Ethnographic Methods—Final Report

Your final report should be modeled loosely after a published paper in the social sciences (not humanistic anthropology), and should include (a) an introductory section that describes the research question and reviews relevant research, (b) a detailed description of your methods, (c) a summary of your results and (d) a discussion section. The balance among the sections will differ from a real paper, however. Details on each section are given below.

Due date is on the web. Submit to turnitin.com, no hard copy is required.

There are no page limits. Take the space you need to do a thorough job, and then edit it by deleting redundant sections, unnecessary words, convoluted prose, and jargon. It might be 4-8 single-spaced pages, but that is not a requirement.

Part I: Introduction

In this section, you will explain your research question, hypotheses if you have them, and set your research in the context of other research that has been done. The purpose is to explain what you are doing, and why anyone should care.

You should be able to take most or all of this directly from your proposal (parts 1 and 2). However, you may have changed or focused your research question, and you may have done additional reading, so this gives you the opportunity to clean it up up and improve it. Do not do any additional reading just for this report.

Part II: Methods

Explain your methods in detail. You may take this from part 3 of the research proposal. I want to know how you chose your sample, and why, and enough about your procedure so that someone could copy it exactly just from reading the paper. (If you used a haphazard sample for this project but have different ideas for how you would do it for a real project, you may mention that here also.) Err on the side of more detail in this section, since this is a methods class!

Part III: Results

Getting answers to your research questions—even preliminary answers—is the fun part of research, so I want you to go over your data and summarize the results. Use the data analysis techniques you are familiar with, but be assured that I will not mark you down if you do not know how to analyze data. This is a course in data collection, not data analysis.

Even if you have never had a statistics course, however, you should be able to do simple summaries of the data. See the last page for notes on how you might do this.

Include results that bear on your research question, and any other results that are interesting. If
it is neither related to the question nor interesting, don’t include it unless it provides important background information. Probably you will not have enough data to say anything statistically conclusive, even if you are using statistical tests, but you can discuss trends if there are any.

Please do not worry if your data do not show anything interesting. If the two subpopulations you are comparing turn out to be identical, if your plots look like snow in a Utah winter, if all the cells in the cross-tabulations look the same, its ok!!!! See next section.

Part IV: Discussion

People use the discussion section of a scientific paper to interpret the results, explain limitations of the data, suggest future avenues for research etc. You can do some of that here, but for the purposes of this project I want this section to be primarily a very detailed critique of your work (more than you would put in a published paper). Were your methods suitable? What worked and what didn’t? What changes would you make if you were to follow up this project? You might think about the following (it is not an exhaustive list, just some ideas to think about):

a) Does the research you conducted suggest a better way to pose the research question? Did the study suggest other interesting research questions and/or hypotheses?

b) Are you now in a better position to identify a suitable population? To decide how to sample it? Were there sources of bias in the way you chose your sample?

c) Are you now in a better position to devise appropriate data-gathering techniques and instruments? Are there other techniques that you would like to use, and are there any that should be dropped?

d) Did you face problems of access or rapport? Do you think people were being honest with you (why do you think so)? Did you face any ethical dilemmas? Are there ways the problems could have been prevented or dealt with better?

e) Were people able to answer your questions (if you were interviewing)? Were you able to observe without significantly affecting their behavior (if you were doing an observational study)? Do any of your questions (or behavior codes, or experimental protocols) need modifying? How about the order of presentation? Be specific: if there was a badly-worded question, suggest an improvement here.

f) Were there technical problems with equipment? Were your note-taking methods satisfactory?

We all screw up—this is why people do pilot studies. You will not be graded down if you are able to make an elegant assessment of the screw-ups.
Analyzing your data

So you’re clueless about data analysis and statistics? Here are some suggestions for the “results” section:

(1) if you are comparing two or more sub-populations on some quantitative variable, give me the average values for each group (for example, “average number of fleas per person was 12 for males, 16 for females”).

(2) If one variable is categorical (like sex, or location) and the other consists of frequencies (i.e., counts), you might find it useful to present data as cross-tabulations. A simple cross-tab looks like this:

<table>
<thead>
<tr>
<th></th>
<th>male</th>
<th>female</th>
<th>couldn’t tell</th>
</tr>
</thead>
<tbody>
<tr>
<td># of fleas</td>
<td>22</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td># of pets</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

You can make the cross-tab more interpretable by also computing totals and percentages, so that you can see that although males had more fleas than females, they actually had fewer fleas than you might expect, given the number of pets they owned. (75% of the pets were owned by males, yet males had only 63% of the fleas).

<table>
<thead>
<tr>
<th></th>
<th>male</th>
<th>female</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td># of fleas</td>
<td>22</td>
<td>13</td>
<td>35</td>
</tr>
<tr>
<td>row percent</td>
<td>63%</td>
<td>37%</td>
<td>100%</td>
</tr>
<tr>
<td># of pets</td>
<td>6</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>row percent</td>
<td>75%</td>
<td>25%</td>
<td>100%</td>
</tr>
</tbody>
</table>

(3) If you have two variables with values that are ordered from small to large (for example, number of pets owned and amount of furniture shredding experienced) and you want to know if they are associated, do a scatter plot. You can do this using excel, or just by hand. People often distinguish between the independent variable (what you think is causing the relationship) and the dependent variable (what you are trying to predict). The convention is to put the independent variable (number of pets) on the x axis and the dependent variable (amt. of shredded furniture) on the y axis. Then each person (or household) you interview is a single point on the graph. Here is a middle-school-level explanation of scatterplots.

Data that cannot be reduced to numbers can be described in prose. A combination is great: present the numbers and amplify it by giving examples.