnn+ ln

x̄

xi

)

= lnn− 1

n

n∑

i=1

xi

x̄
lnn− 1

n

n∑

i=1

xi

x̄
ln

x̄

xi

=
1

n

n∑

i=1

xi

x̄
ln

xi

x̄

�

Problem 450. 7 points Show that if one takes a small amount of income share
ds from person 2 and adds it to person 1, then the inequality measure defined in
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(48.3.5) changes by
(
h(s2) − h(s1)

)
ds. Hint: if β 6= 0,

∂I

∂si
=

∂

∂si
sih(si) =

1

β
s
β
i = −h(si).(48.3.8)

If one therefore takes ds away from 2 and gives it to 1, I changes by

dI =
(
− ∂I

∂s2
+

∂I

∂s1

)
ds =

(
h(s2) − h(s1)

)
ds(48.3.9)

If β = 0, only small modifications apply.

Answer. If β = 0, then

I =
(
ln( 1

n
) −

n∑

i=1

si ln(si)
)

(48.3.10)

therefore one has in this case

∂I

∂si
=

∂

∂si
sih(si) = − ln(si) − 1 = −h(si) − 1(48.3.11)

But the extra −1 cancels in the difference. �

Interpretation: if h(s2) − h(s1) = h(s4) − h(s3) then for the purposes of this
inequality measure, the distance between 2 and 1 is the same as the distance between
4 and 3. These inequality measures are therefore based on very specific notions of
what constitutes inequality.

48.4. Properties of Inequality Measures

Scale invariance: In order to make economic sense, the measures must be invariant under a
change to different monetary units. As long as the inequality measures are
functions of the nominal incomes only, without a real anchor (such as: make
global inequality measures higher if more people live beyond a subsistence
level), this invariance under changes of the monetary unit also makes them
invariant under proportional changes of everyone’s incomes.

Principle of Population It one doubles the population, with the newcomers having exactly the same
income distribution as the original population, then the income distribution
measure should not change.

Weak Principle of Transfers A hypothetical transfer of income from a richer to a poorer person should
decrease inequality.

Strong Principle of Transfers If the effect only depends on the distances of donor and recipient expressed
by theh function.

Variances and Theil’s entropy measure can be decomposed into “within” and
“between” measures, whereas the Gini coefficient cannot.



CHAPTER 49

Distributed Lags

In the simplest case of one explanatory variable only, the model is

(49.0.1) yt = α+ β0xt + β1xt−1 + · · · + βNxt−N + εt

This can be written in the form

(49.0.2) y = Xβ + ε where X =




1 x1 x0 · · · x1−N
1 x2 x1 · · · x2−N
...

...
...

1 xn xn−1 · · · xn−N


 .

Note that X contains presample values.
Two problems: lag length often not known, and X matrix often highly multi-

collinear.
How to determine lag length? Sometimes it is done by the adjusted R̄2. [Mad88,

p. 357] says this will lead to too long lags and proposes remedies.
Assume we know for sure that lag length is not greater than M . [JHG+88,

pp. 723–727] recommends the following “general-to-specific” specification procedure
for finding the lag length: First run the regression with M lags; if the t-test for
the parameter of the Mth lag is significant, we say the lag length is M . If it is
insignificant, run the regression with M−1 lags and test again for the last coefficient:
If the t-test for the parameter of the M − 1st coefficient is significant, we say the lag
length is M − 1, etc.

The significance level of this test depends on M and on the true lag length. Since
we never know the true lag length for sure, we will never know the true significance
level for sure. The calculation which follows now allows us to compute this signif-
icance level under the assumption that the N given by the test is the correct N .
Furthermore this calculation only gives us the one-sided significance level: the null
hypothesis is not that the true lag length is = N , but that the true lag length is
≤ N .

Assume the null hypothesis is true, i.e., that the true lag length is ≤ N . Since
we assume we know for sure that the true lag length is ≤ M , the null hypothesis
is equivalent to: βN+1 = βN+2 = · · · = βM = 0. Now assume that we apply the
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above procedure and the null hypothesis holds. The significance level of our test
is the probability that our procedure rejects the null although the null is true. In
other words, it is the probability that either the first t-test rejects, or the first t-test
accepts and the second t-test rejects, or the first two t-tests accept and the third
t-test rejects, etc, all under the assumption that the true βi are zero. In all, the
lag length is overstated if at least one of the M −N t-tests rejects. Therefore if we
define the event Ci to be the rejection of the ith t-test, and define Qj = C1∪· · ·∪Cj ,
then Pr[Qj ] = Pr[Qj−1 ∪ Cj ] = Pr[Qj−1] + Pr[Cj ] − Pr[Qj−1 ∩ Cj ]. [JHG+88, p.
724] says, and a proof can be found in [And66] or [And71, pp. 34–43], that the test
statistics of the different t-tests are independent of each other. Therefore one can
write Pr[Qj ] = Pr[Qj−1] + Pr[Cj ] − Pr[Qj−1] Pr[Cj ].

Examples: Assuming all t-tests are carried out at the 5% significance level, and
two tests are insiginficant before the first rejection occurs. I.e., the test indicates
that the true lag length is ≤ M − 2. Assuming that the true lag length is indeed
≤M−2, the probability of falsely rejecting the hypothesis that the Mth and M−1st
lags are zero is 0.05 + 0.05− 0.052 = 0.1− 0.0025 = 0.0975. For three and four tests
the levels are 0.1426 and 0.1855. For 1% significance level and two tests it would be
0.01 + 0.01 − 0.012 = 0.0200− 0.0001 = 0.0199. For 1% significance level and three
tests it would be 0.0199 + 0.01− 0.000199 = 0.029701.

Problem 451. Here are excerpts from SAS outputs, estimating a consumption
function. The dependent variable is always the same, GCN72, the quarterly personal
consumption expenditure for nondurable goods, in 1972 constant dollars, 1948–1985.
The explanatory variable is GYD72, personal income in 1972 constant dollars (deflated
by the price deflator for nondurable goods), lagged 0–8 quarters.

PARAMETER STANDARD T FOR H0:

VARIABLE DF ESTIMATE ERROR PARAMETER=0 PROB > |T|

INTERCEP 1 65.61238269 0.88771664 73.911 0.0001

GYD72 1 0.13058204 0.000550592 237.167 0.0001

PARAMETER STANDARD T FOR H0:

VARIABLE DF ESTIMATE ERROR PARAMETER=0 PROB > |T|

INTERCEP 1 65.80966177 0.85890869 76.620 0.0001

GYD72 1 0.07778248 0.01551323 5.014 0.0001

GYD72L1 1 0.05312929 0.01560094 3.406 0.0009

• a. 3 points Make a sequential test how long you would like to have the lag
length.
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PARAMETER STANDARD T FOR H0:

VARIABLE DF ESTIMATE ERROR PARAMETER=0 PROB > |T|

INTERCEP 1 65.87672382 0.84399982 78.053 0.0001

GYD72 1 0.08289905 0.01537243 5.393 0.0001

GYD72L1 1 0.008943833 0.02335691 0.383 0.7023

GYD72L2 1 0.03932710 0.01569029 2.506 0.0133

PARAMETER STANDARD T FOR H0:

VARIABLE DF ESTIMATE ERROR PARAMETER=0 PROB > |T|

INTERCEP 1 65.99593829 0.82873058 79.635 0.0001

GYD72 1 0.08397167 0.01507688 5.570 0.0001

GYD72L1 1 0.01413009 0.02298584 0.615 0.5397

GYD72L2 1 -0.007354543 0.02363040 -0.311 0.7561

GYD72L3 1 0.04063255 0.01561334 2.602 0.0102

PARAMETER STANDARD T FOR H0:

VARIABLE DF ESTIMATE ERROR PARAMETER=0 PROB > |T|

INTERCEP 1 66.07544717 0.80366736 82.217 0.0001

GYD72 1 0.09710692 0.01518481 6.395 0.0001

GYD72L1 1 -0.000042518 0.02272008 -0.002 0.9985

GYD72L2 1 0.001564270 0.02307528 0.068 0.9460

GYD72L3 1 -0.01713777 0.02362498 -0.725 0.4694

GYD72L4 1 0.05010149 0.01573309 3.184 0.0018

PARAMETER STANDARD T FOR H0:

VARIABLE DF ESTIMATE ERROR PARAMETER=0 PROB > |T|

INTERCEP 1 66.15803761 0.78586731 84.185 0.0001

GYD72 1 0.09189381 0.01495668 6.144 0.0001

GYD72L1 1 0.01675422 0.02301415 0.728 0.4678

GYD72L2 1 -0.01061389 0.02297260 -0.462 0.6448

GYD72L3 1 -0.008377491 0.02330072 -0.360 0.7197

GYD72L4 1 -0.000826189 0.02396660 -0.034 0.9725

GYD72L5 1 0.04296552 0.01551164 2.770 0.0064

Answer. If all tests are made at 5% significance level, reject that there are 8 or 7 lags, and
go with 6 lags. �

• b. 5 points What is the probability of type I error of the test you just described?

Answer. For this use the fact that the t-statistics are independent. There is a 5% probability

of incorrectly rejecting the first t-test and also a 5% probability of incorrectly rejecting the second
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PARAMETER STANDARD T FOR H0:

VARIABLE DF ESTIMATE ERROR PARAMETER=0 PROB > |T|

INTERCEP 1 66.22787177 0.77701222 85.234 0.0001

GYD72 1 0.08495948 0.01513456 5.614 0.0001

GYD72L1 1 0.02081719 0.02281536 0.912 0.3631

GYD72L2 1 0.001067395 0.02335633 0.046 0.9636

GYD72L3 1 -0.01567316 0.02327465 -0.673 0.5018

GYD72L4 1 0.003008501 0.02374452 0.127 0.8994

GYD72L5 1 0.004766535 0.02369258 0.201 0.8408

GYD72L6 1 0.03304355 0.01563169 2.114 0.0363

PARAMETER STANDARD T FOR H0:

VARIABLE DF ESTIMATE ERROR PARAMETER=0 PROB > |T|

INTERCEP 1 66.29560292 0.77062598 86.028 0.0001

GYD72 1 0.08686483 0.01502757 5.780 0.0001

GYD72L1 1 0.01258635 0.02301437 0.547 0.5853

GYD72L2 1 0.004612589 0.02321459 0.199 0.8428

GYD72L3 1 -0.005511693 0.02366979 -0.233 0.8162

GYD72L4 1 -0.002789862 0.02372100 -0.118 0.9065

GYD72L5 1 0.008280160 0.02354535 0.352 0.7256

GYD72L6 1 -0.001408690 0.02383478 -0.059 0.9530

GYD72L7 1 0.02951031 0.01551907 1.902 0.0593

PARAMETER STANDARD T FOR H0:

VARIABLE DF ESTIMATE ERROR PARAMETER=0 PROB > |T|

INTERCEP 1 66.36142439 0.77075066 86.100 0.0001

GYD72 1 0.08619326 0.01500496 5.744 0.0001

GYD72L1 1 0.01541463 0.02307449 0.668 0.5052

GYD72L2 1 -0.002721499 0.02388376 -0.114 0.9094

GYD72L3 1 -0.001837498 0.02379826 -0.077 0.9386

GYD72L4 1 0.003802403 0.02424060 0.157 0.8756

GYD72L5 1 0.004328457 0.02370310 0.183 0.8554

GYD72L6 1 0.000718960 0.02384368 0.030 0.9760

GYD72L7 1 0.006305240 0.02404827 0.262 0.7936

GYD72L8 1 0.02002826 0.01587971 1.261 0.2094

t-test. The probability of incorrectly rejecting at least one of the two tests is therefore 0.05+0.05−
0.05 · 0.05 = 0.1 − 0.0025 = 0.0975. For 1% it is (for two tests) 0.01 + 0.01 − 0.01 · 0.01 = 0.0199,
but three tests will be necessary! �
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• c. 3 points Which common problem of an estimation with lagged explanatory
variables is apparent from this printout? What would be possible remedies for this
problem?

Answer. The explanatory variables are highly multicollinear, therefore use Almon lags or
something similar. Another type of problem is: increase of type I errors with increasing number of
steps, start with small significance levels! �

Secondly: what to do about multicollinearity? Prior information tells you that
the true lag coefficients probably do not go in zigzag, but follow a smooth curve.
This information can be incorporated into the model by pre-selecting a family of
possible lag contours from which that should be chosen that fits best, i.e. by doing
constrained least squares. The simplest such assumption is that the lag coefficients
lie on a polynomial or degree d (polynomial distributed lags, often called Almon
lags). Since linear combinations of polynomials are again polynomials, this restricts
the β vectors one has to choose from to a subspace of k-dimensional space.

Usually this is done by the imposition of linear constraints. One might explicitly
write it as linear constraints of the form Rβ = o, since polynomials of dth order are
characterized by the fact that the dth differences of the coefficients are constant, or
their d+ 1st differences zero. (This gives one linear constraint for every position in
β for which the dth difference can be computed.)

But here it is more convenient to incorporate these restrictions into the regression
equation and in this way end up with a regression with fewer explanatory variables.
Any β with a polynomial lag structure has the form β = Hα for the (d + 1) × 1
vector α, where the columns of H simply are polynomials:

(49.0.3)




β0

β1

β2

β3

β4




=




1 0 0 0
1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64







α0

α1

α2

α3




More examples for such H-matrices are in [JHG+88, p. 730]. Then the specification
y = Xβ + ε becomes y = XHα + ε. I.e., one estimates the coefficients of α by an
ordinary regression again, and even in the presence of polynomial distributed lags
one can use the ordinary F-test, impose other linear constraints, do “GLS” in the
usual way, etc. (SAS allows for an autoregressive error structure in addition to the
lags). The pdlreg procedure in SAS also uses a H whose first column contains a
zero order polynomial, the second a first order polynomial, etc. But it does not use
these exact polynomials shown above but chooses the polynomials in such a way that
they are orthogonal to each other. The elements of α are called X**0 (coefficient of
the zero order polynomial), X**1, etc.

548 49. DISTRIBUTED LAGS

In order to determine the degree of the polynomial one might use the same
procedure on this reparametrized regression which one used before to determine the
lag length.

About endpoint restrictions: The polynomial determines the coefficients β0

through βM , with the other βj being zero. Endpoint restrictions (the SAS op-
tions last, first, or both) determine that either the polynomial is such that its
formula also gives βM+1 = 0 or β−1 = 0 or both. This may prevent, for instance,
the last lagged coefficient from becomeing negative if all the others are positive. But
experience shows that in many cases such endpoint restrictions are not a good idea.

Alternative specifications of the lag coefficients: Shiller lag: In 1973, long before
smoothing splines became popular, Shiller in [Shi73] proposed a joint minimization
of SSE and k times the squared sum of d+1st differences on lag coefficients. He used
a Bayesian approach; Maddala classical method. This is the BLUE if one replaces
the exact linear constraint by a random linear constraint.

Problem 452. Which problems does one face if one estimates a regression with
lags in the explanatory variables? How can these problems be overcome?

49.1. Geometric lag

Even more popular than polynomial lags are geometric lags. Here the model is

yt = α+ γxt + γλxt−1 + γλ2xt−2 + · · · + εt

(49.1.1)

= α+ β(1 − λ)xt + β(1 − λ)λxt−1 + β(1 − λ)λ2xt−2 + · · · + εt.(49.1.2)

Here the second line is written in a somewhat funny way in order to make the
wt = (1 − λ)λt, the weights with which β is distributed over the lags, sum to one.
Here it is tempting to do the following Koyck-transformation: lag this equation by
one and premultipy by λ to get

λyt−1 = λα + β(1 − λ)λxt−1 + β(1 − λ)λ2xt−2 + β(1 − λ)λ3xt−3 + · · · + λεt−1.

(49.1.3)

Now subtract:

yt = α(1 − λ) + λyt−1 + β(1 − λ)xt + εt − λεt−1.

(49.1.4)

This has a lagged dependent variable. This is not an accident, as the follwing dis-
cussion suggests.
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49.2. Autoregressive Distributed Lag Models

[DM93, p. 679] say that (49.0.1) is not a good model because it is not a dynamic
model, i.e., yt depends on lagged values of xt but not on lagged values of itself. As a
consequence, only the current values of the error term εt affect yt. But if the error
term is thought of as reflecting the combined influence of many variables that are
unavoidably omitted from the regression, one might want to have the possibility that
these omitted variables have a lagged effect on yt just as xt does. Therefore it is
natural to allow lagged values of yt to enter the regression along with lagged values
of xt:
(49.2.1)
yt = α+β1yt−1+β2yt−2+· · ·+βpyt−p+γ0xt+γ1xt−1+· · ·+γNxt−q+εt εt ∼ IID(0, σ2)

This is called anADL(p, q) model. A widely encountered special case is the ADL(1, 1)
model

(49.2.2) yt = α+ β1yt−1 + γ0xt + γ1xt−1 + εt, εt ∼ IID(0, σ2)

This has the following special cases: distributed lag model with geometric lags (γ1 =
0), static model with AR(1) errors (γ1 = −β1γ0), partial adjustment model (γ1 = 0),
model in the first differences (β1 = 1), (γ1 = −γ0).

This lagged dependent variable is not an obstacle to running OLS, in light of the
results discussed under “random regressors.”

We will discuss two models which give rise to such a lag structure: either with
the desired level achieved incompletely as the dependent variable (Partial Adjustment
models), or with an adaptively formed expected level as the explanatory variable. In
the first case, OLS on the Koyck transformation is consistent, in the other case it is
not, but alternative methods are available.

Partial Adjustment. Here the model is

(49.2.3) y∗
t = α+ βxt + εt,

where y∗
t is not the actual but the desired level of yt. These y∗

t are not observed,
but the assumption is made that the actual values of yt adjust to the desired levels
as follows:

(49.2.4) yt − yt−1 = (1 − λ)(y∗
t − yt−1).

Solving (49.2.4) for yt gives yt = λyt−1 + (1 − λ)y∗
t . If one substitutes (49.2.3) into

this, one gets

(49.2.5) yt = α(1 − λ) + β(1 − λ)xt + λyt−1 + (1 − λ)εt
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If one were to repeatedly lag this equation, premultipy by λ, and reinsert, one would
get

(49.2.6) yt = α+ β(1 − λ)xt + β(1 − λ)λxt−1 + β(1 − λ)λ2xt−2 + · · ·
· · · + +(1 − λ)εt + λ(1 − λ)εt−1 + · · · .

These are geometrically declining lags, and (49.2.5) is their Koyck transform. It
should be estimated in the form (49.2.5). It has a lagged dependent variable, but
contemporaneously uncorrelated, therefore OLS is consistent and has all desired
asymptotic properties.

The next question is about Adaptive Expectations, an example where regression
on the Koyck-transformation leads to inconsistent results.

Problem 453. Suppose the simple regression model is modified so that yt is, up
to a disturbance term, a linear function not of xt but of what the economic agents at
time t consider to be the “permanent” level of x, call it x∗t . One example would be
a demand relationship in which the quantity demanded is a function of permanent
price. The demand for oil furnaces, for instance, depends on what people expect the
price of heating oil to be in the long run. Another example is a consumption function
with permanent income as explanatory variable. Then

(49.2.7) yt = α+ βx∗t + εt, εt ∼ IID(0, σ2)

Here x∗t is the economic agents’ perceptions of the permanent level of xt. Usually the
x∗t are not directly observed. In order to link x∗t to the observed actual (as opposed
to permanent) values xt, assume that in every time period t the agents modify their
perception of the permanent level based on their current experience xt as follows:

(49.2.8) x∗t − x∗t−1 = (1 − λ)(xt − x∗t−1).

I.e., the adjustment which they apply to their perception of the permanent level in
period t, x∗t − x∗t−1, depends on by how much last period’s permanent level differs
from the present period’s actual level; more precisely, it is 1−λ times this difference.
Here 1 − λ represents some number between zero and one, which does not change
over time. We are using 1 − λ instead of λ in order to make the formulas below a
little simpler and to have the notation consistent with the partial adjustment model.

• a. 1 point Show that (49.2.8) is equivalent to

(49.2.9) x∗t = λx∗t−1 + (1 − λ)xt

• b. 2 points Derive the following regression equation from (49.2.7) and (49.2.9):

(49.2.10) yt = α(1 − λ) + β(1 − λ)xt + λyt−1 + ηt

and write the new disturbances ηt in terms of the old ones εt. What is the name of
the mathematical transformation you need to derive (49.2.10)?
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Answer. Lag (49.2.7) by 1 and premultiply by λ (the Koyck-transformation) to get

λyt−1 = αλ+ λβx∗t−1 + λεt−1(49.2.11)

Subtract this from (49.2.7) to get

yt − λyt−1 = α(1 + λ) + βx∗t − βλx∗t−1 + εt − λεt−1(49.2.12)

Now use (49.2.9) in the form x∗t − λx∗t−1 = (1 − λ)xt to get (49.2.10). The new disturbances are
ηt = εt − λεt−1.

�

• c. 2 points Argue whether or not it is possible to get consistent estimates α̂

and β̂ by applying OLS to the equation

(49.2.13) yt = α0 + β0xt + λyt−1 + ηt

and then setting

(49.2.14) α̂ =
α̂0

1 − λ̂
and β̂ =

β̂0

1 − λ̂
.

Answer. OLS is inconsistent because yt−1 and εt−1, therefore also yt−1 and ηt are correlated.
(It is also true that ηt−1 and ηt are correlated, but this is not the reason of the inconsistency). �

• d. 1 point In order to get an alternative estimator, show that repeated appli-
cation of (49.2.8) gives

(49.2.15) x∗t = (1 − λ)
(
xt + λxt−1 + λ2xt−2 + · · · + λt−1x1

)
+ λtx∗0

Answer. Rearranging (49.2.9) one obtains

x∗t = (1 − λ)xt + λx∗t−1(49.2.16)

= (1 − λ)xt + λ
(
1 − λ)xt−1 + λx∗t−1

)
(49.2.17)

= (1 − λ)(xt + λxt−1) + λx∗t−1(49.2.18)

= (1 − λ)
(
xt + λxt−1 + λ2xt−2 + · · · + λt−1x1

)
+ λtx∗0(49.2.19)

�

• e. 2 points If λ is known, show how α and β can be estimated consistently
by OLS from the following equation, which is gained from inserting (49.2.15) into
(49.2.7):

(49.2.20) yt = α+ β(1 − λ)
(
xt + λxt−1 + λ2xt−2 + · · · + λt−1x1

)
+ βx∗0λ

t + εt.

How many regressors are in this equation? Which are the unknown parameters? De-
scribe exactly how you get these parameters from the coefficients of these regressors.
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Answer. Three regressors: intercept, (1−λ)
(
xt+λxt−1 +λ2xt−2 + · · ·+λt−1x1

)
, and λt. In

the last term, λt is the explanatory variable. A regression gives estimates of α, β, and a “prediction”
of x∗0 . Note that the sum whose coefficient is β has many elements for high t, and few elements for

low t. Also note that the λt-term becomes very small, i.e., only the first few observations of this
“variable” count. This is why the estimate of x∗0 is not consistent, i.e., increasing the sample size

will not get an arbitrarily precise estimate of this value. Will the estimate of σ2 be consistent? �

• f. 1 point What do you do if λ is not known?

Answer. Since λ is usually not known, one can do the above procedure for all values along a
grid from 0 to 1 and then pick the value of λ which gives the best SSE. Zellner and Geisel did this
in [ZG70], and their regression can be reproduced in R with the commands data(geizel) and then
plot((1:99)/100, geizel.regression(geizel$c, geizel$y, 99), xlab="lambda", ylab="sse").
They got two local minima for λ, and that local minimum which was smaller corresponded to a
β > 1 which had to be ruled out for economic reasons. Their results are described in [Kme86, p.
534]. They were re-estimated with more recent data in [Gre93, pp. 531–533], where this paradox
did not arise. �

Here is R-code to compute the regressors in (49.2.19), and to search for the best
λ.

"geizel.regressors" <- function(x, lambda)

{ lngth <- length(x)

lampow <- z <- vector(mode="numeric",length=lngth)

lampow[[1]] <- lambda

z[[1]] <- x[[1]]

for (ii in 2:lngth)

{ lampow[[ii]] <- lambda*lampow[[ii-1]]

z[[ii]] <- x[[ii]] + lambda*z[[ii-1]] }

data.frame(z=(1-lambda)*z, lampow=lampow) }

"geizel.regression" <- function(y, x, nn, lambdamin=1/(nn+1), lambdamax=nn/(nn+1))

#The original Zellner Geisel article has an intercept.

{ sigmavec <- vector(mode="numeric",length=nn)

for (ii in 1:nn)

{ sigmavec[[ii]] <-

summary(lm(y ~ z + lampow - 1,

data=geizel.regressors(x,

lambdamin+(ii-1)*(lambdamax-lambdamin)/(nn-1))))$sigma }

sigmavec }

If one does this with the DHSY data (see chapter ??, one first has to seasonally
adjust the data. ecmet-script(geizel) de-seasonalizes and de-trends the data as
it was done implicitly in model (??). Then the optimal λ is 0.28, and the marginal
propensity to consume for this optimal λ is 0.323, which is much too low.
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Problem 454. 4 points There are at least two different situations how a geomet-
ric lag can come about. In one of those two situations, regression after performing
the “Koyck transformation” leads to consistent estimates, in the other it does not.
Explain.

Problem 455. 7 points Zvi Griliches in [Gri67] considers the problem of dis-
tinguishing between the following two models: A partial adjustment model

(49.2.21) yt = α+ βxt + ρyt−1 + vt

where vt obeys all classical assumptions, and a simple regression model with an au-
toregressive disturbance

(49.2.22) yt = α+ βxt + εt where εt = ρεt−1 + vt.

• a. Suppose you have data on xt and yt for n consecutive periods. Describe in
detail a test procedure that might enable you (if there is enough information in the
data) to decide which of the two models is appropriate. (Note: Spell out the null and
the alternative hypothesis and propose a test statistic and state its distribution.)

Hint: Models (49.2.21) and (49.2.22) are not nested, but they can both be written
as special cases of the same umbrella specification.

Answer. This umbrella specification is

(49.2.23) yt = γ + βxt + ρyt−1 + δxt−1 + vt

with well-behaved disturbances. Clearly, (49.2.21) follows from (49.2.23) by setting γ = α and
δ = 0. To see that (49.2.22) follows as well, write it as

(49.2.24) yt = α+ βxt + ρεt−1 + vt

and insert εt−1 = yt−1 − α− βxt−1. You get (49.2.23) with γ = α(1 − ρ) and δ = −βρ. The two
models make therefore two different statements about δ, the coefficient of xt−1. (49.2.21) has the
constraint δ = 0, while (49.2.22) has δ = −βρ.

To test whether the data reject the first hypothesis, run a simple t-test for δ = 0. To test
whether the data reject the second hypothesis, test the nonlinear constraint βρ + δ = 0. The
likelihood-ratio test is the neatest way. If the data reject one test and accept the other, then one
is lucky. If the data accept both, then one can argue that there is not enough information to
discriminate between the two models. If the data reject both, then one has exceptionally bad data
(assuming the umbrella hypothesis is correct). �

Other alternatives:
Schmidt’s polynomial geometric lag: not necessary to decide over maximum

length of the lag.
What is desired is usually a hump, and this can be modeled according to density

functions: Pascal lag: the weights are wi =
(
1+r−1

1

)
(1 − λ)rλi; estimate by MLE.

Gamma-lag wi = is−1e−i, s > 0, integer; does not add up to one! Not recommonded
because: w0 = 0 for s > 1, and w1 is always the same. Modified Gamma-lag:
wi = (i+ 1)α/(1−α)λi; 0 ≤ α < 1.



CHAPTER 50

Investment Models

50.1. Accelerator Models

The assumption is that for output Q, a capital stock of aQ is necessary. Therefore
accelerator

(50.1.1) ∆K = a∆Q.

But it does not fit, the estimated a is much too small for a reasonable capital-output
ratio.

Problem 456. Plot the capital stock of your industry against value added, and
also plot the first differences against each other. Interpret your results.

Now the flexible accelerator has the following two basic equations:

K∗
t = aQt(50.1.2)

Kt −Kt−1 = (1 − γ)(K∗
t −Kt−1)(50.1.3)

This can either be used to generate a relation between capital stock and output, or a
relation between investment and output. For the relation between capital stock and
output write (50.1.3) as

(50.1.4) Kt = (1 − γ)K∗
t + γKt−1

and plug in (50.1.2) to get

(50.1.5) Kt = a(1 − γ)Qt + γKt−1

This is a convenient form for estimation, i.e., one has to regress Kt on Qt and Kt−1.
But one may also eliminate Kt−1 on the righthand side of (50.1.5) by using the

lagged version of (50.1.5):

Kt = a(1 − γ)Qt + a(1 − γ)γQt−1 + γ2Kt−2.(50.1.6)

Since γ < 1 and Kt−j is bounded, one obtains in the limit

Kt = a(1 − γ)

∞∑

j=0

γjQt−j .(50.1.7)
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The other alternative is to get a relation between output and investment. This
is convenient when no capital stock data are available. The figure for investment
usually refers to both replacement investment and net investment, i.e.,

(50.1.8) It = Kt −Kt−1 +Dt,

where Dt is depreciation.
The usual treatment of depreciation is to setDt = δKt−1, with δ either estimated

or obtained from additional information.
Therefore

It = Kt − (1 − δ)Kt−1(50.1.9)

Now substitute equation (50.1.4) for Kt to get:

It = (1 − γ)K∗
t − (1 − γ − δ)Kt−1.(50.1.10)

In order to eliminate the term with Kt−1 on the righthand side, use the following
trick:

It − (1 − δ)It−1 = (1 − γ)
(
K∗
t − (1 − δ)K∗

t−1

)
(50.1.11)

− (1 − γ − δ)
(
Kt−1 − (1 − δ)Kt−2

)
.(50.1.12)

The last term on the righthand side is equal to (1 − γ − δ)It−1, and by setting
K∗
t = aQt one obtains

It = a(1 − γ)Qt − a(1 − γ)(1 − δ)Qt−1 + γIt−1.(50.1.13)

Therefore one can estimate these parameters by regressing It on Qt, Qt−1, and It−1.

Problem 457. Estimate the parameters γ from the relationship (50.1.5) and
from the relationship (50.1.13). Which result do you consider better?

50.2. Jorgenson’s Model

Jorgenson assumes a Cobb-Douglas production function

(50.2.1) Q = F (K,L) = KαLβ,

where α + β < 1 (but β will not be estimated). The marginal product of capital is
FK = αKα−1Lβ = αQ/K. Although Jorgenson’s theoretical derivation starts with
te assumption that firms seek to maximize the present discounted value of their cash
flow, he makes such strong supplementary assumptions that this is equivalent to the
firms maximizing their net revenue at every instant. In other words, their desired
capital input and labor input are such that FL = w(t)/p(t) and FK = c(t)/p(t),
where c(t) = (δ + r)q(t) − q̇(t) is the user cost of capital (q(t) is the price index
for capital goods). However firms are not at the desired path, and in order to
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reach this path they pursue the following strategy: they hire enough labor to satisfy
the marginal product condition for labor given their actual capital stock, i.e., they
produce the profit maximizing amount given this capital stock. The capital stock
which they consider their desired capital stock at time t is that amount of capital
which would be optimal for producing the output they are actually producing at
time t, i.e., K∗

t = α·Qt·pt

ct
.

As they approach this capital stock, they also hire more labor to fulfill the
marginal product condition for labor, therefore their output rises, and therefore their
desired capital stock will rise also. What the firms therefore consider their desired
capital stock is not yet the optimal path, but as long as they have not reached this
optimal path, they see a discrepancy between their actual and desired capital stock.

In other words, although Jorgenson claims to be modelling a very neoclassical
forward-looking optimizing behavior, he ands up estimating an equation in which
firms start with the situation they are in and go from there.

The investment orders placed at time t are assumed to be K∗
t −K∗

t−1 = ∆K∗
t .

Now Jorgenson makes the following assumptions about the actual deliveries of these
investment goods. The portion µ0∆K

∗
t will be delivered in the same period it is or-

dered, the portion µ1∆K
∗
t will be delivered one period later, the portion µ2∆K

∗
t will

be delivered two periods later, etc. The coefficients µ0, µ1, µ2, . . . do not change over
time and are also independent of the absolute size of ∆K∗

t . There is also replacement
investment, which is assumed ordered early enough that it will be delivered on time.
Therefore one obtains for investment:

(50.2.2) It =
∞∑

i=0

µi∆K
∗
t−i + δKt−1.

Substituting ∆K∗
t−i = α · ∆

(
Qp
c

)
t−i

one gets the following regression equation:

(50.2.3) It = α
∞∑

i=0

µi∆
(Qp
c

)
t−i

+ δKt−1.

This can be considered a modification of the accelerator model in which the
output variables are modified by price variables, in order to capture the effects of
prices on investment.

If one has annual data, one might use this for estimation, assuming there are at
most 3 or 4 lags. The coefficient α is identified because

∑∞
i=0 µi = 1.

Problem 458. Run the Jorgonson equation (50.2.3) for some finite number of
lags, and then run the same equation leaving out the cost-of-capital adjustment terms,
i.e., just looking at it as a simple accelerator model. Do you get better results?
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Jorgenson, who works with quarterly data, makes the following assumption about
the lag structure µ0, µ1, . . .. Using the lag operator, the regression to be estimated
is

(50.2.4) It − δKt−1 = α

∞∑

i=0

µiL
i∆
(Qp
c

)
.

Jorgenson assumes a rational lag, i.e., the delivery lags are
∑
i µiL

i =

∑
γiL

i∑
ωiL

i
, where

both sums are rather short, i.e., the only nonzero coefficients γi and ωi may be ω0 = 1,
ω1, ω2, and γ3, γ4, and γ5. Multiplying the regression equation through by

∑
ωiL

i

gives

(50.2.5) It − δKt−1 + ω1(It−1 − δKt−2) + ω2(It−2 − δKt−3) = α
5∑

i=3

γiL
i∆
(Qp
c

)
.

Therefore It− δKt−1 is the dependent variable, and the other variables the indepen-
dent variables. α is identified here because ω0 + ω1 + ω2 = γ3 + γ4 + γ5.

Jorgenson’s results are that α = 0.01, which is very small, it would indicate that
only 1% of the sales revenues goes to the owners of capital, the rest goes to the
laborers.

Problem 459. Use the given data for an estimation of the investment function
along the lines suggested by Jorgenson.

50.3. Investment Function Project

We will work with annual data for the 2-digit SIC manufacturing industries,
which are the following:
(50.3.1)


20 : Food and Kindred Products
21 : Tobacco Manufactures∗

22 : Textile Mill Products
23 : Apparel and Related Products∗

24 : Lumber and Products∗

25 : Furniture and Fixtures∗

26 : Paper and Allied Products
27 : Printing and Publishing Industries∗∗

28 : Chemicals and Allied Products
29 : Petroleum and Coal Products







30 : Rubber Products
31 : Leather and Leather Products∗

32 : Stone, Clay, and Glass Products
33 : Primary Metal Industries
34 : Fabricated Metal Products
35 : Machinery (Except Electrical)
36 : Electrical Equipment
37 : Transportation Equipment
38 : Instruments and Related Products
39 : Miscellaneous Manufactures∗




The main data are collected in two datafiles: ec781.invcur has data about fixed non-
residential private investment, capital stock (net of capital consumption allowance),
and gross national product by industry in current dollars. The file ec781.invcon has
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the corresponding data in constant 1982 dollars (has missing values for some data
for industry 27, that is why industry has a double star). Furthermore, the dataset
ec781.invmisc has additional data which might be interesting. Among those are
capacity utilization data for the industries 20, 22, 26, 28, 29, 30, 32, 33, 34, 35,
36, 37, and 38 (all industries for which there are no capacity utilization data have
at least one star) and profit rates for all industries. The profit rate data are con-
structed as follows from current dollar data: numerator= corporate profits before tax
+ corporate inventory valuation adjustment + noncorporate income + noncorporate
inventory valuation adjustment + government subsidies + net interest. Denomina-
tor: capital stock + inventories (the inventories come in part from the NIPAs, in
part from the census). It also has the prime rate (short term lending interest rate),
and the 10 year treasury note interest rate, and the consumer price index. Note that
the interest rates are in percent, for most applications you will have to divide them
by 100. The profit rate is not in percent, it is a decimal fraction.

All three datasets have the year as one of the variable, and they go from 1947–85,
with often some of the data for the beginning and the end of that period missing.
These datasets will be available on your d-disk, SAS should find them if you just call
them up by the name given here.
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Distinguishing Random Variables from Variables
Created by a Deterministic Chaotic Process

Dynamical systems are either described as recursive functions (discrete time) or
as differential equations.

With discrete time, recursive functions (recursive functions are difference equa-
tions, discrete analog of differential equations), one can easily get chaotic behavior.
E.g., the tent map or logistic function.

The problem is: how to distinguish the output of such a process from a randomly
generated output.

The same problem can also happen in the continuous case. First-order differential
equations can be visualized as vector fields.

An attractor A is a compact set which has a neighborhood U such that A is the
limit set of all trajectories starting in U . That means, every trajectory starting in
U comes arbitrarily close to each point of the attractor.

In R
2, there are three different types of attractors: fixed points, limit cycles, and

saddle loops. But in R
3 and higher, chaos can occur, i.e., the trajectory can have a

“strange attractor.” Example: Lorenz attractor.
There is no commonly accepted definition of a strange attractor, it is an attractor

that is neither a point nor a closed curve, and trajectories attracted by it take vastly
different courses after a short time.

Now fractal dimensions: first the Hausdorff dimension as limε→0
log N(ε)
log(1/ε) , indi-

cating the exponent with which the number of covering pieces N(ε) increases as the
diameter of the pieces diminishes.

Examples with integer dimensions: for points we have N(ε) = 1 always, there-
fore dimension is 0. For straight lines of length L, N(ε) = L/ε, therefore we get

limε→0
log(L/ε)
log(1/ε) = 1, and for an area with surface S it is limε→0

log(S/ε2)
log(1/ε) = 2.

Famous example of set with fractal dimension is the Cantor set: start with
unit interval, take middle third out, then take middle third of the two remaining
segments out, etc. For ε = 1/3 one gets N(ε) = 2, for ε = 1/9 one gets N(ε) = 4,
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and generally, for ε = (1/3)m one gets N(ε) = 2m. Therefore the dimension is

limm→∞
log 2m

log 3m = log 2
log 3 = 0.63.

A concept related to the Hausdorff dimension is the correlation dimension. To
compute this one needs C(ε), the fraction of the total number of points that are
within the Euclidian distance ε of a given point. (This C(ε) is a quotient of two
infinite numbers, but in finite samples it is a quotient of two large but finite numbers,
this is why it is more tractable than the Hausdorff dimension.) Example again with
straight line and area, using sup norm: line: C(ε) = 2ε/L, area: C(ε) = 4ε2/S.

Then the correlation dimension is limε→0
logC(ε)

log ε , again indicating how this count

varies with the distance.
To compute it, use logCM (ε), which is the sample analog of logC(ε) for a sample

of size M , and plot it against log ε. To get this sample analog, look at all pairs of
different points, and count those which are less than ε apart, and divide by total
number of pairs of different points N(N − 1)/2.

Clearly, if ε is too small, it falls through between the points, and if it is too large,
it extends beyond the boundaries of the set. Therefore one cannot look at the slope
in the origin but must look at the slope of a straight line segment near the origin.
Another reason for not looking at too small ε is that there may be a measurement
error.)

It seems the correlation dimension is close to and cannot exceed the Hausdorff
dimension. What one really wants is apparently the Hausdorff dimension, but the
correlation dimension is a numerically convenient surrogate.

Importance of fractal dimensions: If an attractor has a fractal dimension, then
it is likely to be a strange attractor (although strictly speaking it is neither necessary
nor sufficient). E.g. it seems to me the precise Hausdorff dimension of the Lorentz
attractor is not known, but the correlation dimension is around 2.05.

51.1. Empirical Methods: Grassberger-Procaccia Plots.

With conventional statistical means, it is hard to distinguish chaotic determin-
istic from random timeseries. In a timeseries generated by a tent map, one obtains
for almost all initial conditions a time series whose the autocorrelation function is
zero for all lags. We need sophisticated results from chaos theory to be able to tell
them apart.

Here is the first such result: Assume there is a time series of n-dimensional
vectors x t having followed a deterministic chaotic motion for a long time, so that
for all practical purposes it has arrived at its strange attractor, but at every time
point t you only observe the jth component xj t. Then an embedding of dimension
m is an artificial dynamical system formed by the m-histories of this jth component.
Takens proved that if x t lies on a strange attractor, and the embedding dimension



51.1. EMPIRICAL METHODS: GRASSBERGER-PROCACCIA PLOTS. 563

m > 2n−1 then the embedding is topologically equivalent to the original time series.
In particular this means that it has the same correlation dimension.

This has important implications: if a time series is part of a deterministic system
also including other time series, then one can draw certain conclusions about the
attractor without knowing the other time series.

Next point: the correlation dimension of this embedding is limε→0
logC(ε,m)

log ε ,

where the embedding dimension m is added as second argument into the function C.
If the system is deterministic, the correlation dimension settles to a stationary value
as the embedding dimension m increases; for a random system it keeps increasing, in
the i.i.d. case it is m. (In the special case that this i.i.d. distribution is the uniform
one, the m-histories are uniformly distributed on the m-dimensional unit cube, and it
follows immediately, like our examples above.) Therefore the Grassberger-Procaccia
plots show for each m one curve, plotting logC(ε,m) against log ε.

For ε small, i.e., log ε going towards −∞, the plots of the true C’s become
asymptotically a straight line emanating from the origin with a given slope which
indicates the dimension. Now one cannot make ε very small for two reasons: (1)
there are only finitely many data points, and (2) there is also a measurement error
whose effect disappears if ε becomes bigger than a few standard deviations of this
measurement error. Therefore one looks at the slope for values of ε that are not too
small.

One method to see whether there is a deterministic structure is to compare this
sample correlation dimension with that of “scrambled” data and see whether the
slopes of the original data do not become steeper while those of the scrambled data
still become steeper. Scrambling means: fit an autocorrelation and then randomly
draw the residuals.

This is a powerful tool for distinguishing random noise from a deterministic
system.
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Instrumental Variables

Compare here [DM93, chapter 7] and [Gre97, Section 6.7.8]. Greene first intro-
duces the simple instrumental variables estimator and then shows that the general-
ized one picks out the best linear combinations for forming simple instruments. I will
follow [DM93] and first introduce the generalized instrumental variables estimator,
and then go down to the simple one.

In this chapter, we will discuss a sequence of models yn = Xnβ + εn, where
εn ∼ (on, σ

2In), and Xn are n × k-matrices of random regressors, and the number
of observations n → ∞. We do not make the assumption plim 1

nX>
n εn = o which

would ensure consistency of the OLS estimator (compare Problem 394). Instead, a
sequence of n×m matrices of (random or nonrandom) “instrumental variables” Wn

is available which satisfies the following three conditions:

plim
1

n
W>

n εn = o(52.0.1)

plim
1

n
W>

n Wn = Q exists, is nonrandom and nonsingular(52.0.2)

plim
1

n
W>

n Xn = D exists, is nonrandom and has full column rank(52.0.3)

Full column rank in (52.0.3) is only possible if m ≥ k.
In this situation, regression of y on X is inconsistent. But if one regresses y

on the projection of X on R[W], the column space of W, one obtains a consistent
estimator. This is called the instrumental variables estimator.

If xi is the ith column vector of X, then W(W>W)−1W>xi is the projection of xi
on the space spanned by the columns of W. Therefore the matrix W(W>W)−1W>X

consists of the columns of X projected on R[W]. This is what we meant by the pro-
jection of X on R[W]. With these projections as regressors, the vector of regression
coefficients becomes the “generalized instrumental variables estimator”

(52.0.4) β̃ =
(
X>W(W>W)−1W>X

)−1

X>W(W>W)−1W>y

Problem 460. 3 points We are in the model y = Xβ + ε and we have a ma-
trix W of “instrumental variables” which satisfies the following three conditions:
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plim 1
nW>ε = o, plim 1

nW>W = Q exists, is nonrandom and positive definite, and

plim 1
nW>X = D exists, is nonrandom and has full column rank. Show that the

instrumental variables estimator

(52.0.5) β̃ =
(
X>W(W>W)−1W>X

)−1

X>W(W>W)−1W>y

is consistent. Hint: Write β̃n − β = Bn · 1
nW>ε and show that the sequence of

matrices Bn has a plim.

Answer. Write it as

β̃n =

(
X>W(W>W)−1W>X

)−1

X>W(W>W)−1W>(Xβ + ε)

= β +

(
X>W(W>W)−1W>X

)−1

X>W(W>W)−1W>ε

= β +

(
(
1

n
X>W)(

1

n
W>W)−1(

1

n
W>X)

)−1

(
1

n
X>W)(

1

n
W>W)−1 1

n
W>ε,

i.e., the Bn and B of the hint are as follows:

Bn =

(
(
1

n
X>W)(

1

n
W>W)−1(

1

n
W>X)

)−1

(
1

n
X>W)(

1

n
W>W)−1

B = plimBn = (D>Q−1D)−1D>Q−1

�

Problem 461. Assume plim 1
nX>X exists, and plim 1

nX>ε exists. (We only
need the existence, not that the first is nonsingular and the second zero). Show that

σ2 can be estimated consistently by s2 = 1
n (y − Xβ̃)>(y − Xβ̃).

Answer. y − Xβ̃ = Xβ + ε − Xβ̃ = ε − X(β̃ − β). Therefore

1

n
(y − Xβ̃)>(y − Xβ̃) =

1

n
ε>ε − 2

n
ε>X(β̃ − β) + (β̃ − β)>

(
1

n
X>X

)
(β̃ − β).

All summands have plims, the plim of the first is σ2 and those of the other two are zero.
�

Problem 462. In the situation of Problem 460, add the stronger assumption
1√
n
W>ε → N(o, σ2Q), and show that

√
n(β̃n − β) → N(o, σ2(D>Q−1D)−1)

Answer. β̃n − β = Bn
1
n

W>
n εn, therefore

√
n(β̃n − β) = Bnn−1/2W>

n εn → BN(o, σ2Q) =

N(o, σ2BQB>). Since B = (D>Q−1D)−1D>Q−1, the result follows. �

From Problem 462 follows that for finite samples approximately β̃n − β ∼
N
(
o, σ

2

n (D>Q−1D)−1
)
. Since 1

n (D>Q−1D)−1 = (nD>(nQ)−1nD)−1, MSE [β̃; β]

can be estimated by s2
(
X>W(W>W)−1W>X

)−1

The estimator (52.0.4) is sometimes called the two stages least squares estimate,
because the projection of X on the column space of W can be considered the predicted
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values if one regresses every column of X on W. I.e., instead of regressing y on X one
regresses y on those linear combinations of the columns of W which best approximate
the columns of X. Here is more detail: the matrix of estimated coefficients in the
first regression is Π̂ = (W>W)−1W>X, and the predicted values in this regression

are X̂ = WΠ̂ = W(W>W)−1W>X. The second regression, which regresses y on

X̂, gives the coefficient vector

(52.0.6) β̃ = (X̂>X̂)−1X̂>y.

If you plug this in you see this is exactly (52.0.4) again.
Now let’s look at the geometry of instrumental variable regression of one variable

y on one other variable x with w as an instrument. The specification is y = xβ+ ε.
On p. 437 we visualized the asymptotic results if ε is asymptotically orthogonal to x.
Now let us assume ε is asymptotically not orthogonal to x. One can visualize this as
three vectors, again normalized by dividing by

√
n, but now even in the asymptotic

case the ε-vector is not orthogonal to x. (Draw ε vertically, and make x long enough
that β < 1.) We assume n is large enough so that the asymptotic results hold for
the sample already (or, perhaps better, that the difference between the sample and
its plim is only infinitesimal). Therefore the OLS regression, with estimates β by
x>y/x>x, is inconsistent. Let O be the origin, A the point on the x-vector where ε

branches off (i.e., the end of xβ), furthermore let B be the point on the x-vector where
the orthogonal projection of y comes down, and C the end of the x-vector. Then

x>y = ŌC ŌB and x>x = ŌC
2
, therefore x>y/x>x = ŌB/ŌC , which would be the

β if the errors were orthogonal. Now introduce a new variable w which is orthogonal
to the errors. (Since ε is vertical, w is on the horizontal axis.) Call D the projection
of y on w, which is the prolongation of the vector ε, and call E the end of the
w-vector, and call F the projection of x on w. Then w>y = ŌE ŌD, and w>x =
ŌE ŌF . Therefore w>y/w>x = (ŌE ŌD)(ŌE ŌF ) = ŌD/ŌF = ŌA/ŌC = β.
Or geometrically it is obvious that the regression of y on the projection of x on w

will give the right β̂. One also sees here why the s2 based on this second regression
is inconsistent.

If I allow two instruments, the two instruments must be in the horizontal plane
perpendicular to the vector ε which is assumed still vertical. Here we project x on
this horizontal plane and then regress the y, which stays where it is, on this x. In
this way the residuals have the right direction!

What if there is one instrument, but it does not not lie in the same plane as
x and y? This is the most general case as long as there is only one regressor and
one instrument. This instrument w must lie somewhere in the horizontal plane. We
have to project x on it, and then regress y on this projection. Look at it this way:
take the plane orthogonal to w which goes through point C. The projection of x

on w is the intersection of the ray generated by w with this plane. Now move this
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plane parallel until it intersects point A. Then the intersection with the w-ray is the
projection of y on w. But this latter plane contains ε, since ε is orthogonal to w.
This makes sure that the regression gives the right results.

Problem 463. 4 points The asymptotic MSE matrix of the instrumental vari-

ables estimator with W as matrix of instruments is σ2 plim
(
X>W(W>W)−1W>X

)−1

Show that if one adds more instruments, then this asymptotic MSE-matrix can only
decrease. It is sufficient to show that the inequality holds before going over to the
plim, i.e., if W =

[
U V

]
, then

(52.0.7)
(
X>U(U>U)−1U>X

)−1

−
(
X>W(W>W)−1W>X

)−1

is nonnegative definite. Hints: (1) Use theorem A.5.5 in the Appendix (proof is
not required). (2) Note that U = WG for some G. Can you write this G in
partitioned matrix form? (3) Show that, whatever W and G, W(W>W)−1W> −
WG(G>W>WG)−1G>W> is idempotent.

Answer.

(52.0.8) U =
[
U V

] [I

O

]
= WG where G =

[
I

O

]
.

�

Problem 464. 2 points Show: if a matrix D has full column rank and is square,
then it has an inverse.

Answer. Here you need that column rank is row rank: if D has full column rank it also
has full row rank. And to make the proof complete you need: if A has a left inverse L and a
right inverse R, then L is the only left inverse and R the only right inverse and L = R. Proof:
L = L(AR) = (LA)R = R. �

Problem 465. 2 points If W>X is square and has full column rank, then it is
nonsingular. Show that in this case (52.0.4) simplifies to the “simple” instrumental
variables estimator:

(52.0.9) β̃ = (W>X)−1W>y

Answer. In this case the big inverse can be split into three:

(52.0.10) β̃ =

(
X>W(W>W)−1W>X

)−1

X>W(W>W)−1W>y =

(52.0.11) = (W>X)−1W>W(X>W)−1X>W(W>W)−1W>y

�
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Problem 466. We only have one regressor with intercept, i.e., X =
[
ι x

]
, and

we have one instrument w for x (while the constant term is its own instrument),
i.e., W =

[
ι w

]
. Show that the instrumental variables estimators for slope and

intercept are

β̃ =

∑
(wt − w̄)(yt − ȳ)∑
(wt − w̄)(xt − x̄)

(52.0.12)

α̃ = ȳ − β̃x̄(52.0.13)

Hint: the math is identical to that in question 238.

Problem 467. 2 points Show that, if there are as many instruments as there are
observations, then the instrumental variables estimator (52.0.4) becomes identical to
OLS.

Answer. In this case W has an inverse, therefore the projection on R[W] is the identity.
Staying in the algebraic paradigm, (W>W)−1 = W−1(W>)−1. �

An implication of Problem 467 is that one must be careful not to include too
many instruments if one has a small sample. Asymptotically it is better to have more
instruments, but for n = m, the instrumental variables estimator is equal to OLS, i.e.,
the sequence of instrumental variables estimators starts at the (inconsistent) OLS.
If one uses fewer instruments, then the asymptotic MSE matrix is not so good, but
one may get a sequence of estimators which moves away from the inconsistent OLS
more quickly.



CHAPTER 53

Errors in Variables

53.1. The Simplest Errors-in-Variables Model

We will explain here the main principles of errors in variables by the example
of simple regression, in which y is regressed on one explanatory variable with a
constant term. Assume the explanatory variable is a random variable, called x∗,
and the disturbance term in the regression, which is a zero mean random variable
independent of x∗, will be called v. In other words, we have the following relationship
between random variables:

(53.1.1) y = α+ x∗β + v.

If n observations of the variables y and x∗ are available, one can obtain estimates
of α and β and predicted values of the disturbances by running a regression of the
vector of observations y on x∗:

(53.1.2) y = ια+ x∗β + v.

But now let us assume that x∗ can only be observed with a random error. I.e., we
observe x = x∗+u. The error u is assumed to have zero mean, and to be independent
of x∗ and v. Therefore we have the model with the “latent” variable x∗:

y = α+ x∗β + v(53.1.3)

x = x∗ + u(53.1.4)

This model is sometimes called “regression with both variables subject to error.” It
is symmetric between the dependent and the explanatory variable, because one can
also write it as

y∗ = α+ x∗β(53.1.5)

x = x∗ + u(53.1.6)

y = y∗ + v(53.1.7)

and, as long as β 6= 0, y∗ = α+ x∗β is equivalent to x∗ = −α/β + y∗/β.
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What happens if this is the true model and one regresses y on x? Plug x∗ = x−u

into (53.1.2):

(53.1.8) y = ια+ xβ + (v − uβ)︸ ︷︷ ︸
ε

The problem is that the disturbance term ε is correlated with the explanatory vari-
able:

(53.1.9) cov[x, ε] = cov[x∗ + u, v − uβ] = −β var[u].

Therefore OLS will give inconsistent estimates of α and β:

β̂OLS =

∑
(yi − ȳ)(xi − x̄)∑

(xi − x̄)2
(53.1.10)

plim β̂OLS =
cov[y, x]

var[x]
= β

(
1 − var[u]

var[x]

)
.(53.1.11)

Since var[u] ≤ var[x], β̂OLS will have the right sign in the plim, but its absolute
value will understimate the true β.

Problem 468. 1 point [SM86, A3.2/3] Assume the variance of the measurement
error σ2

u is 10% of the variance of the unobserved exogenous variable σ2
x∗ . By how

many percent will then the OLS estimator β̂OLS asymptotically underestimate the
absolute value of the true parameter β?

Answer. 1 − var[u]/var[x] = 1 − 0.1/1.1 = 0.90909, which is 9.09% below 1. �

Although β̂OLS is not a consistent estimator of the underlying parameter β,
it nevertheless converges towards a meaningful magnitude, namely, the best linear
predictor of y on the basis of x, which characterizes the empirical relation between
x and y in the above model.

What is the difference between the underlying structural relationship between
the two variables and their empirical relationship? Assume for a moment that x is

observed and y is not observed, but one knows the means

[
E[x]
E[y]

]
and the covari-

ance matrix

[
var[x] cov[x,y]

cov[x,y] var[y]

]
. Then the best linear predictor of y based on the

observation of x is

(53.1.12) y∗ = E[y] +
cov[y, x]

var[x]
(x − E[x]) =

(
E[y] − cov[y, x]

var[x]
E[x]

)
+

cov[y, x]

var[x]
x

This is a linear transformation of x, whose slope and intercept are not necessarity

equal to the “underlying” α and β. One sees that the slope is exactly what β̂OLS
converges to, and question 469 shows that the intercept is the plim of α̂OLS .
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Problem 469. Compute plim α̂OLS.

Is it possible to estimate the true underlying parameters α and β consistently?
Not if they are jointly normal. For this look at the following two scenarios:

y∗ = 2x∗ − 100

x∗ ∼ N(100, 100)

v ∼ N(0, 200)

u ∼ N(0, 200)

versus

y∗ = x∗

x∗ ∼ N(100, 200)

v ∼ N(0, 400)

u ∼ N(0, 100)

(53.1.13)

They lead to identical joint distributions of x and y, although the underlying param-
eters are different. Therefore the model is unidentified.

Problem 470. Compute means, variances, and the correlation coefficient of x

and y in both versions of (53.1.13).

Answer. First the joint distributions of y∗ and x∗:

(53.1.14)

[
y∗

x∗

]
∼ N

([
100
100

]
,

[
400 200
200 100

])
versus

[
y∗

x∗

]
∼ N

([
100
100

]
,

[
200 200
200 200

])
.

Add to this the independent

(53.1.15)

[
v

u

]
∼ N

([
0
0

]
,

[
200 0
0 200

])
versus

[
v

u

]
∼ N

([
0
0

]
,

[
400 0
0 100

])
.

�

Problem 471. Compute a third specification of the underlying relationship be-
tween x∗ and y∗, the mean and variance of x∗, and the error variances, which leads
again to the same joint distribution of x and y, and under which the OLS estimate
is indeed a consistent estimate of the underlying relationship.

53.1.1. Three Restrictions on the True Parameteres. The lack of identi-
fication means that the mean vector and dispersion matrix of the observed variables
are compatible with many different values of the underlying parameters. But this
lack of identification is not complete; the data give three important restrictions for
the true parameters.

Equation (53.1.5) implies for the means
[
µy µx

]
=
[
µy∗ µx∗

]
=
[
α+ µx∗β µx∗

]
,(53.1.16)

and variances and covariances satisfy, due to (53.1.6) and (53.1.7),
[
σ2

y σxy

σxy σ2
x

]
=

[
σ2

y∗ σx∗y∗

σx∗y∗ σ2
x∗

]
+

[
σ2

v 0
0 σ2

u

]

=

[
β2σ2

x∗ βσ2
x∗

βσ2
x∗ σ2

x∗

]
+

[
σ2

v 0
0 σ2

u

]
.(53.1.17)
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We know five moments of the observed variables: µy, µx, σ2
y, σxy, and σ2

x; but there

are six independent parameters of the model: α, β, µx∗ , σ2
x∗ , σ2

v, σ2
u. It is therefore

no wonder that the parameters cannot be determined uniquely from the knowledge of
means and variances of the observed variables, as shown by counterexample (53.1.13).
However α and β cannot be chosen arbitrarily either. The above equations imply
three constraints on these parameters.

The first restriction on the parameters comes from equation (53.1.16) for the
means: From µy∗ = α+ βµx∗ follows, since µy = µy∗ and µx = µx∗ , that

(53.1.18) µy = α+ βµx,

i.e., all true underlying relationships compatible with the means and variances of the

observed variables go through the same point

[
µx

µy

]
.

If σxy = 0, this is the only restriction on the parameter vectors. To see this,
remember σxy = βσ2

x∗ . This product is zero if either σ2
x∗ = 0, or σ2

x∗ 6= 0 and β = 0.
If σ2

x∗ = 0, then x∗ and therefore also y∗ are constants. Any two constants satisfy
infinitely many affine relationships, and all α and β which satisfy the first constraint
are possible parameter vectors which all describe the same affine relationship between
x∗ and y∗. In the other case, if σ2

x∗ 6= 0 and β = 0, then the linear relation underlying
the observations has coefficient zero, they are noisy observations of two linearly
unrelated variables.

In the regular case σxy 6= 0, condition (53.1.17) for the dispersion matrices gives
two more restrictions on the parameter vectors. From σxy = βσ2

x∗ follows the second
restriction on the parameters:

(53.1.19) β must have the same sign as σxy.

And here is a derivation of the third restriction (53.1.23): from

0 ≤ σ2
u = σ2

x − σ2
x∗ and 0 ≤ σ2

v = σ2
y − β2σ2

x∗(53.1.20)

follows

σ2
x∗ ≤ σ2

x and β2σ2
x∗ ≤ σ2

y.(53.1.21)

Multiply the first inequality by |β| and substitute in both inequalities σxy for βσ2
x∗ :

|σxy| ≤ |β|σ2
x and |β| |σxy| ≤ σ2

y(53.1.22)

or

|σxy|
σ2

x

≤ |β| ≤ σ2
y

|σxy|
.(53.1.23)
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The lower bound is the absolute value of the plim of the regression coefficient if
one regresses the observations of y on those of x, and the reciprocal of the upper
bound is the absolute value of the plim of the regression coefficient if one regresses
the observed values of x on those of y.

Problem 472. We have seen that the data generated by the two processes (53.1.13)
do not determine the underlying relationship completely. What restrictions do these
data impose on the parameters α and β of the underlying relation y∗ = α+ βx∗?

Problem 473. The model is y = α + x∗β + v, but x∗ is not observed; one
can only observe x = x∗ + u. The errors u and v have zero expected value and are
independent of each other and of x∗. You have lots of data available, and for the sake
of the argument we assume that the joint distribution of x and y is known precisely:
it is

(53.1.24)

[
y

x

]
∼ N

([
1
−1

]
,

[
6 −2
−2 3

])
.

• a. 3 points What does the information about y and x given in equation (53.1.24)
imply about α and β?

Answer. (53.1.18) gives α− β = 1, (53.1.19) gives β ≤ 0, and (53.1.23) 2/3 ≤ |β| ≤ 3. �

• b. 3 points Give the plims of the OLS estimates of α and β in the regression
of y on x.

Answer. plim β̂ = cov[x,y]/ var[x] = − 2
3
, plim α̂ = E[y] − E[x]plim β̂ = 1

3
. �

• c. 3 points Now assume it is known that α = 0. What can you say now about
β, σ2

u, and σ2
v? If β is identified, how would you estimate it?

Answer. From y = (x − u)β + v follows, by taking expectations, E[y] = E[x]β (i.e., the true
relationship still goes through the means), therefore β = −1, and a consistent estimate would be ȳ/x̄.
Now if one knows β one gets var[x∗] from cov[x,y] = cov[x∗+u, βx∗+v] = β var[x∗], i.e., var[x∗] = 2.
Then one can get var[u] = var[x] − var[x∗] = 3 − 2 = 1, and var[v] = var[y] − var[y∗] = 6 − 2 = 4.
Luckily, those variances came out to be positive; otherwise the restriction α = 0 would not be
compatible with (53.1.24). �

53.2. General Definition of the EV Model

Given a n× k matrix X whose columns represent the observed variables. These
observations are generated by a linear EV model if the following holds:

X = X∗ + U,(53.2.1)

X∗B = O(53.2.2)

X∗ is an n× k matrix of the values of the unobserved “systematic” or “latent” vari-
ables. We assume that Q∗ = plimn→∞

1
nX∗>X∗ exists. If the systematic variables
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are independent observations from the same joint distribution, this means that first
and second order moments exist. If the systematic variables are nonrandom, the
plim becomes the ordinary limit. These two special cases are called the “structural
variant” and the “functional variant.”

U is the n × k matrix of the values of the unobserved “errors” or “statistical
disturbances.” These errors are assumed to be random; they have zero expectations,

the rows of U are independent and identically distributed with covariance matrix Q̃.
If the systematic variables are random as well, then we assume that the errors are
independent of them.

The letter B in (53.2.2) is an upper-case Greek β, the columns of B will therefore
be written βi. Every such column constitutes a linear relation between the systematic
variables. B is assumed to be exhaustive in the sense that for any vector γ which
satisfies X∗γ = o there is a vector q so that γ = Bq. The rank of B is denoted by
q. If q = 1, then only one linear relation holds, and the model is called a univariate
EV model, otherwise it is a multivariate EV model.

In this specification, there are therefore one or several exact linear relations
between the true variables X∗, but X∗ can only be observed with error. The task of
getting an estimate of these linear relations has been appropriately called by Kalman
“identification of linear relations from noisy data” [Kal83, p. 119], compare also the
title of [Kal82]. One can say, among the columns of X there is both a stochastic
relationship and a linear relationship, and one wants to extract the linear relationship
from this mixture.

The above are the minimum assumptions which we will make of each of the
models below. From these assumptions follows that

(53.2.3) plim
n→∞

1

n
X∗>U = O

Proof: First we prove it for the case that the systematic variables are nonrandom, in
which case we write them X∗. Since the expected value E[U] = O, also E[ 1

nU>X∗] =
O. For (53.2.3) it is sufficient to show that the variances of these arithmetic means
converge to zero: if their expected value is zero and their variance converges to zero,

their plim is zero as well. The i, k element of X∗>U is
∑n
j=1 x

∗
jiujk , or it can also

be written as x∗>
i uk, it is the scalar product of the ith column of X∗ with the kth

column of U. Since all the elements in the kth column of U have same variance,
namely, var[ujk ] = q̃kk , and since ujk is independent of umk for j 6= m, it follows

(53.2.4) var
[ 1
n

∑

j

x∗jiujk
]

=
q̃ii
n

1

n

∑

n

x∗2
ji.

Since plim 1
n

∑
j x

∗2
ji exists (it is q∗jj), (53.2.4) converges toward zero.
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Given this special case, the general case follows by an argument of the form:
since this plim exists and is the same conditionally on any realization of X∗, it also
exists unconditionally.

Other assumptions, made frequently, are: the covariance matrix of the errors Q̃

is p.d. and/or diagonal.
There may also be linear restrictions on B, and restrictions on the elements of

Q̃.
An important extension is the following: If the columns of X∗ and U are re-

alizations of (weakly) stationary stochastic processes, and/or X∗ contains lagged
variables, then one speaks of a dynamic EV model. Here the rows of U are no longer
independent.

53.3. Particular Forms of EV Models

The matrix of parameters is not uniquely determined. In order to remove this

ambiguity, one often requires that it have the form

[
−I

B

]
, where I is a q× q identity

matrix. Such a form can always be achieved by rearranging the variables and/or going
over to linear combinations. Any symmetric EV model is equivalent to one in which
the parameter matrix has this form, after an appropriate linear transformation of the
variables. Partitioning the vectors of systematic variables and errors conformably,
one obtains the following form of the EV model:

Y∗ = X∗B

Y = Y∗ + V

X = X∗ + U

i.e.,

[
Y∗ X∗]

[
−I

B

]
= O

[
Y X

]
=
[
Y∗ X∗]+

[
V U

](53.3.1)

The OLS model is a special case of the errors in variables model. Using the
definition y∗ = X∗β, i.e., y∗ is the vector which ŷ estimates, one can write the
regression model in the form

y∗ = X∗β

y = y∗ + v

X = X∗
or in the symmetric form

[
y∗ X∗]

[
−1
β

]
= o

[
y X

]
=
[
y∗ X∗]+

[
v O

]
.

If there is a single “bad” variable, say it is x, and we will call the matrix of the
“good” variables Z, then the univariate EV model has the form

y∗ = x∗β + Zγ

x = x∗ + u

y = y∗ + v

Z = Z∗

or

[
y∗ x∗ Z∗]



−1
β
γ


 = o

[
y x Z

]
=
[
y∗ x∗ Z∗]+

[
v w O

]
.
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This model is discussed in [Gre97, p. 439/40].
The constant term in the univariate EV model can be considered the coefficient

of the “pseudovariable” ι, which has the value 1 in all observations, and which is
observed without error. Using y∗ = ια+ X∗β, its general form is

[
y∗ ι X∗]



−1
α
β


 = 0(53.3.2)

[
y ι X

]
=
[
y∗ ι X∗]+

[
ε + v o U

]
.(53.3.3)

Some well-known models, which are not usually considered EV models, are in
fact special cases of the above specification.

A Simultaneous Equations System, as used often in econometrics, has the form

(53.3.4) YΓ = X∗B + E

where Y (the endogenous variables) and X∗ (the exogenous variables) are observed.
E is independent of X∗ (it characterizes the exogenous variables that they are inde-
pendent of the errors). B and Γ are matrices of nonrandom but unknown parameter
vectors, Γ is assumed to be nonsingular. Defining Y∗ = X∗BΓ−1 and V = EΓ−1,
one can put this into the EV-form

[
Y∗ X∗]

[
−Γ
B

]
= O(53.3.5)

[
Y X

]
=
[
Y∗ X∗]+

[
V O

]
.(53.3.6)

If one assumes that also X∗ is observed with errors, one obtains a simultaneous
equations model with errors in the variables.

The main difference between simultaneous equations systems and EV models
is that in the former, identification is usually achieved by linear constraints on the
parameters, and in the latter by restrictions on the covariance matrix of the errors.

The Factor Analytical Model assumes the observed variables X are linear com-
binations of a small number of unobserved “factors” Ψ plus an error term which has
diagonal covariance matrix, i.e.,

(53.3.7) X = ΨC + U.

There is a bijection between EV models and FA models for which we need the
matrix theoretical concept of a deficiency matrix, which is discussed in more detail
in section A.4 of the appendix. Here is only a brief overview:

Definition: We say a matrix C is a left deficiency matrix of B, in symbols,
C ⊥ B, iff CB = O, and for all Q with QB = O there is an X with Q = XC.

This is an antisymmetric relation between the two matrices in the sense that
from C ⊥ B follows B> ⊥ C>. C ⊥ B means therefore also that for all R with
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CR = O there is a Y with R = BY . We can therefore also say that B is a right
deficiency matrix of C.

C ⊥ B simply means that the row vectors of C span the vector space orthogonal
to the vector space spanned by the column vectors of B. If therefore B is k× q and
has rank q, then C can be chosen (k − q) × k with rank k − q.

Start with an EV model

X∗B = O(53.3.8)

X = X∗ + U(53.3.9)

where B is a k × q matrix with rank q, and choose a (k − q) × k matrix C ⊥ B.
Then there exists a n× (k − q) matrix Ψ with X∗ = ΨC, and therefore one obtains
the factor analytical model X = ΨC +U with k− q factors. Conversely, from such a
factor analytical model one can, by choosing a right deficiency matrix of C, obtain
an EV model. [Mul72], [Kim], [KM78]

A model which violates one of the assumptions of the EV model is the Berkson
model. Let us discuss the simplest case

y∗ = α+ x∗β(53.3.10)

y = y∗ + v(53.3.11)

x = x∗ + u.(53.3.12)

While usually u is indepenent of x∗, now we assume u is indepenent of x. If this is
the case, then the regression of y on x is unbiased and efficient:

(53.3.13) y = y∗ + v = x∗β + v = xβ + v − uβ

Here the error terms are independent of the explanatory variable.
How can this happen? Use the example with y∗ is voltage in volts, x∗ is current in

amperes, and β is the resistance in Ohm. Here is a circuit diagram: the experimenter
adjusts the current until the ampere meter shows, for instance, one ampere, and then
he reads the voltage in volts, which are his estimate of the resistance.

53.4. The Identification Problem

In this section we will consider estimation under the hypothetical situation that
we have so many observations that the sample means and variances of the columns
of X, X∗, and U are exactly equal to their plims. We will seek to generalize the
“three restrictions on the parameters” (53.1.18), (53.1.19), and (53.1.23) from the
simple regression with errors in dependent and independent variables to the general
EV model.

580 53. ERRORS IN VARIABLES

����
y

β

����
x

rr
6

Figure 1. Circuit Diagram

53.4.1. The Frisch Problem. Start with the general EV model

X∗B = O(53.4.1)

X = X∗ + U.(53.4.2)

Since we have infinitely many observations, equation (53.2.3), 1
nX∗>U = O, which

was asymptotically true in the general model, holds precisely. Therefore

Q :=
1

n
X>X(53.4.3)

=
1

n
(X∗ + U)>(X∗ + U)(53.4.4)

=
1

n
X∗>X∗ +

1

n
U>U(53.4.5)

= Q∗ + Q̃.(53.4.6)

For any matrix B, X∗B = O is equivalent with 1
nX∗>X∗B = O, i.e., Q∗B = O.

If one assumes that all errors have nonzero variances and are uncorrelated, i.e.,
if 1
nU>U is in the plim diagonal and nonsingular, then the identification problem of

errors in the variables can be reduced to the following “Frisch Problem”:
Given a positive definite symmetric matrix Q, how many ways are there to split

it up as a sum

(53.4.7) Q = Q∗ + Q̃

where Q∗ is singular and nonnegative definite, and Q̃ diagonal and positive definite?
This is a surprisingly difficult problem which has not yet been resolved in general.

Here is one partial result:
Theorem (“Elementary Regression Theorem”): Assume the limit moment matrix

of the observations, Q, has an inverse Q−1 all elements of which are positive. Then
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the EV problem is necessarily univariate, and β is a solution if and only if it can be
written in the form β = Q−1γ where γ > o.

Interpretation of the result: The ith column of Q−1 is proportional to the re-
gression coefficients of the ith “elementary regression,” in which the observations of
the ith variable xi are regressed on all the other variables. Therefore this theorem
is a direct generalization of the result obtained in two dimensions, but it is only
valid if all elementary regressions give positive parameters or can be made to give
positive parameters by sign changes. If this is the case, the feasible parameter vec-
tors are located in the convex set spanned by the plims of all elementary regression
coefficients.

Proof of Theorem: Assume Q is positive definite, Q̃ is diagonal and positive

definite, and Q− Q̃ nonnegative definite and singular. Singularity means that there

exists a vector β, which is not the null vector, with (Q− Q̃)β = o. This can also be

expressed as: β is eigenvector of Q−1Q̃ with 1 as eigenvalue.
First we will take any such eigenvalue and show that it can be written in the

form as required. For this we will show first that every eigenvector α of Q−1Q̃,

which does not satisfy (Q − Q̃)α = o has an eigenvector smaller than 1. Call this
eigenvalue λ. Then

Q−1Q̃α = αλ(53.4.8)

Q̃α = Qαλ(53.4.9)

Qα − Q̃α = Qα(1 − λ)(53.4.10)

α>(Q − Q̃)α︸ ︷︷ ︸
>0

= α>Qα︸ ︷︷ ︸
>0

(1 − λ).(53.4.11)

Therefore 1 − λ > 0, or λ < 1.

Now we need the assumption Q−1 > O and therefore also Q−1Q̃ > O. Accord-
ing to the Perron-Frobenius theorem, the maximal eigenvalue of a positive matrix is
simple, and the eigenvector belonging to it is positive. Therefore we know that β

is simple, i.e., the systematic variables satisfy only one linear relation, the errors in

variables problem is univariate, and β > o. Since β = Q−1Q̃β = Q−1γ with γ > o,
it can be written in the form as stated in the theorem.

In order to prove the converse, take any vector β that can be written as β =

Q−1γ with γ > o. For this β take that matrix Q̃ whose diagonal elements are

q̃2i = γi/βi. This gives γ = Q̃β and therefore Qβ = Q̃β. This shows that β is a
possible solution.

This completes the proof of the theorem. But we still need to prove its interpre-
tation. If one regresses the first variable on all others, i.e., estimates the equation

(53.4.12) x1 =
[
x2 · · · xK

]
β + ε =: Zβ + ε,
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the solution is β̂ = (Z>Z)−1Z>x1. Note that the elements from which β̂ is formed
are partitions of Q. (Note that Q is not the dispersion matrix but the matrix of
uncentered moments of X.)

(53.4.13) Q =
1

n

[
x>

1 x1 x>
1 Z

Z>x1 Z>Z

]
.

Postmultiplication of Q by

[
1

−β̂

]
gives therefore

(53.4.14)
1

n

[
x>

1 x1 x>
1 Z

Z>x1 Z>Z

] [
1

−(Z>Z)−1Z>x1

]
=

1

n

[
x>

1 x1 − x>
1 Z(Z>Z)−1Z>x1

o

]
.

In other words,

[
1

−β̂

]
is proportional to the first column of Q−1.

Once the mathematical tools are better developed, it will be feasible to take the
following approach to estimation: first solve the Frisch problem in order to get an
estimate of the feasible parameter region compatible with the data, and then use
additional information, not coming from the data, to narrow down this region to a
single point. The emphasis on the Frisch problem is due to Kalman, see [Kal82].
Also look at [HM89].

53.4.2. “Sweeping Out” of Variables Measured Without Errors. The
example of the simple EV model does not quite fit under this umbrella since the
pseudo-variable ι consisting of ones only is “observed” without error, while our treat-
ment of the Frisch Problem assumed that all variables are observed with errors. This
section will demonstrate that any variables in the model which are observed without
error can be “swept out” by regression, thus reducing the number of variables which
may pose an identification problem.

Go back to the general EV model in its symmetric form, but assume that some
of the variables are observed without error, i.e., the model reads

[
X∗ Z∗]

[
B

Γ

]
= O(53.4.15)

[
X Z

]
=
[
X∗ Z∗]+

[
U O

]
.(53.4.16)

The moment matrices associated with this satisfy the following Frisch decompo-
sition:

(53.4.17)

[
QXX QXZ

QZX QZZ

]
=

[
QXX QXZ

QZX Q∗
ZZ

]
+

[
O O

O Q̃ZZ

]

Reformulate this: Now how does one get variables whose moment matrix is the
one in (53.4.20)? By regressing every variable in Z on all variables in X and taking
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the residuals in this regression. Write the estimated regression equation and the
residuals as

(53.4.18) Z = XΠ∗ + E∗ where Π∗ = (X>X)−1X>Z.

Therefore E∗ = (I − X(X>X)−1X>)Z, hence
(53.4.19)

plim
1

n
E∗>E∗ = plim

1

n
(Z>Z − Z>X(X>X)−1X>Z) = QZZ − QZXQ−1

XXQXZ .

Define QZZ.X := QZZ − QZXQ−1
XXQXZ . Claim: there is a one-to-one corre-

spondence between decompositions of the kind (53.4.17) (in which the error variances
of the first partition are constrained to be zero) and unconstrained Frisch decompo-
sitions of QZZ.X . In this bijection, (53.4.17) corresponds to the decomposition

(53.4.20) QZZ.X = (Q∗
ZZ − QZXQ−1

XXQXZ) + Q̃ZZ .

Proof: given that Q =

[
QXX QXZ

QZX QZZ

]
is nonnegative definite, we have to

show that Q∗ =

[
QXX QXZ

QZX Q∗
ZZ

]
is nonnegative definite if and only if QZZ.X =

Q∗
ZZ − QZXQ−1

XXQXZ is nonnegative definite. By theorem A.5.11, Q∗ is nonnega-

tive definite if and only if QXX is nnd, QXZ = QXXQ−
XXQXZ , and QZZ.X is nnd.

The first two conditions follow from Q being nnd. Therefore the third condition is
an iff condition.

Furthermore, the mapping

(53.4.21)

[
β

γ

]
7→ γ 7→

[
−Q−1

XXQXZγ

γ

]

is a bijection between vectors that annul

[
QXX QXZ

QZX Q∗
ZZ

]
, which is the moment

matrix of the systematic variables in (53.4.17), and vectors that annul Q∗
ZZ −

QZXQ−1
XXQXZ , which is the moment matrix of the systematic variables in (53.4.20).

Proof: Assume I have a solution
[
QXX QXZ

QZX Q∗
ZZ

] [
β

γ

]
=

[
o

o

]
⇐⇒

QXXβ + QXZγ = o

QZXβ + QZZγ = o
.(53.4.22)

Since the nonsingularity of Q implies the nonsingularity of QXX , the first equa-
tion implies β = −Q−1

XXQXZγ, and plugging this into the second equation gives

Q∗
ZZ − QZXQ−1

XXQXZγ = o. On the other hand, starting with a β annulling the

systematic moment matrix of the compacted problem (Q∗
ZZ−QZXQ−1

XXQXZ)β = o,
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this implies

(53.4.23)

[
QXX QXZ

QZX Q∗
ZZ

] [
−Q−1

XXQXZβ

β

]
=

[
o

o

]

If X = ι, then going over to the residuals simply means that one has to take devi-
ations from the means. In this case, (53.4.20) is the decomposition of the covariance
matrix of the variables. In other words, if there is a constant term in the regressions,

then Q and Q̃ should not be considered to be the moments of the observed and
systematic variables about the origin, but their covariance matrices. We will use this
rule extensively in the following examples.

53.5. Properties of Ordinary Least Squares in the EV model

In the estimation of a univariate EV model it is customary to single out one
variable which is known to have a nonzero coefficient in the linear relation to be
estimated, and to normalize its coefficient to be −1. Writing this variable as the first
variable, the symmetric form reads

[
y∗ X∗]

[
−1
β

]
= o

[
y X

]
=
[
y∗ X∗]+

[
v U

]
;

(53.5.1)

but the usual way of writing this is, of course,

y∗ = X∗β

y = y∗ + v

X = X∗ + U

(53.5.2)

In this situation it is tempting to write

(53.5.3) y = Xβ + v − Uβ︸ ︷︷ ︸
ε

and to regress y on X. This gives a biased and inconsistent estimator of β, since ε is
correlated with X. It is still worthwhile to look at this regression, since the coefficient
towards which bOLS converges is an estimate of the “empirical relation” among the
variables, i.e., an estimate of the conditional mean of y given xi.

bOLS − β = (
1

n
X>X)−1 1

n
X>E(53.5.4)

= −(
1

n
X>X)−1 1

n
X>Uβ + (

1

n
X>X)−1 1

n
X>v.(53.5.5)
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Since X>U = X∗>U + U>U and plim 1
nX∗>U = O, this becomes in the plim

plim bOLS − β = −Q−1Q̃β + Q−1σσσUv.(53.5.6)

This, under the additional assumption that v and U are in the plim uncorrelated,
i.e., that σσσUv = o, is [Gre97, (9.28) on p. 439]. Greene says “this is a mixture of
all the parameters in the model,” implying that it is hopeless to get information
about these parameters out of this. However, if one looks for inequalities instead of
equalities, some information is available.

For instance one can show that the sample variance of the residuals remains
between the variance of ε and the variance of v, i.e.,

(53.5.7) σ2
v ≤ plim

1

n
e>e ≤ σ2

ε.

For this start with

e = (I − X(X>X)−1X>)ε(53.5.8)

therefore

plim
1

n
e>e = σ2

ε − plim
1

n
ε>X(

1

n
X>X)−1 1

n
X>ε.(53.5.9)

Since X>X−1 is nonnegative definite, this shows the second half of (53.5.7). For the
first half use

ε = −Uβ + v, hence(53.5.10)

ε>ε = β>U>Uβ − 2β>U>v + v>v and(53.5.11)

σ2
ε = β>Q̃β + σ2

v(53.5.12)

and

plim
1

n
X>ε = plim

1

n
(X∗ + U)>(−Uβ + v) = −Q̃β.(53.5.13)

Plugging (53.5.12) and (53.5.13) into (53.5.9) gives

(53.5.14) plim
1

n
e>e = σ2

v + β>(Q̃ − Q̃Q−1Q̃)β.

Since Q̃− Q̃Q−1Q̃ is nonnegative definite, this proves the first half of the inequality.

Problem 474. Assuming σσσUv = o, show that in the plim,

(53.5.15) b>
OLSQbOLS ≤ β>Qβ.

You will need Problem 583 for this.
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Answer.

β>Qβ − plimb>
OLSQbOLS(53.5.16)

= β>(Q − (I − Q̃Q−1)QQ−1Q(I − Q−1Q̃)
)
β(53.5.17)

= β>(Q − (Q − Q̃)Q−1(Q − Q̃)
)
β(53.5.18)

= β>(Q̃ + Q∗ − Q∗Q−1Q∗)β.(53.5.19)

By Problem 583, Q∗ − Q∗Q−1Q∗ is nonnegative definite. �

Problem 475. Assume the data X and y can be modeled as a univariate EV
model:

y∗ = X∗β(53.5.20)

X = X∗ + U(53.5.21)

y = y∗ + v(53.5.22)

Let xi
>, x∗

i
>, and ui

> be the ith rows of X, X∗ and U. Assume they are distributed

x∗
i ∼ NID(o,Q∗), ui ∼ NID(o, Q̃), and vi ∼ NID(0, σ2), and all three are indepen-

dent of each other. Define Q = Q∗ + Q̃. Therefore

(53.5.23)

[
xi
yi

]
∼ N

([
o

0

]
,

[
Q Q∗β

β>Q∗ σ2 + β>Q∗β

])

Compute E[yi|xi] and var[yi|xi]. (Since yi is a linear function of xi, you can use the
formulas for best linear predictors here.)

Answer.

E[yi|xi] = β>Q∗Q−1xi = β>(Q − Q̃)Q−1xi = β>xi − β>Q̃Q−1xi(53.5.24)

var[yi|xi] = σ2 + β>Q∗β − β>Q̃Q−1Q̃β(53.5.25)

�

• a. It is possible to build an alternative model

(53.5.26) yi = xi
>γ + vi or y = Xγ + v; V ∼ (o,Ξ)

with X and v independent (and again for simplicity all variables having zero mean),
which gives the same joint distribution of X and y as the above specification. Com-
pute γ, V[xi], and var[yi] in terms of the structural data of the above specification.

Answer.

y∗ = X∗(β − Q−1Q̃β
)

(53.5.27)

X = X∗(53.5.28)

y = y∗ + v(53.5.29)

where x∗
i = xi ∼ N(o,Q) and var[vi] = σ2 +β>Q∗β−β>Q̃Q−1Q̃β. As one sees, γ = β−Q−1Q̃β.

In this latter model, OLS is appropriate, and these are therefore the plims of the OLS estimates.
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Note that C[xi,yi] = C[xi,xi>γ + vi] = C[xi, γ>xi] = V[xi]γ = Q(β − Q−1Q̃β) = Q∗β, and

var[y∗] = var[γ>x∗] = γ>Qγ = (β> − β>Q̃Q−1)Q(β − Q−1Q̃β) = b>Qb− 2b>Q̃b+ b>Q̃Q−1Q̃b.

Adding var[vi] = σ2 + β>Q∗β − β>Q̃Q−1Q̃β to this gives, if everything is right, σ2 + β>Q∗β.
About the form of the alternative coefficient vector compare their theorem 4.1, and about the
residual variance compare their theorem 4.3. �

53.6. Kalman’s Critique of Malinvaud

Problem 476. In Malinvaud’s econometrics textbook [Mal78] and [Mal70, pp.
17–31 and 211–221], the following data about the French economy are used (all
amounts in billion nouveaux francs, at 1959 prices):

imports gdp invchge hhconsum

1949 15.9 149.3 4.2 108.1
1950 16.4 161.2 4.1 114.8
1951 19.0 171.5 3.1 123.2
1952 19.1 175.5 3.1 126.9
1953 18.8 180.8 1.1 132.1
1954 20.4 190.7 2.2 137.7
1955 22.7 202.1 2.1 146.0
1956 26.5 212.4 5.6 154.1
1957 28.1 226.1 5.0 162.3
1958 27.6 231.9 5.1 164.3
1959 26.3 239.0 0.7 167.6
1960 31.1 258.0 5.6 176.8
1961 33.3 269.8 3.9 186.6
1962 37.0 288.4 3.1 199.7
1963 43.3 304.5 4.6 213.9
1964 49.0 323.4 7.0 223.8
1965 50.3 336.8 1.2 232.0
1966 56.6 353.9 4.5 242.9

This dataset is also discussed in [Mad88, pp. 239, 382] and [CP77, pp. 152, 164],
but the following exercise follows [Kal84]. If you have the R-library ecmet installed,
then the data can be made available by the command data(malvaud). You can also
download them from www.econ.utah.edu/ehrbar/data/malvaud.txt.

• a. Run the three elementary regressions for the whole period, then choose at
least two subperiods and run them for those. Plot all regression coefficients as points
in a plane, using different colors for the different subperiods (you have to normalize
them in a special way that they all fit on the same plot).

Answer. Assume you have downloaded the data and put them into the SAS dataset malvaud.

The command for one of the regressions over the whole period is
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proc reg data=malvaud;

model imports=hhconsum;

run;

For regression over subperiods you must first form a dataset which only contains the subperiod:

data fifties;

set ec781.malvaud;

if 1950<=year<=1959;

run;

proc reg data=fifties;

model imports=hhconsum;

run;

You can run several regressions at once by including several model statements with different models.
�

• b. The elementary regressions give you three fitted equations of the form

imports = α̂1 + β̂12 gdp+ β̂13 hhconsum+ residual1(53.6.1)

gdp = α̂2 + β̂21 imports+ β̂23 hhconsum+ residual2(53.6.2)

hhconsum = α̂3 + β̂31 imports+ β̂32 gdp+ residual3.(53.6.3)

In order to compare the slope parameters of the second regression to the ones obtained
in the first, solve (53.6.2) for imports,

(53.6.4) imports = − α̂2

β̂21

+
1

β̂21

gdp− β̂23

β̂21

hhconsum− residual2

β̂21

and compare β̂12 with 1/β̂21 and β̂13 with −β̂23/β̂21. In the same way compare the
results of the third regression with the ones of the first. This comparison is conve-
niently done in table 1. Fill in the values for the whole period and also for several

Slope of imports Slope of imports with
with respect to gdp respect to hhconsum

Regression of imports
on gdp and hhconsum

Regression of gdp on
imports and hhconsum

Regression of hhconsum
on imports and gdp

Table 1. Comparison of Coefficients in Elementary Regressions

sample subperiods. Make a scatter plot of the contents of this table, i.e., represent
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each regression result as a point in a plane, using different colors for different sample
periods.

• c. You will probably find that these points form a very narrow but often quite
long triangle. The triangles for different subperiods lie on the same stable line. This
indicates that the data should be modeled as observations with errors of systematic
data which satisfy two linear relationships at once. Using the plots of the differ-
ent regression coefficients, compute approximately the coefficients of these two linear
relationships.

6

-•

•

•

Figure 2. Coefficients of hhconsum (horizontal) and gdp (vertical),
dependent variable imports. 1949–1966
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6

-•
•

•

Figure 3. Coefficients of hhconsum (horizontal) and gdp (vertical),
dependent variable imports. 1949–54, third point out of bounds
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6

-• ••

Figure 4. Coefficients of hhconsum (horizontal) and gdp (vertical),
dependent variable imports. 1955–60
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6

-•
•

•

Figure 5. Coefficients of hhconsum (horizontal) and gdp (vertical),
dependent variable imports. 1961–66
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6

-•••

Figure 6. Coefficients of hhconsum (horizontal) and gdp (vertical),
dependent variable imports. 1953–57
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6

-••
•

Figure 7. Coefficients of hhconsum (horizontal) and gdp (vertical),
dependent variable imports. 1960–64
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6

-••
•

Figure 8. Coefficients of hhconsum (horizontal) and gdp (vertical),
dependent variable imports. 1959–63
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6

-•
•

•

Figure 9. Coefficients of hhconsum (horizontal) and gdp (vertical),
dependent variable imports. 1949–57
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6

-•

•

•

Figure 10. Coefficients of hhconsum (horizontal) and gdp (verti-
cal), dependent variable imports. 1958–66
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53.7. Estimation if the EV Model is Identified

If there is a small number of parameters in relation to the number of relations
to be estimated, the EV model may be identified after all. One of the simplest
cases is Friedman’s model in which x∗ denotes permanent income, y∗ permanent
consumption, u and v transitory income and consumption, and x and y the observed
actual income and consumption. Friedman’s hypothesis is

y∗ = x∗β(53.7.1)

y = y∗ + v(53.7.2)

x = x∗ + u(53.7.3)

This has one parameter less than the previous simple regression model, since α = 0.
Therefore the parameters are determined by (53.1.16) and (53.1.17).

β =
µy

µx

(53.7.4)

σ2
x∗ =

σxy

β
=
σxyµx

µy

(53.7.5)

σ2
u = σ2

x − σ2
x∗ = σ2

x − σxyµx

µy

(53.7.6)

σ2
v = σ2

y − β2σ2
x∗ = σ2

y − σxyµy

µx

.(53.7.7)

Replacing these by sample moments gives consistent estimates.
Here is an example of a bivariate EV model that is identified. Assume one has

three different measurement instruments all of which measure the same quantity x∗.
Then the readings of these instruments, which we will denote x, y, and z, are usually
modeled to be noisy linear transformations of the true value x∗:

x = x∗ + u(53.7.8)

y = α+ βx∗ + v(53.7.9)

z = γ + δx∗ + w.(53.7.10)

The measurement errors u, v, and w are assumed independent of each other. The
first instrument is called the “standard instrument” since the origin and scale of the
true variable x∗ are assumed to be identical to the origin and scale of this instrument;
the other two instruments have different origins and scales.
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Here are the formulas for the method of moments estimates:

β̂ =
syz

sxz

(53.7.11)

δ̂ =
syz

sxy

(53.7.12)

α̂ = ȳ − β̂x̄(53.7.13)

γ̂ = z̄ − γ̂x(53.7.14)

σ̂2
u = s2x − sxysxz

syz

(53.7.15)

σ̂2
v = s2y − sxysyz

sxz

(53.7.16)

σ̂2
w = s2x − sxzsyz

sxy

.(53.7.17)

Here is another example related with the permanent income hypothesis. If one
has several categories of consumption Cj , such as food, housing, education and en-
tertainment, etc., then the permanent income hypothesis says

Y = Y p + Y t(53.7.18)

Cj = αj + βjY
p + Ctj(53.7.19)

If all the Ctj are independent of each other, then this system is identified.

Problem 477. Given a bivariate problem with three variables all of which have
zero mean. (This is the model apparently appropriate to the malvaud data after taking
out the means.) Call the observed variables x, y, and z, with underlying systematic
variables x∗, y∗, and z∗, and error variables u, v, and w. Write this model in the
form (53.3.1).

Answer.

[
x∗ y∗ z∗

]
[
−1 0
0 −1
β γ

]
= O

[
x y z

]
=
[
x∗ y∗ z∗

]
+
[
u v w

]
or

x∗ = βz∗

y∗ = γz∗

x = x∗ + u

y = y∗ + v

z = z∗ + w.

(53.7.20)

�

• a. The moment matrix of the systematic variables can be written fully in terms
of σ2

z∗ and the unknown parameters. Write out the moment matrix and therefore the
Frisch decomposition.
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Answer.

(53.7.21)

[
σ2

x σxy σxz

σxy σ2
y σyz

σxz σyz σ2
z

]
= σ2

z∗

[
β2 βγ β
βγ γ2 γ
β γ 1

]
+

[
σ2

u 0 0
0 σ2

v 0
0 0 σ2

w

]
.

�

• b. Show that the unknown parameters are identified, and derive estimates of
all parameters of the model.

Answer. Solving the Frisch equations one gets

β =
σxy

σyz

γ =
σxy

σxz

σ2
z∗ =

σxzσyz

σxy

σ2
u = σ2

x − σxzσxy

σyz

σ2
v = σ2

y − σxyσyz

σxz

σ2
w = σ2

z − σyzσxz

σxy

(53.7.22)

If you replace the true moments by the sample moments, you see that β and γ are estimated by
instrumental variables. �

• c. Compare these estimates with OLS estimates. Derive equations for the bias
of OLS.

Answer.

(53.7.23) plim β̂OLS − β =
σxz

σzz

− σxy

σyz

=

∣∣∣∣
σzz σxz

σyz σxy

∣∣∣∣
σzzσyz

.

�

• d. As an application, estimate the malvaud data according to this method, and
compare your results with Kalman’s results

imports = (0.3)hhconsum(53.7.24)

gdp = (1.5)hhconsum.(53.7.25)

Here are the SAS commands to get the coefficient of imports on hhconsum:

proc syslin data=malvaud 2sls;

model imports=hhconsum;

endogenous imports hhconsum;

instruments gdp;

run;

• e. 3 points Now run regressions with only one explanatory variable. Are the
results close to the relations which you would expect from the result of the previous
step?
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53.8. P-Estimation

A type of prior information that can be handled well mathematically is that Q̃

is known except for a constant multiple, i.e., one knows a Λ so that there is a κ 6= 0

with Q̃ = κΛ.
In the simple EV model in which the errors of the x and y variables are inde-

pendent this means that one knows a κ with

σ2
v = κσ2

u.(53.8.1)

This equation, together with the Frisch equations (after elimination of the constant
term α)

σ2
x = σ2

x∗ + σ2
u(53.8.2)

σ2
y = β2σ2

x∗ + σ2
v(53.8.3)

σxy = βσ2
x∗(53.8.4)

allows identification of all parameters as follows: In (53.8.2) and (53.8.3), replace σ2
x∗

by σxy/β and σ2
v by κσ2

u, and put σ2
u on the lefthand side:

σ2
u = σ2

x − σxy

β
(53.8.5)

σ2
u =

1

κ

(
σ2

y − βσxy

)
.(53.8.6)

Setting those equal and multiplying by βκ gives the quadratic equation

(53.8.7) β2σxy + β(κσ2
x − σ2

y) − κσxy = 0,

which has the solutions

(53.8.8) β1|2 =
σ2

y − κσ2
x

2σxy

±
√
κ+

(σ2
y − κσ2

x

2σxy

)2

.

Since β must have the same sign as σxy, only one of these solutions is valid, which
can be written as

(53.8.9) β =
1

2σxy

[
σ2

y − κσ2
x +

√
4κσ2

xy + (σ2
y − κσ2

x)2
]
.

By replacing the true moments of the observed variables by the sample moments one

obtains an estimate which we will denote with β̂P . The Frisch equations will then
also yield estimates of the other parameters.

Problem 478. [SM86, A 3.3/11] Show that (53.8.9) can also be written as

(53.8.10) β =
2σxy

b+
√

4σ2
xy/κ+ b2

where b = σ2
x − σ2

y/κ.
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Answer. Write a := −κb; then

β =
1

2σxy

[
a+
√

4κσ2
xy + a2

]
(53.8.11)

=
1

2σxy

[
a2 − (4κσ2

xy + a2)

a−
√

4κσ2
xy + a2

]
(53.8.12)

=
1

2σxy

[ −4κσ2
xy

a−
√

4κσ2
xy + a2

]
.(53.8.13)

From this (53.8.10) follows. �

Problem 479. Show that

(53.8.14)
∣∣∣β̂OLS

∣∣∣ ≤
∣∣∣β̂P

∣∣∣ ≤
∣∣∣β̂ROLS

∣∣∣

where β̂ROLS is the parameter obtained by reversed OLS (i.e., by regressing x on y).

Answer. For this one needs (53.8.9) and (53.8.10). �

Now we will show that the same estimate can be obtained by minimizing the
weighted sum

(53.8.15)
1

σ2
u

∑
(xi − x∗

i)
2 +

1

σ2
v

∑
(yi − α− βx∗

i)
2

with respect to α, β, and x∗
i.

This minimization is done in three steps. In the first step, we ask: given α and β,
what are the best x∗

i? (Here we see that this alternative approach to P -estimation
also gives us predictions of the systematic variables.) Since each x∗

i occurs only in
one summand of each of the two sums, we can minimize these individual summands
separately. For the ith summands we minimize

(53.8.16)
1

σ2
u

(xi − x∗
i)

2 +
1

σ2
v

(yi − α− βx∗
i)

2

with respect to x∗
i. The partial derivative is

(53.8.17)
2

σ2
u

(xi − x∗
i)(−1) +

2

σ2
v

(yi − α− βx∗
i)(−β)

Setting this zero gives

(53.8.18) σ2
v(xi − x∗

i) + βσ2
u(yi − α− βx∗

i) = 0

or

(53.8.19) x∗
i =

σ2
vxi + βσ2

u(yi − α)

β2σ2
u + σ2

v

.
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If one plugs these x∗
i into the objective function one ends up with a surprisingly

simple form:

xi − x∗
i = −βσ2

u

yi − α− βxi

β2σ2
u + σ2

v

(53.8.20)

yi − α− βx∗
i = σ2

v

yi − α− βxi

β2σ2
u + σ2

v

(53.8.21)

(xi − x∗
i)

2

σ2
u

+
(yi − α− βx∗

i)
2

σ2
v

=
(yi − α− βxi)

2

β2σ2
u + σ2

v

.(53.8.22)

The objective function is the sum of this over i:

(53.8.23)
1

β2σ2
u + σ2

v

∑

i

(yi − α− βxi)
2

Note: with the true values of α and β, the numerator in (53.8.23) is
∑

i c
2
i where

ci = yi − α− βxi, and the denominator σ2
c. This form of the objective function can

also be derived by a geometrical argument. From y∗
i = α+ βx∗

i follows

(53.8.24)
y∗
i

σv

=
α

σv

+ β
σu

σv

x∗
i

σu

;

and if one plots yi/σv against xi/σu, then the objective function is the squared
orthogonal distance of the points from the straight line as in Figure 11. The line
has slope β σu

σv
. Define ci := yi − α − βxi as the vertical distance of the observation

from the line if one does not divide the yi by σv. And call the orthogonal distance
in the normalized plot di and the complement of the orthogonal distance ai. Then
ai

di
= β σu

σv
.

By Phytagoras,

d2
i + β2 σ

2
u

σ2
v

d2
i =

c2
i

σ2
v

(53.8.25)

d2
i (σ

2
v + β2σ2

u) = c2
i(53.8.26)

from which the above simple form of the objective function follows.
Given this objective function, the second step is to minimize out α. Since α

appears only in the numerator of the objective function, differentiation is easy:

(53.8.27)
∂

∂α

∑
i(yi − α− βxi)

2

β2σ2
u + σ2

v

=
(−2)

∑
i(yi − α− βxi)

β2σ2
u + σ2

v

Setting this zero gives
∑

(yi − α− βxi) = 0 or α = ȳ− βx̄. Plugging this α into the
objective function gives

(53.8.28)

∑
i(yi − ȳ − βxi + βx̄)2

β2σ2
u + σ2

v

=:

∑
i(y

∗
i − βx∗

i )
2

β2σ2
u + σ2

v

.
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y∗

i
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σu

�
�

�
�

�
�

�
�

�
�

�
�

�

b
ci

σv

b ai

b
di

Figure 11. Geometric Interpretation of Objective Function

The final step minimizes this with respect to β. Use (u/v)′ = (u′v − uv′)/v2 to
get the partial with respect to β:

(53.8.29)
2
∑
i(y

∗
i − βx∗

i )(−x∗
i )(β

2σ2
u + σ2

v) −∑i(y
∗
i − βx∗

i )
22βσ2

u

(β2σ2
u + σ2

v)2
.

Setting this zero gives

(53.8.30)
∑

i

(y∗
i − βx∗

i )x
∗
i (β

2σ2
u + σ2

v) +
∑

i

(y∗
i − βx∗

i )
2βσ2

u = 0.

Using the sample moments Sxy = 1
n

∑
i x

∗
iy

∗
i etc., one obtains

(53.8.31) (Sxy − βS2
x)(β2σ2

u + σ2
v) + (S2

y − 2βSxy + β2S2
x)βσ2

u = 0

or

(53.8.32) β2σ2
uSxy + β(S2

yσ
2
u − S2

xσ
2
v) + σ2

vSxy = 0.

Dividing by σ2
x and using κ = σ2

v/σ
2
u one obtains exactly (53.8.7) with the true

moments of the observed variables replaced by their sample moments.

53.8.1. Multiple P-Estimation. The Frisch problem in several dimensions
reads: given a positive definite matrix Q and a nonnegative definite matrix Λ 6=
O, find a κ so that Q − κΛ is positive semidefinite (i.e., nonnegative definite and
singular). This κ always exists and is uniquely determined: it is the smallest κ for
which Q − κΛ is singular, i.e., the smallest root of the equation det(Q − κΛ) = 0.
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Proof: This is true when Q is the identity matrix and Λ is diagonal, then κ is
the inverse of the largest diagonal element of Λ. The general case can always be
transformed into this by a nonsingular transformation (see Rao, Linear Statistical
Inference and Its Applications, p. 41): given a positive definite symmetric Q and a

symmetric Λ, there is always a nonsingular R and a diagonal Γ so that Q = R>R

and Λ = R>ΓR. Therefore Q−κΛ = R>(I − κΓ)R, which is positive semidefinite
if and only if I − κΓ is. Once one has κ, it is no problem to get all those vectors
that annul Q∗.

Here is an equivalent procedure which gets β∗ and κ simultaneously. We will
use the following mathematical fact: Given a symmetric positive definite Q and a
symmetric nonnebagive definite matrix Λ. Then the vector γ∗ annulls Q− κΛ iff it
is a scalar multiple of a β∗ which has the minimum property that
(53.8.33)

β = β∗ minimizes β>Qβ s. t. β>Λβ = 1,

and κ is the minimum value in this minimization problem. Alternatively one can say
that γ∗ itself has the following maximum property:
(53.8.34)

γ = γ∗ maximizes γ>
Λγ

γ>Qγ

and the maximum value is 1/κ.
Proof: Assume we have κ and γ∗ 6= o with Q− κΛ nonnegative definite (call it

Q∗) and (Q − κΛ)γ∗ = o. Since Q is positive definite, Λγ∗ 6= o and we can define

β∗ = γ∗/
√

γ∗>Λγ∗. Like γ∗, also β∗ satisfies β∗>(Q − κΛ)β∗ = 0, but since also

β∗>Λβ∗ = 1, it follows β∗>Qβ∗ = κ. Any other vector β with β>Λβ = 1 satisfies
β>Qβ = β>(Q∗ + κΛ)β = β>Q∗β + κ ≥ κ; in other words, β∗ is a solution of the
minimum problem. This proves the “only if” part, and at the same time shows that
the minimum value in (53.8.33) is κ.

For the “if” part assume that β∗ solves (53.8.33), and β∗>Qβ∗ = κ. Then

β∗>(Q − κΛ)β∗ = 0. To show that Q − κΛ is nonnegative definite, we will assume
there is a γ with γ>(Q − κΛ)γ < 0 and derive a contradiction from this. By the

same argument as above one can construct a scalar multiple γ∗ with γ∗>Λγ∗ = 1
which still satisfies γ∗>(Q − κΛ)γ∗ < 0. Hense γ∗>Qγ∗ < κ, which contradicts β∗

being a minimum value.
If Λ has rank one, i.e., there exists a u with Λ = uu>, then the constraint

in (53.8.33) reads (u>β)2 = 1, or u>β = ±1. Since we are looking for all scalar
multiples of the solution, we can restrict ourselves to u>β = 1, i.e., we are back to
a linearly constrained problem. For Q positive definite I get the solution formula
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β∗ = Q−1u(u>Q−1u)−1. and the minimum value is 1/(u>Q−1u). This can be
written in a much neater and simpler form for problem (53.8.34); its solution is any
γ∗ that is a scalar multiple of Q−1u, and the maximum value is u>Q−1u.

If one applies this construction to the sample moments instead of the true limiting

moments, one obtains estimates of κ and β, and also of Q∗ and Q̃. The estimate
of Q∗ is positive semidefinite by construction, and since κ > 0 (otherwise Q − κΛ

would not be singular) also the estimate of Q̃ = κΛ is nonnegative definite. In P -
estimation, therefore, the estimates cannot lead to negative variance estimation as
in V -estimation.

53.8.2. The P-Estimator as MLE. One can show that the P -estimator is
MLE in the structural as well as in the functional variant. We will give the proofs
only for the simple EV model.

In the structural variant, in which x∗
i and y∗

i are independent observations
from a jointly normal distribution, the same argument applies that we used for the
V -estimator: (53.8.9) expresses β as a function of the true moments of the observed
variables which are jointly normal; the MLE of these true moments are therefore
the sample moments, and the MLE of a function of these true moments is the same

function of the sample moments. In this case, not only β̂P but also the estimates for
σ2

u etc. derived from the Frisch equations are MLE.
In the functional variant, the x∗

i and y∗
i are nonstochastic and must be max-

imized over (“incidental parameters”) together with the structural parameters of
interest α, β, σ2

u, and σ2
v. We will discuss this functional variant in the slightly more

general case of heteroskedastic errors, which is a violation of the assumptions made
in the beginning, but which occurs frequently, especially with replicated observations
which we will discuss next. In the functional variant, we have

xi ∼ N(x∗
i, σ

2
ui

) fxi
(xi) =

1√
2πσ2

ui

e−(xi−x∗
i)

2/2σ2
ui ;(53.8.35)

yi ∼ N(α+ βx∗
i, σ

2
vi

) fyi
(Y i) =

1√
2πσ2

vi

e−(Y i−α−βx∗
i)

2/2σ2
vi .(53.8.36)

The likelihood function is therefore

(53.8.37) (2π)−n
(∏

i

σ2
ui
σ2

vi

)−1/2

exp−1

2

∑( (xi − x∗
i)

2

σ2
ui

+
(yi − α− βx∗

i)
2

σ2
vi

)

Since the parameters x∗
i, α, and β only appear in the exponents, their maximum

likelihood estimates can be obtained by minimizing the exponent only (and for this,
the σ2

ui
and σ2

vi
must be known only to a joint multiplicative factor). If these

variances do not depend on i, i.e., in the case of homoskedasticity, one is back to the
weighted least squares discussed above.
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Also in the case of heteroskedasticity, it is convenient to use the three steps
outlined above. Step 1 always goes through, and one ends up with an objective
function of the form

(53.8.38)
∑

i

(Y i − α− βxi)
2

β2σ2
ui

+ σ2
vi

=
∑

i

gi(Y i − α− βxi)
2 with gi :=

1

β2σ2
ui

+ σ2
vi

.

Step 2 establishes an identity involving α̂, β, and the weighted means of the obser-
vations:

(53.8.39) α̂ = ¯̄y − β¯̄x where ¯̄x :=

∑
gixi∑
gi

¯̄y :=

∑
giyi∑
gi

.

In the general case, step 3 leads to very complicated formulas for β̂ because ¯̄x and ¯̄y
depend on β through the gi. But there is one situation in which this is not the case:
this is when one knows a λ so that σ2

vi
= λσ2

ui
for all i. Then gi = 1

(β2+λ)σ2
ui

and

one can ignore the constant factor 1/(β2 + λ) in all gi to get

(53.8.40) ¯̄x =

∑
σ2

ui
xi∑

σ2
ui

¯̄y =

∑
σ2

ui
yi∑

σ2
ui

and the whole procedure goes through as in weighted least squares.
Although we showed that in this case the P estimator of α and β is a maximum

likelihood estimate, one can show the interesting and surprising fact that the MLE of
σ2

u and σ2
v are by a factor 2 smaller than the P estimators, i.e., they are inconsistent.

53.9. Estimation When the Error Covariance Matrix is Exactly Known

If the error covariance matrix is known exactly, not only up to a constant factor
κ, one can use either V estimation or P estimation. However P estimation is better,
since it is equal to the MLE of α and β even with this additional information. The
knowledge of κ helps improving the variance estimates, but not the estimates of α
and β.

53.9.1. Examples. Age determination by Beta decay ofRb87 into Sr87 [CCCM81].
This decay follows the equation

(53.9.1)
dRb87

dt
= −λRb87 λ = 1.42 · 10−11yr−1

which has the solution Rb87 = Rb870 e
−λt. The amount of Sr87 is the amount present

at time 0 plus the amount created by the decay of Sr87 since then:

Sr87 = Sr870 +

=Rb87eλt

︷︸︸︷
Rb870 (1 − e−λt)(53.9.2)

= Sr870 +Rb87(eλt − 1).(53.9.3)
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If one divides by the stable reference isotope Sr86 which does not change over time:

Sr87

Sr86
=
(Sr87
Sr86

)
0

+
Rb87

Sr86
(eλt − 1)(53.9.4)

then this equation is valid not only for one rock sample but for several co-genetic rock
samples which have equal starting values of Sr87/Sr86 but may have had different
concentrations of Rb87/Sr86 at the beginning, i.e., one can write this last equation
as

y∗ = α+ x∗β.(53.9.5)

The observations of the Sr87/Sr86 and Rb87/Sr86 ratios do therefore lie on a straight
line which is called an isochrone.

In some situations, other errors are introduced by geological accidents during
the lifetime of the rock, against which the measurement errors are negligible: lack of
chemical isolation of the rock samples, or differences in original Sr87/Sr86 contents.
Approach: make up several scenarios of what might have happened to the rock,
then decide from looking at the scatter plot of the samples which scenario applied,
and estimate the data according to the appropriate model. Also: one can use the
additional knowledge that all minerals on the earth come from the crust of the earth
solidifying a certain known number of years ago, in order to determine one point on
every isochrone; then one fits the additional data to a line through this point.

In Biometrics: y∗
i is the log of the wood increase of the ith apple tree in a

certain orchard, and x∗
i the log of the increase of the girth. The hypothesis is

(53.9.6) y∗ = α+ βx∗.

However the the actually observed increases in wood and girth are

y = y∗ + v(53.9.7)

x = x∗ + u(53.9.8)

The errors v and u are assumed to be correlated, but the variances and covariances
of these errors can be estimated by repeated measurements of the same trees in
the same year, and the ML estimation is only slightly more complicated with this
correlation. These variances depend on the ages of the trees (heteroskedasticity),
but in order to prevent autocorrelation of the errors every year different trees have
to be measured.



CHAPTER 54

Dynamic Linear Models

This chapter draws on the monograph [WH97]. The authors are Bayesians, but
they attribute the randomness of the parameters not only to the ignorance of the
observer, but also to shifts of the true underlying parameters.

54.1. Specification and Recursive Solution

The dynamic linear model (DLM) is a regression with a random parameters βt.
Unlike the model in chapter 61, the coefficients are not independent drawings from
some unchanging distribution, but they are assumed to follow a random walk. In
addition to random parameters, the model also has an observational disturbance,
and it is an important estimation issue to distinguish the observation noise from the
random shifts of the parameters.

We will write the model equations observation by observation. As usual, y is the
n-vector of dependent variables, and X the n × k-matrix of independent variables.
But the coefficient vector is different in every period. For all t with 1 ≤ t ≤ n,
the unobserved underlying βt and the observation yt obey the familiar regression
relationship (“observation equation”):

yt = x>
t βt + εt εt ∼ (0, σ2ut)(54.1.1)

Here x>
t is the tth row of X. The “system equation” models the evolution over time

of the underlying βt:

βt = Gtβt−1 + ωt ωt ∼ (o, τ2Ξt).(54.1.2)

Finally, the model can also handle the following initial information

β0 ∼ (b0, τ
2Ψ0)(54.1.3)

but it can also be estimated if no prior information is given (“reference model”). The
scalar disturbance terms εt and the disturbance vectors ωt are mutually independent.
We know the values of all ut and Ξt and κ2 = σ2/τ2 (which can be considered the
inverse of the signal-to-noise ratio) and, if applicable, Ψ0 and b0, but σ2 and τ2

themselves are unknown.

609

610 54. DYNAMIC LINEAR MODELS

In tiles, the observation equation is

(54.1.4)

y

n

=

X k B

∆

n

+

ε

n

and if n = ∞ the system equation can be written as

(54.1.5)

k B

∞

=

k G k B

L

∆

∞

+

k ω

∞

where L is the lag operator.
Notation: If yi are observed for i = 1, . . . , t, then we will use the symbols bt for

the best linear predictor of βt based on this information, and τ2Ψt for its MSE-
matrix.

The model with prior information is mathematically easier than that without,
because the formulas for bt+1 and Ψt+1 can be derived from those for bt and Ψt

using the following four steps:
(1) The best linear predictor of βt+1 still with the old information, i.e., the yi

are observed only until i = 1, . . . , t, is simply Gt+1bt. This predictor is unbiased
and its MSE-matrix is

(54.1.6) MSE [Gt+1bt; βt+1] = τ2(Gt+1ΨtG
>
t+1 + Ξt+1) = τ2Rt+1

where we use the abbreviation Rt = GtΨt−1G
>
t + Ξt. This formula encapsules the

prior information about βt+1.
(2) The best linear predictor of yt+1, i.e., the one-step-ahead forecast, is ŷt+1 =

xt+1Gt+1bt. This predictor is again unbiased and its MSE is
(54.1.7)

MSE[ŷt+1; yt+1] = τ2xt+1(Gt+1ΨtG
>
t+1+Ξt+1)x

>
t+1+σ

2ut = τ2xt+1Rt+1x
>
t+1+σ

2ut

This formula is an encapsulation of the prior information regarding yt+1 available
before yt+1 was observed.
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(3) The joint MSE-matrix of Gt+1bt and x>
t+1Gt+1bt as best linear predictors

of βt+1 and yt+1 based on all observations up to and including time t is

(54.1.8) MSE
[[x>

t+1Gt+1bt
Gt+1bt

]
;

[
yt+1

βt+1

]]
= τ2

[
x>
t+1Rt+1xt+1 + κ2ut x>

t+1Rt+1

Rt+1xt+1 Rt+1.

]

An inverse of this MSE matrix is

(54.1.9)
1

σ2

[
u−1
t u−1

t x>
t+1

xt+1u
−1
t κ2R−1

t+1 + xt+1u
−1
t x>

t+1

]

(4) Now we are in the situation of Problem 327. After observation of yt+1 we
can use the best linear prediction formula (27.1.15) to get the “posterior” predictor
of βt+1 as

(54.1.10) bt+1 =
(
xt+1u

−1
t x>

t+1 + κ2R−1
t+1

)−1(
xt+1u

−1
t yt+1 + κ2R−1

t+1Gt+1bt

)

which has MSE-matrix

(54.1.11) τ2
(
xt+1u

−1
t x>

t+1 + κ2R−1
t+1

)−1

Let’s look at (54.1.10). It can also be written as

(54.1.12) bt+1 =
( 1

σ2ut
xt+1x

>
t+1 +

1

τ2
R−1
t+1

)−1

( 1

σ2ut
xt+1x

>
t+1(xt+1x

>
t+1)

−xt+1yt+1 +
1

τ2
R−1
t+1Gt+1bt

)

It is a matrix weighted average between (xt+1x
>
t+1)

−xt+1yt+1 and Gt+1bt. The
second term is the prior information about βt+1, and the weight is the inverse of the
MSE-matrix. The first term can be considered the information flowing back to βt+1

from the observation of yt+1: from yt+1 = x>βt+1+εt+1 with error variance σ2ut one

would get, by a naive application of the OLS-formula β̂t+1 = (xt+1x
>
t+1)

−1xt+1yt+1

and the covariance matrix would be σ2ut(xt+1x
>
t+1)

−1. Now these inverses do not
exist, therefore the formula here uses the g-inverse, and the weight is again an analog
of the inverse of the covariance matrix.

54.2. Locally Constant Model

The simplest special case of the dynamic linear model is the “locally constant”
model:

yt = βt + εt εt ∼ NID(0, σ2)(54.2.1)

βt = βt−1 + ωt ωt ∼ NID(0, τ2)(54.2.2)

β0 ∼ (b0, τ
2ψ0)(54.2.3)

612 54. DYNAMIC LINEAR MODELS

All εs and all ωt and β0 are mutually independent. κ2 = σ2/τ2 is known but σ2 and
τ2 separately are not.

Table 1. Locally Constant as Special Case of Dynamic Model

General k βt xt b0 bt Ψ0 Ψt Gt ωt Ξt ut
Locally const. 1 βt 1 b0 bt ψ0 ψt 1 ωt 1 1

We can use the general solution formulas derived earlier inserting the specific
values listed in Table 1, but it is more instructive to derive these formulas from
scratch.

Problem 480. The BLUE of βt+1 based on the observations y1, . . . ,yt+1 is the
optimal combination of the following two unbiased estimators of βt+1.

• a. 1 point The estimator is the BLUE of βt before yt+1 was available; call this
estimator bt. For the purposes of this recursion bt is known, it was computed in the
previous iteration, and MSE[bt; βt] = τ2ψt is known for the same reason. bt is not
only the BLUE of βt based on the observations y1, . . . ,yt, but it is also the BLUE
of βt+1 based on the observations y1, . . . ,yt. Compute MSE[bt; βt+1] as a function
of τ2ψt.

Answer. Since βt+1 = βt+ωt+1 where ωt+1 ∼ (0, τ2) is independent of bt, bt can also serve
as a predictor of βt+1, with MSE[bt;βt+1] = τ2(ψt + 1). �

• b. 1 point The second unbiased estimator is the new observation yt+1. What
is its MSE as a estimator of βt+1?

Answer. Since yt+1 = βt+1 + εt+1 where εt+1 ∼ (0, σ2), clearly MSE[yt+1;βt+1] = σ2. �

• c. 3 points The estimation errors of the two unbiased estimators, yt+1 and bt
are independent of each other. Therefore use problem 206 to compute the best linear
combination of these estimators and the MSE of this combination?

Answer. We have to take their weighted average, with weights proportional to the inverses of
the MSE’s.

(54.2.4) bt+1 =

1
τ2(ψt+1)

bt + 1
σ2 yt+1

1
τ2(ψt+1)

+ 1
σ2

=
κ2bt + (ψt + 1)yt+1

κ2 + ψt + 1

(the second formula is obtained from the first by multiplying numerator and denominator by σ2(ψt+
1)). The MSE of this pooled estimator is MSE[bt+1; βt+1] = τ2ψt+1 where

(54.2.5) ψt+1 =
κ2(ψt + 1)

κ2 + ψt + 1
.

(54.2.4) and (54.2.5) are recursive formulas, which allow to compute ψt+1 from ψt, and bt+1 from
bt and ψt.

- �
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In every recursive step we first compute ψt and use this to get the weights of
yt+1 and bt+1 in their weighted average. These two steps can be combined since the
weight of yt+1 is exactly at+1 = ψt/κ

2, which is called the “adaptive coefficient”:
(??) can be written as

(54.2.6) bt+1 = at+1yt+1 + (1 − at+1)bt = bt + at+1(yt+1 − bt),

and (??) gives the following recursive formula for at:

(54.2.7) at+1 =
at + 1

κ2

at + 1
κ2 + 1

.

For a1 it is more convenient to use

(54.2.8) a1 =
ψ0 + 1

κ2 + ψ0 + 1

Problem 481. Write a program for the locally constant model in the program-
ming language of your choice.

Answer. Here is the R-function dlm.loconst which is in the ecmet package, but the more
general function dlm.origin has the same functionality except the discount computation:

dlm.loconst <- function(y, kappasqr=1, priormean, priorvar)

{

##locally constant dynamic linear model for y

lngth <- length(y)

kappinv <- 1/kappasqr

##first initialize bvec and avec to their full length

bvec <- vector(mode="numeric",length=lngth)

avec <- vector(mode="numeric",length=lngth)

avec[[1]] <- (priorvar+1)/(kappasqr+priorvar+1)

bvec[[1]] <- avec[[1]]*y[[1]]+(1-avec[[1]])*priormean

for (i in 2:lngth)

{avec[[i]] <- (avec[[i-1]]+kappinv)/(avec[[i-1]]+kappinv+1);

bvec[[i]] <- avec[[i]]*y[[i]]+(1-avec[[i]])*bvec[[i-1]];

}

##For the computation of the one-step-ahead prediction mse

##note that y[-1] is vector y with first observation dropped

##and bvec[-lngth] is bvec with last component dropped

##value returned:

list(coefficients=bvec,

adaptive=avec,

residuals=y-bvec,

mse=sum((y[-1]-bvec[-lngth])^2)/(lngth-1),

discount=1-sqrt(kappinv*(1+0.25*kappinv))+0.5*kappinv)

}

�
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The limit value a satisfies

(54.2.9) a =
a+ 1

κ2

a+ 1
κ2 + 1

i.e., it depends on κ2 alone. This quadratic equation has one nonnegative solution

(54.2.10) a =

√
1

κ2
+

1

4κ4
− 1

2κ2

Problem 482. Solve the quadratic equation (54.2.9).

Answer. Multiply out to get a2+ 1
κ2 a = 1

κ2 ; complete the square on lefthand side (a+ 1
2κ2 )2 =

a2 + 1
κ2 a+ 1

4κ4 = 1
κ2 + 1

4κ4 ; therefore a+ 1
2κ2 = ±

√
1
κ2 + 1

4κ4 . Since
√

1
κ2 + 1

4κ4 ≥
√

1
4κ4 = 1

2κ2 ,

only the + sign gives a positive a. One should also mention that κ2 = 0 gives a = 1, while 1/κ2 = 0
gives a = 0. �

The pre-limit values also depend on the initial value a1 and can be written (here
d = 1 − a is the “discount factor”)

(54.2.11) at = a
(1 − d2t−2)a+ (d+ d2t−2)a1

(1 + d2t−1)a+ (d− d2t−1)a1

Problem 483. Simulate and plot time series following a locally constant model
with various values of κ2 so that you become familiar with the forms of behavior such
series can display.

54.3. The Reference Model

The reference prior estimator of βt in the dynamic model, i.e., the best linear
unbiased estimator using the observations y1, . . . ,yt−1, has the form H−1

t ht, with
MSE-matrix τ2H−1

t , and the posterior estimator, using the observations y1, . . . ,yt,
has the form K−1

t kt, with MSE-matrix τ2K−1
t , where the k-vectors ht and kt and

the k × k matrices H t and Kt are constructed as follows:
Starting values are h1 = o and H1 = O because in the reference model there is

no information prior to the data, therefore the estimator is an indeterminate vector
O−1o with zero precision matrix. Then define

kt = ht + xt(κ
2ut)

−1yt Kt = Ht + xt(κ
2ut)

−1x>
t .(54.3.1)

And starting from kt and Kt define ht+1 and Ht+1:

ht+1 = Ξ−1
t+1Gt+1(G

>
t+1Ξ

−1
t+1Gt+1 + Kt)

−1kt(54.3.2)

Ht+1 = Ξ−1
t+1 −Ξ−1

t+1Gt+1(G
>
t+1Ξ

−1
t+1Gt+1 + Kt)

−1G>
t+1Ξ

−1
t+1.(54.3.3)

These formulas are taken from [WH97, p. 129–131].
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Here are elements of a proof, which must still be worked out better. “Condition-
ally” on y1, · · ·yt−1, and now I am leaving the subscripts t out: β ∼ H−1h, τ2H−1

and y = x>β + ε with ε uncorrelated with β, variance σ2u. Therefore

(54.3.4)

[
y

β

]
∼
[
x>H−1h

H−1h

]
, τ2

[
x>H−1x + κ2u x>H−1

H−1x H−1

]

The inverse of this covariance matrix is

(54.3.5)
1

τ2

[
(κ2u)−1 −(κ2u)−1x>

−x(κ2u)−1 H + x(κ2u)−1x>

]

Therefore after observing yt one gets the best predictor

b = H−1h +
(
H + x(κ2u)−1x>)−1

x(κ2u)−1(yt − x>H−1h)(54.3.6)

=
(
I −

(
H + x(κ2u)−1x>)−1

x(κ2u)−1x>
)
H−1h(54.3.7)

+
(
H + x(κ2u)−1x>)−1

x(κ2u)−1yt(54.3.8)

now use
(
H + x(κ2u)−1x>)−1

H +
(
H + x(κ2u)−1x>)−1

x(κ2u)−1x> = I :

=
(
H + x(κ2u)−1x>)−1

HH−1h +
(
H + x(κ2u)−1x>)−1

x(κ2u)−1yt(54.3.9)

=
(
H + x(κ2u)−1x>)−1

(h + x(κ2u)−1yt) = K−1k(54.3.10)

where K and k are defined in (54.3.1). The MSE-matrix of b is the inverse of the
lower right partition of the inverse covariance matrix (54.3.5), which is τ 2K−1.

For the proof of equations (54.3.2) and (54.3.3) note first that

MSE [Gbt; βt+1] = E
[
(Gbt − βt+1)(Gbt − βt+1)

>]
(54.3.11)

= E
[
(Gbt − Gβt − ωt+1)(Gbt − Gβt −ωωωt+1)

>](54.3.12)

= E
[
(Gbt − Gβt)(Gbt − Gβt)

>]+ E
[
ωt+1ω

>
t+1

]
(54.3.13)

= GMSE [bt; βt]G
> + V [ωt+1] = τ2GK−1

t G> + τ2Ξt+1,(54.3.14)

By problem 484, (54.3.3) is the inverse of this MSE-matrix.

Problem 484. Verify that
(54.3.15)(

GK−1
t G> + Ξt+1

)−1
= Ξ−1

t+1 −Ξ−1
t+1Gt+1(G

>
t+1Ξ

−1
t+1Gt+1 + Kt)

−1G>
t+1Ξ

−1
t+1.
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Answer. Multiply the matrix with its alleged inverse and see whether you get I:
(
GK−1

t G> + Ξt+1

)(
Ξ

−1
t+1 −Ξ

−1
t+1Gt+1(G

>
t+1Ξ

−1
t+1Gt+1 + Kt)

−1G>
t+1Ξ

−1
t+1

)
=

= GK−1
t G>Ξ

−1
t+1 − GK−1

t G>Ξ
−1
t+1Gt+1(G

>
t+1Ξ

−1
t+1Gt+1 + Kt)

−1G>
t+1Ξ

−1
t+1 +

+ Ξt+1Ξ
−1
t+1 −Ξt+1Ξ

−1
t+1Gt+1(G

>
t+1Ξ

−1
t+1Gt+1 + Kt)

−1G>
t+1Ξ

−1
t+1 =

= I +
(
GK−1

t − GK−1
t G>Ξ

−1
t+1Gt+1(G

>
t+1Ξ

−1
t+1Gt+1 + Kt)

−1−
− Gt+1(G

>
t+1Ξ

−1
t+1Gt+1 + Kt)

−1
)
G>
t+1Ξ

−1
t+1 =

= I + GK−1
t

(
I − G>Ξ

−1
t+1Gt+1(G

>
t+1Ξ

−1
t+1Gt+1 + Kt)

−1−

− Kt(G
>
t+1Ξ

−1
t+1Gt+1 + Kt)

−1
)
G>
t+1Ξ

−1
t+1 = I

�

Now let us see what this looks like in the simplest case where X = x has only
one column, and Ξt = 1 and ut = 1. For clarity I am using here capital letters for
certain scalars

kt = ht +
xtyt
κ2

(54.3.16)

Kt = Ht +
x2
t

κ2
(54.3.17)

ht+1 = (1 +Kt)
−1kt =

kt

1 +Kt
(54.3.18)

Ht+1 = 1 − (1 +Kt)
−1 =

Kt

1 +Kt
(54.3.19)

Starting values are h1 = 0 and H1 = 0; then

k1 =
x1y1

κ2
K1 =

x2
1

κ2

h2 =
k1

1 +K1
H2 =

K1

1 +K1

etc.

Problem 485. Write a program for the dynamic regression line through the
origin, reference model, in the programming language of your choice, or write a
macro in the spreadsheet of your choice.

Answer. The R-code is in Table 2. If argument x is missing, the locally constant model will be
estimated. Note that y[-1] is vector y with first observation dropped, and since lngth is the length
of the vectors, bvec[-lngth] is bvec with last component dropped. The last line is the expression
returned by the function.

�
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dlmref.origin <- function(y, x = rep(1,length(y)), kappasqr)

{

lngth <- length(y)

Hvec <- hvec <- Kvec <- kvec <- vector(mode="numeric",length=lngth)

##The next statement commented out, redundant in R which initializes Hvec and

##hvec by default as 0; but perhaps needed in other programming languages:

##Hvec[[1]] <- hvec[[1]] <- 0

kvec[[1]] <- x[[1]]*y[[1]]/kappasqr

Kvec[[1]] <- x[[1]]*x[[1]]/kappasqr

for (i in 2:lngth)

{ hvec[[i]] <- kvec[[i-1]]/(1+Kvec[[i-1]])

Hvec[[i]] <- Kvec[[i-1]]/(1+Kvec[[i-1]])

kvec[[i]] <- hvec[[i]]+x[[i]]*y[[i]]/kappasqr

Kvec[[i]] <- Hvec[[i]]+x[[i]]*x[[i]]/kappasqr

}

bvec <- kvec/Kvec

##Now computation of the one-step-ahead prediction mse

onestep <- y[-1]-x[-1]*bvec[-lngth]

mse <- sum(onestep^2)/(lngth-1)

list(coefficients=bvec, residuals=y-x*bvec,

onestep=c(NA, onestep), mse=mse)

}

Table 2. Dynamic Regression Line through Origin, Reference Model

54.4. Exchange Rate Forecasts

Problem 486. 8 points The daily levels of the exchange rate of the Pound Ster-
ling (£) against the US $, taken at noon in New York City, from 1990 to the present,
are published at

www.federalreserve.gov/releases/H10/hist/dat96 uk.txt

and the data from 1971–1989 are at

www.federalreserve.gov/releases/H10/hist/dat89 uk.txt

Download these data, make a high quality plot, import the plot into your wordproces-
sor, and write a short essay describing what you see.

Answer. Figure 1 plots the daily levels of the exchange rate. It has a lot of detail which one
can only see if one magnifies the plot on the pdf-reader. Similar graphs are in [WH97, p. 67] and
[Gut94, Figure 14.1 on p. 370].

The following description of what you see in an exchange rate graph borrows heavily from

[Gut94, p. 369].
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Figure 1. Exchange Rate of Pound in terms of Dollar

Secular trend: In long run exchange rates reflect a country’s competitiveness in the interna-
tional hierarchy of nations. When a country manages to strengthen its competitive position in the
world market, its external accounts improve and its currency appreciates (e.g. Germany, Japan).
The reverse happens if a country faces gradual erosion (Great Britain, United States). Therefore
you see steady runs of gradual linear advances or declines over many years.

Business cycle: Woven around this secular trend are cycles of 4–7 years. “This pattern suggests
that exchange-rate movements trigger counteracting adjustments in goods and assets markets. But
these effects take time to unfold, and in the meantime foreign-exchange markets overshoot. The
overshooting sets the stage for the next phase of the cycle, when it has finally begun to turn around
such economic fundamentals as inflation and the direction of macroeconomic policy.”

Is there an even shorter cycle due to inventories and the time it takes to find new suppliers?
Shorter-term exchange rate fluctuations lasting a few weeks or months are due to expectations

and speculation: “At times expectational biases are widely differentiated, and the markets move
sideways. But most of the time we can see pronounced price movements in one direction reflecting
widely shared market sentiments. These speculative “runs” usually last a few weeks or months
before being temporarily interrupted by even shorter countermovements. Because runs outweigh
corrections, they reinforce whatever phase of the currency cycle we are in.”

Daily variability: Despite these regularities, exchange rates are very volatile in the short run:
they often fluctuate 1–2% per day.

Then there are several complete changes in regime which are due to institutional changes in
the monetary system. In August 1971, when Nixon abolished the convertibility of the dollar, at the
beginning of 1993, with increasing European monetary integration, and at the beginning of 1999,

with the introduction of the euro.
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�

yt is the observed market exchange rate, which fluctuates around an underlying
level βt determined by slow-moving “fundamentals.” The movement of the under-
lying level displays a certain inertia: if it has been moving up chances are it will
keep moving up at the same rate, and likewise if it has been moving down. This is
a situation in which the first differences might follow a dynamic “locally constant”
regression model. Here it can be argued that the εt are objectively random: they
are a superposition of many different influences which cannot be predicted. However
the ωt are subjective probabilities. The rate of increase or decrease of the exchange
rate does not really follow a random walk; instead, it moves slowly as the underlying
fundamentals move. But in this model, the researcher is not trying to model the
law governing the movement of the fundamentals; the only assumption here is that
the movement of the fundamentals is slower than the movement of the disturbance
term. The authors of [WH97, p. 38] say: “Significant changes over longer periods of
time are expected but the zero-mean and independent nature of the [ωt] series imply
that the modeller does not wish to anticipate the form of this longer term variation,
merely describing it as a purely stochastic process.”

Problem 487. Simulate and plot time series whose first differences follow a
locally constant model with various values of κ2 so that you become familiar with the
forms of behavior such series can display.

Problem 488. The dataset dolperpd has two variables; the first variable, dates,
is the date coded as an integer, namely the number of days since midnight January 1,
1970 (i.e., January 1, 1970 is day number 1). The second variable dolperpd is the
exchange rate of the British Pound in terms of the dollar at noon of that day in New
York City. The data go from 1971 until 1989, they are a subset of the data plotted
in figure 1. These data are included in R-library ecmet, and a text file with the data
is available on the web at www.econ.utah.edu/ehrbar/data/dolperpd.txt.

• a. Compute the dynamic linear reference model for various values of κ2 and
look at the average squared forecasting error. For which value of κ2 is it lowest?
Interpret your result.

Answer. If one takes the daily data, the SSE becomes lowest as κ2 → 0. This means, one gets
best forecasting performance if one treats the data as a random walk. The most recent observation
is the best predictor of the future, there is no such thing as an “underlying level.” �

• b. Now take the weekly averages of these data, and the monthly averages, and
see which κ2 minimizes the SSE.

Answer. Still the SSE declines as κ2 → 0.

�
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• c. Now take the first differences of the weekly and monthly averages, and see
which κ2 minimizes the forecasting error.

Answer. Now a nonzero κ2 minimizes the SSE. What does this mean? Instead of fluctuating
around slowly varying levels, the data fluctuate around slowly changing straight lines. �

• d. Make several simulations of datasets which have the same length as the
datasets which you started out with, using the optimal κ2. What differences do you
see between your original and the simulated datasets?

Answer. On the one hand, the original data are bounded; they move in a fixed range, while
the simulated data wander off randomly also in the long run. Therefore the plots can be misleading;
if the range is large, it is compressed and the data look much smoother than they are if the range
happens to be comparable to that of the economic data. On the other, the economic data have
different behavior if the series goes up than if it goes down. �

54.5. Company Market Share

Company Sales yt Total Market xt
Year Quarter Quarter

1 2 3 4 1 2 3 4
1975 71.2 52.7 44.0 64.5 161.7 126.4 105.5 150.7
1976 70.2 52.3 45.2 66.8 162.1 124.2 107.2 156.0
1977 72.4 55.1 48.9 64.8 165.8 130.8 114.3 152.4
1978 73.3 56.5 50.0 66.8 166.7 132.8 115.8 155.6
1979 80.2 58.8 51.1 67.9 183.0 138.3 119.1 157.3
1980 73.8 55.9 49.8 66.6 169.1 128.6 112.2 149.5
1981 70.0 54.8 48.7 67.7 156.9 123.4 108.8 153.3
1982 70.4 52.7 49.1 64.8 158.3 119.5 107.7 145.0
1983 70.0 55.3 50.1 65.6 155.3 123.1 109.2 144.8
1984 72.7 55.2 51.5 66.2 160.6 119.1 109.5 144.8
1985 75.5 58.5 165.8 127.4

Table 3. Market Share Data [WH97, p. 83]

The data in Table 3 are included in the R-library ecmet under the name mktshare,
and a text file with the data is available on the web at www.econ.utah.edu/ehrbar/
data/mktshare.txt. A scatterplot of the data as for instance [WH97, Figure 3.4
on p. 77], “seems to support a simple, essentially static straight line regression with,
from the nature of the data, zero origin.” But if one tries to forecast next year’s data
using a fixed straight line based on this year and all past data, one gets poor results,
because the line is slowly moving over time.
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Problem 489. Plot both sales and market against time, plot them against each
other, and plot their ratio sales/market against time. What do you see?

With βt being the company’s market share, this movement of the line can be
modeled as a dynamic zero-intercept regression model:

yt = xtβt + εt εt ∼ NID(0, σ2)(54.5.1)

βt = βt−1 + ωt ωt ∼ NID(0, τ2)(54.5.2)

β0 ∼ (b0, τ
2ψ0)(54.5.3)

All εs are independent of b0 and all ωt. κ
2 = σ2/τ2 is known.

Let’s compute again the best estimate of βt+1 given the observation of y1, . . . ,yt+1.
We have two pieces of information about βt+1. On the one hand, βt+1 = βt + ωt+1

where an estimator bt of βt is available with MSE [bt; βt] = τ2ψt, and ωt+1 ∼ (0, τ2)
is independent of this estimator. Therefore MSE[bt; βt+1] = τ2(ψt+1). On the other
hand, yt+1 = xt+1βt+1 + εt+1 where εt+1 ∼ (0, σ2), therefore MSE[yt+1

xt+1
; βt+1] =

σ2

x2
t+1

. These two pieces of information are independent of each other. To combine

them optimally, take their weighted average, with weights proportional to the in-
verses of the MSE’s.
(54.5.4)

bt+1 =

1
τ2(ψt+1)bt +

x2
t+1

σ2

yt+1

xt+1

1
τ2(ψt+1) +

x2
t+1

σ2

=
κ2bt + xt+1yt+1(ψt + 1)

κ2 + x2
t+1(ψt + 1)

=
κ2bt + (ψt + 1)yt+1

κ2 + ψt + 1

and the MSE of this pooled estimator is MSE[bt+1; βt+1] = τ2ψt+1 where

(54.5.5) ψt+1 =
κ2(ψt + 1)

κ2 + ψt + 1
.

Here it is convenient to define at = xtψt/κ
2 so that

(54.5.6) bt+1 = at+1yt+1 + (1 − xt+1at+1)bt = bt + at+1(yt+1 − xt+1bt)

with the recursive relation

(54.5.7) at+1 =
xt+1

(
at

xt
+ 1

κ2

)

1 + x2
t+1

(
at

xt
+ 1

κ2

) .

For a1 is is more convenient to use

(54.5.8) a1 = x1
ψ0 + 1

κ2 + x2
1(ψ0 + 1)

These two formulas are used in the R-function dlm.origin in the ecmet package,
see Table 4. Again, if the x-argument is missing, the locally constant model will be
estimated.
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dlm.origin <- function(y, x, kappasqr, priormean, priorvar)

{

lngth <- length(y)

kappinv <- 1/kappasqr

if (missing(x)) { x <- rep(1,lngth) }

avec <- bvec <- auxvec <- vector(mode="numeric",length=lngth)

avec[[1]] <- x[[1]]*(priorvar+1)/(kappasqr+x[[1]]^2*(priorvar+1))

bvec[[1]] <- priormean + avec[[1]]*(y[[1]]-x[[1]]*priormean)

for (i in 2:lngth)

{ auxvec[[i]] <- x[[i]]*(avec[[i-1]]/x[[i-1]]+kappinv)

avec[[i]] <- auxvec[[i]]/(1+x[[i]]*auxvec[[i]])

bvec[[i]] <- bvec[[i-1]]+avec[[i]]*(y[[i]]-x[[i]]*bvec[[i-1]])

}

residuals <- y - x*bvec

list(coefficients=bvec, adaptive=avec, residuals=residuals)

}

Table 4. Dynamic Line through Origin, Prior Information

Now let us contrast this with the model in which ωt = 0 for all t, i.e., the
regression line itself does not move, but since the data arrive sequentially one updates
the estimate with each data point. In analogy with the dynamic model, we write it
as follows

yt = xtβ + εt εt ∼ NID(0, σ2)(54.5.9)

β0 ∼ (b0, σ
2ψ0).(54.5.10)

Here β0 is the prior estimate of β before any data are available. All εs are assumed
independent of β0.

Let’s compute again recursively the best estimate of β given the observation of
y1, . . . ,yt+1. We have two pieces of information about β. On the one hand, bt is the
best estimator of β; it is unbiased with MSE[bt; βt+1] = σ2ψt. On the other hand,

yt+1 = xt+1β+εt+1 where εt+1 ∼ (0, σ2), therefore MSE[yt+1

xt+1
; β] = σ2

x2
t+1

. These two

pieces of information are independent of each other. To combine them optimally,
take their weighted average, with weights proportional to the inverses of the MSE’s.

(54.5.11) bt+1 =

1
σ2ψt

bt +
x2

t+1

σ2

yt+1

xt+1

1
σ2ψt

+
x2

t+1

σ2

=
bt + xt+1yt+1ψt

1 + x2
t+1ψt
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The MSE of this pooled measure is

(54.5.12) σ2ψt+1 = MSE[bt+1; β] =
1

1
σ2ψt

+
x2

t+1

σ2

=
σ2

1
ψt

+ x2
t+1

=
σ2ψt

1 + x2
t+1ψt

.

Here it is convenient to define at = xtψt so that

(54.5.13) bt+1 = at+1yt+1 + (1 − xt+1at+1)bt = bt + at+1(yt+1 − xt+1bt)

with the recursive relation

(54.5.14) at+1 =

xt+1at

xt

1 +
x2

t+1
at

xt

=
xt+1at

xt + x2
t+1at

.

For a1 it is more convenient to use

(54.5.15) a1 =
x1ψ0

1 + x2
1ψ0

The other extreme, in which ε = 0, leads to the estimates βt = yt

xt
which is based

on one point only. If you run ecmet.script(mktshare) you will see these different
estimations (the reference model was used in all cases). The static line through the
origin is ok in the first 3 years, but then it hopelessly underpredicts. Even if you allow
the regression line to move a tiny little bit, making κ2 = 100, 000, i.e., the standard
deviation of ω is one third of one percent of that of ε, the predicted trajectory stays
much closer to the observed one, although it still underpredicts. A κ2 = 10, 000
gives a better fit, but now there is very little smoothing going on, and there is still
underprediction. The problem is that the dynamic line through the origin allows the
line to move, but assumes that there will be zero movement even if the line has been
moving in the same direction for a long time. Apparently there is some momentum in
the movement of the market share: the product’s market share is trending upwards
and the predictions should take this into consideration. The linear growth model
(54.6.1) – (54.6.3) does exactly this, and if one looks at the one-step-ahead forecasts
now, finally there is no longer underprediction, but one sees a very clear seasonal
pattern which should be tackled next.

West and Harrison [WH97, Section 3.4.2 on pp. 84–91] use a prior not only for
the means but also for the variance and estimate the variance from the data too. We
are using a simpler model, therefore our results and theirs are a little different.

54.6. Productivity in Milk Production

Problem 490. One of the examples on [WH97, p. 75] is the milk production
data series reproduced in Table 5 and shown in Figure 2. yt is the annual milk
production in the United States in 109 lbs., over a 13-year period, and xt is the
number of milk cows in millions. In R with the ecmet package loaded, the command
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data(milkprod) makes these data available. These data can also be downloaded as
a text file from www.econ.utah.edu/ehrbar/data/milkprod.txt.

• a. Plot both milk and cows against time, plot them against each other, and
plot their ratio milk/market against time. What do you see?

• b. West and Harrison compare the forecasting performance of their dynamic
straight line through the origin with that of a static straight line, and say that the
dynamic model, although not perfect, is much to be preferred. One of the criteria of
a good model is its forecasting ability. Plot the one-step ahead forecasting errors in
both of these models into the same figure.

Table 5. Annual Milk Production and Milk Cows

Year t 1970 1971 1972 1973 1974 1975 1976
Milk yt 117.0 118.6 120.0 115.5 115.6 115.4 120.2
Cows xt 12.0 11.8 11.7 11.4 11.2 11.1 11.0
Year t 1977 1978 1979 1980 1981 1982
Milk yt 122.7 121.5 123.4 128.5 130.0 135.8
Cows xt 11.0 10.8 10.7 10.8 10.9 11.0

aq aq aq aq aq aq aq aq a
q

a
q

a
q

a
q

a
q

Figure 2. Annual Milk Production (hollow dots) and Milk Cows
(filled dots)
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The plots just made show that the dynamic linear model is still not satisfactory.
A better fitting dynamic linear model with the same data is estimated in [NT92].

yt = xtβt + εt εt ∼ (0, κ2τ2)(54.6.1)

βt = βt−1 + δt + ut ut ∼ (0, τ2)(54.6.2)

δt = δt−1 + vt vt ∼ (0, λ2τ2)(54.6.3)

This can be considered a linear growth curve model. βt is the annual milk output
per cow in year t, i.e., it measures productivity. This productivity increases from
year to year. The productivity increase between year t− 1 and year t is δt+ut. The
first component is persistent; it does not change much between consecutive years
but follows a random walk. The second component is transitory with zero expected
value. I.e., the three error terms in this model have three different meanings: vt are
persistent random shocks in the yearly productivity increases, ut are transient annual
fluctuations in productivity, and εt represents the discrepancy between actual output
and productivity-determined normal output. All three are assumed independent. We
will use the notation var[vt] = τ2 var[ε] = σ2 = κ2τ2, and var[ut] = λ2τ2. There are
not enough data to estimate the relative variances of the different error terms as in
the exchange rate example; here prior information enters the model.

Problem 491. [NT92] This is an exercise about the growth model (54.6.1) –
(54.6.3).

• a. 3 points Describe the intuitive meaning of βt, δt, the three disturbances,
and the two parameters κ and λ.

• b. 2 points Show how this model can be fitted in the framework of the dynamic
linear model as defined here. Note that in this framework the unobserved random
parameters linearly depend on their lagged values, while in equation (54.6.2) βt
depends on δt instead of δt−1. But there is a trick to get around this.

Answer. The trick is to replace δt in equation (54.6.2) with δt−1 + vt:

βt = βt−1 + δt−1 + vt + ut = βt−1 + δt−1 + ωt(54.6.4)

so that the whole system reads

yt = xtβt + εt(54.6.5)

βt = βt−1 + δt−1 + ωt(54.6.6)

δt = δt−1 + vt(54.6.7)

where ωt = vt + ut. The new disturbances ωt and vt are no longer independent. From the original

εt ∼ IID(0, σ2)

[
ut
vt

]
∼ IID(

[
0
0

]
, τ2

[
1 0
0 λ2

]
)(54.6.8)
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follows

εt ∼ IID(0, σ2)

[
ωt
vt

]
∼ IID(

[
0
0

]
, τ2

[
1 + λ2 λ2

λ2 λ2

]
)(54.6.9)

Table 6. Growth Model as Special Case of Dynamic Linear Model

General βt xt Gt ωt Ξt ut

Growth

[
βt
δt

] [
1
0

] [
1 1
0 1

] [
ωt
vt

] [
1 + λ2 λ2

λ2 λ2

]
1

�

• c. Plug the matrices in Table 6 into the formulas for the reference estimator
(54.3.1), (54.3.2), and (54.3.3), and develop simple formulas without matrix notation,
which can then be programmed in a spreadsheet or other application.



CHAPTER 55

Numerical Minimization

Literature: [Thi88, p. 199–219] or [KG80, pp. 425–475].
Regarding numerical methods, the books are classics, and they are available

on-line for free at lib-www.lanl.gov/numerical/
Assume θ 7→ f(θ) is a scalar function of a vector argument, with continuous

first and second derivatives, which has a global minimum, i.e., there is an argument

θ̂ with f(θ̂) ≤ f(θ) for all θ.
The numerical methods to find this minimum argument are usually recursive:

the computer is given a starting value θ0, uses it to compute θ1, then it uses θ1 to
compute θ2, and so on, constructing a sequence θ1,θ2, . . . that converges towards
a minimum argument. If convergence occurs, this minimum is usually a local mini-
mum, and often one is not sure whether there is not another, better, local minimum
somewhere else.

At every step, the computer makes two decisions, which can be symbolized as

(55.0.10) θi+1 = θi + αidi.

Here di, a vector, is the step direction, and αi, a scalar, is the step size. The choice of
the step direction is the main characteristic of the program. Most programs (notable
exception: simulated annealing) always choose directions at every step along which
the objective function slopes downward, so that one will get lower values of the
objective function for small increments in that direction. The step size is then chosen
such that the objective function actually decreases. In elaborate cases, the step size
is chosen to be that traveling distance in the step direction which gives the best
improvement in the objective function, but it is not always efficient to spend this
much time on the step size.

Let us take a closer look how to determine the step direction. If g>
i = (g(θi))

>

is the Jacobian of f at θi, i.e., the row vector consisting of the partial derivatives of
f , then the objective function will slope down along direction di if the scalar product
g>
i di is negative. In determining the step direction, the following fact is useful: All

vectors di for which g>
i di < 0 can be obtained by premultiplying the transpose of the

negative Jacobian, i.e., the negative gradient vector −gi, by an appropriate positive
definite matrix Ri.
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Problem 492. 4 points Here is a proof for those who are interested in this issue:
Prove that g>d < 0 if and only if d = −Rg for some positive definite symmetric
matrix R. Hint: to prove the “only if” part use R = I − gg>/(g>g)− dd>/(d>g).
This formula is from [Bar74, p. 86]. To prove that R is positive definite, note that

R = Q + S with both Q = I − gg>/(g>g) and S = −dd>/(d>g) nonnegative
definite. It is therefore sufficient to show that any x 6= o for which x>Qx = 0
satisfies x>Sx > 0.

Answer. If R is positive definite, then d = −Rg clearly satisfies d>g < 0. Conversely, for
any d satisfying d>g < 0, define R = I − gg>/(g>g) − dd>/(d>g). One immediately checks that
d = −Rg. To prove that R is positive definite, note that R is the sum of two nonnegative definite
matrices Q = I − gg>/(g>g) and S = −dd>/(d>g). It is therefore sufficient to show that any
x 6= o for which x>Qx = 0 satisfies x>Sx > 0. Indeed, if x>Qx = 0, then already Qx = o, which

means x = gg>x

g>g
. Therefore

(55.0.11) x>Sx = −xgg>

g>g

dd>

d>g

gg>x

g>g
= −(g>x/g>g)2d>g > 0.

�

Many important numerical methods, the so-called gradient methods [KG80, p.
430] use exactly this principle: they find the step direction di by premultiplying −gi
by some positive definite Ri, i.e., they use the recursion equation

(55.0.12) θi+1 = θi − αiRigi

The most important ingredient here is the choice of Ri. We will discuss two “natural”
choices.

The choice which immediately comes to mind is to set Ri = I , i.e., di = −αigi.
Since the gradient vector shows into the direction where the slope is steepest, this is
called the method of steepest descent. However this choice is not as natural as one
might first think. There is no benefit to finding the steepest direction, since one can
easily increase the step length. It is much more important to find a direction which
allows one to go down for a long time—and for this one should also consider how the
gradient is changing. The fact that the direction of steepest descent changes if one
changes the scaling of the variables, is another indication that selecting the steepest
descent is not a natural criterion.

The most “natural” choice for Ri is the inverse of the “Hessian matrix” G(θi),
which is the matrix of second partial derivatives of f , evaluated at θi. This is called
the Newton-Raphson method. If the inverse Hessian is positive definite, the Newton
Raphson method amounts to making a Taylor development of f around the so far
best point θi, breaking this Taylor development off after the quadratic term (so
that one gets a quadratic function which at point θi has the same first and second
derivatives as the given objective function), and choosing θi+1 to be the minimum
point of this quadratic approximation to the objective function.
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Here is a proof that one accomplishes all this if Ri is the inverse Hessian. The
quadratic approximation (second order Taylor development) of f around θi is

(55.0.13) f(θ) ≈ f(θi) +
(
g(θi)

)>
(θ − θi) +

1

2
(θ − θi)

>G(θi)(θ − θi).

By theorem 55.0.1, the minimum argument of this quadratic approximation is

(55.0.14) θi+1 = θi −
(
G(θi)

)−1
g(θi),

which is the above procedure with step size 1 and Ri = (G(θi))
−1.

Theorem 55.0.1. Let G be a n × n positive definite matrix, and g a n-vector.
Then the minimum argument of the function

(55.0.15) q : z 7→ g>z +
1

2
z>Gz is x = −G−1g.

Proof: Since Gx = −g, it follows for any z that

z>g +
1

2
z>Gz = −z>Gx +

1

2
z>Gz =(55.0.16)

=
1

2
x>Gx − z>Gx +

1

2
z>Gz − 1

2
x>Gx(55.0.17)

=
1

2
(x − z)>G(x − z) − 1

2
x>Gx(55.0.18)

This is minimized by z = x.
The Newton-Raphson method requires the Hessian matrix. [KG80] recommend

to establish mathematical formulas for the derivatives which are then evaluated at
θi, since it is very tricky and unprecise to compute derivatives and the Hessian
numerically. The analytical derivatives, on the other hand, are time consuming and
the computation of these derivatives may be subject to human error. However there
are computer programs which automatically compute such derivatives. Splus, for
instance, has the deriv function which automatically constructs functions which are
the derivatives or gradients of given functions.

The main drawback of the Newton-Raphson method is that G(θi) is only positive
definite if the function is strictly convex. This will be the case when θi is close to
a minimum, but if one starts too far away from a minimum, the Newton-Raphson
method may not converge.

There are many modifications of the Newton-Raphson method which get around
computing the Hessian and inverting it at every step and at the same time ensure
that the matrix Ri is always positive definite by using an updating formula for Ri,
which turns Ri, after sufficiently many steps into the inverse Hessian. These are
probably the most often used methods. A popular one used by the gauss software
is the Davidson-Fletcher-Powell algorithm.
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One drawback of all these methods using matrices is the fact that the size of
the matrix Ri increases with the square of the number of variables. For problems
with large numbers of variables, memory limitations in the computer make it nec-
essary to use methods which do without such a matrix. A method to do this is the
“conjugate gradient method.” If it is too difficult to compute the gradient vector,
the “conjugate direction method” may also compare favorably with computing the
gradient numerically.



CHAPTER 56

Nonlinear Least Squares

This chapter ties immediately into chapter 55 about Numerical Minimization.
The notation is slightly different; what we called f is now called SSE, and what we
called θ is now called β. A much more detailed discussion of all this is given in
[DM93, Chapter 6], which uses the notation x(β) instead of our η(β). [Gre97,
Chapter 10] defines the vector function η(β) by ηt(β) = h(xt,β), i.e., all elements
of the vector function η have the same functional form h but differ by the values of
the additional arguments xt. [JHG+88, Chapter (12.2.2)] set it up in the same way
as [Gre97], but they call the function f instead of h.

An additional important “natural” choice for Ri is available if the objective
function has the nonlinear least squares form

(56.0.19) SSE(β) =
(
y − η(β)

)>(
y − η(β)

)
,

where y is a given vector of observations and η(β) is a vector function of a vector
argument, i.e., it consists of n scalar functions of k scalar arguments each:

(56.0.20) η(β) =




η1(β1, β2, · · · , βk)
η2(β1, β2, · · · , βk)

...
ηn(β1, β2, · · · , βk)




Minimization of this objective function is an obvious and powerful estimation method
whenever the following nonlinear least squares model specification holds:

(56.0.21) y = η(β) + ε, ε ∼ (o, σ2I)

If the errors are normally distributed, then nonlinear least squares is equal to the
maximum likelihood estimator. (But this is only true as long as the covariance matrix
is spherical as assumed here.)
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Instead of the linear least squares model

y1 = x11β1 + x12β2 + · · · + x1kβk + ε1(56.0.22)

y2 = x21β1 + x22β2 + · · · + x2kβk + ε2(56.0.23)

...
...(56.0.24)

yn = xn1β1 + xn2β2 + · · · + xnkβk + εn(56.0.25)

we have here its nonlinear generalization

y1 = η1(β1, β2, · · · , βk) + ε1(56.0.26)

y2 = η2(β1, β2, · · · , βk) + ε2(56.0.27)

...
...(56.0.28)

yn = ηn(β1, β2, · · · , βk) + εn(56.0.29)

Usually there are other independent variables involved in η which are not shown here
explicitly because they are not needed for the results proved here.

Problem 493. 4 points [Gre97, 10.1 on p. 494] Describe as precisely as you
can how you would estimate the model

(56.0.30) yi = αx
β
i + εi,

and how you would get estimates of the standard deviations of the parameter esti-
mates.

Answer. You want to minimize the nonlinear LS objective function SSE =
∑

(yi − αx
β
i )2.

First order conditions you have to set zero ∂SSE
∂α

= −2
∑

x
β
i (yi−αx

β
i ) and ∂SSE

∂β
= −2α

∑
log(xi)x

β
i (yi−

αx
β
i ). There are only two parameters to minimize over, and for every given β it is easy to get the

α which minimizes the objective function with the given β fixed, namely, this is

(56.0.31) α =

∑
x
β
i yi∑
x
2β
i

Plug this α into the objective function gives you the concentrated objective function, then plot this
concentrated objective function and make a grid search for the best β. The concentrated objective
function can also be obtained by running the regression for every β and getting the SSE from the
regression.

After you have the point estimates α̂ and β̂ write yt = ηt+εt and construct the pseudoregressors

∂ηt/∂α = x
β̂
t and ∂ηt/∂β = α(log xt)x

β̂
t . If you regress the residuals on the pseudoregressors you

will get parameter estimates zero (if the estimates α̂ and β̂ are good), but you will get the right
standard errors.

�
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Next we will derive the first-order conditions, and then describe how to run
the linearized Gauss-Newton regression. For this we need some notation. For an
arbitrary but fixed vector βi (below it will be the ith approximation to the nonlinear
least squares parameter estimate) we will denote the Jacobian matrix of the function

η evaluated at βi with the symbol X(βi), i.e., X(βi) = ∂η(β)/∂β>(βi). X(βi) is
called the matrix of pseudoregressors at βi. The mh-th element of X(βi) is

(56.0.32) xmh(βi) =
∂ηm
∂βh

(βi),

i.e., X(βi) is the matrix of partial derivatives evaluated at βi

(56.0.33) X(βi) =




∂η1
∂β1

(βi) · · · ∂η1
∂βk

(βi)
...

∂ηn

∂β1
(βi) · · · ∂ηn

∂βk
(βi)


 ,

but X(βi) should first and foremost be thought of as the coefficient matrix of the
best linear approximation of the function η at the point βi. In other words, it is the
matrix which appears in the Taylor expansion of η(β) around βi:

(56.0.34) η(β) = η(βi) + X(βi)(β − βi) + higher order terms.

Now let us compute the Jacobian of the objective function itself

(56.0.35) SSE = (y − η(β))>(y − η(β)) = ε̂>ε̂ where ε̂ = y − η(β).

This Jacobian is a row vector because the objective function is a scalar function. We
need the chain rule (C.1.23) to compute it. In the present situation it is useful to
break our function into three pieces and apply the chain rule for three steps:
(56.0.36)

∂SSE/∂β> = ∂SSE/∂ε̂>·∂ε̂/∂η>·∂η/∂β> = 2ε̂>·(−I)·X(β) = −2(y−η(β))>X(β).

Problem 494. 3 points Compute the Jacobian of the nonlinear least squares
objective function

(56.0.37) SSE = (y − η(β))>(y − η(β))

where η(β) is a vector function of a vector argument. Do not use matrix differentia-
tion but compute it element by element and then verify that it is the same as equation
(56.0.36).
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Answer.

SSE =

n∑

t=1

(yt − ηt(β))2(56.0.38)

∂SSE

∂βh
=

n∑

t=1

2(yt − ηt(β)) · (− ∂ηt

∂βh
)(56.0.39)

= −2
∑

t

(yt − ηt(β))
∂ηt

∂βh
(56.0.40)

= −2

(
(y1 − η1(β))

∂η1

∂βh
+ · · · + (yn − ηn(β))

∂ηn

∂βh

)
(56.0.41)

= −2
[
y1 − η1(β) · · · yn − ηn(β)

]



∂η1
∂βh

..

.
∂ηn

∂βh


(56.0.42)

Therefore

(56.0.43)
[
∂SSE
∂β1

· · · ∂SSE
∂βk

]
= −2

[
y1 − η1(β) · · · yn − ηn(β)

]



∂η1
∂β1

· · · ∂η1
∂βk

...
∂ηn

∂β1
· · · ∂ηn

∂βk


 .

�

The gradient vector is the transpose of (56.0.36):

(56.0.44) g(β) = −2X>(β)(y − η(β))

Setting this zero gives the first order conditions.

(56.0.45) X>(β)η(β) = X>(β)y

It is a good idea to write down these first order conditions and to check whether some
of them can be solved for the respective parameter, i.e., whether some parameters
can be concentrated out.

Plugging (56.0.34) into (56.0.21) and rearranging gives the regression equation

(56.0.46) y − η(βi) = X(βi)(β − βi) + error term

Here the lefthand side is known (it can be written ε̂εεi, the residual associated with the
vector βi), we observe y, and βi is the so far best approximation to the minimum
argument. The matrix of “pseudoregressors” X(βi) is known, but the coefficent
δi = β − βi is not known (because we do not know β) and must be estimated. The
error term contains the higher order terms in (56.0.34) plus the vector of random
disturbances in (56.0.21). This regression is called the Gauss-Newton regression
(GNR) at βi. [Gre97, (10-8) on p, 452] writes it as

(56.0.47) y − η(βi) + X(βi)βi = X(βi)β + error term
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Problem 495. 6 points [DM93, p. 178], which is very similar to [Gre97, (10-2)
on p. 450]: You are estimating by nonlinear least squares the model

(56.0.48) yt = α+ βxt + γzδt + εt or y = αι + βx + γzδ + ε

You are using the iterative Newton-Raphson algorithm.

• a. In the ith step you have obtained the vector of estimates

(56.0.49) β̂i =




α̂

β̂
γ̂

δ̂


 .

Write down the matrix X of pseudoregressors, the first order conditions, the Gauss-

Newton regression at the given parameter values, and the updated estimate β̂i+1.

Answer. The matrix of pseudoregressors is, column by column,

(56.0.50) X =
[
∂η/∂α ∂η/∂β ∂η/∂γ ∂η/∂δ

]

where η(α, β, γ, δ) == αι+βx+γzδ . From ∂ηt/∂α = 1 follows ∂η/∂α = ι; from ∂ηt/∂β = xt follows
∂η/∂β = x; from ∂ηt/∂γ = zδt follows ∂η/∂γ = zδ (which is the vector taken to the δth power

element by element). And from ∂ηt/∂δ = ∂
∂δ
γzδt = ∂

∂δ
γ exp(δ log(zt)) = γ log(zt) exp(δ(log zt)) =

γ log(zt)zδt follows ∂η/∂δ = γ log(z) ∗ zδ where ∗ denotes the Hadamard product of two matrices

(their element-wise multiplication). Putting it together gives X =
[
ι x zδ γ log(z) ∗ zδ

]
.

Write the first order conditions (56.0.45) in the form X>(β)(y − η(β)) = o which gives here

(56.0.51)




ι>

x>

z>δ

γ log(z>) ∗ z>δ


 (y − ια− xβ − zδγ) = o

or, element by element, ∑

t

(yt − α− βxt − γzδt ) = 0(56.0.52)

∑

t

xt(yt − α− βxt − γzδt ) = 0(56.0.53)

∑

t

zδt (yt − α− βxt − γzδt ) = 0(56.0.54)

γ
∑

t

log(zt)z
δ
t (yt − α− xtβ − zδt γ) = 0(56.0.55)

which is very similar to [Gre97, Example 10.1 on p. 451]. These element-by-element first order
conditions can also be easily derived as the partial derivatives of SSE =

∑
t
(yt − α− βxt − γzδt )

2.

The Gauss-Newton regression (56.0.46) is the regression of the residuals on the columns of the
Jacobian.

(56.0.56) yt − α̂− β̂xt − γ̂zδ̂t = a+ bxt + czδ̂t + dγ̂ log(zt)z
δ̂
t + error term
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and from this one gets an updated estimate as

(56.0.57)



α̂+ â

β̂ + b̂
γ̂ + ĉ

δ̂ + d̂


 .

One can also write it in the form (56.0.47), which in the present model happens to be even a little
simpler (because the original regression is almost linear) and gives the true regression coefficient:

(56.0.58) yt + γ̂δ̂ log(zt)z
δ̂
t = a + bxt + czδ̂t + dγ̂ log(zt)z

δ̂
t + error term

�

• b. How would you obtain the starting value for the Newton-Raphson algorithm?

Answer. One possible set of starting values would be to set δ̂ = 1 and to get α̂, β̂, and γ̂ from
the linear regression. �

The Gauss-Newton algorithm runs this regression and uses the OLS estimate δ̂i
of δi to define βi+1 = βi + δ̂i. The recursion formula is therefore

(56.0.59) βi+1 = βi + δ̂i = βi + ((X(βi))
>X(βi))

−1(X(βi))
>(y − η(βi)).

The notation (η(β))> = η>(β) and (X(β))> = X>(β) makes this perhaps a little
easier to read:

(56.0.60) βi+1 = βi + (X>(βi)X(βi))
−1X>(βi)(y − η(βi)).

This is [Gre97, last equation on p. 455].
A look at (56.0.44) shows that (56.0.60) is again a special case of the general

principle (55.0.12), i.e., βi+1 = βi − αiRigi, with Ri =
(
X>(βi)X(βi)

)−1
and

αi = 1/2.
About the bad convergence properties of Gauss-Newton see [Thi88, p. 213–215].
Although the Gauss-Newton regression had initially been introduced as a numer-

ical tool, it was soon realized that this regression is very important. Read [DM93,
Chapter 6] about this.

If one runs the GNR at the minimum argument of the nonlinear least squares
objective function, then the coefficients estimated by the GNR are zero, i.e., the

adjustments to the minimum argument δ̂ = βi+1 − βi are zero.
How can a regression be useful whose outcome we know beforehand? Several

points: If the estimated parameters turn out not to be zero after all, then β∗ was
not really a minimum. I.e., the GNR serves as a check of the minimization procedure
which one has used. One can also use regression diagnostics on the GNR in order to
identify influential observations. The covariance matrix produced by the regression
printout is an asymptotic covariance matrix of the NLS estimator. One can check
for collinearity. If β∗ is a restricted NLS estimate, then the GNR yields Lagrange
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multiplier tests for the restriction, or tests whether more variables should be added,
or specification tests.

Properties of NLS estimators: If X0 is the matrix of pseudoregressors computed
at the true parameter values, one needs the condition plim 1

nX>
0 X0 = Q0 exists and

is positive definite. For consistency we need plim 1
nX>

0 ε = 0, and for asymptotic

normality 1√
n
X>

0 ε → N(o, σ2Q0). σ̂
2 = SSE(β̂)/n is a consistent estimate of σ2 (a

degree of freedom correction, i.e., dividing by n− k instead of n, has no virtue here

since the results are valid only asymptotically). Furthermore, σ̂2
(
X>(β)X(β)

)−1
is

a consistent estimate of the asymptotic covariance matrix.

56.1. The J Test

Start out with two non-nested hypotheses about the data:

H0 : y = η0(β) + ε0(56.1.1)

H1 : y = η1(γ) + ε1(56.1.2)

A model which has these two hypotheses artificially nested is:

(56.1.3) y = (1 − α)η0(β) + αη1(γ) + ε

The problem here is that often it is not possible to estimate α, β, and γ together.
For instance, in the linear case

(56.1.4) y = (1 − α)X0β + αX1γ + ε

every change in α can be undone by counteracting changes in β and γ. Therefore the

idea is to estimate γ from model 1, call this estimate ˆ̂γ, and get the predicted value

of y from model 1 ˆ̂y1 = η1(
ˆ̂γ), and plug this into this model, i.e., one estimates α

and β in the model

(56.1.5) y = (1 − α)η0(β) + α ˆ̂y1 + ε

This is called the J test. A mathematical simplification, called the P-test, would be

to get an estimate
ˆ̂
β of β from the first model, and use the linearized version of η0

around
ˆ̂
β, i.e., replace η0 in the above regression by

(56.1.6) η0(
ˆ̂
β) + X0(

ˆ̂
β)(β − ˆ̂

β).

If one does this, one gets the linear regression

(56.1.7) y − ˆ̂y0 = Xδ + α(ˆ̂y1 − ˆ̂y0)

where ˆ̂y0 = η0(
ˆ̂
β), and δ = (1 − α)(β − ˆ̂

β), and one simply has to test for α = 0.
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Problem 496. Computer Assignment: The data in table 10.1 are in the file
/home/econ/ehrbar/ec781/consum.txt and they will also be sent to you by e-mail.
Here are the commands to enter them into SAS:

libname ec781 ’/home/econ/ehrbar/ec781/sasdata’;

filename consum ’/home/econ/ehrbar/ec781/consum.txt’;

data ec781.consum;

infile consum;

input year y c;

run;

Use them to re-do the estimation of the consumption function in Table 10.2. In
SAS this can be done with the procedure NLIN, described in the SAS Users Guide
Statistics, [SAS85]. Make a scatter plot of the data and plot the fitted curve into
this same plot.

libname ec781 ’/home/econ/ehrbar/ec781/sasdata’;

proc nlin data=ec781.consum

maxiter=200;

parms a1=11.1458

b1=0.89853

g1=1;

model c=a1+b1*exp(g1 * log(y));

der.a1=1;

der.b1=exp(g1 * log(y));

der.g1=b1*(exp(g1*log(y)))*log(y);

run;

56.2. Nonlinear instrumental variables estimation

If instrumental variables are necessary, one minimizes, instead of (y−η(β))>(y−
η(β)), the following objective function:

(56.2.1) (y − η(β))>W(W>W)−1W>(y − η(β))

(As before, η contains X although we are not making this explicit.)
Example: If one uses instrumental variables on the consumption function, one

gets this time quite different estimates than from the nonlinear least squares.
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If one transforms the dependent variable as well, [Gre97, p. 473] recommends
maximum likelihood estimation, and Problem 497 shows why it is sometimes neces-
sary. [CR88, p. 21–23] compare ML and NLS estimation. On paper, ML is more
efficient, but if there are only slight deviations from normality, not visible to the eye,
then NLS may be more efficient. NLS is more robust in the case of mis-specification.
Some statisticians also believe that even under ideal circumstances the MLE attains
its asymptotic properties more slowly than NLS.

Problem 497. This is [DM93, pp. 243 and 284]. The model is

(56.2.2) y
γ
t = α+ βxt + εt

with ε ∼ N(o, σ2I). yi > 0.

• a. 1 point Why can this model not be estimated with nonlinear least squares?

Answer. If all the y’s are greater than unity, then the SSE can be made arbitrarily small by
letting γ tend to −∞ and setting α and β zero. γ = 1, α = 1, and β = 0 leads to a zero SSE as
well. The idea behind LS is to fit the curve to the data. If γ changes, the data points themselves
move. We already saw when we discussed the R2 that there is no good way to compare SSE’s for
different y’s. (How about the information matrix: is it block-diagonal? Are the Kmenta-Oberhofer
conditions applicable?) �

• b. 3 points Show that the log likelihood function is

(56.2.3) −n
2

log 2π− n

2
logσ2− 1

2σ2

n∑

t=1

(
y
γ
t −α−βxt

)2
+n log |γ|+(γ−1)

n∑

t=1

log(yt)

Answer. This requires the transformation theorem for densities. εt = y
γ
t −α−βxt; therefore

∂εt/∂yt = γy
γ−1
t and ∂εt/∂ys = 0 for s 6= t. The Jacobian has this in the diagonal and 0 in

the off-diagonal, therefore the determinant is J = γn(
∏

yt)γ−1 and |J | = |γ|n(
∏

yt)γ−1 . This
gives the above formula: which I assume is right, it is from [DM93], but somewhere [DM93] has
a typo. �

• c. 2 points Concentrate the log likelihood function with respect to σ2. (Write
the precise value of the constant.)

Answer.
∂ log `
∂σ2 = − n

2σ2 + 1
2σ4

∑n

t=1

(
y
γ
t − α − βxt

)2
. This gives the usual estimate σ̃2 =

1
n

∑n

t=1

(
y
γ
t −α−βxt

)2
. If one plugs this into the log likelihood function and extracts the constants

and those parts which depend on n, one gets the following:

(56.2.4)
n

2
(lnn− ln 2π − 1) − n

2
log

n∑

t=1

(
y
γ
t − α− βxt

)2
+ n log |γ| + (γ − 1)

n∑

t=1

log(yt)

In [DM93], the constant is not given explicitly; in this way I can check if they have understood
it. �



CHAPTER 57

Applications of GLS with Nonspherical Covariance
Matrix

In most cases in which the covariance matrix is nonspherical, Ψ contains un-
known parameters, which must be estimated before formula (26.0.2) can be applied.
Of course, if all entries of Ψ are unknown, such estimation is impossible, since one
needs n(n+ 1)/2 − 1 parameters to specify a symmetric matrix up to a multiplica-
tive factor, but with n observations only n unrelated parameters can be estimated
consistently. Only in a few exceptional cases, Ψ is known, and in some even more
exceptional cases, there are unknown parameters in Ψ but (26.0.2) does not depend
on them. We will discuss such examples first: heteroskedastic disturbances with
known relative variances, and some examples involving equicorrelated disturbances.

57.1. Cases when OLS and GLS are identical

Problem 498. From y = Xβ + ε with ε ∼ (o, σ2I) follows P y = PXβ + Pε

with P ε ∼ (o, σ2PP>). Which conditions must P satisfy so that the generalized

least squares regression of Py on PX with covariance matrix P P > gives the same
result as the original regression?

Problem 499. We are in the model y = Xβ + ε, ε ∼ σ2Ψ. As always, we
assume X has full column rank, and Ψ is nonsingular. We will discuss the special
situation here in which X and Ψ are such that ΨX = XA for some A.

• a. 3 points Show that the requirement ΨX = XA is equivalent to the
requirement that R[ΨX] = R[X]. Here R[B] is the range space of a matrix B, i.e.,
it is the vector space consisting of all vectors that can be written in the form Bc for
some c. Hint: For ⇒ show first that R[ΨX] ⊂ R[X], and then show that R[ΨX]
has the same dimension as R[X].

Answer. ⇒: Clearly R[ΨX] ⊂ R[X] since ΨX = XA and every XAc has the form Xd with
d = Ac. And since Ψ is nonsingular, and the range space is the space spanned by the column
vectors, and the columns of ΨX are the columns of X premultiplied by Ψ, it follows that the range
space of ΨX has the same dimension as that of X. ⇐: The ith column of ΨX lies in R[X], i.e.,
it can be written in the form Xai for some ai. A is the matrix whose columns are all the ai. �
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• b. 2 points Show that A is nonsingular.

Answer. A is square, since XA = ΨX, i.e., XA has has as many columns as X . Now assume
Ac = o. Then XAc = o or ΨXc = o, and since Ψ is nonsingular this gives Xc = o, and since X

has full column rank, this gives c = o. �

• c. 2 points Show that XA−1 = Ψ−1X.

Answer. X = Ψ−1ΨX = Ψ−1XA, and now postmultiply by A−1. �

• d. 2 points Show that in this case (X>Ψ−1X)−1X>Ψ−1 = (X>X)−1X>,
i.e., the OLS is BLUE (“Kruskal’s theorem”).

Answer. (X>Ψ−1X)−1X>Ψ−1 =
(
(A−1)>X>X

)−1
(A−1)>X> = (X>X)−1A>(A−1)>X> =

(X>X)−1X>
�

57.2. Heteroskedastic Disturbances

Heteroskedasticity means: error terms are independent, but their variances are
not equal. Ψ is diagonal, with positive diagonal elements. In a few rare cases the
relative variances are known. The main example is that the observations are means
of samples from a homoskedastic population with varying but known sizes.

This is a plausible example of a situation in which the relative variances are
known to be proportional to an observed (positive) nonrandom variable z (which may
or may not be one of the explanatory variables in the regression). Here V [ε] = σ2Ψ
with a known diagonal
(57.2.1)

Ψ =




z1 0 · · · 0
0 z2 · · · 0
...

...
. . .

...
0 0 · · · zn


 . Therefore P =




1/
√
z1 0 · · · 0

0 1/
√
z2 · · · 0

...
...

. . .
...

0 0 · · · 1/
√
zn


 ,

i.e., one divides every observation by the appropriate factor so that after the division
the standard deviations are equal. Note: this means that this transformed regression
usually no longer has a constant term, and therefore also R2 loses its meaning.

Problem 500. 3 points The specification is

(57.2.2) yt = β1 + β2xt + β3x
2
t + εt,

with E[εt] = 0, var[εt] = σ2x2
t for some unknown σ2 > 0, and the errors are uncor-

related. Someone runs the OLS regression

(57.2.3)
yt

xt
= γ1 + γ2

1

xt
+ γ3xt + vt

and you have the estimates γ̂1, γ̂2, and γ̂3 from this regression. Compute estimates
of β1, β2, and β3 using the γ̂i. What properties do your estimates of the βi have?
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Answer. Divide the original specification by xt to get

(57.2.4)
yt

xt
= β2 + β1

1

xt
+ β3xt +

εt

xt
.

Therefore γ̂2 is the BLUE of β1, γ̂1 that of β2, and γ̂3 that of β3. Note that the constant terms of
the old and new regression switch places! �

Now let us look at a random parameter model yt = xtγt, or in vector notation,
using ∗ for element-by-element multiplication of two vectors, y = x ∗ γ. Here
γt ∼ IID(β, σ2), one can also write it γt = β + δt or γ = ιβ + δ with δ ∼ (o, σ2I).

This model can be converted into a heteroskedastic Least Squares model if one
defines ε = x ∗ δ. Then y = xβ + ε with ε ∼ (o, σ2Ψ) where

(57.2.5) Ψ =




x2
1 0 · · · 0
0 x2

2 · · · 0
...

...
. . .

...
0 0 · · · x2

n


 .

Since x>Ψ−1 = x−1> (taking the inverse element by element), and therefore x>Ψ−1x =

n, one gets β̂ = 1
n

∑ yt

xt
and var[β̂] = σ2/n. On the other hand, x>Ψx =

∑
x4,

therefore var[β̂OLS ] = σ2

∑
x4

(
∑

x2)2
. Assuming that the xt are independent drawings

of a random variable x with zero mean and finite fourth moments, it follows

(57.2.6) plim
var[β̂OLS ]

var[β̂]
= plim

n
∑
x4

(
∑
x2)2

=
plim 1

n

∑
x4

(plim 1
n

∑
x2)2

=
E[x4]

(E[x2])2

This is the kurtosis (without subtracting the 3). Theoretically it can be anything
≥ 1, the Normal distribution has kurtosis 3, and the economics time series usually
have a kurtosis between 2 and 4.

57.3. Equicorrelated Covariance Matrix

Problem 501. Assume yi = µ+ εi, where µ is nonrandom, E[εi] = 0, var[εi] =
σ2, and cov[εi, εj ] = ρσ2 for i 6= j (i.e., the εi are equicorrelated).

(57.3.1) V[ε] = σ2




1 ρ · · · ρ
ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


 .

If ρ ≥ 0, then these error terms could have been obtained as follows: ε = z + ιu

where z ∼ (o, τ2I) and u ∼ (0, ω2) independent of z.

• a. 1 point Show that the covariance matrix of ε is V [ε] = τ2I + ω2ιι>.
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Answer. V[ιu] = ι var[u]ι>, add this to V[z]. �

• b. 1 point What are the values of τ 2 and ω2 so that ε has the above covariance
structure?

Answer. To write it in the desired form, the following identities must hold: for the off-
diagonal elements σ2ρ = ω2, which gives the desired formula for ω2 and for the diagonal elements
σ2 = τ2 +ω2. Solving this for τ2 and plugging in the formula for ω2 gives τ2 = σ2−ω2 = σ2(1−ρ),

�

• c. 3 points Using matrix identity (A.8.20) (for ordinary inverses, not for g-
inverses) show that the generalized least squares formula for the BLUE in this model
is equivalent to the ordinary least squares formula. In other words, show that the
sample mean ȳ is the BLUE of µ.

Answer. Setting γ = τ2/σ2, we want to show that

(
ι>(I +

ιι>

γ
)−1ι

)−1
ι>(I +

ιι>

γ
)−1y =

(
ι>I−1ι

)−1
ι>I−1y.(57.3.2)

This is even true for arbitrary h and A:

h>(A +
hh>

γ
)−1 = h>A−1 γ

γ + h>A−1h
;(57.3.3)

(
h>(A +

hh>

γ
)−1h

)−1
=
γ + h>A−1h

γh>A−1h
=

1

h>A−1h
+

1

γ
;(57.3.4)

Now multiply the left sides and the righthand sides (use middle term in (57.3.4))

(
h>(A +

hh>

γ
)−1h

)−1
h>(A +

hh>

γ
)−1 =

(
h>A−1h

)−1
h>A−1.(57.3.5)

�

• d. 3 points [Gre97, Example 11.1 on pp. 499/500]: Show that var[ȳ] does not
converge to zero as n→ ∞ while ρ remains constant.

Answer. By (57.3.4),

(57.3.6) var[ȳ] = τ2(
1

n
+

1

γ
) = σ2(

1 − ρ

n
+ ρ) =

τ2

n
+ ω2

As n→ ∞ this converges towards ω2, not to 0. �

Problem 502. [Chr87, pp. 361–363] Assume there are 1000 families in a

certain town, and denote the income of family k by zk. Let µ = 1
1000

∑1000
k=1 zk

be the population average of all 1000 incomes in this finite population, and let
σ2 = 1

1000

∑1000
k=1 (zk − µ)2 be the population variance of the incomes. For the pur-

poses of this question, the zk are nonrandom, therefore µ and σ2 are nonrandom as
well.
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You pick at random 20 families without replacement, ask them what their income
is, and you want to compute the BLUE of µ on the basis of this random sample. Call
the incomes in the sample y1, . . . ,y20. We are using the letters yi instead of zi for this
sample, because y1 is not necessarily z1, i.e., the income of family 1, but it may be,
e.g., z258. The yi are random. The process of taking the sample of yi is represented
by a 20× 1000 matrix of random variables qik (i = 1, . . . , 20, k = 1, . . . , 1000) with:
qik = 1 if family k has been picked as ith family in the sample, and 0 otherwise. In

other words, yi =
∑1000
k=1 qikzk or y = Qz.

• a. Let i 6= j and k 6= l. Is qik independent of qil? Is qik independent of qjk?
Is qik independent of qjl?

Answer. qik is not independent of qil: if qik = 1, this means that family ik as been selected
as the jth family in the sample. Since only one family can be selected as the ith family in the
sample, this implies qil = 0 for all l 6= k. qik is dependent of qjk , because sampling is without
replacement: if family k has been selected as the ith family in the sample, then it cannot be selected
again as the jth family of the sample. Is qik independent of qjl? I think it is. �

• b. Show that the first and second moments are
(57.3.7)

E[qik ] = 1/1000, and E[qikqjl] =





1/1000 if i = j and k = l

1/(1000 · 999) if i 6= j and k 6= l

0 otherwise.

For these formulas you need the rules how to take expected values of discrete random
variables.

Answer. Since qik is a zero-one variable, E[qik ] = Pr[qik = 1] = 1/1000. This is obvious
if i = 1, and one can use a symmetry argument that it should not depend on i. And since for a
zero-one variable, q2

ik = qik , it follows E[q2
ik] = 1/1000 too. Now for i 6= j, k 6= l, E[qikqjl] =

Pr[qik = 1 ∩ qjl = 1] = (1/1000)(1/999). Again this is obvious for i = 1 and j = 2, and can
be extended by symmetry to arbitrary pairs i 6= j. For i 6= j, E[qikqjk ] = 0 since zk cannot be
chosen twice, and for k 6= l, E[qikqil] = 0 since only one zk can be chosen as the ith element in the
sample. �

• c. Since
∑1000
k=1 qik = 1 for all i, one can write

(57.3.8) yi = µ+

1000∑

k=1

qik(zk − µ) = µ+ εi

where εi =
∑1000
k=1 qik(zk − µ). Show that

(57.3.9) E[εi] = 0 var[εi] = σ2 cov[εi, εj ] = −σ2/999 for i 6= j
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Hint: For the covariance note that from 0 =
∑1000
k=1 (zk − µ) follows

(57.3.10)

0 =

1000∑

k=1

(zk−µ)

1000∑

l=1

(zl−µ) =
∑

k 6=l
(zk−µ)(zl−µ)+

1000∑

k=1

(zk−µ)2 =
∑

k 6=l
(zk−µ)(zl−µ)+1000σ2.

Answer.

E[εi] =

1000∑

k=1

(zk − µ) E[qik] =

1000∑

k=1

zk − µ

1000
= 0(57.3.11)

var[εi] = E[ε2
i ] =

1000∑

k,l=1

(zk − µ)(zl − µ) E[qikqil] =

1000∑

k=1

(zk − µ)2

1000
= σ2(57.3.12)

and for i 6= j follows, using the hint for the last equal-sign

cov[εi, εj ] = E[εiεj ] =

1000∑

k,l=1

(zk − µ)(zl − µ) E[qikqjl] =
∑

k 6=l

(zk − µ)(zl − µ)

1000 · 999 = −σ2/999.

(57.3.13)

�

With ι20 being the 20 × 1 column vector consisting of ones, one can therefore
write in matrix notation

y = ι20µ+ ε E[ε] = o V[ε] = σ2Ψ

where

(57.3.14) Ψ =




1 −1/999 · · · −1/999
−1/999 1 · · · −1/999

...
...

. . .
...

−1/999 −1/999 · · · 1




From what we know about GLS with equicorrelated errors (question 501) follows
therefore that the sample mean ȳ is the BLUE of µ. (This last part was an explanation
of the relevance of the question, you are not required to prove it.)



CHAPTER 58

Unknown Parameters in the Covariance Matrix

If Ψ depends on certain unknown parameters which are not, at the same time,
components of β or functions thereof, and if a consistent estimate of these parameters
is available, then GLS with this estimated covariance matrix, called “feasible GLS,”
is usually asymptotically efficient. This is an important result: one does not not
need an efficient estimate of the covariance matrix to get efficient estimates of β! In

this case, all the results are asymptotically valid, with Ψ̂ in the formulas instead of
Ψ. These estimates are sometimes even unbiased!

58.1. Heteroskedasticity

Heteroskedasticity means: error terms are independent, but do not have equal
variances. There are not enough data to get consistent estimates of all error variances,
therefore we need additional information.

The simplest kind of additional information is that the sample can be partitioned
into two different subsets, each subset corresponding to a different error variance,
with the relative variances known. Write the model as

(58.1.1)

[
y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]
; V [

[
ε1

ε2

]
] = σ2

[
κ2

1I O

O κ2
2I

]
= Φ.

Assume y1 has n1 and y2 n2 observations. The GLSE is
(58.1.2)

β̂ = (X>Φ−1X)−1X>Φ−1y =
(X1

>X1

κ2
1

+
X2

>X2

κ2
2

)−1(X1
>y1

κ2
1

+
X2

>y2

κ2
2

)
.

To make this formula operational, we have to replace the κ2
i by estimates. The

simplest way (if each subset has at least k + 1 observations) is to use the unbiased
estimates s2

i (i = 1, 2) from the OLS regressions on the two subsets separately.
Associated with this estimation is also an easy test, the Goldfeld Quandt test [Gre97,
551/2]. simply use an F-test on the ratio s2

2/s
2
1; but reject if it is too big or too small.

If we don’t have the lower significance points, check s2
1/s

2
2 if it is > 1 and s2

2/s
2
1

otherwise.
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Problem 503. 3 points In the model

(58.1.3)

[
y1

y2

]
=

[
X1

X2

]
β +

[
ε1

ε2

]
; V [

[
ε1

ε2

]
] =

[
σ2

1I O

O σ2
2I

]

in which X1 is a 10×5 and X2 a 20×5 matrix, you run the two regressions separately
and you get s2

1 = 500 and s2
2 = 100. Can you reject at the 5% significance level that

these variances are equal? Can you reject it at the 1% level? The enclosed tables are
from [Sch59, pp. 424–33].

Answer. The distribution of the ratio of estimated variances is s2
2/s

2
1 ∼ F15,5, but since its

observed value is smaller than 1, use instead s21/s
2
2 ∼ F5,15. The upper significance points for 0.005%

F(5,15;0.005) = 5.37 (which gives a two-sided 1% significance level), for 1% it is F(5.15;0.01) = 4.56

(which gives a two-sided 2% significance level), for 2.5% F(5,15;0.025) = 3.58 (which gives a two-sided

5% significance level), and for 5% it is F(5,15;0.05) = 2.90 (which gives a two-sided 10% significance

level). A table can be found for instance in [Sch59, pp. 428/9]. To get the upper 2.5% point one
can also use the Splus-command qf(1-5/200,5,15). One can also get the lower significance points
simply by the command qf(5/200,5,15). The test is therefore significant at the 5% level but not
significant at the 1% level. �

Since the so-called Kmenta-Oberhofer conditions are satisfied, i.e., since Ψ does
not depend on β, the following iterative procedure converges to the maximum like-
lihood estimator:

(1) start with some initial estimate of κ2
1 and κ2

2. [Gre97, p. 516] proposes to
start with the assumption of homoskedasticity, i.e., κ2

1 = κ2
2 = 1, but if each group

has enough observations to make separate estimates then I think a better starting
point would be the s2

i of the separate regressions.
(2) Use those κ2

i to get the feasible GLSE.
(3) use this feasible GLSE to get a new set κ2

i = s2
i (but divide by ni, not ni−k).

(4) Go back to (2).
Once the maximum likelihood estimates of β, σ2, and κ2

i are computed (actually
σ2 and κ2

i cannot be identified separately, therefore one conventionally imposes a
condition like σ2 = 1 or

∑
i κ

2
i = n to identify them), then it is easy to test for

homoskedasticity by the LR test. In order to get the maximum value of the likelihood
function it saves us some work to start with the concentrated likelihood functions,
therefore we start with (35.0.17):
(58.1.4)

log fy(y; β,Ψ) = −n
2
(1 + ln 2π− lnn)− n

2
ln(y−Xβ)>Ψ−1(y−Xβ)− 1

2
ln det[Ψ]

Since σ̂2 = 1
n (y − Xβ)>Ψ−1(y − Xβ) and det[kΨ] = kn det[Ψ] one can rewrite

(35.0.17) as

(58.1.5) log fy(y; β,Ψ) = −n
2

(1 + ln 2π) − 1

2
ln det[σ̂2Ψ]
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Now in the constrained case, with homoskedasticity assumed, Ψ = I and we will

write the OLS estimator as
ˆ̂
β and ˆ̂σ

2
= (ˆ̂ε

>ˆ̂ε)/n. Then ln det[ˆ̂σ
2
I ] = n ln[ˆ̂σ2]. Let

β̂ be the unconstrained MLE, and

(58.1.6) Ψ̂ =

[
σ̂2

1I O

O σ̂2
2I

]

there σ̂2
i = ε̂>

i ε̂i/ni. The LR statistic is therefore (compare [Gre97, p. 516])

(58.1.7) λ = 2(log fconstrained − log funconstrained) = n ln ˆ̂σ2 −
∑

ni ln σ̂
2
i

In this particular case, the feasible GLSE is so simple that its finite sample
properties are known. Therefore [JHG+88] use it as a showcase example to study
the question: Should one use the feasible GLSE always, or should one use a pre-test
estimator, i.e., test whether the variances are equal, and use the feasible GLS only if
this test can be rejected, otherwise use OLS? [JHG+88, figure 9.2 on p. 364] gives
the trace of the MSE-matrix for several possibilities.

58.1.1. Logarithm of Error Variances Proportional to Unknown Linear
Combination of Explanatory Variables. When we discussed heteroskedasticity
with known relative variances, the main example was the prior knowledge that the
error variances were proportional to some observed z. To generalize this procedure,
[Har76] proposes the following specification:

(58.1.8) lnσ2
t = z>

t α,

where α is a vector of unknown nonrandom parameters, and Z =



z>

1
...

z>
n


 consists

of observations of m nonrandom explanatory variables which include the constant
“variable” ι. The variables in Z are often functions of certain variables in X, but
this is not necessary for the derivation that follows.

A special case of this specification is σ2
t = σ2xpt or, after taking logarithms,

lnσ2
t = lnσ2 + p lnxt. Here Z =

[
ι ln x

]
and α> =

[
lnσ2 p

]
.

Write (58.1.8) as 0 = z>
t α − lnσ2

t and add ln ε2
t to both sides to get

(58.1.9) ln ε2
t = z>

t α + ln(ε2
t /σ

2
t ).

This can be considered a regression equation with ln(ε2
t /σ

2
t ) as the disturbance term.

The assumption is that var[ln(ε2
t /σ

2
t )] does not depend on t, which is the case if the

εt/σt are i.i.d. The lefthand side of (58.1.9) is not observed, but one can take the
OLS residuals ε̂t; usually ln ε̂2

t → ln ε2
t in the probability limit.

There is only one hitch: the disturbances in regression (58.1.9) do not have
zero expected value. Their expected value is an unknown constant. If one ignores
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that and runs a regression on (58.1.9), one gets an inconsistent estimate of the
element of α which is the coefficient of the constant term in Z. This estimate really
estimates the sum of the constant term plus the expected value of the disturbance.
As a consequence of this inconsistency, the vector exp(Zα) estimates the vector of
variances only up to a joint multiplicative constant. I.e., this inconsistency is such
that the plim of the variance estimates is not equal but nevertheless proportional
to the true variances. But proportionality is all one needs for GLS; the missing
multiplicative constant is then the s2 provided by the least squares formalism.

Therefore all one has to do is: run the regression (58.1.9) (if the F test does not
reject, then homoskedasticity cannot be rejected), get the (inconsistent but propor-
tional) estimates σ̂2

t = exp(z>
t α), divide the tth observation of the original regression

by σ̂t, and re-run the original regression on the transformed data. Consistent esti-
mates of σ2

t are then the s2 from this transformed regression times the inconsistent
estimates σ̂2

t .

58.1.2. Testing for heteroskedasticity: One test is the F-test in the proce-
dure just described. Then there is the Goldfeld-Quandt test: if it is possible to order
the observations in order of increasing error variance, run separate regressions on the
portion of the date with low variance and that with high variance, perhaps leaving
out some in the middle to increase power of the test, and then just making an F-test

with
SSEhigh/d.f.
SSElow/d.f. .

Problem 504. Why does the Goldfeld-Quandt not use SSEhigh − SSElow in the
numerator?

58.1.3. Heteroskedasticity with Unknown Pattern. For consistency of
OLS one needs

plim
1

n
X>ε = o(58.1.10)

Q = plim
1

n
X>X exists and is nonsingular(58.1.11)

Q∗ = plim
1

n
X>ΨX exists and is nonsingular(58.1.12)

Proof:

(58.1.13) V[β̂OLS ] =
σ2

n

( 1

n
X>X

)−1 1

n
X>ΨX

( 1

n
X>X

)−1

therefore plimV [β̂OLS ] = σ2

n Q−1Q∗Q−1.



58.1. HETEROSKEDASTICITY 651

Look at the following simple example from [Gre97, fn. 3 on p. 547:] y = xβ+ε

with var[εi] = σ2z2
i . For the variance of the OLS estimator we need

(58.1.14) X>ΨX =
[
x1 . . . xn

]




z2
1 0 · · · 0
0 z2

2 · · · 0
...

...
. . .

...
0 0 · · · z2

n






x1

...
xn


 =

n∑

i=1

x2
i z

2
i .

Then by (58.1.13) var[β̂OLS ] = σ2

∑
i
x2

i z
2
i

(
∑

i
x2

i
)2

. Now assume that xi and zi are indepen-

dent observations of the random variables x and z with E[z2] = 1 and cov[x2, z2] = 0.

In this case the naive regression output for the variance of β̂, which is s2
N = s2/

∑
x2,

is indeed a consistent estimate of the variance.
(58.1.15)

plim
var[β̂OLS ]

s2
N

= plim
σ2
∑
x2z2

s2
∑
x2

= plim
σ2

s2

1
n

∑
i x

2
i z

2
i

1
n

∑
i x

2
i

=
E[x2z2]

E[x2]
=

cov[x2, z2] + E[x2] E[z2]

E[x2]
= 1

I.e., if one simply runs OLS in this model, then the regression printout is not mis-

leading. On the other hand, it is clear that always var[β̂OLS ] > var[β̂]; therefore if z

is observed, then one can do better than this.

Problem 505. Someone says: the formula

(58.1.16) V[β̂OLS ] = σ2(X>X)−1X>ΨX(X>X)−1

is useless; if one knows Ψ then one will use GLS, and if one does not know Ψ then
there are not enough data to estimate it. Comment on this.

Answer: This is a fallacy. In the above formula one does not need Ψ but X>ΨX,
which is a k×k symmetric matrix, i.e., it has k(k+1)/2 different elements. And even

an inconsistent estimate of Ψ can lead to a consistent estimate of X>ΨX. Which

inconsistent estimate of Ψ shall we use? of course Ψ̂ =



ε̂2
1 · · · 0
...

. . .
...

0 · · · ε̂2
n


. Now since

(58.1.17) X>ΨX =
[
x1 · · · xn

]


σ2

1 · · · 0
...

. . .
...

0 · · · σ2
n






x>

1
...

x>
n


 =

∑

i

σ2
i xix

>
i

one gets White’s heteroskedastic-consistent estimator.

(58.1.18) Est.V ar[β̂OLS ] =
ε̂>ε̂

n
(X>X)−1(

∑

i

ε̂2
ixix

>
i )(X>X)−1
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This estimator has become very fashionable, since one does not have to bother with
estimating the covariance structure, and since OLS is not too inefficient in these
situations.

It has been observed, however, that this estimator gives too small confidence
intervals in small samples. Therefore it is recommended in small samples to multiply

the estimated variance by the factor n/(n− k) or to use
ε̂2

i

mii
as the estimates of σ2

i .

See [DM93, p. 554].

58.2. Autocorrelation

While heteroskedasticity is most often found with cross-sectional data, autocor-
relation is more common with time-series.

Properties of OLS in the presence of autocorrelation. If the correlation between
the observations dies off sufficiently rapidly as the observations become further apart
in time, OLS is consistent and asymptotically normal, but inefficient. There is one
important exception to this rule: if the regression includes lagged dependent variables
and there is autocorrelation, then OLS and also GLS is inconsistent.

Problem 506. [JHG+88, p. 577] and [Gre97, 13.4.1]. Assume

yt = α+ βyt−1 + εt(58.2.1)

εt = ρεt−1 + vt(58.2.2)

where vt ∼ IID(0, σ2
v) and all vt are independent of ε0 and y0, and |ρ| < 1 and

|β| < 1.

• a. 2 points Show that vt is independent of all εs and ys for 0 ≤ s < t.

Answer. Both proofs by induction. First independence of vt of εs: By induction assumption,

vt independent of εs−1 and since t > s, i.e., t 6= s, vt is also independent of vs, therefore vt
independent of εs = ρεs−1 + vs. Now independence of vt of ys: By induction assumption, vt
independent of ys−1 and since t > s, vt is also independent of εs, therefore vt independent of
ys = α+ βys−1 + εs. �

• b. 3 points Show that var[εt] = ρ2t var[ε0] + (1 − ρ2t)
σ2

v

1−ρ2 . (Hint: use induc-

tion.) I.e., since |ρ| < 1, var[εt] converges towards σ2
ε =

σ2
v

1−ρ2 .

Answer. Here is the induction step. Assume that var[εt−1] = ρ2(t−1) var[ε0]+(1−ρ2(t−1))
σ2

v

1−ρ2 .

Since εt = ρεt−1 + vt and vt is independent of εt−1, it follows
(58.2.3)

var[εt] = ρ2 var[εt−1]+var[vt] = ρ2t var[ε0]+ρ2(1−ρ2(t−1))
σ2

v

1 − ρ2
+σ2

v = ρ2t var[ε0]+(1−ρ2t) σ2
v

1 − ρ2
.

�

• c. 2 points (c) Show that cov[εt,yt−1] = ρβ cov[εt−1,yt−2] + ρ var[εt−1].
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Answer.

cov[εt,yt−1] = cov[ρεt−1 + vt, α+ βyt−2 + εt−1](58.2.4)

= ρβ cov[εt−1, yt−2] + ρ var[εt−1](58.2.5)

�

• d. (d) 1 point Show that, if the process has had enough time to become sta-
tionary, it follows

(58.2.6) cov[εt,yt−1] =
ρ

1 − ρβ
σ2

ε

Answer. Do not yet compute var[εt−1] at this point, just call it σ2
ε . Assuming stationarity,

i.e., cov[εt,yt−1] = cov[εt−1,yt−2], it follows

cov[εt,yt−1](1 − ρβ) = ρσ2
ε(58.2.7)

cov[εt,yt−1] =
ρ

1 − ρβ
σ2

ε(58.2.8)

�

• e. (e) 2 points Show that, again under conditions of stationarity,

(58.2.9) var[yt] =
1 + βρ

1 − βρ

σ2
ε

1 − β2
.

Answer.

var[yt] = β2 var[yt−1] + 2β cov[yt−1, εt] + var[εt](58.2.10)

(1 − β2) var[yt] =
2βρ

1 − βρ
σ2

ε + σ2
ε =

1 + βρ

1 − βρ
σ2

ε(58.2.11)

var[yt−1] = var[yt] =
1 + βρ

1 − βρ

σ2
ε

1 − β2
.(58.2.12)

�

• f. 2 points (f) Show that

(58.2.13) plim β̂OLS = β +
(1 − β2)ρ

1 + βρ

In analogy to White’s heteroskedastisicty-consistent estimator one can, in the
case of autocorrelation, use Newey and West’s robust, consistent estimator of the
MSE-matrix of OLS. This is discussed in [Gre97, p. 505–5 and 590–1]. The straight-
forward generalization of the White estimator would be

(58.2.14) Est.V ar[β̂OLS ] =
1

n
(X>X)−1(

∑

i,j

ε̂iε̂jxix
>
j )(X>X)−1
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but this estimator does not always give a positive definite matrix. The formula which
one should use is: first determine a maximum lag L beyond which the autocorrela-
tions are small enough to ignore, and then do
(58.2.15)

Est.V ar[β̂OLS ] =
1

n
(X>X)−1(

L∑

j=1

n∑

t=j+1

(1− j

L+ 1
)ε̂tε̂t−j(xtx

>
t−j+xt−jx

>
t )(X>X)−1

58.2.1. First-Order Autoregressive Disturbances. This is discussed in [DM93,
Chapter 10] and [Gre97, 13.3.2, 13.6–13.8].

The model is yt = x>
t β + εt, t = 1, . . . , n. For t = 2, . . . n the disturbances

satisfy εt = ρεt−1 + vt, where ρ is an unknown constant. and V [v] = σ2
vI , and all

vt independent of ε1, and var[ε1] exists. If |ρ| < 1, this process becomes stationary
over time. “Stationary” means: the variance of εt and the covariances cov[εt, εt−j ]
do not depend on t. First we will discuss what should be done in the hypothetical
case that ρ is known.

Problem 507. The model is

(58.2.16) yt = β1 + β2xt2 + · · · + βkxtk + εt

and for t = 2, . . . , n we know that εt = ρεt−1 + vt, where vt ∼ IID(0, σ2
v) and all vt

are independent of ε1. Assume for the sake of the argument that ρ is known.

• a. 2 points Transform the second until the nth observation in such a way that
the disturbance terms in the transformed model have a spherical covariance matrix.
Do not use matrix manipulations for that but do it observation by observation, and
at this point do not transform the first observation yet.

Answer. Start with

(58.2.17) yt = β1 + β2xt2 + · · · + βkxtk + εt

Now lag by one and multiply by ρ. This can only be done for t = 2, . . . , n.

(58.2.18) ρyt−1 = ρβ1 + ρβ2x(t−1)2 + · · · + ρβkx(t−1)k + ρεt−1

Now subtract, to get the well-behaved disturbances.

(58.2.19) yt − ρyt−1 = (1 − ρ)β1 + β2(xt2 − ρx(t−1)2) + · · · + βk(xtk − ρx(t−1)k) + vt

�

• b. 2 points If |ρ| < 1, then the process generating the residuals converges toward
a stationary process. Assuming that this stationary state has been reached, show that

(58.2.20) var[εt] =
1

1 − ρ2
σ2

v

and also give a formula for cov[εt, εt−j ] in terms of σ2
v, ρ, and j.
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Answer. From the assumptions follows var[εt+1] = ρ2 var[εt] + σ2
v . Stationarity means

var[εt+1] = var[εt] = σ2
ε , say. Therefore σ2

ε = ρ2σ2
ε + σ2

v , which gives σ2
ε = σ2

v/(1− ρ2). For the co-
variances one gets cov[εt, εt−1] = cov[ρεt−1+vt, εt−1] = ρσ2

ε ; cov[εt, εt−2] = cov[ρεt−1+vt, εt−2] =
cov[ρ2εt−2 + ρvt−1 + vt, εt−2] = ρ2σ2

ε , etc. �

• c. 2 points Assuming stationarity, write down the covariance matrix of the

vector
[
ε1 v2 v3 · · · vn

]>
. (Note that this vector has an ε in the first place and

v’s thereafter!) How can the first observation be transformed so that all transformed
observations have uncorrelated and homoskedastic disturbances?

Answer. The covariance matrix is

(58.2.21) σ2
v




1
1−ρ2 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1




We know ε1 = ρε0 + v0 and ε0 = ρε−1 + v−1 etc. Plugging this together gives ε1 = v0 + ρv−1 +
ρ2v−2 + · · · . The value of the very first disturbance ε−∞ no longer matters, since it is multiplied
by basically ρ∞. And we know the variance of the piled-up innovations v0 + ρv−1 + ρ2v−2 + · · · . It
is σ2

v/(1−ρ2). In other words, we know that the disturbance in the first observation is independent
of all the later innovations, and its variance is by the factor 1/(1 − ρ2) higher than that of these

innovations. Therefore multiply first observation by
√

1 − ρ2 take this together with the other
differenced observations in order to get a well-behaved regression. �

In matrix notation, the intuitive procedure derived in Problem 507 looks as
follows: The covariance matrix of ε can be written in the form V [ε] = σ2

εΨ, where
Ψ is the correlation matrix of the error terms:

(58.2.22) Ψ =




1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

...
...

...
. . .

...
ρn−1 ρn−2 ρn−3 · · · 1



.

The matrix-inverse of Ψ turns out to be “band-diagonal”:

(58.2.23) Ψ−1 =
1

1 − ρ2




1 −ρ 0 · · · 0 0
−ρ 1 + ρ2 −ρ · · · 0 0
0 −ρ 1 + ρ2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 + ρ2 −ρ
0 0 0 · · · −ρ 1




A transformation matrix P which makes the covariance matrix of the disturbances
spherical, scaled such that V[P ε] = σ2

vI , is any matrix P which satisfies P >P =
(1 − ρ2)Ψ−1.
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Problem 508. 2 points In the AR-1 model, write V[ε] = σ2
εΨ. Prove that the

matrix P satisfies V [Pε] = σ2
vI if P>P = (1 − ρ2)Ψ−1.

Answer. V[Pε] = σ2
vI; σ2

εPΨP> = σ2
vI; σ2

εΨ = σ2
vP−1(P>)−1 = σ2

v(P >P>)−1; 1/(1 −
ρ2)Ψ = (P>P )−1; (1 − ρ2)Ψ−1 = P>P . �

Given a nonnegative definite n × n matrix ΣΣΣ, there are usually many n × n
matrices P which satisfy P>P = ΣΣΣ. But if one requires that P is a lower diagonal
matrix with nonnegative elements in the diagonal, then P is unique and is called the
“Cholesky root” of ΣΣΣ. The Cholesky root of (1 − ρ2)Ψ−1 is the following P :

(58.2.24) P =




√
1 − ρ2 0 0 · · · 0 0
−ρ 1 0 · · · 0 0
0 −ρ 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 0
0 0 0 · · · −ρ 1




This is exactly the transformation which the procedure from Problem 507 leads to.

Problem 509. This question is formulated in such a way that you can do each
part of it independently of the others. Therefore if you get stuck, just go on to the
next part. We are working in the linear regression model yt = x>

t β+εt, t = 1, . . . , n,
in which the following is known about the disturbances εt: For t = 2, . . . , n one can
write εt = ρεt−1 + vt with an unknown nonrandom ρ, and the vt are well behaved,
i.e., they are homoskedastic vt ∼ (0, σ2

v) and vs independent of vt for s 6= t. The first
disturbance ε1 has a finite variance and is independent of v2, . . . , vn.

• a. 1 point Show by induction that vt is independent of all εs with 1 ≤ s < t ≤ n.

Answer. vt (2 ≤ t ≤ n) is independent of ε1 by assumption. Now assume 2 ≤ s ≤ t − 1 and
vt is independent of εs−1. Since εs = ρεs−1 + vs, and vt is by assumption also independent of vs,
it follows that vt is independent of εs. �

• b. 3 points Show by induction that, if |ρ| < 1, then

(58.2.25) var εt = (1 − ρ2(t−1))σ2
ε + ρ2(t−1) var[ε1]

where σ2
ε = σ2

v/(1−ρ2). This formula says: if var[ε1] = σ2
v/(1−ρ2), then all the other

var[εt] have the same value, and if var[ε1] 6= σ2
v/(1 − ρ2), then there is monotonic

convergence var[εt] → σ2
v/(1− ρ2).

Answer. (58.2.25) is true by assumption for t = 1. Here is the induction step. Assume that

var[εt] = ρ2(t−1) var[ε1]+(1−ρ2(t−1))σ2
v/(1−ρ2). Since εt+1 = ρεt+vt+1 and vt+1 is independent

of εt, it follows

(58.2.26) var[εt+1] = ρ2t var[ε1] + ρ2(1 − ρ2(t−1))
σ2

v

1 − ρ2
+ σ2

v = ρ2t var[ε1] + (1 − ρ2t)
σ2

v

1 − ρ2
.
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�

• c. 1 point Assuming |ρ| < 1 and var[ε1] = σ2
v/(1 − ρ2) =: σ2

ε, compute the
correlation matrix of the disturbance vector ε. Since ε is homoskedastic, this is
at the same time that matrix Ψ for which V[ε] = σ2

εΨ. What is a (covariance)
stationary process, and do the εt form one?

Answer. cov[εt, εt−1] = cov[ρεt−1 + vt, εt−1] = ρσ2
ε ; cov[εt, εt−2] = cov[ρεt−1 + vt, εt−2] =

cov[ρ2εt−2 + ρvt−1 + vt, εt−2] = ρ2σ2
ε , etc. If we therefore write the covariance matrix of ε in the

form V[ε] = σ2
εΨ, so that all elements in the diagonal of Ψ are = 1, which makes Ψ at the same

time the correlation matrix, we get

(58.2.27) Ψ =




1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

ρ2 ρ 1 · · · ρn−3

.

..
.
..

.

..
. . .

.

..
ρn−1 ρn−2 ρn−3 · · · 1


 .

A process is covariance stationary if the expected value and the variance do not change over time,
and cov[εs, εt] depends only on s − t, not on s or t separately. Yes it is a covariance stationary
process. �

• d. 2 points Show that the matrix in equation (58.2.23) is the inverse of this
correlation matrix.

• e. 2 points Prove that the square matrix P satisfies V [Pε] = σ2
vI if and only

if P>P = (1 − ρ2)Ψ−1.

Answer. V[Pε] = σ2
vI; σ2

εPΨP> = σ2
vI; σ2

εΨ = σ2
vP−1(P>)−1 = σ2

v(P>P>)−1; 1/(1 −
ρ2)Ψ = (P>P )−1; (1 − ρ2)Ψ−1 = P>P . �

• f. 2 points Show that the P defined in (58.2.24) satisfies P >P = (1−ρ2)Ψ−1.

• g. 2 points Use P to show that det Ψ = (1 − ρ2)n−1.

Answer. Since P is lower diagonal, its determinant is the product of the diagonal elements,

which is
√

1 − ρ2. Since Ψ−1 = 1
1−ρ2 P>P , it follows det[Ψ−1] = 1/(1 − ρ2)n(det[P ])2 = 1/(1 −

ρ2)n−1 , therefore det Ψ = (1 − ρ2)n−1. �

• h. 3 points Show that the general formula for the log likelihood function (35.0.11)
reduces in our specific situation to
(58.2.28)

ln `(y;β, ρ, σ2
v) = constant− n

2
lnσ2

v+
1

2
ln(1−ρ2)− 1

2σ2
v

(
(1−ρ2)ε2

1+

n∑

t=2

(εt−ρεt−1)
2
)

where εt = yt − x>
t β. You will need such an expression if you have to program

the likelihood function in a programming language which does not understand matrix
operations. As a check on your arithmetic I want you to keep track of the value of
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the constant in this formula and report it. Hint: use P to evaluate the quadratic
form (y − Xβ)>Ψ−1(y − Xβ).

Answer. The constant is −n
2

ln 2π. The next two terms are −n
2

lnσ2
ε− 1

2
ln |det Ψ| = −n

2
lnσ2

v+
n
2

ln(1−ρ2)−n−1
2

ln(1−ρ2) = −n
2

lnσ2
v+ 1

2
ln(1−ρ2). And since Ψ−1 = 1

1−ρ2 P>P and σ2
ε(1−ρ2) =

σ2
v , the last terms coincide too, because (y − Xβ)>Ψ−1(y − Xβ) = (y − Xβ)>P>P (y − Xβ).

�

• i. 4 points Show that, if one concentrates out σ2
v, i.e., maximizes this likelihood

function with respect to σ2
v, taking all other parameters as given, one obtains

(58.2.29) ln `conc. = constant +
1

2
ln(1 − ρ2) − n

2
ln
(
(1 − ρ2)ε2

1 +
n∑

t=2

(εt − ρεt−1)
2
)

Again as a check on your arithmetic, I want you to give me a formula for the constant
in (58.2.29). If you did not figure out the constant in (58.2.28), you may give me
the constant in (58.2.29) as a function of the constant in (58.2.28).

Answer. It is better to do it from scratch than to use the general formula (35.0.17): First
order condition is

(58.2.30)
∂

∂σ2
v

ln `(y; β, ρ, σ2
v) = −n

2

1

σ2
v

+
(1 − ρ2)ε2

1 +
∑n

t=2
(εt − ρεt−1)2

2σ4
v

= 0

which gives

(58.2.31) σ2
v =

(1 − ρ2)ε2
1 +
∑n

t=2
(εt − ρεt−1)2

n

Plugging this into the likelihood function gives (58.2.29), but this time the constant is written out:

(58.2.32) ln `conc. = −n
2
− n

2
ln 2π+

n

2
lnn+

1

2
ln(1− ρ2)− n

2
ln

(
(1− ρ2)ε2

1 +

n∑

t=2

(εt − ρεt−1)
2
)

This is [BM78, (2) on p. 52]. �

• j. 3 points Is it possible to concentrate out further parameters from this likeli-
hood function? What numerical procedure would you use if you had to estimate this
model by maximum likelihood?

Answer. One can either concentrate out β or ρ but not both. The recommended procedure
is: set ρ = 0 and solve for β, then use this β to get the best ρ, and so on until it converges.
Computationally this is not much more expensive than COhrane-Orcutt, but it is much better since
it gives you the maximum l;ikelihood estimator, which has much better small sample properties.
This is recommended by [BM78]. �

As this Question shows, after concentrating out σ2
v one can either concentrate

out ρ or β but not both, and [BM78] propose to alternate these concentrations until
it converges.
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58.2.2. Prediction. To compute the BLUP for one step ahead simply predict
vn+1 by 0, i.e. ε∗n+1 = ρε̂n, hence

(58.2.33) y∗
n+1 = x>

n+1β̂ + ρε̂n;

for two steps ahead it is y∗
n+2 = x>

n+2β̂ + ρ2ε̂n, etc.

Problem 510. 3 points Use formula (27.3.6) to derive formula (58.2.33).

Answer. Write the model as

[
y

yn+1

]
=

[
X

x>
n+1

]
β +

[
ε

εn+1

]
;

[
ε

εn+1

]
∼
[
o

0

]
, σ2

ε

[
Ψ v

v> 1

]

where v> = [ρn, ρn−1, . . . , ρ2, ρ] and Ψ is as in (58.2.22). Equation (27.3.6) gives y∗
n+1 = x>

n+1β̂+

v>Ψ−1(y − Xβ̂). Using Ψ−1 from (58.2.23) one can show that

v>Ψ−1 =
1

1 − ρ2

[
ρn ρn−1 ρn−2 · · · ρ2 ρ

]




1 −ρ 0 · · · 0 0
−ρ 1 + ρ2 −ρ · · · 0 0
0 −ρ 1 + ρ2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 1 + ρ2 −ρ
0 0 0 · · · −ρ 1




=
[
0 0 0 · · · 0 ρ

]
.

From this (58.2.33) follows. �

58.2.3. Second-Order Autoregressive Disturbances.

Problem 511. If the error term is second order autoregressive, εt = α1εt−1 +
α2εt−2 + vt, with v ∼ (o, σ2

vI) (white noise), and the model is stationary, then show
that the error variance is

(58.2.34) σ2
ε =

1 − α2

(1 + α2)
(
(1 − α2)2 − α2

1

)σ2
v.
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• a. The following matrices are relevant for estimation:

A =




1 α1

1−α2

α2
1+α2−α2

2

1−α2

α1(α2
1+2α2−α2

2)
1−α2

α4
1+3α2

1α2+α
2
2(1−α2

1)−α3
2

1−α2
· · ·

α1

1−α2
1 α1

1−α2

α2
1+α2−α2

2

1−α2

α1(α2
1+2α2−α2

2)
1−α2

· · ·
α2

1+α2−α2
2

1−α2

α1

1−α2
1 α1

1−α2

α2
1+α2−α2

2

1−α2
· · ·

α1(α2
1+2α2−α2

2)
1−α2

α2
1+α2−α2

2

1−α2

α1

1−α2
1 α1

1−α2
· · ·

α4
1+3α2

1α2+α2
2(1−α2

1)−α3
2

1−α2

α1(α
2
1+2α2−α2

2)
1−α2

α2
1+α2−α2

2

1−α2

α1

1−α2
1 · · ·

...
...

...
...

...
. . .




;

(58.2.35)

B =




1 −α1 −α2 0 · · · 0 0
−α1 1 + α2

1 −α1 + α1α2 −α2 · · · 0 0
−α2 −α1 + α1α2 1 + α2

1 + α2
2 −α1 + α1α2 · · · 0 0

0 −α2 −α1 + α1α2 1 + α2
1 + α2

2 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 + α2
1 −α1

0 0 · · · −α1 1




;

(58.2.36)

C =




√
(1+α2)

(
(1−α2)2−α2

1

)
1−α2

0 0 0 · · · 0 0

−α1

√
1−α2

2

1−α2

√
1 − α2

2 0 0 · · · 0 0

−α2 −α1 1 0 · · · 0 0
0 −α2 −α1 1 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 0 0
. . .

. . . 1 0
0 0 0 0 · · · −α1 1




.

(58.2.37)

• b. 4 points Discuss how these matrices are mathematically related to each other
(perhaps one is the inverse of the other, etc.), and how they are related to the model
(could it be that one is the matrix of covariances between the error terms and the
explanatory variables?) A precise proof of your answer would imply tedious matrix
multiplications, but you should be able to give an answer simply by carefully looking
at the matrices.

Answer. A is the correlation matrix of the errors, i.e., σ2
εA = V[ε], B = σ2

v(V[ε])−1, and

C>C = B. �
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• c. 4 points Compute the determinants of these three matrices. (Again this is
easy using the structure of the matrices and their mathematical relation.) Why is
this determinant important for econometrics?

• d. 4 points In terms of these matrices, give the objective function (some matrix
weighted sum of squares) which the BLUE minimizes due to the Gauss-Markov theo-
rem, give the formula for the BLUE, and give the formula for the unbiased estimator
s2
v.

58.2.4. The Autoreg Procedure in SAS. This is about the “autoreg” pro-
cedure in the SAS ETS manual.

Model is y = Xβ + ε or yt = x>
t β + ε, n observations and k variables, with

εt = vt − α1εt−1 − · · · − αpεt−p where vt ∼ (0, σ2
v) independent of each other and of

εt−1, . . . , εt−p, and the process is stationary.
Yule-Walker Estimation: From the equations for εt follows

cov[εt, εt−1] = −α1 var[εt−1] − α2 cov[εt−2, εt−1] − · · · − αp cov[εt−p, εt−1]

(58.2.38)

cov[εt, εt−2] = −α1 cov[εt−1, εt−2] − α2 var[εt−2] − · · · − αp cov[εt−p, εt−2]

(58.2.39)

. . .

cov[εt, εt−p] = −α1 cov[εt−1, εt−p] − α2 cov[εt−2, εt−p] · · · − αp var[εt−p] − · · · − αp cov[εt−p, εt−2]

(58.2.40)

Then divide by var[εt] = var[εt−1] = · · · to get the autocorrelations ρj = corr[εt, εt−j ]:

(58.2.41)




ρ1

ρ2

ρ3

...
ρp




= −




1 ρ1 ρ2 · · · ρp−1

ρ1 1 ρ1 · · · ρp−2

ρ2 ρ1 1 · · · ρp−3

...
...

...
. . .

...
ρp−1 ρp−2 ρp−3 · · · 1







α1

α2

...
αp


 .

This can be used to get estimates of α1, . . . , αp from estimates of ρ1, . . . , ρp. How
to estimate cov[εt−i, εt−j ]? In first stage use OLS residuals, and take 1

m+j

∑
ε̂tε̂t−j

where m is the number of such products (there may be missing values). If there are
no missing values, then m+ j = n, and it is the same as multiple regression of ε̂ on
the p lagged values of ε̂.
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From estimates of α1, . . . , αp one can get estimates of Ψ, which is up to a scalar
factor the error covariance matrix.

(58.2.42) V [ε] = σ2Ψ = σ2




1 ρ1 ρ2 · · · ρn−1

ρ1 1 ρ1 · · · ρn−2

ρ2 ρ1 1 · · · ρn−3

...
...

...
. . .

...
ρn−1 ρn−2 ρn−3 · · · 1



.

The first p of these ρ’s can be obtained from the Yule-Walker equations; the other
ρ’s from the original difference equation: ρj = −α1ρj−1 − · · · − αpρj−p.

58.2.5. Estimation of the Autoregressive Parameter and Testing for
Zero Autoregression. If it were possible to observe the εt, one could regress εt
on εt−1 (lagged dependent variable, asymptotically efficient). Since the εt are un-

observed, regress ε̂t on ε̂t−1. The formula is ρ̂ =

∑
n

t=2
ε̂tε̂t−1∑

n

t=2
ε̂2

t−1

. Cochrane-Orcutt:

iterate until it converges. (But note that the term “Cochrane-Orcutt” means dif-
ferent things to different people, nice discussion in [JHG+88, p. 393].) Problem is
that ρ is underestimated. Maximum Likelihood is the preferred procedure here, and
[BM78] has an iterative procedure which leads to the MLE and which is no more
trouble than Cochrane-Orcutt.

Testing for ρ = 0; In the regression of ε̂t on ε̂t−1, the formula for the variance
(39.1.7) holds asymptotically, i.e., var[ρ̂] = σ2

v/E[x>x] where x>x =
∑n
t=2 ε̂2

t−1.

Asymptotically, x>x has expected value nσ2
ε = nσ2

v/(1 − ρ2). Asymptotially, there-

fore, var[ρ̂] = 1−ρ2
n . If ρ = 0, it is var[ρ̂] = 1/n; in this case, therefore,

√
nρ̂ has

asymptotic N(0, 1) distribution.
But the most often used statistic for autoregression is the Durbin-Watson.

58.2.6. The Durbin-Watson Test Statistic. The Durbin Watson test [DW50,
DW51, DW71] tests εt and εt−1 are correlated in the linear model y = Xβ + ε in
which the conditions for hypothesis testing are satisfied (either normal disturbances
or so many observations that the central limit theorem leads to normality), and in
which the errors are homoskedastic with variance σ2, and cov[εt−1, εt] = ρσ2 with
the same ρ for all t = 2, . . . , n.

The DW test does not test the higher autocorrelations. It was found to be
powerful if the overall process is an AR(1) process, but it cannot be powerful if the
autocorrelation is such that εt is not correlated with εt−1 but with higher lags. For
instance, for quarterly data, Wallis [Wal72] argued that one should expect εt to
be correlated with εt−4 and not with εt−1, and he modified the DW test for this
situation.
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The test statistic is:

(58.2.43) d =

∑n
t=2(ε̂t − ε̂t−1)

2

∑n
t=1 ε̂2

t

(where the residuals are taken from OLS without correction for autocorrelation).
This test statistic is a consistent estimator of 2 − 2ρ (but it has its particular form
so that the distribution can be calculated). The plim can be seen as follows:

(58.2.44) d =

∑n
t=2(ε̂

2
t − 2ε̂tε̂t−1 + ε̂2

t−1)∑n
t=1 ε̂2

t

=

∑n
t=2 ε̂2

t∑n
t=1 ε̂2

t

−2

∑n
t=2 ε̂tε̂t−1∑n
t=1 ε̂2

t

+

∑n
t=2 ε̂2

t−1∑n
t=1 ε̂2

t

.

For large n one can ignore that the sum in the numerator has one less element
than the one in the denominator. Therefore the first term converges towards 1,
the second towards 2 cov[εt, εt−1]/ var[εt] = 2ρ (note that, due to homoskedasticity,

var[εt] =
√

var[εt−1] var[εt] ), and the third term again towards 1. d is always
between 0 and 4, and is close to 2 if there is no autocorrelation, close to 0 for
positive autocorrelation, and close to 4 for negative autocorrelation.

d differs from many test statistics considered so far because its distribution
depends on the values taken by regressors X. It is a very special situation that the
distribution of the t statistic and F statistic do not depend on the X. Usually one
must expect that the values of X have an influence. Despite this dependence on X,
it is possible to give bounds for the critical values, which are tabulated as DL (lower
D) and DU (upper D). If the alternative hypothesis is positive autocorrelation,
one can reject the null hypothesis if d < DL for all possible configurations of the
regressors, cannot reject if d > DU , and otherwise the test is inconclusive, i.e., in
this case it depends on X whether to reject or not, and the computer is not taking
the trouble of checking which is the case.

The bounds that are usually published are calculated under the assumption that
the regression has a constant term, i.e., that there is a vector a so that Xa = ι.
Tables valid if there is no constant term are given in [Far80]. If these tables are
unavailable, [Kme86, p. 329/30] recommends to include the constant term into
the regression before running the test, so that the usual bounds can be used. But
[JHG+88, p. 399] says that the power of the DW test is low if there is no intercept.

On the other hand, [Kin81] has given sharper bounds which one can use if it is
known that the regression has a trend of seasonal dummies. The computer program
SHAZAM [Whi93] computes the exact confidence points using the available data.
An approximation to the exact critical values by Durbin and Watson themselves
[DW71] uses that affine combination of the upper bound which has the same mean
and variance as the exact test statistic. This is discussed in [Gre97, p. 593] and
Green says it is “quite accurate.”
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Distribution of d: The matrix version of (58.2.44) is
(58.2.45)

d =
ε̂>Aε̂

ε̂>ε̂
=

ε>MAMε

ε>Mε
for A =




1 −1 0 0 0 · · · 0
−1 2 −1 0 0 · · · 0
0 −1 2 −1 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 · · · −1 1



.

Since A is symmetric and MAM commutes with M , matrix algebra tells us, see
[Rao73, p. 41], that an orthogonal H exists (i.e., HH> = I) which simultaneously

diagonalizes numerator and denominator: H>MAMH has the eigenvalues vt of
MA in the diagonal (only n− k of which are nonzero), and HMH has k zeros and
n− k ones in the diagonal. Then under the null hypothesis,
(58.2.46)

z = H>ε ∼ N(o, σ2I), ε = Hz, and d =
ε>MAMε

ε>Mε
=

z>H>MAMHz

z>HMHz
=

∑
z2
t vt∑
z2
t

,

which is a tabulated distribution. H depends on X, but one can give limits for the
eigenvalues, which give the upper and lower limits of the D-W test. Some computer
programs (e.g., Shazam) calculate the actual significance points on basis of the given
X-matrix.

Robustness: D-W will detect more than just first order autoregression [Bla73],
but not all kinds of serial correlation, e.g. not very powerful for 2nd order autore-
gression.

If lagged dependent variables and autoregression, then OLS is no longer con-
sistent, therefore also d no longer a consistent estimate of 2 − 2ρ but is closer to
2 than it should be! Then the D-W has low power, accepts more often than it
should. If lagged dependent variable, use Durbin’s h. This is an intuitive formula,
see [JHG+88, p. 401]. It cannot always be calculated, because of the square root
which may become negative, therefore an asymptotically equivalent test is Durbin’s
m-test, which implies: get the OLS residuals, and regress them on all explanatory
variables and the lagged residuals, and see if the coefficient on the lagged residuals is
significant. This can be extended to higher order autoregression by including higher
lags of the residuals [Kme86, p. 333]

58.3. Autoregressive Conditional Heteroskedasticity (ARCH)

An ARCH process is an error process which has covariance matrix σ2I but where
the errors are not independent. Question 150 gave us an example how this can be
possible; the “birthday cake” distribution is a joint distribution of two variables
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which have zero correlation, but which are not independent. We also saw that the
conditional variance of the second variable depended on the outcome of the first.

Problem 512. The simplest ARCH process is

(58.3.1) εt = ut

√
α0 + α1ε

2
t−1

where u ∼ (o, I) is a white noise process independent of the pre-sample disturbance
ε0, and α0 > 0 and 0 < α1 < 1 are two constants.

• a. 2 points Show that ut is independent of all εs with 0 ≤ s < t. (Hint: use
induction).

Answer. By assumption, the statement is true for s = 0. Now assume it is true for s − 1,
i.e., ut is independent of εs−1. Since s < t, therefore in particular s 6= t, ut is also independent of
us. Therefore ut is independent of any function of εs−1 and us, in particular, it is independent of

us
√
α0 + α1ε2

s−1 = εs. �

• b. 2 points Show that E[εt|εt−1] = 0.

Answer. From (58.3.1) follows E[εt|εt−1] =
√
α0 + α1ε2

t−1E[ut|εt−1] =
√
α0 + α1ε2

t−1 E[ut] =

0. �

• c. 1 point Show that the unconditional E[εt] = 0.

Answer. Use law of iterated expectations E[εt] = E
[
E[εt|εt−1]

]
= E[0] = 0. �

• d. 1 point Show that for 0 ≤ s < t, E[εt|εt−1, εs] = 0.

Answer. This is exactly the same proof as in Part b. From (58.3.1) follows E[εt|εt−1, εs] =√
α0 + α1ε2

t−1E[ut|εt−1, εs] =
√
α0 + α1ε2

t−1 E[ut] = 0. �

• e. Show that in general E[εt|εs] = 0 for all s < t. Hint: You are allowed to
use, without proof, the following extension of the law of iterated expectations:

(58.3.2) E
[
E[x|y, z]

∣∣y
]

= E[x|y].

Answer. By (58.3.2), E[εt|εs] = E
[
E[εt|εt−1, εs]

∣∣εs
]

= E[0|εs] = 0. �

• f. Show that cov[εt, εs] = 0 for all s < t. Hint: Use Question 145.

Answer. cov[εs, εt] = cov
[
εs,E[εt|εs]

]
= 0 �

• g. 3 points Show that var[εt] = α0 + α1 var[εt−1]. Hint: Use equation (8.6.6).

Answer.

(58.3.3) var[εt] = var
[
E[εt|εt−1]

]
+ E
[
var[εt|εt−1]

]
= E
[
var[εt|εt−1]

]
=

= E
[
(α0 + α1ε2

t−1) var[ut]
]

= α0 + α1 E[ε2
t−1] = α0 + α1 var[εt−1]

�
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• h. 2 points Show that var[εt] = (1 − αt1)
α0

1−α1
+ αt1 var[ε0], in other words, the

process converges towards a stationary process with variance α0

1−α1
.

Answer. By induction: assume it is true for t − 1, i.e., var[εt−1] = (1 − αt−1
1 ) α0

1−α1
+

αt−1
1 var[ε0]. Then, by g,

var[εt] = α0 + α1(1 − αt−1
1 )

α0

1 − α1
+ αt1 var[ε0](58.3.4)

= (1 − α1)
α0

1 − α1
+ (α1 − αt1)

α0

1 − α1
+ αt1 var[ε0](58.3.5)

= (1 − αt1)
α0

1 − α1
+ αt1 var[ε0].(58.3.6)

�

• i. 2 points Which kinds of economic timeseries are often modeled by ARCH
processes?

Answer. Processes with periods of higher turbulence wafting through randomly. �

Since the observations are no longer independent, the likelihood function is no
longer the product of the one-observation likelihood functions, but the likelihood
function conditional on the pre-sample values y0 and x0 can be written down easily:
(58.3.7)

log `(y;α1, α2,β) = −n
2

log 2π−
n∑

t=1

log(α0+α1(yt−1−x>
t−1β)2)−1

2

n∑

t=1

(yt − x>
t β)2

α0 + α1(yt−1 − x>
t−1β)2

The first-order conditions are complicated, but this can be maximized by numerical
methods.

There is also a simpler feasible four-step estimation procedure available, see
[Gre97, p. 571]. A good discussion of the ARCH processes is in [End95, pp. 139–
165].



CHAPTER 59

Generalized Method of Moments Estimators

This follows mainly [DM93, Chapter 17]. A good and accessible treatment
is [M9́9]. The textbook [Hay00] uses GMM as the organizing principle for all
estimation methods except maximum likelihood.

A moment µ of a random variable y is the expected value of some function of y.
Such a moment is therefore defined by the equation

(59.0.8) E[g(y) − µ] = 0.

The same parameter-defining function g(y)− µ defines the method of moments esti-
mator µ̂ of µ if one replaces the expected value in (59.0.8) with the sample mean of
the elements of an observation vector y consisting of independent observations of y.
In other words, µ̂(y) is that value which satisfies 1

n

∑n
i=1(g(yi) − µ̂) = 0.

The generalized method of moments estimator extends this rule in several re-
spects: the yi no longer have to be i.i.d., the parameter-defining equations may
be a system of equations defining more than one paramter at a time, there may
be more parameter-defining functions than parameters (overidentification), and not
only unconditional but also conditional moments are considered.

Under this definition, the OLS estimator is a GMM estimator. To show this,
we will write the linear model y = Xβ + ε row by row as yi = x>

i β + εi, where
xi is, as in various earlier cases, the ith row of X written as a column vector. The
basic property which makes least squares consistent is that the following conditional
expectation is zero:

(59.0.9) E[yi − x>
i β|xi] = 0.

This is more information than just knowing that the unconditional expectation is
zero. How can this additional information be used to define an estimator? From
(59.0.9) follows that the unconditional expectation of the product

(59.0.10) E [xi(yi − x>
i β)] = o.
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Replacing the expected value by the sample mean gives

(59.0.11)
1

n

n∑

i=1

xi(yi − x>
i β̂) = o

which can also be written as

(59.0.12)
1

n

[
x1 · · · xn

]



y1 − x>
1 β̂

...

yn − x>
n β̂


 ≡ 1

n
X>(y − Xβ̂) = o.

These are exactly the OLS Normal Equations. This shows that OLS in the linear
model is a GMM estimator.

Note that the rows of the X-matrix play two different roles in this derivation:
they appear in the equation yi = x>

i β + εi, and they are also the information set
based on which the conditional expectation in (59.0.9) is formed. If this latter role
is assumed by the rows of a different matrix of observations W then the GMM
estimator becomes the Instrumental Variables Estimator.

Most maximum likelihood estimators are also GMM estimators. As long as the
maxima are at the interior of the parameter region, the ML estimators solve the first
order conditions, i.e., the Jacobian of the log likelihood function evaluated at these
estimators is zero. But it follows from the theory of maximum likelihood estimation
that the expected value of the Jacobian of the log likelihood function is zero.

Here are the general definitions and theorems, and as example their applications
to the textbook example of the Gamma distribution in [Gre97, p. 518] and the
Instrumental Variables estimator.

y is a vector of n observations created by a Data Generating Process (DGP)
µ ∈ M. θ is a k-vector of nonrandom parameters. A parameter-defining function
F (y,θ) is a n× ` matrix function with the following properties (a), (b), and (c):

(a) the ith row only depends on the ith observation yi, i.e.,

(59.0.13) F (y,θ) =




f>
1 (y1,θ)

...

f>
n (yn,θ)




Sometimes the f i have identical functional form and only differ by the values of some
exogenous variables, i.e., f i(yi,θ) = g(yi, xi,θ), but sometimes they have genuinely
different functional forms.

In the Gamma-function example M is the set of all Gamma distributions, θ =[
r λ

]>
consists of the two parameters of the Gamma distribution, ` = k = 2, and
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the parameter-defining function has the rows

(59.0.14) f i(yi,θ) =

[
yi − r

λ
1
yi

− λ
r−1

]
so that F (yi,θ) =




y1 − r
λ

1
y1

− λ
r−1

...
...

yn − r
λ

1
yn

− λ
r−1


 .

In the IV case, θ = β and ` is the number of instruments. If we split X and W

into their rows

(59.0.15) X =




x>
1
...

x>
n


 and W =




w>
1
...

w>
n




then f i(yi,β) = wi(yi − x>
i β). This gives

(59.0.16) F (y,β) =




(y1 − x>
1 β)w>

1
...

(yn − x>
nβ)w>

n


 = diag(y − Xβ)W.

(b) The vector functions f i(yi,θ) must be such that the true value of the pa-
rameter vector θµ satisfies

(59.0.17) E [f i(yi,θµ)] = o

for all i, while any other parameter vector θ 6= θµ gives E [f i(yi,θ)] 6= o.
In the Gamma example (59.0.17) follows from the fact that the moments of the

Gamma distribution are E[y] = r
λ and E[ 1

yi
] = λ

r−1 . It is also easy to see that r and

λ are characterized by these two relations; given E[y] = µ and E[ 1
yi

] = ν one can

solve for r = µν
µν−1 and λ = ν

µν−1 .

In the IV model, (59.0.17) is satisfied if the εi have zero expectation conditionally
on wi, and uniqueness is condition (52.0.3) requiring that plim 1

nW>
n Xn exists, is

nonrandom and has full column rank. (In the 781 handout Winter 1998, (52.0.3)
was equation (246) on p. 154).

Next we need a recipe how to construct an estimator from this parameter-defining
function. Let us first discuss the case k = ` (exact identification). The GMM

estimator θ̂ defined by F satisfies

(59.0.18)
1

n
F>(y, θ̂)ι = o

which can also be written in the form

(59.0.19)
1

n

n∑

i=1

f i(yi, θ̂) = o.
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Assumption (c) for a parameter-defining function is that there is only one θ̂ satisfying
(59.0.18).

For IV,

(59.0.20) F>(y, β̃)ι = W> diag(y − Xβ̃)ι = W>(y − Xβ̃)

If there are as many instruments as explanatory variables, setting this zero gives the
normal equation for the simple IV estimator W>(y − Xβ̃) = o.

In the case ` > k, (59.0.17) still holds, but the system of equations (59.0.18) no
longer has a solution: there are ` > k relationships for the k parameters. In order
to handle this situation, we need to specify what qualifies as a weighting matrix.
The symmetric positive definite ` × ` matrix A(y) is a weighting matrix if it has
a nonrandom positive definite plim, called A0(y) = plimn→∞ A(y). Instead of

(59.0.18), now the following equation serves to define θ̂:

(59.0.21) θ̂ = argmin ι>F (y, θ̂)A(y)F >(y, θ̂)ι

In this case, condition (c) for a parameter-defining equation reads that there is only

one θ̂ which minimizes this criterion function.
For IV, A(y) does not depend on y but is 1

n (W>W)−1. Therefore A0 =

plim( 1
nW>W)−1, and (59.0.21) becomes β̃ = argmin(y−X>β)>W(W>W)−1W>(y−

X>β), which is indeed the quadratic form minimized by the generalkized instrumen-
tal variables estimator.

In order to convert the Gamma-function example into an overidentified system,
we add a third relation:

(59.0.22) F (yi,θ) =




y1 − r
λ

1
y1

− λ
r−1 y2

1 − r(r+1)
λ2

...
...

...

yn − r
λ

1
yn

− λ
r−1 y2

n − r(r+1)
λ2


 .

In this case here is possible to compute the asymptotic covariance; but in real-life
situations this covariance matrix is estimated using a preliminary consistent estima-
tor of the parameters, as [Gre97] does it. Most GMM estimators depend on such a
consistent pre-estimator.

The GMM estimator θ̂ defined in this way is a particular kind of a M -estimator,
and many of its properties follow from the general theory of M -estimators. We need
some more definitions. Define the plim of the Jacobian of the parameter-defining
mapping D = plim 1

n∂F>ι/∂θ> and the plim of the covariance matrix of 1√
n
F>ι is

Ψ = plim 1
nF>F .
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For IV, D = plim 1
n
∂W>(y−Xβ)

∂β> = − plimn→∞
1
nW>X, and

Ψ = plim
( 1

n
W> diag(y − Xβ) diag(y − Xβ)W

)
= plim

1

n
W>ΩΩΩW

where ΩΩΩ is the diagonal matrix with typical element E[(yi − x>
i β)2], i.e., ΩΩΩ = V [ε].

With this notation the theory of M -estimators gives us the following result: The
asymptotic MSE-matrix of the GMM is

(59.0.23) (D>A0D)−1D>A0ΨA0D(D>A0D)−1

This gives the following expression for the plim of
√
n times the sampling error

of the IV estimator:
(59.0.24)

plim(
1

n
X>W(

1

n
W>W)−1 1

n
W>X)−1 1

n
X>W(

1

n
W>W)−1 1

n
W>ΩΩΩW(

1

n
W>W)−1 1

n
W>X(

1

n
X>W(

1

n
W>W)−1 1

n
W>X)−1 =

(59.0.25)

= plim n(X>W(W>W)−1W>X)−1X>W(W>W)−1W>ΩΩΩW(W>W)−1W>X(X>W(W>W)−1W>X)−1

The asymptotic MSE matrix can be obtained fom this by dividing by n. An estimate
of the asymptotic covariance matrix is therefore
(59.0.26)
(X>W(W>W)−1W>X)−1X>W(W>W)−1W>ΩΩΩW(W>W)−1W>X(X>W(W>W)−1W>X)−1

This is [DM93, (17.36) on p. 596].
The best choice of such a weighting matrix is A0 = Ψ−1, in which case (59.0.23)

simplifies to (D>Ψ−1D)−1 = (D>A0D)−1.
The criterion function which the optimal IV estimator must minimize, in the

presence of unknown heteroskedasticity, is therefore

(59.0.27) (y − Xβ)>W(W>ΩΩΩW)−1W>(y − Xβ)

The first-order conditions are

(59.0.28) X>W(W>ΩΩΩW)−1W>(y − Xβ) = o

and the optimally weighted IVA is

(59.0.29) β̃ = (X>W(W>ΩΩΩW)−1W>X)−1X>W(W>ΩΩΩW)−1W>y

In this, ΩΩΩ can be replaced by an inconsistent estimate, for instance the diagonal
matrix with the squared 2SLS residuals in the diagonal, this is what [DM93] refer
to as H2SLS. In the simple IV case, this estimator is the simple IV estimator again.
In other words, we need more than the minimum number of instruments to be able
to take advantage of the estimated heteroskedasticity. [Cra83] proposes in the OLS
case, i.e., W = X, to use the squares of the regressors etc. as additional instruments.
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To show this optimality take some square nonsingular Q with Ψ = QQ> and
define P = Q−1. Then

(59.0.30) (D>A0D)−1D>A0ΨA0D(D>A0D)−1 − (D>A0D)−1 =

(59.0.31) = (D>A0D)−1D>A0

(
Ψ − D(D>A0D)−1D>

)
A0D(D>A0D)−1

Now the middle matrix can be written as P
(
I − QD(D>Q>QD)−1D>Q>

)
P>

which is nonnegative definite because the matrix in the middle is idempotent.
The advantage of the GMM is that it is valid for many different DGP’s. In this

respect it is the opposite of the maximum likelihood estimator, which needs a very
specific DGP. The more broadly the DGP can be defined, the better the chances
are that the GMM etimator is efficient, i.e., in large samples as good as maximum
likelihood.
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Bootstrap Estimators

The bootstrap method is an important general estimation principle, which can
serve as as an alternative to reliance on the asymptotic properties of an estimator.
Assume you have a n × k data matrix X each row of which is an independent
observation from the same unknown probability distribution, characterized by the
cumulative distribution function F . Using this data set you want to draw conclusions
about the distribution of some statistic θ(x) where x ∼ F .

The “bootstrap” estimation principle is very simple: as your estimate of the
distribution of x you use Fn, the empirical distribution of the given sample X, i.e.
that probability distribution which assigns probability mass 1/n to each of the k-
dimensional observation points xt (or, if the observation xt occured more than once,
say j times, then you assign the probability mass j/n to this point). This empirical
distribution function has been called the nonparametric maximum likelihood esti-
mate of F . And your estimate of the distribution of θ(x) is that distribution which
derives from this empirical distribution function. Just like the maximum likelihood
principle, this principle is deceptively simple but has some deep probability theoretic
foundations.

In simple cases, this is a widely used principle; the sample mean, for instance, is
the expected value of the empirical distribution, the same is true about the sample
variance (divisor is n) or sample median etc. But as soon as θ becomes a little more
complicated, and one wants more complex measures of its distribution, such as the
standard deviation of a complicated function of x, or some confidence intervals, an
analytical expression for this bootstrap estimate is prohibitively complex.

But with the availability of modern computing power, an alternative to the
analytical evaluation is feasible: draw a large random sample from the empirical
distribution, evaluate θ(x) for each x in this artificially generated random sample,
and use these datapoints to construct the distribution function of θ(x). A random
sample from the empirical distribution is merely a random drawing from the given
values with replacement. This requires computing power, usually one has to re-
sample between 1,000 and 10,000 times to get accurate results, but one does not
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need to do complicated math, and these so-called nonparametric bootstrap results
are very close to the theoretical results wherever those are available.

So far we have been discussing the situation that all observations come from
the same population. In the regression context this is not the case. In the OLS
model with i.i.d. disturbances, the observations of the independent variable yt have
different expected values, i.e., they do not come from the same population. On the
other hand, the disturbances come from the same population. Unfortunately, they
are not observed, but it turns out that one can successfully apply bootstrap methods
here by first computing the OLS residuals and then drawing from these residuals to
get pseudo-datapoints and to run the regression on those. This is a surprising and
strong result; but one has to be careful here that the OLS model is correctly specified.
For instance, if there is heteroskedasticity which is not corrected for, then the re-
sampling would no longer be uniform, and the bootstrap least squares estimates are
inconsistent.

The jackknife is a much more complicated concept; it was originally invented
and is often still introduced as a device to reduce bias, but [Efr82, p. 10] claims that
this motivation is mistaken. It is an alternative to the bootstrap, in which random
sampling is replaced by a symmetric systematic “sampling” of datasets which are by 1
observation smaller than the original one: namely, n drawings with one observation
left out in each. In certain situations this is as good as bootstrapping, but much
cheaper. I third concept is cross-validation.

There is a new book out, [ET93], for which the authors also have written boot-
strap and jackknife functions for Splus, to be found if one does attach("/home/econ/ehrbar/splus/boot/.Data")



CHAPTER 61

Random Coefficients

The random coefficient model first developed in [HH68] cannot be written in
the form y = Xβ+ε because each observation has a different β. Therefore we have
to write it observation by observation: yt = xt

>βt (no separate disturbance term),
where βt = β̄ + vt with vt ∼ (o, τ2ΣΣΣ). For s 6= t, vs and vt are uncorrelated. By
re-grouping terms one gets yt = xt

>β̄+xt
>vt = xt

>β̄+εt where εt = xt
>vt, hence

var[εt] = τ2xt
>ΣΣΣxt, and for s 6= t, εs and εt are uncorrelated.

In tiles, this model is
(61.0.32)

y

t

=

X k B

∆

t

;

k B

t

=

k β̄

ι

t

+

k V

t

Estimation under the assumption ΣΣΣ is known: To estimate β̄ one can use the het-

eroskedastic model with error variances τ 2xt
>ΣΣΣxt, call the resulting estimate ˆ̄β. The

formula for the best linear unbiased predictor of βt itself can be derived (heuristi-
cally) as follows: Assume for a moment that β̄ is known: then the model can be
written as yt − xt

>β̄ = xt
>vt. Then we can use the formula for the Best Linear

Predictor, equation (??), applied to the situation

(61.0.33)

[
xt

>vt
vt

]
∼
[
0
o

]
, τ2

[
xt

>ΣΣΣxt xt
>ΣΣΣ

ΣΣΣxt ΣΣΣ

]

where xt
>vt is observed, its value is yt − xt

>β̄, but vt is not. Note that here we
predict a whole vector on the basis of one linear combination of its elements only.
This predictor is

(61.0.34) v∗
t = ΣΣΣxt(xt

>ΣΣΣxt)
−1(yt − xt

>β̄)

If one adds β̄ to both sides, one obtains

(61.0.35) β∗
t = β̄ + ΣΣΣxt(xt

>ΣΣΣxt)
−1(yt − xt

>β̄)
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If one now replaces β̄ by ˆ̄β, one obtains the formula for the predictor given in
[JHG+88, p. 438]:

(61.0.36) β∗
t = ˆ̄β + ΣΣΣxt(xt

>ΣΣΣxt)
−1(yt − xt

> ˆ̄β).

Usually, of course, ΣΣΣ is unknown. But if the number of observations is large
enough, one can estimate the elements of the covariance matrix τ 2ΣΣΣ. This is the fact
which gives relevance to this model. Write τ 2xt

>ΣΣΣxt = τ2 trxt
>ΣΣΣxt = τ2 trxtxt

>ΣΣΣ =
z>
t α, where zt is the vector containing the unique elements of the symmetric matrix

xtxt
> with those elements not located on the diagonal multiplied by the factor 2,

since they occur twice in the matrix, and α contains the corresponding unique ele-
ments of τ2ΣΣΣ (but no factors 2 here). For instance, if there are three variables, then
τ2xt

>ΣΣΣxt = x2
t1τ11 +x2

t2τ22 +x2
t3τ33 +2xt1xt2τ12 +2xt1xt3τ13 +2xt2xt3τ23, where τij

are the elements of τ2ΣΣΣ. Therefore zt consists of x2
t1, x

2
t2, x

2
t3, 2xt1xt2, 2xt1xt3, 2xt2xt3,

and α> = [τ11, τ22, τ33, τ12, τ13, τ23]. Then construct the matrix Z which has as its
tth row the vector z>

t ; it follows V[ε] = diag(γ) where γ = Zα.

Using this notation and defining, as usual, M = I − X(X>X)−1X>, and
writing mt for the tth column vector of M , and furthermore writing Q for the
matrix whose elements are the squares of the elements of M , and writing δt for the
vector that has 1 in the tth place and 0 elsewhere, one can derive:

E[ε̂2
t ] = E[(δ>

t ε̂)2](61.0.37)

= E[ε̂>δtδ
>
t ε̂](61.0.38)

= E[ε>Mδtδ
>
t Mε](61.0.39)

= E[tr Mδtδ
>
t Mεε>](61.0.40)

= tr Mδtδ
>
t M diag(γ) = trmtm

> diag(γ)(61.0.41)

= m>
t diag(γ)mt = mt1γ1m1t + · · · +mtnγnmnt(61.0.42)

= q>
t γ = q>

t Zα(61.0.43)

E[ε̂2] = QZα,(61.0.44)

where α is as above. This allows one to get an estimate of α by regressing the
vector [ε̂2

1, . . . , ε̂
2
n]

> on QZ, and then to use Zα to get an estimate of the variances
τ2x>ΣΣΣx. Unfortunately, the estimated covariance matrix one gets in this way may
not be nonnegative definite.
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[Gre97, p. 669–674] brings this model in the following form:
(61.0.45)

t Y

n

=

t X k B

∆

n

+

t E

n

;

k B

t

=

k β̄

ι

t

+

k V

t

Problem 513. Let yi be the ith column of Y . The random coefficients model
as discussed in [Gre97, p. 669–674] specifies yi = Xiβi + εi with εi ∼ (o, σ2

i I)
and εi uncorrelated with εj for i 6= j. Furthermore also βi is random, write it as
βi = β + vi, with vi ∼ (o, τ2Γ) with a positive definite Γ, and again vi uncorrelated
with vj for i 6= j. Furthermore, all vi are uncorrelated with all εj .

• a. 4 points In this model the disturbance term is really wi = εi + Xvi, which
has covariance matrix V [wi] = σ2

i I + τ2X iΓX>
i . As a preliminary calculation for

the next part of the question show that

(61.0.46) X>
i (V [wi])

−1 =
1

τ2
Γ−1(X>

i Xi + κ2
iΓ

−1)−1X>
i

where κ2
i = σ2

i /τ
2. You are allowed to use, without proof, formula (A.8.13), which

reads for inverses, not generalized inverses:

(61.0.47)
(
A + BD−1C

)−1

= A−1 − A−1B(D + CA−1B)−1CA−1

Answer. In (61.0.47) set A = σ2
i I, B = Xi, D−1 = τ2Γ, and C = X>

i to get

(61.0.48) (V[wi])
−1 =

1

σ2
i

(I − Xi(X
>
i Xi + κ2

iΓ
−1)−1X>

i )

Premultiply this by X>
i and add and subtract the same term:

(61.0.49) X>
i (V[wi])

−1 =
1

σ2
i

X>
i − 1

σ2
i

(X>
i Xi + κ2

iΓ
−1 − κ2

iΓ
−1)(X>

i Xi + κ2
iΓ

−1)−1X>
i

(61.0.50)

=
1

σ2
i

X>
i − 1

σ2
i

X>
i +

1

σ2
i

κ2
iΓ

−1(X>
i Xi + κ2

iΓ
−1)−1X>

i =
1

τ2
Γ−1(X>

i Xi + κ2
iΓ

−1)−1X>
i .

�

• b. 2 points From (61.0.46) derive:

(61.0.51)
(
X>
i (V [wi])

−1Xi

)−1
= σ2

i (X
>
i Xi)

−1 + τ2Γ

Answer. From (61.0.46) follows

(61.0.52) X>
i (V[wi])

−1Xi =
1

τ2
Γ−1(X>

i Xi + κ2
iΓ

−1)−1X>
i Xi
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This is the product of three matrices each of which has an inverse:
(61.0.53)(
X>
i (V [wi])

−1Xi

)−1
= τ2(X>

i Xi)
−1(X>

i Xi+κ
2
iΓ

−1)Γ = (τ2I+σ2
i (X

>
i Xi)

−1Γ−1)Γ = τ2Γ+σ2
i (X

>
i Xi)

−1.

�

• c. 2 points Show that from (61.0.46) also follows that The GLS of each column

of Y separately is the OLS β̂i = (X>
i Xi)

−1X>
i yi.

• d. 2 points Show that V[β̂i] = σ2
i (X

>
i Xi)

−1 + τ2Γ.

Answer. Since V[yi] = σ2
i I+τ2XiΓX>

i , it follows V[β̂i] = σ2
i (X

>
i Xi)−1+τ2(X>

i Xi)−1X>
i XiΓX>

i Xi(X
>
i Xi)−1 =

as postulated. �

• e. 3 points [Gre97, p. 670] describes a procedure how to estimate the covariance
matrices if they are unknown. Explain this procedure clearly in your own words, and
spell out the conditions under which it is a consistent estimate.

Answer. If Γ is unknown, it is possible to get it from the sample covariance matrix of
the group-specific OLS estimates, as long as the σ2

i and the Xi are such that asymptotically
1

n−1

∑
(β̂i − ¯̂

β)(β̂i − ¯̂
β)> is the same as 1

n

∑
(β̂i −β)(β̂i −β)> which again is asymptotically the

same as
∑

1
n V[β̂i]. We also need that asymptotically

∑
1
n

s2i (X
>
i Xi)

−1 =
∑

1
n
σ2
i (X

>
i Xi)

−1. If

these substitutions can be made, then plim 1
n−1

∑
(β̂i − ¯̂

β)(β̂i − ¯̂
β)> −

∑
1
n
σ2
i (X

>
i Xi)−1 = τ2Γ,

since
∑

1
n V[β̂i] = τ2Γ +

∑
1
n
σ2
i (X

>
i Xi)−1. This is [Gre97, (15-29) on p. 670]. �

Problem 514. 5 points Describe in words how the “Random Coefficient Model”
differs from an ordinary regression model, how it can be estimated, and describe
situations in which it may be appropriate. Use your own words instead of excerpting
the notes, don’t give unnecessary detail but give an overview which will allow one to
decide whether this is a good model for a given situation.

Answer. If ΣΣΣ is known, estimation proceeds in two steps: first estimate β̄ by a heteroskedastic
GLS model, and then predict, or better retrodict, the actual value taken by the βt by the usual
linear prediction formulas. But the most important aspect of the model is that it is possible to
estimate ΣΣΣ if it is not known! This is possible because each vt imposes a different but known pattern
of heteroskedasticity on the error terms, it so to say leaves its footprints, and if one has enough
observations, it is possible to reconstruct the covariance matrix from these footprints. �

Problem 515. 4 points The specification is

(61.0.54) yt = α+ βtxt + γx2
t

(no separate disturbance term), where α and γ are constants, and βt is the tth element
of a random vector β ∼ (ιµ, τ 2I). Explain how you would estimate α, γ, µ, and τ 2.

Answer. Set v = β − ιµ; it is v ∼ (o, τ2I) and one gets

(61.0.55) yt = α+ µxt + γx2
t + vtxt
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This is regression with a heteroskedastic disturbance term. Therefore one has to specify weights=1/x2
t ,

if one does that, one gets

(61.0.56)
yt

xt
=

α

xt
+ µ+ γxt + vt

the coefficient estimates are the obvious ones, and the variance estimate in this regression is an
unbiased estimate of τ2. �



CHAPTER 62

Multivariate Regression

62.1. Multivariate Econometric Models: A Classification

If the dependent variable Y is a matrix, then there are three basic models:
The simplest model is the multivariate regression model, in which all columns of

Y have the same explanatory variables but different regression coefficients.

(62.1.1)

t Y

p

=

t X k B

p

+

t E

p

The most common application of these kinds of models are Vector Autoregressive
Time Series models. If one adds the requirements that all coefficient vectors satisfy
the same kind of linear constraint, one gets a model which is sometimes called a
growth curve models. These models will be discussed in the remainder of this chapter.

In a second basic model, the explanatory variables are different, but the coeffi-
cient vector is the same. In tiles:

(62.1.2)

t Y

p

=

t X k β

p

+

t E

p

These models are used for pooling cross-sectional and timeseries data. They will be
discussed in chapter 64.

In the third basic model, both explanatory variables and coefficient vectors are
different.

(62.1.3)

t Y

p

=

t X k B

∆

p

+

t E

p
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These models are known under the name “seemingly unrelated” or “disturbance
related” regression models. They will be discussed in chapter 65.

After this, chapter 66 will discuss “Simultaneous Equations Systems,” in which
the dependent variable in one equation may be the explanatory variable in another
equation.

62.2. Multivariate Regression with Equal Regressors

The multivariate regression model with equal regressors reads

(62.2.1) Y = XB + E

where we make the following assumptions: X is nonrandom and observed and Y

is random and observed, B is nonrandom and not observed. E is random and not
observed, but we know E [E] = O and the rows of E are independent drawings from
the same (o,ΣΣΣ) distribution with an unknown positive definite ΣΣΣ.

This model has applications for Vector Autoregressive Time Series and Multi-
variate Analysis of Variance (MANOVA).

The usual estimator of B in this model can be introduced by three properties: a
least squares property, a BLUE property, and the maximum likelihood property (un-
der the assumption of normality). In the univariate case, the least squares property
is a scalar minimization, while the BLUE property involves matrix minimization. In
the present case, the least squares property becomes a matrix minimization property,
the BLUE property involves arrays of rank 4, and the maximum likelihood property
is scalar maximization. In the univariate case, the scalar parameter σ2 could be
estimated alongside the linear estimator of β, and now the whole covariance matrix
ΣΣΣ can.

62.2.1. Least Squares Property. The least squares principle can be applied
here in the following form: given a matrix of observations Y , estimate B by that

value B̂ for which

B = B̂ minimizes (Y − XB)>(Y − XB)(62.2.2)

in the matrix sense, i.e., (Y − XB̂)>(Y − XB̂) is by a nnd matrix smaller than any

other (Y − XB)>(Y − XB). And an unbiased estimator of ΣΣΣ is Σ̂ = 1
n−k (Y −

XB̂)>(Y − XB̂).

Any B̂ which satisfies the normal equation

(62.2.3) X>XB̂ = X>Y

is a solution. There is always at least one such solution, and if X has full rank, then
the solution is uniquely determined.
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Proof: This is Problem 232. Due to the normal equations, the cross product
disappears:

(Y − XB)>(Y − XB) = (Y − XB̂ + XB̂ − XB)>(Y − XB̂ + XB̂ − XB)

= (Y − XB̂)>(Y − XB̂) + (XB̂ − XB)>(XB̂ − XB)(62.2.4)

Note that the normal equation (62.2.3) simply reduces to the OLS normal equation
for each column βi of B, with the corresponding column yi of Y as dependent
variable. In other words, for the estimation of βi, only the ith column yi is used.

62.2.2. BLUE. To show that B̂ is the BLUE, write the equation Y = XB +E

in vectorized form, using (B.5.19), as

vec(Y) = (I ⊗ X) vec(B) + vec(E)(62.2.5)

Since V [vec(E)] = ΣΣΣ ⊗ I , the GLS estimate is, according to (26.0.2),

vec(B̂) =
(
(I ⊗ X)>(ΣΣΣ ⊗ I)−1(I ⊗ X)

)−1

(I ⊗ X)>(ΣΣΣ ⊗ I)−1 vec(Y)(62.2.6)

=
(
(I ⊗ X>)(ΣΣΣ−1 ⊗ I)(I ⊗ X)

)−1

(I ⊗ X>)(ΣΣΣ−1 ⊗ I) vec(Y)(62.2.7)

=
(
ΣΣΣ−1 ⊗ X>X

)−1

(ΣΣΣ−1 ⊗ X>) vec(Y)(62.2.8)

=
(
I ⊗ (X>X)−1X>

)
vec(Y)(62.2.9)

and applying (B.5.19) again, this is equivalent to

B̂ = (X>X)−1X>Y .(62.2.10)

From this vectorization one can also derive the dispersion matrix V [vec(B̂)] = ΣΣΣ ⊗
(X>X)−1. In other words, C[β̂i, β̂j ] = σij(X

>X)−1, which can be estimated by

σ̂ij(X
>X)−1.

62.2.3. Maximum Likelihood. To derive the likelihood function, write the
model in the row-partitioned form

(62.2.11)



y>

1
...

y>
n


 =



x>

1
...

x>
n


B +




ε>
1
...

ε>
n
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Assuming normality, the ith row vector is y>
i ∼ N(x>

i B,ΣΣΣ), or yi ∼ N(B>xi,ΣΣΣ).
Since all rows are independent, the likelihood function is

fY(Y ) =

n∏

i=1

(
(2π)−r/2(detΣΣΣ)−1/2 exp

(
−1

2
(y>
i − x>

i B)ΣΣΣ−1(yi − B>xi)
))

(62.2.12)

= (2π)−nr/2(detΣΣΣ)−n/2 exp
(
−1

2

∑

i

(y>
i − x>

i B)ΣΣΣ−1(yi − B>xi)
)
.(62.2.13)

The quadratic form in the exponent can be rewritten as follows:
n∑

i=1

(y>
i − x>

i B)ΣΣΣ−1(yi − B>xi) =
n∑

i=1

tr(y>
i − x>

i B)ΣΣΣ−1(yi − B>xi)

=

n∑

i=1

trΣΣΣ−1(yi − B>xi)(y
>
i − x>

i B)

= trΣΣΣ−1
n∑

i=1

(y>
i − x>

i B)>(y>
i − x>

i B)

= trΣΣΣ−1




y>
1 − x>

1 B
...

y>
n − x>

nB




> 


y>
1 − x>

1 B
...

y>
n − x>

nB




= trΣΣΣ−1(Y − XB)>(Y − XB).

There are several different methods to maximize the likelihood function of a
multivariate Normal Distribution. [AO85] gives a good survey: one can use matrix
differentiation and matrix transformations, but also induction and inequalities.

The first step is obvious: using (62.2.4), the quadratic form in the exponent
becomes:

(Y − XB)>(Y − XB) = trΣΣΣ−1(Y − XB̂)>(Y − XB̂)

+ tr(XB̂ − XB)ΣΣΣ−1(XB̂ − XB)>.

The argument which minimizes this is B = B̂, regardless of the value of ΣΣΣ. Therefore

the concentrated likelihood function becomes, using the notation Ê = (Y − XB̂):

(62.2.14) (2π)−nr/2(detΣΣΣ)−n/2 exp
(
−1

2
trΣΣΣ−1Ê

>
Ê
)
.

In order to find the value of ΣΣΣ which maximizes this we will use (A.8.21) in Theorem
A.8.3 in the Mathematical Appendix. From (A.8.21) follows

(62.2.15) (det A)n/2e−
n
2 tr A ≤ e−rn/2,
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We want to apply (62.2.15). Set A = 1
n (Ê

>
Ê
)1/2

ΣΣΣ−1(Ê
>

Ê)1/2; then exp
(
−n

2 trA
)

=

exp
(
− 1

2 trΣΣΣ−1Ê
>

Ê
)
, and det A = det( 1

nÊ
>

Ê
)
/ detΣΣΣ; therefore, using (62.2.15),

(2π)−nr/2(detΣΣΣ)−n/2 exp
(
− 1

2 trΣΣΣ−1Ê
>

Ê
)
≤ 2πe−nr/2 det( 1

nÊ
>

Ê
)−n/2

,

with equality holding when A = I , i.e., for the value Σ̂ = 1
nÊ

>
Ê.

(62.2.14) is the concentrated likelihood function even if one has prior knowledge
about ΣΣΣ; in this case, the maximization is more difficult.

62.2.4. Distribution of the Least Squares Estimators. B̂ is normally dis-

tributed, with mean B and dispersion matrix V[vec(B̂)] = ΣΣΣ⊗ (X>X)−1. From the

univariate result that vec(Ê) and vec(B̂) are uncorrelated, or from the univariate
proof which goes through for the multivariate situation, follows in the Normal case

that they are independent. Therefore B̂ is also independent of Σ̂. Since

(62.2.16) Ê
>

Ê = Y>(I − X(X>X)−1X>)Y = E>(I − X(X>X)−1X>)E

and the matrix in the middle is idempotent, Ê
>

Ê has a W(n − k,ΣΣΣ) (Wishart)
distribution, therefore

(62.2.17) the unbiased Σ̂ =
1

n− k
Ê

>
Ê ∼ 1

n− k
W(n− k,ΣΣΣ)

and it is independent of B̂.
Let us look at the simplest example, in which X = ι. Then B is a row vector,

write it as B = µ>, and the model reads

(62.2.18) Y = ιµ> + E,

in other words, each row y of Y is an independent drawing from the same µ,ΣΣΣ
distribution, and we want to estimate µ and ΣΣΣ, and also the correlation coefficients.
An elementary and detailed discussion of this model is given in chapter 63.

62.2.5. Testing. We will first look at tests of hypotheses of the form RB = U .
This is a quite specialized hypothesis, meaning that each column of B is subject to
the same linear constraint, although the values which these linear combinations take
may differ from column to column. Remember in the univariate case we introduced
several testing principles, the Wald test, the likelihood ratio test, and the Lagrange
multiplier test, and showed that in the linear model they are equivalent. These prin-
ciples can be directly transferred to the multivariate case. The Wald test consists

in computing the unconstrained estimator B̂, and assessing, in terms of the (esti-

mated, i.e., “studentized”) Mahalanobis distance, how far RB̂ is away from U . The
Likelihood ratio test (applied to the least squares objective function) consists in run-
ning both the constrained and the unconstrained multivarate regression, and then
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determining how far the achieved values of the GLS objective function (which are
matrices) are apart from each other.

Since the univariate t-test and its multivariate generalization, called Hotelling’s
T , is usually only applied in hypotheses where R is a row vector, we will limit our
discussion to this case as well. The simplest example of such a test would be to
test whether µ = µ0 in the above “simplest example” model with iid observations.
The OLS estimate of µ is ȳ, which one gets by taking the column means of Y .
The dispersion matrix of this estimate is ΣΣΣ/n. The Mahalanobis distance of this

estimate from µ0 is therefore n(ȳ−µ)>ΣΣΣ−1(ȳ−µ), and replacing ΣΣΣ by its unbiased
S = W/(n− 1), one gets the following test statistic: T 2

n−1 = n(ȳ−µ)>S−1(ȳ−µ).
Here use the following definition: if z ∼ N(o,ΣΣΣ) is a r-vector, and W ∼ W(r,ΣΣΣ)

independent of z with the same ΣΣΣ, so that S = W/r is an unbiased estimate of ΣΣΣ,
then

(62.2.19) T2
r = z>S−1z

is called a Hotelling T2
r,r with r and r degrees of freedom.

One sees easily that the distribution of T 2
r,r is independent of ΣΣΣ. It can be written

in the form

(62.2.20) T2
r = z>ΣΣΣ−1/2(ΣΣΣ−1/2

SΣΣΣ−1/2)−1ΣΣΣ−1/2
z

Here ΣΣΣ−1/2
z ∼ N(o, I) and from W = Y>Y where each row of Y is a N(o,ΣΣΣ), then

ΣΣΣ−1/2
SΣΣΣ−1/2 = U>U where each row of U is a N(o, I).

From the interpretation of the Mahalanobis distance as the number of standard
deviations the “worst” linear combination is away from its mean, Hotelling’s T 2-test
can again be interpreted as: make t-tests for all possible linear combinations of the
components of µ0 at an appropriately less stringent significance level, and reject the
hypothesis if at least one of these t-tests rejects. This principle of constructing tests
for multivariate hypotheses from those of simple hypotheses is called the “union-
intersection principle” in multivariate statistics.

Since the usual F-statistic in univariate regression can also be considered the
estimate of a Mahalanobis distance, it might be worth while to point out the dif-
ference. The difference is that in the case of the F-statistic, the dispersion matrix
was known up to a factor σ2, and only this factor had to be estimated. In the case
of the Hotelling T2, the whole dispersion matrix is unknown and all of it must be
estimated (but one has also multivariate rather than univariate observations). Just
as the distribution of the F statistic does not depend on the true value of σ2, the
distribution of Hotelling’s T2 does not depend on ΣΣΣ. Indeed, its distribution can be
expressed in terms of the F-distribution. This is a deep result which we will not prove
here:
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If ΣΣΣ is a r× r nonsingular matrix, then the distribution of Hotelling’s T 2
r,r with r

and r degrees of freedom can be expressed in terms of the F-distribution as follows:

(62.2.21)
r − r + 1

r

T2
r,r

r
∼ Fr,r−r+1

This apparatus with Hotelling’s T 2 has been developed only for a very specific
kind of hypothesis, namely, a hypothesis of the form r>B = u>. Now let us turn
to the more general hypothesis RB = U , where R has rank i, and apply the F-
test principle. For this one runs the constrained and the unconstrained multivariate

regression, calling the attained error sum of squares and products matrices Ê
>
1 Ê1

(for the constrained) and Ê
>

Ê (for the unconstrained model). Then one fills in the
following table: Just as in the univariate case one shows that the S.P. matrices in

Source D. F. S. P. Matrix

Deviation from Hypothesis k − i Ê
>
1 Ê1 − Ê

>
Ê

Error n− k Ê
>

Ê

(Restricted) Total n− i Ê
>
1 Ê1

the first two rows are independent Wishart matrices, the first being central if the
hypothesis is correct, and noncentral otherwise.

In the univariate case one has scalars instead of the S.P. matrices; then one
divides each of these sum of squares by its degrees of freedom, and then takes the
relation of the “Deviation from hypothesis” mean square error by the error mean
square error. In this way one gets, for the error sum of squares an unbiased estimate
of σ2. If the hypothesis is true, the mean squared sum of errors explained by the
hypothesis is an independent unbiased estimate of σ2, otherwise it is biased upwards.
The F-statistic is the ratio between those two estimates.

In the multivariate case, division by the degrees of freedom would give unbiased
resp. upwardly biased estimates of the dispersion matrix ΣΣΣ. Then one faces the task
of comparing these matrices. We will only discuss one criterion, Wilks’s Lambda,
which is at the same time the likelihood ratio test. It is a generalization of the F-test
to the multivariate situation. Other criteria have been proposed (Roy’s test).

This criterion based on the S.P. matrices does not divide these matrices by their
degrees of freedom, but divides the determinant of the unconstrained error sum of
squares and products matrix by the determinant of the total sum of squares and
products matrix. This gives a statistic whose distribution is again independent of ΣΣΣ:
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Definition of Wilks’s Lambda: if W1 ∼ Wr(k1,ΣΣΣ) and W2 ∼ Wr(k2,ΣΣΣ) are
independent (the subscript r indicating that ΣΣΣ is r × r), then

(62.2.22)
|W1|

|W1 + W2|
∼ Λ(r, k1, k2)

is said to have Wilks’s Lambda distribution.
If the matrix due to the hypothesis is of rank one, then this criterion is equivalent

to Hotelling’s T2 criterion. To show this, assume you observe a W ∼ Wr(k,ΣΣΣ) and
an independent d ∼ Nr(o,ΣΣΣ). By theorem A.7.3, one obtains

(62.2.23) 1 + d>W−1d =
det(W + dd>)

det(W)

The righthand side is the inverse of a Wilks’s Lambda with r, k and 1 degrees of
freedom, the lefthand side is 1 + T 2

r,k/k.
We will show by one example that the Wilks’s Lambda criterion is equivalent to

the likelihood ratio criterion. Assume

(62.2.24) Y =
[
X1 X2

] [B1

B2

]
+ E = X1B1 + X2B2 + E

where Y is n× r, X1 is n× q, X2 is n× r, B1 is q × r, B2 is r × r and we want to
test the hypothesis B2 = O. Run the regressions on X1 alone to get Ê1, and then
on
[
X1 X2

]
to get Ê. The maximum values of the likelihood functions are then

(62.2.25) 2πe−nr/2 det
( 1

n
Ê

>
1 Ê1

)−n/2
and 2πe−nr/2 det

( 1

n
Ê

>
Ê
)−n/2

.

The likelihood ratio, i.e., the constrained value divided by unconstrained value, is
then

(62.2.26)
( det(Ê

>
Ê)

det(Ê
>
1 Ê1)

)n/2
,

which is a power of Wilks’s Lambda.

62.3. Growth Curve Models

One might wonder how to estimate the above model if there are linear restrictions
on the rows of B, for instance, they are all equal, or they all lie on a straight line, or
on a qth order polynomial. This means, B can be written in the form ΘH for some
given H and some unrestricted parameter vector Θ. Models of this form are called
growth curve models:

Problem 516. 6 points Assume

(62.3.1) Y = XΘH + E; vec(E) ∼ o, σ2Ψ ⊗ I
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X, H, and Ψ are known matrices of constants, and σ2 and Θ is the matrix of
parameters to be estimated. Show that the BLUE in this model is

(62.3.2) B̂ = (X>X)−1X>YΨ−1H>(HΨ−1H>)−1

and that

(62.3.3) V [vec(B̂)] = σ2(HΨ−1H>)−1 ⊗ (X>X)−1.

This is a so-called growth curve model, and the simplest proof uses (B.5.19)and Prob-
lem 611.

Answer. If Ψ is known, then the BLUE can be obtained as follows: Use (B.5.19) to write the
equation Y = XΘH + E in vectorized form as

vec(Y) = (H> ⊗ X) vec(Θ) + vec(E)(62.3.4)

Since V[vec(E)] = σ2Ψ ⊗ I, the GLS estimate is

vec(B̂) =

(
(H ⊗ X>)(Ψ−1 ⊗ I)(H> ⊗ X)

)−1

(H ⊗ X>)(Ψ−1 ⊗ I) vec(Y)(62.3.5)

=

(
HΨ−1H> ⊗ X>X

)−1(
HΨ−1 ⊗ X>

)
vec(Y)(62.3.6)

=

((
(HΨ−1H>)−1HΨ−1

)
⊗
(
(X>X)−1X>))vec(Y)(62.3.7)

and now apply (B.5.19) again to transform this back into matrix notation

B̂ = (X>X)−1X>YΨ−1H>(HΨ−1H>)−1(62.3.8)

�

Here is one scenario how such a model may arise: assume you have n plants, you
group those plants into two different groups, the first group going from plant 1 until
plant m, and the second from plant m+1 until plant n. These groups obtain different
treatments. At r different time points you measure the same character on each of
these plants. These measurements give the rows of your Y-matrix. You assume the
following: the dispersion matrix between these measurements are identical for all
plants, call it Ψ, and the expected values of these measurements evolves over time
following two different quadratic polynomials, one for each treatment.
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This can be expressed mathematically as follows (omitting the matrix of error
terms):
(62.3.9)


y11 y12 · · · y1r

...
...

. . .
...

ym1 ym2 · · · ymr
ym+1,1 ym+1,2 · · · ym+1,r

...
...

. . .
...

yn1 yn2 · · · ynr




=




1 0
...

...
1 0
0 1
...

...
0 1




[
θ10 θ11 θ12
θ20 θ21 θ22

]


1 1 · · · 1
t1 t2 · · · tp
t21 t22 · · · t2p




This gives the desired result y11 = θ10 + θ11t1 + θ12t
2
1 plus an error term, etc.

If one does not know Ψ, then one has to estimate it.



CHAPTER 63

Independent Observations from the Same
Multivariate Population

This Chapter discusses a model that is a special case of the model in Chapter
62.2, but it goes into more depth towards the end.

63.1. Notation and Basic Statistics

Notational conventions are not uniform among the different books about mul-
tivariate statistic. Johnson and Wichern arrange the data in a r × n matrix X.
Each column is a separate independent observation of a q vector with mean µ and
dispersion matrix ΣΣΣ. There are n observations.

We will choose an alternative notation, which is also found in the literature, and
write the matrix as a n× r matrix Y . As before, each column represents a variable,
and each row a usually independent observation.

Decompose Y into its row vectors as follows:

(63.1.1) Y =



y>

1
...

y>
n


 .

Each row (written as a column vector) yi has mean µ and dispersion matrix ΣΣΣ, and
different rows are independent of each other. In other words, E [Y ] = ιµ>. V [Y ] is
an array of rank 4, not a matrix. In terms of Kronecker products one can write

V[vec Y ] = ΣΣΣ ⊗ I .
One can form the following descriptive statistics: ȳ = 1

nyi is the vector of sample

means, W =
∑
i(yi−ȳ)(yi−ȳ)> is matrix of (corrected) squares and cross products,

the sample covariance matrix is S(n) = 1
nW with divisor n, and R is the matrix of

sample correlation coefficients.
Notation: the ith sample variance is called sii (not s2

i , as one might perhaps
expect).

The sample means indicate location, the sample standard deviations dispersion,
and the sample correlation coefficients linear relationship.
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How do we get these descriptive statistics from the data Y through a matrix

manipulation? ȳ> = 1
nι>Y ; now Y − ιȳ> = (I − ιι>

n )Y is the matrix of observations
with the appropriate sample mean taken out of each element, therefore

(63.1.2) W =
[
y1 − ȳ · · · yn − ȳ

]



(y1 − ȳ)>

...
(yn − ȳ)>


 =

= Y>(I − ιι>

n
)>(I − ιι>

n
)Y = Y>(I − ιι>

n
)Y .

Then S(n) = 1
nW, and in order to get the sample correlation matrix R, use

(63.1.3) D(n) = diag(S(n)) =




s11 0 · · · 0
0 s22 · · · 0
...

...
. . .

...
0 0 · · · snn




and then R = (D(n))−1/2S(n)(D(n))−1/2.
In analogy to the formulas for variances and covariances of linear transformations

of a vector, one has the following formula for sample variances and covariances of
linear combinations Ya and Yb: est.cov[Ya,Yb] = a>S(n)b.

Problem 517. Show that E [ȳ] = µ and V [ȳ] = 1
nΣΣΣ. (The latter identity can

be shown in two ways: once using the Kronecker product of matrices, and once by
partitioning Y into its rows.)

Answer. E [ȳ] = E [ 1
n

Y>ι] = 1
n

(E [Y ])>ι = 1
n

µι>ι = µ. Using Kronecker products, one obtains

from ȳ> = 1
n

ι>Y that

(63.1.4) ȳ = vec(ȳ>) =
1

n
(I ⊗ ι>) vec Y ;

therefore

(63.1.5) V[ȳ] =
1

n2
(I ⊗ ι>)(ΣΣΣ ⊗ I)(I ⊗ ι) =

1

n2
(ΣΣΣ ⊗ ι>ι) =

1

n
ΣΣΣ
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The alternative way to do it is

V[ȳ] = E [(ȳ − µ)(ȳ − µ)>](63.1.6)

= E [

(
1

n

∑

i

(yi − µ)

)(
1

n

∑

j

(yj − µ)

)>
](63.1.7)

=
1

n2

∑

i,j

E [(yi − µ)(yj − µ)>](63.1.8)

=
1

n2

∑

i

E [(yi − µ)(yi − µ)>](63.1.9)

=
n

n2
E [(yi − µ)(yi − µ)>] =

1

n
ΣΣΣ.(63.1.10)

�

Problem 518. Show that E [S(n)] = n−1
n ΣΣΣ, therefore the unbiased S = 1

n−1

∑
i(xi−

x̄)(xi − x̄)> has ΣΣΣ as its expected value.

63.2. Two Geometries

One can distinguish two geometries, according to whether one takes the rows
or the columns of Y as the points. Rows as points gives n points in r-dimensional
space, the “scatterplot geometry.” If r = 2, this is the scatter plot of the two variables
against each other.

In this geometry, the sample mean is the center of balance or center of gravity.
The dispersion of the observations around their mean defines a distance measure in
this geometry.

The book introduces this distance by suggesting with its illustrations that the
data are clustered in hyperellipsoids. The right way to introduce this distance would
be to say: we are not only interested in the r coordinates separately but also in any
linear combinations, then use our treatment of the Mahalanobis distance for a given
population, and then transfer it to the empirical distribution given by the sample.

In the other geometry, all observations of a given random variable form one point,
here called “vector.” I.e., the basic entities are the columns of Y . In this so-called
“vector geometry,” x̄ is the projection on the diagonal vector ι, and the correlation
coefficient is the cosine of the angle between the deviation vectors.

Generalized sample variance is defined as determinant of S. Its geometric intu-
ition: in the scatter plot geometry it is proportional to the square of the volume of
the hyperellipsoids, (see J&W, p. 103), and in the geometry in which the observations
of each variabe form a vector it is

(63.2.1) det S = (n− 1)−r(volume)2

where the volume is that spanned by the deviation vectors.
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63.3. Assumption of Normality

A more general version of this section is 62.2.3.
Assume that the yi, the row vectors of Y , are independent, and each is ∼ N(µ,ΣΣΣ)

with ΣΣΣ positive definite. Then the density function of Y is

fY(Y ) =

n∏

j=1

(
(2π)−r/2(detΣΣΣ)−1/2 exp

(
−1

2
(yj − µ)>ΣΣΣ−1(yj − µ)

))
(63.3.1)

= (2π)−nr/2(detΣΣΣ)−n/2 exp
(
−1

2

∑

j

(yj − µ)>ΣΣΣ−1(yj − µ)
)
.(63.3.2)

The quadratic form in the exponent can be rewritten as follows:

n∑

j=1

(yj − µ)>ΣΣΣ−1(yj − µ) =

n∑

j=1

(yj − ȳ + ȳ − µ)>ΣΣΣ−1(yj − ȳ + ȳ − µ)

=

n∑

j=1

(yj − ȳ)>ΣΣΣ−1(yj − ȳ) + n(ȳ − µ)>ΣΣΣ−1(ȳ − µ)(63.3.3)

The first term can be simplified as follows:
∑

j

(yj − ȳ)>ΣΣΣ−1(yj − ȳ) =
∑

j

tr(yj − ȳ)>ΣΣΣ−1(yj − ȳ)

=
∑

j

trΣΣΣ−1(yj − ȳ)(yj − ȳ)>

= trΣΣΣ−1
∑

j

(yj − ȳ)(yj − ȳ)> = n trΣΣΣ−1
S(n)

Using this one can write the density function as
(63.3.4)

fY(Y ) = (2π)−nr/2(detΣΣΣ)−n/2 exp
(
−n

2
tr(ΣΣΣ−1

S(n))
)

exp
(
−n

2
(ȳ−µ)>ΣΣΣ−1(ȳ−µ)

)
.

One sees, therefore, that the density function depends on the observation only

through ȳ and S(n), which means that ȳ and S(n) are sufficient statistics.
Now we compute the maximum likelihood estimators: taking the maximum for

µ is simply µ̂ = ȳ. This leaves the concentrated likelihood function

(63.3.5) max
µ

fY(Y ) = (2π)−nr/2(detΣΣΣ)−n/2 exp
(
−n

2
tr(ΣΣΣ−1S(n))

)
.

To obtain the maximum likelihood estimate of ΣΣΣ one needs equation (A.8.21) in
Theorem A.8.3 in the Appendix and (62.2.15).
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If one sets A = S(n)1/2ΣΣΣ−1S(n)1/2, then trA = tr(ΣΣΣ−1S(n)) and det A =
(detΣΣΣ)−1 det S(n), in (62.2.15), therefore the concentrated likelihood function

(63.3.6) (2π)−nr/2(detΣΣΣ)−n/2 exp
(
−n

2
tr(ΣΣΣ−1S(n))

)
≤ (2πe)−rn/2(det S(n))−n/2

with equality holding if Σ̂ΣΣ = S(n). Note that the maximum value is a multiple of the
estimated generalized variance.

63.4. EM-Algorithm for Missing Observations

The maximization of the likelihood function is far more difficult if some obser-
vations are missing. (Here assume they are missing randomly, i.e., the fact that they
are missing is not related to the values of these entries. Otherwise one has sample
selection bias!) In this case, a good iterative procedure to obtain the maximum like-
lihood estimate is the EM-algorithm (expectation-maximization algorithm). It is an
iterative prediction and estimation.

Let’s follow Johnson and Wichern’s example on their p. 199. The matrix is

(63.4.1) Y =




− 0 3
7 2 6
5 1 2
− − 5




It is not so important how one gets the initial estimates of µ and ΣΣΣ: say µ̃> =[
6 1 4

]
, and to get Σ̃ΣΣ take deviations from the mean, putting zeros in for the

missing values (which will of course underestimate the variances), and divide by
the number of observations. (Since we are talking maximum likelihood, there is no
adjustment for degrees of freedom.)
(63.4.2)

Σ̃ΣΣ =
1

4
Y>Y where Y =




0 −1 −1
1 1 2
−1 0 −2
0 0 1


 , i.e., Σ̃ΣΣ =



1/2 1/4 1
1/4 1/2 3/4
1 3/4 5/2


 .

Given these estimates, the prediction step is next. The likelihood function de-
pends on sample mean and sample dispersion matrix only. These, in turn, are simple
functions of the vector of column sums Y>ι and the matrix of (uncentered) sums of
squares and crossproducts Y>Y , which are complete sufficient statistics. To predict
those we need predictions of the missing elements of Y , of their squares, and of their
products with each other and with the observed elements of Y . Our method of pre-
dicting is to take conditional expectations, assuming µ̃ and Σ̃ΣΣ are the true mean and
dispersion matrix.
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For the prediction of the upper lefthand corner element of Y , only the first row
of Y is relevant. Partitioning this row into the observed and unobserved elements
gives
(63.4.3)

y11

0
3


 ∼ N

(



6
1
4


 ,




1/2 1/4 1
1/4 1/2 3/4
1 3/4 5/2



)

or

[
y1

y2

]
∼ N

([
µ̃1

µ̃2

]
,

[
Σ̃ΣΣ11 Σ̃ΣΣ12

Σ̃ΣΣ21 Σ̃ΣΣ22

])
.

The conditional mean of y1 is the best linear predictor

E [y1|y2; µ̃, Σ̃ΣΣ] = y∗
1 = µ̃1 + Σ̃ΣΣ12Σ̃ΣΣ

−1

22 (y2 − µ̃2)(63.4.4)

or in our numerical example

E [y11| · · · ] = y∗
11 = 6 +

[
1/4 1

] [1/2 3/4
3/4 5/2

]−1 [
0 − 1
3 − 4

]
= 5.73(63.4.5)

Furthermore,
(63.4.6)

E [(y1−y∗
1)(y1−y∗

1)
>|y2; µ̃, Σ̃ΣΣ] = E [(y1−y∗

1)(y1−y∗
1)

>] = MSE [y∗
1; y1] = Σ̃ΣΣ11−Σ̃ΣΣ12Σ̃ΣΣ

−1

22 Σ̃ΣΣ21.

These two data are sufficient to compute E [y1y
>
1 |y2; µ̃, Σ̃ΣΣ]. From y1 = y1 −

y∗
1 + y∗

1 follows

(63.4.7) y1y
>
1 = (y1−y∗

1)(y1−y∗
1)

>+(y1−y∗
1)(y

∗
1)

>+(y∗
1)(y1−y∗

1)
>+(y∗

1)(y
∗
1)

>.

Now take conditional expectations:

(63.4.8) E [y1y
>
1 |y2; µ̃, Σ̃ΣΣ] = Σ̃ΣΣ11 − Σ̃ΣΣ12Σ̃ΣΣ

−1

22 Σ̃ΣΣ21 + O + O + (y∗
1)(y

∗
1)

>

For the cross products with the observed values one can apply the linearity of
the (conditional) expectations operator:

(63.4.9) E [y1y
>
2 |y2; µ̃, Σ̃ΣΣ] = (y∗

1)y
>
2

Therefore one obtains

(63.4.10) E [

[
y1y

>
1 y1y

>
2

y2y
>
1 y2y

>
2

]
|y2; µ̃, Σ̃ΣΣ] =

[
Σ̃ΣΣ11 − Σ̃ΣΣ12Σ̃ΣΣ

−1

22 Σ̃ΣΣ21 + (y∗
1)(y

∗
1)

> y∗
1y

>
2

y2(y
∗
1)

> y2y
>
2

]

In our numerical example this gives

E[y2
11| · · · ] = 1/2−

[
1/4 1

] [1/2 3/4
3/4 5/2

]−1 [
1/4
1

]
+ (5.73)2 = 32.99(63.4.11)

E [
[
y11y12 y11y13

]
| · · · ] = 5.73

[
0 3

]
=
[
0 17.18

](63.4.12)
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Problem 519. Compute in the same way for the last row of Y :

E [
[
y41 y42

]
| · · · ] =

[
y∗

41 y∗
42

]
=
[
6.4 1.2

]
(63.4.13)

E [

[
y2

41 y41y42

y42y41 y2
42

]
| · · · ] =

[
41.06 8.27
8.27 1.97

]
(63.4.14)

E [

[
y41y43

y42y43

]
| · · · ] =

[
32.0
6.5

]
(63.4.15)

Answer. This is in Johnson and Wichern, p. 200. �

Now switch back to the more usual notation, in which yi is the ith row vector
of Y and ȳ the vector of column means. Since S(n) = 1

n

∑
yiy

>
i − ȳȳ>, one can

obtain from the above the value of

(63.4.16) E [S(n)| all observed values in Y ; µ̃, Σ̃ΣΣ].

Of course, in a similar, much simpler fashion one obtains

(63.4.17) E [ȳ| all observed values in Y ; µ̃, Σ̃ΣΣ].

In our numerical example, therefore, we obtain

E [Y>ι| · · · ] = E [



y11 7 5 y41

0 2 1 y42

3 6 2 5







1
1
1
1


 | · · · ] =



5.73 7 5 6.4
0 2 1 1.3
3 6 2 5







1
1
1
1


 =




24.13
4.30
16.00




(63.4.18)

E [Y>Y | · · · ] = E [



y11 7 5 y41

0 2 1 y42

3 6 2 5







y11 0 3
7 2 6
5 1 2

y41 y42 5


] =



148.05 27.27 101.18
27.27 6.97 20.50
101.18 20.50 74.00




(63.4.19)

The next step is to plug those estimated values of Y>ι and Y>Y into the like-
lihood function and get the maximum likelihood estimates of µ and ΣΣΣ, in other
words, set mean and dispersion matrix equal to the sample mean vector and sample
dispersion matrices computed from these complete sufficient statistics:

˜̃µ =
1

n
Y>ι =



6.03
1.08
4.00


(63.4.20)

˜̃
ΣΣΣ =

1

n
Y>(I − 1

n
ιι>)Y =

1

n
Y>Y − ˜̃µ˜̃µ> =



.65 .31 1.18
.31 .58 .81
1.18 .81 2.50


 ,(63.4.21)

698 63. INDEPENDENT OBSERVATIONS FROM SAME POPULATION

then predict the missing observations anew.

63.5. Wishart Distribution

The Wishart distribution is a multivariate generalization of the σ2χ2. The non-
central Wishart is the distribution of Y>Y if Y is normally distributed as above. But
we will be mainly interested in the central Wishart distribution.

Let Z =



z>

1
...

z>
r


 where zj ∼ NID(o,ΣΣΣ). Then the joint distribution of Z>Z =

∑r
j=1 zjz

>
j is called a (central) Wishart distribution, notation Z>Z ∼ W(r,ΣΣΣ). r

is the number of degrees of freedom. The following theorem is exactly parallel to
theorem 10.4.3.

Theorem 63.5.1. Let Z =



z>

1
...

z>
n


 where zj ∼ NID(o,ΣΣΣ), and let P be sym-

metric and of rank r. A necessary and sufficient condition for Z>PZ to have a
Wishart distribution with covariance matrix ΣΣΣ is P 2 = P . In this case, this Wishart
distribution has r degrees of freedom.

Proof of sufficiency: If P 2 = P with rank r, a r × n matrix T exists with
P = T>T and TT> = I . Therefore Z>PZ = Z>T>TZ. Define X = TZ. Writing
xi for the column vectors of X, we know C[xi, xj ] = σijT T> = σijI . For the rows of
X this means they are independent of each other and each of them ∼ N(o,ΣΣΣ). Since
there are r rows, the result follows.

Necessity: Take a vector c with c>ΣΣΣc = 1. Then c>zj ∼ N(0, 1) for each j, and
c>zj independent of c>zk for j 6= k. Therefore Zc ∼ N(o, I). It follows also TZc =
Xc ∼ N(o, I) (the first vector having n and the second r components). Therefore
c>Z>P Zc is distributed as a χ2, therefore we can use the necessity condition in
theorem 10.4.3 to show that P is idempotent.

As an application it follows from (63.1.2) that S(n) ∼ W(n− 1,ΣΣΣ).
One can also show the following generalization of Craig’s theorem: If Z as above,

then Z>PZ is independent of Z>QZ if and only if PQ = O.

63.6. Sample Correlation Coefficients

What is the distribution of the sample correlation coefficients, and also of the
various multiple and partial correlation coefficients in the above model? Suffice it to
remark at this point that this is a notoriously difficult question. We will only look at
one special case, which also illustrates the use of random orthogonal transformations.
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Look at the following scenario: our matrix Y hat two columns only, write it as

(63.6.1) Y =
[
u v

]
=




u1 v1

...
...

un vn




and we assume each row yj =

[
uj
vj

]
to be an independent sample of the same bivariate

normal distribution, characterized by the means µu, µv, the variances σuu, σvv, and
the correlation coefficient ρ (but none of these five paramters are known). The goal
is to compute the distribution of the sample correlation coefficient

(63.6.2) r =

∑
(ui − ū)(vi − v̄)√∑

(ui − ū)2
√∑

(vi − v̄)2

if the true ρ is zero.
We know that u ∼ N(o, σuuI). Under the null hypothesis, u is independent

of v, therefore its distribution conditionally on v is the same as its unconditional
distribution. Furthermore look at the matrix consisting of random elements

(63.6.3) P =

[
1/

√
n · · · 1/

√
n

(v1 − v̄)/
√

svv · · · (vn − v̄)/
√

svv

]

It satisfies PP> = I , i.e., it is incomplete orthogonal. The use of random orthogonal
transformations is an important trick which simplifies many proofs in multivariate
statistics. Conditionally on v, the matrix P is of course constant, and therefore, by
theorem 10.4.2, conditionally on v the vector w = Pu is standard normal with same
variance σuu, and q = u>u − w>w is an independent σuuχ

2
n−2. In other words,

conditionally on v, the following three variables are mutually independent and have
the following distributions:

w1 =
√
nū ∼ N(0, σuu)(63.6.4)

w2 =

∑
(ui − ū)(vi − v̄)√∑

(vi − v̄)2
= r

√
suu ∼ N(0, σuu)(63.6.5)

q =
∑

u2
i − nū2 − w2

2 = (1 − r2)suu ∼ σuuχ
2
n−2(63.6.6)

Since the values of v do not enter any of these distributions, these are also the
unconditional distributions. Therefore we can form a simple function of r which has
a t-distribution:

(63.6.7)
w2√

q/(n− 2)
=

r
√
n− 2√

1 − r2
∼ tn−2

This can be used to test whether ρ = 0.



CHAPTER 64

Pooling of Cross Section and Time Series Data

Givenm cross-sectional units, each of which has been observed for t time periods.
The dependent variable for cross sectional unit i at time s is ysi. There are also
k independent variables, and the value of the jth independent variable for cross
sectional unit i at time s is xsij . I.e., instead of a vector, the dependent variable is a
matrix, and instead of a matrix, the independent variables form a 3-way array. We
will discuss three different models here which assign equal slope parameters to the
different cross-sectional units but which differ in their treatment of the intercept.

64.1. OLS Model

The most restrictive model of the three assumes that all cross-sectional units
have the same intercept µ. I.e.,

(64.1.1) ysi = µ+

k∑

j=1

xsijβj + εsi s = 1, . . . , t, i = 1, . . . ,m,

where the error terms are uncorrelated and have equal variance σ2
ε.

In tile notation:

(64.1.2)

t Y

m

=

t ι µ ι

m

+

t X k β

m

+

t E

m

In matrix notation this model can be written as

(64.1.3) Y = ιµι> +
[
X1β · · · Xmβ

]
+ E

where Y =
[
y1 · · · ym

]
is t×m, each of the X i is t× k, the first ι is the t-vector

of ones and the second ι the m-vector of ones, µ is the intercept and β the k-vector of
slope coefficients, and E =

[
ε1 · · · εm

]
the matrix of disturbances. The notation[

X1β · · · Xmβ
]

represents a matrix obtained by the multiplication of a 3-way

array with a vector. We assume vecE ∼ o, σ2I .
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If one vectorizes this one gets
(64.1.4)

vec(Y) =




ι X1

ι X2

...
...

ι Xm




[
µ
β

]
+ vec(E) or vec(Y) =




ι

ι
...
ι


µ+




X1

X2

...
Xm


β + vec(E)

Using the abbreviation

(64.1.5) Z =




X1

...
Xm




this can also be written

(64.1.6) vec(Y) = ιµ+ Zβ + vec(E) =
[
ι Z

]
+

[
µ
β

]
.

Problem 520. 1 point Show that vec(
[
X1β · · · Xmβ

]
) = Zβ with Z as

just defined.

Answer.

(64.1.7) vec(
[
X1β · · · Xmβ

]
) =




X1β

...
Xmβ


 =




X1

...
Xm


β = Zβ

�

One gets the paramater estimates by regressing running OLS on (64.1.4), i.e.,
regressing vecY on Z with an intercept.

64.2. The Between-Estimator

By premultiplying (64.1.3) by 1
t ι

> one obtains the so-called “between”-regression.

Defining ȳ> = 1
t ι

>Y , i.e., ȳ> is the row vector consisting of the column means, and

in the same way x̄>
i = 1

t ι
>Xi and ε̄> = 1

t ι
>E, one obtains

(64.2.1)

ȳ> = µι> +
[
x̄>

1 β · · · x̄>
mβ
]
+ ε̄> = µι> + (X̄β)> + ε̄> where X̄ =




x̄>
1
...

x̄>
m


 .

If one transposes this one obtains ȳ = ιµ+ X̄β + ε̄.
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In tiles, the between model is obtained from (64.1.2) by attaching ι/t t :

(64.2.2)

ι/t t Y

m

=

=

µ ι

m

+

ι/t t X k β

m

+

ι/t t E

m

If one runs this regression one will get estimates of µ and β which are less efficient
than those from the full regression. But these regressions are consistent even if the
error terms in the same column are correlated (as they are in the Random Effects
model).

64.3. Dummy Variable Model (Fixed Effects)

While maintaining the assumption that the cross sectional units have the same
slope parameters, we are now allowing a different intercept for each unit. I.e., the
model is now

(64.3.1) ysi = αi +

k∑

j=1

xsijβj + εsi s = 1, . . . , t, i = 1, . . . ,m,

where the error terms are uncorrelated and have equal variance σ2
ε. In tile notation

this is
(64.3.2)

t Y

m

=

t ι α

m

+

t X k β

m

+

t E

m

One can write this model as the matrix equation

(64.3.3) Y = ια> +
[
X1β · · · Xmβ

]
+ E

where Y =
[
y1 · · · ym

]
is t×m, each of the Xi is t×k, ι is the t-vector of ones, α

is the m-vector collecting all the intercept terms, β the k-vector of slope coefficients,
E =

[
ε1 · · · εm

]
the matrix of disturbances. We assume vecE ∼ o, σ2I .
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For estimation, it is convenient to vectorize (64.3.3) to get

(64.3.4)




y1

...
ym


 =




ι o · · · o

o ι · · · o
...

...
. . .

...
o o · · · ι






α1

...
αm


+




X1

...
Xm


β +




ε1

...
εm




Problem 521. 2 points Show that vec(ια>) = Kα where K = I ⊗ ι is the
matrix of dummies in (64.3.4). This is a special case of (B.5.19), but I would like
you to prove it from scratch without using (B.5.19).

Answer. ια> =
[
ια1 · · · ιαm

]
and

Kα =




ι o · · · o

o ι · · · o

...
...

. . .
...

o o · · · ι






α1

..

.
αm


 =




ια1

..

.
ιαm


 .

�

Using the K defined in Problem 521 and the Z defined in (64.1.5), (64.3.4) can
also be written as

(64.3.5) vec(Y) = Kα + Zβ + vec(E)

[JHG+88] give a good example how such a model can arise: s is years, i is firms,
ysi is costs, and there is only one xsi for every firm (i.e. k = 1), which is sales. These
firms would have equal marginal costs but different fixed overhead charges.

In principle (64.3.4) presents no estimation problems, it is OLS with lots of
dummy variables (if there are lots of cross-sectional units). But often it is advanta-

geous to use the following sequential procedure: (1) in oder to get β̂ regress

(64.3.6)




Dy1

...
Dym


 =




DX1

...
DXm


 β̂ + residuals

without a constant term (but if you leave the constant term in, this does not matter
either, its coefficient will be exactly zero). Here D is the matrix which takes the
mean out. I.e., take the mean out of every y individually and out of every X before
running the regression. (2) Then you get each α̂i by the following equation:

(64.3.7) α̂i = ȳi − x̄>
i β̂

where ȳi is the mean of yi, and x̄>
i is the row vector consisting of the column means

of Xi.

Problem 522. Give a mathematical proof that this is the right procedure
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Answer. Equation (64.3.4) has the form of (30.0.1). Define D = I − ιι>/t and W = I −
K(K>K)−1K> = I ⊗D. According to (30.0.3) and (30.0.4), β̂ and the vector of residuals can be

obtained by regressing W vec(Y) on WZ, and if one plugs this estimate β̂ back into the formula,

then one obtains an estimate of α.
Without using the Kronecker product, this procedure can be described as follows: one gets the

right β̂ if one estimates (64.3.3) premultiplied by D. Since Dι = o, this premultiplication removes
the first parameter vector α from the regression, so that only

(64.3.8) DY =
[
DX1β · · · DXmβ

]
+ DE

remains—or, in vectorized form,

(64.3.9)




Dy1

..

.
Dym


 =




DX1

..

.
DXm


β +




Dε1

..

.
Dεm




Although vec(DE) is no longer spherically distributed, it can be shown that in the present situation
the OLS of β is the BLUE.

After having obtained β̂, one obtains α̂ by plugging this estimated β̂ into (64.3.3), which gives

(64.3.10) Y −
[
X1β̂ · · · Xmβ̂

]
= ια> + E

Here each column of Y is independent of all the others, they no longer share common parameters,
therefore one can run this regression column by column:

(64.3.11) yi − Xiβ̂ = ιαi + εi i = 1, . . . ,m

Since the regressor is the column of ones, one can write down the result immediately:

(64.3.12) α̂i = ȳi − x̄>
i β̂

where ȳi is the mean of yi, and x̄>
i is the row vector consisting of the column means of Xi. �

To get the unbiased estimate of σ2, one can almost take the s2 from the regression
(64.3.9), one only has to adjust it for the numbers of degrees of freedom.

Problem 523. We are working in the dummy-variable model for pooled data,
which can be written as

(64.3.13) Y = ια> +
[
X1β · · · Xmβ

]
+ E

where Y =
[
y1 · · · ym

]
is t × m, each of the Xi is t × k, ι is the t-vector of

ones, E is a t×m matrix of identically distributed independent error terms with zero
mean, and α is a m-vector and β a k-vector of unknown nonrandom parameters.

• a. 3 points Describe in words the characteristics of this model and how it can
come about.

Answer. Each of the m units has a different intercept, slope is the same. Equal marginal
costs but different fixed costs. �

• b. 4 points Describe the issues in estimating this model and how it should be
estimated.
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Answer. After vectorization OLS is fine, but design matrix very big. One can derive formulas
that are easier to evaluate numerically because they involve smaller matrices, by exploiting the
structure of the overall design matrix. First estimate the slope parameters by sweeping out the
means, then the intercepts. �

• c. 3 points Set up an F-test testing whether the individual intercept parameters
are indeed different, by running two separate regressions on the restricted and the
unrestricted model and using the generic formula (42.1.4) for the F-test. Describe
how you would run the restricted and how the unrestricted model. Give the number
of constraints, the number of observations, and the number of coefficients in the
unrestricted model in terms of m, t, and k.

Answer. The unrestricted regression is the dummy variables regression which was described
here: first form DY and all the DXi, then run regression (64.3.9) without intercept, which is
already enough to get the SSEr.

Number of constraints is m − 1, number of observations is tm, and number of coefficients in
the unrestricted model is k +m. The test statistic is given in [JHG+88, (11.4.25) on p. 475]:

(64.3.14) F =
(SSEr − SSEu)/(m − 1)

SSEu/(mt −m− k)

�

• d. 3 points An alternative model specification is the variance components
model. Describe it as well as you can, and discuss situations when it would be more
appropriate than the model above.

Answer. If one believes that variances are similar, and if one is not interested in those par-
ticular firms in the sample, but in all firms. �

Problem 524. 3 points Enumerate as many commonalities and differences as
you can between the dummy variable model for pooling cross sectional and time series
data, and the seemingly unrelated regression model.

Answer. Both models involve different cross-sectional units in overlapping time intervals. In
the SUR model, the different equations are related through the disturbances only, while in the
dummy variable model, no relationship at all is going through the disturbances, all the errors are
independent! But in the dummy variable model, the equations are strongly related since all slope
coefficients are equal in the different equations, only the intercepts may differ. In the SUR model,
there is no relationship between the parameters in the different equations, the parameter vectors
may even be of differant lengths. Unlike [JHG+88], I would not call the dummy variable model a
special case of the SUR modiel, since I would no longer call it a SUR model if there are cross-equation
restrictions. �

64.4. Relation between the three Models so far:

The Dummy-Variable model can also be called the “within” model and the esti-
mation of the constrained model with grouped data is the “between”-model. [Gre97,
14.3.2] shows that the OLS estimator in the restricted model is a matrix-weighted
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average of the between-group and the within-group estimator. If all intercepts are
the same, then the between-model and the within-model are both inefficient, but in
complementary ways.

64.5. Variance Components Model (Random Effects)

The model can still be written as

(64.5.1) ysi = αi +

k∑

j=1

xsijβj + εsi s = 1, . . . , t, i = 1, . . . ,m

or

(64.5.2) Y = ια> +
[
X1β · · · Xmβ

]
+ E

with i.i.d. error terms ε whose variance is σ2
ε, but this time the αi are random too,

they are elements of the vector α ∼ (ιµ, σ2
αI) which is uncorrelated with E. Besides

β, the two main parameters to be estimated are µ and σ2
α, but sometimes one may

also want to predict α.
In our example of firms, this specification would be appropriate if we are not

interested in the fixed costs associated with the specific firms in our sample, but
want to know the mean and variance of the fixed costs for all firms.

With the definition δ = α−ιµ for the random part of the intercept term, (64.5.2)
becomes

(64.5.3) Y = ιι>µ+
[
X1β · · · Xmβ

]
+ ιδ> + E

The only difference between (64.1.3) and (64.5.3) is that the error term is now
ιδ> +E, which still has zero mean but no longer a spherical covariance matrix. The
columns of ιδ> + E are independent of each other, and each of the columns has the
same covariance matrix V , which is “equicorrelated”:

(64.5.4) V = σ2
αιι> + σ2

εIt =




σ2
α + σ2

ε σ2
α · · · σ2

α

σ2
α σ2

α + σ2
ε · · · σ2

α

...
...

. . .
...

σ2
α σ2

α · · · σ2
α + σ2

ε




Problem 525. 3 points Using Problems 612 and 613 show that the covariance
matrix of the error term in the random coefficients model (after the random part of
the intercept has been added to it) is V[vec(ιδ> + E)] = Im⊗V , where V is defined
in (64.5.4).

Answer. V[vec(ιδ> + E)] = V[vec(ιδ>) + vec(E)] = V[δ ⊗ ι + vec(E)]. Now V[δ ⊗ ι] =

V[δ] ⊗ ιι> = σ2
αIm ⊗ ιι>. Furthermore, V[vec(E)] = σ2

εItm = σ2
εIm ⊗ It. Since the two are

uncorrelated, their covariance matrices add, therefore

(64.5.5) V[vec(ιδ> + E)] = σ2
αIm ⊗ ιι> + σ2

εIm ⊗ It = Im ⊗ (σ2
αιι> + σ2

εIt) = Im ⊗ V
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�

Problem 526. One has m timeseries regressions yi = Xiβ + εi with the same
coefficient vector β. V [εi] = τ2ΣΣΣi, and for i 6= j, εi is independent of εj . For the
sake of the argument we assume here that all ΣΣΣi are known.

• a. 3 points Show that the BLUE in this model based on all observations is

(64.5.6)
ˆ̂
β =

(∑

i

X>
i ΣΣΣ−1

i Xi

)−1∑

i

X>
i ΣΣΣ−1

i yi

Answer. In vectorized form the model reads

(64.5.7)




y1

...
ym


 =




X1

...
Xm


β +




ε1

...
εm


 ;




ε1

...
εm


 ∼




o

...
o


 , τ2




ΣΣΣ1 · · · 0
...

. . .
...

0 · · · ΣΣΣm


 .

Therefore the GLSE is

(64.5.8)
ˆ̂
β =

([
X>

1 · · · X>
m

]



ΣΣΣ1 · · · O

.

..
. . .

.

..
O · · · ΣΣΣm




−1 


X1

.

..
Xm



)−1

[
X>

1 · · · X>
m

]



ΣΣΣ1 · · · O

...
. . .

...
O · · · ΣΣΣm




−1


y1

...
ym


 .

One can take the inverses block by block, and gets the above. �

• b. 1 point Show that this is a matrix-weighted average of the BLUE’s in the
individual timeseries regressions, with the inverses of the covariance matrices of these
BLUE’s as the weighting matrices.

Answer. Simple because

(64.5.9)
ˆ̂
β =

(∑

i

X>
i ΣΣΣ−1

i Xi

)−1∑

i

X>
i ΣΣΣ−1

i Xi

(
X>
i ΣΣΣ−1

i Xi

)−1

X>
i ΣΣΣ−1

i yi

�

Since the columns of ιδ>+E are independent and have equal covariance matrices,
it is possible to transform ιδ> + E into a matrix of uncorrelated and homoskedastic
error terms by simply premultiplying it by a suitable transformation matrix P . The
following amazing bit of matrix algebra helps us to compute P :

Problem 527. 4 points Assume ΩΩΩ is a symmetric idempotent matrix. Show that
for ν 6= 0 and ω 6= −ν, the matrix νI + ωΩΩΩ has the inverse 1

ν I + ( 1
ν+ω − 1

ν )ΩΩΩ, and

that the square root of this inverse is 1√
ν
I + ( 1√

ν+ω
− 1√

ν
)ΩΩΩ.
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The connection between the dummy variable model and the error components
model becomes most apparent if we scale P such that P V P > = σ2

εI , i.e., P is the
square root of the inverse of V /σ2

ε. In Problem 527 we must therefore set ΩΩΩ = ιι>/t,
ν = 1, and ω = tσ2

α/σ
2
ε. The matrix which diagonalizes the error covariance matrix

is therefore

(64.5.10) P = I − γ
ιι>

t
where γ = 1 −

√
σ2

ε/t

σ2
ε/t+ σ2

α

Problem 528. 4 points Using (64.5.10) double-check that every column of PW

is spherically distributed.

Answer. Since Pι = ι(1−γ), Pwi = ιδi(1−γ)+P εi and V[Pwi] = ισ2
α

σ2
ε/t

σ2
ε/t+σ

2
α

ι>+σ2
εPP>.

Now PP> = I + ι
γ2−2γ
t

ι>, and

(64.5.11) γ2 − 2γ = (1 − γ)2 − 1 =
−σ2

α

σ2
ε/t+ σ2

α

Therefore

(64.5.12) σ2
εPP> = σ2

εI + ισ2
ε/t(γ

2 − 2γ)ι> = σ2
εI − ι

σ2
ασ

2
ε/t

σ2
ε/t+ σ2

α

ι>

and V[Pwi] = σ2
ε . �

Problem 529. 1 point Show that Pι = ι(1− γ) and that the other eigenvectors
of P are exactly the vectors the elements of which sum to 0, with the eigenvalues 1.
Derive from this the determinant of P .

Answer. Pι = (I − γ ιι>

t
)ι = ι(1 − γ). Now if a vector a satisfies ι>a = 0, then Pa = a.

Since there are t − 1 independent such vectors, this gives all eigenvectors. det(P ) = 1 − γ (the
product of all eigenvalues). �

Problem 530. 3 points Now write down this likelihood function, see [Gre97,
exercise 4 on p. 643].

Answer. Assuming normality, the ith column vector is yi ∼ N(ιµ + Xiβ,V ) and different

columns are independent. Since V [Pwi] = PV P> = σ2
εI it follows det(V ) = σ2t

ε (det P )−2.
Therefore the density function is

fY (Y ) =

m∏

i=1

(
(2π)−t/2(det V )−1/2 exp

(
−1

2
(yi − ιµ+ Xiβ)>V −1(yi − ιµ+ Xiβ)

))

= (2π)−mt/2(σ2
ε)−mt/2 |1 − γ|m exp

(
−1

2

m∑

i=1

(yi − ιµ+ Xiβ)>V −1(yi − ιµ + Xiβ)
)
.(64.5.13)

�

710 64. POOLING OF CROSS SECTION AND TIME SERIES DATA

Comparing this P with the D which we used to transform the dummy variable
model, we see: instead of subtracting the mean from every column, we subtract γ
times the mean from every column. This factor γ approaches 1 as t increases and as
σ2
α increases. If one premultiplies (64.5.3) by P one gets

(64.5.14) P Y = (1 − γ)ιι>µ+
[
P X1β · · · P Xmβ

]
+ (1 − γ)ιδ> + PE

and after vectorization this reads

(64.5.15)



Py1

...
Pyt


 = (1 − γ)



ι
...
ι


µ+




PX1

...
PXm


β + spherical disturbances.

For estimation it is advantageous to write it as

(64.5.16)




Py1

...
Pyt


 =



ι P X1

...
...

ι P Xm



[
(1 − γ)µ

β

]
+ spherical disturbances,

To sum up, if one knows γ, one can construct P and has to apply P to Y and all
Xi and then run a regression with an intercept. The estimate of µ is this estimated
intercept divided by 1 − γ.

How can we estimate the variances? There is a rich literature about estimation
of the variances in variance component models. ITPE gives a very primitive but
intuitive estimator. An estimate of σ2

ε can be obtained from the dummy variable
model, since the projection operator in (64.3.9) removes α together with its error
term.

Information about σ2
α can be obtained from the variance from the “between”-

regression which one gets by premultiplying (64.5.3) by 1
t ι

>. Defining ȳ> = 1
t ι

>Y ,

i.e., ȳ> is the row vector consisting of the column means, and in the same way
x̄>
i = 1

t ι
>Xi and ε̄> = 1

t ι
>E, one obtains

(64.5.17)

ȳ> = µι>+
[
x̄>

1 β · · · x̄>
mβ
]
+δ>+ε̄> = µι>+(X̄β)>+δ>+ε̄> where X̄ =




x̄>
1
...

x̄>
m


 .

If one transposes this one obtains ȳ = ιµ+ X̄β + δ + ε̄.
Here the error term δ + ε̄ is the sum of two spherically distributed independent

error terms, thefore it is still spherically distributed, and its variance, call it σ2
w,

is σ2
w = σ2

α + σ2
ε/t. In terms of σ2

ε and σ2
w, the factor γ can be written as γ =

1 −
√
σ2

ε/(tσ
2
w). Unfortunately it is possible that the estimate s2

w − s2
ε/t < 0, which

implies a negative estimate for σ2
α.
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Problem 531. 4 points Several times we have encountered the problem that
estimated variances may be negative, or that an estimated covariance matrix may
not be nonnegative definite. In which cases is this true, and how can it come about?

Answer. One can get guarantee for nnd covariance matrix estimates only if the covariance
matrix is estimated as a whole, for instance in the SUR model with equal numbers of observations
in each equation, in which the covariance matrix is estimated as the sample covariance matrix of the

residuals. If the covariance matrix is not estimated as one, but piece by piece, as for instance in the
SUR model when the number of observations varies, or in the random coefficients model, then nnd is
no longer guaranteed. Individual variances can obtain negative estimates when the formula for the
variance contains several parameters which are estimated separately. In the variance components
model, the variance is estimated as the difference between two other variances, which are estimated
separately so that there is no guarantee that their difference is nonnegative. If the estimated ρ in
an AR1-process comes out to be greater than 1, then the estimated covariance matrix is no longer
nnd, and the formula var[ε] = var[v]/(1 − ρ2) yields negative variances. �

64.5.1. Testing. The variance component model relies on one assumption which
is often not satisfied: the errors in α and the errors in E must be uncorrelated. If
this is not the case, then the variance components estimator suffers from omitted
variables bias. Hausman used this as a basis for a test: if the errors are uncorrelated,
then the GLS is the BLUE, and the Dummy variable estimator is consistent, but
not efficient. If the errors are correlated, then the Dummy variables estimator is still
consistent, but the GLS is no longer BLUE. I.e., one should expect that the differ-
ence between these estimators is much greater when the error terms are correlated.
And under the null hypothesis that the error terms are orthogonal, there is an easy
way to get the covariance matris of the estimators: since the GLS is BLUE and the
other estimator is unbiased, the dispersion matrix of the difference of the estimators
is the difference of their dispersion matrices. For more detail see [Gre97, 14.4.4].



CHAPTER 65

Disturbance Related (Seemingly Unrelated)
Regressions

One has m timeseries regression equations yi = Xiβi + εi. Everything is dif-
ferent: the dependent variables, the explanatory variables, the coefficient vectors.
Even the numbers of the observations may be different, The ith regression has ki
explanatory variables and ti observations. They may be time series covering dif-
ferent but partly overlapping time periods. This is why they are called “seemingly
unrelated” regressions. The only connection between the regressions is that for those
observations which overlap in time the disturbances for different regressions are con-
temperaneously correlated, and these correlations are assumed to be constant over
time. In tiles, this model is

(65.0.18)

tm Y

m

=

tm X km B

∆

m

+

tm E

m

65.1. The Supermatrix Representation

One can combine all these regressions into one big “supermatrix” as follows:

(65.1.1)




y1

y2

...
ym


 =




X1 O · · · O

O X2 · · · O
...

...
. . .

...
O O · · · Xm







β1

β2
...

βm


+




ε1

ε2

...
εm
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The covariance matrix of the disturbance term in (65.1.1) has the following “striped”
form:

(65.1.2) V[




ε1

ε2

...
εm


] =




σ11I11 σ12I12 · · · σ1mI1m

σ21I21 σ22I22 · · · σ2mI2m

...
...

. . .
...

σm1Im1 σm2Im2 · · · σmmImm




Here I ij is the ti × tj matrix which has zeros everywhere except at the intersections
of rows and columns denoting the same time period.

In the special case that all time periods are identical, i.e., all ti = t, one can
define the matrices Y =

[
y1 · · · ym

]
and E =

[
ε1 · · · εm

]
, and write the

equations in matrix form as follows:

(65.1.3) Y =
[
X1β1 . . . Xmβm

]
+ E = H(B) + E

The vector of dependent variables and the vector of disturbances in the supermatrix
representation (65.1.1) can in this special case be written in terms of the vectorization
operator as vecY and vecE. And the covariance matrix can be written as a Kronecker
product: V[vecE] = ΣΣΣ ⊗ I , since all I ij in (65.1.2) are t × t identity matrices. If
t = 5 and m = 3, the covariance matrix would be



σ11 0 0 0 0 σ12 0 0 0 0 σ13 0 0 0 0
0 σ11 0 0 0 0 σ12 0 0 0 0 σ13 0 0 0
0 0 σ11 0 0 0 0 σ12 0 0 0 0 σ13 0 0
0 0 0 σ11 0 0 0 0 σ12 0 0 0 0 σ13 0
0 0 0 0 σ11 0 0 0 0 σ12 0 0 0 0 σ13

σ21 0 0 0 0 σ22 0 0 0 0 σ23 0 0 0 0
0 σ21 0 0 0 0 σ22 0 0 0 0 σ23 0 0 0
0 0 σ21 0 0 0 0 σ22 0 0 0 0 σ23 0 0
0 0 0 σ21 0 0 0 0 σ22 0 0 0 0 σ23 0
0 0 0 0 σ21 0 0 0 0 σ22 0 0 0 0 σ23

σ31 0 0 0 0 σ32 0 0 0 0 σ33 0 0 0 0
0 σ31 0 0 0 0 σ32 0 0 0 0 σ33 0 0 0
0 0 σ31 0 0 0 0 σ32 0 0 0 0 σ33 0 0
0 0 0 σ31 0 0 0 0 σ32 0 0 0 0 σ33 0
0 0 0 0 σ31 0 0 0 0 σ32 0 0 0 0 σ33




If in addition all regressions have the same number of regressors, one can combine
the coefficients into a matrix B and can write the system as

(65.1.4) vecY = Z vecB + vecE vecE ∼ (o,ΣΣΣ ⊗ I),

where Z contains the regressors arranged in a block-diagonal “supermatrix.”
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If one knows ΣΣΣ up to a multiplicative factor, and if all regressions cover the same
time period, then one can apply (26.0.2) to (65.1.4) to get the following formula for
the GLS estimator and at the same time maximum likelihood estimator:

(65.1.5) vec(B̂) =
(
Z>(ΣΣΣ−1 ⊗ I)Z

)−1
Z>(ΣΣΣ−1 ⊗ I) vec(Y).

To evaluate this, note first that Z>(ΣΣΣ−1 ⊗ I) =




X>
1 O · · · O

O X>
2 · · · O

...
...

. . .
...

O O · · · X>
m







σ11I σ12I · · · σ1mI

σ21I σ22I · · · σ2mI
...

...
. . .

...
σm1I σm2I · · · σmmI


 =



σ11X>

1 · · · σ1mX>
1

...
. . .

...

σm1X>
m · · · σmmX>

m




where σij are the elements of the inverse of ΣΣΣ, therefore

(65.1.6)




β̂1

...

β̂m


 =



σ11X>

1 X1 · · · σ1mX>
1 Xm

...
. . .

...

σm1X>
mX1 · · · σmmX>

mXm




−1 


X>
1

∑m
i=1 σ

1iyi
...

X>
m

∑m
i=1 σ

miyi


 .

In the seemingly unrelated regression model, OLS on each equation singly is therefore
less efficient than an approach which estimates all the equations simultaneously. If
the numbers of observations in the different regressions are unequal, then the formula
for the GLSE is no longer so simple. It is given in [JHG+88, (11.2.59) on p. 464].

65.2. The Likelihood Function

We know therefore what to do in the hypothetical case that ΣΣΣ is known. What
if it is not known? We will derive here the maximum likelihood estimator. For the
exponent of the likelihood function we need the following mathematical tool:

Problem 532. Show that
∑t
s=1 a>

s ΩΩΩas = tr A>ΩΩΩA where A =
[
a1 . . . at

]
.

Answer.

A>ΩΩΩA =




a>
1
...

a>
t


ΩΩΩ
[
a1 . . . at

]
=

[
a>

1 ΩΩΩa1 a>
1 ΩΩΩa2 · · · a>

1 ΩΩΩat
a>

2 ΩΩΩa1 a>
2 ΩΩΩa2 · · · a>

2 ΩΩΩat
a>
t ΩΩΩa1 a>

t ΩΩΩa2 · · · a>
t ΩΩΩat

]

Now take the trace of this. �
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To derive the likelihood function, define the matrix function H(B) as follows:
H(B) is a t×m matrix the ith column of which is X iβi, i.e., H(B) as a column-
partitioned matrix is H(B) =

[
X1β1 · · · Xmβm

]
. In tiles,

(65.2.1) H(B) =

tm X km B

∆

m

The above notation follows [DM93, 315–318]. [Gre97, p. 683 top] writes this
same H as the matrix product

(65.2.2) H(B) = ZΠ(B)

where Z has all the different regressors in the different regressions as columns (it is
Z =

[
X1 · · · Xn

]
with duplicate columns deleted), and the ith column of Π has

zeros for those regressors which are not in the ith equation, and elements of B for
those regressors which are in the ith equation.

Using H, the model is simply, as in (65.0.18),

(65.2.3) Y = H(B) + E, vec(E) ∼ N(o,ΣΣΣ ⊗ I)

This is a matrix generalization of (56.0.21).
The likelihood function which we are going to derive now is valid not only for

this particular H but for more general, possibly nonlinear H. Define ηs(B) to be
the sth row of H , written as a column vector, i.e., as a row-partitioned matrix we

have H(B) =



η>

1 (B)
...

η>
t (B)


. Then (65.2.3) in row-partitioned form reads

(65.2.4)




y>
1
...

y>
t


 =




η>
1 (B)

...
η>
t (B)


+



ε>
1
...

ε>
t




We assume Normality, the sth row vector is y>
s ∼ N(η>

s (B),ΣΣΣ), or ys ∼ N(ηs(B),ΣΣΣ),
and we assume that different rows are independent. Therefore the density function
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is

fY(Y ) =

t∏

s=1

(
(2π)−m/2(detΣΣΣ)−1/2 exp

(
−1

2
(ys − ηs(B))>ΣΣΣ−1(ys − ηs(B))

))

= (2π)−mt/2(detΣΣΣ)−t/2 exp
(
−1

2

∑

s

(ys − ηs(B))>ΣΣΣ−1(ys − ηs(B))
)

= (2π)−mt/2(detΣΣΣ)−t/2 exp
(
−1

2
tr(Y − H(B))ΣΣΣ−1(Y − H(B))>

)

= (2π)−mt/2(detΣΣΣ)−t/2 exp
(
−1

2
tr(Y − H(B))>(Y − H(B))ΣΣΣ−1).(65.2.5)

Problem 533. Expain exactly the step in the derivation of (65.2.5) in which the
trace enters.

Answer. Write the quadratic form in the exponent as follows:

t∑

s=1

(ys − ηs(B))>ΣΣΣ−1(ys − ηs(B)) =

t∑

s=1

tr(ys − ηs(B))>ΣΣΣ−1(ys − ηs(B))

(65.2.6)

=

t∑

s=1

trΣΣΣ−1(ys − ηs(B))(ys − ηs(B))>(65.2.7)

= trΣΣΣ−1

t∑

s=1

(ys − ηs(B))(ys − ηs(B))>(65.2.8)

= trΣΣΣ−1
[
(y1 − η1(B)) · · · (yt − ηt(B))

]



(y1 − η1(B))>

...
(yt − ηt(B))>


(65.2.9)

= trΣΣΣ−1(Y − H(B))>(Y − H(B))(65.2.10)

�

The log likelihood function `(Y ; B,ΣΣΣ) is therefore

(65.2.11) ` = −mt
2

log 2π − t

2
log detΣΣΣ − 1

2
tr(Y − H(B))>(Y − H(B))ΣΣΣ−1.

In order to concentrate out ΣΣΣ it is simpler to take the partial derivatives with respect
to ΣΣΣ−1 than those with respect to ΣΣΣ itself. Using the matrix differentiation rules
(C.1.24) and (C.1.16) and noting that −t/2 log detΣΣΣ = t/2 log detΣΣΣ−1 one gets:

(65.2.12)
∂`

∂ΣΣΣ−1 =
t

2
ΣΣΣ − 1

2
(Y − H(B))>(Y − H(B)),
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and if we set this zero we get

(65.2.13) Σ̂(B) =
1

t
(Y − H(B))>(Y − H(B)).

Written row vector by row vector this is

(65.2.14) Σ̂ =
1

t

t∑

s=1

(ys − ηs(B))(ys − ηs(B))>

The maximum likelihood estimator of ΣΣΣ is therefore simply the sample covariance
matrix of the residuals taken with the maximum likelihood estimates of B.

We know therefore what the maximum likelihood estimator of ΣΣΣ is if B is known:
it is the sample covariance matrix of the residuals. And we know what the maximum
likelihood estimator of B is if ΣΣΣ is known: it is given by equation (65.1.6). In such a
situation, one good numerical method is to iterate: start with an initial estimate of
ΣΣΣ (perhaps from the OLS residuals), get from this an estimate of B, then use this
to get a second estimate of ΣΣΣ, etc., until it converges. This iterative scheme is called
iterated Zellner or iterated SUR. See [Ruu00, p. 706], the original article is [Zel62].

65.3. Concentrating out the Covariance Matrix (Incomplete)

One can rewrite (65.2.11) using (65.2.13) as a definition:

(65.3.1) ` = −mt
2

log 2π − t

2
log detΣΣΣ − t

2
trΣΣΣ−1Σ̂

and therefore the concentrated log likelihood function is, compare [Gre97, 15-53 on
p. 685]:

`c = −mt
2

log 2π − t

2
log det Σ̂ − t

2
tr Σ̂

−1
Σ̂

= −mt
2

(1 + log 2π) − t

2
log det Σ̂(B).(65.3.2)

This is an important formula which is valid for all the different models, including
nonlinear models, which can be written in the form (65.2.3).

As a next step we will write, following [Gre97, p. 683], H(B) = ZΠ(B) and
derive the following formula from [Gre97, p. 685]:

(65.3.3)
∂`c

∂Π> = Σ̂
−1

(Y − ZΠ)>Z

Here is a derivation of this using tile notation. We use the notation Ê = Y −H(B)
for the matrix of residuals, and apply the chain rule to get the derivatives:

(65.3.4)
∂`c

∂Π> =
∂`c

∂Σ̂
>
∂Σ̂

∂Ê
>
∂Ê

∂Π>
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The product here is not a matrix product but the concatenation of a matrix with
three arrays of rank 4. In tile notation, the first term in this product is

(65.3.5)
∂`c

∂Σ̂
> = ∂ `c /∂ Σ̂ =

t

2
Σ̂

−1

This is an array of rank 2, i.e., a matrix, but the other factors are arrays of rank 4:
Using (C.1.22) we get

∂Σ̂

∂Ê
> = ∂ Σ̂

/
∂ Ê =

1

t
∂

Ê

Ê

/
∂ Ê =

=
1

t

X

+
1

t

X

Finally, by (C.1.18),

∂Ê

∂Π> = ∂

Z

Π

/
∂ Π =

Z

Putting it all together, using the symmetry of the first term (65.3.5) (which has the
effect that the term with the crossing arms is the same as the straight one), gives

∂`c

∂Π> = ∂ `c / ∂ Π =
Ê Z

Σ̂
−1

which is exactly (65.3.3).

65.4. Situations in which OLS is Best

One of the most amazing results regarding seemingly unrelated regressions is:
if the X matrices are identical, then it is not necessary to do GLS, because OLS
on each equation separately gives exactly the same result. Question 534 gives three
different proofs of this:
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Problem 534. Given a set of disturbance related regression equations

(65.4.1) yi = Xβi + εi i = 1, . . .m

in which all X i are equal to X, note that equation (65.4.1) has no subscript at the
matrices of explanatory variables.

• a. 1 point Defining Y =
[
y1 · · · ym

]
, B =

[
β1 · · · βm

]
and E =[

ε1 · · · εm
]
, show that the m equations (65.4.1) can be combined into the sin-

gle matrix equation

(65.4.2) Y = XB + E.

Answer. The only step needed to show this is that XB, column by column, can be written

XB =
[
Xβ1 . . . Xβm

]
. �

• b. 1 point The contemporaneous correlations of the disturbances can now be
written vec(E) ∼ (o,ΣΣΣ ⊗ I).

• c. 4 points For this part of the Question you will need the following properties
of vec and ⊗: (A⊗B)> = A>⊗B>, (A⊗B)(C⊗D) = (AC)⊗(BD), (A⊗B)−1 =
A−1 ⊗ B−1, vec(A + B) = vec(A) + vec(B), and finally the important identity

((B.5.19)) vec(ABC) = (C> ⊗ A) vec(B).

By applying the vec operator to (65.4.2) show that the BLUE of the matrix B is

B̂ = (X>X)−1X>Y , i.e., show that, despite the fact that the dispersion matrix is
not spherical, one simply has to apply OLS to every equation separately.

Answer. Use (B.5.19) to write (65.4.2) in vectorized form as

vec(Y) = (I ⊗ X) vec(B) + vec(E)

Since V[vec(E)] = ΣΣΣ ⊗ I, the GLS estimate is

vec(B̂) =

(
(I ⊗ X)>(ΣΣΣ ⊗ I)−1(I ⊗ X)

)−1

(I ⊗ X)>(ΣΣΣ ⊗ I)−1 vec(Y)

=

(
(I ⊗ X>)(ΣΣΣ−1 ⊗ I)(I ⊗ X)

)−1

(I ⊗ X>)(ΣΣΣ−1 ⊗ I) vec(Y)

=

(
ΣΣΣ−1 ⊗ X>X

)−1

(ΣΣΣ−1 ⊗ X>) vec(Y)

=

(
I ⊗ (X>X)−1X>

)
vec(Y)

and applying (B.5.19) again, this is equivalent to

B̂ = (X>X)−1X>Y .(65.4.3)

�

• d. 3 points [DM93, p. 313] appeals to Kruskal’s theorem, which is Question
499, to prove this. Supply the details of this proof.
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Answer. Look at the derivation of (65.4.3) again. The ΣΣΣ−1 in numerator and denominator
cancel out since they commute with Z. defining ΩΩΩ = ΣΣΣ ⊗ I , this “commuting” is the formula
ΩΩΩZ = ZK for some K, i.e.,

(65.4.4)



σ11I . . . σ1mI

...
. . .

...
σm1I . . . σmmI






X . . . 0
...

. . .
...

0 . . . X


 =




X . . . 0
...

. . .
...

0 . . . X





σ11I . . . σ1mI

...
. . .

...
σm1I . . . σmmI


 .

Note that the I on the lefthand side are m×m, and those on the right are k×k. This “commuting”
allows us to apply Kruskal’s theorem. �

• e. 4 points Theil [The71, pp. 500–502] gives a different proof: he maximizes
the likelihood function of Y with respect to B for the given ΣΣΣ, using the fact that the

matrix of OLS estimates B̂ has the property that (Y − XB̂)>(Y − XB̂) is by a
nnd matrix smaller than any other (Y − XB)>(Y −XB). Carry out this proof in
detail.

Answer. Let B = B̂+A; then (Y −XB)>(Y −XB) = (Y −XB̂)>(Y −XB̂)+A>X>XA

because the cross product terms A>X>(Y − XB̂) = O since B̂ satisfies the normal equation

X>(Y − XB̂) = O.
Instead of maximizing the likelihood function with respect to B and ΣΣΣ simultaneously, Theil

in [The71, p. 500–502] only maximizes it with respect to B for the given ΣΣΣ and finds a solution
which is independent of ΣΣΣ. The likelihood function of Y is (65.2.5) with H(B) = XB, i.e.,

(65.4.5) fY (Y ) = (2π)−tm/2(detΣΣΣ)−t/2 exp
(
−1

2
trΣΣΣ−1(Y − XB))>(Y − XB)

)

The trace in the exponent can be split up into tr(ΣΣΣ−1(Y − XB̂)>(Y − XB̂) + trΣΣΣ−1X>X>XA;

but this last term is equal to tr XAΣΣΣ−1A>X>, which is ≥ 0. �

Joint estimation has therefore the greatest efficiency gains over OLS if the cor-
relations between the errors are high and the correlations between the explanatory
variables are low.

Problem 535. Are following statements true or false?

• a. 1 point In a seemingly unrelated regression framework, joint estimation of
the whole model is much better than estimation of each equation singly if the errors
are highly correlated. True or false?

Answer. True �

• b. 1 point In a seemingly unrelated regression framework, joint estimation
of the whole model is much better than estimation of each equation singly if the
independent variables in the different regressions are highly correlated. True or false?

Answer. False. �
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Assume I have two equations whose disturbances are correlated, and the second
has all variables that the first has, plus some additional ones. Then the inclusion
of the second equation does not give additional information for the first; however,
including the first gives additional information for the second!

What is the rationale for this? Since the first equation has fewer variables than
the second, I know the disturbances better. For instance, if the equation would
not have any variables, then I would know the disturbances exactly. But if I know
these disturbances, and know that they are correlated with the disturbances of the
second equation, then I can also say something about the disturbances of the second
equation, and therefore estimate the parameters of the second equation better.

Problem 536. You have two disturbance-related equations

(65.4.6) y1 = X1β1 + ε1, y2 = X2β2 + ε2,

[
ε1

ε2

]
∼
[
o

o

]
,

[
σ11 σ12

σ21 σ22

]
⊗ I

where all σij are known, and the set of explanatory variables in X1 is a subset of
those in X2. One of the following two statements is correct, the other is false. Which
is correct? (a) in order to estimate β1, OLS on the first equation singly is as good
as SUR. (b) in order to estimate β2, OLS on the second equation singly is as good
as SUR. Which of these two is true?

Answer. The first is true. One cannot obtain a more efficient estimator of β1 by considering
the whole system. This is [JGH+85, p. 469]. �

65.5. Unknown Covariance Matrix

What to do when we don’t know ΣΣΣ? Two main possibilities: One is “feasible
GLS”, which uses the OLS residuals to estimate ΣΣΣ, and then uses the GLS formula
with the estimated elements of ΣΣΣ. This is the most obvious method; unfortunately
if the numbers of observations are unequal, then this may no longer give a nonneg-
ative definite matrix. The other is the maximum likelihood estimation of B and ΣΣΣ
simultaneously. If one iterates the “feasible GLS” method, i.e., uses the residuals of
the feasible GLS equation to get new estimates of ΣΣΣ, then does feasible GLS with
the new ΣΣΣ, etc., then one will get the maximum likelihood estimator.

Problem 537. 4 points Explain how to do iterated EGLS (i.e., GLS with an
estimated covariance matrix) in a model with first-order autoregression, and in a
seemingly unrelated regression model. Will you end up with the (normal) maximum
likelihood estimator if you iterate until convergence?

Answer. You will only get the Maximum Likelihood estimator in the SUR case, not in the
AR1 case, because the determinant term will never come in by iteration, and in the AR1 case, EGLS
is known to underestimate the ρ. Of course, iterated EGLS is in both situations asymtotically as
good as Maximum Likelihood, but the question was whether it is in small samples already equal to

the ML. You can have asymptotically equivalent estimates which differ greatly in small samples. �
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Asymptotically, feasible GLS is as good as Maximum likelihood. This is really
nothing new and nothing exciting. The two estimators may have quite different
properties before the asymptotic limit is reached! But there is another, much stronger
result: already for finite sample size, iterated feasible GLS is equal to the maximum
likelihood estimator.

Problem 538. 5 points Define “seemingly unrelated equations” and discuss the
estimation issues involved.



CHAPTER 66

Simultaneous Equations Systems

This was a central part of econometrics in the fifties and sixties.

66.1. Examples

[JHG+88, 14.1 Introduction] gives examples. The first example is clearly not
identified, indeed it has no exogenous variables. But the idea of a simultaneous
equations system is not dependent on this:

yd = ια+ pβ + ε1(66.1.1)

ys = ιγ + pδ + ε2(66.1.2)

yd = ys(66.1.3)

yd, ys, and p are the jointly determined endogenous variables. The first equation
describes the behavior of the consumers, the second the behavior of producers.

Problem 539. [Gre97, p. 709 ff]. Here is a demand and supply curve with q

quantity, p price, y income, and ι is the vector of ones. All vectors are t-vectors.

q = α0ι + α1p + α2y + εd εd ∼ (o, σ2
dI) (demand)(66.1.4)

q = β0ι + β1p + εs εs ∼ (o, σ2
sI) (supply)(66.1.5)

εd and εs are independent of y, but amongst each other they are contemporaneously
correlated, with their covariance constant over time:

(66.1.6) cov[εdt, εsu] =

{
0 if t 6= u

σds if t = u

• a. 1 point Which variables are exogenous and which are endogenous?

Answer. p and q are called jointly dependent or endogenous. y is determined outside the
system or exogenous. �
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• b. 2 points Assuming α1 6= β1, verify that the reduced-form equations for p

and q are as follows:

p =
α0 − β0

β1 − α1
ι +

α2

β1 − α1
y +

εd − εs

β1 − α1
(66.1.7)

q =
β1α0 − β0α1

β1 − α1
ι +

β1α2

β1 − α1
y +

β1εd − α1εs

β1 − α1
(66.1.8)

Answer. One gets the reduced form equation for p by simply setting the righthand sides
equal:

β0ι + β1p + εs = α0ι + α1p + α2y + εd

(β1 − α1)p = (α0 − β0)ι + α2y + εd − εs,

hence (66.1.7). To get the reduced form equation for q, plug that for p into the supply function
(one might also plug it into the demand function but the math would be more complicated):

q = β0ι + β1p + εs = β0ι +
β1(α0 − β0)

β1 − α1
ι +

β1α2

β1 − α1
y +

β1(εd − εs)

β1 − α1
+ εs

Combining the first two and the last two terms gives (66.1.8). �

• c. 2 points Show that one will in general not get consistent estimates of the
supply equation parameters if one regresses q on p (with an intercept).

Answer. By (66.1.7) (the reduced form equation for p), cov[εst,pt] = cov[εst,
εdt−εst

β1−α1
] =

σsd−σ2
s

β1−α1
. This is generally 6= 0, therefore inconsistency. �

• d. 2 points If one estimates the supply function by instrumental variables, using
y as an instrument for p and ι as instrument for itself, write down the formula for
the resulting estimator β̃1 of β1 and show that it is consistent. You are allowed to
use, without proof, equation (52.0.12).

Answer. β̃1 =
1
n

∑
(yi−ȳ)(qi−q̄)

1
n

∑
(yi−ȳ)(pi−p̄)

. Its plim is
cov[y,q]
cov[y,p]

=
β1α2 var[y]/(β1−α1)
α2 var[y]/(β1−α1)

= β1. These

covariances were derived from (66.1.7) and (66.1.8). �

• e. 2 points Show that the Indirect Least Squares estimator of β1 is identical to
the instrumental variables estimator.

Answer. For indirect least squares one estimates the two reduced form equations by OLS:

the slope parameter in (66.1.7),
α2

β1 − α1
, estimated by

∑
(yi − ȳ)(pi − p̄)∑

(yi − ȳ)2
;

the slope parameter in (66.1.8),
β1α2

β1 − α1
, estimated by

∑
(yi − ȳ)(qi − q̄)∑

(yi − ȳ)2
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Divide to get

β1 estimated by

∑
(yi − ȳ)(qi − q̄)∑
(yi − ȳ)(pi − p̄)

which is the same β̃1 as in part d. �

• f. 1 point Since the error terms in the reduced form equations are contem-
poraneously correlated, wouldn’t one get more precise estimates if one estimates the
reduced form equations as a seemingly unrelated system, instead of OLS?

Answer. Not as long as one does not impose any constraints on the reduced form equations,
since all regressors are the same. �

• g. 2 points We have shown above that the regression of q on p does not give
a consistent estimator of β1. However one does get a consistent estimator of β1 if
one regresses q on the predicted values of p from the reduced form equation. (This
is 2SLS.) Show that this estimator is also the same as above.

Answer. This gives β̃1 =

∑
(qi−q̄)(p̂i−p̄)∑

(p̂i−p̄)2
. Now use p̂i − p̄ = π̂1(yi − ȳ) where π̂1 =

∑ (pi−p̄)(yi−ȳ)∑
(yi−ȳ)2

. Therefore β̃ = π̂1

∑
(qi−q̄)(yi−ȳ)

π̂2
1

∑
(yi−ȳ)2

=

∑
(yi−ȳ)(qi−q̄)∑
(yi−ȳ)(pi−p̄)

again. �

• h. 1 point So far we have only discussed estimators of the parameters in the
supply function. How would you estimate the demand function?

Answer. You can’t. The supply function can be estimated because it stays put while the
demand function shifts around, therefore the observed intersection points lie on the same supply
function but different demand functions. The demand function itself cannot be estimated, it is
underidentified in this system. �

Here is an example from [WW79, 257–266]. Take a simple Keynesian income-
expenditure model of a consumption function with investment i exogenous:

c = α+ βy + ε(66.1.9)

y = c + i(66.1.10)

Exogenous means: determined outside the system. By definition this always means:
it is independent of all the disturbance terms in the equations (here there is just one
disturbance term). Then the first claim is: y is correlated with ε, because y and
c are determined simultaneously once i and ε is given, and both depend on i and
ε. Let us do that in more detail and write the reduced form equation for y. That
means, let us express y in terms of the exogenous variable and the disturbances only.
Plug c = y − i into (66.1.9) to get

y − i = α+ βy + ε(66.1.11)

or y(1 − β) = α+ i + ε(66.1.12)
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This gives the reduced form equations

y =
α

1 − β
+

1

1 − β
i +

1

1 − β
ε(66.1.13)

and c = y − i =
α

1 − β
+

β

1 − β
i +

1

1 − β
ε(66.1.14)

From this one can see

cov(y, ε) = 0 + 0 +
1

1 − β
cov(ε, ε) =

σ2

1 − β
(66.1.15)

Therefore OLS applied to equation (66.1.9) gives inconsistent results.

Problem 540. 4 points Show that OLS applied to equation (66.1.9) gives an
estimate which is in the plim larger than the true β.

Answer.

(66.1.16) plim β̂ =
cov[y, c]

var[y]
=

β
(1−β)2

var[i] + 1
(1−β)2

var[ε]

1
(1−β)2

var[i] + 1
(1−β)2

var[ε]
=

=
β var[i] + var[ε]

var[i] + var[ε]
= β +

(1 − β) var[ε]

var[i] + var[ε]
> β

�

One way out is to estimate with instrumental variables. The model itself provides
an instrument for y, namely, the exogenous variable i.

As an alternative one might also estimate the reduced form equation (66.1.13)

and then get the structural parameters from that. I.e., let â and b̂ be the regression
coefficients of (66.1.13). Then one can set, for the slope parameter β,

(66.1.17) b̂ =
1

1 − β̂
or β̂ =

b̂− 1

b̂
.

This estimation method is called ILS, indirect least squares, because the estimates
were obtained indirectly, by estimating the reduced form equations.

Which of these two estimation methods is better? It turns out that they are

exactly the same. Proof: from b̂ = ĉov(y, i)/v̂ar(i) follows

(66.1.18) β̂ =
b̂− 1

b̂
=

ĉov(y, i) − v̂ar(i)

ĉov(y, i)
=

ĉov(c, i)

ĉov(y, i)
.
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66.2. General Mathematical Form

Definition of Important Terms:

• endogenous
• exogenous
• Lagged endogenous
• Exogenous and lagged endogenous together are called predetermined.
• Nonobservable random errors, uncorrelated with exogenous variables and

contemperaneously uncorrelated with predetermined variables.

What to consider when building an economic model:

• classification of economic variables (whether endogenous or exogenous)
• which variables enter which equation
• possible lags involved
• nonsample information about a single parameter or combination of param-

eters
• how many equations (structural equations) there should be and how the

system should be “closed”
• algebraic form of the equations, also the question in which scales (logarith-

mic scale, prices or inverse prices, etc.) the variables are to be measured.
• distribution of the random errors

A general mathematical form for a simultaneous equations system is

(66.2.1) YΓ = XB + E

If one splits Y , X, and E into their columns one gets

[
y1 . . . ym

]


γ11 . . . γ1m

...
. . .

...
γM1 . . . γmm


 =

=
[
x1 . . . xk

]


β11 . . . β1m

...
. . .

...
βK1 . . . βkm


+

[
ε1 . . . εm

]

The standard assumptions are that E [E|X] = O and V [vecE|X] = ΣΣΣ ⊗ I with an
unknown nonsingular ΣΣΣ. Γ is assumed nonsingular as well. Furthermore it is assumed
that plim 1

tX
>X exists and is nonsingular, and that plim 1

nX>ε = o.

Problem 541. 1 point If V[vec E] = ΣΣΣ ⊗ I, this means (check the true answer
or answers) that

• different rows of E are uncorrelated, and every row has the same covariance
matrix, or
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• different columns of E are uncorrelated, and every column has the same
covariance matrix, or

• all εij are uncorrelated.

Answer. The first answer is right. �

Now the reduced form equations: postmultiplying by Γ−1 and setting Π = BΓ−1

and V = EΓ−1 one obtains Y = XΠ + V.

Problem 542. If V [vecE] = ΣΣΣ ⊗ I and V = EΓ−1, show that V [vecV] =
(Γ−1)>ΣΣΣΓ−1 ⊗ I.

Answer. First use (B.5.19) to develop vec V = −vec(IEΓ−1) = −
(

(Γ−1)> ⊗ I

)
vec E,

therefore

(66.2.2) V[vec V] =

(
(Γ−1)> ⊗ I

)(
V[vec E]

)(
Γ−1 ⊗ I

)
= (Γ−1)>ΣΣΣΓ−1 ⊗ I .

�

Here is an example, inspired by, but not exactly identical to, [JHG+88, pp.
607–9]. The structural equations are:

y1 = −y2γ21 + x2β21 + ε1(66.2.3)

y2 = −y1γ12 + x1β12 + x3β32 + ε2(66.2.4)

This is the form in which structural equations usually arise naturally: one of the
endogenous variables is on the left of each of the structural equations. There are as
many structural equations as there are endogenous variables. The notation for the
unknown parameters and minus sign in front of γ12 and γ21 come from the fact that
these parameters are elements of the matrices Γ and B.

In matrix notation, this system of structural equations becomes

(66.2.5)
[
y1 y2

] [ 1 γ12

γ21 1

]
=
[
x1 x2 x3

]



0 β12

β21 0
0 β32


+

[
ε1 ε2

]

Note that normalization conventions and exclusion restrictions are built directly into
Γ and B. In general it is not necessary that each structural equation has a different
endogenous variable on the left. Often the same endogenous variable may be on the
lefthand side of more than one structural equation. In this case, Γ in (66.2.5) does
not have 1 in the diagonal but has a 1 somewhere in every column.

In the present hypothetical exercise we are playing God and therefore know the
true parameter values −γ21 = 1, −γ12 = 2, β21 = 2, β12 = 3, and β32 = 1. And
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while the earthly researcher only knows that the following two matrices exist and are
nonsingular, we know their precise values:

plim
1

n

[
ε>
1

ε>
2

] [
ε1 ε2

]
= plim

1

n

[
ε>
1 ε1 ε>

1 ε2

ε>
2 ε1 ε>

2 ε2

]
=

[
5 1
1 1

]

plim
1

n



x>

1

x>
2

x>
3


 [x1 x2 x3

]
= plim

1

n



x>

1 x1 x>
1 x2 x>

1 x3

x>
2 x1 x>

2 x2 x>
2 x3

x>
3 x1 x>

3 x2 x>
3 x3


 =




1 1 0
1 2 0
0 0 1




Besides, the assumption is always (and this is known to the earthly researcher too):

plim
1

n



x>

1

x>
2

x>
3


 [ε1 ε2

]
= plim

1

n



x>

1 ε1 x>
1 ε2

x>
2 ε1 x>

2 ε2

x>
3 ε1 x>

3 ε2


 =




0 0
0 0
0 0




First let us compute the true values of the reduced form parameters. Insert the
known parameter values into (66.2.5):

(66.2.6)
[
y1 y2

] [ 1 −2
−1 1

]
=
[
x1 x2 x3

]



0 3
2 0
0 1


+

[
ε1 ε2

]

Using
[

1 −2
−1 1

]−1

= −
[
1 2
1 1

]
and



0 3
2 0
0 1



[
1 2
1 1

]
=



3 3
2 4
1 1


 ,

we can solve as follows:

(66.2.7)
[
y1 y2

]
= −

[
x1 x2 x3

]



3 3
2 4
1 1


−

[
ε1 ε2

] [1 2
1 1

]

I.e., the true parameter matrix Π in the reduced form equation Y = XΠ + EΓ−1 is

Π = −



3 3
2 4
1 1


. If we postmultiply (66.2.7) by [ 1

0 ] and [ 0
1 ] we get the reduced-form

equation written column by column:

y1 = −
[
x1 x2 x3

]



3
2
1


−

[
ε1 ε2

] [1
1

]
= −3x1 − 2x2 − x3 − ε1 − ε2

y2 = −
[
x1 x2 x3

]



3
4
1


−

[
ε1 ε2

] [2
1

]
= −3x1 − 4x2 − x3 − 2ε1 − ε2
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Problem 543. Show that the plims of the OLS estimates in equation (66.2.3)

are plim γ̂21;OLS = −0.6393 6= −1 and plim β̂21;OLS = 0.0164 6= 2, i.e., OLS is
inconsistent. Do these plims depend on the covariance matrix of the disturbances?

Answer. The first structural equation is

(66.2.8) y1 =
[
y2 x2

][−γ21
β21

]
+ ε1 = Z1δ1 + ε1

The OLS estimators are δ̂ = (Z>
1 Z1)−1Z>

1 y1 or, with factors 1/n so that we can take plims,

(66.2.9)

[
−γ̂21;OLS

β̂21;OLS

]
=

(
1

n

[
y>

2 y2 y>
2 x2

x>
2 y2 x>

2 x2

])−1 1

n

[
y>

2 y1

x>
2 y1

]

The plims of the squares and cross products of the xi and yi can be computed from those of
the xi and εi which we know since we are playing God. Here are those relevant for running OLS
on the first equation: Since

y>
2 y2 =

[
3 4 1

]
[

x>
1

x>
2

x>
3

]
[
x1 x2 x3

]
[

3
4
1

]

+ 2 ·
[
3 4 1

]
[

x>
1

x>
2

x>
3

]
[
ε1 ε2

][2
1

]

+
[
2 1

][ε>1
ε>2

][
ε1 ε2

][2
1

]
,

it follows, after taking plims

plim
1

n
y>

2 y2 =
[
3 4 1

]
[

1 1 0
1 2 0
0 0 1

][
3
4
1

]
+
[
2 1

][5 1
1 1

][
2
1

]
= 66 + 25 = 91

Equally

x>
2 y2 = −

[
x>
2 x1 x>

2 x2 x>
2 x3

]
[

3
4
1

]
−
[
x>
2 ε1 x>

2 ε2

] [2
1

]

plim
1

n
x>
2 y2 = −

[
1 2 0

]
[

3
4
1

]
= −11
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Also

y>
2 y1 =

[
3 4 1

]
[

x>
1

x>
2

x>
3

]
[
x1 x2 x3

]
[

3
2
1

]
+
[
3 4 1

]
[

x>
1

x>
2

x>
3

]
[
ε1 ε2

] [1
1

]
+

+
[
2 1

] [ε>1
ε>2

] [
x1 x2 x3

]
[

3
2
1

]
+
[
2 1

][ε>1
ε>2

] [
ε1 ε2

] [1
1

]

plim
1

n
y>

2 y1 =
[
3 4 1

]
[

1 1 0
1 2 0
0 0 1

][
3
2
1

]
+
[
2 1

][5 1
1 1

][
1
1

]
= 44 + 14 = 58

Finally

x>
2 y1 = −

[
x>
2 x1 x>

2 x2 x>
2 x3

]
[

3
2
1

]
−
[
x>
2 ε1 x>

2 ε2

] [1
1

]

plim
1

n
x>
2 y1 = −

[
1 2 0

]
[

3
2
1

]
= −7

One sees that the covariance matrix of the disturbance terms enters some of these results.
Putting it all together gives

plim

[
−γ̂21

β̂21

]
=

[
91 −11
−11 2

]−1 [
58
−7

]
=

1

61

[
2 11
11 91

][
58
−7

]
=

1

61

[
39
1

]
=

[
0.6393
0.0164

]
6=
[
1
2

]

Therefore OLS is inconsistent. �

66.3. Indirect Least Squares

If OLS is inconsistent, what estimation methods can be used instead? An obvious
choice of a consistent estimator is Indirect Least Squares (ILS), i.e., run OLS on
the reduced form equations, and then compute the structural parameters from the
reduced form parameters. (The reduced form parameters themselves are usually
not much of interest, since they represent a mixture of the different effects which
are separated out in the structural equations.) In this estimation of the structural
equations, one uses OLS on every equation individually, because one considers it a
SUR system with equal X-matrices.

However if one applies this in the present system, one has 6 parameters to esti-
mate in the reduced form equation (66.2.7), and only 5 in the structural equations
(66.2.5). To understand how this discrepancy arises, look at the relationship between
the structural and reduced form parameters, which can most simply be written as
ΠΓ = B:

(66.3.1)



π11 π12

π21 π22

π31 π32



[

1 −γ12

−γ21 1

]
=




0 β12

β21 0
0 β32
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The coefficients of the first structural equation are in the first columns of Γ and B.
Let us write these first columns separately:



π11 π12

π21 π22

π31 π32



[

1
−γ21

]
=




0
β21

0


 or

π11 − π12γ21 = 0

π21 − π22γ21 = β21

π31 − π32γ21 = 0

(66.3.2)

One sees that there are two ways to get γ21 from the elements of Π: γ21 = π11/π12

or γ21 = π31/π32. The ILS principle gives us therefore two different consistent
estimates of γ21, but no obvious way to combine them. This is called: the first
structural equation is “overidentified.” If one looks at the true values one sees that
indeed π11/π12 = π31/π32. The estimation of the reduced form equations does not
take advantage of all the information given in the structural equations: they should
have been estimated as a constrained estimate, not with a linear constraint but a
bilinear constraint of the form π11π32 = π31π12. ILS is therefore not the most efficient
estimation method for the first structural equation.

How about the second structural equation?



π11 π12

π21 π22

π31 π32



[
−γ12

1

]
=



β12

0
β32


 or

−π11γ12 + π12 = β12

−π21γ12 + π22 = 0

−π31γ12 + π32 = β32

(66.3.3)

This can be solved uniquely: γ12 = π22/π21, β12 = π12 − π11π22/π21, β32 = π32 −
π31π22/π21. Therefore one says that the second equaton is exactly identified.

It is also possible that an equation is not identified. This identification status is
not a property of ILS, but a property of the model.

66.4. Instrumental Variables (2SLS)

A somewhat more sophisticated approach to estimation in a simultaneous equa-
tions system would be: use those exogenous variables which are not included in the
ith structural equation as instruments for the endogenous variables on the righthand
side of the ith structural equation.

I.e., for the first structural equation in our example, (66.2.3), we can use x1

and x3 as instruments for y2 (while x2 is its own instrument), and in the second
structural equation we can use x2 as instrument for y1 (while x1 and x3 are their
own instruments).

In order to show how this is connected with ILS, I will prove that ILS is identical
to instrumental variables in the special case that there are as many instruments as
regressors. I will show by the example of our second structural equation that ILS is
exactly equal to instrumental variables. This is the proof given in [JHG+88, Section
15.1.1], not in general but in our example.
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Remember how we got the ILS estimates Γ̃ and B̃: First we ran the regression

on the unrestricted reduced form to get Π̂ = (X>X)−1X>Y , and then we solved the

equation Π̂Γ̃ = B̃ where Γ̃ and B̃ have the zeros and the normalization ones inserted
at the right places, see (66.3.3).

In the case of the 2nd equation this becomes

(66.4.1) Π̂γ̃2 = β̃2

Now premultiply (66.4.1) by X>X to get

(66.4.2) X>Yγ̂2 = X>Xβ̂2

or

(66.4.3)



x>

1

x>
2

x>
3


 [y1 y2

] [γ̃12

1

]
=




x>
1

x>
2

x>
3


 [x1 x2 x3

]


β̃12

0

β̃32




This simplifies

(66.4.4)



x>

1

x>
2

x>
3


 (y1γ̃12 + y2) =




x>
1

x>
2

x>
3


 (x1β̃12 + x3β̃32)

Now rearrange

(66.4.5)



x>

1

x>
2

x>
3


y2 =



x>

1

x>
2

x>
3


 (x1β̃12 −y1γ̃12 + x3β̃32) =




x>
1

x>
2

x>
3


 [x1 y1 x3

]



β̃12

−γ̃12

β̃32




I will show that (66.4.5) is exactly the normal equation for the IV estimator.
Write the second structural equation as

(66.4.6) y2 =
[
x1 y1 x3

]


β12

−γ12

β32


+ ε2

The matrix of instruments is W =
[
x1 x2 x3

]
, i.e., x1 and x3 are instruments for

themselves, and x2 is an instrument for y1. Now remember the IV normal equation

in this simplified case: instead of X>Xβ̂ = X>y one has W>Xβ̃ = W>y. In our
situation this gives

(66.4.7)



x>

1

x>
2

x>
3


y2 =



x>

1

x>
2

x>
3


 [x1 y1 x3

]



β̃12

−γ̃12

β̃32




which is, as claimed, the same as (66.4.5).
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Now in the overidentified case, ILS does not have a good method to offer. There
are more than one ways to get the reduced form estimates from the structural es-
timates, and the ILS principle says that one could use either one, but there is no
easy way to combine them. The estimation approach by Instrumental Variables, on
the other hand, has an obvious way to take advantage of overidentification: one will
do Instrumental Variables in the generalized case in which there are “too many”
instruments. This is exactly 2SLS.

Problem 544. 1 point Describe the two “stages” in the two stages least squares
estimation of a structural equation which is part of a simultaneous equations system.

66.5. Identification

How can one tell by looking at the structural equations whether the equation
is exactly identified or underidentified or overidentified? If one just has one system,
solving the reduced form equations by hand is legitimate.

The so-called “order condition” is not sufficient but necessary for identification.
One possible formulation of it is: each equation must have at least m− 1 exclusions.
One can also say, and this is the formulation which I prefer: for each endogenous
variable on the righthand side of the structural equation, at least one exogenous
variable must be excluded from this equation.

Problem 545. This example is adapted from [JHG+88, (14.5.8) on p. 617]:

• a. 2 points Use the order condition to decide which of the following equations
are exactly identified, overidentified, not identified.

y1 = −y2γ21 − y4γ41 + x1β11 + x4β41 + ε1(66.5.1)

y2 = −y1γ12 + x1β12 + x2β22 + ε2(66.5.2)

y1 = −y2γ23 − y3γ33 − y4γ43 + x1β13 + x4β43 + ε3(66.5.3)

y4 = x1β14 + x2β24 + x3β34 + x4β44 + ε4(66.5.4)

Answer. (66.5.4) is exactly identified since there are no endogenous variable on the right hand
side, but all exogenous variables are on the right hand side. (66.5.3) is not identified, it has 3 y’s on
the right hand side but only excludes two x’s. (66.5.2) overfulfils the order condition, overidentified.
(66.5.1) is exactly identified. �
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• b. 1 point Write down the matrices Γ and B (indicating where there are zeros
and ones) in the matrix representation of this system, which has the form

(66.5.5)
[
y1 y2 y3 y4

]



γ11 γ12 γ13 γ14

γ21 γ22 γ23 γ24

γ31 γ32 γ33 γ34

γ41 γ42 γ43 γ44


 =

=
[
x1 x2 x3 x4

]



β11 β12 β13 β14

β21 β22 β23 β24

β31 β32 β33 β34

β41 β42 β43 β44


+

[
ε1 ε2 ε3 ε4

]

Answer.

Γ =




1 γ12 1 0
γ21 1 γ23 0
0 0 γ33 0
γ41 0 γ43 1


 B =



β11 β12 β13 β14

0 β22 0 β24

0 0 0 β34

β41 0 β43 β44




�

Criteria which are necessary and sufficient for identification are called “rank
conditions.” There are various equivalent forms for it. We will pick out here one
of these equivalent formulations, that which is preferred by ITPE, and give a recipe
how to apply it. We will give no proofs.

First of all, define the matrix

(66.5.6) ∆ =

[
Γ
B

]

∆ contains in its ith column the coefficients of the ith structural equation. In our
example if is

(66.5.7) ∆ =




γ11 γ12 γ13 0
γ21 γ22 γ23 0
0 0 γ33 0
γ41 0 γ43 γ44

β11 β12 β13 β14

0 β22 0 β24

0 0 0 β34

β41 0 β43 β44




Each column of ∆ is subject to a different set of exclusion restrictions, say the ith
column of ∆ is δi and it satisfies Riδi = o. For instance in the first equation (66.2.3)
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γ31 = 0, β21 = 0, and β31 = 0, therefore

(66.5.8) R1 =




0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0




Now instead of looking at Riδi look at Ri∆. Since ∆ has m columns, and the
ith column is annulled by Ri, the rank of Ri∆ can at most be m − 1. The rank
condition for identification says that this rank must be m− 1 for the ith equation to
be identified. In our example,

(66.5.9) R1∆ =



0 0 γ33 0
0 β22 0 β24

0 0 0 β34




All columns except the first must be linearly independent.

Problem 546. 1 point Show that the columns of the matrix

(66.5.10)




0 γ33 0
β22 0 β24

0 0 β34




are linearly independent if γ33, β22, and β34 are nonzero.

Answer.

(66.5.11)

[
0

β22

0

]
α1 +

[
γ33
0
0

]
α2 +

[
0

β24

β34

]
α3 =

[
0

0
0

]

γ33α2 = 0, therefore α2 = 0. It also implies γ34α3 = 0, therefore also α3 = 0. It remains
β22α1 + β24α3 = 0, but since we already know α3 = 0 this means that also α1 = 0. �

To understand why this rank condition is necessary for identification, assume
the jth equation has exactly the same endogenous and exogenous variables as the
ith which you are interested in. Then these two effects cannot be distinguished, i.e.,
neither equation is identified.

Here is more detail about the rank conditions, taken from [JHG+88, p. 624]:
If rankRi∆ < m− 1 then the ith equation is not identified.
If rankRi∆ = m − 1 and rankRi = m − 1 then the ith equation is exactly

identified.
If rankRi∆ = m−1 and rankRi > m−1 then the ith equation is overidentified.

66.6. Other Estimation Methods

To get an overview over the other estimation methods, we have to distinguish
between single-equation methods and system methods, and between maximum like-
lihood estimators (based on the assumption that the error terms are multivariate
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normal, which however also have good properties if this is not the case; see here
[DM93, p. 641]) and estimators based on instrumental variables.

Single-equation estimators are simpler to compute and they are also more robust:
if only one of the equations is mis-specified, then a systems estimator is inconsistent,
but single-equations estimators of the other equations may still be consistent. Sys-
tems estimators are more efficient: they exploit the correlation between the residuals
of the different equations, they allow exclusion restrictions in one equation to benefit
another equation, and they also allow cross-equation restrictions on the parameters
which cannot be handled by single-equations systems.

Maximum likelihood estimation of the whole model (FIML) requires numerical
methods and is a demanding task. We assume X nonrandom, or we condition on
X = X, therefore we write

YΓ = XB + E(66.6.1)

In (??) we split Y , X, and E into their columns; now we will split them into their
rows:



y>

1
...

y>
t


Γ =




x>
1
...

x>
t


B +



ε>
1
...

ε>
t


(66.6.2)

Here εs ∼ N(o,ΣΣΣ) and εr independent of εs for r 6= s. Density of each ε is

(66.6.3) fε(εs) = (2π)−m/2(detΣΣΣ)−1/2 exp(−1

2
ε>
s ΣΣΣ−1εs)

According to the transformation rules for densities, we have to express the random
variable whose density we want to know in terms of the random variable whose
density we know: ε>

s = y>
s Γ − x>

s B or εs = Γ>ys − B>xs. The Jacobian matrix

is the derivative of this, it is ∂εs/∂y>
s = Γ>. Therefore the density of each y is

fy(ys) = (2π)−m/2 |detΓ| (detΣΣΣ)−1/2 exp(−1

2
(y>
s Γ − x>

s B)ΣΣΣ−1(Γ>ys − B>xs)).

Multiply this for all the rows and remember Problem 532 to get fY (Y ) =

= (2π)−mt/2 |detΓ|t (detΣΣΣ)−t/2 exp
(
−1

2

t∑

x=1

(y>
s Γ − x>

s B)ΣΣΣ−1(Γ>ys − B>xs)
)

= (2π)−mt/2 |detΓ|t (detΣΣΣ)−t/2 exp
(
−1

2
tr(Y Γ − XB)>(Y Γ − XB)ΣΣΣ−1)

Therefore the log likelihood function ` = log fY(Y) =

= −mt
2

log(2π) + t log |detΓ| − t

2
log(detΣΣΣ) − 1

2
tr(YΓ − XB)>(YΓ − XB)ΣΣΣ−1.
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If one compares this with the log likelihood function (65.2.5) for simultenous
equations systems, one sees many similarities: the last item is a function of the
residuals, ΣΣΣ enters in exactly the same way, the only difference is the term t log |detΓ|.
Therefore the next steps here are parallel to our development in Chapter 65. However
one can see already now the following shortcut if the system is a recursive system, i.e.,
if Γ is lower diagonal with 1s in the diagonal. Then det Γ = 1, and in this case one
can just use the formalism developed for seemingy unrelated systems, simply ignoring
the fact that some of the explanatory variables are endogenous, i.e., treating them
in the same way as the exogonous variables.

But now let us go in with the general casae. In order to concentrate out ΣΣΣ it is
simpler to take the partial derivatives with respect to ΣΣΣ−1 than those with respect
to ΣΣΣ itself. Using the matrix differentiation rules (C.1.24) and (C.1.16) and noting

that −t/2 log detΣΣΣ = t/2 log detΣΣΣ−1 one gets:

(66.6.4) ∂`/∂ΣΣΣ−1 =
t

2
ΣΣΣ − 1

2
(YΓ − XB)>(YΓ − XB)

and if one sets this zero one gets Σ̂ = 1
t (YΓ − XB)>(YΓ − XB). Plugging this in

gives the concentrated log likelihood function log f(Y)c =

= −mt
2

log(2π) + t log |detΓ| − t

2
log
(
det

1

t
(YΓ − XB)>(YΓ − XB)

)
− mt

2
.

This is not just a minimization of the SSE because of the t log |detΓ| term. This
term makes things very complicated, since the information matrix is no longer block
diagonal, see [Ruu00, p. 724] for more detail. One sees here that Simultaneous
Equations is the SUR system of reduced form equations with nonlinear restrictions.
Must be maximized subject to exclusion restrictions; difficult but can be done. Ref-
erences in [DM93, 640]. Since maximization routine will usually not cross the loci
with detΓ = 0, careful selection of the starting value is important.

Here is an alternative derivation of the same result, using (65.3.2):

(66.6.5)




y>
1
...

y>
t


 =




x>
1
...

x>
t


BΓ−1 +



w>

1
...

w>
t
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where w>
s = ε>

s Γ−1 or ws = (Γ−1)>εs, therefore ws ∼ N(o, (Γ−1)>ΣΣΣΓ−1). Ac-
cording to (65.3.2) the concentrated likelihood function is

`c = −mt
2

(1 + log 2π) − t

2
log det(Y − XBΓ−1)>(Y − XBΓ−1)

= −mt
2

(1 + log 2π) − t

2
log det((Γ−1)>(YΓ − XB)>(YΓ − XB)Γ−1)

= −mt
2

(1 + log 2π) + t log |detΓ| − t

2
log det(YΓ − XB)>(YΓ − XB)

This must be maximized subject to the bilinear constraints imposed by the overi-
dentifying restrictions.

Since FIML is so difficult and expensive, researchers often omit specification
tests. [DM93] recommend to make these tests with the unrestricted reduced form.
This is based on the assumption that most of these mis-specifications already show
up on the unrestricted reduced form: serial correlation or heteroskedasticity of the
error terms, test whether parameters change over the sample period.

Another specification test is also a test of the overidentifying restrictions: a LR
test comparing the attained level of the likelihood function of the FIML estimator
with that of the unrestricted reduced form estimator. Twice the difference between
the restricted and unrestricted value of the log likelihood function ∼ χ2 where the
number of degrees of freedom is the number of the overidentifying restrictions.

LIML (limited information maximum likelihood) is a single-equation method
based on maximum likelihood. In the model YΓ = XB + E the ith equation is

(66.6.6)
[
y1 . . . ym

]


γ1i

...
γmi


 =

[
x1 . . . xK

]


β1i

...
βKi


+ εi

Some of the γgi and βhi must be zero, and one of the γgi is 1. Rearrange the columns
of Y and X such that γ1i = 1, and that the zero coefficients come last:

(66.6.7)
[
y1 Y2 Y3

]



1
γ

o


 =

[
X1 X2

] [β
o

]
+ εi

Now write the reduced form equations conformably:

(66.6.8)
[
y1 Y2 Y3

]
=
[
X1 X2

] [π11 Π12 Π13

π21 Π22 Π23

]
+
[
v1 V 2 V 3

]

Then LIML for the ith equation is maximum likelihood on the following system:

y1 + Y2γ = X1β + εi(66.6.9)

Y2 = X1Π12 + X2Π22 + V 2(66.6.10)
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I.e., it includes the ith structural equation and the unrestricted reduced form equa-
tions for all the endogenous variables on the righthand side of the ith structural
equation. Written as one partitioned matrix equation:

(66.6.11)
[
y1 Y2

] [1 o>

γ I

]
=
[
X1 X2

] [β Π21

o Π22

]
+
[
εi V 2

]

Since Γ =

[
1 o>

γ I

]
is lower triangular, its determinant is the product of the diagonal

elements, i.e., it is = 1. Therefore the Jacobian term in the likelihood function is = 1,
and therefore the likelihood function is the same as that of a seemingly unrelated
regression model. One can therefore compute the LIML estimator from (66.6.11)
using the software for seemingly unrelated regressions, disregarding the difference
between endogenous and exogenous variables. But there are other ways to compute
this estimator which are simpler. They will not be discussed here. They either
amount to (1) an eigenvalue problem. or (2) a “least variance ratio” estimator, or (3)
a “k-class” estimator. See [DM93, pp. 645–647]. Although LIML is used less often
than 2SLS, it has certain advantages: (1) it is invariant under reparametrization,
and (2) 2SLS can be severly biased in small samples.

For 3SLS write the equations as

(66.6.12)




y1

y2

...
ym


 =




Z1 O · · · O

O Z2 · · · O
...

...
. . .

...
O O · · · Zm







δ1

δ2

...
δn


+




ε1

ε2

...
εm


 V [vecE] = ΣΣΣ ⊗ I

Here the Zi contain endogenous and exogenous variables, therefore OLS is inconsis-

tent. But if we do 2SLS, i.e., if we take Ẑi = X(X>X)−1X>Zi as regressors, we get
consistent estimates:
(66.6.13)


y1

y2

...
ym


 =




X(X>X)−1X>Z1 O · · · O

O X(X>X)−1X>Z2 · · · O
...

...
. . .

...
O O · · · X(X>X)−1X>Zm







δ1

δ2

...
δm


+




ε1

ε2

...
εm




In the case of SUR we know that OLS singly is not efficient, but GLS is. We use
this same method here: (1) estimate σij—not from the residuals in (66.6.13) but as

σ̂ij = 1
t ε̂iε̂j where ε̂i = yi − Ziδ̂i;2SLS . With this estimated covariance matrix do

GLS

(66.6.14) vec(B̂)3SLS =
(
Ẑ>(Σ̂ ⊗ I)−1Ẑ

)−1

Ẑ>(Σ̂ ⊗ I)−1 vec(Y),
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which can also be written as

(66.6.15) vec(B̂)3SLS =
(
Ẑ>(Σ̂

−1 ⊗ I)Z
)−1

Ẑ>(Σ̂
−1 ⊗ I) vec(Y).

It is instrumental variables with a nonspherical covariance matrix (and can be de-
rived as a GMM estimator). This is much easier to estimate than FIML, but it is
nevertheless asymptotically as good as FIML.

Problem 547.

• a. 6 points Give an overview over the main issues in the estimation of a
simultaneous equations system, and discuss the estimation principles involved.

• b. 2 points How would you test whether a simultaneous equations system is
correctly specified?



CHAPTER 67

Timeseries Analysis

A time series y with typical element ys is a (finite or infinite) sequence of random
variables. Usually, the subscript s goes from 1 to ∞, i.e., the time series is written
y1,y2, . . ., but it may have different (finite or inifinite) starting or ending values.

67.1. Covariance Stationary Timeseries

A time series is covariance-stationary if and only if:

E[ys] = µ for all s(67.1.1)

var[ys] <∞ for all s(67.1.2)

cov[ys,ys+k ] = γk for all s and k(67.1.3)

I.e., the means do not depend on s, and the covariances only depend on the distances
and not on s. A covariance stationary time series is characterized by the expected
value of each observation µ, the variance of each observation σ2, and the “auto-
correlation function” ρk for k ≥ 1 or, alternatively, by µ and the “autocovariance
function” γk for k ≥ 0. The autocovariance and autocorrelation functions are vectors
containing the unique elements of the covariance and correlation matrices.

The simplest time series has all yt ∼ IID(µ, σ2), i.e., all covariances between
different elements are zero. If µ = 0 this is called “white noise.”

A covariance-stationary process yt (t = 1, . . . , n) with expected value µ = E[yi]
is said to be ergodic for the mean if

(67.1.4) plim
n→∞

1

n

n∑

t=1

yt = µ.

We will usually require ergodicity along with stationarity.

Problem 548. [Ham94, pp. 46/7] Give a simple example for a stationary
time series process which is not ergodic for the mean.

Answer. White noise plus a mean which is drawn once and for all from a N(0, τ 2) independent

of the white noise. �
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67.1.1. Moving Average Processes. The following is based on [Gra89, pp.
63–91] and on [End95].

We just said that the simplest stationary process is a constant plus “white noise”
(all autocorrelations zero). The next simplest process is a moving average process of
order 1, also called a MA(1) process:

yt = µ+ εt + βεt−1 εt ∼ IID(0, σ2)(67.1.5)

where the first y, say it is y1, depends on the pre-sample ε0.

Problem 549. Compute the autocovariance and autocorrelation function of the
time series defined in (67.1.5), and show that the following process

(67.1.6) yt = µ+ ηt +
1

β
ηt−1 ηt ∼ IID(0, β2σ2)

generates a timeseries with equal statistical properties as (67.1.5).

Answer. (67.1.5): var[yt] = σ2(1 + β2), cov[yt,yt−1] = βσ2 , and cov[yt,yt−h] = 0 for h > 1.
corr[yt, yt−1] = β/(1 − β2). (67.1.6) gives the same variance β2σ2(1 + 1/β2) = σ2(1 + β2) and the
same correlation (1/β)/(1 + 1/β2) = β/(1 + β2) �

The moving-average representation of a timeseries is therefore not unique. It
is not possible to tell from observation of the time series alone whether the process
generating it was (67.1.5) or (67.1.6). One can say in general that unless β = 1
every MA(1) process could have been generated by a process in which |β| < 1. This
process is called the invertible form or the fundamental representation of the time
series.

Problem 550. What are the implications for estimation of the fact that a MA-
process can have different data-generating processes?

Answer. Besides looking how the timeseries fits the data, the econometrician should also look
whether the disturbances are plausible values in light of the actual history of the process, in order
to ascertain that one is using the right representation. �

The fundamental representation of the time series is needed for forecasting. Let
us first look at the simplest situation: the time series at hand is generated by the
process (67.1.5) with |β| < 1, the parameters µ and β are known, and one wants to
forecast yt+1 on the basis of all past and present observations. Clearly, the past and
present has no information about εt+1, therefore the best we can hope to do is to
forecast yt+1 by µ+ βεt.

But do we know εt? If a time series is generated by an invertible process, then
someone who knows µ, β, and the current and all past values of y can use this to
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reconstruct the value of the current disturbance. One sees this as follows:

yt = µ+ εt + βεt−1(67.1.7)

εt = yt − µ− βεt−1(67.1.8)

εt−1 = yt−1 − µ− βεt−2(67.1.9)

εt = yt − µ− β(yt−1 − µ− βεt−2)(67.1.10)

= −µ(1 − β) + yt − βyt−1 + β2εt−2(67.1.11)

after the next step

εt = −µ(1 − β + β2) + yt − βyt−1 + β2yt−2 − β3εt−3(67.1.12)

and after t steps

εt = −µ
(
1 − β + β2 − · · · + (−β)t−1

)
(67.1.13)

+ yt − βyt−1 + β2yt−2 − · · · + (−β)t−1y1 + (−β)tε0(67.1.14)

= −µ1 + (−β)t

1 + β
+

t−1∑

i=0

(−β)iyt−i + (−β)tε0(67.1.15)

If |β| < 1, the last term of the right hand side, which depends on the unobservable
ε0, becomes less and less important. Therefore, if µ and β are known, and all past
values of yt are known, this is enough information to compute the value of the
present disturbance εt. Equation (67.1.15) can be considered the “inversion” of the
MA1-process, i.e., its representation as an infinite autoregressive process.

The disturbance in the invertible process is called the “fundamental innova-
tion” because every yt is composed of a part which is determined by the history
yt−1,yt−2, . . . plus εt which is new to the present period.

The invertible representation can therefore be used for forecasting: the best
predictor of yt+1 is µ+ βεt.

Even if a time series was actually generated by a non-invertible process, the
formula based on the invertible process is still the best formula for prediction, but
now it must be given a different interpretation.

All this can be generalized for higher order MA processes. [Ham94, pp. 64–68]
says: for any noninvertible MA process (which is not borderline in the sense that
|β| = 1) there is an invertible MA process which has same means, variances, and
autocorrelations. It is called the “fundamental representation” of this process.

The fundamental representation of a process is the one which leads to very sim-
ple equations for forecasting. It used to be a matter of course to assume at the
same time that also the true process which generated the timeseries must be an in-
vertible process, although the reasons given to justify this assumption were usually
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vague. The classic monograph [BJ76, p. 51] says, for instance: “The requirement
of invertibility is needed if we are interested in associating present events with past
happenings in a sensible manner.” [Dea92, p. 85] justifies the requirement of in-
vertibility as follows: “Without [invertibility] the consumer would have no way of
calculating the innovation from current and past values of income.”

But recently it has been discovered that certain economic models naturally lead
to non-invertible data generating processes, see problem 552. This is a process in
which the economic agents observe and act upon information which the econometri-
cian cannot observe.

If one goes over to infinite MA processes, then one gets all indeterministic sta-
tionary processes. According to the so-called Wold decomposition, every stationary
process can be represented as a (possibly infinite) moving average process plus a
“linearly deterministic” term, i.e., a term which can be linearly predicted without
error from its past. There is consensus that economic time series do not contain such
linearly deterministic terms.

The errors in the infinite Moving Average representation also have to do with
prediction: can be considered the errors in the best one-step ahead linear prediction
based on the infinite past [Rei93, p. 7].

A stationary process without a linear deterministic term has therfore the form

yt = µ+

∞∑

j=0

ψjεt−j(67.1.16)

or, in vector notation

y = ιµ+
∞∑

j=0

ψjB
jε(67.1.17)

where the timeseries εs is white noise, and B is the backshift operator satisfying
e>
t B = e>

t−1 (here et is the tth unit vector which picks out the tth element of the
time series).

The coefficients satiisfy
∑
ψ2
i < ∞, and if they satisfy the stronger condition∑ |ψi| <∞, then the process is called causal.

Problem 551. Show that without loss of generality ψ0 = 1 in (67.1.16).

Answer. If say ψk is the first nonzero ψ, then simply write ηj = ψkεj+k �

Dually, one can also represent each fully indeterministic stationary processs as
an infinite AR-process yt−µ+

∑p
j=1 φi(yt−i−µ) = εt. This representation is called

invertible if it satisfies
∑ |θi| <∞.
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67.1.2. The Box Jenkins Approach. Now assume that the operator Ψ(B) =∑∞
j=0 ψjB

j can be written as the product Ψ = Φ−1Θ where each Φ and Θ are finite
polynomials in B. Again, without loss of generality, the leading coefficients in Ψ
and Θ can be assumed to be = 1. Then the time series can be written

(67.1.18) yt − µ+

p∑

j=1

φi(yt−i − µ) = εt +

∞∑

j=1

θjεt−j

A process is an ARMA-process if it satisfies this relation, regardless of whether the
process yt is stationary or not. See [Rei93, p. 8]. Again, there may be more than
one such representation for a given process.

The Box-Jenkins approach is based on the assumption that empirically occurring
stationary timeseries can be modeled as low-order ARMA processes. This would for
instance be the case if the time series is built up recursively from its own past, with
innovations which extend over more than one period.

If this general assumption is satisfied, this has the following implications for
methodology:

• Some simple procedures have been developed how to recognize which of
these time series one is dealing with.

• In the case of autoregressive time series, estimation is extremely simple and
can be done using the regression framework.

67.1.3. Moving Average Processes. In order to see what order a finite mov-
ing average process is, one should look at the correlation coefficients. If the order is j,
then the theoretical correlation coefficients are zero for all values > j, and therefore
the estimates of these correlation coefficients, which have the form

(67.1.19) rk =

∑n
t=k+1(yt − ȳ)(yt−k − ȳ)∑n

t=1(yt − ȳ)2

must be insignificant.
For estimation the preferred estimate is the maximum likelihood estimate. It

can not be represented in closed form, therefore we have to rely on numerical maxi-
mization procedures.

67.1.4. Autoregressive Processes. The common wisdom in econometrics is
that economic time series are often built up recursively from their own past. Example
of an AR(1) process is

(67.1.20) yt = αyt−1 + εt

where the first observation, say it is y1, depends on the pre-sample y0. (67.1.20) is
called a difference equation.
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This process generates a stationary timeseries only if |α| < 1. Proof: var[yt] =
var[yt−1] means var[yt] = α2 var[yt] + σ2 and therefore var[yt](1 − α2) = σ2, and
since σ2 > 0 by assumption, it follows that 1 − α2 > 0.

Solution (i.e., Wold representation as a MA process) is

(67.1.21) yt = y0α
t + (εt + αεt−1 + · · · + αt−1ε1)

As proof that this is a solution, write down αyt−1 and check that it is equal to yt−εt.

67.1.5. Difference Equations. Let’s make here a digression about nth order
linear difference equations with constant coefficients. Definition from [End95, p. 8]:

(67.1.22) yt = α0 +

n∑

i=1

αiyt−i + xt

here xt is called the “forcing process.” A solution of this difference equation is an
expression of yt in terms of present and past values of x and of t and of initial values
of yt. Difference equations usually have more than one solution, this is why these
initial values are needed to identify the solution.

In order to solve this, the following 4 steps are needed (this is [End95, p. 17]):
(1) Form the homogeneous equation and find all n homogeneous solutions.
(2) Find a particular solution.
(3) Then the general solution is the sum of the particular solution and an arbi-

trary linear combination of all homogeneous solutions.
(4) Eliminate the arbitrary constant(s) by imposing the initial condition(s) on

the general solution.
Let us apply this to yt = αyt−1 + εt. The homogeneous equation is yt = αyt−1

and this has the general solution yt = βαt where β is an arbitrary constant. If the
timeseries goes back to −∞, the particular solution is yt =

∑∞
i=0 α

iεt−i, but if the

timeseries only exists for t ≥ 1 the particular solution is yt =
∑t−1

i=0 α
iεt−i. This

gives solution (67.1.21).
Now let us look at a second order process: yt = α1yt−1 + α2yt−2 + xt. In order

to get solutions of the homogeneous equation yt = α1yt−1 + α2yt−2 try yt = βγt.
This gives the following condition for γ: γt = α1γ

t−1 +α2γ
t−2 or γ2 −α1γ+α2 = 0.

The solution of this quadratic equation is

(67.1.23) γ =
α1 ±

√
α2

1 + 4α2

2
If this equation has two real roots, then everything is fine. If it has only one real
root, i.e., if α2 = −α2

1/4, then γ = α1/2, i.e., yt = β1(α1/2)t is one solution. But
there is also a second solution, which is not obvious: yt = β2t(α1/2)t is a solution
as well. One sees this by checking:

(67.1.24) t(α1/2)t = α1(t− 1)(α1/2)t−1 + α2(t− 2)(α1/2)t−2
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Simplify this and you will see that it holds.
If the roots of the characteristic equation are complex, one needs linear combi-

nations of these complex roots, which are trigonometric functions. Here the homo-
geneous solution can be written in the form

(67.1.25) yt = β1r
t cos(θt+ β2)

where r =
√−α2 and θ is defined by cos(θ) = α1/2r. This formula is from [End95,

p. 29], and more explanations can be found there.
But in all these cases the roots of the characteristic equations determine the

character of the homogeneous solution. They also determine whether the difference
equation is stable, i.e., whether the homogeneous solutions die out over time or not.
For stability, all roots must lie in the unit circle.

In terms of the coefficients themselves, these stability conditions are much more
complicated. See [End95, pp. 31–33].

These stability conditions are also important for stochastic difference equations:
in order to have stationary solutions, it must be stable.

It is easy to estimate AR processes: simply regress the time series on its lags.
But before one can do this estimation one has to know the order of the autoregressive
process. A useful tool for this are the partial autocorrelation coefficients.

We discussed partial correlation coefficients in chapter 19. The kth partial auto-
correlation coefficient is the correlation between yt and yt−k with the influence of the
invervening lags partialled out. The kth sample partial autocorrelation coefficient is
the last coefficient in the regression of the timeseries on its first k lags. It is the effect
which the kth lag has which cannot be explained by earlier lagged values. In an
autoregressive process of order k, the “theoretical” partial autocorrelations are zero
for lags greater than k, therefore the estimated partial autocorrelation coefficients
should be insignificant for those lags. The asymptotic distribution of these estimates
is normal with zero mean and variance 1/T , therefore one often finds lines at 2/

√
T

and −2/
√
T in the plot of the estimated partial autocorrelation coefficients, which

give an indication which values are significant at the 95% level and which are not.

67.1.6. ARMA(p,q) Processes. Sometimes it is appropriate to estimate a
stationary process as having both autoregressive and moving average components
(ARMA) or, if they are not stationary, they may be autoregressive or moving average
after differencing them one or several times (ARIMA).

An ARMA(p, q) process is the solution of a pth order difference equation with
a MA(q) as driving process.

These models have been very successful. On the one hand, there is reason
to believe on theoretical grounds that many economic timeseries are ARMA(p, q).
[Gra89, p. 64] cites an interesting theorem which also contributes to the usefulness of
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ARMA processes: the sum of two independent series, one of which is ARMA(p1, q1)
and the other ARMA(p2, q2), is ARMA

(
p1 + p2,max(p1 + q2, p2 + q1)

)
.

Box and Jenkins recommend to use the autocorrelations and partial autocor-
relations for determining the order of the autoregressive or moving average parts,
although this more difficult for an ARMA process than for an MA or AR process.

The last step after what in the time series context is called “identification” (a
more generally used term might be “specification” or “model selection”) and estima-
tion is diagnostic checking, i.e., a check whether the results bear out the assumptions
made by the model. Such diagnostic checks are necessary because mis-specification
is possible if one follows this procedure. One way would be to see whether the resid-
uals resemble a white noise process, by looking at the autocorrelation coefficients of
the residuals. The so-called portmanteau test statistics test whether a given series is
white noise: there is either the Box-Pierce statistic which is the sum of the squared
sample autocorrelations

(67.1.26) Q = T

p∑

k=1

r2k

or the Ljung-Box statistic

(67.1.27) Q = T (T − 2)

p∑

k=1

r2k
T − k

which is asymptotically the same as the Box-Pierce statistic but seems to have better
small-sample properties.

A second way to check the model is to overfit the model and see if the additional
coefficients are zero. A third way would be to use the model for forecasting and to
see whether important features of the original timeseries are captured (whether it
can forecast turning points, etc.)

[Gre97, 839–841] gives an example. Eyeballing the timeseries does not give the
impression that it is a stationary process, but the statistics seem to suggest an AR-2
process.

67.2. Vector Autoregressive Processes

[JHG+88, Chapter 18.1] start with an example in which an economic timeseries
is not adequately modelled by a function of its own past plus some present inno-
vations, but where two timeseries are jointly determined by their past plus some
innovation: consumption function

(67.2.1) ct = η1 + ytα+ ct−1β + ε1t



67.2. VECTOR AUTOREGRESSIVE PROCESSES 753

and then there is also a lagged effect of consumption on income

(67.2.2) yt = η2 + ct−1γ + yt−1δ + ε2t

This is the structural form of a dynamic simultaneous equations system. Identifica-
tion status: first equation has yt on righthand side and does not have yt−1, therefore
exactly identified. Second equation has no endogenous variables on the righthand
side, which makes it also exactly identified. One can see it also by solving the reduced
form equation for the structural coefficients. Therefore lets look at its reduced form.
The second equation is already in reduced form, since it only has lagged values of c

and y on the righthand side. The first becomes

(67.2.3) ct = (η1 + αη2) + ct−1(β + αγ) + yt−1αδ + (ε1t + αε2t)

This reduced form is an unconstrained VAR(1) process:

(67.2.4)
[
ct yt

]
=
[
η1 η2

]
+
[
ct−1 yt−1

] [θ1 ψ1

γ1 δ1

]
+
[
ε1t ε2t

]

Disturbances have same properties as errors in simultaneous equations systems (it
is called vector white noise). VAR processes are special cases of multivariate time
series. Therefore we will first take a look at multivariate time series in general. A
good source here is [Rei93].

Covariance stationarity of multivariate time series is the obvious extension of the
univariate definition (67.1.1)–(67.1.2):

E [yt] = µ(67.2.5)

var[ymt] <∞(67.2.6)

C[yt,yt−h] only depends on h.(67.2.7)

One can write a VAR(j) process as

(67.2.8) y>
t = µ> + (yt−1 − µ)>Θ1 + · · · + (yt−n − µ)>Θn + ε>

t

or equivalently

(67.2.9) (yt − µ)> −
n∑

j=1

(yt−j − µ)>Θj = ε>
t

In this notation the contemperaneous dependencies are in the covariance matrix of
the disturbances. But there are other ways to write it too: but one can also write it

(67.2.10)
n∑

j=0

(yt−j − µ)>Θj = ε>
t

where Θ0 is lower diagonal and the covariance matrix of the disturbances is di-
agonal. For each permutation of the variables there is a unique lower diagonal Θ0
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which makes the covariance matrix of the disturbances the identity matrix, here prior
knowledge about the order in which the variables depend on each other is necessary.
But if one has a representation like this, one can build an impulse response function.

Condition for a VAR(n) process to be stationary is, using (67.2.9):

(67.2.11) det[I −Θ1z −Θ2z
2 − · · · −Θnz

n]

has all its roots outside the unit circle. These are the same conditions as the stability
conditions.

Under general conditions, all stationary vector time series are V AR(P ) of a
possibly infinite degree.

Estimation: the reduced form is like a disturbance-related equation system with
all explanatory variables the same: therefore OLS is consistent, efficient, and asymp-
totically normal. But OLS is insensitive, since one has so many parameters to esti-
mate. Therefore one may introduce restrictions, not all lagged variables appear in
all equations, or one can use Bayesian methods (Minnesota prior, see [BLR99, pp.
269–72]).

Instead of using theory and prior knowledge to determine the number of lags,
we use statistical criteria. Minimize an adaptation of Akaike’s AIC criterion

AIC(n) = log det(Σ̃n) +
2M2n

T
(67.2.12)

SC(n) = log det(Σ̃n) +
M2n logT

T
(67.2.13)

where M = number of variables in the system, T = sample size, n = number of lags

included, and Σ̃ has elements σ̃ij =
ε̂>

i ε̂j

T
Again, diagnostic checks necessary because mis-specification is possible.
What to do with the estimation once it is finished? (1) forecasting really easy,

the AR-framework gives natural forecasts. One-step ahead forecasts by simply using
present and past values of the timeseries and setting the future innovations zero, and
in order to get forecasts more than one step ahead, use the one-step etc. forecasts
for those date which have not yet been observed.

67.2.1. Granger Causality. Granger causality tests are tests whether cer-
tain autoregressive coefficients are zero. It makes more sense to speak of Granger-
noncausality: the time series x fails to Granger-cause y if y can be predicted as
well from its own past as from the past of x and y. An equivalent expression is:
in a regression of yt on its own lagged values yt−1,yt−1, . . . and the lagged values
xt−1, xt−2, . . ., the coefficients of xt−1, xt−2, . . . are not significantly different from
zero.

Alternative test proposed by Sims: x fails to Granger-cause y if in a regression
of yt on lagged, current, and future xq , the coefficients of the future xq are zero.
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I have this from [Mad88, 329/30]. Leamer says that this should be called
precedence, not causality, because all we are testing is precedence. I disagree; these
tests do have implications on whether the researcher would want to draw causal
inferences from his or her data, and the discussion of causality should be included in
statistics textbooks.

Innovation accounting or impulse response functions: make a moving average
representation, and then you can pick the timepath of the innovations: perhaps a
1-period shock, or a stepped increase, whatever is of economic interest. Then you
can see how these shocks are propagated through the system.

Caveats:
(1) do not make these experiments too dissimilar to what actually transpired in

the data from which the parameters were estimated.
(2) Innovations are correlated, and if you increase one without increasing another

which is highly correlated with it then you may get misleading results.
Way out would be: transform the innovations in such a way that their esti-

mated covariance matrix is diagonal, and only experiment with these diagonalized
innovations. But there are more than one way to do this.

If one has the variables ordered in a halfways sensible way, then one could use
the Cholesky decomposition, which diagonalizes this ordering of the variables.

Other approaches: forecast error (MSE) can be decomposed into a sum of contri-
butions coming from the different innovations: but this decomposition is not unique!

Then the MA-representation is the answer to: how can one make policy recom-
mendations with such a framework.

Here is an example how an economic model can lead to a non-invertible VARMA
process. It is from [AG97, p. 119], originally in [Qua90] and [BQ89]. Income at
time t is the sum of a permanent and a transitory component yt = yp

t + yt
t; the

permanent follows a random walk yp
t = yp

t−1 + δt while the transitory income
is white noise, i.e., yt

t = εt. var[εt] = var[δt] = σ2, and all disturbances are
mutually independent. Consumers know which part of their income is transitory
and which part is permanent; they have this information because they know their
own particular circumstances, but this kind of information is not directly available
to the econometrician. Consumers act on their privileged information: their increase
in consumption is all of their increase in permanent income plus fraction β < 1 of
their transitory income ct − ct−1 = δt + βεt. One can combine all this into

yt − yt−1 = δt + εt − εt−1 δi ∼ (0, σ2)(67.2.14)

ct − ct−1 = δt + βεt εi ∼ (0, σ2)(67.2.15)
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This is a vector-moving-average process for the first differences

(67.2.16)

[
yt − yt−1

ct − ct−1

]
=

[
1 1 − L
1 β

][
δt
εt

]

but it is not invertible. In other words, the econometrician cannot consistently esti-
mate the values of the present disturances from the past of this timeseries. who only
sees the timepaths of income and consumption, cannot reconstruct from this these
data the information which the agents themselves used to make their consumption
decision.

There is an invertible data generating process too, but it has the coefficients

(67.2.17)

[
yt − yt−1

ct − ct−1

]
=

1√
1 + β2

[
1 − (1 − β)L 1 + β − βL

0 1 + β2

] [
ξt
ζt

]

If the econometrician uses an estimation method which automatically generates the
invertible representation, he will get the wrong answer. He will think that the shocks
which have a permanent impact on y also have a delayed effect in the opposite
direction on next year’s income, but have no effect on consumption; and that the
shocks affecting consumption this period also have an effect on this period’s income
and an opposite effect on next period’s income. This is a quite different scenario,
and in many respects the opposite scenario, than that in equation (67.2.16).

Problem 552. It is the purpose of this question to show that the following two
vector moving averages are empirically indistinguishable:[

ut
vt

]
=

[
1 1 − L
1 β

] [
δt
εt

]
(67.2.18)

and
[
ut
vt

]
=

1√
1 + β2

[
1 − (1 − β)L 1 + β − βL

0 1 + β2

][
ξt
ζt

]
(67.2.19)

where all error terms δ, ε, ξ, and ζ are independent with equal variances σ2.

• a. Show that in both situations

V
[[ut

vt

]]
= σ2

[
3 1 + β

1 + β 1 + β2

]
, C

[[ut
vt

]
,

[
ut−1

vt−1

]]
= σ2

[
−1 −β
0 0

]
(67.2.20)

and that the higher lags have zero covariances.

Answer. First scenario: ut = δt + εt − εt−1 and vt = δt + βεt. Therefore var[ut] = 3σ2 ;
cov[ut, vt] = σ2 + βσ2 , var[vt] = σ2 + β2σ2 ; cov[ut, ut−1] = −σ2; cov[ut, vt−1] = −βσ2 ,
cov[vt, ut−1] = cov[vt, vt−1] = 0.

Second scenario: leaving out the factor 1√
1+β2

, we have ut = ξt−(1−β)ξt−1+(1+β)ζt−βζt−1

and vt = (1 + β2)ζt Therefore var[ut] = 3σ2; cov[ut, vt] = σ2 + βσ2 , var[vt] = σ2 + β2σ2 ;

cov[ut, ut−1] = −σ2 ; cov[ut, vt−1] = −βσ2, cov[vt, ut−1] = cov[vt, vt−1] = 0. �
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• b. Show also that the first representation has characteristic root 1−β, and the
second has characteristic root 1

1−β . I.e., with β < 1, the first is not invertible but the

second is.

Answer. Replace the Lag operator L by the complex variable z, and compute the determinant:

(67.2.21) det

[
1 1 − z
1 β

]
= β − (1 − z)

setting this determinant zero gives z = 1−β, i.e., the first representation has a root within the unit
circle, therefore it is not invertible. For the second representation we get

(67.2.22) det

[
1 − (1 − β)z 1 + β − βz

0 1 + β2

]
= (1 − (1 − β)z)(1 + β2)

Setting this zero gives 1− (1− β)z = 0 or z = 1
1−β , which is outside the unit circle. Therefore this

representation is invertible. �

[AG97, p. 119] writes: “When the agents’ information set and the econome-
tricians’ information set do coincide, then the MA representation is fundamental.”
Non-fundamental representations for the observed variables are called-for when the
theoretical framework postulates that agents observe variables that the econometri-
cian cannot observe.

67.3. Nonstationary Processes

Here are some stylized facts about timeseries in economics, taken from [End95,
p. 136–7]:

• Most series contain a clear trend.
• Some series seem to meander.
• Any shock to a series displays a high degree of persistence.
• Volatility of many series is not constant over time. (ARCH)
• Some series share comovements with other series (cointegration).
• Many series are seasonal.

What to do about trend/meandering? One can fit for instance a linear or polynomial
time trend:

(67.3.1) yt = a0 + a1t+ a2t
2 + · · · + ant

n + εt

But it may also be the case that there is a stochastic trend. To study this look at
the random walk:

(67.3.2) yt = yt−1 + εt
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I.e., the effects of the disturbances do not die out but they are permanent. The
MA-representation of this series is

(67.3.3) yt = y0 +

t∑

i=1

εi

n-step-ahead forecasts at time t are yt.

Problem 553. Show that in a random walk process (67.3.3) (with y0 non-
stochastic) var[yt] = tσ2 (i.e., it is nonstationary), cov[yt,yt−h] = σ2(t − h), and

corr[yt,yt−h] =
√

(t− h)/t.

Answer. [End95, p. 168]: cov[yt,yt−h] = cov[e1 + · · · + et, e1 + · · · + et−h. corr[yt, yt−h] =
σ2(t−h)√

σ2t
√
σ2(t−h)

. �

The significance of this last formula is: the autocorrelation functions of a non-
stationary random walk look similar to those of an autoregressive stationary process.

Then Enders discusses some variations: random walk plus drift yt = yt−1+µ+εt
which is Enders’s (3.36), random walk plus noise yt = µt + ηt where µt = µt−1 + εt
with ηt and εt independent white noise processes is Enders’s (3.38–39). Both can be
combined in (3.41), and the so-called local linear trend model (3.45).

How to remove the trend? Random walk (with or without drift) is ARIMA(0,1,0),
i.e., its first difference is a constant plus white noise.

The random walk with noise (or with drift and noise) is ARIMA(0,1,1):

Problem 554. 3 points Show: If you difference a random walk with noise pro-
cess, you get a MA(1) process with a correlation that is between 0 and −1/2.

Answer. Let yt be a random walk with noise, i.e., yt = µt + ηt where µt = µt−1 + εt with
ηt and εt independent white noise processes. Since ∆µt = εt, it follows ∆yt = εt + ηt − ηt−1.
Stationary. var[∆yt] = σ2

ε +2σ2
η . cov[∆yt,∆yt−1] = cov[εt+ηt−ηt−1, εt−1 +ηt−1 −ηt−2] = −σ2

η .

corr[∆yt,∆yt−1] = −σ2
η/(σ

2
ε + 2σ2

η) between −1/2 and 0. Higher covariances are zero. �

The local linear trend model is an example of a model which leads to a stationary
process after differencing twice: it is an ARIMA(0,2,2) model.

I.e., certain time series are such that differencing is the right thing to do. But
if a time series is the sum of a deterministic trend and white noise then differencing
is not called for: From yt = y0 + αt + εt follows ∆yt = α + εt − εt−1. This is not
an invertible process. The appropriate method of detrending here is to regress the
timeseries on t and take the residuals.

Difference stationary (DS) models can be made stationary by differencing, and
trend stationary models (TS) can be made stationary by removing deterministic time
trend.
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Nelson and Plosser (1982) found evidence that, contrary to common wisdom,
many macroeconomic timeseries are DS instead of TS. Therefore the question arises:
how can we test for this? The obvious way would be to regress ∆y on yt−1 and to
see whether the coefficient is zero. Usually, one of the following three regressions is
run:

∆y1 = (α− 1)yt−1 + ut(67.3.4)

∆y1 = β0 + (α− 1)yt−1 + ut(67.3.5)

∆y1 = β0 + β1t+ (α − 1)yt−1 + ut(67.3.6)

and one tests whether α − 1 = 0. But one cannot simply make an ordinary t-
test because in the case of a random walk the t-statistic has different asymptotic
properties.

The t-statistic in such a spurious regression rejects the null hypothesis of no
relationship far too often. And if one increases the sample size, one gets even more
spurious rejections. Asymptotically, this t statistic will always be rejected.

In order to get an idea why this is so, look at a situation in which two indepen-
dent random walks are regressed on each other. [End95, p. 218] shows the scatter
diagram, which suggests a significant relationship (but the plot of the residuals shows
nonstationarity).

There are two ways around this, both connected with the names Dickey and
Fuller (DF-tests): Either one maintains the usual formula for the t-statistic but
different significance points which were obtained by Monte-Carlo experiments. These
are the so-called τ -tests. Based on the three above regressions [DM93, p. 703] calls
them τnc, τc, and τct (like: no constant, constant, and constant and trend). Or one

uses a different test statistic in which one divides by T instead of
√
T (and it turns

out that one does not have to divide by the estimated standard deviation). This is
the so-called z-statistic.

67.4. Cointegration

Two timeseries y0 and y1 which are I(1) are called co-integrated if there is a
linear combination of them which is I(0). What this means is especially obvious
if this linear combination is their difference, see the graphs in [CD97, pp, 123/4].
Usually in economic applications this linear combination also depends on exogenous
variables; then the definition is that η1y1 + η2y2 = Xβ + ε whith a stationary ε.
These coefficients are determined only up to a multiplicative constant, therefore one
can normalize them by setting say η1 = 1.

How to estimate cointegration? The simplest way is to regress y1 on y2 and X

(if the normalization is such that η1 = 1). If there is no cointegration, this gives a
spurious regression with nonstationary residuals–from which follows that one tests
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for cointegration by stationarity of the residuals. Now if there is cointegration, the
cointegrating relationship is stronger than the spurious regression effect.

Since cointegrated variables are usually jointly determined, there will be corre-
lation between the error term and the regressor y2 in the above regression. However
the coefficient estimate itself is super-consistent, i.e., instead of approaching the true
value at a rate of t−1/2 it approaches them at a rate of t−1. Therefore the correlation
of the error terms with the price, which is only of the order t−1/2, cannot make this
extimator inconsistent.

Problem 555. Assume the model (with time series data) can be written in the
form y = Xβ + ε, but the data were dynamically generated in one of the following
ways. Discuss what you would do in these cases.

• a. 2 points y depends on various lags of the explanatory variable,

Answer. Distributed lags, first estimate lag length, then due to multicollinearity perhaps
polynomial distributed lags, estimate degree of polynomial. �

• b. 2 points y depends on its own lagged values and some other explanatory
variables.

Answer. Do OLS, only a problem if the errors are also autocorrelated. �

• c. 2 points The error terms of different time periods are correlated (but, for
simplicity, they are assumed to form a stationary process).

• d. 2 points What should be considered when more than one of the above situ-
ations occur?



CHAPTER 68

Seasonal Adjustment

Causes of seasonal movement:

• Weather: temperature, precipitation, hours of sunshine
• Calendar events: timing of religious or secular festivals (Christmas, July

4th)
• Timing decisions: school vacations, tax years, dates for dividend payments.

Seasonal adjustment is necessary because economic data are subject to different kinds
of influences: seasonal factors (which are assumed to be beyond the policymaker’s
reach) and economic factors. Seasonally adjusted data are counterfactual data: they
are an attempt to reconstruct what the economy would have been in the absence of
the seasonal influences.

Seasonal adjustment has been criticized in [Hyl92, p. 231] on the grounds that
it cannot be explained what the adjusted series is measuring. Signal extraction in
electrical engineering has the goal to restore the original signal which actually existed
before it was degraded by noise. But there is no actually existing “original signal”
which the de-seasonalized economic timeseries tries to measure. Someone concluded
from this, I have to find the quote and the exact wording again, “These adjusted
timeseries must be considered uncomplicated aids in decision making, without a real
counterpart.” Look at [Hyl92, p. 102]. Here it is necessary to make the depth-realist
distinction between the real and the actual. It is true that seasonally adjusted data
have no actual counterpart; they are counterfactual, but they do have a real basis,
namely, the underlying economic mechanisms which would also have been active in
the absence of the seasonal factors.

Natural scientists can investigate their subject under controlled experimental
conditions, shielded from non-essential influences. Economists cannot do this; they
cannot run the economy inside a building in which all seasonal variations of weather
and scheduling are eliminated, in order to see how the economy evolves in the ab-
sence of these disturbances and therefore to understand the character of economic
mechanisms better.

Seasonal adjustment of the data is an imperfect substitute for this. It exploits
the fact that phenomena which are generated by seasonal factors have a different
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empirical footprint than those generated by other factors, namely, their periodicity,
which is a very obvious feature of most economic timeseries. The removal of the
periodicity from the data is their attempt to infer what the economy would have
been like in the absence of the seasonal influences.

This is in principle no different than some of the methods by which we try to
eliminate other non-economic influences from the data: many statistical methods
make the the assumption that fast variations in the data are the result of random,
i.e., non-economic influences, because the economy does not move this fast.

These limitations of seasonal adjustment point to a basic methodological flaw of
this research method. The attempt to take data generated by an economy which is
subject to seasonal influences and submit them to a mathematical procedure in order
to see how the economy would have evolved in the absence of these influences really
commits the “fallacy of misplaced concreteness” [Col89, pp. 27?, 52?]: if two different
mechanism are at work, this does not mean that the events generated by them can
be divided into two groups, or that the data generated by these mechanisms can be
decomposed into two components: that generated by the first mechanism, and that
generated by the second. This is why it is recommended so often that the seasonality
should be incorporated in the model instead of adjusting the data. (In some simple
cases, as in Problem 559, these two procedures are equivalent, but usually these two
methods give different results.)

Seasonal adjustment as a scientific method encounters its limits whenever there
are more than negligible interactions between seasonal and economic mechanisms:

• Leakages from seasonality to economics: The hot summers in the 1970s
in Denmark caused a lot of investment into irrigation systems which then
greatly changed agricultural technology. [Hyl92, which page?]

• Seasonality altering economic interactions: The building boom in Denmark
in the 1970s caused seasonal labor shortages which gave rise to a change in
construction technology. [Hyl92, which page?]

Furthermore, [Hyl92, chapter 6, need reference by author and title] shows by a theo-
retical model that the empirical expressions of seasonal influences do not necessarily
move in synch with the seasons: optimal adjustment to seasonal demand leads to a
seasonally-induced component of economic activity which has its power not restricted
to the seasonal frequencies

Miron [Mir96, pp, 57–66] does not look at the frequency but at the amplitude
of the seasonal variations. He argues that the seasonal variations observed in the
economy are much stronger than the magnitude of the above external influences
might justify. He concludes that there is a “seasonal business cycle” which shares
many characteristics with the usual business cycle.

Despite these flaws, seasonal adjustment can have its uses.
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Since seasonal adjustment has to do with the interaction between noneconomic
and certain economic mechanisms, there can be no a priori theory about what is the
right way to do seasonal adjustments; this question must be decided by experience.
But from the success of some and the failure of other methods one should be able to
make second-order inferences about the general character of the economy.

[Mir96, p. 10–13] did some work in this direction: he extracted the seasonal
component by one of the statistical methods, and then looked whether this seasonal
component was stable. Results: seasonal effects are not different in cyclical down-
turns than upturns, they are also not different when production is high than when
production is low, and the turning points also do not have a statistically different
pattern. There is a difference between the first and the second half of the post-
World-War II period, but it is small compared with the seasonal effects themselves.
Perhaps the changed character of ther seasonal rhythm of the economy is an indicator
of other important changes in the structure of the economy?

[Hyl92, p. 105] cites several articles which say that one can get better forecasts
from unadjusted data. In the face of this “loss of information” due to seasonal ad-
justment it is argued that one should not seasonally adjust the data. My answer:
prediction is not the purpose of seasonal adjustment. One can predict quite well with-
out knowing the underlying mechanisms. There is a difference between prediction
and the exploration of underlying mechanisms.

[BF91] apply various adjustment mechanisms to real (and one simulated) time-
series and ask whether the results have desirable properties. For instance, the X11-
procedure was apparently adopted because it gave good results on many different
time series. This shows that seasonal adjustment methods are selected not so much
on the basis of prior theory, but on the basis of what works.

68.1. Methods of Seasonal Adjustment

The following is only a very small sampling of the methods in use:
Fixed additive method according to [BF91, p. 40/1]:

(68.1.1) yij = gij + si + uij

(trend-cycle, seasonal, and irregular components). Here the trend-cycle component
gij is estimated by the centered 12-month moving average of yij , i.e., 11 months
have a weight of 1/12 and the two months at both ends of the relevant period have a
weight of 1/24. For each month the mean of the difference between the trend-cycle
component thus estimated and the original series yij − gij is determined. This yields
the preliminary estimate of the seasonal component s′i. In order to let the seasonal
components sum to zero over the year, they are derived from these preliminary
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components as follows:

(68.1.2) si = s′i −
1

12

1∑

j−1

2s′j

The irregular component is then the residual.

Problem 556. How would you modify this method at the ends of the sampling
period?

[ESS97, p. 39 and 47–49] give the following prescription for a time-varying
seasonal adjustment: xt = gt + st + ut; here gt is trend plus cyclical component; st
is the seasonal component, and ut the residual. We want gt to be smooth in the
sense of small third differences: vt = gt − 3gt−1 + 3gt−2 − gt−3, and we want st to

sum up to zero over the year (which is split into m periods) i.e., wt =
∑m−1

i=0 st−i
must be minimized, and the squared sum of the errors must be minimized. i.e., one
mimimizes

(68.1.3)

n∑

t=1

u2
t + α1

n∑

t=4

v2
t + α2

n∑

t=m

w2
t

Here a large α1 gives a smoother series, a small α1 gives smaller residuals. A large
α2 gives a series whose seasonal behavior is fixed over time, while a small α2 gives a
more flexible seasonal pattern.

Problem 557. Show that vt is indeed the third difference.

Answer. Define the first differences dt = gt − gt−1, the second differences et = dt − dt−1,
and the third difference ft = et − et−1. Then you will see that ft = vt. Let’s go through this:
et = gt − gt−1 − (gt−1 − gt−2) = gt − 2gt−1 + gt−2. Therefore ft = gt − 2gt−1 + gt−2 − (gt−1 −
2gt−2 + gt−3) = gt − 3gt−1 + 3gt−2 − gt−3 = vt. �

BTW the smooth component gt is not being produced in the USA, but in Europe
[ESS97, p. 98], this book has a few articles arguing that the smooth component is
good for policy etc.

68.2. Seasonal Dummies in a Regression

The following is a more technical discussion, using the math of linear regression:

Problem 558. Regression models incorporate seasonality often by the assump-
tion that the intercept of the regression is different in every season, while the slopes
remain the same. Assuming X contains quarterly data (but the constant term is not
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incorporated in X), this can be achieved in several different ways: You may write
your model as

y = Xβ + Cδ + ε, C =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
...

...
...

...




.(68.2.1)

Alternatively, you may write your model in the form

y = ια+ Xβ + Kδ + ε, ι =




1
1
1
1
1
1
1
1
...




K =




0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
1 0 0
0 1 0
0 0 1
...

...
...




(68.2.2)

In R this is the default method to generate dummy variables from a seasonal factor
variable. (Splus has a different default.) This is also the procedure shown in [Gre97,
p. 383]. But the following third alternative is often preferrable:

y = ια+ Xβ + Kδ + ε, ι =




1
1
1
1
1
1
1
1
...




K =




1 0 0
0 1 0
0 0 1
−1 −1 −1
1 0 0
0 1 0
0 0 1
−1 −1 −1
...

...
...




(68.2.3)

In R one gets these dummy variables from a seasonal factor variable if one specifies
contrast="contr.sum".
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3 points What is the meaning of the seasonal dummies δ1, δ2, δ3, and of the
constant term α or the fourth seasonal dummy δ4, in models (68.2.1), (68.2.2), and
(68.2.3)?

Answer. Clearly, in model (68.2.1), δi is the intercept in the ith season. For (68.2.2) and
(68.2.3), it is best to write the regression equation for each season separately, filling in the values
the dummies take for these seasons, in order to see the meaning of these dummies. Assuming X

consists of one column only, (68.2.2) becomes



y1

y2

y3

y4

y5

y6

y7

y8

.

..




=




1
1
1
1
1
1
1
1
.
..




α+




x1

x2

x3

x4

x5

x6

x7

x8

.

..




β +




0 0 0
1 0 0
0 1 0
0 0 1
0 0 0
1 0 0
0 1 0
0 0 1
.
..

.

..
.
..




[
δ1
δ2
δ3

]
+




ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

.

..




or, written element by element

y1 = 1 · α+ x1 · β + 0 · δ1 + 0 · δ2 + 0 · δ3 + ε1 winter

y2 = 1 · α+ x2 · β + 1 · δ1 + 0 · δ2 + 0 · δ3 + ε2 spring

y3 = 1 · α+ x3 · β + 0 · δ1 + 1 · δ2 + 0 · δ3 + ε3 summer

y4 = 1 · α+ x4 · β + 0 · δ1 + 0 · δ2 + 1 · δ3 + ε4 autumn

therefore the overall intercept α is the intercept of the first quarter (winter); δ1 is the difference
between the spring intercept and the winter intercept, etc.

(68.2.3) becomes



y1

y2

y3

y4

y5

y6

y7

y8

.

..




=




1
1
1
1
1
1
1
1
.
..




α+




x1

x2

x3

x4

x5

x6

x7

x8

.

..




β +




1 0 0
0 1 0
0 0 1
−1 −1 −1
1 0 0
0 1 0
0 0 1
−1 −1 −1
.
..

.

..
.
..




[
δ1
δ2
δ3

]
+




ε1

ε2

ε3

ε4

ε5

ε6

ε7

ε8

.

..




or, written element by element

y1 = 1 · α+ x1 · β + 1 · δ1 + 0 · δ2 + 0 · δ3 + ε1 winter

y2 = 1 · α+ x2 · β + 0 · δ1 + 1 · δ2 + 0 · δ3 + ε2 spring

y3 = 1 · α+ x3 · β + 0 · δ1 + 0 · δ2 + 1 · δ3 + ε3 summer

y4 = 1 · α+ x4 · β − 1 · δ1 − 1 · δ2 − 1 · δ3 + ε4 autumn

Here the winter intercept is α + δ1, the spring intercept α + δ2, summer α + δ3, and autmumn

α− δ1 − δ2 − δ3. Summing this and dividing by 4 shows that the constant term α is the arithmetic
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mean of all intercepts, therefore δ1 is the difference between the winter intercept and the arithmetic
mean of all intercepts, etc. �

Problem 559. [DM93, pp. 23/4], [JGH+85, p. 260]. Your dependent variable
y and the explanatory variables X are quarterly timeseries data. Your regression
includes a constant term (not included in X). We also assume that your data set
spans m full years, i.e., the number of observations is 4m. The purpose of this
exercise is to show that the following two procedures are equivalent:

• a. 1 point You create a “seasonally adjusted” version of your data set, call
them y and X, by taking the seasonal mean out of every variable and adding the
overall mean back, and you regress y on X with a constant term. (The under-
lining does not denote taking out of the mean, but the taking out of the seasonal
means and adding back of the overall mean.) In the simple example where y =[
1 3 8 4 5 3 2 6

]>
, compute y. Hint: the solution vector contains the

numbers 7,3,6,4 in sequence.

Answer. Subtract the seasonal means, and add back the overall mean to get:

(68.2.4)




1
3
8
4
5

3
2
6




−




3
3
5
5
3

3
5
5




+




4
4
4
4
4

4
4
4




=




2
4
7
3
6

4
1
5




�

• b. 2 points The alternative equivalent procedure is: You use the original data
y and X but you add three seasonal dummies to your regression, i.e., you write your
model in the form

y = ια+ Xβ + Kδ + ε, K =




1 0 0
0 1 0
0 0 1
−1 −1 −1
1 0 0
0 1 0
0 0 1
−1 −1 −1
...

...
...




(68.2.5)

Explain the meaning of the three dummy coefficients in this regression.

Answer. See the answer to question 558 �
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• c. 2 points Show that

(68.2.6) (K>K)−1 =
1

4m




3 −1 −1
−1 3 −1
−1 −1 3


 =

1

m
(I − 1

4
ιι>)

where I is the 3 × 3 identity matrix, and ι is a 3-vector of ones. Hint: this can
easily be computed element by element, but the most elegant way is to write K> =[
I −ι . . . I −ι

]
where the

[
I −ι

]
group is repeated m times.

Answer. K>K before taking the inverses is

(68.2.7) K>K = m

[
2 1 1
1 2 1
1 1 2

]
= m(I + ιι>).

If it is written in the second way one can apply formula (31.2.6) to get the inverse. Of course, in
the present case, the inverse is already given, therefore one can simply multiply the matrix with its
inverse to verify that it is indeed the inverse. �

• d. 3 points Show that
(68.2.8)

K(K>K)−1K> =
1

m




1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1




− 1

4m




1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1




or, in a different notation

(68.2.9) K(K>K)−1K> =
1

m




I o I o

o> 1 o> 1
I o I o

o> 1 o> 1


− 1

4m




ιι> ι ιι> ι

ι> 1 ι> 1
ιι> ι ιι> ι

ι> 1 ι> 1




Answer. K(K>K)−1K> = 1
m

(KK> − 1
4
Kιι>K>). Since K is peridodic with period 2,

we only need the 4 upper left partitions.

(68.2.10) mK(K>K)−1K> =

[
I −ι

ι> 3

]
− 1

4

[
ιι> −3ι

−3ι> 9

]
=

[
I − 1

4
ιι> − 1

4
ι

− 1
4
ι> 3

4

]
= I4−

1

4
ι4ι>4

�

• e. 2 points Using the above equations, show that the OLS estimate β̂ in this
model is exactly the same as the OLS estimate in the regression of the seasonally
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adjusted data y on X. Hint: All you have to show is that M 1y = y, and M1X =

X, where M 1 = I − K(K>K)−1K>.

Answer. This gives

(68.2.11) I − K(K>K)−1K> =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




−

− 1

m




1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1




+
1

4m




1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1




The I4-striping takes the seasonal means out, and the 1
4m

ιι> adds the overall mean back.
�



CHAPTER 69

Binary Choice Models

69.1. Fisher’s Scoring and Iteratively Reweighted Least Squares

This section draws on chapter 55 about Numerical Minimization. Another im-
portant “natural” choice for the positive definite matrix Ri in the gradient method
is available if one maximizes a likelihood function: then Ri can be the inverse of
the information matrix for the parameter values βi. This is called Fisher’s Scoring
method. It is closely related to the Newton-Raphson method. The Newton-Raphson
method uses the Hessian matrix, and the information matrix is minus the expected
value of the Hessian. Apparently Fisher first used the information matrix as a com-
putational simplification in the Newton-Raphson method. Today IRLS is used in
the GLIM program for generalized linear models.

As in chapter 56 discussing nonlinear least squares, β is the vector of param-
eters of interest, and we will work with an intermediate vector η(β) of predictors
whose dimension is comparable to that of the observations. Therefore the likelihood
function has the form L = L

(
y,η(β)

)
. By the chain rule (C.1.23) one can write the

Jacobian of the likelihood function as ∂L
∂β> (β) = u>X, where u> = ∂L

∂η> (η(β)) is

the Jacobian of L as a function of η, evaluated at η(β), and X = ∂η

∂β> (β) is the

Jacobian of η. This is the same notation as in the discussion of the Gauss-Newton
regression.

Define A = E [uu>]. Since X does not depend on the random variables, the

information matrix of y with respect to β is then E [X>uu>X ] = X>AX. If one
uses the inverse of this information matrix as the R-matrix in the gradient algorithm,
one gets

(69.1.1) βi+1 = βi + αi
(
X>AX

)−1
X>u

The Iterated Reweighted Least Squares interpretation of this comes from rewrit-
ing (69.1.1) as

(69.1.2) βi+1 = βi +
(
X>AX

)−1
X>AA−1u,

i.e., one obtains the step by regressing A−1u on X with weighting matrix A.
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Justifications of IRLS are: the information matrix is usually analytically simpler
than the Hessian of the likelihood function, therefore it is a convenient approximation,
and one needs the information matrix anyway at the end for the covariance matrix
of the M.L. estimators.

69.2. Binary Dependent Variable

Assume each individual in the sample makes an independent random choice
between two alternatives, which can conveniently be coded as yi = 0 or 1. The
probability distribution of yi is fully determined by the probability πi = Pr[yi = 1]
of the event which has yi as its indicator function. Then E[yi] = πi and var[yi] =

E[y2
i ] −

(
E[yi]

)2
= E[yi] −

(
E[yi]

)2
= πi(1 − πi).

It is usually assumed that the individual choices are stochastically independent
of each other, i.e., the distribution of the data is fully characterized by the πi. Each
πi is assumed to depend on a vector of explanatory variables xi. There are different
approaches to modelling this dependence.

The regression model yi = x>
i β+εi with E[εi] = 0 is inappropriate because x>

i β

can take any value, whereas 0 ≤ E[yi] ≤ 1. Nevertheless, people have been tinkering
with it. The obvious first tinker is based on the observation that the εi are no
longer homoskedastic, but their variance, which is a function of πi, can be estimated,
therefore one can correct for this heteroskedasticity. But things get complicated very
quickly and then the main appeal of OLS, its simplicity, is lost. This is a wrong-
headed approach, and any smart ideas which one may get when going down this road
are simply wasted.

The right way to do this is to set πi = E[yi] = Pr[yi = 1] = h(x>
i β) where h is

some (necessarily nonlinear) function with values between 0 and 1.

69.2.1. Logit Specification (Logistic Regression). The logit or logistic

specification is πi = ex>

i β/(1 + ex>

i β). Invert to get log(πi/(1 − πi)) = x>
i β. I.e.,

the logarithm of the odds depends linearly on the predictors. The log odds are a
natural re-scaling of probabilities to a scale which goes from −∞ to +∞, and which
is symmetric in that the log odds of the complement of an event is just the negative
of the log odds of the event itself. (See my remarks about the odds ratio in Question
222.)

Problem 560. 1 point If y = log p
1−p (logit function), show that p = expy

1+expy

(logistic function).

Answer. exp y = p
1−p , now multiply by 1 − p to get exp y − p exp y = p, collect terms

exp y = p(1 + exp y), now divide by 1 + exp y. �
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Problem 561. Sometimes one finds the following alternative specification of the

logit model: πi = 1/(1+ex>

i β). What is the difference between it and our formulation
of the logit model? Are these two formulations equivalent?

Answer. It is simply a different parametrization. They get this because they come from index
number problem. �

The logit function is also the canonical link function for the binomial distribution,
see Problem 113.

69.2.2. Probit Model. An important class of functions with values between 0
and 1 is the class of cumulative probability distribution functions. If h is a cumulative
distribution function, then one can give this specification an interesting interpretation
in terms of an unobserved “index variable.”

The index variable model specifies: there is a variable zi with the property that
yi = 1 if and only if zi > 0. For instance, the decision yi whether or not individual
i moves to a different location can be modeled by the calculation whether the net
benefit of moving, i.e., the wage differential minus the cost of relocation and finding
a new job, is positive or not. This moving example is worked out, with references,
in [Gre93, pp. 642/3].

The value of the variable zi is not observed, one only observes yi, i.e., the only
thing one knows about the value of zi is whether it is positive or not. But it is assumed
that zi is the sum of a deterministic part which is specific to the individual and a
random part which has the same distribution for all individuals and is stochastically
independent between different individuals. The deterministic part specific to the
individual is assumed to depend linearly on individual i’s values of the covariates,
with coefficients which are common to all individuals. In other words, zi = x>

i β+εi,
where the εi are i.i.d. with cumulative distribution function Fε. Then it follows πi =
Pr[yi = 1] = Pr[zi > 0] = Pr[εi > −x>

i β] = 1 − Pr[εi ≤ −x>
i β] = 1 − Fε(−x>

i β).
I.e., in this case, h(η) = 1−Fε(−η). If the distribution of εi is symmetric and has a
density, then one gets the simpler formula h(η) = Fε(η).

Which cumulative distribution function should be chosen?

• In practice, the probit model, in which zi is normal, is the only one used.
• The linear model, in which h is the line segment from (a, 0) to (b, 1), can also

be considered generated by an in index function zi which is here uniformly
distributed.

• An alternative possible specification with the Cauchy distribution is pro-
posed in [DM93, p. 516]. They say that curiously only logit and probit are
being used.
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In practice, the probit model is very similar to the logit model, once one has rescaled
the variables to make the variances equal, but the logit model is easier to handle
mathematically.

69.2.3. Replicated Data. Before discussing estimation methods I want to
briefly address the issue whether or not to write the data in replicated form [MN89,
p. 99–101]. If there are several observations for every individual, or if there are several
individuals for the same values of the covariates (which can happen if all covariates
are categorical), then one can write the data more compactly if one groups the data
into so-called “covariate classes,” i.e., groups of observations which share the same
values of xi, and defines yi to be the number of times the decision came out positive
in this group. Then one needs a second variable, mi, which is assumed nonrandom,
indicating how many individual decisions are combined in the respective group. This
is an equivalent formulation of the data, the only thing one loses is the order in which
the observations were made (which may be relevant if there are training or warm-up
effects). The original representation of the data is a special case of the grouped form:
in the non-grouped form, all mi = 1. We will from now on write our formulas for
the grouped form.

69.2.4. Estimation. Maximum likelihood is the preferred estimation method.
The likelihood function has the form L =

∏
πyi

i (1 − πi)
(mi−yi). This likelihood

function is not derived from a density, but from a probability mass function. For
instance, in the case with non-replicated data, all mi = 1, if you have n binary
measurements, then you can have only 2n different outcomes, and the probability of
the sequence y1, . . . yn = 0, 1, 0, 0, . . . , 1 is as given above.

This is a highly nonlinear maximization and must be done numerically. Let us
go through the method of scoring in the example of a logit distribution.

L =
∑

i

(
yi logπi + (mi − yi) log(1 − πi)

)
(69.2.1)

∂L

∂πi
=
(yi

πi
− mi − yi

1 − πi

)
(69.2.2)

∂2L

∂π2
i

= −
( yi

π2
i

+
mi − yi

(1 − πi)2

)
(69.2.3)

Defining η = Xβ, the logit specification can be written as πi = eηi/(1 + eηi).

Differentiation gives ∂πi

∂ηi
= πi(1 − πi). Combine this with (69.2.2) to get

(69.2.4) ui =
∂L

∂ηi
=
(yi

πi
− mi − yi

1 − πi

)
πi(1 − πi) = yi −miπi.
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These are the elements of u in (69.1.1), and they have a very simple meaning: it is
just the observations minus their expected values. Therefore one obtains immediately
A = E [uu>] is a diagonal matrix with miπi(1 − πi) in the diagonal.

Problem 562. 6 points Show that for the maximization of the likelihood func-
tion of the logit model, Fisher’s scoring method is equivalent to the Newton-Raphson
algorithm.

Problem 563. Show that in the logistic model,
∑
miπ̂i =

∑
yi.

69.3. The Generalized Linear Model

The binary choice models show how the linear model can be generalized. [MN89,
p. 27–32] develop a unified theory of many different interesting models, called the
“generalized linear model.” The following few paragraphs are indebted to the elabo-
rate and useful web site about Generalized Linear Models maintained by Gordon K.
Smyth at www.maths.uq.oz.au/~gks/research/glm

In which cases is it necessary to go beyond linear models? The most important
and common situation is one in which yi and µi = E[yi] are bounded:

• If y represents the amount of some physical substance then we may have
y ≥ 0 and µ ≥ 0.

• If y is binary, i.e., y = 1 if an animal survives and y = 0 if it does not, then
0 ≤ µ ≤ 1.

The linear model is inadequate here because complicated and unnatural constraints
on β would be required to make sure that µ stays in the feasible range. Generalized
linear models instead assume a link linear relationship

(69.3.1) g(µ) = Xβ

where g() is some known monotonic function which acts pointwise on µ. Typically
g() is used to transform the µi to a scale on which they are unconstrained. For
example we might use g(µ) = log(µ) if µi > 0 or g(µ) = log

(
µ/(1−µ)

)
if 0 < µi < 1.

The same reasons which force us to abandon the linear model also force us to
abandon the assumption of normality. If y is bounded then the variance of y must
depend on its mean. Specifically if µ is close to a boundary for y then var(y) must
be small. For example, if y > 0, then we must have var(y) → 0 as µ → 0. For this
reason strictly positive data almost always shows increasing variability with increased
size. If 0 < y < 1, then var(y) → 0 as µ → 0 or µ → 1. For this reason, generalized
linear models assume that

(69.3.2) var(yi) = φ · V (µi)

where φ is an unknown scale factor and V () is some known variance function appro-
priate for the data at hand.
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We therefore estimate the nonlinear regression equation (69.3.1) weighting the
observations inversely according to the variance functions V (µi). This weighting
procedure turns out to be exactly equivalent to maximum likelihood estimation when
the observations actually come from an exponential family distribution.

Problem 564. Describe estimation situations in which a linear model and Nor-
mal distribution are not appropriate.

The generalized linear model has the following components:

• Random component: Instead of being normally distributed, the compo-
nents of y have a distribution in the exponential family.

• . Introduce a new symbol η = Xβ.
• A monotonic univariate link function g so that ηi = g(µi) where µ = E [y].

The generalized linear model allows for a nonlinear link function g specifying
that transformation of the expected value of the response variable which depends
linearly on the predictors:

(69.3.3) g(E[yi]) = x>
i β,

Its random specification is such that var[y] depends on E[y] through a variance
function φ ·V (where φ is a constant taking the place of σ2 in the regression model:)

(69.3.4) var[y] = φ · V (E[y])

We have seen earlier that these mean- and variance functions are not an artificial
construct, but that the distributions from the “exponential dispersion family,” see
Section 6.2, naturally give rise to such mean and variance functions. But just as
much of the theory of the linear model can be derived without the assumption that
the residuals are normally distributed, many of the results about generalized linear
models do not require us to specify the whole distribution but can be derived on the
basis of the mean and variance functions alone.
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Multiple Choice Models

Discrete choice between three or more alternatives; came from choice of trans-
portation.

The outcomes of these choices should no longer be represented by a vector y, but
one needs a matrix Y with yij = 1 if the ith individual chooses the jth alternative,
and 0 otherwise. Consider only three alternatives j = 1, 2, 3, and define Pr(yij =
1) = πij .

Conditional Logit model is a model which makes all πij dependent on xi. It is
very simple extension of binary choice. In binary choice we had log πi

1−πi
= x>

i β, log

of odds ratio. Here this is generalized to log πi2

πi1
= x>

i β2, and log πi3

πi1
= x>

i β3. From
this we obtain

(70.0.5) πi1 = 1 − πi2 − πi3 = 1 − πi1e
x>

i β2 − πi1e
x>

i β3 ,

or

πi1 =
1

1 + ex>

i
β2 + ex>

i
β3

,(70.0.6)

πi2 =
ex>

i β2

1 + ex>

i
β2 + ex>

i
β3

,(70.0.7)

πi3 =
ex>

i β3

1 + ex>

i
β2 + ex>

i
β3

.(70.0.8)

One can write this as πij = eαj+βj Xi∑
eαk+βkXi

if one defines α1 = β1 = 0. The only

estimation method used is MLE.

(70.0.9) L =
∏

πyi1

i1 πyi2

i2 Πyi3

i3 =
∏ (ex>

i β2)yi2(ex>

i β3)yi3

1 + ex>

i
β2 + ex>

i
β3

.

Note: the odds are independent of all other alternatives. Therefore the alterna-
tives must be chosen such that this independence is a good assumption. The choice
between walking, car, red buses, and blue buses does not satisfy this. See [Cra91,
p. 47] for the best explanation of this which I found till now.
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APPENDIX A

Matrix Formulas

In this Appendix, efforts are made to give some of the familiar matrix lemmas in
their most general form. The reader should be warned: the concept of a deficiency
matrix and the notation which uses a thick fraction line multiplication with a scalar
g-inverse are my own.

A.1. A Fundamental Matrix Decomposition

Theorem A.1.1. Every matrix B which is not the null matrix can be written
as a product of two matrices B = CD, where C has a left inverse L and D a right
inverse R, i.e., LC = DR = I. This identity matrix is r × r, where r is the rank
of B.

A proof is in [Rao73, p. 19]. This is the fundamental theorem of algebra, that
every homomorphism can be written as a product of epimorphism and monomor-
phism, together with the fact that all epimorphisms and monomorphisms split, i.e.,
have one-sided inverses.

One such factorization is given by the singular value theorem: If B = P >ΛQ

is the svd as in Theorem A.9.2, then one might set e.g. C = P >Λ and D = Q,
consequently L = Λ−1P and R = Q>. In this decomposition, the first row/column
carries the largest weight and gives the best approximation in a least squares sense,
etc.

The trace of a square matrix is defined as the sum of its diagonal elements. The
rank of a matrix is defined as the number of its linearly independent rows, which is
equal to the number of its linearly independent columns (row rank = column rank).

Theorem A.1.2. tr BC = tr CB.

Problem 565. Prove theorem A.1.2.

Problem 566. Use theorem A.1.1 to prove that if BB = B, then rankB =
trB.

Answer. Premultiply the equation CD = CDCD by L and postmultiply it by R to get
DC = Ir. This is useful for the trace: tr B = tr CD = trDC = tr Ir = r. I have this proof from

[Rao73, p. 28]. �
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Theorem A.1.3. B = O if and only if B>B = O.

A.2. The Spectral Norm of a Matrix

The spectral norm of a matrix extends the Euclidean norm ‖z‖ from vectors
to matrices. Its definition is ‖A‖ = max‖z‖=1 ‖Az‖. This spectral norm is the

maximum singular value µmax, and if A is square, then
∥∥A−1

∥∥ = 1/µmin. It is a
true norm, i.e., ‖A‖ = 0 if and only if A = O, furthermore ‖λA‖ = |λ| ·‖A‖, and the
triangle inequality ‖A + B‖ ≤ ‖A‖+‖B‖. In addition, it obeys ‖AB‖ ≤ ‖A‖·‖B‖.

Problem 567. Show that the spectral norm is the maximum singular value.

Answer. Use the definition

(A.2.1) ‖A‖2 = max
z>A>Az

z>z
.

Write A = P>ΛQ as in (A.9.1), Then z>A>Az = z>Q>Λ2Qz. Therefore we can first show:

there is a z in the form z = Q>x which attains this maximum. Proof: for every z which has a
nonzero value in the numerator of (A.2.1), set x = Qz. Then x 6= o, and Q>x attains the same
value as z in the numerator of (A.2.1), and a smaller or equal value in the denominator. Therefore

one can restrict the search for the maximum argument to vectors of the form Q>x. But for them

the objective function becomes x>
Λ

2x

x>x
, which is maximized by x = i1, the first unit vector (or

column vector of the unit matrix). Therefore the squared spectral norm is λ2
ii, and therefore the

spectral norm itself is λii. �

A.3. Inverses and g-Inverses of Matrices

A g-inverse of a matrix A is any matrix A− satisfying

(A.3.1) A = AA−A.

It always exists but is not always unique. If A is square and nonsingular, then A−1

is its only g-inverse.

Problem 568. Show that a symmetric matrix ΩΩΩ has a g-inverse which is also
symmetric.

Answer. Use ΩΩΩ−ΩΩΩΩΩΩ−>
. �

The definition of a g-inverse is apparently due to [Rao62]. It is sometimes called
the “conditional inverse” [Gra83, p. 129]. This g-inverse, and not the Moore-Penrose
generalized inverse or pseudoinverse A+, is needed for the linear model, The Moore-
Penrose generalized inverse is a g-inverse that in addition satisfies A+AA+ = A+,
and AA+ as well as A+A symmetric. It always exists and is also unique, but the
additional requirements are burdensome ballast. [Gre97, pp. 44-5] also advocates
the Moore-Penrose inverse, but he does not really use it. If he were to try to use it,
he would probably soon discover that it is not appropriate. The book [Alb72] does
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the linear model with the Moore-Penrose inverse. It is a good demonstration of how
complicated everything gets if one uses an inappropriate mathematical tool.

Problem 569. Use theorem A.1.1 to prove that every matrix has a g-inverse.

Answer. Simple: a null matrix has its transpose as g-inverse, and if A 6= O then RL is such
a g-inverse. �

The g-inverse of a number is its inverse if the number is nonzero, and is arbitrary
otherwise. Scalar expressions written as fractions are in many cases the multiplication
by a g-inverse. We will use a fraction with a thick horizontal rule to indicate where
this is the case. In other words, by definition,

(A.3.2)
a

b
= b−a. Compare that with the ordinary fraction

a

b
.

This idiosyncratic notation allows to write certain theorems in a more concise form,
but it requires more work in the proofs, because one has to consider the additional
case that the denominator is zero. Theorems A.5.8 and A.8.2 are examples.

Theorem A.3.1. If B = AA−B holds for one g-inverse A− of A, then it holds
for all g-inverses. If A is symmetric and B = AA−B, then also B> = B>A−A.
If B = BA−A and C = AA−C then BA−C is independent of the choice of g-
inverses.

Proof. Assume the identity B = AA+B holds for some fixed g-inverse A+

(which may be, as the notation suggests, the Moore Penrose g-inverse, but this is
not necessary), and let A− be an different g-inverse. Then AA−B = AA−AA+B =
AA+B = B. For the second statement one merely has to take transposes and note
that a matrix is a g-inverse of a symmetric A if and only if its transpose is. For the
third statement: BA+C = BA−AA+AA−C = BA−AA−C = BA−C. Here +

signifies a different g-inverse; again, it is not necessarily the Moore-Penrose one. �

Problem 570. Show that x satisfies x = Ba for some a if and only if x =
BB−x.

Theorem A.3.2. Both A>(AA>)− and (A>A)−A are g-inverses of A.

Proof. We have to show

(A.3.3) A = AA>(AA>)−A

which is [Rao73, (1b.5.5) on p. 26]. Define D = A−AA>(AA>)−A and show, by

multiplying out, that DD> = O. �
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A.4. Deficiency Matrices

Here is again some idiosyncratic terminology and notation. It gives an explicit
algebraic formulation for something that is often done implicitly or in a geometric
paradigm. A matrix G will be called a “left deficiency matrix” of S, in symbols,
G ⊥ S, if GS = O, and for all Q with QS = O there is an X with Q = XG. This
factorization property is an algebraic formulation of the geometric concept of a null
space. It is symmetric in the sense that G ⊥ S is also equivalent with: GS = O,
and for all R with GR = O there is a Y with R = SY . In other words, G ⊥ S and
S> ⊥ G> are equivalent.

This symmetry follows from the following characterization of a deficiency matrix
which is symmetric:

Theorem A.4.1. T ⊥ U iff TU = O and T>T + UU> nonsingular.

Proof. This proof here seems terribly complicated. There must be a simpler
way. Proof of “⇒”: Assume T ⊥ U . Take any γ with γ>T>Tγ + γ>UU>γ =
0, i.e., T γ = o and γ>U = o>. From this one can show that γ = o: since
Tγ = o, there is a ξ with γ = Uξ, therefore γ>γ = γ>Uξ = 0. To prove
“⇐” assume TU = O and T>T + UU> is nonsingular. To show that T ⊥ U

take any B with BU = O. Then B = B(T >T + UU>)(T>T + UU>)−1 =

BT>T (T>T + UU>)−1. In the same way one gets T = TT >T (T>T + UU>)−1.

Premultiply this last equation by T >T (T>TT>T )−T> and use theorem A.3.2 to get

T>T (T>TT>T )−T>T = T>T (T>T + UU>)−1. Inserting this into the equation

for B gives B = BT>T (T>TT>T )−T>T , i.e., B factors over T . �

The R/Splus-function Null gives the transpose of a deficiency matrix.

Theorem A.4.2. If for all Y , BY = O implies AY = O, then a X exists with
A = XB.

Problem 571. Prove theorem A.4.2.

Answer. Let B ⊥ C. Choosing Y = B follows AB = O, hence X exists. �

Problem 572. Show that I − SS− ⊥ S.

Answer. Clearly, (I − SS−)S = O. Now if QS = O, then Q = Q(I − SS−), i.e., the X

whose existence is postulated in the definition of a deficiency matrix is Q itself. �

Problem 573. Show that S ⊥ U if and only if S is a matrix with maximal rank
which satisfies SU = O. In other words, one cannot add linearly independent rows
to S in such a way that the new matrix still satisfies TU = O.
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Answer. First assume S ⊥ U and take any additional row t> so that

[
S

t>

]
U =

[
O

o>

]
. Then

exists a

[
Q

r

]
such that

[
S

t>

]
=

[
Q

r

]
S, i.e., SQ = S, and t> = r>S. But this last equation means

that t> is a linear combination of the rows of S with the ri as coefficients. Now conversely, assume

S is such that one cannot add a linearly independent row t> such that

[
S

t>

]
U =

[
O

o>

]
, and let

PU = O. Then all rows of P must be linear combinations of rows of S (otherwise one could add
such a row to S and get the result which was just ruled out), therefore P = SS where A is the
matrix of coefficients of these linear combinations. �

The deficiency matrix is not unique, but we will use the concept of a deficiency
matrix in a formula only then when this formula remains correct for every deficiency
matrix. One can make deficiency matrices unique if one requires them to be projec-
tion matrices.

Problem 574. Given X and a symmetric nonnegative definite ΩΩΩ such that X =
ΩΩΩW for some W . Show that X ⊥ U if and only if X>ΩΩΩ−X ⊥ U .

Answer. One has to show that XY = O is equivalent to X>ΩΩΩ−XY = O. ⇒ clear; for
⇐ note that X>ΩΩΩ−X = W>ΩΩΩW , therefore XY = ΩΩΩWY = ΩΩΩW (W>ΩΩΩW )−W>ΩΩΩWY =

ΩΩΩW (W>ΩΩΩW )−X>ΩΩΩ−XY = O.
�

A matrix is said to have full column rank if all its columns are linearly indepen-
dent, and full row rank if its rows are linearly independent. The deficiency matrix
provides a “holistic” definition for which it is not necessary to look at single rows
and columns. X has full column rank if and only if X ⊥ O, and full row rank if and
only if O ⊥ X.

Problem 575. Show that the following three statements are equivalent: (1) X

has full column rank, (2) X>X is nonsingular, and (3) X has a left inverse.

Answer. Here use X ⊥ O as the definition of “full column rank.” Then (1) ⇔ (2) is theorem
A.4.1. Now (1) ⇒ (3): Since IO = O, a P exists with I = PX. And (3) ⇒ (1): if a P exists with
I = PX, then any Q with QO = O can be factored over X, simply say Q = QPX . �

Note that the usual solution of linear matrix equations with g-inverses involves
a deficiency matrix:

Theorem A.4.3. The solution of the consistent matrix equation T X = A is

(A.4.1) X = T−A + UW

where T ⊥ U and W is arbitrary.

784 A. MATRIX FORMULAS

Proof. Given consistency, i.e., the existence of at least one Z with TZ = A,
(A.4.1) defines indeed a solution, since TX = TT −TZ. Conversely, if Y satisfies
TY = A, then T (Y − T−A) = O, therefore Y − T−A = UW for some W . �

Theorem A.4.4. Let L ⊥ T ⊥ U and J ⊥ HU ⊥ R; then
[

L O

−JHT− J

]
⊥
[
T

H

]
⊥ UR.

Proof. First deficiency relation: Since I−TT − = UW for some W , −JHT−T+

JH = O, therefore the matrix product is zero. Now assume
[
A B

] [T

H

]
= O.

Then BHU = O, i.e., B = DJ for some D. Then AT = −DJH, which
has as general solution A = −DJHT− + CL for some C. This together gives
[
A B

]
=
[
C D

] [ L O

−JHT − J

]
. Now the second deficiency relation: clearly,

the product of the matrices is zero. If M satisfies TM = O, then M = UN

for some N . If M furthermore satisfies HM = O, then HUN = O, therefore
N = RP for some P , therefore M = URP . �

Theorem A.4.5. Assume ΩΩΩ is nonnegative definite symmetric and K is such
that KΩΩΩ is defined. Then the matrix

(A.4.2) Ξ = ΩΩΩ −ΩΩΩK>(KΩΩΩK>)−KΩΩΩ

has the following properties:
(1) Ξ does not depend on the choice of g-inverse of KΩΩΩK> used in (A.4.2).

(2) Any g-inverse of ΩΩΩ is also a g-inverse of Ξ, i.e. ΞΩΩΩ−Ξ = Ξ.
(3) Ξ is nonnegative definite and symmetric.

(4) For every P ⊥ ΩΩΩ follows

[
K

P

]
⊥ Ξ

(5) If T is any other right deficiency matrix of

[
K

P

]
, i.e., if

[
K

P

]
⊥ T , then

(A.4.3) Ξ = T (T >ΩΩΩ−
T )−T>.

Hint: show that any D satisfying Ξ = TDT > is a g-inverse of T>ΩΩΩ−
T .

In order to apply (A.4.3) show that the matrix T = SK where K ⊥ S and

PS ⊥ K is a right deficiency matrix of

[
K

P

]
.

Proof of theorem A.4.5: Independence of choice of g-inverse follows from theorem
A.5.10. That ΩΩΩ− is a g-inverse is also an immediate consequence of theorem A.5.10.
From the factorization Ξ = ΞΩΩΩ−Ξ follows also that Ξ is nnd symmetric (since every
nnd symmetric ΩΩΩ also has a symmetric nnd g-inverse). (4) Deficiency property:
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From

[
K

P

]
Q = O follows KQ = O and PQ = O. From this second equation

and P ⊥ ΩΩΩ follows Q = ΩΩΩR for some R. Since KΩΩΩR = KQ = O, it follows
Q = ΩΩΩR = (ΩΩΩ −ΩΩΩK>(KΩΩΩK>)−KΩΩΩ)R.

Proof of (5): Since

[
K

P

]
Ξ = O it follows Ξ = T A for some A, and therefore

Ξ = ΞΩΩΩ−Ξ = TAΩΩΩ−
A>T> = T DT> where D = AΩΩΩ−

A>.
Before going on we need a lemma. Since (I − ΩΩΩΩΩΩ−)ΩΩΩ = O, there exists a N

with I −ΩΩΩΩΩΩ− = NP , therefore T −ΩΩΩΩΩΩ−
T = NPT = O or

(A.4.4) T = ΩΩΩΩΩΩ−
T

Using (A.4.4) one can show the hint: that any D satisfying Ξ = TDT > is a

g-inverse of T>ΩΩΩ−T :

(A.4.5) T>ΩΩΩ−TDT>ΩΩΩ−T ≡ T>ΩΩΩ−(ΩΩΩ −ΩΩΩK>(KΩΩΩK>)−KΩΩΩ)ΩΩΩ−T = T>ΩΩΩ−T .

To complete the proof of (5) we have to show that the expression T (T >ΩΩΩ−
T )−T>

does not depend on the choice of the g-inverse of T >ΩΩΩ−T . This follows from
T (T>ΩΩΩ−

T )−T> = ΩΩΩΩΩΩ−
T (T>ΩΩΩ−

T )−T>ΩΩΩ−ΩΩΩ and theorem A.5.10.

Theorem A.4.6. Given two matrices T and U . Then T ⊥ U if and only if for
any D the following two statements are equivalent:

TD = O(A.4.6)

and

For all C which satisfy CU = O follows CD = O.(A.4.7)

A.5. Nonnegative Definite Symmetric Matrices

By definition, a symmetric matrix ΩΩΩ is nonnegative definite if a>ΩΩΩa ≥ 0 for all
vectors a. It is positive definite if a>ΩΩΩa > 0 for all vectors a 6= o.

Theorem A.5.1. ΩΩΩ nonnegative definite symmetric if and only if it can be writ-
ten in the form ΩΩΩ = A>A for some A.

Theorem A.5.2. If ΩΩΩ is nonnegative definite, and a>ΩΩΩa = 0, then already
ΩΩΩa = o.

Theorem A.5.3. A is positive definite if and only it is nonnegative definite and
nonsingular.

Theorem A.5.4. If the symmetric matrix A has a nnd g-inverse then A itself
is also nnd.
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Theorem A.5.5. If ΩΩΩ and ΣΣΣ are positive definite, then ΩΩΩ −ΣΣΣ is positive (non-

negative) definite if and only if ΣΣΣ−1 −ΩΩΩ−1 is.

Theorem A.5.6. If ΩΩΩ and ΣΣΣ are nonnegative definite, then tr(ΩΩΩΣΣΣ) ≥ 0.

Problem 576. Prove theorem A.5.6.

Answer. Find any factorization ΣΣΣ = PP>. Then tr(ΩΩΩΣΣΣ) = tr(P>ΩΩΩP ) ≥ 0. �

Theorem A.5.7. If ΩΩΩ is nonnegative definite symmetric, then

(A.5.1) (g>ΩΩΩa)2 ≤ g>ΩΩΩg a>ΩΩΩa,

for arbitrary vectors a and g. Equality holds if and only if ΩΩΩg and ΩΩΩa are linearly
dependent, i.e., α and β exist, not both zero, such that ΩΩΩgα+ ΩΩΩaβ = o.

Proof: First we will show that the condition for equality is sufficient. Therefore
assume ΩΩΩgα + ΩΩΩaβ = 0 for a certain α and β, which are not both zero. Without
loss of generality we can assume α 6= 0. Then we can solve a>ΩΩΩgα+ a>ΩΩΩaβ = 0 to
get a>ΩΩΩg = −(β/α)a>ΩΩΩa, therefore the lefthand side of (A.5.1) is (β/α)2(a>ΩΩΩa)2.
Furthermore we can solve g>ΩΩΩgα + g>ΩΩΩaβ = 0 to get g>ΩΩΩg = −(β/α)g>ΩΩΩa =
(β/α)2a>ΩΩΩa, therefore the righthand side of (A.5.1) is (β/α)2(a>ΩΩΩa)2 as well—i.e.,
(A.5.1) holds with equality.

Secondly we will show that (A.5.1) holds in the general case and that, if it holds
with equality, ΩΩΩg and ΩΩΩa are linearly dependent. We will split this second half of
the proof into two substeps. First verify that (A.5.1) holds if g>ΩΩΩg = 0. If this is
the case, then already ΩΩΩg = o, therefore the ΩΩΩg and ΩΩΩa are linearly dependent and,
by the first part of the proof, (A.5.1) holds with equality.

The second substep is the main part of the proof. Assume g>ΩΩΩg 6= 0. Since ΩΩΩ
is nonnegative definite, it follows
(A.5.2)

0 ≤
(
a−g

g>ΩΩΩa

g>ΩΩΩg

)>
ΩΩΩ
(
a−g

g>ΩΩΩa

g>ΩΩΩg

)
= a>ΩΩΩa−2

(g>ΩΩΩa)2

g>ΩΩΩg
+

(g>ΩΩΩa)2

g>ΩΩΩg
= a>ΩΩΩa− (g>ΩΩΩa)2

g>ΩΩΩg
.

From this follows (A.5.1). If (A.5.2) is an equality, then already ΩΩΩ
(
a−g

g>ΩΩΩa

g>ΩΩΩg

)
=

o, which means that ΩΩΩg and ΩΩΩa are linearly dependent.

Theorem A.5.8. In the situation of theorem A.5.7, one can take g-inverses as
follows without disturbing the inequality

(A.5.3)
(g>ΩΩΩa)2

g>ΩΩΩg
≤ a>ΩΩΩa.

Equality holds if and only if a γ 6= 0 exists with ΩΩΩg = ΩΩΩaγ.
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Problem 577. Show that if ΩΩΩ is nonnegative definite, then its elements satisfy

(A.5.4) ω2
ij ≤ ωiiωjj

Answer. Let a and b be the ith and jth unit vector. Then

(A.5.5)
(b>ΩΩΩa)2

b>ΩΩΩb
≤ max

g

(g>ΩΩΩa)2

g>ΩΩΩg
= a>ΩΩΩa.

�

Problem 578. Assume ΩΩΩ nonnegative definite symmetric. If x satisfies x = ΩΩΩa

for some a, show that

(A.5.6) max
g

(g>x)2

g>ΩΩΩg
= x>ΩΩΩ−x.

Furthermore show that equality holds if and only if ΩΩΩg = xγ for some γ 6= 0.

Answer. From x = ΩΩΩa follows g>x = g>ΩΩΩa and x>ΩΩΩ−x = a>ΩΩΩa; therefore it follows from
theorem A.5.8.

�

Problem 579. Assume ΩΩΩ nonnegative definite symmetric, x satisfies x = ΩΩΩa

for some a, and R is such that Rx is defined. Show that

(A.5.7) x>R>(RΩΩΩR>)−Rx ≤ x>ΩΩΩ−x

Answer. Follows from

(A.5.8) max
h

(h>Rx)2

h>RΩΩΩR>h
≤ max

g

(g>x)2

g>ΩΩΩg

because on the term on the lhs maximization is done over the smaller set of g which have the
form Rh. An alternative proof would be to show that ΩΩΩ −ΩΩΩr>(RΩΩΩR>)−RΩΩΩ is nnd (it has ΩΩΩ− as
g-inverse). �

Problem 580. Assume ΩΩΩ nonnegative definite symmetric. Show that

(A.5.9) max
g :

g=ΩΩΩa
for some a

(g>x)2

g>ΩΩΩ−
g

= x>ΩΩΩx.

Answer. Since g = ΩΩΩa for some a, maximize over a instead of g. This reduces it to theorem
A.5.8:

(A.5.10) max
g : g=ΩΩΩa for some a

(g>x)2

g>ΩΩΩ−g
= max

a

(a>ΩΩΩx)2

a>ΩΩΩa
= x>ΩΩΩx

�
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Theorem A.5.9. Let ΩΩΩ be symmetric and nonnegative definite, and x an arbi-
trary vector. Then ΩΩΩ − xx> is nonnegative definite if and only if the following two
conditions hold: x can be written in the form x = ΩΩΩa for some a, and x>ΩΩΩ−

x ≤ 1
for one (and therefore for all) g-inverses ΩΩΩ− of ΩΩΩ.

Problem 581. Prove theorem A.5.9.

Answer. Assume x = ΩΩΩa and x>ΩΩΩ−x = a>ΩΩΩa ≤ 1; then for any g, g>(ΩΩΩ − xx>)g> =
g>ΩΩΩg − g>ΩΩΩaa>ΩΩΩg ≥ a>ΩΩΩag>ΩΩΩg − g>ΩΩΩaa>ΩΩΩg ≥ 0 by theorem A.5.7.

Conversely, assume x cannot be written in the form x = ΩΩΩa for some a; then a g exists with
g>ΩΩΩ = o> but g>x 6= o. Then g>(ΩΩΩ − xx>)g> < 0, therefore not nnd.

Finally assume x>ΩΩΩ−x = a>ΩΩΩa > 1; then a>(ΩΩΩ − xx>)a = a>ΩΩΩa − (a>ΩΩΩa)2 < 0, therefore
again not nnd. �

Theorem A.5.10. If ΩΩΩ and ΣΣΣ are nonnegative definite symmetric, and K a
matrix so that ΣΣΣKΩΩΩ is defined, then

(A.5.11) KΩΩΩ = (KΩΩΩK> + ΣΣΣ)(KΩΩΩK> + ΣΣΣ)−KΩΩΩ.

Furthermore, ΩΩΩK>(KΩΩΩK> + ΣΣΣ)−KΩΩΩ is independent of the choice of g-inverses.

Problem 582. Prove theorem A.5.10.

Answer. To see that (A.5.11) is a special case of (A.3.3), take any Q with ΩΩΩ = QQ> and P

with ΣΣΣ = PP> and define A =
[
KQ P

]
. The independence of the choice of g-inverses follows

from theorem A.3.1 together with (A.5.11). �

The following was apparently first shown in [Alb69] for the special case of the
Moore-Penrose pseudoinverse:

Theorem A.5.11. The symmetric partitioned matrix ΩΩΩ =

[
ΩΩΩyy ΩΩΩyz

ΩΩΩ>
yz ΩΩΩzz

]
is non-

negative definite if and only if the following conditions hold:

ΩΩΩyy and ΩΩΩzz.y := ΩΩΩzz −ΩΩΩ>
yzΩΩΩ

−
yyΩΩΩyz are both nonnegative definite, and

(A.5.12)

ΩΩΩyz = ΩΩΩyyΩΩΩ−
yyΩΩΩyz(A.5.13)

Reminder: It follows from theorem A.3.1 that (A.5.13) holds for some g-inverse
if and only if it holds for all, and that, if it holds, ΩΩΩzz.y is independent of the choice
of the g-inverse.

Proof of theorem A.5.11: First we prove the necessity of the three conditions
in the theorem. If the symmetric partitioned matrix ΩΩΩ is nonnegative definite,

there exists a R with ΩΩΩ = R>R. Write R =
[
Ry Rz

]
to get

[
ΩΩΩyy ΩΩΩyz

ΩΩΩ>
yz ΩΩΩzz

]
=

[
R>

yRy R>
yRz

R>
z Ry R>

z Rz

]
. ΩΩΩyy is nonnegative definite because it is equal to R>

yRy, and
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(A.5.13) follows from (A.5.11): ΩΩΩyyΩΩΩ−
yyΩΩΩyz = R>

yRy(R>
yRy)−R>

yRz = R>
yRz =

ΩΩΩyz. To show that ΩΩΩzz.y is nonnegative definite, define S = (I−Ry(R>
yRy)−R>

y )Rz.

Then S>S = R>
z

(
I − Ry(R>

yRy)−R>
y

)
Rz = ΩΩΩzz.y.

To show sufficiency of the three conditions of theorem A.5.11, assume the sym-

metric

[
ΩΩΩyy ΩΩΩyz

ΩΩΩ>
yz ΩΩΩzz

]
satisfies them. Pick two matrices Q and S so that ΩΩΩyy = Q>Q

and ΩΩΩzz.y = S>S. Then

[
ΩΩΩyy ΩΩΩyz

ΩΩΩ>
yz ΩΩΩzz

]
=

[
Q> O

ΩΩΩ>
yzΩΩΩ

−
yy

>
Q> S>

] [
Q QΩΩΩ−

yyΩΩΩyz

O S

]
,

therefore nonnegative definite.

Problem 583. [SM86, A 3.2/11] Given a positive definite matrix Q and a

positive definite Q̃ with Q∗ = Q − Q̃ nonnegative definite.

• a. Show that Q̃ − Q̃Q−1Q̃ is nonnegative definite.

Answer. We know that Q̃
−1 − Q∗−1 is nnd, therefore Q̃Q̃

−1
Q̃ − Q̃Q∗−1Q̃ nnd. �

• b. This part is more difficult: Show that also Q∗ − Q∗Q−1Q∗ is nonnegative
definite.

Answer. We will write it in a symmetric form from which it is obvious that it is nonnegative
definite:

Q∗ − Q∗Q−1Q∗ = Q∗ − Q∗(Q̃ + Q∗)−1Q∗(A.5.14)

= Q∗(Q̃ + Q∗)−1(Q̃ + Q∗ − Q∗) = Q∗(Q̃ + Q∗)−1Q̃(A.5.15)

= Q̃(Q̃ + Q∗)−1(Q̃ + Q∗)Q̃
−1

Q∗(Q̃ + Q∗)−1Q̃(A.5.16)

= Q̃Q−1(Q∗ + Q∗Q̃
−1

Q∗)Q−1Q̃.(A.5.17)

�

Problem 584. Given the vector h 6= o. For which values of the scalar γ is

the matrix I − hh>

γ singular, nonsingular, nonnegative definite, a projection matrix,

orthogonal?

Answer. It is nnd iff γ ≥ h>h, because of theorem A.5.9. One easily verifies that it is
orthogonal iff γ = h>h/2, and it is a projection matrix iff γ = h>h. Now let us prove that it is

singular iff γ = h>h: if this condition holds, then the matrix annuls h; now assume the condition

does not hold, i.e., γ 6= h>h, and take any x with (I − hh>

γ
)x = o. It follows x = hα where

α = h>x/γ, therefore (I − hh>

γ
)x = hα(1 − h>h/γ). Since h 6= o and 1 − h>h/γ 6= 0 this can

only be the null vector if α = 0. �
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A.6. Projection Matrices

Problem 585. Show that X(X>X)−X> is the projection matrix on the range
space R[X ] of X, i.e., on the space spanned by the columns of X. This is true
whether or not X has full column rank.

Answer. Idempotence requires theorem A.3.2, and symmetry the invariance under choice of
g-inverse. Furthermore one has to show X(X>X)−Xa = a holds if and only if a = Xb for some
b. ⇒ is clear, and ⇐ follows from theorem A.3.2.

�

Theorem A.6.1. Let P and Q be projection matrices, i.e., both are symmetric
and idempotent. Then the following five conditions are equivalent, each meaning that
the space on which P projects is a subspace of the space on which Q projects:

R[P ] ⊂ R[Q](A.6.1)

QP = P(A.6.2)

PQ = P(A.6.3)

Q − P projection matrix(A.6.4)

Q − P nonnegative definite.(A.6.5)

(A.6.2) is geometrically trivial. It means: if one first projects on a certain space,
and then on a larger space which contains the first space as a subspace, then nothing
happens under this second projection because one is already in the larger space.
(A.6.3) is geometrically not trivial and worth remembering: if one first projects on a
certain space, and then on a smaller space which is a subspace of the first space, then
the result is the same as if one had projected directly on the smaller space. (A.6.4)
means: the difference Q−P is the projection on the orthogonal complement of R[P ]
in R[Q]. And (A.6.5) means: the projection of a vector on the smaller space cannot
be longer than that on the larger space.

Problem 586. Prove theorem A.6.1.

Answer. Instead of going in a circle it is more natural to show (A.6.1) ⇐⇒ (A.6.2) and
(A.6.3) ⇐⇒ (A.6.2) and then go in a circle for the remaining conditions: (A.6.2), (A.6.3) ⇒
(A.6.4) ⇒ (A.6.3) ⇒ (A.6.5).

(A.6.1) ⇒ (A.6.2): R[P ] ⊂ R[Q] means that for every c exists a d with Pc = Qd. Therefore
far all c follows QPc = QQd = Qd = Pc, i.e., QP = P .

(A.6.2) ⇒ (A.6.1): if Pc = QPc for all c, then clearly R[P ] ⊂ R[Q].

(A.6.2) ⇒ (A.6.3) by symmetry of P and Q: If QP = P then PQ = P>Q> = (QP )> =

P> = P .
(A.6.3) ⇒ (A.6.2) follows in exactly the same way: If PQ = P then QP = Q>P> = (PQ)> =

P> = P .
(A.6.2), (A.6.3) ⇒ (A.6.4): Symmetry of Q−P clear, and (Q−P )(Q−P ) = Q−P −P +P =

Q − P .
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(A.6.4) ⇒ (A.6.5): c>(Q − P )c = c>(Q − P )>(Q − P )c ≥ 0.
(A.6.5) ⇒ (A.6.3): First show that, if Q − P nnd, then Qc = o implies Pc = o. Proof: from

Q− P nnd and Qc = o follows 0 ≤ c>(Q − P )c = −c>Pc ≤ 0, therefore equality throughout, i.e.,

0 = c>Pc = c>P>Pc = ‖Pc‖2 and therefore Pc = o. Secondly: this is also true for matrices:
QC = O implies PC = O, since it is valid for every column of C. Thirdly: Since Q(I − Q) = O,
it follows P (I − Q) = O, which is (A.6.3). �

Problem 587. If Y = XA for some A, show that Y (Y >Y )−Y >X(X>X)−X> =

Y (Y >Y )−Y >.

Answer. Y = XA means that every column of Y is a linear combination of columns of A:

(A.6.6)
[
y1 · · · ym

]
= X

[
a1 · · · am

]
=
[
Xa1 · · · Xam

]
.

Therefore geometrically the statement follows from the fact shown in Problem 585 that the
above matrices are projection matrices on the columnn spaces. But it can also be shown alge-
braically: Y (Y >Y )−Y >X(X>X)−X> = Y (Y >Y )−A>X>X(X>X)−X> = Y (Y >Y )−Y >.

�

Problem 588. (Not eligible for in-class exams) Let Q be a projection matrix

(i.e., a symmetric and idempotent matrix) with the property that Q = XAX> for

some A. Define X̃ = (I − Q)X. Then

(A.6.7) X(X>X)−X> = X̃(X̃
>

X̃)−X̃
>

+ Q.

Hint: this can be done through a geometric argument. If you want to do it
algebraically, you might want to use the fact that (X>X)− is also a g-inverse of

X̃
>

X̃.

Answer. Geometric argument: Q is a projector on a subspace of the range space of X. The
columns of X̃ are projections of the columns of X on the orthogonal complement of the space on
which Q projects. The equation which we have to prove shows therefore that the projection on the
column space of X is the sum of the projections on the space Q projects on plus the projection on
the orthogonal complement of that space in X.

Now an algebraic proof: First let us show that (X>X)− is a g-inverse of X̃
>

X̃, i.e., let us
evaluate
(A.6.8)

X>(I−Q)X(X>X)−X>(I−Q)X = X>X(X>X)−X>X−X>X(X>X)−X>QX−X>QX(X>X)−X>X+X>QX(X>X)−X>QX

(A.6.9) = X>X − X>QX − X>QX + X>QX = X>(I − Q)X .

Only for the fourth term did we need the condition Q = XAX>:

(A.6.10) X>XAX>X(X>X)−X>XAX>X = X>XAX>XAX>X = X>QQX = X>X.

Using this g-inverse we have

(A.6.11) X(X>X)−X> − X̃(X>X)−X̃
>

= X(X>X)−X> − (I −Q)X(X>X)−X>(I −Q) =

(A.6.12)

= X(X>X)−X>−X(X>X)−X>+X(X>X)−X>Q+QX(X>X)−X>−QX(X>X)−X>Q = X(X>X)−X>−X(X>X)−X>+Q+Q−Q = Q

�
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Problem 589. Given any projection matrix P . Show that its ith diagonal ele-
ment can be written

(A.6.13) pii =
∑

j

p2
ij .

Answer. From idempotence P = PP follows pii =
∑

j
pijpji, now use symmetry to get

(A.6.13).
�

A.7. Determinants

Theorem A.7.1. The determinant of a block-triangular matrix is the product of
the determinants of the blocks in the diagonal. In other words,

(A.7.1)

∣∣∣∣
A B

O D

∣∣∣∣ = |A| |D|

For the proof recall the definition of a determinant. A mapping π : {1, . . . , n} →
{1, . . . , n} is called a permutation if and only if it is one-to-one if and only if it is
onto. Permutations can be classified as even or odd according to whether they can
be written as the product of an even or odd number of transpositions. Then the
determinant is defined as

(A.7.2) det(A) =
∑

π : π even

a1π(1) · · · anπ(n) −
∑

π : π odd

a1π(1) · · · anπ(n)

Now assume A is m ×m, 1 ≤ m < n. If a j ≤ m exists with π(j) > m then
not all i ≤ m can be images of other points j ≤ m, i.e., there must be at least one
j > m with π(j) ≤ m. Therefore, in a block triangular matrix in which all aij = 0
for i ≤ m, j > m, only those permutations give a nonzero product which remain in
the two submatrices straddling the diagonal.

Theorem A.7.2. If B = AA−B, then the following identity is valid between
determinants:

(A.7.3)

∣∣∣∣
A B

C D

∣∣∣∣ = |A| |E| where E = D − CA−B.

Proof: Postmultiply by a matrix whose determinant, by lemma A.7.1, is one,
and then apply lemma A.7.1 once more:
(A.7.4)∣∣∣∣

A B

C D

∣∣∣∣ =
∣∣∣∣
A B

C D

∣∣∣∣
∣∣∣∣
I −A−B

O I

∣∣∣∣ =
∣∣∣∣
A O

C D − CA−B

∣∣∣∣ = |A|
∣∣D − CA−B

∣∣ .
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Problem 590. Show the following counterpart of theorem A.7.2: If C = DD−C,
then the following identity is valid between determinants:

(A.7.5)

∣∣∣∣
A B

C D

∣∣∣∣ =
∣∣A − BD−C

∣∣ |D| .

Answer.

(A.7.6)

∣∣∣∣
A B

C D

∣∣∣∣ =

∣∣∣∣
A B

C D

∣∣∣∣
∣∣∣∣

I O

−D−C I

∣∣∣∣ =

∣∣∣∣
A − BD−C B

O D

∣∣∣∣ =
∣∣A − BD−D

∣∣ |D| .

�

Problem 591. Show that whenever BC and CB are defined, it follows |I − BC| =
|I − CB|

Answer. Set A = I and D = I in (A.7.3) and (A.7.5). �

Theorem A.7.3. Assume that d = WW−d. Then

(A.7.7) det(W + α · dd>) = det(W )(1 + αd>W−d).

Proof: If α = 0, then there is nothing to prove. Otherwise look at the determi-
nant of the matrix

(A.7.8) H =

[
W d

d> −1/α

]

Equations (A.7.3) and (A.7.5) give two expressions for it:

(A.7.9) det(H) = det(W )(−1/α− d>W−d) = − 1

α
det(W + αdd>).

A.8. More About Inverses

Problem 592. Given a partitioned matrix

[
A B

C D

]
which satisfies B = AA−B

and C = CA−A. (These conditions hold for instance, due to theorem A.5.11, if[
A B

C D

]
is nonnegative definite symmetric, but it also holds in the nonsymmetric

case if A is nonsingular, which by theorem A.7.2 is the case if the whole partioned
matrix is nonsingular.) Define E = D − CA−B, F = A−B, and G = CA−.

• a. Prove that in terms of A, E, F , and G, the original matrix can be written
as

(A.8.1)

[
A B

C D

]
=

[
A AF

GA E + GAF

]
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(this is trivial), and that (this is the nontrivial part)

(A.8.2)

[
A− + F E−G −FE−

−E−G E−

]
is a g-inverse of

[
A B

C D

]
.

Answer. This here is not the shortest proof because I was still wondering if it could be
formulated in a more general way. Multiply out but do not yet use the conditions B = AA−B and
C = CA−A:

(A.8.3)

[
A B

C D

][
A− + FE−G −FE−

−E−G E−

]
=

[
AA− − (I − AA−)BE−G (I − AA−)BE−

(I − EE−)G EE−

]

and

(A.8.4)

[
AA− − (I − AA−)BE−G (I − AA−)BE−

(I − EE−)G EE−

][
A B

C D

]
=

=

[
A + (I − AA−)BE−C(I − A−A) B − (I − AA−)B(I − E−E)

C − (I − EE−)C(I − A−A) D

]

One sees that not only the conditions B = AA−B and C = CA−A, but also the conditions B =
AA−B and C = EE−C, or alternatively the conditions B = BE−E and C = CA−A imply the
statement. I think one can also work with the conditions AA−B = BD−D and DD−C = CA−A.
Note that the lower right partition is D no matter what. �

• b. If

[
U V

W X

]
is a g-inverse of

[
A AF

GA E + GAF

]
, show that X is a g-

inverse of E.

Answer. The g-inverse condition means

(A.8.5)

[
A AF

GA E + GAF

][
U V

W X

][
A AF

GA E + GAF

]
=

[
A AF

GA E + GAF

]

The first matrix product evaluated is

(A.8.6)

[
A AF

GA E + GAF

][
U V

W X

]
=

[
AU + AFW AV + AFX

GAU + EW + GAFW GAV + EX + GAFX

]
.

The g-inverse condition means therefore
(A.8.7)[

AU + AFW AV + AFX

GAU + EW + GAFW GAV + EX + GAFX

][
A AF

GA E + GAF

]
=

[
A AF

GA E + GAF

]

For the upper left partition this means AUA+AFWA+AV GA+AFXGA = A, and for the upper
right partition it means AUAF + AFWAF + AV E + AV GAF + AFXE + AFXGAF = AF .
Postmultiply the upper left equation by F and subtract from the upper right to get AV E +
AFXE = O. For the lower left we get GAUA + EWA + GAFWA + GAV GA + EXGA +
GAFXGA = GA. Premultiplication of the upper left equation by G and subtraction gives EWA+
EXGA = O. For the lower right corner we get GAUAF + EWAF + GAFWAF + GAV E +
EXE+GAFXE+GAV GAF +EXGAF +GAFXGAF = E+GAF . Since AV E+AFXE = O

and EWA + EXGA = O, this simplifies to GAUAF + GAFWAF + EXE + GAV GAF +
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GAFXGAF = E+GAF . And if one premultiplies the upper right corner by G and postmultiplies
it by F and subtracts it from this one gets EXE = E. �

Problem 593. Show that a g-inverse of the matrix

(A.8.8)

[
X>

1 X1 X>
1 X2

X>
2 X1 X>

2 X2

]

has the form

(A.8.9)

[
(X>

1 X1)
− + D>

1 X2(X
>
2 M1X2)

−X>
2 D1 −D>

1 X2(X
>
2 M 1X2)

−

−(X>
2 M 1X2)

−X>
2 D1 (X>

2 M 1X2)
−

]

where M1 = I − X1(X
>
1 X1)

−X>
1 and D1 = X1(X

>
1 X1)

−.

Answer. Either show it by multiplying it out, or apply Problem 592. �

Problem 594. Show that the following are g-inverses:
(A.8.10)[

I X

X> X>X

]−
=

[
I O

O O

] [
X>X X>

X I

]−
=

[
(X>X)− O

O I − X(X>X)−X>

]

Answer. Either do it by multiplying it out, or apply problem 592. �

Problem 595. Assume again B = AA−B and C = CAA−, but assume this

time that

[
A B

C D

]
nonsingular. Then A is nonsingular,

(A.8.11)

and if

[
P Q

R S

]
=

[
A B

C D

]−1

, then the determinant

∣∣∣∣
A B

C D

∣∣∣∣ =
|A|
|S| .

Answer. The determinant is, by (A.7.3), |A| |E| where E = D − CA−B. By assumption,
this determinant is nonzero, therefore also |A| and |E| are nonzero, i.e., A and E are nonsingular.
Therefore (A.8.2) reads

(A.8.12)

[
P Q

R S

]
=

[
A−1 + FE−1G −FE−1

−E−1G E−1

]
,

i.e., S = E−1 = (D − CA−B)−1. hence |A| |E| = |A| / |S|. �

Theorem A.8.1. Given a m×n matrix A, a m×h matrix B, a k×n matrix C,
and a k × h matrix D satisfying AA−B = BD−D and DD−C = CA−A. Then
the following are g-inverses:

(A.8.13)
(
A + BD−C

)−
= A− − A−B(D + CA−B)−CA−

(A.8.14)
(
D + CA−B

)−
= D− − D−C(A + BD−C)−BD−.
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Problem 596. Prove theorem A.8.1.

Answer. Proof: Define E = D + CA−B. Then it follows from the assumptions that

(A + BD−C )(A− − A−BE−CA−) = AA− − BD−DE−CA− + BD−CA− − BD−CA−BE−CA− =

(A.8.15)

= AA− + BD−(I − EE−)CA−(A.8.16)

Since AA−(A+BD−C ) = A+BD−C, we have to show that the second term on the rhs. annulls
(A + BD−C ). Indeed,

BD−(I − EE−)CA−(A + BD−C ) =(A.8.17)

= BD−CA−A + BD−CA−BD−C − BD−EE−CA−A − BD−EE−CA−BD−C =(A.8.18)

= BD−(D + CA−B − EE−D − EE−CA−B)D−C = BD−(E − EE−E)D−C = O.

(A.8.19)

�

Theorem A.8.2. (Sherman-Morrison-Woodbury theorem) Given a m×n matrix
A, a m×1 vector b satisfying AA−b = b, a n×1 vector c satisfying c>AA− = c>,
and a scalar δ. If A− is a g-inverse of A, then

(A.8.20) A− − A−bc>A−

c>A−b + δ
is a g-inverse of A +

bc>

δ

Problem 597. Prove theorem A.8.2.

Answer. It is a special case of theorem A.8.1. �

Theorem A.8.3. For any symmetric nonnegative definite r × r matrix A,

(A.8.21) (det A) e−(tr A) ≤ e−r,

with equality holding if and only if A = I.

Problem 598. Prove Theorem A.8.3. Hint: Let λ1, . . . , λr be the eigenvalues of
A. Then det A =

∏
i λi, and tr A =

∑
i λi.

Answer. Therefore the inequality reads

(A.8.22)

r∏

i=1

λie
−λi ≤ e−r

For this it is sufficient to show for each value of λ

(A.8.23) λe−λ ≤ e−1,

which follows immediately by taking the derivatives: e−λ−λe−λ = 0 gives λ = 1. The matrix with
all eigenvalues being equal to 1 is the identity matrix. �



A.9. EIGENVALUES AND SINGULAR VALUE DECOMPOSITION 797

A.9. Eigenvalues and Singular Value Decomposition

Every symmetric matrix B has real eigenvalues and a system of orthogonal
eigenvectors which span the whole space. If one normalizes these eigenvectors and
combines them as row vectors into a matrix T , then orthonormality means TT > = I ,
and since T is square, TT> = I also implies T>T = I , i.e., T is an orthogonal
matrix. The existence of a complete set of real eigenvectors is therefore equivalent
to the following matrix algebraic result: For every symmetric matrix B there is an
orthogonal transformation T so that BT > = T>Λ where Λ is a diagonal matrix.
Equivalently one could write B = T>ΛT . And if B has rank r, then r of the
diagonal elements are nonzero and the others zero. If one removes those eigenvectors
from T which belong to the eigenvalue zero, and calls the remaining matrix P , one
gets the following:

Theorem A.9.1. If B is a symmetric n × n matrix of rank r, then a r × n
matrix P exists with PP> = I (any P satisfying this condition which is not a

square matrix is called incomplete orthogonal), and B = P >ΛP , where Λ is a r× r
diagonal matrix with all diagonal elements nonzero.

Proof. Let T be an orthogonal matrix whose rows are eigenvectors of B, and

partition it T =

[
P

Q

]
where P consists of all eigenvectors with nonzero eigenvalue

(there are r of them). The eigenvalue property reads B
[
P> Q>] =

[
P> Q>]

[
Λ O

O O

]
;

therefore by orthogonality T>T = I follows B =
[
P> Q>]

[
Λ O

O O

] [
P

Q

]
=

P>ΛP . Orthogonality also means TT> = I , i.e.,

[
P

Q

] [
P> Q>] =

[
I O

O I

]
,

therefore P P> = I . �

Problem 599. If B is a n × n symmetric matrix of rank r and B2 = B, i.e.,
B is a projection, then a r × n matrix P exists with B = P >P and PP > = I.

Answer. Let t be an eigenvector of the projection matrix B with eigenvalue λ. Then B2t =
Bt, i.e., λ2t = λt, and since t 6= o, λ2 = λ. This is a quadratic equation with solutions λ = 0 or
λ = 1. The matrix Λ from theorem A.9.1, whose diagonal elements are the nonzero eigenvalues, is
therefore an identity matrix. �

A theorem similar to A.9.1 holds for arbitrary matrices. It is called the “singular
value decomposition”:

Theorem A.9.2. Let B be a m× n matrix of rank r. Then B can be expressed
as

(A.9.1) B = P>ΛQ
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where Λ is a r × r diagonal matrix with positive diagonal elements, and PP > = I

as well as QQ> = I. The diagonal elements of Λ are called the singular values of
B.

Proof. If P>ΛQ is the svd of B then P>ΛQQ>ΛP = P>Λ2Q is the eigen-
value decomposition of BB>. We will use this fact to construct P and Q, and then
verify condition (A.9.1). P and Q have r rows each, write them

(A.9.2) P =



p>

1
...

p>
r


 and Q =



q>

1
...

q>
r


 .

Then the pi are orthonormal eigenvectors of BB> corresponding to the nonzero

eigenvalues λ2
i , and qi = B>piλ

−1
i . The proof that this definition is symmetric is

left as exercise problem 600 below.
Now find pr+1, . . . ,pm such that p1, . . . ,pm is a complete set of orthonormal

vectors, i.e., p1p
>
1 + · · · + pmp>

m = I . Then

B = (p1p
>
1 + · · · + pmp>

m)B(A.9.3)

= (p1p
>
1 + · · · + prp

>
r )B because p>

i B = o> for i > r(A.9.4)

= (p1q
>
1 λ1 + · · · + prq

>
r λr) = P>ΛQ.(A.9.5)

�

Problem 600. Show that the qi are orthonormal eigenvectors of B>B corre-
sponding to the same eigenvalues λ2

i .

Answer.

q>
i qj = λ−1

i p>
i BB>pjλ

−1
j = λ−1

i p>
i pjλ

2
jλ

−1
j = δij Kronecker symbol(A.9.6)

B>Bqi = B>BB>piλ
−1
i = B>piλi = qiλ

2
i(A.9.7)

�

Problem 601. Show that Bqi = λipi and B>pi = λiqi.

Answer. The second condition comes from the definition qi = B>piλ
−1
i , and premultiply

this definition by B to get Bqi = BB>piλ
−1
i = λ2piλ

−1
i = λpi. �

Let P 0 and Q0 be such that

[
P

P 0

]
and

[
Q

Q0

]
are orthogonal. Then the singular

value decomposition can also be written in the full form, in which the matrix in the
middle is m× n:

(A.9.8) B =
[
P> P>

0

] [Λ O

O O

] [
Q

Q0

]
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Problem 602. Let λ1 be the biggest diagonal element of Λ, and let c and d be
two vectors with the properties that c>Bd is defined and c>c = 1 as well as d>d = 1.
Show that c>Bd ≤ λ1. The other singular values maximize among those who are
orthogonal to the prior maximizers.

Answer. c>Bd = c>P>ΛQd = h>Λk where we call Pc = h and Qd = k. By Cauchy-
Schwartz (A.5.1), (h>Λk)2 ≤ (h>Λh)(k>Λk). Now (h>Λk) =

∑
λiih2

i ≤
∑

λ11h2
i = λ11h>h.

Now we only have to show that h>h ≤ 1: 1 − h>h = c>c − c>P>Pc = c>(I − P>P )c =

c>(I −P>P )(I −P>P )c ≥ 0, here we used that PP > = I, therefore P>P idempotent, therefore

also I − P>P idempotent. �



APPENDIX B

Arrays of Higher Rank

This chapter was presented at the Array Programming Languages Conference in
Berlin, on July 24, 2000.

Besides scalars, vectors, and matrices, also higher arrays are necessary in statis-
tics; for instance, the “covariance matrix” of a random matrix is really an array of
rank 4, etc. Usually, such higher arrays are avoided in the applied sciences because
of the difficulties to write them on a two-dimensional sheet of paper. The following
symbolic notation makes the structure of arrays explicit without writing them down
element by element. It is hoped that this makes arrays easier to understand, and that
this notation leads to simple high-level user interfaces for programming languages
manipulating arrays.

B.1. Informal Survey of the Notation

Each array is symbolized by a rectangular tile with arms sticking out, similar
to a molecule. Tiles with one arm are vectors, those with two arms matrices, those
with more arms are arrays of higher rank (or “valence” as in [SS35], [Mor73], and
[MS86, p. 12]), and those without arms are scalars. The arrays considered here are
rectangular, not “ragged,” therefore in addition to their rank we only need to know
the dimension of each arm; it can be thought of as the number of fingers associated
with this arm. Arrays can only hold hands (i.e., “contract” along two arms) if the
hands have the same number of fingers.

Sometimes it is convenient to write the dimension of each arm at the end of the
arm, i.e., a m×n matrix A can be represented as m A n . Matrix products

are represented by joining the obvious arms: if B is n× q, then the matrix product

AB is m A n B q or, in short, A B . The notation allows

the reader to always tell which arm is which, even if the arms are not marked. If
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m C r is m× r, then the product C>A is

(B.1.1) C>A = r C A n

m

= r C m A n .

In the second representation, the tile representing C is turned by 180 degrees. Since
the white part of the frame of C is at the bottom, not on the top, one knows that
the West arm of C, not its East arm, is concatenated with the West arm of A. The

transpose of m C r is r C m , i.e., it is not a different entity but

the same entity in a different position. The order in which the elements are arranged
on the page (or in computer memory) is not a part of the definition of the array
itself. Likewise, there is no distinction between row vectors and column vectors.

Vectors are usually, but not necessarily, written in such a way that their arm

points West (column vector convention). If a and b are vectors, their

scalar product a>b is the concatenation a b which has no free arms, i.e.,

it is a scalar, and their outer product ab> is a b , which is a matrix.

Juxtaposition of tiles represents the outer product, i.e., the array consisting of all
the products of elements of the arrays represented by the tiles placed side by side.

The trace of a square matrix Q is the concatenation Q , which

is a scalar since no arms are sticking out. In general, concatenation of two arms of
the same tile represents contraction, i.e., summation over equal values of the indices
associated with these two arms. This notation makes it obvious that tr XY =

trY X, because by definition there is no difference between X Y and

Y X . Also X Y or X Y etc. represent the same array

(here array of rank zero, i.e., scalar). Each of these tiles can be evaluated in essentially
two different ways. One way is

(1) Juxtapose the tiles for X and Y , i.e., form their outer product, which is
an array of rank 4 with typical element xmpyqn.

(2) Connect the East arm of X with the West arm of Y . This is a contrac-
tion, resulting in an array of rank 2, the matrix product XY , with typical
element

∑
p xmpypn.

(3) Now connect the West arm of X with the East arm of Y . The result of
this second contraction is a scalar, the trace trXY =

∑
p,m xmpypm.

An alternative sequence of operations evaluating this same graph would be
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(1) Juxtapose the tiles for X and Y .
(2) Connect the West arm of X with the East arm of Y to get the matrix

product Y X.
(3) Now connect the East arm of X with the West arm of Y to get tr Y X.

The result is the same, the notation does not specify which of these alternative eval-
uation paths is meant, and a computer receiving commands based on this notation
can choose the most efficient evaluation path. Probably the most efficient evaluation
path is given by (B.2.8) below: take the element-by-element product of X with the
transpose of Y , and add all the elements of the resulting matrix.

If the user specifies tr(XY ), the computer is locked into one evaluation path: it
first has to compute the matrix product XY , even if X is a column vector and Y a
row vector and it would be much more efficient to compute it as tr(Y X), and then
form the trace, i.e., throw away all off-diagonal elements. If the trace is specified

as X Y , the computer can choose the most efficient of a number of different

evaluation paths transparently to the user. This advantage of the graphical notation
is of course even more important if the graphs are more complex.

There is also the “diagonal” array, which in the case of rank 3 can be written

n ∆ n

n

or

n

∆ n

n

(B.1.2)

or similar configurations. It has 1’s down the main diagonal and 0’s elsewhere. It
can be used to construct the diagonal matrix diag(x) of a vector (the square matrix
with the vector in the diagonal and zeros elsewhere) as

(B.1.3) diag(x) =

n ∆ n

x

,

the diagonal vector of a square matrix (i.e., the vector containing its diagonal ele-
ments) as

(B.1.4) ∆ A ,
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and the “Hadamard product” (element-by-element product) of two vectors x ∗ y as

(B.1.5) x ∗ y =

x

∆

y

.

All these are natural operations involving vectors and matrices, but the usual matrix
notation cannot represent them and therefore ad-hoc notation must be invented for
it. In our graphical representation, however, they all can be built up from a small
number of atomic operations, which will be enumerated in Section B.2.

Each such graph can be evaluated in a number of different ways, and all these
evaluations give the same result. In principle, each graph can be evaluated as follows:
form the outer product of all arrays involved, and then contract along all those pairs
of arms which are connected. For practical implementations it is more efficient to
develop functions which connect two arrays along one or several of their arms without
first forming outer products, and to perform the array concatenations recursively in
such a way that contractions are done as early as possible. A computer might be
programmed to decide on the most efficient construction path for any given array.

B.2. Axiomatic Development of Array Operations

The following sketch shows how this axiom system might be built up. Since I
am an economist I do not plan to develop the material presented here any further.
Others are invited to take over. If you are interested in working on this, I would be
happy to hear from you; email me at ehrbar@econ.utah.edu

There are two kinds of special arrays: unit vectors and diagonal arrays.

For every natural number m ≥ 1, m unit vectors m i (i = 1, . . . ,m) exist.

Despite the fact that the unit vectors are denoted here by numbers, there is no
intrinsic ordering among them; they might as well have the names “red, green, blue,
. . . ” (From (B.2.4) and other axioms below it will follow that each unit vector can
be represented as a m-vector with 1 as one of the components and 0 elsewhere.)

For every rank ≥ 1 and dimension n ≥ 1 there is a unique diagonal array denoted
by ∆. Their main properties are (B.2.1) and (B.2.2). (This and the other axioms
must be formulated in such a way that it will be possible to show that the diagonal
arrays of rank 1 are the “vectors of ones” ι which have 1 in every component; diagonal
arrays of rank 2 are the identity matrices; and for higher ranks, all arms of a diagonal
array have the same dimension, and their ijk · · · element is 1 if i = j = k = · · ·
and 0 otherwise.) Perhaps it makes sense to define the diagonal array of rank 0
and dimension n to be the scalar n, and to declare all arrays which are everywhere
0-dimensional to be diagonal.
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There are only three operations of arrays: their outer product, represented by
writing them side by side, contraction, represented by the joining of arms, and the
direct sum, which will be defined now:

The direct sum is the operation by which a vector can be built up from scalars,
a matrix from its row or column vectors, an array of rank 3 from its layers, etc. The
direct sum of a set of r similar arrays (i.e., arrays which have the same number of
arms, and corresponding arms have the same dimensions) is an array which has one
additional arm, called the reference arm of the direct sum. If one “saturates” the
reference arm with the ith unit vector, one gets the ith original array back, and this
property defines the direct sum uniquely:

r⊕

i=1

m

Ai n

q

=

m

r S n

q

⇒

m

i r S n

q

=

m

Ai n

q

.

It is impossible to tell which is the first summand and which the second, direct sum
is an operation defined on finite sets of arrays (where different elements of a set may
be equal to each other in every respect but still have different identities).

There is a broad rule of associativity: the order in which outer products and
contractions are performed does not matter, as long as the at the end, the right arms
are connected with each other. And there are distributive rules involving (contracted)
outer products and direct sums.

Additional rules apply for the special arrays. If two different diagonal arrays
join arms, the result is again a diagonal array. For instance, the following three
concatenations of diagonal three-way arrays are identical, and they all evaluate to
the (for a given dimension) unique diagonal array or rank 4:

(B.2.1)

∆

∆

= ∆ ∆ =
∆ ∆

= ∆

The diagonal array of rank 2 is neutral under concatenation, i.e., it can be written
as

(B.2.2) n ∆ n = .

because attaching it to any array will not change this array. (B.2.1) and (B.2.2) make
it possible to represent diagonal arrays simply as the branching points of several arms.
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This will make the array notation even simpler. However in the present introductory
article, all diagonal arrays will be shown explicitly, and the vector of ones will be

denoted m ι instead of m ∆ or perhaps m δ .

Unit vectors concatenate as follows:

(B.2.3) i m j =

{
1 if i = j

0 otherwise.

and the direct sum of all unit vectors is the diagonal array of rank 2:

(B.2.4)

n⊕

i=1

i n = n ∆ n = .

I am sure there will be modifications if one works it all out in detail, but if done
right, the number of axioms should be fairly small. Element-by-element addition of
arrays is not an axiom because it can be derived: if one saturates the reference arm
of a direct sum with the vector of ones, one gets the element-by-element sum of the
arrays in this direct sum. Multiplication of an array by a scalar is also contained in
the above system of axioms: it is simply the outer product with an array of rank
zero.

Problem 603. Show that the saturation of an arm of a diagonal array with the
vector of ones is the same as dropping this arm.

Answer. Since the vector of ones is the diagonal array of rank 1, this is a special case of the
general concantenation rule for diagonal arrays. �

Problem 604. Show that the diagonal matrix of the vector of ones is the identity
matrix, i.e.,

(B.2.5)

n ∆ n

ι

= .

Answer. In view of (B.2.2), this is a special case of Problem 603. �

Problem 605. A trivial array operation is the addition of an arm of dimension
1; for instance, this is how a n-vector can be turned into a n × 1 matrix. Is this
operation contained in the above system of axioms?

Answer. It is a special case of the direct sum: the direct sum of one array only, the only effect
of which is the addition of the reference arm. �

From (B.2.4) and (B.2.2) follows that every array of rank k can be represented
as a direct sum of arrays of rank k − 1, and recursively, as iterated direct sums of
those scalars which one gets by saturating all arms with unit vectors. Hence the
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following “extensionality property”: if the arrays A and B are such that for all
possible conformable choices of unit vectors κ1 · · ·κ8 follows

κ3 κ4 κ5

κ2 A κ6

κ1 κ8 κ7

=

κ3 κ4 κ5

κ2 B κ6

κ1 κ8 κ7

(B.2.6)

then A = B. This is why the saturation of an array with unit vectors can be
considered one of its “elements,” i.e.,

κ3 κ4 κ5

κ2 A κ6

κ1 κ8 κ7

= aκ1κ2κ3κ4κ5κ6κ7κ8 .(B.2.7)

From (B.2.3) and (B.2.4) follows that the concatenation of two arrays by joining
one or more pairs of arms consists in forming all possible products and summing over
those subscripts (arms) which are joined to each other. For instance, if

m A n B r = m C r ,

then cµρ =
∑n

ν=1 aµνbνρ. This is one of the most basic facts if one thinks of arrays
as collections of elements. From this point of view, the proposed notation is simply
a graphical elaboration of Einstein’s summation convention. But in the holistic
approach taken by the proposed system of axioms, which is informed by category
theory, it is an implication; it comes at the end, not the beginning.

Instead of considering arrays as bags filled with elements, with the associated
false problem of specifying the order in which the elements are packed into the
bag, this notation and system of axioms consider each array as an abstract entity,
associated with a certain finite graph. These entities can be operated on as specified
in the axioms, but the only time they lose their abstract character is when they are
fully saturated, i.e., concatenated with each other in such a way that no free arms are
left: in this case they become scalars. An array of rank 1 is not the same as a vector,
although it can be represented as a vector—after an ordering of its elements has
been specified. This ordering is not part of the definition of the array itself. (Some
vectors, such as time series, have an intrinsic ordering, but I am speaking here of
the simplest case where they do not.) Also the ordering of the arms is not specified,
and the order in which a set of arrays is packed into its direct sum is not specified
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either. These axioms therefore make a strict distinction between the abstract entities
themselves (which the user is interested in) and their various representations (which
the computer worries about).

Maybe the following examples may clarify these points. If you specify a set of
colors as {red, green, blue}, then this representation has an ordering built in: red
comes first, then green, then blue. However this ordering is not part of the definition
of the set; {green, red, blue} is the same set. The two notations are two different rep-
resentations of the same set. Another example: mathematicians usually distinguish
between the outer products A ⊗ B and B ⊗ A; there is a “natural isomorphism”
between them but they are two different objects. In the system of axioms proposed
here these two notations are two different representations of the same object, as in
the set example. This object is represented by a graph which has A and B as nodes,
but it is not apparent from this graph which node comes first. Interesting conceptual
issues are involved here. The proposed axioms are quite different than e.g. [Mor73].

Problem 606. The trace of the product of two matrices can be written as

(B.2.8) tr(XY ) = ι>(X ∗ Y >)ι.

I.e., one forms the element-by-element product of X and Y > and takes the sum of
all the elements of the resulting matrix. Use tile notation to show that this gives
indeed tr(XY ).

Answer. In analogy with (B.1.5), the Hadamard product of the two matrices X and Z, i.e.,
their element by element multiplication, is

X ∗ Z =

X

∆ ∆

Z

If Z = Y >, one gets

X ∗ Y > =

X

∆ ∆

Y

.

Therefore one gets, using (B.2.5):

ι>(X ∗ Y >)ι =

X

ι ∆ ∆ ι

Y

=

X

Y

= tr(XY )

�
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B.3. An Additional Notational Detail

Besides turning a tile by 90, 180, or 270 degrees, the notation proposed here also
allows to flip the tile over. The tile (here drawn without its arms) is simply the
tile laid on its face; i.e., those parts of the frame, which are black on the side
visible to the reader, are white on the opposite side and vice versa. If one flips a
tile, the arms appear in a mirror-symmetric manner. For a matrix, flipping over is
equivalent to turning by 180 degrees, i.e., there is no difference between the matrix

A and the matrix A . Since sometimes one and sometimes the other

notation seems more natural, both will be used. For higher arrays, flipping over
arranges the arms in a different fashion, which is sometimes convenient in order to
keep the graphs uncluttered. It will be especially useful for differentiation. If one
allows turning in 90 degree increments and flipping, each array can be represented
in eight different positions, as shown here with a hypothetical array of rank 3:

m

k L n

k

L

n m

n L k

m

m n

L

k

k L n

m

n m

L

k

m

n L k

k

L

m n

The black-and-white pattern at the edge of the tile indicates whether and how much
the tile has been turned and/or flipped over, so that one can keep track which arm
is which. In the above example, the arm with dimension k will always be called the
West arm, whatever position the tile is in.

B.4. Equality of Arrays and Extended Substitution

Given the flexibility of representing the same array in various positions for con-
catenation, specific conventions are necessary to determine when two such arrays in
generalized positions are equal to each other. Expressions like

A = B or K = K
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are not allowed. The arms on both sides of the equal sign must be parallel, in order
to make it clear which arm corresponds to which. A permissible way to write the
above expressions would therefore be

A = B and K = K

One additional benefit of this tile notation is the ability to substitute arrays with
different numbers of arms into an equation. This is also a necessity since the number
of possible arms is unbounded. This multiplicity can only be coped with because
each arm in an identity written in this notation can be replaced by a bundle of many
arms.

Extended substitution also makes it possible to extend definitions familiar from
matrices to higher arrays. For instance we want to be able to say that the array

ΩΩΩ is symmetric if and only if ΩΩΩ = ΩΩΩ . This notion of symme-

try is not limited to arrays of rank 2. The arms of this array may symbolize not just

a single arm, but whole bundles of arms; for instance an array of the form ΣΣΣ

satisfying ΣΣΣ = ΣΣΣ is symmetric according to this definition, and so is

every scalar. Also the notion of a nonnegative definite matrix, or of a matrix inverse
or generalized inverse, or of a projection matrix, can be extended to arrays in this
way.

B.5. Vectorization and Kronecker Product

One conventional generally accepted method to deal with arrays of rank > 2 is
the Kronecker product. If A and B are both matrices, then the outer product in tile
notation is

(B.5.1)

A

B

Since this is an array of rank 4, there is no natural way to write its elements down
on a sheet of paper. This is where the Kronecker product steps in. The Kronecker
product of two matrices is their outer product written again as a matrix. Its definition
includes a protocol how to arrange the elements of an array of rank 4 as a matrix.
Alongside the Kronecker product, also the vectorization operator is useful, which is
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a protocol how to arrange the elements of a matrix as a vector, and also the so-called
“commutation matrices” may become necessary. Here are the relevant definitions:

B.5.1. Vectorization of a Matrix. If A is a matrix, then vec(A) is the vector
obtained by stacking the column vectors on top of each other, i.e.,

(B.5.2) if A =
[
a1 · · · an

]
then vec(A) =




a1

...
an


 .

The vectorization of a matrix is merely a different arrangement of the elements of
the matrix on paper, just as the transpose of a matrix.

Problem 607. Show that tr(B>C) = (vec B)> vecC.

Answer. Both sides are
∑

bjicji. (B.5.28) is a proof in tile notation which does not have to
look at the matrices involved element by element. �

By the way, a better protocol for vectorizing would have been to assemble all
rows into one long row vector and then converting it into a column vector. In other
words

if B =




b>1
...

b>m


 then vec(B) should have been defined as




b1

...
bm


 .

The usual protocol of stacking the columns is inconsistent with the lexicograpical
ordering used in the Kronecker product. Using the alternative definition, equation
(B.5.19) which will be discussed below would be a little more intelligible; it would
read

vec(ABC) = (A ⊗ C>) vecB with the alternative definition of vec

and also the definition of vectorization in tile notation would be a little less awkward;
instead of (B.5.24) one would have

mn vecA =

m

mn Π A

n

But this is merely a side remark; we will use the conventional definition (B.5.2)
throughout.

812 B. ARRAYS OF HIGHER RANK

B.5.2. Kronecker Product of Matrices. Let A and B be two matrices, say
A is m× n and B is r × q. Their Kronecker product A ⊗ B is the mr × nq matrix
which in partitioned form can be written

(B.5.3) A ⊗ B =



a11B · · · a1nB

...
. . .

...
am1B · · · amnB




This convention of how to write the elements of an array of rank 4 as a matrix is not
symmetric, so that usually A⊗C 6= C ⊗A. Both Kronecker products represent the
same abstract array, but they arrange it differently on the page. However, in many
other respects, the Kronecker product maintains the properties of outer products.

Problem 608. [The71, pp. 303–306] Prove the following simple properties of
the Kronecker product:

(A ⊗ B)> = A> ⊗ B>(B.5.4)

(A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)(B.5.5)

I ⊗ I = I(B.5.6)

(A ⊗ B)(C ⊗ D) = AC ⊗ BD(B.5.7)

(A ⊗ B)−1 = A−1 ⊗ B−1(B.5.8)

(A ⊗ B)− = A− ⊗ B−(B.5.9)

A ⊗ (B + C) = A ⊗ B + A ⊗ C(B.5.10)

(A + B) ⊗ C = A ⊗ C + B ⊗ C(B.5.11)

(cA) ⊗ B = A ⊗ (cB) = c(A ⊗ B)(B.5.12)
[
A11 A12

A21 A22

]
⊗ B =

[
A11 ⊗ B A12 ⊗ B

A21 ⊗ B A22 ⊗ B

]
(B.5.13)

rank(A ⊗ B) = (rankA)(rank B)(B.5.14)

tr(A ⊗ B) = (tr A)(tr B)(B.5.15)

If a is a 1 × 1 matrix, then

a⊗ B = B ⊗ a = aB(B.5.16)

det(A ⊗ B) = (det(A))n(det(B))k(B.5.17)

where A is k × k and B is n× n.

Answer. For the determinant use the following facts: if a is an eigenvector of A with eigenvalue
α and b is an eigenvector of B with eigenvalue β, then a⊗b is an eigenvector of A⊗B with eigenvalue
αβ. The determinant is the product of all eigenvalues (multiple eigenvalues being counted several

times). Count how many there are.
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An alternative approach would be to write A ⊗ B = (A ⊗ I)(I ⊗ B) and then to argue that
det(A ⊗ I) = (det(A))n and det(I ⊗ B) = (det(B))k .

The formula for the rank can be shown using rank(A) = tr(AA−). compare Problem 566. �

Problem 609. 2 points [JHG+88, pp. 962–4] Write down the Kronecker product
of

A =

[
1 3
2 0

]
and B =

[
2 2 0
1 0 3

]
.(B.5.18)

Show that A⊗B 6= B ⊗A. Which other facts about the outer product do not carry
over to the Kronecker product?

Answer.

A ⊗ B =




2 2 0 6 6 0
1 0 3 3 0 9
4 4 0 0 0 0
2 0 6 0 0 0


 B ⊗ A =




2 6 2 6 0 0
4 0 4 0 0 0
1 3 0 0 3 9
2 0 0 0 6 0




Partitioning of the matrix on the right does not carry over. �

Problem 610. [JHG+88, p. 965] Show that

(B.5.19) vec(ABC) = (C> ⊗ A) vec(B).

Answer. Assume A is k × m, B is m × n, and C is n × p. Write A =




a>
1
.
..

a>
k


 and B =

[
b1 · · · bn

]
. Then (C> ⊗ A) vec B =

=




c11A c21A · · · cn1A

c12A c22A · · · cn2A

...
...

. . .
...

c1pA c2pA · · · cnpA







b1

..

.
bn


 =







c11a>
1 b1 + c21a>

1 b2 + · · · + cn1a>
1 bn

c11a>
2 b1 + c21a>

2 b2 + · · · + cn1a>
2 bn

...
c11a>

k
b1 + c21a>

k
b2 + · · · + cn1a>

k
bn







c12a>
1 b1 + c22a>

1 b2 + · · · + cn2a>
1 bn

c12a>
2 b1 + c22a>

2 b2 + · · · + cn2a>
2 bn

.

..
c12a>

k b1 + c22a>
k b2 + · · · + cn2a>

k bn




.

..


c1pa>
1 b1 + c2pa>

1 b2 + · · · + cnpa>
1 bn

c1pa>
2 b1 + c2pa>

2 b2 + · · · + cnpa>
2 bn

.

..
c1pa>

k b1 + c2pa>
k b2 + · · · + cnpa>

k bn







.
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One obtains the same result by vectorizing the matrix

ABC =




a>
1 b1 a>

1 b2 · · · a>
1 bn

a>
2 b1 a>

2 b2 · · · a>
2 bn

...
...

. . .
...

a>
k

b1 a>
k

b2 · · · a>
k

bn







c11 c12 · · · c1p
c21 c22 · · · c2p
...

...
. . .

...
cn1 cn2 · · · cnp


 =

=




a>
1 b1c11 + a>

1 b2c21 + · · · + a>
1 bncn1 a>

1 b1c12 + a>
1 b2c22 + · · · + a>

1 bncn2 · · ·
a>

2 b1c11 + a>
2 b2c21 + · · · + a>

2 bncn1 a>
2 b1c12 + a>

2 b2c22 + · · · + a>
2 bncn2 · · ·

...
...

. . .

a>
k b1c11 + a>

k b2c21 + · · · + a>
k bncn1 a>

k b1c12 + a>
k b2c22 + · · · + a>

k bncn2 · · ·
· · · a>

1 b1c1p + a>
1 b2c2p + · · · + a>

1 bncnp
· · · a>

2 b1c1p + a>
2 b2c2p + · · · + a>

2 bncnp
. . .

..

.
· · · a>

k b1c1p + a>
k b2c2p + · · · + a>

k bncnp


 .

The main challenge in this automatic proof is to fit the many matrix rows, columns, and single
elements involved on the same sheet of paper. Among the shuffling of matrix entries, it is easy to
lose track of how the result comes about. Later, in equation (B.5.29), a compact and intelligible
proof will be given in tile notation.

�

The dispersion of a random matrix Y is often given as the matrix V [vecY ], where
the vectorization is usually not made explicit, i.e., this matrix is denoted V [Y ].

Problem 611. If V[vec Y ] = ΣΣΣ ⊗ ΩΩΩ and P and Q are matrices of constants,

show that V [vecPYQ] = (Q>ΣΣΣQ) ⊗ (PΩΩΩP>).

Answer. Apply (B.5.19): V[vec PYQ] = V[(Q> ⊗ P ) vec Y ] = (Q> ⊗ P )(ΣΣΣ ⊗ΩΩΩ)(Q ⊗ P>).

Now apply (B.5.7). �

Problem 612. 2 points If α and γ are vectors, then show that vec(αγ>) =
γ ⊗ α.

Answer. One sees this by writing down the matrices, or one can use (B.5.19) with A = α,
B = 1, the 1 × 1 matrix, and C = γ>. �

Problem 613. 2 points If α is a nonrandom vector and δ a random vector,
show that V [δ ⊗ α] = V [δ] ⊗ (αα>).
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Answer.

δ⊗α =




αδ1

.

..
αδn


 V[δ⊗α] =




αvar[δ1]α> α cov[δ1,δ2]α> · · · α cov[δ1, δn]α>

α cov[δ2,δ1]α> αvar[δ2]α> · · · α cov[δ2, δn]α>

...
...

. . .
...

α cov[δn,δ1]α> α cov[δn,δ2]α> · · · α cov[δn, δn]α>


 =

=




var[δ1]αα> cov[δ1,δ2]αα> · · · cov[δ1,δn]αα>

cov[δ2,δ1]αα> var[δ2]αα> · · · cov[δ2,δn]αα>

...
...

. . .
...

cov[δn,δ1]αα> cov[δn,δ2]αα> · · · cov[δn,δn]αα>


 = V[δ]⊗ αα>

�

B.5.3. The Commutation Matrix. Besides the Kronecker product and the
vectorization operator, also the “commutation matrix” [MN88, pp. 46/7], [Mag88,
p. 35] is needed for certain operations involving arrays of higher rank. Assume A

is m × n. Then the commutation matrix K(m,n) is the mn × mn matrix which
transforms vecA into vec(A>):

(B.5.20) K(m,n) vecA = vec(A>)

The main property of the commutation matrix is that it allows to commute the
Kronecker product. For any m× n matrix A and r × q matrix B follows

(B.5.21) K(r,m)(A ⊗ B)K(n,q) = B ⊗ A

Problem 614. Use (B.5.20) to compute K(2,3).

Answer.

(B.5.22) K(2,3) =




1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




�

B.5.4. Kronecker Product and Vectorization in Tile Notation. The
Kronecker product of m A n and r B q is the following concate-

nation of A and B with members of a certain family of three-way arrays Π(i,j):

(B.5.23) mr A ⊗ B nq =

m A n

mr Π Π nq

r B q
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Strictly speaking we should have written Π(m,r) and Π(n,q) for the two Π-arrays in
(B.5.23), but the superscripts can be inferred from the context: the first superscript
is the dimension of the Northeast arm, and the second that of the Southeast arm.

Vectorization uses a member of the same family Π(m,n) to convert the matrix

n A m into the vector

(B.5.24) mn vecA =

m

mn Π A

n

This equation is a little awkward because the A is here a n×m matrix, while else-
where it is a m×n matrix. It would have been more consistent with the lexicograph-
ical ordering used in the Kronecker product to define vectorization as the stacking
of the row vectors; then some of the formulas would have looked more natural.

The array Π(m,n) =

m

mn Π

n

exists for every m ≥ 1 and n ≥ 1. The

dimension of the West arm is always the product of the dimensions of the two East

arms. The elements of Π(m,n) will be given in (B.5.30) below; but first I will list
three important properties of these arrays and give examples of their application.

First of all, each Π(m,n) satisfies

(B.5.25)

m m

Π mn Π

n n

=

m m

n n

.

Let us discuss the meaning of (B.5.25) in detail. The lefthand side of (B.5.25) shows

the concatenation of two copies of the three-way array Π(m,n) in a certain way that

yields a 4-way array. Now look at the righthand side. The arm m m by itself

(which was bent only in order to remove any doubt about which arm to the left of
the equal sign corresponds to which arm to the right) represents the neutral element
under concatenation (i.e., the m ×m identity matrix). Writing two arrays next to
each other without joining any arms represents their outer product, i.e., the array
whose rank is the sum of the ranks of the arrays involved, and whose elements are
all possible products of elements of the first array with elements of the second array.
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The second identity satisfied by Π(m,n) is

(B.5.26)

m

mn Π Π mn

n

= mn mn .

Finally, there is also associativity:

(B.5.27)

m

mnp Π n

Π

p

=

m

Π

mnp Π n

p

Here is the answer to Problem 607 in tile notation:

trB>C = B C = B Π Π C =

= vecB vecC = (vecB)> vec C(B.5.28)

Equation (B.5.25) was central for obtaining the result. The answer to Problem 610
also relies on equation (B.5.25):

C> ⊗ A vecB =

C

Π Π Π B

A

=

C

Π B

A

= vecABC(B.5.29)

B.5.5. Looking Inside the Kronecker Arrays. It is necessary to open up

the arrays from the Π -family and look at them “element by element,” in order to

verify (B.5.23), (B.5.24), (B.5.25), (B.5.26), and (B.5.27). The elements of Π(m,n),
which can be written in tile notation by saturating the array with unit vectors, are

(B.5.30) π
(m,n)
θµν =

m µ

θ mn Π

n ν

=

{
1 if θ = (µ− 1)n+ ν

0 otherwise.
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Note that for every θ there is exactly one µ and one ν such that π
(m,n)
θµν = 1; for all

other values of µ and ν, π
(m,n)
θµν = 0.

Writing ν A µ = aνµ and θ vecA = cθ, (B.5.24) reads

(B.5.31) cθ =
∑

µ,ν

π
(m,n)
θµν aνµ,

which coincides with definition (B.5.2) of vecA.
One also checks that (B.5.23) is (B.5.3). Calling A ⊗ B = C, it follows from

(B.5.23) that

(B.5.32) cφθ =
∑

µ,ν,ρ,κ

π
(m,r)
φµρ aµνbρκπ

(n,q)
θνκ .

For 1 ≤ φ ≤ r one gets a nonzero π
(m,r)
φµρ only for µ = 1 and ρ = φ, and for 1 ≤ θ ≤ q

one gets a nonzero π
(n,q)
θνκ only for ν = 1 and κ = θ. Therefore cφθ = a11bφθ for all

elements of matrix C with φ ≤ r and θ ≤ q. Etc.
The proof of (B.5.25) uses the fact that for every θ there is exactly one µ and

one ν such that π
(m,n)
θµν 6= 0:

(B.5.33)

θ=mn∑

θ=1

π
(m,n)
θµν π

(m,n)
θωσ =

{
1 if µ = ω and ν = σ

0 otherwise

Similarly, (B.5.26) and (B.5.27) can be shown by elementary but tedious proofs.
The best verification of these rules is their implementation in a computer language,
see Section ?? below.

B.5.6. The Commutation Matrix in Tile Notation. The simplest way to

represent the commutation matrix K(m,n) in a tile is

(B.5.34) K(m,n) =

m

mn Π Π mn

n

.

This should not be confused with the lefthand side of (B.5.26): K(m,n) is composed

of Π(m,n) on its West and Π(n,m) on its East side, while (B.5.26) contains Π(m,n)

twice. We will therefore use the following representation, mathematically equivalent

to (B.5.34), which makes it easier to see the effects of K(m,n):

(B.5.35) K(m,n) =

m

mn Π Π mn

n

.
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Problem 615. Using the definition (B.5.35) show that K(m,n)K(n,m) = Imn,
the mn×mn identity matrix.

Answer. You will need (B.5.25) and (B.5.26). �

Problem 616. Prove (B.5.21) in tile notation.

Answer. Start with a tile representation of K(r,m)(A ⊗ B)K(n,q):

r m A n

rm Π Π rm Π Π

m r B q

nq

n

nq Π Π nq

q

=

Now use (B.5.25) twice to get

=

r A n

rm Π Π nq

m B q

=

=

r B q

rm Π Π nq

m A n

.

�



APPENDIX C

Matrix Differentiation

C.1. First Derivatives

Let us first consider the scalar case and then generalize from there. The derivative
of a function f is often written

(C.1.1)
dy

dx
= f ′(x)

Multiply through by dx to get dy = f ′(x) dx. In order to see the meaning of this
equation, we must know the definition dy = f(x+ dx)− f(x). Therefore one obtains
f(x+ dx) = f(x) + f ′(x) dx. If one holds x constant and only varies dx this formula
shows that in an infinitesimal neighborhood of x, the function f is an affine function
of dx, i.e., a linear function of dx with a constant term: f(x) is the intercept, i.e.,
the value for dx = 0, and f ′(x) is the slope parameter.

Now let us transfer this argument to vector functions y = f(x). Here y is a
n-vector and x a m-vector, i.e., f is a n-tuple of functions of m variables each

(C.1.2)



y1
...
yn


 =



f1(x1, . . . , xm)

...
fn(x1, . . . , xm)




One may also say, f is a n-vector, each element of which depends on x. Again, under
certain differentiability conditions, it is possible to write this function infinitesimally
as an affine function, i.e., one can write

(C.1.3) f (x + dx) = f(x) + Adx.

Here the coefficient of dx is no longer a scalar but necessarily a matrix A (whose
elements again depend on x). A is called the Jacobian matrix of f . The Jacobian
matrix generalizes the concept of a derivative to vectors. Instead of a prime denoting
the derivative, as in f ′(x), one writes A = Df .

Problem 617. 2 points If f is a scalar function of a vector argument x, is its
Jacobian matrix A a row vector or a column vector? Explain why this must be so.
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The Jacobian A defined in this way turns out to have a very simple functional
form: its elements are the partial derivatives of all components of f with respect to
all components of x:

(C.1.4) aij =
∂fi
∂xj

.

Since in this matrix f acts as column and x as a row vector, this matrix can be
written, using matrix differentiation notation, as A(x) = ∂f(x)/∂x>.

Strictly speaking, matrix notation can be used for matrix differentiation only if
we differentiate a column vector (or scalar) with respect to a row vector (or scalar),
or if we differentiate a scalar with respect to a matrix or a matrix with respect to a
scalar. If we want to differentiate matrices with respect to vectors or vectors with
respect to matrices or matrices with respect to each other, we need the tile notation
for arrays. A different, much less enlightening approach is to first “vectorize” the
matrices involved. Both of those methods will be discussed later.

If the dependence of y on x can be expressed in terms of matrix operations
or more general array concatenations, then some useful matrix differentiation rules
exist.

The simplest matrix differentiation rule, for f(x) = w>x with

(C.1.5) w =



w1

...
wn


 and x =



x1

...
xn




is

(C.1.6) ∂w>x/∂x> = w>

Here is the proof of (C.1.6):

∂w>x

∂x> =
[
∂
∂x1

(w1x1 + · · · + wnxn) · · · ∂
∂xn

(w1x1 + · · · + wnxn)
]

=
[
w1 · · · wn

]
= w>

The second rule, for f(x) = x>Mx and M symmetric, is:

(C.1.7) ∂x>Mx/∂x> = 2x>M .
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To show (C.1.7), write

x>Mx = x1m11x1 + x1m12x2 + · · · + x1m1nxn +

+ x2m21x1 + x2m22x2 + · · · + x2m2nxn +

...
...

...

+ xnmn1x1 + xnmn2x2 + · · · + xnmnnxn

and take the partial derivative of this sum with respect to each of the xi. For instance,
differentiation with respect to x1 gives

∂x>Mx/∂x1 = 2m11x1 + m12x2 + · · · + m1nxn +

+ x2m21 +

...

+ xnmn1

Now split the upper diagonal element, writing it as m11x1 + x1m11, to get

= m11x1 + m12x2 + · · · + m1nxn +

+ x1m11 +

+ x2m21 +

...

+ xnmn1

The sum of the elements in the first row is the first element of the column vector
Mx, and the sum of the elements in the column underneath is the first element of
the row vector x>M . Overall this has to be arranged as a row vector, since we
differentiate with respect to ∂x>, therefore we get

(C.1.8) ∂x>Mx/∂x> = x>(M + M>).

This is true for arbitrary M , and for symmetric M , it simplifies to (C.1.7). The
formula for symmetric M is all we need, since a quadratic form with an unsymmetric
M is identical to that with the symmetric (M + M>)/2.

Here is the tile notation for matrix differentiation: If n y depends on

m x , then

n A m = ∂ y
/
∂ x(C.1.9)
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is that array which satisfies

A dx = dy ,(C.1.10)

i.e.,

(
∂ y

/
∂ x

)
dx = dy(C.1.11)

Extended substitutability applies here: n y and m x are not necessarily

vectors; the arms with dimension m and n can represent different bundles of several
arms.

In tiles, (C.1.6) is

(C.1.12) ∂ w x
/
∂ x = w

and (C.1.8) is

(C.1.13) ∂

x

M

x

/
∂ x =

x

M + M

x
.

In (C.1.6) and (C.1.7), we took the derivatives of scalars with respect to vectors.
The simplest example of a derivative of a vector with respect to a vector is a linear
function. This gives the most basic matrix differentiation rule: If y = Ax is a linear
vector function, then its derivative is that same linear vector function:

(C.1.14) ∂Ax/∂x> = A,

or in tiles

(C.1.15) ∂ A x
/
∂ x = A

Problem 618. Show that

(C.1.16)
∂ tr AX

∂X> = A.

In tiles it reads

(C.1.17) ∂

m

A X

n

/
∂ X = A .

Answer. tr(AX) =
∑

i,j
aijxji i.e., the coefficient of xji is aij . �
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Here is a differentiation rule for a matrix with respect to a matrix, first written
element by element, and then in tiles: If Y = AXB, i.e., yim =

∑
j,k aijxjkbkm,

then ∂yim

∂xjk
= aijakm, because for every fixed i and m this sum contains only one term

which has xjk in it, namely, aijxjkbkm. In tiles:

(C.1.18) ∂

A

X

B

/
∂ X =

A

B

Equations (C.1.17) and (C.1.18) can be obtained from (C.1.12) and (C.1.15) by
extended substitution, since a bundle of several arms can always be considered as
one arm. For instance, (C.1.17) can be written

∂ A X
/
∂ X = A

and this is a special case of (C.1.12), since the two parallel arms can be treated as
one arm. With a better development of the logic underlying this notation, it will not
be necessary to formulate them as separate theorems; all matrix differentiation rules
given so far are trivial applications of (C.1.15).

Problem 619. As a special case of (C.1.18) show that ∂x>Ay
∂A> = yx>.

Answer.

(C.1.19) ∂

x

A

y

/
∂ A =

x

y

�

Here is a basic differentiation rule for bilinear array concatenations: if

(C.1.20) y =

x

A

x
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then one gets the following simple generalization of (C.1.13):

(C.1.21) ∂

x

A

x

/
∂ x =

x

A + A

x

Proof. yi =
∑

j,k aijkxjxk. For a given i, this has x2
p in the term aippx

2
p, and

it has xp in the terms aipkxpxk where p 6= k, and in aijpxjxp where j 6= p. The
derivatives of these terms are 2aippxp +

∑
k 6=p aipkxk +

∑
j 6=p aijpxj , which simplifies

to
∑

k aipkxk+
∑

j aijpxj . This is the i, p-element of the matrix on the rhs of (C.1.21).
�

But there are also other ways to have the array X occur twice in a concatenation
Y . If Y = X>X then yik =

∑
j xjixjk and therefore ∂yik/∂xlm = 0 if m 6= i and

m 6= k. Now assume m = i 6= k: ∂yik/∂xli = ∂xlixlk/∂xli = xlk. Now assume
m = k 6= i: ∂yik/∂xlk = ∂xlixlk/∂xlk = xli. And if m = k = i then one gets the
sum of the two above: ∂yii/∂xli = ∂x2

li/∂xli = 2xli. In tiles this is

(C.1.22)
∂X>X

∂X> = ∂

i

X

X

k

/
∂

l

X

m

=
X

+
X

.

This rule is helpful for differentiating the multivariate Normal likelihood function.
A computer implementation of this tile notation should contain algorithms to

automatically take the derivatives of these array concatenations.
Here are some more matrix differentiation rules:
Chain rule: If g = g(η) and η = η(β) are two vector functions, then

(C.1.23) ∂g/∂β> = ∂g/∂η> · ∂η/∂β>

For instance, the linear least squares objective function is SSE = (y − Xβ)>(y −
Xβ) = ε̂>ε̂ where ε̂ = y − Xβ. Application of the chain rule gives ∂SSE/∂β> =

∂SSE/∂ε̂> · ∂ε̂/∂β> = 2ε̂>(−X) which is the same result as in (18.2.2).
If A is nonsingular then

(C.1.24)
∂ log det A

∂A> = A−1

Proof in [Gre97, pp. 52/3].



Bibliography
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delberg, 1997.

[ET93] Bradley Efron and Robert J. Tibshirani. An Introduction to the Bootstrap. Chapman
and Hall, 1993.

[Eub88] Randall L. Eubank. Spline Smoothing and Nonparametric Regression. Marcel Dekker,
New York, 1988.

[Eve94] Brian Everitt. A Handbook of Statistical Analyses Using S-Plus. Chapman & Hall,
1994.

[Far80] R. W. Farebrother. The Durbin-Watson test for serial correlation when there is no
intercept in the regression. Econometrica, 48:1553–1563, September 1980.

[Fis] R. A. Fisher. Theory of statistical estimation. Proceedings of the Cambridge Philosoph-
ical Society, 22.

[Fri57] Milton Friedman. A Theory of the Consumption Function. Princeton University Press,
1957.

[FS81] J. H. Friedman and W. Stuetzle. Projection pursuit regression. JASA, 76:817–23, 1981.
[FS91] Milton Friedman and Anna J. Schwarz. Alternative approaches to analyzing economic

data. American Economic Review, 81(1):39–49, March 1991.
[FT74] J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for exploratory data

analysis. IEEE Transactions on Computers, C-23:881–90, 1974.
[FW74] George M. Furnival and Jr. Wilson, Robert W. Regression by leaps and bounds. Tech-

nometrics, 16:499–511, 1974.
[Gas88] Joseph L. Gastwirth. Statistical Reasoning in Law and Public Policy. Statistical mod-

eling and decision science. Academic Press, Boston, 1988.
[GC92] Jean Dickinson Gibbons and S. Chakraborti. Nonparametric Statistical Inference. Mar-

cel Dekker, 3rd edition, 1992.



BIBLIOGRAPHY 831

[GG95] Joseph L. Gastwirth and S. W. Greenhouse. Biostatistical concepts and methods in the
legal setting. Statistics in Medicine, 14:1641–53, 1995.

[GJM96] Amos Golan, George Judge, and Douglas Miller. Maximum Entropy Econometrics:
Robust Estimation with Limited Data. Wiley, Chichester, England, 1996.

[Gra76] Franklin A. Graybill. Theory and Application of the Linear Model. Duxbury Press,
North Sciutate, Mass., 1976.

[Gra83] Franklin A. Graybill. Matrices with Applications in Statistics. Wadsworth and

Brooks/Cole, Pacific Grove, CA, second edition, 1983.
[Gra89] Clive William John Granger. Forecasting in Business and Economics. Academic Press,

second edition, 1989.
[Gre93] William H. Greene. Econometric Analysis. Macmillan, New York, second edition, 1993.
[Gre97] William H. Greene. Econometric Analysis. Prentice Hall, Upper Saddle River, NJ,

third edition, 1997.
[Gri67] Zvi Griliches. Distributed lags: A survey. Econometrica, 35:16–49, 1967.
[Gri79] R. C. Grimson. The clustering of disease. Mathematical Biosciences, 46:257–78, 1979.
[Gum58] E. J. Gumbel. Statistics of Extremes. Columbia University Press, New York, 1958.
[Gut94] Robert Guttmann. How Credit Money Shapes the Economy. Sharpe, Armonk, 1994.
[Hal78] Robert E. Hall. Stochastic implications of the life cycle-permanent income hypothesis:

Theory and evidence. Journal of Political Economy, pages 971–987, December 1978.
[Ham94] James D. Hamilton. Time Series Analysis. Princeton University Press, 1994.
[Har76] A. C. Harvey. Estimating regression models with multiplicative heteroscedasticity.

Econometrica, 44:461–465, 1976.
[Hay00] Fumio Hayashi. Econometrics. Princeton University Press, 2000.
[HC70] Robert V. Hogg and Allen T. Craig. Introduction to Mathematical Statistics. Macmil-

lan, third edition, 1970.
[Hen95] David F. Hendry. Dynamic Econometrics. Oxford University Press, Oxford, New York,

1995.
[HH68] C. Hildreth and J. Houck. Some estimators for a linear model with random coefficients.

Journal of the American Statistical Association, 63:584–95, 1968.
[HH71] Gerald J. Hahn and Richard W. Hendrickson. A table of percentage points of the

distribution of the largest absolute value of k Student t variates and its applications.
Biometrica, 58(2):323–332, 1971.

[HK70a] Arthur E. Hoerl and R. W. Kennard. Ridge regression: Application to non-orthogonal
problems. Technometrics, 12:69–82, 1970.

[HK70b] Arthur E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for non-
orthogonal problems. Technometrics, 12:55–67, 1970.

[HK79] James M. Henle and Eugene M. Kleinberg. Infinitesimal Calculus. MIT Press, 1979.
[HM89] David F. Hendry and Mary Morgan. A re-analysis of confluence analysis. Oxford Eco-

nomic Papers, pages 35–52, 1989. Reprinted in [dMG89, pp. 35–52].
[Hol86] Paul W. Holland. Statistics and causal inference. JASA, 81(396):945–960, 1986.
[Hou51] H. S. Houthakker. Some calculations on electricity consumption in Great Britain. Jour-

nal of the Royal Statistical Society (A), (114 part III):351–371, 1951. J.
[HR97] Omar F. Hamouda and J. C. R. Rowley, editors. The Reappraisal of Econometrics,

volume 9 of Foundations of Probability, Econometrics and Economic Games. Elgar,
Cheltenham, UK; Lyme, US, 1997.

[Hsu38] P. L. Hsu. On the best unbiased quadratic estimate of variance. Statistical Research
Memoirs, 2:91–104, 1938. Issued by the Department of Statistics, University of London,
University College.

832 BIBLIOGRAPHY

[HT83] Robert V. Hogg and Elliot A. Tanis. Probability and Statistical Inference. Macmillan,
second edition, 1983.

[HT90] Trevor J. Hastie and Robert J. Tibshirani. Generalized Additive Models. Chapman and
Hall, 1990.

[HVdP02] Ben J. Hejdra and Frederick Van der Ploeg. Foundations of Modern Macroeconomics.
Oxford University Press, 2002.

[Hyl92] Svend Hylleberg, editor. Modelling Seasonality. Oxford University Press, 1992.

[JGH+85] George G. Judge, William E. Griffiths, R. Carter Hill, Helmut Lütkepohl, and Tsoung-
Chao Lee. The Theory and Practice of Econometrics. Wiley, New York, second edition,
1985.

[JHG+88] George G. Judge, R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, and Tsoung-
Chao Lee. Introduction to the Theory and Practice of Econometrics. Wiley, New York,
second edition, 1988.

[JK70] Norman Johnson and Samuel Kotz. Continuous Univariate Distributions, volume 1.
Houghton Mifflin, Boston, 1970.

[JL97] B. D. Javanovic and P. S. Levy. A look at the rule of three. American Statistician,
51(2):137–9, 1997.

[JS61] W. James and C. Stein. Estimation with quadratic loss. In Proceedings of the Fourth
Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 361–
379. University of California Press, Berkeley, 1961.

[JW88] Richard A. Johnson and Dean W. Wichern. Applied Multivariate Statistical Analysis.
Prentice Hall, 1988.

[KA69] J. Koerts and A. P. J. Abramanse. On the Theory and Application of the General
Linear Model. Rotterdam University Press, Rotterdam, 1969.

[Kal82] R. E. Kalman. System identification from noisy data. In A. R. Bednarek and L. Cesari,
editors, Dynamical Systems, volume II, pages 135–164. Academic Press, New York,
1982.

[Kal83] R. E. Kalman. Identifiability and modeling in econometrics. In P. R. Krisnaiah, editor,
Developments in Statistics, volume 4. Academic Press, New York, 1983.

[Kal84] R. E. Kalman. We can do something about multicollinearity! Communications in
Statistics, Theory and Methods, 13(2):115–125, 1984.

[Kap89] Jagat Narain Kapur. Maximum Entropy Models in Science and Engineering. Wiley,
1989.

[KG80] William G. Kennedy and James E. Gentle. Statistical Computing. Dekker, New York,
1980.

[Khi57] R. T. Khinchin. Mathematical Foundations of Information Theory. Dover Publications,
New York, 1957.

[Kim] Kim. Introduction of Factor Analysis.
[Kin81] M. King. The Durbin-Watson test for serial correlation: Bounds for regressions with

trend and/or seasonal dummy variables. Econometrica, 49:1571–1581, 1981.
[KM78] Jae-On Kim and Charles W. Mueller. Factor Analysis: Statistical Methods and Prac-

tical Issues. Sage, 1978.
[Kme86] Jan Kmenta. Elements of Econometrics. Macmillan, New York, second edition, 1986.
[Knu81] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Pro-

gramming. Addison-Wesley, second edition, 1981.
[Knu98] Donald E. Knuth. Seminumerical Algorithms, volume 2 of The Art of Computer Pro-

gramming. Addison-Wesley, third edition, 1998.



BIBLIOGRAPHY 833

[Krz88] W. J. Krzanowski. Principles of Multivariate Analysis: A User’s Persective. Clarendon
Press, Oxford, 1988.

[KS79] Sir Maurice Kendall and Alan Stuart. The Advanced Theory of Statistics, volume 2.
Griffin, London, fourth edition, 1979.

[Ksh19] Anant M. Kshirsagar. Multivariate Analysis. Marcel Dekker, New York and Basel, 19??
[Lan69] H. O. Lancaster. The Chi-Squared Distribution. Wiley, 1969.
[Lar82] Harold Larson. Introduction to Probability and Statistical Inference. Wiley, 1982.

[Law89] Tony Lawson. Realism and instrumentalism in the development of econometrics. Oxford
Economic Papers, 41:236–258, 1989. Reprinted in [dMG89] and [HR97].

[Lea75] Edward E. Leamer. A result on the sign of the restricted least squares estimator. Journal
of Econometrics, 3:387–390, 1975.

[LN81] D. V. Lindley and M. R. Novick. The role of exchangeability in inference. Annals of
Statistics, 9(1):45–58, 1981.

[Loa99] Clive Loader. Local Regression and Likelihood. Statistics and Computing. Springer,
New York, 1999.
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